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Introduction

In classical probability theory, based on Kolmogorov consistency theorem, one can
associate a Markov process to any one parameter semigroup of stochastic matrices
or transition probability operators. It is indeed the foundation for the theory of
Markov processes. Here a quantum version of this theorem has been. established.
This effectively answers some of the questions raised by P. A. Meyer in his book (see
page 220 of [Me]).

It is widely agreed upon that irreversible dynamics in the quantum setting is de-
scribed by contractive semigroups of completely positive maps on C™ algebras ([Kr],
[AL)). In other words these semigroups, known as quantum dynamical semigroups,
are non-commutative Markov kernels. We take the view point that a quantum
Markev process consists of a ‘filtration’ and a time indexed family of representations
of a C* algebra reflecting the Markov property with Tespect to a suitable ‘conditional
expectation’. See [AFL], [Ku2], [Sc], and [Sa1] for other approaches.

In the modest approach taken here conditioning means truncating operators to
subspaces and so naturally enough filtrations are increasing families of subspaces (or
projections). This leads us to the notion of weak Markov flows. This notion is quite
powerful and encompasses atleast three kinds of dilations in its fold. Classical Markov
processes, Sz. Nagy dilation of contraction semigroups on Hilbert spaces([SzF], [Da3],
[EL]), and Evans-Hudson flows of Fock space stochastic calculus([P1], [Me]) are
included here in a natural way. The main theorem in Section 4 shows that every
quantum dynamical semigroup can be realized as expectation semigroup of a weak

Markov flow. M there is uni upto unitary equival under a natural
irreducibility condition. From the operator algebraic point of view this theorem
lizes Sti ing’s famous th, ([St], [P1])) showing that every completely

positive map on a C* algebra can be dilated to a Tepresentation of the algebra.
Similar generalization under varying stringent conditions on the semigroup and the
algebra may be found in ([Em], [Vi-S]).

The Markov process ding to a igroup of substochastic matrices or

ative transition probability op has an exit time which may be in-
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terpreted as a stop time at which the trajectory of the process goes out of the state
space or hits a boundary. There are many ways of continuing the process after the
exit time in such a manner that the Markov property and stationarity of transition
probabilities are retained. Feller’s study of this problem ([Fe1,2,3]) based on resol-
vents of semigroups and Chung’s pathwise approach ([C1,2], [Dy]) are well-known.
Now it is natural to ask as to what happens when we have quantum Markov Pprocesses
relating to quantum dynamical semigroups. The study in this direction was initiated
by Davies [Da2] in the semigroup level. We are able to follow the footsteps of Feller
and Chung to successfully return from the boundary and continue along a duplicate
of the original flow as and when we reach the boundary to have a new quantum

Markov flow. Of course, here the exits are governed by quantum stop times. Our

investigations indicate the possibility of developing an i boundary
theory.

Most of the results are based on [BP2] and some subsequent work with K. R.
Parthasarathy. Examples of generators of vative dy ical igroups in

Chapter IV are from [BS2]. The thesis is almost self-contained except for the exam-
ples which may need some knowledge of Hudson-Parthasarathy theory of quantum
stochastic calculus in Fock spaces. The basic references are [Fel-3], [C1-2], [BP2],
[BS2] and the two books on the subject An Introduction to Quantum Stoch Cal-
culus of K. R. Parthasarathy [P1) and Quantum Probability for Probabilists of P. A.
Meyer [Me].

Briefly the lay out is as follows. In sections 1 and 2 basic definitions relating
to quantum dynamical semigroups and weak Markov flows are given and explained
through fundamental examples. It is noted here that Kolmogorov construction leads
to two different weak Markov flows. First one is a commutative Markov flow but
the second one is not and is got through a simple conditioning procedure. The
minix;ality of weak Markov flows associated with Sz. Nagy dilation as presented
here appears to be new. Some general moment computations of weak Markov flows
are carried out in Section 3. The most important observation in this context is
the existence of a reduction algorithm facilitating computations. Existence and
uniqueness of a ‘subordinate’ dilation, under a minimality assumption, are shown
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for every quantum dynamical semigroup in the next section. The proof is simple
and straight-forward for conservative semigroups and the only tool needed is the
G.N.S. construction. The nonconservative case is tackled by a trick of extending
the semigroup to a conservative semigroup in a larger algebra. In Section 5 it is
seen that flows constructed in Section 4 satisfy a cocycle property automaticaily. A
generalization of a result of Arveson leading to an abstract Feynman-Kac cocycle is
established. And in Section 6 an interesting family of representations of the centre
of the algebra is constructed. This family, which is not really a weak Markov flow,
is called the central flow. If the original algebra is abelian then the central fow
provides us 2 unique minimal abelian dilation of the quantum dynamical semigroup.
This once again tallies with the Kolmogorov construction.

A special type of perturbation of positive semigroups on von Neumann algebras
is carried out in Chapter I It is to be noted that here onwards we restrict ourselves
to von Neumann algebras and work with continuous time semigroups only. Chapter
IIT deals with gencral quantum stochastic processes and stop times. A quantum
stochastic process would simply be a time indexed family of operators and stop
times are spectral measures. The meaning of starting with one process and continu-
ing along a new process after a stop time is made precise. It is done through ‘gluing’
independent processes and filtrations suitably. In Chapter IV first we glue infinitely
many copies of a single Markov process exactly analogous to Chung’s pathwise ap-
proach to realize Feller perturbed semigroups as expectation semigroups of Markov
flows. Then in the last section several examples are discussed. Feller’s construction
of obtaining minimal semigroups out of formal generators has been genralized to
the non-commutative set up (See [Da2], [Ch], [CF], [Fal], and [Mo]). The formal
generators appearing here lead to nonconservative minimal semigroups in a natural

way. On employing Feller perturbations we can ensure conservativity.



CHAPTER I
Markov Dilations

1 Quantum Dynamical Semigroups

One parameter semigroups of transformations and operators play an important role
in describing any dynamics whether it is deterministic or non-deterministic, classical
or quantum. The study of classical Markov processes involves positive semigroups
acting on an algebra of continuous or bounded measurable functions on a topological
or measurable space. In the quantum setting this abelian algebra of functions gets
replaced by a general C* or von Neumann algebra. The most appropriate notion of
positivity here seems to be complete positivity ([Kr], [AL}) which, essentially, means
that the positivity does not get destroyed by adjoining an independent system with
10 motion. Positive linear maps on abelian algebras are automatically completely
positive([St], [Ta]) and hence there is no need for any extra condition in the con-
text of classical processes. This leads to a formal definition of quantum dynamical
semigroups as completely positive one parameter semigroups on C* algebras.

The dynamics that we consider here may be in discrete time or in continuous time.
Accordingly the set of time points, denoted throughout by Ty, will be either the
additive semigroup Z, of nonnegative integers or Ry of nonnegative real numbers.

Definition 1.1 : Let A be a unital C* a.]gebra A family of linear maps {T; : t €
Ty}, of A into itself is called a quantum d; ! igroup if the following are
satisfied:

(i) Tt is completely positive for every t, i.e., ((T(Xi5))) > 0 for ((Xi5)) >0
where ((X;;)) is in My(A), the +-algebra of n X n matrices wn.h entries from A for
n=12--;

(ii) To(Td(X)) = Toe(X) forall X € A,s,te T, ;

(iii) To(X ) X for all X € A;

(iv) ()< I forall t € Ty
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The semigroup is called conservative if Ty(I) = I for every t.

It follows from (i) and (iv) that every quantum dynamical semigroup is automat-
ically contractive. A priori we do not put any continuity restriction on the semigroup
in the variable t. In discrete time the dynamical semigroup consists of {I,T,T?,---}
for a single contractive completely positive map T : A4 — A.

To begin with one may keep in mind the following examples of quantum dynam-
ical semigroups.

Example 1.2 : Let S be a countable set. Suppose that P(t) = ((pi;(t)))ijes, is a
family of matrices such that

(i) pij(t)20foralli,jeSandtey;

(i) pij(s +t) = Tres Pik(s)pr;(t) for all i,5 € S and t € Ty;

(i) pij(0) = &; for all i,j € S.

(iv) Z;pij(t) < 1foralli € S and t € Ty;
Taking A as the algebra I;(S) of bounded functions on S define T; : A — A by

(T(NG) = X pis(f () = (POHG)-
J

It is easy to show that {Tt} is a quantum dynamical semigroup. The semigroup {T3}
is conservative if and only if P(t) is stochastic, i.e., ¥;pij(t) = 1 for every i and
t. These are the semigroups involved in classical Markov chains or countable state
Markov processes.

Example 1.3 : Let V(t),t € T, be a semigroup of isometric operators on a complex
separable Hilbert space M. Define T} : B(H) — B(M) by

T(X) = V(O)XV(t)", X € B(H).

Clearly Tt is a quantum dynamical semigroup on the algebra B(*) of all bounded
operators on M. This semigroup is conservative if V'(t) is unitary for every . In such
a case note that, {V(t) : t € T’} becomes a group on defining V(~t) = V(t)". The
definition of 7; can then be extended in a natural way to incorporate negative time
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points. Such semigroups arc used to describe reversible dynamics in the Heisenberg
picture of quantum theory.

Example 1.4 : Let L be a selfadjoint operator on a complex separable Hilbert space
H. Define Ty : B(H) -+ B(H) by

T(X) = Ee“OEx

WL X € B(H),

where w(t) is the standard Brownian motion or, more generally, a real valued stochas-
tic process with stationary independent increments and JE stands for expectation in
the strong Bochner sense. It is not very difficult tc see that T, is a conservative
quartum dynamical semigroup on B(H)

A linear map T on the full algebra B(*) of all bounded operators on a complex
separable Hilbert space H is called ultra-weakly continuous {see [Dad]}if tr pT(X,) —
tr pT(X) whenever trpX, — trpX for all trace class operators p in B(H). If T is
an ultra-weakly continuous completely positive map on B(H) then as a consequence
of Stinespring’s Theorem (Theorem 4.3) one has T(X) = 3°¢%, L; X Lk, for some
{Lk € B(H): L L} L converging strongly}. The structure of continuous time quan-
tum dynamical semigroups is not very clear except under some stringent continuity
assumptions. We will be dealing with two notions of continuity.

Definition 1.5 : Let {T; : t € IRy} bea quantum dynamical semigroup on a C* alge-
bra A. Then {T.} is said to be strongly continuous if lim,—, ||Te(X) = T,(X)|| = 0 for
X € Aand s > 0, and is said to be uniformly continuous if lim—, supyxyict 1T X) =
Ty(X)|| =0 for all s > 0.

The structure of uniformly continuous quantum dynamical semigroups is well
known and is as follows.

Theorem 1.6 ([GKS] and [Li]) : Let {T; : t € IR} be an uniformly continuous
quantum dynamical semigroup on the C* algebra B(H) for some complex separable

Hilbert space M. Suppose Ty is ultra-weakly continuous for every t. Then the
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generator £ = lim_o 3(T: — I) is a bounded map on B(H) and is given by
L(X)=1i[H,X]- %Z(LLL;;X + XLiLy — 2Ly X Ly) — %(BX +XB)
k

where {Lix € B(H) : 34 L} Lx converges strongly}, H and B are bounded self-adjoint
operators on H with B > 0. The semigroup {T}} is conservative if and only if B is

zero.

Proof : We refer to [P1], [Li], and [Dal] for the conservative case. The nonconser-

vative case can be treated in a similar fashion. | ]

2 Weak Markov Flows

There have been several attempts to build quantum analogues of classical Markov
processes ( [AFL], [Kul,2], [Sal], [EL], [Sc]). Our approach is very close to that
of [Em] and [ViS]. The main difference being that we work with general quantum
dynamical semigroups on C* algebras whereas [Em] and [Vi-S] consider conservative
semigroups on von Neumann algebras and assume existence of a faithful normal in-
variant state. Vincent-Smith [Vi-S] has already observed the necessity to consider
non-commutative processes which are not unital and have a ‘weak Markov prop-
erty’. We face a similar situation. Classical Markov processes, Sz. Nagy dilation of
contraction semigroups to isometric semigroups, and Evans-Hudson flows of Hudson-
Parthasarathy quantum stochastic calculus in Fock spaces form three fundamental
examples of weak Markov flows. In this section weak Markov flows are defined and
explained through these examples.

In the theory of Markov processes a crucial role is played by the notion of condi-
tional expectation. There are various non-commutative generalizations of conditional
expectation of classical probability ([AC], [Dal], [Um)], [Pe]). We find Definition 5.2
of [EL] most suitable for our purposes.

Let B be a unital C* sub-algebra of a unital C* algebra A. A conditional ez-
pectation of A given B is a projection IE of norm one from A onto B such that
IE(14) = 1. It has been established in [EL] that any such map E is automatically



2 WEAK MARKOV FLOWS 5

completely positive and satisfies the crucial module property: E(XY) = EX)Y
forall X € Aand Y € B.

It should be noted that given two unital C* algebras A and B, with B C A, there
may not exist any map IE as above (p. 84 of [EL], [AC], [Su2]). However no such
difficulty is faced in the sequel due to some inter-dependence of pairs of algebras
under consideration. In fact a very simple type of conditional expectation maps,
which may be described as truncating through projections is ail that we need. A
crucial difference from the classical and the Fock space set up is that these maps are
not unital in the strict sense, i.e., the identity of the Hilbert space is not preserved.
For this reason we prefer to call them as weak conditional expectation maps.

Let H be any complex Hilbert space with scalar product < -,- > linear in the
second variable and conjugate linear in the first. By a weak filtration F on H we
mean a family F = {F(t),t € Ty } of orthogonal projection operators nondecreasing
in the variable t. Denote by B(*) the algebra of all bounded operators on H and
write

BYj = {F()X F(t),X € B(H)}
for every t. Then {Bff,t € T} is a nond ing family of * subalgebras of B(H).
The map E} : B(H) — B defined by

E§(X) = F()X F(t)
is called the weak conditional ezpectation with respect to F at time .

Proposition 2.1 : The weak conditional expectation maps {E{']‘,t € Ty} satisfy
the following :

(i) IEf is a completely positive and contractive linear map;

(i) EE(T) = F(t);

(iil) E{(X) = X for all X € Bg;

(iv) EE(XY) = XE§(Y), Ef(YX) = Ef(Y)X for all X € Bf,Y € B(H);

) E:]'IEE = Ef;\'] where s A t = min(s, t).

Proof : Immediate. "
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Definition 2.2 : Let A be a unital C* algebra of operators on a Hilbert space Ho
and let {T¢,t € U’} be a quantum dynamical semigroup on A. A triple (H, F,j¢) is
called a weak Markov flow with ezpectation semigroup {T;} if M is a Hilbert space
containing Ho as a subspace, F is a weak filtration on H with F(0) having range Ho
and {ji,¢t € T4} is a family of *-homomorphisms from A into B(%) satisfying the
following

() Efio(X) = XF(0) and j(X)F(t) = F(t)j(X)F(t) for all ¢ > 0, X € A;

(it) E5j(X) = ja(Tees(X))F(s) for all 0S s S t < 00, X € A.
The flow is called subordinate to the filtration F if j,(I) < F(t) for all t. If j,(I) =
F(t) for all t it is said to be conservative. If for every ¢, j;(I) is the identity operator
in M then the flow is called unital. Suppose the set {ji,(X1) -+ - je,(Xn)u : t1,...,tn €
Ty, X1,...,Xn € A, u € Ho and n = 1,2,...} is total in H then the Markov flow
(H, F,jt) is said to be minimal.

The Hilbert space Ho may be called the initial space. The unit of the initial
algebra A is assumed to be the identity operator on H unless mentioned otherwise.
We will be dealing with only weak Markov flows and hence may refer to them simply
as Markov flows and we may say j; is a subordinate flow to mean that it is subordinate
to its associated filtration F.

In Definition 2.2 condition (i) describes the faithfulness of jo and adaptedness of
the flow to the filtration F', whereas condition (ii) describes the Markov property of
the flow. In the case of a subordinate Markov flow it follows from (i) that jo(I) =
F(0) and the factor F(s) on the right hand side of (ii) may be dropped to have
Effj,(X) = Js(Tt-s(X)). It may be noted that if (M, F,j;) is a weak Markov flow
then (H, F, ji(-) F(t)) is a subordinate weak Markov flow. Classical Markov processes
appear in this setting in the following form.

Example 2.3 : Let {P(t,z;E) : t € T4,z € S,and E C S} be a semigroup of
transition probability functions [BG] on a state space S. Suppose u is an initial
distribution on S such that

uP, < pforall t. (21)
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Now set A = L(u) considered as the algebra of multiplication operators on Mg :=
L*(p). Then the relevant semigroup {T; : A — A} is given by

(BN = [ S0)P(zidy) Tor f € L(w).

Condition (2.1) is put so that 7; maps A into itself. Let (Q,F,P,) be the Kol-
megorov probability space so that the ‘path space’ Q is {w : Ty — S}, and the
co-ordinate process £; defined by &(w) = w(t), is a Markov process with initial dis-
tribution p and transition probability function P(t,z;E). Let F; be the o-algebra
generated by {£, : 0 < s < t}. Now take M to be L%(IP,) and F(t) as the projection
on to the space of F;-measurable functions on . In other words, for ne H

F(t)n = Ep,(niF).

‘We make a clarification here. Note that F(t)1 = 1 where 1 is the constant function

with value 1. However our conditional expectation is not F(t) but it is Ef]‘, mapping

X to F(t)X F(t) in B(H). Here the identity operator gets mapped to F(t) by E{;
Now define +-homomorphisms k, : A — B(H) and j¢ : A — B(H) by

ke(f)n = f(&)n,
and
il f)n=F)f(&n

forn € H and t € Ty, ie., k(f) is simply multiplication by f(&) and ji(f) is
multiplication by f() followed by conditional expectation (classical) given the o-
algebra F;. Clearly k, is a +-h phism. As & is Fy bl

3(fn=F@)f(En = f(&)F(t)n,

and hence j¢ is also a *-homomorphism. Now it is not very difficult to show that
(H,F,ki) and (M, F, j,) are weak Markov flows with expectation semigroup {T3}.
Note that a function h in L%(u) is identified with the function w — h(w(0)) in
L¥(IP,). Now for t > 0,

J(N)h = E(f(E)RIF) = f(E)h = k(f)h,
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and by induction it is clear that for t; >ty > ---t, > 0,

Ja(f)-Jen(fa)h = fi(€n) - fal€ea)h = ko (f1) -+~ ke ()R (22)

Clearly the set {fi(€,) " fa(€ea)h : 1 2 t2 2 --tn > 0,f1,+ fu € L®(p),h €
L%(u)} is total in L2(IP,). Hence both the flows j, and k; are minimal.

The weak Markov flows described above retain almost all the information one
would like to have about the process. The significance of j; is that it is a subordinate
Markov flow and has a natural generalization to non-commutative algebras as well,
as shown in Section 4. On the other hand k; is important as it is an abelian flow, i.e.,
ks and k; commute for all s and t. A generalization of k; to centres of C* algebras is
exhibited in Section 6. It is obvious that j; is not abelian and k; is not subordinate
to F in general.

Remark 2.4 : In Example 2.3 if S is a toplogical space and for each fixed ¢,
P(t,z;-) is continuous in the variable z in the topology of weak convergence of
totally finite measures then (2.1) may be dropped and T; can be considered as a
semigroup on the algebra Cy(S) of bounded continuous functions on S acting on
L?(1) by multiplication.

Example 2.5 : Let {R(t) : t € Ty} be a contraction semigroup on a complex
Hilbert space Ho. Then {T}} defined by

T(X) = R(OXR(t)" for X € B(Ho)

is a quantum dynamical semigroup on B(Ho). Now by a well-known dilation theorem
of Sz. Nagy [SzF] there exists a Hilbert space H containing Ho, with a semigroup
V(t) of isometric or unitary operators such that

R(t) = PV(t)Plx,

where P is the projection of H onto Hp. Define the filtration F on H by putting
F(t) as the projection onto the closed linear span of {V(s)u : 0 < s < t,u € Ho}
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and define j; : B(Ho) — B(H) by
J(X) = VW)PXPV(t)" for t €Ty and X € B(Ho).

We claim that (M, F,j) is a subordinate Markov flow on B(Ho) with expectation
semigroup {7¢}. Homomorphism and adaptedness properties of j; are trivial to show.

Now fixing 0 < s < t, consider arbitrary a,b < s and u,v in Ho. We have

(Viayu, j(X)V(b)) = (u,V(t—a)PXPV(t - b)'v)
u, PV(t - a)PX PV (t - b)" Pr)

(
(
= (4, R{t- )X R(t - b)"v)
(u,
(

R(s - a)Ty—o(X)R(s — b)*v)
V(@)u, jo(Ti-o( X))V (b)v).

As the collection of vectors {V(a)u:0 < a < s and u € Ho} is total in the range of
F(s), we have the Markov property, F(s)ji(X)F(s) = jy(Toes(X)).

Recall that in Sz. Nagy theory ([SzF], [Da3]) an isometric dilation V/(t) is called
minimal if {V(t)u:t € Ty,u € Ho} is total in H.

Theorem 2.6 : Let {R(t) : t € Ty} be a semigroup of contractions on a Hilbert
space Ho with R(to) # 0 for some to > 0. Suppose V(t), T;, and (H, F, j;) are
as above then (¥, F,j¢) is 2 minimal Markov flow if and only if V(t) is a minimal

isometric dilation of R(t). It is conservative if and only if R(t) is co-isometric.

Proof : Assume that V(t) is a minimal dilation of R(t). For s € Ty choose n
large enough so that to > £ = so (say). As R(so) # 0, there exists ug € Ho with
||R(so)uol|* = 1. For any two vectors z,y, let |z)(y| denote the operator A defined
by Az = (y,z)z. Now for any u € Ho, taking X = |u){R(so)"uo|,

Jso(X)uo = V(s0) XV (s0)"uo = V(s0)X R(s0) 0 = V(so)u.
Put Y = |R(so) uo)(R(s0) uo|, and then observe that

J250(X )0 (Y Yo = Jaso (X)V (s0)uo = V(250) XV (s0)u = V(2s0)u,
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and by induction on n,
Inso(X)in=1)so(Y) -+ - Gso (Y)uo = V(nso)u = V(s)u.

This proves the minimality of (%, F, j;). The converse follows easily from the defini-
tion of F. If ji is conservative then so is T; and hence R(2) is co-isometric.

Now assume that R(t) is co-isometric for every t. For a,b,t > 0 and u,v € Ho
we have
(R(a+t—bu,v) ifat+t>b
(u,R(b—a—t)w) ifa+t<b

These relations along with minimality of V imply

(V(t)V(a)u, V(b)v) = {

R(t—b)y ift>b

Vi er = { Vb—typ ift<b

and a similar computation using co-isometric property of R(t) shows unitarity of
V(t) for every t. Now for 0 < s < t and u € H,, observe
DV (s)u = V()PV(t)V(s)u = V(t)PR(t — s)*u

= V(OR(t - 8)"u = V)V ()" V(s)u = V(s)u.

This proves ji(I) = F(t) for every t. .
Theorem 2.6 deliberately avoids the di: i contraction igroup R given
by
I fort=0
R(t) =
® { 0 fort>0.
The corresponding quantum dynamical semigroup T;, which is
X fort=0
T(X) =
0 for t > 0,

has a unique subordinate minimal Markov dilation (Ho, F°,;?), where FO(t) = I
and jP(X) = T(X). But for isometric dilations of R(t) one needs Hilbert spaces
much larger than Ho and hence the associated weak Markov flows are not minimal.
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Example 2.7 : Let {J;,¢ > 0} be an Evans-Hudson flow ([P1], [Me], [EH]) deter-
mined by structure maps {6:,,j > 0} on a unital von Neumann a.lgebm of operators
on a Hilbert space Ho so that the g stochastic di ial

dJe(X) = DOJO(X))dAN (1), Jo(X) = X ® 1, X € A
i

are fulfilled in the Hilbert space M = Ho ® I(L*(IR4) ® £2), I' indicating the boson
Fock space over its argument and A} are fundamental processes of time, creation,
conservatin and annhilation (Notation as in [P1]). Let F(t) denote the projection
onto the subspace H¢ = Ho®T'(L*[0,1)®£?)® b, C H where @, is the Fock vacuum
in T(L*(t,00) ® €?). Define j(X) = J(X)F(t), t > 0, X € A. Then (H,F,j)
is a conservative weak Markov flow with expectation semigroup T; = '8, ¢ > 0.
However, this need not be a minimal Markov flow.

More examples of weak Markov flows are given in Section 4. We end this section
with a simple theorem which tells us how to describe weak Markov flows without

referring to quantum dynamical semigroups.

Theorem 2.8 : Let F be a weak filtration of a Hilbert space H. Suppose that A
is a x-subalgebra of B(Ho), where M, is the range of F(0), and j : A — B(H) is a
family of *-homomorphisms satisfying

(i) Eu]]x(x)lm €A, for t>0, and X € A4;

(@) BE(X) = 5.(E5j(Olo) F(s), for 0S5 <8, and X € A.
Then T; : A — A, defined by

Ty(X) = EgidX)ln,
is a quantum dynamical semigroup on A. Moreover (M, F, j;) is a weak Markov flow
with expectation semigroup 7.
Proof : Fors,t > 0and X € A,
Tore(X) = Efjosd X) = EJELjo(X)

§3ATUX)F(s) = E55(TUX)) = TT(X))F(0).
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Clearly To(X) = X and T} is contractive and completely positive for every t. The
second part is straight-forward. n

3 Moment Computations

It is not unusual in the study of non-commutative processes to have situations where
only time ordered moments or correlation functions are tractable. It is the case
with general weak Markov flows. However, subordinate weak Markov flows are
betterbehaved and moment computations are possible through a reduction algo-
rithm. These computations pave our way to show that minimal subordinate Markov
flows are completely determined by their expectation semigroups. They also help in
understanding continuity properties of weak Markov flows.

Let A be a unital C* algebra. For any X € A denote by Lx and Ry respectively
the linear maps from A into itself defined by LxY = XY and RxY = Y X for all
Y € A. Lx and Ry commute with each other for any X,Y. For any finite sequence
t=(t,...,ta) in T4 and X = (Xy,...,X,) in A (of length n) write j(t,X) =
It te, ..t Xa s Xn) = Ju(X1)jen(X2). .. 5ta(Xa). In particular, it X) =
Ji(X). Fors = (s1,-.,8m), X = (X1,..., Xm), t = (tyeestn), Y. = (N,...,Y,) we
have j(s, X)j(4, ¥) = j((s:£), (X, Y)) where (8,£) = (1, -, Smyt1,- .o ta), (X, X) =
(X1,-.+,Xm,Y1,...,Y5). Since for every t, j; is an algebra homomorphism we have
i, X,Y)i(t,2) = j(s,t,X,YZ), and j(s, X)j(s,1,Y, Z) = j(s,t,XY,Z). With
these conventions we shall establish a few el 'y propositi ing the

operators j(t, X) and their expectation values.

Proposition 3.1 : Let (H, F, ji) be a weak Markov flow with expectation semigroup
{T:} on a C* algebra acting on a Hilbert space Ho. Then the following hold:

(@) 3(X)F(t) = F()ju(X) = F(t)je(X)F(t) for all t 2 0, X € A;

() If0<s<ty < oo < tny X1, X2,...,Xn € A then

Ef5(4X) = 58, Tu-sLx, Tty *+* Lxpy Tenmtay (X)) F(s);
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(iii) If t1 2 3> -~ > £, > 5 > 0 then

Ef3(6:X) = 55, Tom s Rx, Tyt Rty Ty =g (K1) F ().

Proof : From property (i) in Definition 2.2 we have

F@itX) = {i@tX)F@)
= {F@itX")F)}
= F0)jt, X)F(t)
= j(t,X)F(t).

This proves (i). To prove (ii) we use property (i) of this proposition and the increasing
nature of F{t) repeatedly. Thus
Efj(t,X) = F(s)F(1)j(t1, X1) . j(tn, Xn) F{ta—1)F(s)
= F(8)j(t, X1)F(t1) F(t2)j(2, X2) - .. 5 (tn Xn) F(tn1) F(5)
= F(s)j(t1, X1)j(t2, X2) F(t2)i(t3, X3) . . j(ta, Xa) F(tn-1)F(s)
= F(8)(t1y st Xy ooy X1 ) F(tne1)j(tny Xn) Ftn-1) F(s)
= F(s)j(t, - tam1, X1ye ooy Xam1 )i(tnot, Tonmtny (Xn))F(s)
= Efj(ty.stno1, X1y, Xaoz, Xac1 Tenety_y (Xn).
Now (ii) follows by induction on n. A similar argument yields (iii). [ ]
Explicit moment computations are possible for subordinate weak Markov flows
due to the following important observation.

Proposition 3.2 : Let (M, F,j;) be a subordinate Markov flow with expectation
semigroup {7t} on a unital C* algebra A of operators on a Hilbert space Ho. Then
for any three time points a,b,c in Ty with b> a,c and X,Y,Z in A,

Ja(XTo-a(Y))je(Z) ifc<a<h,
3a(X)3(Y)ie(Z) = { ja(X)je(To-o(Y)Z) ifa<c<b,
Ja(XT-a(Y)Z) ifa=cand a<b.

Proof : If ¢ < a < b, as j is a subordinate flow, je(I) < F(c) < F(a), and
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Jja(I) € F(a). Now using the Markov property of ji,

3(X)3(YV)ie(2) = Ja(X)ja(Dis(Y )ie(1)ie( Z)
= Ga(X)F(a)js(Y)F(a)je(Z)
= R(OELY))5(2)
= o(XTy-a(Y))je(2).

Other parts can be proved in a similar way. L

Consider a finite sequence t = (ty,...,t,) in 7. If for some index k in {2,...
1}, tk > tk—1,tk41, then ¢y is said to be a peak. Whenever t; is a peak the proposition
above can be applied at the triple (tx_1,tk,tk41) to reduce the length of ¢, X in
j(t, X). Repeated application of this procedure is a convenient reduction algorithm
as should be clear from the computations below.

Theorem 3.3 : Let (H, F,j;) be a subordinate Markov flow as in Proposition 3.2.
Then for any sequence ty,13,...,t, in Ty and Xy, ..., X, in A there exists a sequence
$1,82,.+.,Sm in Ty and Yy, ..., Yy in A such that m < n,s; = t),8m = tp, and either
51 < $2< - < SnOrsy >8> ">8m0rsy >8> >8 < 8k41 < "< Sm
for some k and j(t,X) = j(s,Y).

Proof : Without loss of generality we may assume that ¢; # ti4; for 1 <i<n. If
{t;} itself is either monotonic increasing or decreasing there is nothing to prove. If
t; < -++ < t; > tiy1 then t; is a peak and on applying Proposition 3.2 at (t;—1,ti, ti+1)
we have

HX) = F((t1s- - tictstig1y-- - ta), X')  for some X' if tioy # tipa
S G((t1y- - ticastiga, -y ta), X")  for some X” if tiy = tiy1

This way the length of the ¢ sequence gets reduced and consecutive indices still
remain distinct. If t; > -+« > tgp < tgy1 < ... < teyr > tgp4, then tiy is a peak
and the length of the t sequence can once again can be reduced. Rest follows by
induction on the length. ]



3 MOMENT COMPUTATIONS 15

Remark 3.4 : The set {sy,...,s} of Theorem 3.3 can be shown to be equal to
{t. 1< v < n, and there does not exist a pair (i,j) with 1 < i < r < j < n, such
that t;,¢; < t,}.

Corollary 3.5 : Let (M, F,j,) satisfy the conditions of Proposition 3.2. Then for
any sequence 1,1y, in Ty and X1, X3,..., X, in A there exist ¢; = s; > 83 >
s> sm 2 0,m<nand Y,Yy,..., Vi in A such that j(¢, X)F(0) = j(s,Y)F(0).

Proof : From the assumption that j is a subordinate flow it follows that F(0) =
Jo(I). Hence j(t, X)F(0) can be written as j({t,0),(X.{)}¥{0). Now apply Theorem
3.3 to have

3((2,0),(X, D)F(0) = j(s, Y)F(0).
As 5

=t and sy, = 0 and s;’s are nonnegative the possibilities s; < s3 < -+ < Sm

and 1 > 83 > -+ > 8k < Sgyq < o+ < Sy, are ruled out. Hence s is bound to be

menotonically decreasing. a

Theorem 3.6 : Let (K, F, j;) be a subordinate Markov flow as in Proposition 3.2.
Then for any sequence ty,...,t, in Ty and Xy, ..., Xn in A,

F(0)j(t, X)F(0) = Y F(0)

for some Y’ in A, where Y depends only on (t,X) and the semigroup {T:} and not
on the flow j;.

Proof : On rewriting I(0)j(t, X)F(0) as F(0)5((0,2),({,X))F(0) from Corollary
3.5, we have
F(0)i(t; X)F(0) = 5o(Y)F(0) = Y F(0)

for some Y in A. The operator Y is obtained by a repeated application of Proposi-
tion 3.2 and at each stage the changes in X are determined by time crderings and
independently of the underlying flow j; as such. [ ]

‘We have not bothered to compute the resulting Y explicitly in Theorems 3.4 and
3.6 as it is rather cumbersome. But now we do it for several special cases for ready
reference in the future.
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Proposition 3.7 : Let (M, F,j;) be a subordinate Markov flow as in Proposition
3.2. Consider 7y > 12 > - >rpand 8; > 83 > -+ > 3p in Ty with 71 = s;. Then
for Yi,...,Ys and Zy,...,2Z, in A
FO)((fnyTnmts- 1715511 0183), (Yo, Va1 B, Z,))F(0)
= Ten N Tty =t Nt - N2 Ty, (V1 2)),

where {t1,...,tm} is {r1,...,m} U {s1,..-,5,} rearranged in decreasing order and

Ly, if t; = 74 and t; # s for all I;
Rz, ift;= s and t; # ry for all k;
Ly, Rz, ift; = 1 = s for some k,I.

N,

Proof : This is a straight-forward application of the reducti lgorithm applied at
the peaks t3,1z,. .., successively. [ ]

Propositon 3.8 : Let (M, F,j;) be a subordinate weak Markov flow as in Propo-
sition 3.2. Then the following hold:

A0St <r << <y N,...,Y5,X € A then i, t,Y,X)
§(r1,t,Y", X) where

Y'= InToon by Toory -+ Loy Topern, (Vi

0SS <r< <r <t<n< Tig1 < +-- < 1y then j(r,t,Y,X) =
FICT LY.L Yie, YY) where

V' = Bx Tt Ly Traon, - Ly Topmrncs (Ya)-
Proof : First we prove (i). Note that r, is a peak in (r,t). Hence by the reduction
algorithm
Ho Y, X) = (st tac i, Yise Yoo, Yo Ty (Ya), X).

Now (i) follows by induction on n. To prove (i) we apply (i) to the sequence
t <1 <741 < - < 7y and obtain

Hrioripn -t Y Yign, o, Yo, X)) = (i, Y7, X)
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where
Y= Ly Trpyen o Ly Tr sy (Ya).
Now as 7; is a peak in (ri-y,7i,t) we have
Irics it Yiey Y, X) = j(ric, 8, Yiet, T o(Y) X),
which implies (ii). .
Proposition 3.9 : Let (K, F,j,) be a subordinate Markov flow as in Proposition

3.2. Suppose that 1y > 7 > -+~ >, > 0 and X Y1.Ya,...,Ya,Z1,2,..., 2, ate in
A. Then

F(O)j((r...rv.-h.u,rx,t,r;,...,r,.),(Y..,Yn_l,....Y,,X,Z..‘..,Z,.))F(o)
FONTrw Lya Rz, Ty - Ly, Rz, Teery (X)}F(0) i 22 1y 5

FOM{T,. Ly, Rz, Ty, 1y -
Ly, Rz Temr (Try o V)X T, Z)DYF(0) iy 202705
FO{T(Tr (V)X Tr—o(24))} F(0) ifrn2t2>0,
where Y/ and Z{ depend only on ry,...,7:,Y4,...,Y;, and Zy,...,Z; for any i.

Proof : The first part follows from Proposition 3.7. If riy > ¢ > i, by (i) in
Proposition 3.8 we have

J(ricnyricaye oy m, Yo, Ying, . Y, X) = J(rie1, 6, Y1, X) (31)
where Y/, depends only on T1yee s i1, Y1,..,Yicy. Since t < 1p < T
1,0, X, 21, Z2) = (b, 72, X, Try -1y (21) Z2).
Repeating this argument upto the pair r;_s,r;_; we get.
e, i, X, 20,0, Zich) = G(t 1oy, X, ZEy), (3.2)

for some Z{_,. Since r; < t < r;_; we have
J(ririentyrion, i, Yo, Y, X, 20, Z)

=4(ristyri, Yo, Ty (Y )X T, Z11), Z0). (3.3)
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Combining (3.1)-(3.3) and using the proved first part above for the sequence rn,a—1,
eee\Tiy b, TisTip1- .., Tn e obtain the required result.

Finally if ¢ <, as ¢ < 75 < 7, once again by the reduction algorithm
3t 1,712, X, 21, Z2) = (8, X)j(r2, Try - (21) Z2)-
Repeating this argument we get
i1yt X, 20,0y Zn) = Gt Tay X, Z))

where Z/, depends only on 71, ... 7, Z1,. ., Zn. Since rp < rn_y < --- <71 > t and
< rn we have from (i) in Proposition 3.8

J(TasTactse st 6 Yo, Yooty ., Y4, X) = G(ra, Y13 (2, X)
where'Y;! depends only on Yi,...,Yn,1,...,7s. Combining the two we obtain
(e T 1y T Yoo Y1, X, 214y Zn) = G(Tny by e, Vi, X, Z0).
Since 0 < 7, > t we have
F(0)j(tn,t,mn, Yy X, Z4)F(0) = F(O)T(Tr—(Yi) X Tr—e( Z4)) F(0).
-

Proposition 3.10 : Let (¥, F, j;) be a subordinate Markov flow as in Proposition
3.2. Suppose also that it is conservative. If s3 > 82 > -+ > 8, 20,71 > 713 > -+ >
Ta 2 0and {s1,52,...,5p} 2 {r1,72,...,7n} then for any ¥1,Y2,...,Ya in A

Hr, Y)F(0) = j(s, Y)F(0);

where ¥ = (Y4,...,Y,) with

Y:

- Y if s; = 4 for some k,
I otherwise.
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Proof : Let s;, =ry,...,s;, = r,. Then

(e Ye) = j(re, 1)i(siy, Yi)
= F(si,)i(si,, Ye)
F(six 3 41) F(8iy_y42) -+ F8iy-1)3{s5,,, i)
= J(Sigmit1sSiny 42002 Sigm1, S, I, 1, ... 1Y)

from which the required result follows. [ ]

Proposition 3.11 : Suppose (M, F, j;) is a conservative weak Markov flow with a
strongly continuous expectation semigroup {T,t € IR+} on a unital C* algebra A
of operators on a Hilbert space Ho. Then for any u,v € Mo, finite sequences r =
(r1y..0sm)y 8= (81,...,8,) in Ry and Y1,..., %, X, Z1,...,2,,€ A the function

8(1) = (§(z, ¥)u, 5e(X)j(s, Z)v)
is continuous in ¢ € Ry.
Proof: Since F(0)u = u, F(0)v = v we can apply Corollary 3.5 and assume without
loss of generality that r; > 73 > --- > r, and 83 > 83 > -+- > Sp. Since the flow
is conservative we can apply Proposition 3.10 and assume without loss of generality

that the sequences r and s are same and strictly decreasing. Then ¢(t) assumes the
form

$O) = (U FO)(ns Prcrse s 1Ty Ty Yoo Y X By . Z)F(0)0).

Now the strong continuity and contractivity properties of {T;} together with Propo-
sition 3.9 imply the continuity of ¢(t) in the intervals [ry,00), [0, ] and [ri, rizq),
i=nn-1,...,2 [ ]

4 Existence and Uniqueness

Given a quantum dynamical semigroup one would like to realize it as the expecta-
tion semigroup of a weak Markov flow. In this section it is established that this can
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always be achieved. Moreover the flow which does the trick is unique upto unitary
equivalence under a natural cyclicity assumption. In other words every quantum
dynamical semigroup has a unique dilation to a minimal subordinate Markov flow.
Classically, Markov processes are constructed using the Kolmogorov consistency the-
orem. The corresponding theorem here is the G.N.S. (Gelfand, Naimark, and Segal)
construction of Hilbert spaces from positive definite kernels and it is not surprising
that this is the main tool we need. The proof given in [BP2] made use of [P2] which,
in turn, uses Stinespring’s theorem. Here a more direct proof has been presented
with constructions similar to that of [Em] and [Vi-S].

Note that given a contraction on a Hilbert space, it is a trivial matter to dilate
it to a unitary operator on a larger Hilbert space. In fact, if A is a contraction on a
Hilbert space H then

c= A (I - AA%)}

T (- At A*
is a unitary operator on H @ H. Sz. Nagy and Foias [SzF] achieved a simultaneous
dilation of all the contractions in a contraction semigroup to get an isometric semi-
group (or unitary group). The famous structure theorem of Stinespring shows that
a completely positive map can be dilated to a representation of the algebra. The
Markov flows are nothing but dilations of semigroups of completely positive maps to
a well-knit family of representations of the algebra.

We begin with the statements of the well-known structure theorems of G.N.S.
and Stinespring mentioned above.

Definition 4.1 : Let X be a set. Then amap K : X x X — (' is said to be a
positive definite kernel on X if

=

for all choices of ¢; € @, z; € X',i=1,2,...,nforn=1,2,....

;K (2i,25) 2 0

Theorem 4.2 (G.N.S. construction) : Let I be a positive definite kernel on a
set X. Then there exists a Hilbert space # and a map A : X — M satisfying the
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following: (i) K(z,y) = (A(2),A(v)) for all z,y € X; (i) {Mz),z € X} is total in
H. (iii) If #' is another Hilbert space with a map X' : X — M/, satisfying (i), (ii)
with 7, replaced by M, ) respectively then there exists a unitary isomorphism
U :H — H’ such that UA(z) = N(z) for all z in X.

Proof : See [P1] or [EL). .
We refer to the pair (H, ), of the theorem above, which is unique upto unitary
equivalence as the Gelfand pair associated with the positive definite kernel K.

Theorem 4.3 (Stinespring) : Let A and A’ be two C* algebras with A’ acting
on a Hilbert space Ho. Suppose T : A — A’ is a completely positive map, then
there exists a triple (H, P,j), where H is a Hilbert space containing Ho, P is the
projection of H on to Mo, and j is a representation of A in B(¥) such that: (i)
T(X) = Pj(X)Pln, for all X in A ; (ii) {j(X)Vu : u € Ho,X € A} is total in
K. Moreover if (H', P', j') is another such triple satisfying (i) and (ii) with H, P, j
replaced by H', P’, j respectively, then there exists a unitary isomorphism U : H —
M’ such that Uu = u for u € Ho and j'() = Uj(-)U".

Proof : We give a brief sketch and refer to [P1] and [St] for more detailed proofs.
Define the positive definite kernel K on the Cartesian product Ho x A by putting

K((4,X),(v,Y)) = (, T(X"Y)v) for u,v € Ho and X,Y € A.
The complete positivity of 7' ensures that I is a positive definite kernel. Let (, )

be the associated Gelfand pair constructed using Theorem 4.2. Now identify u € Ho
with A(z, ) and define j(X) as a linear map satisfying

F(XMw,Y) = An, XY)

for all win Ho and X,Y in A. =
The triplet (M, P, j) will be referred to as the Stinespring triple associated with
the completely positive map 7.
Let A be a unital C* algebra acting on a Hilbert space Ho. Let {T% : t € T4} be

a conservative quantum dynamical semigroup on A . We want to define a specific
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positive definite kernel on the set A, where
M= {(,Y,u) 14 € Ho,£ = (r1yeeesTa)sT1 > T2 > 0 > Tn > 0in Ty,

Yi,...Ya € A, for some n > 1} (4.1)

and then construct a Hilbert space using the G.N.S. construction. We need some
notation. Let Mg and M be the sets defined by

Mq:((g,x,u)eMztzr,>r2>m>r..zo} (42)

and

Mx={(L,LM)GM:¢=n>r7>--~>rn20). (4.3)

Consider (r,Y,u) € M. Then for any s = (81,...,8p) With 81 > 82> -+, 8 >0in

Ty, we write s 2 £ if {s1,--.,8p} 2 {r1,.--,7n} and in such a case define (s, Y,u)
by putting

%= { Y; ifs; = r; for some i;

I otherwise,
i.e., we extend ¥ by inserting identity at the extra time points. Now define the map
L:MxM—C by
L((6, Y, u)s (6 Z,9)) = (o Ten (Vo Tepy =0 (Vo1 - Y3 Ty-0(Y321) 22+ Za-1)Zn)Y)
and
L(5, Yo 0),(8,2,0)) = L(zV £ X, 0),(2V Z,v) (4.4)

where r V s is obtained by arranging {r1,72,.--} U {s1,52,..-} in decreasing order.

Lemma 4.4 : Let Y& = (Yii,...,Yai), 1 i < p, be n-tuples with entries from A.
Then A = ((Ai))1<ikgp With

Ak = Tra(VeiTraca—en(Viuonyi - YaTra—ra (YiiY16) Y2k - -+ Yn-1)k)Ynk)

is positive as an operator on Ho & -+ - ® Ho (p copies), for arbitrary £ = (T15°+27n)s
2220
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Proof : The proof is through induction on n. For n =1, A = ((Tr,(¥;"Yx))) 2 0 as
the operator
Yata\e (YausvoaY3)
((FYe)) =
Yy
is positive and 7, is completely positive. Now assuming the result for n — 1, we
have B = ({Bir)) > 0, where

Bik = Trpymra(Yum1yi =+ YaiTra=ry(YiiY20) Yak -+ Yin-1)k)-

Cn taking Cix = Y;;BixYni , Observe that

Yu1 Yo
C= B B >0
\ Yop Vi
Now the proof is ccraplete by the complete positivity of T+, -

Proposition 4.5 : The map L defined by (4.4) is a positive definite kernei on M.
Proof : First notice that conservativity of {T;} allows us to conclude

L((s, Y, u), (8, Z,0)) = L((£, Y, v), (£, Z,v))

for 8 > r and (r,Y,u),(r,2,v) in M. Now for 1 < i < p consider arbitrary ¢; € C
and (z®,Y), u()). From the definition in (4.4) and the observation above, we have

Z Gick L((L('), x(f),u(i)), (I(k). X(k)7 u(k)))
= Yaal® v @, 79 u), (0 v 18, 7®, o))
= Yaal(@ny®, ), @, 7%, u®)) (45)

where £ = £ v £ ... v £ Denoting the co-ordinates of r by (r1,...,7s), the
entry ¥, by ¥j; and the vector u(®) by u;, the term on the right hand side of (4.5)
becomes

Socier(ui, Aikug) = (@eiw), A(Dekux)) 2 0,
ik
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where A = ((Aq)) is as in Lemma 4.4. =

Definition 4.6 : Two weak Markov flows (M, F,ji) and (H', F", j{) on a C* algebra
A are called unitarily equivalent if there exists a unitary isomorphism U : H — 7/,
such that F(t) = U*F/(t)U and j(X) = Uj{(X)U for all ¢ and X.

Now we are ready to state and prove the basic dilation theorem for conservative
quantum dynamical semigroups.

Theorem 4.7 : Let M be a unital C* algebra of operators on a Hilbert space Ho.
Suppose that {7} : t € T} is a conservative quantum dynamical semigroup on A.
Then there exists a minimal conservative weak Markov flow (M, F,ji) on A with
expectation semigroup {7;}. Moreover if (H',F',5}) is another such Markov flow
then it is unitarily equivalent to (H, F,j).

Proof : Define the map L : M x M — C as in (4.4). Now from Proposition 4.5
L is a positive definite kernel on M. Hence by G.N.S. construction (Theorem 4.2)
there exists a Hilbert space M and a map A : M — H, with

(Mo Y, u), M8 2,0)) = L((r, Y, ), (s, Z,v))
and {Mr,Y,u): (r,Y,u) € M} is total H. We shall construct Jje so that j(r,Y)u =
Mz, Y, u). For s > r (notation as in (4.1)-(4.4)), observe that
1A ¥, u) = Xz, Y, w)|2
= WUsLw(sY,w) - L(eva T, u),@vs )
UV Y,w), (Vs Y, 0) + L@, Y, v), (1Y, u)
= 0,

by (4.4). And hence
A Y,u) = Xz, Y, u). (4.6)
Take F(t) as the Projection onto Hy, where My is the closed linear span of
Mz, X u): (r,Y,u) € My}. In view of (4.6), if (£, Y, u) € My with ¢ strictly larger
than 7y then A(r,Y,u) = A((t,1),(1,Y),u) and hence M, is also the closed linear
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span of {A(,Y,u) : A(r,Y,u) € M}. Also note that the range Hg) of F(0) is isomor-
phic to Ho through the isomorphism Vp : Ho) — Ho defined by Vo(A(0, X, u)) = Xu.
‘We identify Ho with Ho) through Vo.

Having defined the filtration F we now g0 on to define the flow j,. For t € Ty
and unitary U in A define j2(U) : Hy — Mg by

FONEY,u) = Mz, (UN, Y, ..., Vo) 1)

for (z,¥,u) € M. It is clear from direct ions using the definition of A
and L that j2(U) is an isometry on A(M). Moreover if U and V are two unitary
operators in A then jP(U)j)(V) = jO(UV). Hence 72(U) extends to a unitary
operator on ). Now as A is a C* algebra every element in A is a linear combination
of atmost four unitaries. On ding the definition of 3¢ linearly we have a unital
+-homomorphism j{ : 4 — B(My) satisfying

FONLY,0) = Az, (XY, Ya, .., Ya), u) 47
for all (£,Y,u) € M,. Now define Je: A— B(H) by putting
3(X) = XOF().

Clearly ji(X) leaves the range of F(t) invariant and Jo(X) = X F(0). Now to show
Markov property fix s < t and consider arbitrary (r,Y,u) and (<, 2, v) in M,.
fr=r=(n,..,r)forsomes =r >r>..> Tn 2 0, then we have
Az, X, u), 5e(X )N, Z,v))

= AL LY, 0), (X)L, 1, Z,v))

= (4, T (Ve Ty v (Yo oo YiTers (VT T s(X)21) 22+ Zno1) Za)v)

= (Mo, X, u), Az, Te-s(X) 21, Zs, . ey Zn,0))

= (Mo Y1), (Tems(X )Nz, 2, v))

= (Mo X w), G Tems (XN, Z,v)).

Without loss of generality we can assume r =1/ as otherwise we can consider (rv
,¥,u),(zV 1, Z,v) and make use of (4.6). Now as A(M,) is total in the range of
F(s) we have F(s)ji(X)F(s) = j,(Te-s(X)). This proves that (, F, j,) is a weak
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Markov flow with expectation semigroup {T;}. Conservativity of j, follows from
(4.7).
A vector u in Mo has been identified with A(0,,u) in H. Consider (r,Y,u) in
M,. From (4.6), A(0,1,4) = A(rs,0,1,1,u) = A(rn, I,u) and hence
i(@Y)u = §(z,Y)N0,1,u)

= 3n() e (Ya)A(7n, I, u)

= In(N1)Grasy (Yao1)A(7n, Ya, u)

= InM) Gy (Yac)M(Tae1,7n, 1, Yo, u)

= Az, Y, u). (4.8)
From the G.N.S. construction {A(r,Y,u) : (,¥,u) € M} is total in H. So (M, F, j,)
is minimal.
Finally we observe that the moment computations in Theorem 3.6 imply that
(e X)u, (6 Y)v) = (u,5(s, X)"5(t, Y)v)
= (& X)u,5'(t, Y)v)
for all (s,X,u),(t,Y,v) € M. This shows that the correspondence j(s,X)u —
3'(s, X)u is isometric and hence extends uniquely to a unitary isomorphism from H
onto H’, proving the unitary equivalence of (, F, j;) and (', F',j7). [ ]
Now we extend Theorem 4.7 to include nonconservative quantum dynamical semi-
groups.

Theorem 4.8 : Let H be a unital C* algebra of operators on a Hilbert space
Ho. Suppose that {T; : ¢t € Ty} is a quantum dynamical semigroup on A. Then
there exists a minimal subordinate Markov flow (H, F,jt) on A with expectation
semigroup {7¢}. Moreover if (M',F”,j!) is another such Markov flow then it is
unitarily equivalent to (¥, F, ji).

Proof : Consider the extended C* algebra A = A @ @ acting on the Hilbert space
Ho = Ho ® C. For convenience we denote the element X @ cof A, for X € A and
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¢ € G, by the column vector (¥). Define the maps Ty : A — A by

ﬂ(x) £ (T‘(XJ“E“T‘(’))),XeA,cec. (4.9)

c

Then {7} is a conservative one parameter semigroup of completely positive linear
maps. If {7} is strongly continuous so is {7%}. Thus Theorem 4.7 becomes appli-
cable for {T;} and we have a conservative weak Markov flow (H, f‘,}‘;) on A with
expectation semigroup {7;}. Define the operators F(t) and j,(X) on H by

ro = i(]) - ().
. A (X
J(X) = ],(0) fort>0and X € A.

Before obtaining the required Markov flow we prove the following statements. For
0<s<t,X€Aandced

(@) (G (?)} is a family of projections nondecreasing in ¢;

(b) 3(X)jo() = jo(§)ie(X) = 0;

(c) {F(t)} is a family of Projections nondecreasing in ¢;

(d) Range of F(0) is Ho and range of F(t) increases to the orthogonal complement
of range of }'u(g) as ¢ increases to oo;

(@) F07.(X) = 5.(X = eI)F(s) + cF(s).

From the Markov property of 7,

) - 3

v
o
b
~ o
==
o
2SS
=
b
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==

=010



28 I MARKOV DILATIONS

3(2) = ()56

proving (a). Now make use of (2) to obtain

s ()35 () o= or

rore = G3) s (]) -5 (%)
5 ({) o (‘1’) —5'0( ) +Jo( ) F(s) = F)F ().

Clearly F(t)* = F(t). This proves (b) and (c). The range of F(0) is Ho ® € and
hence the range of F(0) is Ho. The second part of (d) follows as j(1) increases to
the identity operator in H as ¢ increases to co. Now from (a) and (b)

roi(%) = 6}) -5 (e (3) +a (%)
() )-+-3()
- ;,(X;‘I) +cF(s)

=1 (X 5 ") F(s) + cF(s).

Hence

Let H be the orthogonal complement of the range of 3}:(‘,’) in . Making use of (a)-
(d) we can restrict F(t) and j((X) to H and verify that (¥, F,ji) is a subordinate
weak Markov flow with expectation semigroup {T;}. Denote by H, C H the closed
subspace spanned by all vectors of the form j(r,Y)u, with (r,Y, ) in My). We now
claim that the range of F'(t) is H;. Indeed, consider £ = j(r,Y)u with (,Y,u) € My.

Then
70 = G(7) =50 () (5 )30 () 50 (5)u =0
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and hence the range of F(t) contains H. Now for (s,X,u) € My, e1y...ycn,a€C

S 4,

consider 7 = 7(s, (f-))(:) From the statement (e) proved above,

F(t)7 = (g (Xs = s )F(s1) + 2 F(s1))o, (’;’)] (X) R (X") (")

[YA]

By induction on n we conclude that F(t)n is a linear combination of elements of the
form j(z,Y )u . The closed linear span of all vectors 7 of the form above is the range
of F(t) and as the range of F(t) is clearly contained in the range of £(t) we conclude
that H, contains the whole of the range of F(t). This proves the mirimality of j,.
Uni upto unitary equival

e is proved as before. L]

Given a quantum dynamical semigroup T, the unique (upto unitary equiva-
lence) weak Markov flow (H, F,jt) constructed in Theorems 4.7 and 4.8 will be
called its associated minimal subordinate Markoy flow. Note that if (', F", j!) is
a weak Markov flow with expectation semigroup {T} then on restricting the flow
(', F', F'(t)5'(-)F'(t)) to the invariant subspace generated by H, we obtain the
minimal subordinate Markov flow of {T}. Thatis, every Markov dilation of T} con-
tains the flow (H, F, Je)- For this reason (H, F, j;) may be called the minimal Markov
dilation of {T;}.

Certain differences between conservative Markov flows and subordinate Markov
flows may be noted at this stage. In view of (4.6) and (4.8), if (M, F,j;) is a conser-
vative weak Markov flow then

(& Xyu,, (s, 2)0) = Gz V 8, V), iz v 8, Z)) = L(1, Y, u),(8,Z,v)) (4.10)

These relations fail for general subordinate Markov flows. Nevertheless we have the
following useful proposition.

Proposition 4.9 : Let (M, F, j) be a subordinate Markov flow on A with expecta-
tion semigroup Ty. Suppose (,Y,u) and (s, Z, v) are in M, for some fixed ¢ > 0.
Then (4.10) holds.
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Proof : Note that here we have r; = 8y =t and

G Y)u, 5(s, Z)v) = (u, F(0)j(z, ¥)"j(s, Z)v)

Now use Proposition 3.7 and observe that extra left or right multiplications by iden-
tity can be inserted wherever needed to obtain (4.10). [ ]

Recalling the definition of strong continuity (Definition 1.5) we have a simple but
usefull result.

Theorem 4.10 : Let {T;} be a continuous time quantum dynamical semigroup on
A with associated minimal subordinate Markov flow (M, F, j;). Then if T is strongly
continuous the maps t — F(t)y and t — j,(X )¢ are continuous for every X € A
and ¢ € H.

Proof : For conservative quantum dynamical semigroups this is immediate from
Proposition 3.11 and the fact that j is a homomorphism for every t. The result
can be extended easily to vative d; ical i ps using the
construction involved in the proof of Theorem 4.8. | ]

Note that the construction in (4.9) is the quantum probabilistic analogue of
associating with a substochastic semigroup P, = ((2i;(1))),1 < 4,5 < 00 of matrices
the stochastic semigroup P, = ((#i5(2)),0 £ 1,5 < 0o where

Pij(t) if i>1, j>1,
0 if i=0, 21,
piit)=1 1 if i=0, j=0,

o
1=3"pii(t) if i>1, j=o0.
=1

In other words we have incorporated an absorbing boundary. This is reflected in the
increasing nature of the family of projections {],(D)) It may also be noted that in
general {],(O)) is not a commuting family of projections.

We conclude this section with two examples of the construction involved in The-
orems 4.7 and 4.8.
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Example 4.11 : Let A be the commutative von Neumann algebra of 2 x 2 diagonal
matrices and let 7¢ : A — A be the semigroup defined by

T‘([a OD & [e-c=a+(1-e-=‘)b 0
0 b 0 b

for a,b € €;c > 0 being a fixed constant. A acts on €2 in a natural way. Put H =
€@ L?(IRy) with filtration F given by F(t) = I& x, where I is the identity operator
ia € and x, denotes multiplication by the indicator function x{o in L2(RR.). Define
Je: A — B(H) by

([ °1) = s0e+s0m0- e
i(| o 4 ]) =eew+uro-a

e~itey @ f, with

1 <
o= ( 0),f.<z) = Vee H 0 g(a).
b

A routine computation shows that F(s)je(X)F(s) = ji(Te=s(X)) for all X € A and

0 < s < t. Thus (M, F,j,) provides a weak Markov flow with expectation semigroup

{T:} satisfying all the properties mentioned in Theorem 4.8. It is instructive to

compare this with the Markov flow of classical probability theory associated with
—ct ] _ met

the one parameter semigroup of 2 x 2 stochastic matrices 60 o ,asin

1
Example 2.3.

Example 4.12 : Let H be a positive selfadjoint operator on Ho. Consider the

nonconservative one parameter semigroup {7} of completely positive maps on B(Ho)
defined by

LX) = e > 0, X € B(Ha).
Following [HIP] introduce the unitary operators {U(s,t),0 < s < ¢ < oo} in the
Hilbert space M = Ho & L%(IR,,Mo), given by

G ( 4 ) 5 ( Als,t)  B(s,1) ) ( g )
u C(s,t) I+ D(s,t) u
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where 4o and u = u(-) are the components of an arbitrary element in H with respect
to the direct sum decomposition in the definition of  and

A(s,t) = e (t=aH

B(s,tyu = —(2”)‘/2/“.x[,‘q(z)e‘“”)”u(z)dz,
o
(C(s,t)u0)(z) = Xpog(z)(2H )M 2e (== yq,
D00 = =2 [~ xea@xpa@ e ().

It is known from [HIP] that
U(s,t)U(r,8) = U(r,t) forall 0S r < s <t < 00
and U(s,t) is an operator of the form V(s,t) @ I in the direct sum decomposition

H = H(s,t) & H(s,t)* where H(s,t) = Ho & L*([s,1],Ho). Define F(t) to be the
Pprojection on the subspace H(0,t) and put

s . X 0
3(X) = U(0,2) ( ) U(,1).
00
Then j() = j(I)F(t) < F(2). From the fact that {U(s, 1)} is a time orthogonal di-
lation of the positive contraction semigroup {e~*¥} it follows that F(s)U(0,¢)F(s) =
U(0,s){e*")H @ I\s,,; ® 0} where the term in { } on the right hand side is with

respect to the decomposition H = Ho & L%([0, s}, Ho) & L2([s, ), Ho). Thus

F(s)je(X)F(s) = U(0,s)"F(s)U(s,t)"F(s) ( )0{ g ) F(s)U(s,t)F(s)U(0,s)

U(0, )" ( T“;J(X) g ) U(0, 5)F(s)

= Js(Te-s(X))F(s).

In other words (¥, F, j¢) is a subordinate Markov flow with expectation semigroup

{T:}.
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5 Algebraic Properties of the Minimal Flow

Q dynamical semigroups can be better und d by studying their Markov
dilations. Of course, minimal subordinate dilations have a special role to play here as

they are uniquely determined by their expectation semigroups. Moreover as noted
in Section 4 every Markov dilation contains the minimal dilation in it. In this
section kernels of homomorphisms j; of minimal dilation are shown to be intimately
connected with certain ideals left invariant by the semigroup {T¢}. These results help
us to construct a ‘cocycle’ of Markov flows. Then all quantum dynamical semigroups
d d by a given dy ical i are ch ized through its
minimal Markov flow and a family of positive contractions. This generalizes a result
of Arveson ([Ar],[Sul]) on single completely positive maps to quantum dynamical
semigroups.

Throughout this section A is a unital C* algebra acting on a Hilbert space Hg and
{T:} is a dynamical i p on A with iated minimal subordinate
Markov flow (¥, F, j¢).

Theorem 5.1 : For s >0 and X € A, the following are equivalent :

@) ju(X) = 0.

(i) Tr (YaTr,oy (Yaor+ - Yo2T0, (Y1 X Z1) 22 - - Zn1)Zn) = 0.
forall Y1,...,Yn,2Z1,...,Z, in Aand ry,...,7, 2 0 with %, 75 > 5.

(iit) 7,(W) = 0 for all W € Cx, where Cx is the smallest closed two sided ideal
of A, containing X and invariant under {Tt}¢>0 .

(iv) je(X) =0 forall £ > s.

Proof : (i) & (ii).

Assume j,(X) = 0 and consider the case 37, r; = s. Now for vectors u,v in
Ho, from Proposition 3.7 or 3.9

(T (YaTr s (Yaor - YT, (Y1 X 21) 22 - - Zm1) Z0 )0)

= (u F(0)jrn(Ya) -+ - smri (Y2)15(Y1)7s(X)js(Z1)js-r1(Z2) - - - rn(Zn ) F (0)0)

=0.
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If %, > s, let k be the index such that S5} ri < s < T, ri. Taking a =
%, r; — s and using the semigroup property of T; we have

T (YaTrmoy,(Yaz1 -+ Y2Tr,(Y1 X Z1) 22 - - Zn-1)Zn)

=T (YaTrnoy (Yao1 -+ Trgy, Ves1 Ta(W) Zk42) 22 -+ Zum1) Zn),
where

W = Trma (YT, (Vi1 - - Try (1 X Z1) - - Zim1) Zk)-

But then W = 0 from what has been shown earlier as S5, ri —

= s. Conversely
(ii) implies (j(z,Y)u,js(X)j(z, Z)v) = 0 for all (£, ¥, u), (£, Z,v) in M,). Here we
have used notation from (4.1)-(4.4) of Section 4. This of course means j4(X) = 0.
(i) < (i)

Once again assume (i). Clearly the set of all W such that j,(W) = 0 is a closed
ideal of A containing X. The equivalence of (i) and (ii) can now be used to show that
if 7,(W) = 0, then (j(z,Y)u, j,(T«(W))j(z, Z)v) = 0 for every t > 0, and (r,Y,u),
(£,Z,v) in M,}. This, in turn, means j,(Ty(W)) = 0, i.e., the ideal is invariant under
{T3}. Trivially (iii) implies (i).

(i) ¢ @Qv).

On assuming (i) or (ii), je(X) = 0 for t > s is seen by computing
(2, Y)u, ju(X)i(, Z)v)

for (r,Y,u) and (r', Z,v) in M. Nothing to prove in the converse statement. W

Part (i) of the above theorem describes the ideal Z, = {X : ju(X) = 0} com-
pletely in terms of the semigroup. Note that Zo = 0 and Z, C I, C T;Z4(Z,) for
s < t. In discrete time these ideals can be obtained inductively as follows.

Theorem 5.2 : Suppose {Tt} = {I,T,T?,...} is a discrete quantum dynamical
semigroup. Then

Io=0,
7, = The largest two sided ideal of A contained in the kernel of T.
Z,41 = The largest two sided ideal of A contained in T=1(Z,), for s > 1.
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Proof : Fix s > 0. Suppose X belongs to an ideal in 7-Y(Z,). Then T(YXZ)€eI,
for all Y, Z in A. From (ii) of Theorem 5.1 we have

T Yaor - TT(YX2))Z1) + Zn-1)Zn) = O for n > s

TT (Yoot T(ViXZ1) + Za_1)Zn) = Ofor n > s 4 1
and hence X is in T,4,. =
Theorem 5.1 enables us to construct a cocycle of homomorphisms using the min-
imal flow. Note that j,(A), the range of ji, is a C* algebra for every t. Denote this
algebra by A,. Then A can be identified with A. For s < t define Jst i Ay — A by

Isalds(X)) = ji(X) for X € A. (5.1)

Theorem 5.3 : Under the above set up

(i) Js,e : As — A, are s-homomorphisms for s <t

(i) Jaz,350J61,57 = Jay.05 fOr 0 < 8y < 55 < 53 and Js,s is the identity map on A,,

i) B yios3(2) = Gors (L vy 4(es-)(2)) 05 0 < 51 < 33 < s and Z €
A,
Proof : From Theorem 5.1 if j,(X) = 0 then J(X) =0 for t > s. Hence j, as in
(5.1) are well defined linear maps. Now (i) and (ii) are obvious. To show part (iii),

as the algebra A, is precisely the range of j,, we can take Z = j,, (X) for some
X € A. Now

Efjin s (ia(X) = ELj,(X)
= Jua(Toy-s(X))
= Gl (Teg—sy (X))
= o (B 4 (s3=s2)(X))
= o (Ef ar oyt (s3=sa)( 2))-
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Fix s > 0. Define the maps T{") : A, — A, for t > 0 by
T(,(X)) = Is(T(X)) for X € A. (5.2)
Now on defining the shifted filtration F(*) and x-homomorphisms ;) by
FO(t) = F(s+1) and 5 = 4o,
we have the following result.

Theorem 5.4 : For fixed s > 0, {7{"} is a quantum dynamical semigroup on A,
and (1, ), j{)) is a weak Markov flow with expectation semigroup {1y,

Proof : The well definedness of T{") should be clear from Theorem 5.1 or from the
observation
TENZ) = ESjuurd(Z) for Z € At > 0.

Now use Theorem 5.3 to complete the proof. =

Definition 5.6 : A completely positive map 7" is said to be dominated by another
completely positive map T'if T—T" is completely positive. And a quantum dynamical
semigroup {T}} on A is said to be dominated by another semigroup {T}if Tt - T!
is completely positive for every t.

Very often we have two d; ical i one dominating another.
In fact Chapter II gives a whole collection of such examples through Feller pertur-
bations. How the flows of such pairs are related is not clear and their study leads
us to quantum boundary theory. A theorem of Arveson ([A1], [Sul], [Mi]) states

that given a completely positive map 7' with associated Stinespring triple (1, P, j)
as in Theorem 4.3, all completely positive maps dominated by 7' can be obtained as
X — PCj(X) for some positive contraction C in the commutator of j(A). Here we
have a semigroup version of this result.

Theorem 5.7 : Lew 7% b a conservative quantum dynamical semigroup on A
with associated minimal Markov flow (71, 7). Suppose that {T}} is a quantum
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dynamical semigroup dominated by {Tt}. Then there exists a unique family of
positive contractions {C(t)} on H such that :
(i) C(0) = F(0) and C(t) < F(t) fort >0 ;
(ii) C(t) commutes with ji(X) for X € Aand t >0 ;
(iii) EJC(0)j(X) = C(s)j,({lEg]‘C(t = 8)jt-s(X)}#,) for 0 < s < tand X € A.
(iv) T{(X) = E{C(1)je(X)l, for X € Aand t > 0.
Conversely, if {C(t)} is a family of positive contractions on M satisfying (i)-(iii) then
{T¢} defined by (iv) is a quantum dynamical semigroup and is dominated by T.

Proof : Let (M, F’,j{) be the minimal subordinate Markov flow associated with
{T{}. Recall the notation introduced in (4.1)-(4.4) and consider the map D(t) :
My — M}y defined by

D)j(r, Y)u = j(z,Y)u
for (z,Y,u) in M. For arbitrary ¢; € € and (z, Y, u®) € My, as jl is a
subordinate flow from Proposition 4.9 we have

Ger(G(ED, YD) (8, y (8 ()
J

y X 0= % AL
EDICINCLES AU VCRTES A MON
where 7= £ V() V...V ("), Define operators A = ((A;)) and A’ = ((A%)) using
T: and T¢ respectively as in Lemma 4.4. and Proposition 4.5. Note that A’ < A as
T/ is dominated by Ti. Now

D) 32D, YOy = 37 Gen(s(r, ¥9)u®, (r, ¥ 8)uth)y
= ((®ciwi), A'(Bepur))
< (Beiwi), A(Begur))
= 12 eid(z®, Y D)u®)2.

Hence D(t) extends to a linear contraction of My onto . Taking C(¢) = D(t)" D(t)
we have a positive contraction on 7, satisfying

(COi(r, Y)u, (s, Z)v) = (5'(x, Y)u, §'(s, Z)v) (5.3)
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for (r,¥,u) and (s, Z,v) in M. (Caution: (5.3) is not true in general for elements
in My). Extend C(t) to the whole of H by putting C(t)$ = 0 for ¥ in #j. Now (i)
is obvious. To prove (ii) consider (r,Y, ) and (r, Z,v) in M;. We have
(COX)I(z, V)u, i(x, Z)v)
= (U7 (0 Yu, (e, Z))
= (5, Y, X )i (2, Z)o)
= (C)i(e. YYu, 3e(X)i(z, Z)o)
= (G(X)C(1)i(z, Y)u, 5(z, Z)v).
Also note that for u,v € Ho,

(C@Ie(X yu, v} = (Fi(X)u, v) = (T{(X )u,v).

Hence (iv) is also proved. The proof of (iii) is done in a similar way by considering
vectors in H,) and using the Markov property of j’. Observe that (iii) and (iv) along
with mathematical induction gives us (5.3). Now minimality of j; yields
of the family {C(2)}.

As for the converse part, the semigroup property follows from (iii). To show that
Ty{ is completely positive and is dominated by T; observe

TI(X) = BECEi(X)C®) o
and
Td(X) = E§ji(X) = TU(X) + E5(1 - C(1))5e(X)lro-

Remark 5.8 : Let j; be the Markov flow j,(f) = f(z + w(t)) on L>®(IR) where w is
the standard Brownian motion. Then for any nonnegative function V, the family of
multiplication operators C(t) defined by

cy= e’f; Vi(z+w(s))ds

satisfies conditions of Theorem 5.7 and leads to the celebrated Feynman-Kac pertur-
bation ([CW], [RS] Vol.II). Thus the family {C(t)} of Theorem 5.7 may be considered
as an abstract Feynman-Kac cocycle.
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6 Central Flows and Minimal Abelian Dilations

Consider the special case where the initial algebra A is abelian. Here we would
like to obtain an abelian Markov flow, that is, a flow k, such that ko(X) and k(Y)
commute for all s,¢ and X,Y. The minimal Markov flow obtained in Section 4 is
not abelian in general. It will be shown that the minimal Markov flow (H,F, ji)
can be modified suitably to get an abelian Markov flow (M, F, k). There is no need
to change the Hilbert space or the filtration. The main clue for the construction of
abelian Markov flows is given by classical Markov processes. The observation (22)
is important in this context. This leads us to the following theorem which is a bit
of a surprise.

Theorem 6.1 : Let {Ti} be a quantum dynamical semigroup on a C* algebra
A acting on a Hilbert space Mo with asscciated minimal subordinate Markov flow
(M, F,je). Let Z(A) be the centre of the algebra .A. Then there exists a unique
family of x-homomorphisms {k : Z(A) — B(H)}, such that

() Efkd(2) = j(Z) for all Z € Z(A) and t > 0;

(i) ks(Z) commutes with k,(2Z') for all Z,2’ € Z(A) and s,t > 0.
Moreover if {T;} is conservative then k, is unital.

Proof : We first consider the case where {T}} is conservative. Take a unitary
element U in Z(A). It is enough to define k,(U) on vectors of the form 3(z,Y)u for
(z,Y,u) € M. (Notation as in Section 4). Also in view of Proposition 4.9 we can
assume t € {r1,...,rn}, i.e., t = 1, for some p. Now define ke(U)j(z,Y)u by
k(D)3 Y)u = j(z, (Vs Ypu1), UY, Yipgay, o - -, Yo Jue (6.1)

Consider two vectors 3(r, X)u,j(s,Y)v in H . Without loss of generality we assume
r=3s. Now
(ke(U)i (2, X)u, ke(U)i(z, Y)v)

= (j(L,Xl,..A,X,,_l,UX,,,. s Xn)u, 5z, Y, Y1, UY,. «, Yo)v)

= (0, T (Xa Ty =Xy -+

Trprots (KU Ty sy (X1 -+ Ty era(XTV1) -+ Yo )UY, ) -+, Yooy )Ya)w)
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= (i(r, X)u, j(z, Y)v),
as U € Z(A) can be taken across to combine with U*. So k(U) defined by (6.1)
is an isometry. Moreover for any two unitary operators U, V in Z(A) we have
ke(UV) = k((U)k(V). Hence k(U) extends to a unitary operator on H. As every
element in Z(A) is a linear combination of atmost four unitaries we have linear maps
ke(Z) in B(H) satisfying
ke(Z)i(z, Y )u = §(£, Y1, -+, Y(po1), ZYps -, Yo )u (6.2)
for (r,Y,u) € M with r1 > 72 > -+ > 1, =t > 1541 > +++ > 1. Clearly k¢
is a -homomorphism for every t. To prove (i), observe that for (r,Y,u) € My,
k(2)j(z,X)u = ju(Z)j(z, Y )u. As tis arbitrary this also implies
K, Y)u=j(r,Y)u (6.3)
for (r,Y,u) € M. Now fix s < t and consider (r,¥,u) € M. With out loss of
generality we assume s,¢ are in {r1,...,7a}. If p, ¢ are the indices such that s = r,,
and ¢ = ry then we have
k(Z)k(Z)i(, X)u = §(5, Y15, Yipo1), ZYp,e ., 2'Y, . Yo )u
= k(2')ks(2)j(z, V)u
for Z,2' € Z(A). Hence ky(Z) and k(Z') commute.
Suppose k{ : Z(A) — B(H) is another family of +-homomorphisms satisfying (i)
and (ii). From (i) with &/ in place of k, we have
F()k{(Z)F(1) = j(Z) for Z € Z(A).
As k] and j; are representations of Z(A), this means
K(Z)F(t) = j(Z) = F(t)k{(Z) (6.4)
for the following reason. Considering the positive operator j,(Z*Z) we have
7(2°2) = F(k(Z"Z)F(t)
= FOK(Z){F(t) + (1 = F(t))}k(Z)F(t)
= 3(Z7)jd(2) + {((1 = F()k(2)F()}{((1 = F(t))k((Z2)F(t)}.
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Hence (1 — F(t))ki(Z)F(t) = 0, implying (6.4). Now for (r,Y,u) € M with t =7,
for some p, remembering that r; > --- > 7, we obtain

HY)u = Gn(Y)in(Y2) .. dra(Ya)u

= K, (M)F(r1)in(Y2) .. Gra(Ya)u
=k, (M)jr(Y2) - dra(Ya)u

and by induction, j(r,Y)u = k'(r,Y)u. Now from commutativity and (6.3)

K(r,Y)u = k(z,Y)u

for arbitrary (not necessarily decreasing) £ = {r1,...,7n}. Hence k{ and k; are equal.
For all (r,Y,u) € M, k(1)j(zr, Y)u = j(z,Y)u. So k(1) = I.

If {T¢} is not conservative consider the extended algebra A = A®C and construct
a conservative semigroup {1;} with associated Markov flow (¥, F*, 5¢) as in the proof
of Theorem 4.8. Now homomorphisms & : Z(A) — B(H) can be constructed as
above. Once again define k(Z) as k(2)|» , where H is the Hilbert space of the
minimal Markov flow j; constructed in Theorem 4.8.

Remark 6.2 : In general {k,(1)} is a decreasing family of projections with ko(1) = I.

In Theorem 6.1 it is remarkable that though the semigroup {7} does not nec-
essarily leave the centre invariant we still have a family of *-homomorphisms of the
centre which behaves almost like a weak Markov flow. The triple (H, F, k;) will be
called the central flow associated with the semigroup {Tt}.

Corollary 6.3 : If the centre Z(A) is invariant under {T} then (¥, F,k) is an
abelian Markov flow on Z(A) with expectation semigroup Te|u.

Proof : For s < tand Z € 2(A) ,
ERk(2) = EJEfk(Z) = EJj(Z) = j/(Te=s(2)) = ko(Tees(2)) F(5)

as Ti—s(Z) € Z(A).
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Finally we have the promised theorem showing the existence and uniqueness of
minimal abelian dilations for quantum dynamical semigroups on abelian algebras.
This theorem may be compared with Theorems 4.7 and 4.8 where minimal subordi-
nate dilations were considered which were not necessarily abelian. In contrast now
we have abelian weak Markov flows which are not necessarily subordinate flows.

Theorem 6.4 : Let {Tt} be a quantum dynamical semigroup on an abelian algebra
A of operators on a Hilbert space Ho. Then there exists a minimal abelian weak
Markov flow (H,F,k) on A.with expectation semigroup {Tt}. If (H',F',k;) is
another minimal abelian weak Markov flow with expectation semigroup {7T;} then it
is unitarily equivalent to (M, F, kt).

Proof : The Markov flow (H, F, k) has already been constructed in Theorem 6.1
and Corollary 6.3. Minimality of k, follows from (6.3) and minimality of j;. To prove
uniqueness consider the subordinate weak Markov flow (}, F", j{), where j{(X) =
F/(t)X F(t). For (r,Y,u) in M using adaptedness of k! we have

KXy = k() k, (Ya)u
kg, (Y1) -+ K (Ya)F'(rn)u
= k() kp, (Yar)ir, (Ya)u

n

= j(Y)u

By minimality {k'(r,Y)u : (r,Y,u) € M} is total in H'. Note that as k{ is assumed to
be non-commutative we are allowed to take r;’s decreasing without loss of generality.
Hence (H', F’, j;) is a minimal subordinate Markov dilation of 7} and from Theorem
4.8 it is unitarily equivalent to (M, F, j;). Now the proof is complete using uniqueness
of k¢ proved in Theorem 6.1. "

It may be noted that the abelian Markov flow constructed in Example 2.3 through
Kolmogorov consistency theorm has to be unitarily equivalent to the one constructed

above if the algebra under consideration is L°°(u).
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In general it may not be possible to extend the central flow & of Theorem 6.1 to
@ +-homomorphism of A into B(H). This should be clear from the following discrete
time example.

Example 6.5 : Consider the algebra A = M2(C) ® My(C) acting on @2 @ €3 and
the semigroup {1,7,7%,...,} where T : A — Ais the completely positive map given
by

<[ 450 }) by biz 0 bu b2 bis
T SR T where B = | by by, by

0 B ba1 bz b
and A is in Mp(C). Note that 1'(/) = I and 7% = T. Then it can easily be shown
that K =C?@ 000 F(0)= 10160, F(t)=I& I for t > 1. The flow j, is
given by

b b b
A 00 11 12 0 13
. A0 =lo Bo . 4 0 _ | ba bx [25)
J“os_ooo""oa‘ o B o0
bsi b3z 0 by

for ¢ 2 1. The centre Z(A4) consists of matrices al & b in M(C) ® Ma(C) and ky

is given by ko(al & bI) = oI @ bI & al and k,(I) = bI & bl @ bl. Clearly ko cannot
be extended to a representation of A in M2(C) @ Ms(C) @ My (C).

Example 6.6 : Consider the semigroup T, of Example 4.11. The associated minimal
abelian flow may be realized as (M, F, k), where

(53] ([ ) e

and (M, F,ji) is as before. We can compare this flow with the related classical
Markov process.



CHAPTER II

Feller Perturbations of Positive Semigroups

7 Exit and Entrance Cocycles

Following the spirit of Feller [Fel,2,3] and Chung [C1,2] two types of perturbations
of strongly continuous positive semigroups on von Neumann algebras are outlined
in the next section. The first type arises from what we call an exit cocycle for
the semigroup. The second arises from a dualisation of the first and is based on
an entrance cocycle for the same semigroup. The terminology is motivated from
considerations of classical Markov processes. Feller perturbations work for general
positive semigroups, i.e., complete positivity is not needed. Only continuous time
semigroups are considered here after unless mentioned otherwise. In this section
exit and entrance cocycles are defined and several examples are given. We restrict
ourselves to semigroups on von Neumann algebras rather than general C* algebras
as preduals come into picture.
Let A be a von Neumann algebra of operators on a Hilbert space Ho and let
T : A— A,t > 0 be a strongly continuous semigroup of positive linear maps so that
the following conditions are fulfilled : (i) To(X) = X for all X € A; (i) T,(Ty(X)) =
Tope(X) for all X € A,s,t > 0; (iii) hm Ti(X) = To(X) for all X € A,s > 0; (iv)
T(X)>0forall X >0,X € At > 0.

Definition 7.1 : Let F,(IR4) be the family of all bounded Borel subsets of R,.
A map S : Fy(IRy) — Ay, the cone of nonnegative elements in A, is called an
Ay-valued Radon measure on IRy, if, for any sequence {E;} of disjoint elements in
Fy(IR4) such that UE € Fy(RRy) S(UE) = ZS(E) where the right hand side

converges in the strong sense.
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Definition 7.2 : An A;-valued Radon measure S on IRy is called an ezit cocycle
for the semigroup {73} if

1(S(E)) = S(E + 1) for all E € Fy(IRy),t > 0. (7.1)

Remark 7.3 : The strong continuity of the semigroup {73} and the fact that Tp is
identity imply that every exit cocycle is nonatomic, i.e., S({t}) = 0 for all ¢ > 0.

Example 7.4 : Chioose and fix an clement B in Ay. Define
SB(E) = /ET,(B)d: for E € Fy(IRy). (7.2)

Then the semigroup property and positivity of {7} imply that Sp is an exit cocycle.
Another class of exit cocycles is obtained by the following definition.

Definition 7.5 : Let A € A. Then A is called ezcessive for the semigroup {T3} if
Ti(A) < Aforall t > 0. If Ty(A) = A for all ¢t > 0, A is said to be harmonic.

Example 7.6 : Let A € A be excessive for {T;}. Define a Radon measure S by
putting

S([a,b]) = Ta(A) = Ty(A) for 0<a <b< oo. (7.3)

Since A is excessive and Tt is positive we have S([a,b]) = Ta(A - Ts—a(A)) > 0. And
as Te(S((a,b])) = S([a + t,b + t]), it follows that § is an exit cocycle.

It should be noted that in this example if £ is the generator of {T¢} and A is in
the domain of £ then S([a,b]) = [ To(~£(A))ds reduces to Example 7.4. If B € A,
is harmonic and 4 denotes the Lebesgue measure in IRy then Sp(E) = p(E)B which
is a special case of Example 7.4. Note that the identity operator is always excessive
for a quantum dynamical semigroup.

Example 7.7 : If we replace the von Neumann algebra A by a C* algebra the
definitions given in the ding discussions are ingful. For example let A

denote the C* algebra of bounded continuous functions on R4 and let {T;} be the
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semigroup of translation operators defined by
(Tef)z) = f(z+1), t20,f € A
Define the Radon measure S by
S(la,t)(z) = (b+2) — (@ +2)’, 0z <
for some fixed 6,0 < é < 1. Then
d -1 6=1
HS([“'H) =6(b+z) ' -(a+z)y ") <0

and hence sl:pS([a.b])(z) =t - a® < co. Clearly §([a,b])(z) 2 0. The cocycle
property is obvious. This cocycle if expressed as f:¢(z + s)ds then ¢(z) = 6281 is
unbounded and ¢ ¢ A. On the other hand if $([a,b]) = Tay—Ty9) then ¢(z) = c—z°
for some constant ¢, is unbounded and does not belong to A. This shows that there
are exit cocycles not covered by Example 7.4 and 7.6.

Example 7.8 : Let A be the C* algebra of all bounded continuous functions on the
real line IR and {71} be the semigroup defined by

(Tif)(z) = Ef(z + B(t)), 120,f€ A,
where B(t) denotes the standard Brownian motion process on IR. Define S by
5((0,1))(z) = Elz + B(t)| - |z|, =€ R,t>0.
From Tanaka’s formula (page 137 in [CW]) we know that
d|z + B(t)| = sgn(z + B(t))dB(t) + dL(t,z)

where L(t,z) is the local time at —z. L(t,z) is jointly continuous in the variables
t and z and L(t,z) is nondecreasing in ¢ for fixed z. Thus §((0,¢])(z) is increasing
in t and continuous in (¢,z). Since B(t) has a symmetric distribution it follows that
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5([0,8))(z) = S([0,1])(~z). When z > 0 we have
5[0, 6)(=) = /_:(|z+ym—|z|)(2w)-%e-'=1dy
= (2m)t {/ e s  dy — / (2z + yﬁ)e-‘f-dy}

< (2n)t t{/"c yve zzdy—/_ﬂ— —'a-dy}
-zt~ —oco

= 7 5V3tem =

A

which shows that sup, 5([0,#])(z) < co. The cocycle property is now immediate from
the standard properties of Brownian motion.

We now proceed to a brief discussion on entrance cocycles. Let A, denote the
predual of the von Neumann algebra A C B(Ho). Then A. is 2 subalgebra of the
algebra of all trace class operators on Ho.

Definition 7.9 : An A,-valued nonnegative Radon measure ¥ on IR, is called an
entrance cocycle for the semigroup {T;} if

T Y(E)TL(X) = tr $(E +3)X forall s > 0,F € Fy(IRy), X € A. (74)

Imitating Example 7.4 and 7.6 we can obtain examples of entrance cocycles
provided there exists a semigroup {r} in A, satisfying

tr 7(p)X = trpTy(X) forall X € A,p € Au,t> 0. (7.5)
In such a case we have the following examples.
Example 7.10 : Let p € A. be positive. Define the Radon measure 3, by
$o(E) = _/E m(p)ds for E € Fy(IRy). (7.6)

Then ¥, is an entrance cocycle for the semigroup {T}.
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Example 7.11 : Suppose po € A. is excessive for {m}. Define ¥ by
¥([e,b]) = ma(po) — ms(po)- (7.7)

Then ¥ is an entrance cocycle.

8 Perturbed Semigroups

In his analysis of Kolmogorov equations Feller [Fe 1,2,3] constructed a class of sub-
stochastic semigroups called minimal semigroups and outlined a method of con-
structing new semigroups including stochastic ones by perturbing their resolvents (or
Laplace transforms) appropriately. The same goal was achieved more directly by a
pathwise approach in the works of Chung [C1,2] and Dynkin [Dy]. Non-commutative
minimal semigroups and their perturbations were introduced by Davies while study-
ing neutron diffusion equations [Da]. Much progress has been achieved in under-
standing these semigroups by Chebotarev ([Ch],[CF]), Mohari[Mo], Fagnola [Fa1]
et al. Section 13 outlines the basic ideas involved and provides some truely non-
commutative examples. Here we have a more general method of perturbations of
positive semigroups on von Neumann algebras based on exit and entrance cocycles
of Section 7. Boundary theory is essentially the study of Markov dilations of these
perturbed semigroups.

Let {T: : t € Ry} be a positve strongly i i p on a von N
algebra A acting on a Hilbert space H. Suppose that S is an exit cocycle for T; and
w is a state (always assumed to be normal) on .A. The Feller perturbation of T; will
depend upon this pair (S,w). To this end we introduce the Radon measure 4 defined
by

H(E) =w(S(E)), E e Fy(IRy) (8.1)

and some notation. For any ¢ > 0,n = 0,1,2, .. define the linear maps T{™) on A by
Ty(X) ifn=0,

TM(X) = § fES(dty )o(Temr, (X)) ifn=1, (82)
Janty S(R(EE).c (A1) (Tie 1y o) (X)) i 7 > 2
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for all X € A, where
An(t) = {(t1,t2, s tn) : i > 0 for each ity + -+ + ¢, < t}.

For 0< s <t<ooand0<m< n define

. Ty(X) ifm=n=0
TNX) = .
oo S(@)(AL2).cc (A Ter 1y ) (X)) otherwise
(8.3)
for all X € A, where
itz tn) s it bty S S <ty 4o by,
Amn(s,t) = tit o+ ta <t t; > 0foreveryi} ifm < n,
Am(s) ifm=n.
Proposition 8.1 : For each X € A the infinite series
TuX) = 31 (x) (8.4)
o

converges in operator norm. The convergence is uniform in ¢ over bounded intervals.

Proof : It follows from Remark 7.3 and the definition of 4 in (8.1) that uis
nonatomic. Hence lim 4([0,s]) = u({0}) = 0. Choose and fix to > 0 such that
#([0,%0]) < 1. We shall now estimate u*"([0,#]) = O ({(t1s eonrtn) t t1 4+, < 2)).
Let bttt tnStandr=#{i:1<i<nt> ). Then t >ty + -+, > 1o
and, in particular, r < [%] +1

J, say. Hence

w0 < (") #(10,to])" " (o, 1)
=0

iy
< Wu((0,) Y (’) A0, 1] u((to, )
=
= A((0, )7 n ([0, o))" .
From (8.2) we have for n > 1

TS CON < Il 1X111S(L0, )] osup (1Tl ([0, 81 (n — 1Y ([0, to])™ =1~
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which implies the required result.

In order to show that {7} is a semigroup we need the following lemma.

Lemma 8.2 : For any s,t € Iy and X € A the following hold:
() TE(TM(X)) = TR (X) for myn 2 0;
() 3 TNTM(X)) = TE(X) for k 2 0.
m4n=k
Proof : First we prove (i). Clearly (i) holds when m =
have
(T (X))
= Jan(e) S(ds1)(ds2)- (@} To— (o 4tam) (TS X)))
= [ans) S(ds1)(ds2)...u(dsm)

X T ot o) (S ) (A2).c bl o Ti ) (X))
Consider the change of variables

0. When m,n > 1 we

Sma1 = 8= (S1+ 0+ 5m) + 1 Sma2 = 12y Smn = e
Then the cocycle property of S and the definition of p imply

T (44 9m) (S(d1))) = p(dSm1)

and under the change of variables, the conditions t; > 0 and t; +---+t, <t become
$< 814+ Smy1 and 8y + -+ + Smyn < 8+t respectively. By the nonatomicity
of § we may as well write s < s; + -+ + $m41 50 that

) = [ S(ds)(dsa) B(dsman)oTepam (ot tampm) (X))

mmn(s,340)

and (8.3) shows that the right hand side is the same as Tjypyt"(X). When m =

0, n > 1 we have

™I(x)
= T(fa S(0)(d12) - p(dtn oA Tom 4 t) (X))
= Jano To(S(@0))u(dta) -+ (dn )Tty omptn) (X))
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Changing the variables to s; = s + t;,52 = i3,

n = tn yields the required result
as before. When m > 1,n = 0 the semigroup property of {T¢} implies

TEAPO) = [ s (dss) - ildsm ) Taec ooty (0)

and completes the proof of (i).

Property (i) is obvious for k = 0. When k > 1 property (i) together with the
observation that A(s +t) is the disjoint union of {Am(s,s+1),0 < m < k} for all
s and ¢ implies (ii). [
Theorem 8.3 : Let 7; : A — A be a positive strongly continuous semigroup of
linear maps. Suppose w is a state on A and S is an exit cocycle for {Z;}. Then
the family {7}} defined by (8.4) is also a positive strongly continuous semigroup of
linear maps on A. If {T.} is completely positive so is {T%}.

Proof : Clearly To(X) = To(X) = X for all X € A. For 0 < s, < oo and X € A
we have from Lemma 8.2.

T@(X) = 3 TMEM(X)

mns

= > > ™M)

k20 m4n=k

= 3 TRUX) = Tose(X).
k>0

Thus {7} is a semigroup. By (8.2), {T{™} is strongly continuous in ¢ and linear
on A for each 7 and Proposition 8.1 implies the same property for {T3}. If {T:} is
positive or completely positive so is each {T{™} and hence {T}} also shares the same
property. -

The semigroup {7} occurring in Theorem 8.3 is called the Feller perturbation
of {T;} determined by the exit cocycle S and the state w. It is to be noted that T}
may not be contractive even if T¢ is. The discussion after Remark 8.8 indicates an

important special case where contractivity of perturbed semigroup is easily ensured.
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Remark 8.4 : Theorem 8.3 holds good when A is a C* algebra and the proof
remains the same.

Remark 8.5 : From the proof of Proposition 8.1 it follows that v = 8o+ + u** + ...
is a Radon measure on IRy where & is the Dirac measure at 0 and s is defined by
(8-1). This shows that the perturbed semigroup 7 can be expressed as

) = X + (S e 1) (ds)eolTims (X))

when § + v is the positive operator-valued Radon measure defined by

S+ v([0,2]) = /0‘ S(ds)r([0,t — s]).

If X is in the domain of the generator £ of {T;},u, v are vectors in the Hilbert space
Ho (with A C B(Ho)) and (u,$ + »([0,¢])v) is differentiable at the origin then

G T = (o LX) + () 1,5 4 0, ) Moo
In particular, if S(E) = Sp(E) = [ T,(B)ds, B € Ay then
%(u,i?(x)v)lxﬂ = (u, {£(X) + w(X)B}v).

In order to compare the perturbed semigroup {7} with Feller’s construction we
shall compute its resolvent. At this stage it is useful to recollect the well known
Hille-Yosida theorem which makes precise the one to one correspondence between a
semigroup and its resolvent.

Theorem 8.6 (Hille-Yosida [Y], [Dy]) : Let X be a Banach space. Let {Ry}asg
be a family of operators in ¥, with § > 0 a fixed scalar, satisfying the following:
() BaRy = (1= N7 (Ra = Ry) for A > B, A # s
(@ii) [IRAll S M(A = B)~" for all A > § and some positive constant M ;
(iii) slim RA(X) = R,u(X) for all u > 4, X € X;
(iv) Range of Ry is dense in X for some A > 3.
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Then there exists a unique strongly continuous semigroup {7}} of operators in X'
such that ||T.|| € MeP and Ry(X) = [° e~ MTy(X)dt for all A > 6, X € X.

Conversely, if Ty : X — X,t > 0 is a strongly continuous semigroup of operators
then there exist constants M,8 > 0 such that ||T}]| < MeP for all t > 0 and
RA(X) = [3% e MT,(X)dt defines a family of operators satisfying (i) - (iv). The
semigroup {7} is contractive if and only if M and 8 can be chosen to be 1 and 0
respectively.

Proof : We omit the proof (See page 30, Vol. I, [Dy]). =

Theorem 8.7 : Let the semigroup {Ti} in Theorem 8.3 satisfy the inequalities
|ITell S Me® for M > 0,8 > 0 and all £ > 0. Let {Ry, A > 8} be its resolvent. Then
there exists a § > 0 such that the resolvent {Rx,A > B} is given by

w(B\(X))

RA(X) = Ra(X) + T—uw(d))

(A)) (8:5)
where

P /0°° eMS(de), A> B (86)

Proof : Choose and fix a to such that u([0,%0]) = @ < 1. Let b = ||S([0,t0])||. By
the cocycle property

[15([nto, (n + V)toDll = [|Tate (5[0, ta])I| < bMe™,n > 0.

Hence
oo (n+1)t,
W[ esaon < S [T eesian)
-
< b+ D obMem ARt
bMe—(-A)o
B P s

< oo forall A>g.
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Since u(E) = w(S(E)) we have

o _ bMe-(-P)to
/O eMu(d) S at T

Since a < 1 we conclude the existence of a constant 3 > 0 such that
w(Ay) = /we-“u(m) <1 forall A> 4.
0
Thus, for X € A, A > [3, we have
Ra(X)
o
- / e MTy(X)dt
° 00
= B+ X [T St - o Ty p e ()t
as1lo An(t)
RA(X) + Zw(RA(X)MAA)"“AA

uun(xn .
)

= R(X)+5

Remark 8.8 : As a direct consequence of the cocycle property of S it follows that

Ar-4
RA(A“)=ﬁ for Apu>B,A#p.

Using this relation we can verify that R, satisfies the resolvent identity. So we could
as well have defined Ry directly by (8.5) and (8.6), used the Hille-Yosida theorem
and recovered the semigroup 7.

Feller in [Fe2] had taken this kind of resolvent approach. We shall compare the
formula for R with that of Feller. Let A € Ay be excessive for {T3} and let § be
defined as in Example 7.6 so that 5(¢) = S([0,]) = A — Ty(A). Then

Ay = /.:, e MS(dt) = A/: e M(A - Ty(A))dt,
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iie., Ay = A — ARy(A). Hence (8.5) becomes
5 w(RA(X))
Ra(X) = Ry(X) 4 —@AX)
"X = B0+ T o T e A))
Now consider the special case 4 = gI for some ¢ > 0 and w(X) = tr pX for some
density matrix p describing the state. Then

(A = ARx(A)). (8.7)

BaX) = B+ g~ R
= B0+ l’fi‘fj‘liw(l —ARA(I)) (3.8)

where m = 129, If {T,} is contractive and m > 0 then {7} is also contractive.
When m = 0 and {73} is not conservative it follows that ARx(J) = I and hence {T}}
is conservative. When A = £o, and {T\} is the minimal semigroup of substochastic
matrices associated with a Kolmogorov equation, formula (8.8) coincides with the
expression (8.1) in [Fe2]. This suggests that the density matrix p in (8.8) mediates
the transition from a “boundary point” back into the “state space” of the Markov
flow and ;25 is the probability that it is stuck in the boundary. Of course, it is
desirable to have a clearer picture of the manner in which p mediates the transition.

Finally we come to Feller Perturbations based on entrance cocycles. As the
analysis is similar to that of exit coclycles proofs have been ommitted.

Let 3 be an entrance cocycle for the semigroup {7:} and let Z be a fixed positive
element in A. In analogy with (8.4) define

Td(X) = Tu(X) + Z/; P tr(¥(dtr) X)tr($(dt2) 2) - tr((dtn) 2)Tim(ty 4 oten)(Z)
nx178n

(8.9)
for t > 0,X € A.

Theorem 8.9 : The series on the right hand side of (8.9) converges in norm and
{7} is a strongly continuous positive semigroup. If {T:} is completely positive so is

{T2}.

Proof : This is exactly along the same lines of the proof of Theorem 8.3. L]
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Theorem 8.10 : Let R, and R, be the resolvents of {T:} and {7:} respectively for
A > v for some v > 0. Then

RA(X) = Ra(X) + %m(z) for X € A

where aj is the positive linear functional on A given by

ax(X) = /Dm &M r (y(dt)X)

Proof : This is obtained by a direct computation. [ ]

We conclude this section with some remarks on perturbations of direct sums and
tensor products of semigroups. Suppose A; is a von Neumann algebra of operators
in a Hilbert space #; and {7} is a positive strongly continuous semigroup of linear
maps on A; for each i = 1,2. Let wy be a state in 4; and let 5; be an exit cocycle
for each i. For the semigroup T, = TV ¢ T®, 5 = 5, @ S, is an exit cocycle and
forany 0 < p < l,w = puy @ (1= p)w; is a state on A = A1 @ A;. Expressing any
element of A as a column vector ). X € ALY € Az we see that the perturbed
semigroup {7} associated with the pair (S,w) has its resolvent R, given by

2 (x) - (R&”(X)) + PABPX)) + (1 = pn (RO (¥)) (A&"
My B T T i (AD) 4 (1 = pa(AD)) (4D

where R{) is the resolvent of {79} and 4P = s €™MSi(dt). When Az = @ p =
0,w2(¢) = e and $1((0,)) = 7 = T (1), {7} being contractive (8-10) reduces to

(1) _ (1)
B(2) = (A00) oo (100 ).

This is the resolvent of a semigroup which is the quantum probabilistic analogue of

) (8.10)

a Markov chain with an absorbing boundary point as described after Theorem 4.10.

Just like direct sums we can also perturb tensor products of semigroups. Indeed,
let 7o = T @ T® in A = A, ® Ap. Then there exists an exit cocycle S for
{T%} such that S([0,1]) = $1([0,1) ® 52([0,1]) for all ¢. It should be noted that
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8((a,b1) # S1([a,b1)® Sal[a,b]). 1t is also interesting to note that A, § Ay is excessive
for {T1)if Ay i excessive for {T1")i = 1,2, Indeed,

@10 k) = 1V4)0T4)
40T()
A] ® Az,

L

P

If H is harmonic for {Tt(z)} then S((0,4)) = $1((0,])® H defines an exit cocycle for
). 1 ™ 2 identity we can express the resolvent of the perturbed semigroup
{ T}} associated with the exit cocycle § and any state w on A as

, 0
h(xoy)=K(x )@H—(R* ()((?W)Am B
)

A similar analysis can be done with entrance cocycles.



CHAPTER III

Gluing Adapted Processes and Filtrations

9 Processes and Stop Times

Just as a classical stochastic process is a family of random variables indexed by time.
a quantum stochastic process may be viewed as a family of operators on some Hilbert
space. Some regularity conditions are put at times for technical convenience. In the
classical theory of Markov processes the notion of stop times plays a predominant
role. However it seems there is not much literature on quantum stop times ([Hu].
[BW], [AS], [PS]). Hudson[Hu] looks upon stop times as a spectral measure on IR .
The same idea was used fruitfuly by Parthasarathy and Sinha [PS] to prove a strong
factorisability property of Fock spaces. In this short section adapted processes and
stop times are formally defined. Some simple examples of stop times are provided.
We also introduce a simple notion of integration of operator valued functions with
respect to a spectral measure. This integral is used as a tool to construct new
processes and filtrations in subsequent sections.

Definition 9.1 : By a bounded process X = {X(t),t > 0} in a Hilbert space H
we mean a family of bounded operators in H satisfying the following: (i) the map
t — X(t) is weakly measurable; (ii) sup ||X(s)|| < oo for every t. Such a process is
called contractive, isometric or co-is:rsn‘esl:‘ic according as all the operators X (t),t > 0
possess the same property. If F is a weak filtration in # then X is said to be adaptec
to Fif
X(t)F(t) = F(t)X(t)F(t) for every t.

A stop time in 'H is a spectral measure on the closed interval [0,00] = IRy U {oc]
with values in the lattice of projections in . A stop time P is called a stop time for
the bounded process X in H if X(t)P([0,]) = P([0,t])X(t) for every t. P is callec
an F-adapted stop time for the bounded process X if, in addition,

P((0,8]))F(t) = F(£)P([0,1]) for every t.
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Note that the definition says X is F adapted if X(t) leaves the range of F(t)
invariant for every t. Naturally enough classical stop times are our first set of exam-
ples.

»
Example 9.2 : Let (R, F,F,u) be a filtered probability space and let 7 be a stop
time in © so that {w : 7(w) <t} € F, for every t. Let P(t) be multiplication by the
indicator of {w : 7(w) < t} € F;in L?(y). Conditions of commutativity put between
P and X are redundant here. Observe that the family of projections { F(t)}, where
F(t) is projection onto the subspace of square integrable functions measurable with
respect to Fy, does not constitute a process in the classical sense.

Example 9.3 : Let (H, F,j;) be a subordinate weak Markov flow on .A. Suppose Q
is a projection in A. Then observe that for t > 0
inf{j,(Q): 0 < r <t} <ji(Q) < ju(1) < F(t).
So we have a family of projections {P(t)} defined by
P(t) = F(t) - inf{jr(Q): 0< r < t}.

Also P(s) < P(t) for s <t, and hence P is an F adapted stop time. The stop time
P can be interpreted as a quantum analogue of the notion of hitting time of classical
Markov processes. We may say that the process is observed until it goes outside the
‘domain’ Q. But one should be a bit cautious here as j,(Q)’s may not commute.

Example 9.4 : Let (H, F,k;) be a central flow as in the discussion before Corollary
6.3. Then from Remark 6.2 k(1) is a decreasing family of projections. On setting

P(t)=1I - k(1) for t >0,

we have an F adapted stop time P. Moreover for every X in the initial algebra A,
k(X)P(t) = P(t)ki(X) = 0, and hence P is a stop time for the process {k(X),t >
0}. These stop times play an important role in boundary theory and will be caled
as exit times.
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Now recall that the Hahn-Hellinger theorem [P1] allows us to decompose a spec-
tral measure into a direct sum of canonical spectral measures. We define an integral
of operator valued functions with respect to canonical spectral measures and then
generalize it by simply taking direct sums. This helps in visualizing the integral.

Let (,F, 4) be a totally finite standard measure space and let P* denote the
canonical spectral measure on § so that P#(E) is the operator of multiplication by
the indicator function xg of E € F in the Hilbert space L?(i). Suppose k is a
Hilbert space and X : @ — B(k) is a map satisfying the following:

(i) the map w — (u, X(w)v) on Q is measurable for every u,v € k;

(i) sup, Xl < oo.

Note that the Hilbert space L%() @ k is isomorphic to the Hilbert space L%(y, k)
where

LGk = (£1£ 20—, [ IF@)IRu(d) < oo}
with

(129 = [ (), g(@Dentdo),

£,9,-. denoting equivalence classes modulo p-null sets. Making use of this identi-
fication between L(t) ® k and L%(, k) we define the operator o P#(dw)X (w) on
L*(u) ® k by

(/n PHdw)X (w)f}w') = X (@) (&), ' € Q, (9.1)

Then [y P#(dw)X(w) is a bounded operator on L2() ® k with
II/;P“(dw)X(w)II SS‘:P”X(')HL (92)

It is natural to denote the operator given by (9.1) as [ P#(dw) ® X (w) but we drop
the symbol ® for notational convenience.

Now suppose that P is any spectral measure on the standard Borel space (2, F)
with values in the lattice of orthogonal projections in a Hilbert space H. By a part
of the Hahn-Hellinger theorem [P1] there exist totally finite measures {sq,a € S}
on (,F) and a unitary operator U : H — @4 L?(uq) such that UPU~! = @, Pka.



10 GLUING ADAPTED PROCESSES 61

Let now X : Q — B(k) be a weakly measurable map satisfying supp || X(-)||i < oc.
Then we define the integral of X(-) with respect to P by

A P(dw)X(w) = U{@a A PHa(dw)X (@)}U. * (93)
Then the left hand side yields an operator on X ® k with
Il | P@)X @ < sup X Ol ©4)
i “

Proposition 9.5 : Let (?,F) be a standard Borel space and let M,k be Hilbert
spaces. Suppose P is a spectral measure on F with values in the lattice of orthogonal
projections in . Let A’ be the + unital algebra of all weakly measurable maps of the
form X : Q — B(k) satisfying the condition supp || X(-)||x < co. Then the following
hold:

(i) the map X — [ P(dw)X(w) is a * unital homomorphism from A into B(H®
k) such that (9.4) holds;

(ii) for any u,u’ € H,v,v' € k

@®u, [ PU)X@W ©v) = [ (1, P, X(@)v).
Proof : This is immediate when H = L?(x) and P = P4, Rest follows from (9.2)
and (9.3). N
10 Gluing Adapted Processes

Given two classical stochastic processes {£(¢)} and {5(t)} with ¢ > 0 and a stop time
7 for {£(t)} we can glue them at time 7 and obtain a new process {¢(¢)} by defining

_Jew if t<r,
= { nt-1) if t>7 ao.n

Here initially we are observing the process ¢. It is observed upto the stop time 7 and
then the second process 7 is initiated. Now a quantum analogue of this construction
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is introduced using the integral defined in Section 9. This method of obtaining new
processes is quite general and works with any two bounded processes. However,
we will be gluing only Markov processes to obtain Markov dilations of perturbed
semigroups.

Let X; be a bounded process in the Hilbert space H;,i = 1,2 and let P, be a
stop time for X;. Then the glued process X10p, X7 is defined by

Xyop, Xa(t) = X1(0)(1 ~ Pa(0) + /M Py(dtn) Xa(t - t1) (102)

where the first term is actually the ampliated operator X1(t)(1— Pi(1))® Iz, Pi(t) =
Py([0,1]) and I is the identity operator in H. By Proposition 9.5 it follows that
X10p, X3 is a bounded process in Hy ® Hz. When the stop time Py is clear in
a context we shall write X,0X for X10p,X2. The event that the process X, is
stopped at a time not excecding ¢ is described by the projection Py(t). Since Xi(t)
and P;(t) commaute with each other we may express the first term on the right hand
side of (10.2) also as Py((t,00)) X1 (t)Pi((t, 00)).

Normally Pi({0}) = 0 so that X10X2(0) = X1(0)Pr((0,00)) = X1(0), i.e.,
the glued process starts at Xy(0). Otherwise X10X2(0) = Xi1(0)Py((0,00]) +
Py({0})X2(0). This may be interpreted as an instantaneous change from X1(0)
to X(0) (with some probability in a given state).

Proposition 10.1 : Let P; be a stop time in H;,i = 1,2. Then Piop, P, is a stop
time in Hy ®Ho. If, in addition, P is a stop time for the bounded process X;,i = 1,2
then Piop, P, is a stop time for the glued process X10p, X2.

Proof : We have from (10.2)
Piop Palt) = Pi(OPi((t,00]) + jiul]mdn)fa(z—t.)
=/ Py(dtr) Py(dtz)
0ty +t2<t
= PoP{(tt):0< i+t <tity,t, 2 0}).  (10.3)

This proves the first part. The second part is immediate from Proposition 9.5 and
the definition of a stop time for a bounded process. ]
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We denote the stop time Prop, Py by PoP; and call it the cumulative stop time of
Py followed by P;. In other words we wait till the stop time P, first and subsequently
wait till P; so that the total waiting time is PioP,. Such a view is useful inygluing
more than two processes.

Proposition 10.2 : Let X; be a bounded process in Hiyi=1,2,3 and let P, be a
stop time for X;,i = 1,2, Then

{(X 0P, X2)op,0p, X3} (1) = {X10p (X200, X)) (1)
=XORe) + [ APy, 00y - t)
0<t <t
+ <z APt~ 1, — 1) (10.9)
for all ¢ > 0in M, ® M2 ®@ Hj.
Proof: By repeated application of (10.2) we have
{X10p, (X207, Xo)}(t) = X:(l)Pn((l,N])*P/M Pi(dt)(Xz0p, X3)(t - 1)
= FKOR(D+ [ P - n)P( - 1y 00)
(]
* ey Pl =1~ 1)

which agrees with the right hand side of (10.4) owing to the fact that P, is & stop
time for X,. Simi]a.r]y by Proposition 9.5 we have

{(X10p, X2)op,0p, X5) (1)

(X108 X2)(O)I - ProPy(1)) + /[o (P Xs(t - 1)

n

I

(Xl(t)Pl((tvo"])*/[;vq Pr(dty) Xy(t - ‘1)){1-/[‘” Pi(dh)Py(t - 1,)}
+./a<e ey Pl(dtl)P;(dh)Xa(l —ti—ty)

X:(t)P:((l,m]H-/(;‘] P = Po(t = 1)) Xy (t - 1)

[}

+f Puldty) Pa(dtz) Xa(t - 1, — 1),
0t +t2<t
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which once again agrees with the right hand side of (10.4). [

In view of Proposition 10.2 we can now take the liberty of denoting the left
hand side of (10.4) as X10X,0X 3 whenever the concerned stop times P, and P are
unambiguously fixed.

Consider a sequence of triples Hy, Xy, Pa,n = 1,2,..., where H, is a Hilbert
space, X is a bounded process and P, is a stop time for X, for each n. Let
Mn)=H1 ® H2 ® -+ ® Ha. Define the operators Xnga(), X241 (¢) and Xp41)(t) in
Hn1) by

SO Pudt1) - Prgs(dtns) X (t - 5F 7700
bty U<t Forb b gy
=/ Pi(dts)...Pa(dtn)
i+t ta <t
XXt = TF - T) Pt - BEF 7, o0]) (10.5)
forn>1,
X0 = [ Rn)X() = Xy B4 oo, (10.6)
<t
X0,(t) = /H e 1) Pt Xoa (L - TFE) (107
N
n-1
Xat)(®) = 30 Kmsa(t) + X0, (8) (10.8)
=

for » > 1, where the m-th term which looks like an operator in M, ) is, indeed,
ampliated to M,,y). It is to be emphasized that Xnt1) = X10X20.. X 41, the
glued process obtained from the sequence X1, X, ..., Xny1 through the stop times
Pr, Py, Pa. Define the spectral measures P,) in Hoa by

Py =

for any Borel set E C [0,00], and denote their ampliations by the same symbols.
Then, for any fixed ¢, Py(t) = P,([0,1)) is a decreasing sequence in 7 and

Py(dty)...Py(dty,), (10.9)

1+ +tn€E
0<6,<o0

Xupa(t) = (Poy() = Poy)(0)Xns1 ()(Pry(2) = Poyyy(1)), (10.10)
Xon(t) = Py(0X34,(0)Py(t) (10.11)
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with the understanding that Py(t) = I. We have the estimates

IXass @Il < sup IXnsa(s)ll, (10.12)
0<s<t »

IXnen@ll < sup ~ sup [|X;(s)]l- (10.13)
1<jSn+1 0Ss<t

Let now ¢, be a unit vector in Hy,n = 1,2,... Consider the countable tensor
%

product H = QMH, defined with respect to the stabilizing sequence {¢n}. Assume
aml

that
sup sup [|Xa(s)] < oo forall 3 0. (10.14)
n 0<s<t

On ampliating X1 (t) to M we see from (10.10) and (10.12) that the infinite series

Xq(t)= 3 Xnna(t) (10.15)
o
converges strongly and
IXeo)(0)l] < sup_sup I Xa(s)]l (10.16)
n 0<s<t

Roughly speaking, X .. is the glued process X 10Xz0... Note that the infinitely glued
process X o) depends on the stabilizing sequence {#a}. The next two propositions
describe the basic properties of the operation of gluing a finite or countable number
of bounded processes.

Proposition 10.3 : Let XY, be bounded processes in the Hilbert space %, for
each n = 1,2, .. satisfying (10.14) and let P, be a stop time for both X, and Y,
for each n. Then the following holds for all 2 <n<oo:

() X+ Yoy = (X + )5

(i) Xn¥ sy = (XY )5

(i) (X)" = (X)ugs

(iv) X ) is positive or contractive according as each X; is positive or contractive.

Proof : Immediate from Proposition 9.5 and the definition of glued processes. m



66 III GLUING ADAPTED PROCESSES AND FILTRATIONS

Proposition 10.4 : In Proposition 10.3 suppose that X, is the process I,, where
I,(t) = I in Hy for each n. Then I,)(t) = I for 2 < n < co. Define the probability
measures {v,} on [0,00] associated with the stabilizing sequence {¢n} by

Va(E) = (¢n, Pa(E)én) for every Borel set E C [0, 00).
Then Ino)(t) = I if and only if

Tim (v vz e va)([0,2]) = 0 (10.17)

forall 0 <t < oo.

Proof : The first part is immediate from the relations In41(t) = Pr(t) — Ppya(t),
Py)(t) = I and the fact that X%41(2)in (10.7) becomes Py(t). To prove the sufficiency
in the second part consider an element v = u; @ U @ +++ ® Uk ® Prp1 ® Pky2 ® = *+
in H and observe that (10.7) yields

X0 (8)ull? = (Ax %% Mk # g # vz %0 5 00)((0,2]) (10.18)

for n > k, when Xi(t) = I for all i, \i’s being the measures defined by Ai(E) =
(ui, P(E)u;), for any Borel subset E of [0,00]. Now (10.17) implies that the left
hand side of (10.18) converges to 0 as n — co. Since vectors of the form u are total
in M it follows that X9, ,(£) — 0 strongly as n — oo for every ¢. Now (10.8) and
(10.15) together with the first part imply that fo)(t) = I for all £ > 0.

To prove the necessity of (10.17) observe that vy * v * - -- % vn([0,1]) decreases
monotonically in 7 for every fixed ¢ > 0. Suppose that lim v +---+va([0,t0]) = 6 > 0
for some to > 0. Then (10.8) implies that for the unit vector u = $1 ® ¢2® --- in H

n-1
Moo (to)ull® = lim || 3= L (to)ul®
m=0
= 1-6<1.
In other words I)(to) is a proper projection . .

Remark 10.5 : From Proposition 10.3 and 10.4 it is clear that for 2 < n < oo
the bounded process X,; is isometric, co-isometric or unitary according as each



10 GLUING ADAPTED PROCESSES 67

Xiyi=1,2,.. has the same property. If the measures {vn} defined in Proposition
10.4 satisfy the condition (10.17) then X o) is isometric, co-isometric or unitary

according as each X;,i = 1,2, ... has the same property. »

Proposition 10.6 : Let H,, X, P,,n = 1,2,... be as in Proposition 10.3. Suppose
that the maps ¢ — X,(t) are strongly right continuous for cach n. Then Xo(t) is
strongly right continuous in ¢ for every 2 < n < co. If X,(t) is strongly continuous
in t and P, has no atoms in IRy for every n then Xy)(t) is strongly continuous in ¢
for every 2 < n < co.

Proof : Consider an element u = u) ® u; ® ... in H where each Un is a unit vector

and un = g, for all n exceeding some ng. From (10.10) and (10.15) we have
& -
IXeq)(ull* = 0N Xnga ()l (10.19)
=

Consider a fixed bounded interval [0,7] and observe that (10.10), (10.12) and (10.14)
imply the existence of a positive constant C depending on T such that

Kenr®ull? < CUPy(®) = Pary)ull?
= Cllmxe s pa)(0,8) = (1 %+ 5 ([0, 1))} (10.20)

for all 0 <t < T where () = (u;, P(-)u;). Note that when n = 0 the right
hand side of the inequality above is to be interpreted as C(1 — i ([0, £])). It follows
from (10.19) and (10.20) that the right hand side of (10.19) converges uniformly in
t €[0,T). Thus, in order to prove the first part of the proposition, it suffices to show
that the map ¢ — X,,41(t)u is strongly right continuous. We have

{Kas1(t+h) = Xnga (}u

{ /{Q oy P Xaa (4 B = Prga (4 B 5, 00]

Gl Poj(ds)Xn41(t = 8) Paga((t = 5, 00]) }u
fo.+h)

g AU X1 (64 k= 5)Puga (¢ + h = s, 0])u
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- /[ 3 B X (6= 9)Pasa((¢ = 5,00
[ Py Xt + R = )P (4 = 5,00
(t.t+h]
Thus

I{Xng1(t + ) = Xngr () }ull?
< /{0 o < b B @)y > 1{Xosa (4 b = ) Paa (¢ 4+ B = 5,00])
X1 (t = ) Paa (£ = 5,00]) [ + Cutng, Puy((t,t + B]Juny),

where C is the positive constant mentioned earlier, up) = 1 ®---® un,h > 0,t4+h <
T. Since Xn41(t) and Pay1((t,00]) are both right continuous for every n the right
continuity of X, () in t follows from the inequality above. It is to be noted that we
have used the fact that vectors of the form u described at the beginning are total in

H. The second part of the proposition is proved in the same manner. [ ]

11 Gluing Filtrations

As filtrations are adapted processes in their own right they can be glued the way
general adapted proceesses are glued in Section 10. However filtrations glued this way
do not give new filtrations as we no longer have an increasing family of projections.
This anomaly is taken care of by a minor modification while gluing filtrations. In
the end we have a filtration which may be considered as the natural filtration for
glued processes.

Consider a sequence (Hn, Fn),n = 1,2,..., where H, is a Hilbert space and F,
is a weak filtration in M, such that the map ¢ — Fy(t) is strongly right continuous.
Let X, be a bounded process adapted to Fy, and let P, be a stop time for X, so
that P, is adapted to F; in the sense of Definition 9.1. We choose the stabilizing
sequence of unit vectors {¢,} such that @, is in the range of Fy(0) for each n =
1,2,.... Denote by @({m,n]) = [$m)(ém| ® [fms1)(Sms1] ® - ® |6n)(én| the one
dimensional projection (The operators of the form |z)(y| have been defined in the
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proof of Theorem 2.6) ampliated to M) or H whenever necessary and using the same
symbol for operators and their ampliations introduce the operators F,y(t) by

-

n-1
Fapg(t) = 3 Fana(®)®((m +2,n+ 1))
=0
+/ Py(dty)...Po(dtn) Fogr(t =TT F - F 5,) (11.1)
ti4-tta St

for 1 < n < 00 and the operators Fo)(t) in H =H, ® -+ ® Hp ® ... by
- s
Fgg(t) = 3 Fmsa(1)8([m + 2,00)). (11.2)
m=0

Here we have used the notations (10.5) and (10.6). It is important to compare (11.1)
and (11.2) with (10.8) and (10.15).

Proposition 11.1 : F, ;) defined by (11.1) is a right continuous weak filtration in
Hapyy) for every 2 < n < o0. If X, is an Fy-adapted bounded process in H, and
P, is an Fy-adapted stoptime for every n then X,y is Foyyj-adapted for every
1<n< o0,

Proof : We prove the result first when n = 1. From Proposition 9.5 it follows easily
that the operator

Fy(t) = R0 - A0)|é2)(eal + /[.m] Pi(du)Fy(t - ta)

with ¢, in the range of Fy(0) is a projection. For 0 < s < £ < oo we have
Fy(t)Fy(s)
= F()(1 - A@0))(1 - Pi(s))Fa(s)lé2)(¢2]
() J00) Pr(d0)|62)(2] fio, o) Pr(ds1) Fa(s - s1)
+ Joog Pr(dt) Fa(t = 11) [, o) Pr(ds1) Fa(5)|2) (2]
+ fio Prdi) Fa(t = 1) fig_y Pr(dst) Fa(s = 1)
= (1= Pi())Fi(s)l62){(2| + 0 + [, g Pr(ds1) Fi(s)|b2) {2l
+ Joo.o) Pa(ds1)Fa(s — s1)
= I-‘Z](a)
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which shows that F)(t) is increasing in ¢. In other words F) is a filtration. To prove
the adaptedness of X with respect to Fy) observe that
Xay(t) Fy(t)
= {(X1()(1 = Pi(1) + fiog Pr(dta) Xa(t — 1)} Fy(t)
= X1()(1 = (1)) Fr(8)|¢2){d2] + Jio g Pr(dt) Xa(t — 1) Pt — t1)
= [82)(2l Fr () X2 (1)(1 = Pi(8)) Fi(D)l 22l

+ Jo Prldt) Fa(t — ) Xa(t = 1) Fo(t = ta)
= Fy()Xy(t)Fy(1),
which proves the claim for n = 1. Now assume that the Proposition is true for
n < k. Then on gluing Fyyy) with Fiy, using the cumulative stop time Piyy) =
Py0P30...0Pj4 given by

P = | Pi(dt) - Pra(dtip)
titotepn St

we have a new filtration G given by

G(t) = Fran)(t)(J = Pran)())bks2)(Breal + o Piey1)(dtis2) Frpa(t — tiy)
which is easily verified to be the same as Fi4)(t). Hence Fyy is also a filtration.
Since Xj4g) = Xis110X k42 2 ition of the earlier shows that X4z
is Fy,q-adapted. The strong right continuity of Fy(t) in t is proved exactly as in
Proposition 10.6.

Proposition 11.2 : In Proposition 11.1 suppose that the sequence of probability
measures {v,} in the closed interval [0,00] defined by va(-) = (én, Pa(-)n),n =
1,2,... satisfies (10.17). Then Fy defined by (11.2) is a strongly right continuous
weak filtration in H = Hy ® Hz ® .... If Xy, is an Fn-adapted process and P, is an

F,-adapted stop time for X, for every n then X is Fug) - adapted.

Proof : Proceeding along the lines of the proof of Proposition 10.4 we conclude that
Fu)(t) = slim Fryp)(t), Xoo)(t) = s— lim Xoyq)(t). The strong right continuity
of Figy(t) in t is proved exactly as in Proposition 10.6. Rest is immediate from
Proposition 11.1. u



CHAPTER IV
Glued Markov Flows

12 Boundary Theory

In classical probability theory a Markov process governed by a nonconservative or
substochastic semigroup of transition probability operators on a state space S is
interpreted as a Markov process whose trajectories may get out of the space S (or
hit the boundary) at an exit time depending on the individual trajectory. Such an
exit time provides a natural stop time at which the trajectory may be stopped at
the boundary with probability p or inued with probability ¢ = 1 — p along a

new independent trajectory of the original flow starting from a point z € S chosen
according to a suitable entrance probability law. Such a procedure can be repeated
ad infinitum. The aim of the present section is to quantize this idea or, equiva-
lently, express it in the language of operators in a Hilbert space by adopting the
gluing mechanism described in Chapter IIT with respect to suitable exit times for
a nonconservative Markov flow mediated by a quantum dynamical semigroup {T;}
on a unital von Neumann algebra and thereby obtain a new Markov flow whose
expectation semigroup {7}} is a Feller perturbation of {T:}.

Before embarking on this we explain the construction of Chung[C1] in greater
detail to facilitate the intuition. Let S be a countable set. Consider a matrix
Q = ((g5))ijes satisfying

(i) ¢i; >0 if i#j,

(i) =00 < T;¢i; <0 forall i
The first problem is to find all semigroups of substochastic matrices ((p;j())) such
that

lim 2

lim t(p;,(t) = 6i;) = ¢ij forall i,j. (12.1)

And the second problem is to realize these semigroups through explicit probabilistic
constructions. To avoid some trivialities we assume ¢ii < 0 (note the strict inequality)
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for all i. Now Feller’s minimal semigroup ((;())) is a special solution of (12.1). It
is given by

i) = 325 0),
n>0

where,
t
PO = e and P50 = 3 [(em I guplDds forn > 0.
k#i 70

This semigroup is minimal in the sense that if ((pi;(t))) is another semigroup of
substochastic matrices satifying (12.1) then

Pi5(t) < pij(t) for every i,7, and t.

Now we can have a Markov process £ on the state space S with ((p;;(t))) as its
semigroup of transition probability matrices. Note that here substochasticity implies
that £ would be defined only upto a stop time 7 called the first infinity of £. Consider
a sequence £1),£(), .., of mutually independent Markov processes having a fixed
initial distribution {p;}, transition probabilities ((5:;(t))) and associated stop times
71 7). .. Define a new process £ by

£W() 0<t<r®
£(t)={ €0t - (+ ) 4 cer()) 2 pr () << ) 4 ()
forn>1

Then £ is a Markov process on S. In this construction stopping at the boundary is
not allowed and the process returns instantly to the original state space according to
the law {p;} after exit. This makes the process conservative. £ has the same initial
distribution {p;} and a new semigroup of transition probability matrices ((5i;(t)))
given by )

Boll) = B (1) + Z/ (3 prs(t - 8))dL » L™ (s) (12.2)

23070 &

where

Li(s) = 1= pi(s), L(s)= Y piLi(s)
k i
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and + stands for convolution in 2. Comparing (12.2) with Remark 8.5 it is clear
that p;;(t) is the Feller perturbation of §5;;(t) determined by the exit cocycle obtained
from the excessive operator 7 and the state {p;}. It is self-evident that_pi;(t) is
another solution of (12.1). Quantum analogue of this construction is now a simple
matter of putting together results of previous chapters.

Definition 12.1: Let (M, F,ji) be a weak Markov flow on a unital von Neumann
algebra A of operators in a Hilbert space Ho with expectation semigroup {T;}.
A spectral measure P on the closed interval [0,00] with values in the lattice of
orthogonal projections in # is called an ezit time for the flow (M, F,j,) if the
following conditions hold:

0 J(X)P((0,8) = 0for all t > 0, X € 4; (12.3)

() PO,L)F() = F)P(0,]) for all ¢ > o;
(iii) If Sp denotes the positive operator-valued Radon measure defined on R,
by
S5p({0}) = 0,5p((a, b)) = EEP((a, ), (12.4)
then Sp(E) € A and

3kSp(E)) = EJP(E+5) forall s > 0, E € 7y(R). (125)

Condition (ii) expresses the adaptedness of the stop time P and for any initial
state A on A, A(Sp([0,1])) is the probability that “hitting the boundary” occurs at
or before time t. Condition (i) can be interpreted as the fact that if the system or
flow goes out of A before time ¢ the event j(X) for any projection X in A cannot
oceur at time . Condition (iii) emphasizes the covariant nature of the exit time
under the flow.

Proposition 12.2 : If H, F, j, and P are as in Definition 12.1 then the Radon mea-
sure Sp satisfying (12.4) and (12.5) is an exit cocycle for the expectation semigroup
{T} of the flow (K, F, ).
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Proof : Taking conditional expectation EJ in (12.5) we have from the Markov
property of the flow

T.(Sp(E)F(0) = E§i(Sp(E)) = E§ES P(E + 5)
= E{P(E +5) = Sp(E + s)F(0).

L !

Let Hy, F,j™, Payn = 1,2,... be copies of M, F, ji, P in Definition 12.1. Note
that equation (12.3) together with its adjoint and condition (ii) of Definition 12.1
imply that the exit time P is also an F-adapted stop time for the bounded process
{5(X),t 2 0} for every X € A. Choose and fix a unit vector ¢ in the range of F(0)
inH. Let H = H; ® Hy ® ... where the countably infinite tensor product is taken
with respect to the stabilizing sequence {¢,} with ¢, = ¢ in the n-th copy for each

n. Using {P,} we make an infinite gluing of the processes {j,(")(X)) for each X € A
as in Section 10 to obtain the processes

WX) = ORIt 00)
Py(dty) -+ - Payr(dtngs)j D) X).
as1/ St bty 1(dt) nr( )1 (et (X)

(12.6)

By (12.3) we have ji(X)P((t,00]) = ji(X) and (12.6) can be expressed as
a
X)) = Y X)) = 2 S INX) fer0<s<tXeA (12.7)
n>0 n>0 m=0
where

sy = {30 it n=o0,
7 (X)) = (n+1) N
Jang Prldtn) Pudta )i (0 (X)) i m21

andfor0<m<n

(1) .
jfj;‘-")(X)z{ i l(X) ifm=n=0,

Jamntony Pr(do1)-Pa(dsn)i"8D, L (X) otherwise,
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where Ay and App(s,) are as in (8.2) - (8.3). It is useful to compare the two
expressions above with (8.2) and (8.3) and interpret ;™ as a description of the
glued process at time ¢ under the knowledge that exactly n exits have occurred upto
time t. Similarly 774" describes the glued process under the knowledge that exactly
7 exits upto time ¢ and m exits upto time s have been made.

Theorem 12.3 : Let H, F, j,, T, P, Sp be as in Definition 12.1 and let ¢ be a unit
vector in the range of F(0). Define the maps jq : A — B(H) by (12.6). Let F = F,g)
be the glued filtration in H defined by (11.2). Then (¥, ', j,) is a weak Markov flow
with expectation semigroup {7;} which is the Feller perturbation of {T:} determined
by the exit cocycle Sp and the vector state w with density matrix |¢)(g|.

Proof : It follows from Proposition 10.3 that for each ¢, j is a *-hocmomorphism
from A into B(H). From (12.3) and (12.6) we have jo(X) = 5(X)(1 = P(0)) =
F(X) which s jo(X) in the first copy of H ampliated to H. Thus

FOR(X)F(0) = F(0)jo(X)F(0) ® #([2,00))
= XE(0).

Since the measure x defined by u(-) = (¢, P(-)¢) is not degenerate at 0 it is clear that
Jim | 4" ([0,4]) = 0 for every ¢ > 0. Hence by Proposition 11.2 the process {J,(X)}
is adapted to the filtration F for every X € A.

Fixing 0 < s < ¢ and using (12.6), (12.7) and (11.2) we obtain

P(s)i(X)F(s)
= (L hn@2(k+2,00)H S T OOH Fua(0)@([k +2,00)))
k>0 0<m<n<oo k>0
= Y Zna (12.8)
0<m<n<oo
where

Zﬂ,,.=[|+_”+'"<’p,(dt,) -P, (dtn)IEf"""‘lm(]}"j:; T (X))0((n +2,00))
- (12.9)
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and for m < n
Tnin= [or- sty FC0) - Ptn)
Q4 ngt

XFnt1(s =0+ F tm) Pmsr(dtmsr) Fogr(s = T F - F Tm)

X udtm2) -+ w(dn ), Ty (X)) ([ + 2,00)). (12.10)
From the Markov property of j; it follows that (12.9) can be expressed as
Zon = [ Py(dty) - Paldtn)
ti++tn<s

X3 (T s(X)) Faga(s - TF T ) ([n + 2,00).
(12.11)

In (12.10) make the change of variables:
S1 =t 4t = 8,82 = tmy2, ey Spom =ty

and use (12.5) in the form

B (Pri(dtnsn)} = 575 (Sp(dsy)).
Then we obtain
Znn = [ Pi(dt) - Pr(dtm)
ti4ettm<s

S(m+1)

MR o SPSS) il )O,T, s (000))

X Fnpr(s =0+ F tm)®((m + 2,00)). (12.12)

Plugging the expressions (12.11) and (12.12) in (12.8), first summing over the variable
n —m from 0 to co and then over the variable m from 0 to oo we obtain

F()i(X)F(s) = 5o(Teeo(X)) (),
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where {T;} is the Feller perturbation of {T;} based on the exit cocycle Sp and the
vector state ¢. a

Remark 12.4: Theorem 12.3 can be easily adapted to the case of Feller per-
turbations based on Sp and a state determined by a density matrix of the form
P = L Pulén)(én| where {¢,} is an orthonormal sequence in the range of F(0) and
{pn} is a probability sequence, i.e., p, > 0 for each n and TnPn = 1. We do this
as follows. Put Hy = Ho @ Ho, A = {1, @ X,X € A}, T!(Io ® X) = I @ Ty(X) for
all 10, X € A where o is the identity operator in Ho. Let H' = Ho @ H, F'(t) =
To® F(1),5{(fo® X) = I ® ji(X), P' = I ® P, S, = Iy ® Sp. Then (M, F', )} is a
weak Markov flow on A’ with exit time P’ and expectation semigroup {7}}. Sp is
an exit cocycle for {T7}. Now consider the vector state on .4’ determined by the unit
vector ¢' = T, /B, én ® ¢r. in Hy. We may view ¢/ as an element in the range of
F'(0) and construct the infinitely glued flow (W, 7, 3;) according to Theorem 12.3.
‘This glued flow is a weak Markov flow on A’ with expectation semigroup {77} where
TiIo®X) = ly®Ti(X),{T.} being the Feller perturbation of {T;} based on (Sp,p).
It is interesting to note that for any initial state w on A and projection Q € A
the probability that according to the glued flow (R, ,3) exactly m exits occur
upto time s, n exits occur upto time ¢ and the event Q occurs at time t is equal to

f.,‘...“ socototomgs TPTi=(o1 4. 43)(Q))(w0Sp)(ds1 )u(dss) . . . p(ds,)

where0535t<oozndp=trp5p.

13 Examples

In this section few examples of weak Markov flows with exit times are exhibited.
Mostly they are based on non-unital Evans-Hudson flows. Non-commutative gener-
aliztions of Feller’s work ([Da2], [CF], [Ch], [Fa1,2], [Mo]) on minimal semigroups
become relevant in this context. Here one is interested in all quantum dynamical
semigroups having the same formal generator in a fixed domain. The natural con-
structions starting with the formal generator lead to a semigroup called the minimal
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semigroup which may or may not be conservative. Various criteria are known to de-
termine this. We discuss a few examples of formal generators from [BS2]. In case the
minimal semigroup is non-conservative Feller perturbations lead us to many other
solutions of the original problem. Dilating these semigroups could be done through
gluing Markov flows of the minimal semigroup.

Example 13.1 : Using isometric cocycles arising naturally from the theory of quan-
tum stochastic differential equations in the Fock spaces one can construct many ex-
amples of non-unital flows with an exit time. Indeed, let H = Ho ® T(L3(IR4) ® k),
and as in [Mo] consider an isometric cocycle U = {U(s,t),0 < s < t < 00} obeying
the g.s.d.e
U(s,s) = 1,dU(s,t) = U(s,){3_ LidAl (1)}
15

where {L}) is a family of operators in Ho. (See [P1] for notation). By the cocycle
property U(0,s)U(s,t) = U(0,t) for all 0 < s <t < co. Define

J(X) = U0,)XU(0,2)", X € B(Ho)

where we denote an operator and its ampliation by the same symbol. Then Jy(I) =
U(0,t)U(0,t)" is a projection. For any 0 < s <t < 00,% € H we have

I

(@:.JdD)g) = (U1 9|
= [lU(s,t)"U(0,9) 9l
U0, 9)II*
= (%, (1Y)

IA

This shows that {J(1)} is a family of projections decreasing in t. Using the strong
continuity of J¢(X) in ¢ we conclude the existence of a spectral measure P on [0, 0]
such that P([0,¢]) = 1 — Jy(I) for all ¢t where 1 and I denote the identity operators
in H and Ho respectively. Let {T;} be the semigroup of completely positive linear
maps on B(Ho) satisfying Ti(X) = IEqJi(X) for all t > 0,X € A where Eg is
the Fock vacuum conditional expectation. Let S be the positive operator-valued
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Radon measure determined by S([0,]) = I~ T(1) for all ¢ > 0. Denoting by E

the usual conditional expectation with respect to the Fock vacuum vector @, in
T(L¥([s,00) ® k) we have

E,P((s;t+s]) = Ey(P((0,t+s]) - P([0,s])) -
= Ey(Js(I) = Jo4e(D)
= J(I-T()
= Js(S([0,1)))- (13.1)
Let F(t) denote the projection on to the subspace Ho®T(L?[0, {]@k)® ¢, C H.
Define
J(X) = J(X)F(1).

Then (H, F, ji) is a subordinate weak Markov flow on B(Ho) with expectation semi-
group {T¢}. Furthermore

JX)P(0,8)) = J(X)F(t)(1 - Ji(I))
= F@O)J(X)1 - Jy(I))
=0

and (13.1) implies
3s(S(0,4)) = J(S((0,8]))F(s)

= {E)P((s,s+ )} F(s)
= EfP((s,5+1).

In other words P is an exit time for (M, F, jie).

More generally, consider a family of non-unital Evans-Hudson flows Jot 18 <
t, on a unital von Neumann algebra Ay C B(Ho), taking values in A, = Ao @
B(T(Lz([s,0),k])) with structure maps {6:} so that

dedod(X) = J,a(0(X))dAL(L),  Jo(X) = X
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for s < t. Extend the domain of definition of Jo,s from A, to A[, by putting
(X ®Z) = Jou(X)Z

for X € Ao and Z € B(I'(Ly([s, o0), k)), where 2 is the ampliation of Z to an element
of Ajo = Ao ® B('(Lx([0, 5), k) ® BT(Ls([s, ), k))). Then

J(X) = Jou(X), X €A
HX) = L(LdX)), Xe€A0<s<t

This shows, in particular, that
JdI) = J(Jou(D), 0<s<t.

Since J, . is a contractive *-homomorphism it follows that {Je(1)} is a family of
projections which is decreasing and strongly continuous in t. Thus there exists a
spectral measure P on [0,00] such that P((0,8)) = 1~ Jy(I),1 being the identity
operator in M. As before define j(X) = Ji(X)F(t). Then (¥, F,j,) yiclds a weak
Markov flow with exit time P.

Example 13.2 : The simplest example of a nonconservative flow with exit time is
constructed from a given conservative flow (M, F,j¢) on A with expectation semi-
group {7} as follows. Consider a classical Poisson process with intensity Ao whose
probability measure 4 in the path space yields the Hilbert space My = L2(u).

Let Py([0,1)) be the projection in Hy which is multiplication by the indicator
function of the event that the Poisson path undergoes a jump in the interval [0,1).
Let H = H ® M, and let P be the spectral measure in [0, o] determined by

P(0,4]) = 1® Py([0,1]) for all ¢ >0.
Define
WX) = 3i(X)® Pu((t,00]), 120, X € A,
Note that P({o0}) = 0. If Fy(t) is the projection on to the subspace of functions of
the Poisson path upto time ¢ and F(t) = F(t) ® Fi(t) it follows from the fact that
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the Poisson process has independent increments, that
F()ju(X)F(s) = Jo( Ty X ))e™00t=)
for all 0 < s < t < co. In other words we have a weak Markov flow (H, F,%;) with

expectation semigroup {e'“'T,). 1t is easily verified that P is an exit time for this
flow.

Example 13.3 : Let T; be a uniformly continuous nonconservative quantum dy-
namical semigroup of ultra-weakly continuous maps on B(Ho) for some complex
separable Hilbert space Ho. Then by Theorem 1.6 the generator £ of T; has the
form

L(X) = i[Ho, X] - % (LiLiX + XLiLy - 2Ly X L) — %(EX +XB) (132)
k

where Ho, Ly and B are bounded operators in Ho, Hp is selfadjoint, B is positive
and ¥4 L} Ly is strongly converent. We shall now construct a concrete Markov flow
whose expectation semigroup has generator £. To this end consider B(Ho @ Ho)
i . Xn X
and represent any element in it in the form of a matrix 1 2| where Xik €
Xn Xz
B(Ho) for each i,k. Define the operators

o[ " -%vB
VE o
102 ( ;E ‘;),uku ( L';;‘ g),k=2,a,...

Consider the standard Evans-Hudson flow J; induced by a unitary cocycle in the
Hilbert space

H = (Ho & Ho) ® (L} Ry) ® &%)
satisfying E,)Ji(X) = J,(Teey(X)) for all X € B(Ho @ Ho),0 < 5 < t < 0o where T

has generator £ given by

L(X)=iH,X)- %Z(L‘“'L“‘)f( +XLET LB o B g (k)
k
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- X 0
and [E,) is Fock vacuum conditional expectation. When X = ( ) an easy

00
Eu’o=(“§” g)

computation shows that

where L(X) is given by (13.2). Let F(t) = 19 ® |}, >< & where 1, is the
identity operator in (Ho & Ho) ® I'(L*[0,1] ® €?) and & is the vacuum vector in
T(L2[t,00) ® €2). Put

(X)) = J(X)F(1), X €A

Now on identifying X with X we get a weak Markov flow (H, F' j;) with expectation
semigroup {T:} with initial space Ho & Ho (Here the unit of the initial algbra is
I'®0). However the family of projections {P(t),t > 0}, defined by

)

is not increasing in general and hence does not constitute an exit time for the flow
(R, F\Jr).

Now we come to non-commutative generalizations of Feller’s minimal semigroup
and related ideas. Let Ho be a complex separable Hilbert space. Consider a strongly
continuous semigroup C(t) on Ho and a family {Lj : k > 1} of densely defined closed
operators on Ho. We denote the generator of the semigroup C(t) by Y and assume
that we have a core D of Y satisfying,

(i) DcCD(Ly) forall k; (13.3)
(i) (£,Yg) +(Yf,9)+ > (Lef,Lkg) =0 forall f,g in D. (13.4)
k>1

Then by [Fal], D(Y) C D(Ly) for all k and (13.4) is satisfied for all f,g in D(Y).
Hence without loss of generality we assume D = D(Y) and (13.3) and (13.4) are
satisfied.
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For X in B(Ho) define a bilinear form £(X) on D x D by
(1 £(X)g) = (£, XY g) + (¥, Xg) + 3 (Le S, X Lig) > (135)
k

for all f,gin D. We are interested in the class C of all quantum dynamical semigroups
T on B(Ho) satisfying

AT X))o = (1,£(X)) 139)

for all f,g in D. This may be compared with (12.1). Tt is known ({Ch], [Da2]) that
C has a distinguished element T called the minimal semigroup. This semigroup
is characterized by the fact that 7/in € C and TPin(X) < Ty(X) for all X € B(HMo)+
and Ty in C.

Remark 13.4 : If T/" is conservative then C has no other element and 7™" js the
only semigroup satisfying (13.6). Indeed if 7; € C then for 0<X<I,

TN(X) < T(X) < T=T(I - X) <T-T7™(I - X) = Tn(X),
and hence Ty(X) = T/™"(X) for all X.

Whenever T7" is nonconservative there are many solutions of (13.6) and at least
some of these semigroups can be got through Feller perturbations described in the
second chapter. Gluing would be the natural way to obtain their Markov dilations.
But normally one does not know the minimal semigroup explicitly and it is a delicate
matter to decide its nonconservativity. Various criteria have been developed for this
purpose. See [Ch],[Fal] or [Mo]. Here we state two of them, both quantum versions
of results in[Fel].

Define a form Q(X)in D x D for X in B(Ho) by

(£,Qx(X)g) = /nwexn(w\t)(Z(LkC(z)/,Xchmg)).u (13.7)
k

for all f,g in D. It follows from some elementary estimates that Q) extends to a
contractive completely positive map on B(Ho). Moreover for A > 0 and X € B(Ho),
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Qx(X) = X if and only if
(fLL(X)g) = Mf,Xg) ¥V f,9 €D.
For every scalar A > 0, define a subset 8y of B(Ho) by
Br={X €B(Ho):0< X < I and (f,L(X)g) =M/, Xg) V f,g € D}. (138)
Now conservativity of /™" can be determined using the following theorem.

Theorem 13.5 : The following are equivalent.
(i) T is conservative ;
(ii) Bx = {0} for some A > 0;
(iii) s-Jim Q3(1) = 0.

Proof : We refer to [BS2], [Ch], [Fal], and [MS]. L]
Now we begin with examples of generators leading to conservative minimal semi-

groups.

Example 13.6 : Suppose that the generator Y = iH for a symmetric operator H
and Ly = 0 for all k. Clearly (13.3) and (13.4) are satisfied. As Qx(X) = 0 for all
X in B(Ho),Qx(X) = X has no non-trivial solution. Hence T/ is conservative.

It should be noted that Y can be a generator of a contraction semigroup with
out H being self-adjoint. In fact it can easily be shown using a result from XI1.9.8,
page 1258 of [DS] that Y with above form is a generator of a strongly continuous
contraction semigroup if and only if H is a maximally symmetric operator with its
positive deficiency index, i.e. the dimension of ker(H* — i) is zero. Then C(t) is a
semigroup of isometries and T/ is given by Tf"(X) = C(t)*X C(t). The operator
H is self-adjoint if and only if C(t) is unitary for all ¢.

Example 13.7 : Assume that Y is a generator of a strongly continuous contraction

semigroup satisfying

KLY 1)+ (Y £, 01 < KIIAIIP (13.9)
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for some constant K and all f in D. Note that for all fin D = D(Y),

QD)

—-/:Qcxp(—)\l)((C(l)[,Y(«'(l)f) +(YC(t)f,C(t)f))dt
< K [ exn(-xlcitar

K. o

S IAE

IN

By iteration ||Q%(1)|| < (!})" for all n and by (iii) of Theorem 13.5 T;™" is conser-
vative.

Remark 13.8 : Observe that if Y = —%ZL;Lk + iIl, where H is a symmetric
k

operator and the series ZL;Lk converges strongly to a bounded operator then (13.9)
is satisfied on D(I).

In the remaining examples the family {Li : k > 1} consists of a single operator
L and Y is equal to —%L'L. Clearly Y is a generator of a contraction semigroup
and conditions (13.3) and (13.4) are automatically satisfied.

Example 13.9 : Let L be a normal operator, that is, D(L*L) = D(LL") and
L*L = LL*. Then a simple computation shows that Q\(I) = L*L(A + L*L)~". Let
L* = U|L"| be the polar decomposition of L*. By normality of L* the operators U
and |L*| commute (see [Ka]) on D(L"). Hence, on D(L"),

Q) = LL"O+L7L)™ = LUIL*|(A+ |L5)"" = LUGA+ [L°[3) 1| L]
L+ L) UILT = L(A + L°L)~' L.

Let R(t) denote the semigroup e‘%‘C(t). Now for f,g in D(L"L).

(.Q40a) = [TUROLQAD LR

/x(l,li(t)j, LA+ L"L)"'L"LR(t)g)dt
0

/Om(nu)f, L*L(A 4 L"L)"' L"LR(t)g)dt.
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Hence Q3(1) = (L*L)*(\ + L*L)~2. By iteration Q3(I) = (L*L)*(A + L*L)™" and
therefore s-lim Q}(7) = 0 and consequently T{™" is conservative. Observe that in

general Q3(I) does not converge to zero in norm.

Example 13.10 : Let Ho be the Hilbert space I; on {0,1,2,...} with standard
orthonormal basis {e, €1,...}. Let V be the isometry on Hq defined by Ve, = €nt1
for n > 0. Define L as the Cayley transform of V, that is,
D(L) = Range(I-V).

L = i(I+V)I-V)™ on D(L).
Then the operator L* is given by D(L*) = D(L)+ Ceo, L*f = Lf for f € D(L) and
L*eg = —ieg. Consider the form £(X) as before with Y = —1/2L*L. It can easily
be seen that the form equation L(X)k= AX is satisfied for A = 2 by the operator X

1

defined by (em, Xex) = ("F*) (%)"I+ + ,m,k > 0. Also the operator X is a positive
bounded operator. Hence in this case 7/"" is not conservative.

Example 13.11 : Let Ho = L?([0,1]). Define the operator L on Ho by
D(L) = {f € Ho: f is absolutely continuous, f' € Ho and f(0) = £(1) = 0}
Lf=if" for f€ D(L).
Then L is a symmetric operator with deficiency indices (1,1). The operators L* and
Y = —}L*L are given by
D(L*) = {f€Mo:f isabsolutely continuous, f'€ Ho},
L°f = if' for feD(L%);
D(Y) = {f€Mo:f isabsolutely continuous, f’€ Ho,f(0)= f(1) =0,
f" is absolutely continuous, f” € Ho},
Yf = %f” for feD(Y).
Now for A > 0 consider the multiplication operators A and B defined by
Af) = eVPf(z),
Buj(z) = V().
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Clearly A, By 2 0 and [| 4] = [|Bal| = 1. Observe that Ay, B, leave D(L), D(L*)
and D(Y) invariant. For f € D(Y)

(A + YAy + L A\L)f(z)
I 0]
2

+ 41 ) - 2RV f(2) + ;e f ()
[P (@) - VR ()

= AeVPef(z)

= AMyf(z).

Hence it follows that £(A,) = A in the form sense. In a similar way £(B,) = AB,.
Thus A) and By are two linearly independent elements in fy.

Example 13.9 shows in particular that ¥ = ~1L*L with L self-adjoint leads to a
conservative T{"". In contrast to this we now show that all non-selfadjoint maximal
symmetric operators give rise to vative minimal semi It may aiso

be noted that Example 13.10 is a special case of this result.

Theorem 13.12 : Let L be a non-selfadjoint maximal symmetric operator on a
Hilbert space Ho. Then for Y = —1L"L, the set 3, has atleast n? linearly indepen-
dent elements, where n is the non-zero deficiency index of L.

Proof: As L is maximal symmetric deficiency indices of L are of the form (m,0) with
m > 0 or of the form (0,n) with a > 0. Clearly Y remains unchanged by changing
L to —L and hence with out loss of generality we can take deficiency indices of L as
(0,n) with n > 0.

Now by von Neumann’s structure theorem for maximal symmetric operators
(IDS]), Ho, L can be taken to be L?(IR4) ® k and M @ I respectively, where k is a
n dimensional Hilbert space and M is the canonical elementary symmetric operator
on L*(IRy) defined by

J'€ L}(IRy), and f(0) =0
Mf = if for feD(M).

2, . R "
D(M) = S € L*IRy): fis absolutely continuous, }
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The operator M* is given by

DY) = {f € 1(Ry): fis absohuely continuous, ' € 4R ),
M = if fon fe D)

Now for & > 0 consder the operator 4, on F(Ry), defned by (4yf)z) =

Vila ). Clarly 4y is  positve bounded oprator with th 4y = 1. By di
rect computation we can verify that,

(A = g

for f,g € D(M*M). This ensures that 4, @ B is an element of By for any positive
contraction B in B(k)



Notes and Comments

Meyer ([Me], App. 2) gives a justification for imposing complete positivity on semi-
groups from a probabilistic point of view. Lindblad’s structure theorem for ufiformly
continuous semigroups (Theorem 1.6) is valid for more general von Neumann alge-
bras (See [Li], [EL]). Generators of quantum dynamical semigroups under weaker
notions of continuity have been studied by Davies[Dad], Evans[Ev1] et al. Sections
1-4 are based on [BP2]. Results in sections 5 and 6 have not been published else-
where. The methods employed in Section 5 have been borrowed to some extent

from [Sul]. A thorough study of minimal dilations of non-commutative dynamical

Pps, leading to probabilistic inter ions, is yet to be done. For example,
in the case of classical Markov chains the dimension of the range of F(t) is clearly
the number of all possible paths of length ¢ having non-zero probability. We do not
have any such interpretation here. May be, a ‘classification of states’ is possible as
in the theory of classical Markov chains. Remark 5.8 pertaining to Feynman-Kac
cocycles is due to Parthasarathy. In the context of Theorem 6.4 one may recall that
Parthasarathy and Sinha showed that Evans-Hudson flows on abelian algebras are
abelian [P1]. However this result does not answer the question as to when can we
extend the central flow k, to a weak Markov flow on the full algebra.

Chapters Il and III are adapted from [BP2]. In general, how to ensure contractiv-
ity of Feller perturbed semigroups is not clear. A structure theorem determining all
possible cocycles of a given positive semigroup would go a long way in understanding
these perturbations. In Chapter I1I a quantum version of gluing of processes through
stop times has been described. There are many other commonly used methods of
obtaining new processes from the old in classical probability. For example, given
two processes § and 7 with 7 positive and increasing we can have a new process
as € evaluated at time 7, i. e., for all £ > 0, (1) = £y We do not know how to
quantize these constructions.

The important constructions of Section 12 and examples of exit times in the final
section are taken from [BP2] with minor changes. Examples of generators of non-

conservative semigroups are adapted from [BS2]. Significant contributions to Feller
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boundary heorywere made by Reuter, edermann, Kafoet o, Bxact eeences may

bedound i C1,J) A geerl boundary thery should low more e one pit i
the boundary. The st of bounday ponts hs o b toploged n  suitable vay,
a8 i the casscal thery. Morever exat mechanisms by whic the provess vist

the boundary and comes back haveto be made learer
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