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CHAPTER 0O
INTRODUCTION

For a complex or a real matrix 4, a matrix G is called a generalized

inverse ( or g-inverse) of A if
(1) AGA= A ’

Tre theory of generalized inverses over the field of complex numbers is well-
studied in the literature (see (2], (44), [33), and (621 for an extensive
oiclicgraphy). Even for matrices over a general field the above equation
carries over. In fact, even for matrices over a general ring, equation (1) makes
sense. Hence one can talk of g-inverses of matrices over general rings. Some

~ork on g-inverses of matrices over fields also can be found in the literature.

Our purpose in this thesis is to study g-inverses of matrices over rings.

-er a commutative ring (even over an intearal domain) because of the
ronexistence of inverses for nonzero elements, the usual results on g-inverses
=f matrices over real or complex fields may not be extendable as discussed

below

Over the real or complex field, more generally over any field, every
matrix has a g-inverse. But even on the ring of integers, not every matrix has a
inverse

For example, the matrix




has no generalized inverse over Z.

As early as 1939, von Neumann showed that every matrix over a ring A

has a g-inverse if and only if A is regular.

Another result which is true over any field is that every matrix over a
field has a rank factorization. However, this is not true for a general integral
domain. Similar observations lead us to a plethora of problems on g-inverses of

matrices over general rings, in particular, over integral domains.

Batigne in (4] gave necessary and sufficient conditions for integer
matrices to have integer- g-inverses. Bose-Mitra [9) presented the first study
of generalized inverses of polynomial matrices. These characterizations depend

on the Smith normal form of matrices.

However a matrix over a general integral domain need not have Smith
normal form. For example,
let D be the subring of the ring RLX, ¥] of polynomials in X and ¥ with

coefficients from the field of reals, generated by 1, X2, x¥, and ¥? The matrix

X2 Xy

A=
xy ¥?

has no rank factorization over D. Thus A4 does not have Smith normal form.

Thus, if an integral domain is such that matrices over this integral
domain do not admit Smith normal form, the results of (4] and [9] are not
acplicable and new techniques are required for study of g-inverses of matrices

over such rings



Bose and Mitra in [9] and Sontag in [59) have observed that an important
area of application of generalized inverses of matrices over general integral
somains in Sustem Science is investigation of under-determined and over-"
oetermined linear algebraic and differential systems. For example:

a tupe of underdetermined systems is

¥ =Cx
were yismx 1, Cismxn, and x is n x 4 and the elements of matrices are
scalar valued functions of t defined over an interval I. The above equation may

te considered as the output equation of a control problem

A tupe of overdetermined systems is
dy -
g = Ax +Bu

=here x is nx 1, Aisnxn Bisnxpand u is p x 1 and the elements of

rices are scalar valued functions of a real variable t, defined over an
interval 1. Tha above equation may be considered as the “state equation” of
tre control problem, and one may wish to find an input u®) which will force x(t)

to be the prescribed function of t on I.

Generalized inverses of matrices over general rings, or integral domains
could be used in solving equations of the above tupes. Matrices with

fficients from rings like rational functions with no real poles, polunomials,

analgtic functions, integers, continuous complex valued functions on compact

Hausdorff spaces also appear in multidimensional system theory

Before we explain some more of the problems considered in this thesis

1=t us give some more definitions



Definitions :

Let A be a ring with identity and with involution a = &. Let 4be an

= ¥ n matrix over A and consider the Mcore - Penrose equations :

(1) AGA = A
(2 GAG = G
@ o* = 4G

@) (GAT = GA

wnere 4% derotes (AT
I¢ 6 is an n x m matrix satisfying (1), then G is called a generalized

irverse (g-inverse, i -inverse ) of 4. le denote an arbitrary g-inverse of A by

A matrix A is called regular if it has a g-inverse

1§ G satisfies (1) and (2), it is called a reflexive g-inverse of A4

6 is called a Moore-Penrose inverse of A if it satisfies (-(4). UWe
sencte Moore-Penross inverse of A by A%

Consider the following equations applicable to square matrices
) 4G = GA
@y 4 =ariG

where k is a positive integer

rrowing the definition from real matrices (see [48] ch.4), for a square matrix

over a ring A, a matrix G over A is called a group inverse of A if (1), (2)

2~3 (5) are satisfied. We dencte a group inverse of 4 by A%,

A matrix G over A is called a Drazin inverse of A if (2), (5 and k) (for



some positive integer k) are satisfied.

A matrix G over A satisfying the conditions (1) and (5) is called a
commuting g-inverse of A.

A matrix G over A satisfuing conditions (1) and (3 (1) and (4) is called
4, 3 inverse ({1, 4) inverse) of A. A reflexive €1, 3) inverse ((4, 4) inverse )

of A is called (1,2,3) inverse ((1,2,4) inverse ) of A.

Now we shall introduce some notation and give some definitions. Let A be
an m x n matrix, and let @ = (y,...ip), 8 = {y.....ir) be subsets of ,...m} and

{4,.....n, respectively.

We denote by AE the submatrix of A4, determined by rows indexed by a,

columns indexed by 8.

For the next few definitions we consider matrices over commutative
rings

The determinant of a sauare matrix A is denoted by 14| and g8 14|

i)

denotes the cofactor of a;; in the expansion of |4].

Cauchy-Binet Formula : Let 4, B be matrices of sizes m x n and n x k
respectively, and r be an integer such that r £ min (m, n, k). If a is an r-
element subset of (1,2,..m) and @ is an r-element subset of (1,2,...k), then

4Bl = > 14dusg1
k]

where 7 runs over all r-element subsets of (1,2,...n

The determinantal rank (the size of largest nonvanishing minor) is

cenoted by 0(4)



For an m x n matrix A of rank r, we say that 4 has rank factorization if
4 = BC where B is m x r and C is r x n. Of course, o(B) and 0(C) both must
equal r

CplA) is the r-th compound matrix of A with rows indexed by r-element
subsets of (4,...m) and columns indexed by r-element subsets of (4,..n). At
several places, @, 8, 7 are assumed to be r-element subsets of (1,2,... n}
without explicit mention

For an m x n matrix A4, C(A) stands for the module generated by columns

¢ 4 and R(4) stands for the module generated by rows of A.

stands for a g-inverse of A with C(47) = C(4) (equivalently

) C CAD.

A7 stands for a g-inverse of A with %(45) =R(4) (equivalently

C R

Ay stands for a g-inverse of A with Ay = CA and Ridzy) = R(A

valently ClAzy) C €L and Rldpy) C R(A)

In many cases, for the notation related to modules, we follow Jacobson

1 and [24)

Now we shall aive our motivation to the various problems considered in

Cuer an arbitrary field, it is known that a matrix 4 of rank r has Moore-

imverse if and only if aA%4 =0044%) = 004 (see [331). But this can not




be extended for matrices over a general ring. For example, over Z, for

oA*a = ;}(AA*) = p(A), but A4 does not have Moore-Penrose inverse.

Bhaskara Rao in 1983 [53) gave necessary and sufficient conditons for
: =atrix over an integral domain to have a g-inverse, using the r x r minors of

=atrix, where r is the determinantal rank of the matrix.

The above two results lead us to consider the following problem

Onaracterization of matrices which have
© Moore-Penrose inverse
o Group inverse
@9 Drazin inverse
@) (1.3) inverse ( (1,4) inverse)
over an integral domain.
Zontinuing in the same vein as in (53], we wish to find necessary and

t conditions for a matrix to have Moore-Penrose inverse, group

Crazin inverse, (4, 3} inverse and (1,4) inverse.




Problem 2.

In (53], Rao developed a procedure for- constructing a g-inverse using a
linear combination of £ x r minors which equals one, where r is the
gdsterminental rank of the matrix. A natural question that arises is the

4ollowing

= it possible to construct every g-inverse by this procedure ?

Problem 3.

Kentaro Nomakuchi [28) considered a method of bordering to characterize
the class of all g-inverses of a given matrix over the complex field. Adi Ben-
isr2el (1] obtained a Cramer rule using the bordering technique to find a least-
rorm solution of the consistent linear system

Ax = b

~.er the complex field showing that

A(j=b) U

are-e x; is the j-th component of x, A(j+b) denctes the matrix obtained by
~eclacing j-th column of A by b, and U and V are matrices whose columns form
zases for the kernels of A* and 4 respectively. Verghese [17] proved a similar

results for finding least-square solution for inconsistent linear systems by



making a slight change in Ben-Israel’s proof. This leads us to the corresponding

problem for the matrices over integral domains.

Characterization of integral domains over which every regular matrix has a

bordering of the required tupe.

Problem 4.

Rank factorization and Smith normal form for regular matrices play an
important role in the construction and study of g-inverses. If a regular matrix
# over an integral domain has a rank factorization, 4 = BC, it could be seen
easily that B has a left inverse F and C has a right inverse E Also, a g-
inwerse of A could be obtained by the product EF. Further, many problems

become amenable when a regular matrix has a rank factorization.

Also, problem 2, mentioned earlier can be answered positively when the

2:ven regular matrix has Smith normal form.

The above two observations lead us to the following problem.
Characterization of integral domains over which every regular matrix has a
rank factorization.

This also leads us to a characterization of integral domains over which

~ery regular matrix has Smith normal form.

e show that problems 3 & 4 are related. Our approach leads us to a

—ssion of some problems related to Serre’s conjecture also.



Now we shall give a brief summary of various results obtained in various

oracters of this thesis.

In Chapter i we record Bhaskara Rao’s result proved in [S3). In this, Rao

>=-eloped a procedure for constructing a g-inverse using a linear combination *

r x r minors which equals one, where r is the determinental rank of the

wrix. We investigate problem 2 in Section 1.3 of Ch. 1. In fact, we show that
e.=ry reflexive g-inverse arises in this fashion. Also, over principal ideal
Jomains every g-inverse arises in this fashion. Also, we derive many other

reresting known results in literature quickly, through Rao's characterization.

In Chapter 2, we give necessary and sufficient conditions for a matrix to
+ha.e Moore-Penrose inverse over an arbitrary integral domain. We give a
formula to find the Moore-Penrose inverse whenever it exists. Also, we
= aracterize all matrices which have (1,2,3) and (1,2,4) inverses. Similar to the
Zrzmer rule ( which is used to find the solution of a linear system Ax = y in
case A is invertible), we obtain a generalized Cramer rule to find Moore-
Ferrcse solution, (4,2,3) solution and (1,2,4) solution, even though the given
matrix is not invertibe but satisfies certain sufficient conditions. For the
former, we use a formula developed in section 2.2. In Chapter 2 we define
“Generalized Moore-Penrose Inverse” and find necessary and sufficient
conditions for matrices to have the generalized Moore-Penrose inverse. This
generalized Moore-Penrose inverse reduces to weighted Moore-Penrose inverse
= a special case. Also, in this chapter we give necessary and sufficient

conditions for the existence of Khatri-inverse, pointing out an error in a



agiven by Khatri. We treat this problem in the general case of

domains.

Chapter 3 contains necessary and sufficient conditions for the existence
= 2 group inverse, a new formula for a group inverse when it exists, and

ry and sufficient conditions for the existence of a Drazin inverse . We

a square matrix A of rank r over an integral domain D has a group

1¥ and only if the sum of all r x r principal minors of 4 is an
~.e-uple element of D. We also show that the group inverse of A, when it

ecsts .= = polunomial in A with coefficients from D.

i~ Chapter 4. we cbserve that the bordering technique can not be used

= 2n arbitrary integral domain. Here we characterize all integral domains
- = -r:ch every regular matrix can be bordered. We also characterize all
~wmgrz]l domains over which every regular matrix admits a rank factorization

two characterizations coincide. Also we extend Quillen’s theorem to

e zte>-al domain PIX,X, J, the polynomial ring generated by countably many

= ac. over any principal ideal domain P.

4 ~3tural question that arises from von Neumann’s result (63] is “over
wrun tces of rings does every matrix admit Moore-Penrose inverse ?”. In
sac=.o I ¢ chapter S we shall characterize all rings over which every matrix

ore-Penrose inverse. In Section 3 we extend many results which we

er over an integral domain to an arbitrary commutative ring with




21 idempotents and in section 4 we discuss the property of an associative

2 satisfying the Rao condition in relation to the characterization of 1,3
373 (1,4} inverses. Also, we characterize all regular matrices over a Banach

2.320r3
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CHAPTER 1
GENERALIZED INVERSES
OVER
INTEGRAL DOMAINS

14,  Introduction

There are a number of results available in the literature on
characterization of regular matrices over special integral domains like the
ring of integers ( [4), (S ), polunomial rings ( (3], [S9] ), and principal ideal
domains ¢ (S0), (511 ) Bhaskara Rao in (S3) gave a characterization of regular

matric

over an integral domain using minors of matrices. This
characterization is strongerthan the previously known characterizations and
mang  other interesting results can be derived from this Further this

characterization is independent of the Smith normal form of matrices.

In fact in (S3] Bhaskara Rao showed that a matrix A4 of rank r over an
integral domain has a g-inverse if and only if a linear combination of all the
- « r minors of A equals one In this chapter we shall study various problems

=hat arise cut of this result

First of all in Section 12 we recapitulate the results given by Bhaskara
235 (S and derive some results, known in literature, quickly, through Rao's

znaracterization In (S3) a method of computing a g-inverse was described

arting from a linear combination of minors which equals one. In section 1.3 we



investigate as to which of the g-inverses can be constructed using this mathod.
For example, we show that everu reflexive g-inverse arises in this fashion.

Also, over principal ideal domains everu g-inverse arises in this fashion

12, Characterization

Bhaskara Rao in [S3] proved that a matrix 4 of rank ‘r’ over D has a g-
inverse if and only if there exists a linear combkination of the r x r minors of
4 vhich equals one Since many of our results throughout this thesis depend on
this  we shall see this result in Theorem 122 As a preliminary to Theorem

122 1et us first consider a special case, namely, o(4) = {

Throughout this section we shall ider i over an i gr

domain D unless otherwise indicated.

Theorem 1241. Let 4 = (8;; be an m x n matrix of rank one over D. Then

regular if and only if a linear combination of all elements is equal to one.

1, then the matrix G whose i, " element is g;; is a g-inverse of

Proof. Suppose G is an n x m matrix such that AGA = 4. Since o(4)

there are indices k and 1 such that 2,;= 0 and

Sy = Z8u5 955 Ape @z
i

ce oi4) = 1, every 2 x 2 minor of 4 vanishes. So for any k, 1, j, and i

Bpj il = Bl Bij @z



Hence

LR SIS

S ey 95 =t w22

Retracing the steps, we get the proof of the ‘if’ part

Theorem 1.2.2. Let 4 be an m x n matrix with o(4) = r. Then the following

are equivalent.
w) A is regular
(i) CplA) is regular

iy A linear combination of all r x r minors of 4 is equal to one.

ke need a result on compound matrices for the proof of this theorem.

This result is known in [32, p 187) and (53], but we shall supply a different and

simpler proof here

Lemma 1.2.3. Let A be an m x n matrix with o4 = r. Then A(CAA) = 1

Proof. Consider a rank factorization of 4 = BC over the field of

auctients of D, where B is an m x r matrix with o® = r and € is an r x n

matriz with 20) = r So from the multiplicative property of compound matrices

ce st

Crld) = CpiB) CAO)

that CnB) is an (m x 1 matrix and CpC) is an 1 x (ﬁ) matrix. Therefore



PCrLA) is one over the field of quotients of D. Since determinantal ranks over

an integral domain and its quotient field coincide, we get O(CA(AN = 1 o

Proof of Theorem 1.22. (i) = (i) is clear.
a1 = (i) follows from Theorem 1 Z 1, because o(Cp(4) = 1 by lemma 123

(i) = (0 Suppose that there exists a linear combination

¢
S ek g =t w24
« 8
éor some CE ¢rom D, where the summation is over all subsets o of (1, 2, ..m)
srd & of (4,2, ... n} consisting of r indices. For any 4 { k Smand 1 S 1<, we
245 =2 129
2k1 Ca Mgl = & E
a 8

For any fixed & = Gy ig ip) and 8 = Gy Jz, ...Jp), consider the matrix

3i,1

4
23inl
2pjy - Bkie 21

b €aorl €8 trivially IBl = 0. If k € a and 1 € 8 then also |B] = O,

cecause o4 = r. Then in any case I8l = 0. Hence

al4g1

X
3y 141 = E E 3 25 b wzn

i€a €8

-2 eauation (1 25! becomes



128

By taking
122

the matrix 6 whose (, j) th element is 9;; is a g-inverse of 4.

ble shall use the above method to compute a a-inverse of a matrix

Example. Let D = Z[X, ¥] be the polunomial ring over the integers, and

-
x
b
-
b
(Y

2%z .2x?
This matrix is of rank 2. Then we get 2-th compound matrix of 4
(1,2) (1,2) €1,2)
Henz)! ez 4z5)!

c
= | B wi i wiEd

23 (23 23
MLzl sl Mzl



= o 0 0

2-zx%  2x? -2x%y

Observe that 423 - 14481 = 1 S0 4 is regular. Usina the formula (12.9)
we obtain
-y 10
G = 1 o 0
-xY -4 0

1= 2 g-iverse of 4. By direct computaticn we can verify easily that 4G4 = A4

Smith normal form theorem. Let D be a principal ideal domain. Every

m x n matrix A of rank r over D can be written as

s o
1210

where U and V¥ are invertible matrices, § = diag(sy, Sz,....5p) §;'s form a
mplete set of non-associates, s; | s;,, for 1< i £ r-1 and the product

s, s2 =, 1S the greatest common divisor of all r x r minors of A. Further §
unique
How we shall derive a result aiven by Bhaskara Rao [S50] and Bose &

s4itra (3] over a principal ideal domain from Theorem 1.2.2



Corollary 1.2.4. (Bhaskara Rao, [S0], Theoerem 1). Let D be a principal

ideal domzin An m x n matrix 4 of rank r is regular if and only if

A=U v [ER-EES}

vhere U and V¥ are invertible and I is the r x r identitu matrix

Proof. First of all, since D is a principal ideal domain, the matrix 4
8 o
& Smith normal form, say, 4 = U 0 0 V. From Theorem 122 it is clear

that 4 is regular if and only if the areatest Common divisor of 2ll r ¥ r minors

of A4 1= one So we get the product Py to be one, where

is the matrix § in the Smith normal form, which in turn, by
modifuing U and V if necessary , implies that s, = sp= .= 5 = 1 So we get A

in the required form a

Sentas in [59] proved that over D = RIXy, Xz ..%, % the ring of rational
functions a(Xy, Xz . .X)) by, Xz X)) " with real coefficients and with

by,

X)) # 0 for all (X, X3 . X0 in RK, a matrix is resular if and only
1f 1t has constant rank. lle shall derive this result from Theorem 122 in the

following corollary

Corollary 125 (Sontag [S59] Theorem 3). A matrix 4 over

2% is resular if and only if 4 has constant rank for all

% in RB¥



Proof. Let the determinantal rank of 4 be r From Theorem 122 we get
that A is reaular iF and only if there exists ch({y, Xz ..¥) in
Rl ¥z 1% such that E Bty xa WGy Ko o) = 4,

which implies that (145D, g have ¥ bomnan zeroes. So for avary

Xy, X2 i) there exists o and 8 such that !-4}3 KXy Xz .o Xy s 0. Thus

DAL, K2 . X 2r. Since pUA) IS £, AUy Kz .. X)) < r. Hence

N = for all (X, Xa,

ely, if A hss constant rank over all Xy Xz, . . in R¥, we get

that (1431) have no common zeroes and sinca I4FI%(Xy, Xz ...X)) is strictly non

negative we get that u = E 1451* has no zero over all (X, Xz, ...X)) in R

*

o
and 1= invertible in RIXy, Xz So,

E:gw, Kz M) MAFIKG X2 K =
o B

for UKy Ka o HTH LARIK X2,

and by Thecrem 122, 4 is regular o

13 a-inverses and linear combinations of minors which are equal to one

A natural guestion that arises in view of Theorem 1 22 is the follo

that t m x n matrix A4 over D

uee regular and that G is a g-inverse

of 4 Then do there e

(cﬁ’a.a in D =such that (12 4) and (1 2.9) hold® be show

that if G is a refl ve g-inverse of 4, then the answer is in

for all «.8, satisfies (1.2.4)

e affirmative and in fact the chcice




and (129 ke also prove that over an integral domain over which every
regular matrix admits a rank factorization (for example, any principal ideal
domain has this property), for every a-inverse G of A, there exist (55)1'5

satisfuing (1 2.4) and (1.2.9)

He shall first show that everd right inverse of a matrix, when it exists,

arises in this fashion

Lemma 1.34. Let C be an r x n matrix of rank r and let E be a right

inverse of ¢ so that CE = I. Then for all dik

vihere the summation is over all r-element subsets of (1,2,..,n)

Proof. lle have

> et |52 |c,3|

8 jeg

3 3
=zze _|5|__|c,
== £

n
I A s A waw
TE =

where 7 runs over all (r -1) - element subsets of (1,2,..,m

zZ1



Since, for j € 7,
1 7
z GOV, M-l e = O

the restriction, j € 7, in the summation in (1.3.1) can be removed

Mow observe that Con_gy(©) CingyE) = I and hence

,..r) -k Y 0, if 1# k.
>k VG -2 = AL Gp 1= k.

This observation, together with (1.3 1), gives

3 1o
| ICgl
8oy R

and the proof is complete.

A result similar to Lemma 1.3.4 can clearly be proved if B is an m x r
matrix of rank r, and F is a left-inverse of B. e now prove one of the

main results of this section

Theorem 132. Let 4 be an m x n matrix of rank r and let G be a

reflexive g-inverse of A. Then for all ik,

B a8
o> Z 1ol g2 1Al o™
a: 1€a g jep

where a8 run over all r-element subsets of (1, .m), {1,..,n) respectively

Proof. Let 4 = BC be a rank factorization of 4 over the quotient field

N
N



of D Using the Cauchy-Binet formula we can show for i € a, j € 8,

r

3 4% - 3 5% 8
Eovia EQ-ED-(IEIE‘:’IC“I

Let G be a reflexive g-inverse of 4 and lat E= GB, F = CG Using
AGA = 4, GAG = G and the fact that B, C are of full rank, it follows that G =EF

is a rark factorization of G, CE =I and FB =1

He have

i€ 8JER

.
2 3 & a C
= E E 1ERIF ol { 2 18%) 1c41)
oigx Aies ) i ey H

.
¢ 3 ; ;
= > S a2 |CG|L;“ Fal g2 19%)

k=1 BJ€B

-

= (2 2 Fei

o2 Lemma 1 31 and the subsequent remark Since G = EF the proof is complete.O0

Let 4 be an m x n matrix of rank r» » 1 and let G be a g-inverse of A.

for all a,8 Since 4 is of rank r, Crl4) is of rank 1 and

1giagt = 1adnady 422

23



for any r-element subsets a,Y of (1,.,m) and B8 of (4,.,n). Also since AGA = A,

CrlA) CAG) CriA) = CrA) 133
It follows easily from (1.3.2) and (1.33) that (1.2.4) is satisfied.

Furthermore, if G is reflexive, then as shown in Theorem 132, ¥ also

holds. We now give an example to show that if G is not reflexive, then () may

fail.
1 o 1 o 2]
Let 4= 0 1 o , G = o 1 0
o 0o 1

then G is a (non-reflexive) g-inverse of A, and

(1,2) (1,3) (2,3)
16¢,72)! =16¢,0)! =18¢z,0)! =

the remaining | 65 | being zero. Thus it can be verified that if H = ((h“-)) is

defined as
8
hyi = ioa1 g2 Wl
aii€a  BER
1 0 o
then H=|0 t 0O * 6.
0o 0 2

In the following theorem we find a correspondence between the collection

=% reflexive g-inverses and a certain class of sets (g | 4 from D
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Theorem 133. 1f g | 4 are such that 3 chlAdl = & and o (cf) ) =1
i

then G = (g;), where
8 3
9;; =Z Ca 5=—IAgl 1.3.4)
T2 5a;;"8
is a reflexive g-inverse of A. Conversely, every reflexive g-inverse of A can

be obtained by the above process.

Proof : First, we shall consider coefficients (GE)(‘!’“) such that
5 cBIAgI = 1 and o () =t
b
and prove that G obtained by (1.3.4) is of rank r. This we shall accomplish by
showing that G = EF where E is an n x r matrix and F is an » x m matrix, both,

matrices over F, the quotient field of D. This would imply that o(G)< r

Let A4 = BpxrCrxn be a rank factorization over F then
Crld) = B 1)y iy
is a rank factorization of Cn(4) over F. Let
(°5’<p,«;u= (é‘y)(ﬁ')xi(ﬁﬁyixtf)
8

oe a a rank factorization of (cg) over F. By Cauchy-Binet formula we get

s
3 & 3 %) 8.

52 451 o 18%1 52 Icgl- 139
3a; 8 Z; b, 8o, B

Define
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E=(ey) by ey B 2 gl g gm, 15 kg~ €36
diica ki
and
F=f) by fi;=2 (Fa) 58— 8% 1< ¢n, 1< k<~ 437
aiea ik :
Now,
9ji Z Ca as "%'
@)
= R ( E s 18%1 52— icgl) (hrom (L3.5»
B3 - 15
aniShica i 9
r
F 3 2
= E { ( E |F,,|a—5; 18 |}}
k=1 B€ER

r
= ; 2k Fiei

Thus we have shown that G = EF and &g r 138

Angway, 0(G)2 r because G is g-inverse of A. From (1.3.8) we get oG = r. So G
is a reflexive g-inverse of A.
In theorem 1.3.2 it has been proved that for a matrix 4 of rank r, if

=(9;;) is a reflexive g-inverse of 4, then,

aau":' for all 4, j , 139

R

8
= Gal
Zjﬂ @

= 1651431 = 1 and since oG = r,

being a reflexive g-inverse of A4 p(lGEI)

Let 4 be an mx n matrix over D. Let us say that A4 has generalized

serse constry

uction property (gicp. in short) if it is regular and if for any
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g-inverse G of A there exists cg € D such that (1.2.4) and (1.2.9) are satisfied.
Here we prove that if A has gicp. and if M, N are invertible matrices (units)
over D, then MA and AN have gicp. As a consequence it will be shown that if

D is a principal ideal domain, then every regular matrix over D has gicp

. 1 [s]
Lemma 134. If A is the m x n matrix given by A= o o | where I

is the r x r identity matrix, then A has g.icp

Proof. It is not difficult to see that if G is a g-inverse of 4, then

where Bis rx(m-r,Cisth-m xrandDis - xm-r

Let «,8 be r-element subsets of (i,..,m), (4,..,n} respectively and let i €

%, i €8 . MNotethat 8 4fI isnonzero, in fact k4, if and only if
1

a\i) = BN} € (4,..r). Let

Bt af a=p=n

i< i r r+1g s<m a=2,. i-4i+l..ns), 8 =(12,..0),

let =g aa |A9|
Bigs<nm r+dgisn, a=U2..0 B8=2. -4+l .00,
et Bay aa IABI

BWr+tlidnmr+i<sgm a=(2..,ri) B=I(23..,s)
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let o =g = 4l

Finally for all the remaining pairs (a,®), let cg =
these cg satisfy (1.2.4) and (1.2.9)

We now show that
Clearly, since |4F| is 1 only if & = 8 =

€4,..,r) and zero otherwise, and cE,i_ 324, (D is satisfied.
To show that (1.2.9) holds, consider the following cases.
Caset: 1< ig r, 1< g n

Since ai IAEK # 0 if and only if « = @= (1,.,/) and I = J, it follows
that

Case (D: r+1<igm L£<jgsr
ke have

8 N - T ‘o
E ca Ba - 1451 = cp Eo 4G where &' = (1,2,..,r
a1€a  BjEB J

8 = (1,2,.,0-1, j+4,.r0).
=9;
Case (iid) : 1 £ignr r+1<j<n
This is similar to case (ii) .
Case (iv) :r + 1 £ i m, r+1<jgn

ke have
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@ -
S b2 = o aa 4% = ey
wi€a @JER ”

where o' = (2,..,r1)

= (2,...r0)

Therefore we conclude that 4 has gicp.

Lemma 135.Let 4 be an m x n matrix having gicp and let M be an
m x m invertible matrix. Then B = MA has gicp
Proof. Suppose th= rank of A is - Let N = 1 and 1=t H be a o-

inverse of B over D. Then G = HN! is clearly a s-inverse of 4. Since A has

31icp. there exist cg satisfying (1.2.4), (1.2.9). Since H = GN, we have, for any

m
hj = I(Z(\ Fik Mkj
a a
E Py E E c“ 95;:1 (45I (1.3.10)

We denote by N*, the matrix obtained from N by adding one auxiliary

=olumn, indexed by ¥, just after the j-th column of N . The entries of this

slumn are not relevant for the proof. We similarly denote by E*, the matrix

~ctained by adding a row, indexed by ¥, immediately after the J-th row of B.

Joserve that



E : o K] %0,
Bak‘ Mﬂl = ey INg ™1 ET*‘ 1Bg”1 13.40

where @ runs over all r-element subsets of (1,2,..,m%). Substituting (1.3.11) in

(13.10) we have
s 8 3 Ea
= 20 30 ching Zém'”e ;5
ka8 9
= > & > 55 > g s
5 M 3

@B

0 3 5% N @
= > > bg; B8 !N Gunen!

3

B ; {; o8 'mze*r w%:} = 81

= > > { > o M } 2 B3 212
T T 3 i
= i 2 gl =
since, if J € 7, then abﬁ Bgl=0 .
Let
2 8 e
o = o5 IN%I
>3
since
> o g1 =
B
z~d since A = NB , we have
(1.3.43)

A S mgusdi= 1,
k]

EZd
It is clear from (1.3.12),

.rere 7 runs over r-element subsets of (1,2,.m)
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(1.3.13) that ds satisfy (1.2.4), (1.29 and hence wa have shown that B has

gicp o

We can similarly show that if A has gicp. and N is invertible then AN

has g.i.cp. Lemma 1.35 and this observation immediately leads to the following.

I [a]
Theorem 136. Let A = o 0 be of order m x n and let M\N be
invertible matrices of order m x m , n"x n respectively over D. Then MAN

has gicp

Theorem 1.3.7. Let D be a principal ideal domain. Then every regular

matrix over D has gicp.

Proof. From Corollary 1.24, every regular matrix 4 admits a

decomposition of the form

I o
A=M N (1314
0 [s)
where M,N are invertible. Now the result follows by Theorem 1.3.6. o

Remark. We shall see in Ch4, that every regular matrix over the
integral domain D admits a decomposition of the form (1.3.14) if and only if over
D every finitely generated projective module is free. It follows by Theorem

136 that over such integral domains every regular matrix has aicp.. For
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example every regular matrix over DIX,,.

, the polynomial ring over a
principal ideal domain D, has gicp. We have not been able to decide whether
every regular matrix over an integral domain D has g.icp. and this question

seems to merit further investigation.

If at all there is an integral domain D over which there is a regular
matrix A4 without g L:D‘ then
a) over D, not every finitely generated projective module is free ( For example,
Bourbaki [10] p.150 could be a good candidate ),
b) m and n must be greater than 2, because if for example m £ 2 then A is
either of rank L or A = 0 or A is of rank 2 and so right invertible. In these
cases Theorem 1.2.4 and Theorem 13.1 would take care

and
©) 1< 04 < min (m, n. This follows from Theorem 121 and 13.4

On the other hand, it can be shown that if every idempotent matrix over

an integral domain has g.i.cp. then every regular matrix has g.icp.



CHAPTER 2
MOORE-PENROSE INVERSE
AND
GENERALIZED CRAMER RULE

24. Introducion

Moore-Penrose inverses of matrices have wide-spread applications in
subjects like statistics, multidimensional sustem theory, control theoru etc (see

(21, (9], (59), and (13] ). In [59), matrices over the ring RIX; , Xz , Xk]*, the

ring of rational functions of polunomia. with real coefficients which admit
Moore-Fenrose inverse were characterized and in [53] matrices which admit

Mcore-Fenrose inverse were characterized in case the integral domain

implies

In this chapter we obtain necessary and sufficient conditions for a
matrix to have Moore-penrose inverse in the most aeneral case of an integral

domain e also deal with other tupes of g-inverses

In Section Z2Z we give necessaru and sufficient conditions for matrices

o have Moore-Fenrose inverse over an arbitrary integral domain. We also give
a formula to find Moore-Penrose inverse whenever it exists. In Section 2.3 we
characterize all matrices which have (1,2,3) and (1,2,4} inverses In Section 2.4

we obtzin = Generalized Cramer rule to find Moore-Penrose solution, (12,3}

and {1,2.4) solution. For the former, we use a formula developed in

In Section 2.5 we define “Generalized Moore-Penrose inverse” and



find necessary and sufficient conditions for matrices to have the generalized
Moore-Ferrose inverse. This generalized Moore-Penrose inverse reduces to
weighted Moore-Penrose inverse in a special case. In Section 26 we aive
necessary and sufficient conditions for the existence of Khatri-inverse,

pointing out an error in a condition given by Khatri.

22 Moore-Penrose inverse

In this section we examine the guestion of existence of Moore-Fenrose
wwerse of a matrix 4 over D In general a matrix need not have a Moore-

Ferrose 1nver

even though it is regular. For example, the matrix

A= i Xy o
2 -2x*

over ZL¥, ¥1 is regular as shown in an example given in Ch. 1, but it will follow

from our result that it has no Moore-Fenrose inverse. It is shown, among other

results, that 4 has Moore-Penrose inverse if and only if E 141431 is an
£

invertible element of D. In the process we also obtain an explicit formula for

the Moor

Fernrcse inverse when it exists. We first prove certain preliminary

Lemma 224 Let 4 be a nonzero n x 1 matrix over D. Then 4 has a

Moore-Panrose inverse over D if and only if 4%A4 is invertible in D.

w
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Proof First suppose that 4 admits a Moore-Penrose inverse G. Then
AGA = A and since A is a nonzero n x 1 matrix, GA = I. Now since (46¥ = AG,
* ¥

we have ¢%4%4 = 4 and hence 6 6%4* 4 = 1. Therefore 4*4 is invertible in

D

Conversely, if u = A*a is invertible in D, then it is easy to verify that

wta* is the Hoore-Penrose inverse of 4 o

A similar result can be proved if 4 is a 1 x m matrix

In the next result we characterize matrices of full rank over D which

admit Moore-Fenrose inverse

Lemma 222. Let A be an m x n matrix of rank n over D. Then the
following conditions are equivalent
4} A has Moore-Fenrose inverse
G 4%4 is invertible over D

Gid) E 14%114%| is invertible over D, where @ runs over all n-element

subsets of {4, .m}

Furthermore, the Moore-Fenrose inverse, when it exists, is given by

= (‘1‘“-1 A

Proof. () = Gi. Let A% =G Then
4GG* At 4 = 4GAGA = 4

Since 4

W

of full column rank, it admits a left inverse over the fiesld of



quotients of D and hence G6% (¥4 = 1. Thus 4%4, which is a square matrix,
has a left inverse over D and hence is invertible over D
1

(D =M It is easy to check that AT = (4¥a” is the Moore-

Penrose inverse of A4

{i1) & (i) : Note that a square matrix over D is invertible if and only

if 1ts determinant is invertible in D. But, by Cauchy-Binet formula,
A = E AR I14%1
=

= E 1A%114%)
=

where « runs over all n-element subsets of {i,..m} and the result follows o

A result analogous to Lemma Z Z 2 can be proved if 4 is of full row rank
The rext result gives a necessary and sufficient condition for a matrix to have
Moore-Fenrose inverse under the assumption that the matrix has a rank

factorization

Theorem 22.3. Let Abe an m x n matrix of rank r over D and let 4 = BC
be a rark factorization of A4 over D Then the following conditions are
equivalent

‘1) 4 has Moore-Penrose inverse

5*5 and cc* are invertible over D

> 131451 is invertible in D where @8 run over r-element
£xd
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subsets of { ,m}, {1, .n} respectively

Furthermore, the Moore-Penrose inverse, if it exists, is given by

at = crectt *at *

@ = b Let 47 = 6. Then Bcoe*4*BC = BC and hence

Therefore CGG*c*8*B = I and hence B*B is invertible over D.

Similarly by considering the equation  BCA*G*GBC = BC we conclude that
cc* 1s invertiole over D

ap = @ 1f B¥B and CC‘ are invertible then it is easily verified that

c*ectt 3*mt B* is the Moore-Penrose inverse of 4

Ui = Ui For any o, 8 1451 = 1B*IIC5l  and hence

> o = S8

( Z 15*118%1) (; 1EgliCgl) @2.0

& g%
€GBT IIC gl

Therefore E 1451 1451 is invertible if and only if both E 18*118%| and

8

E ZgliCgl are invertible.
B

MNow the result follows by the implication (ii) e(iii) of Lemma 2.2.2 a

Corollary 22.4. Let 4 be an m x n matrix of rank r over D and

e there exists a rank factorization 4 = BC of 4 over D. Then 4 has



Moore-Fenrose inverse if and onlu if Cr(4) has Moore-Penrose inverse

Proof. Clearly Cn(4) has Moore-Penrose inverse if A has Moore-Penrose
inverse To prove the converse, first cbserve that since A has a rank
factorization, Cn(4) has a rank factorization. By () = (iii) of Theorem 223
applied to  Cpld), if ‘C,\(A) has a Moore-Fenrose inverse, the sum of square of

21l the =lements of CpA), which is same as E 1AZIAZ]  is invertible. By

E2
of Theorem 223, it follows that 4 has Moore-Penrose inverse s]

Remark. It is not necessary that every matrix over an integral domain
admits = rank factorization. For example; (from [53) consider the integral
domain D, the polynomial ring senerated by 1, %% XY, and ¥ over R (real field
which 15 3 subring of RIX, ¥). The matrix

X2 xy
A=
xy ¥
has no rank facorization over D. In fact, as we shall notice in chapter 4. even
regular matrices, it need not have a rank factorization. Thus Theorem 223

do

rot characterize all matrices which have Moore-Penrose inverse. A
characterization of all matrices which have Moore-Fenrose inevrse will be

giver 1n Theorem 226 which we now proceed to develop.

Lemma 225 Let 4 be an m x n matrix of rank 1 over D. Then 4 has

Moore-Penrose inverse if and only if E 3;;j &;; 1is invertible in D
1y

w
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Proof. First =suppose that
*

rtible in D Then we
claim that G =

-ty

1Jj
is the Moore-Penrose inverse of 4 This is seen thus
Clearly & satisfies (3), (4) in Chapter 0. Since 4 is of rank 1, every 2

minor of 4 vanishes, and hence for anu i, J, k, 1,

ai e = 2 e 222
Hence for any

1 5
Z 2ij Tjk Spp = Y Z 3ij Bkj Bkl
T

ik

) :

Z 2il Bkj Skj = 8i1

K
Therefore A4GA = 4 Similarly it can be shown that GAG =G and the claim is
proved

Conversely, suppose that G is the Moore-Penrose inverse of 4. Let r;
dencte the i-th row of A and C; the j-th column of G, i = 12,..m

i=42..n

Define matrices B of order 1 x mn and H of order mn x 1 as

B o= (jarmd H= (cf, s om*

ke claim that H is the Mocre-Penrose inverse of B . This is proved as

follows. Using AGA =4 and (2.2.2) it can be seen that

12 BN = L Therefore BMB = B, HBH =H and B8H* = BN,  The matrix HB , in

partitioned form, is




cyry e m

Cary . C2fm

HB = :
Cmfy . Cmfm
*

Thus in order to show (HB)'= HB, it is sufficient to show that (;

cjry for all &

Mote that 4 admits a rank factorization over the guotient field of D and

since A4 has rank 1 it follows from Theorem 222 that u = E 15 &ij is non
4J
zero. Furthermore, as observed in the first part of this proof, u™*4* is the

Moore-Penroze inverse of A, where u™! is

erse of u over the field of

quotient

By the uniqueness of Mcore-Penrose inverse we have

*

for k = 1,2,.m

any i, J,

(cyr

Thus (o;r;

= c;rj and hence H is the Moore-Penrose inverse of B. It
follows from Lemma 2.2.4 that E &;j&8;; is invertible in D and the proof is
1

complete o

The following is the main result of this section

Theorem 226 Let A be an m x n matrix of rank r over D Then the
following conditions are equivalent

() A has Moore-Penrose inverse
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(11} Cptd) has Moore-Fenrose inverse

(Giin Z 14311431 is invertible in D, whers a6 run over all r-element
o subsets of (4,..,m)(4, . ,n) respectively
Furthermore, the Moore-FPenrose inverse, when it exists is given by G =(g;
where

- B G - 1 P
i > st 2o e end > A Ag
«"18x 8"7%6 o o

Proof (D = (i) : It is easily verified that if at = G, then CHG) is the

Moore-Fenrose inverse of Cp(A)

()= (iil) : Suppose Cn(A) has Moore-Fenrose inverse. Since the rank of

CrA iz one, it follows from Lemma 225 that E 14311431 is invertible in
EZd
D

GiD = D Let u = E 14%114%1 so that u! is an element of D . Let G be
Bz
the Moore-Penrose inverse of A over the field of quotients of D (G exists by

Theorem 2 Z3). We will show that G is in fact a matrix over D. As noted in the

proof cof ) = (1), CAG) is the Moore-Fenrose inverse of Cp(4). Also, since

Crid)

of rank one, it follows from the proof of Lemma 225 that u ! Cra® is
the Moore-Femrcse inverse of Cnt4). So by the uniqueness of Moore-Ferrcse

inverse,

Ccrie) = ut cria®

ie, for all a, 8,

3
1651 = ut 14g) @23

nce G is, in particular, a reflexive g-inverse of 4, by Theorem 132
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955 =

b3 Dl T
a 1€a

o
521431 @24
8 jEs b
- “4ge 8 =
= a A g2 @z
o TEa 6% 720
by (4.3). Therefore G is a matrix over D and the proof is complete o
Remark. 1f A%
for

exists and equals G, then (2.2.4), (2.2.5 provide formulae

Formula (22.4) has been proved by Bruening [12] in the simpler case
when 4 has full row (or column rank.

Mow in the following corollary we shall see an interesting result cver
the “ring of polunomials over the complex (real) field”, that a matrix 4 of rank
r has

Moore-FPenrose inverse if and only if all its r x r minors are in the
complex (real) field

Corollary 22.7. Let D

= CXy ..Xp)

the polunomial ring over the
complex field An m x n matrix of rank r over D has Moore-Penrose inverse if
and only if (4%

m3 and (4,

w5 3re all in €, where o, 8 run over all r-element sul
n} respectively

Proof.

Suppose that 4 has Moore-Penrose inverse and there exists a
1451 such that the desres of the polunomial 1431 is at least one. Lat

91431, since the cosfficient of the highest desree term in 1AZ14%
is strictly positive, degree

1
of > A%I4El s K2 which implies > 12Z114%1



is not invertible in D and contradicts (iil) of Theorem 226
Conversely, lat 1451 be in € for every e, and 8. Sinca (4 = r, there is at
least one paim of (@ @) such thatl4fl = O and we set that E IAZIAZ  is

8
nanzero and so invertible. So we get that 4 has Moore-Penrose inverse over D.O

In general, we can conclude that a matrix 4 of rank r over DX, ...Xpl

where D is an intearal domain with a nonzero definite involution Gi.e.5a;a; = 0
= a; = D) has Moore-Penrose inverse if and only if all 1451 are in D and
E IAGIAZ] is invertible.

EZd

In the following corollary we shall derive a result of Sontag from (53],

over RIXy. . #pl* (see p.19 for the definition), usine our result.

Corollary 228. Let D = RIX, Xn)* An m x n matrix A of rank r has
Moore-Ferrose inverse if and only if 4 has constant ranrk for all Xy, Xp) in
BT

Proof. The a-inverse constructed in Corollary 125 in fact, can be seen

to be the Moore-Fenrose inverse, using Theorem 2.2 & o

Batiane in [4] proved that an integral matrix 4 of rank r has Moore-

Perrose inverse if and only if

vihere P and @ are permutaion matrices and M is an r x r invertible matrix
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The above result holds ( See [S4) & [S6) ) even for matrices over ang

integral domain D that satisfies Rao’s condition ( introduced by Robinson [S6)) :

=0 for i # 1"

a, then a;

n,
“af 3
i=1

We shall derive this result from our Theorem 2.26. Z, the ring of integers,
2Ky, %n) polunomial ring over integers are some examples of intearal

domains satisfying Rao’s condition

Theorem 229. Let D be an integral domain satisfying Rao’s condition
and 4 be an m x n matrix of rank r. Then the following are equivalent
1) A has Moore-Penrose inverse

[$3 > IZEHA%I is invertible in D, where @8 run over all r-element subsets
ez

of (1,..m}(4,..n} respectively

M 0
(iii) 4 is in the form P o 0 @ where P and @ are permutaion

matrices and M is an r x r invertible matrix
Proof. (e (i) follows from the Theorem 2.26

(iii)= (1) is clear

(i) = (iil). From Rao’s condition it folllows that whenever za‘:-l: u is

ible there is exactly one i such that a;# 0 This is because whenever

invertible,
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Buta; = S@utay Gutap
Buts; = Sautay aptay

J=t
for all i This tells us that & 'a; = O for all j » i from Rao’s conditon. But
cince D is an integral domain, for all but atmost one i, a; = 0. Trivially there
i= at least one i such that a; = O since Ta;3;= u is invertible. Thus there is

tly o

= i with &, # 0. Now, since > IAFlIAZI is invertible in D, the

E
sts 2 unigue pair & and B (say, @, and By such that I43H1% 0 and this is

invertiols in D and 1441 = O whenever o # @y or 8 # 8;. S0 we get 4 in the
form
AxtoB
P
¢ o |®

for some permutaion matrices P, @, £ x (n-r) matrix B, (n-r) x r matrix C and

(ner} % (n-r) matrix D. Since A3l is the only submatrix of A of size r x r with
nonzero determinant, we get that B, C and D are zero matrices. o

It is known that [33] over an arbitrary field a matrix has Moore-Penrose
iverse if and only if o¥4 = 0a4®) =004 In the following theorem we

generalize this result for matrices over an arbitrary integral domain

Theorem 2.2.10. Let A be an m x n matrix of rank r over D. Then the
following are equivalent

(i) 4 has Moore-Penrose inverse

> 1311451 is invertible in D, where @, run over all r-element subsets
exd
of {4, m)L,...n) respectively

ip oAt 4 = pad® o0 and A* 4, 44* are resular
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Proof. (1)e (ii) follows from Theorem 226

=D Since TrCRAA®) = TrCA* AN = E IAZIAZL # O, we get that

2
Criaa®) and Cra* 4 are nonzero matrices. This implies that o4¥4) = 044

P

= o4 Since TACAAA®) invertible, we g=t that a linear combination of all the

minors of A4*is eaual to one, and so, 44* is resular. Similarly we set

that 4*4 is resular

Gi= () It is easily verified that ﬂ*(»“*)' ‘(A*A)"*l! the Moore-Penrose

inverse of A if condition (il is satisfied, where (4%, (¥4 are some o-
e * *

inver = of A4” and A" A respectively a

23 (1,3) and (4,4) inverses

Mo we shall characterize all matrices which have (4,3} inverses in the
following Theorem 234 In Theorem 232 we shall also give a different

characterization which is computationally easier

Theorem 23.4. Let A4 be an m x n matrix of rank r over D. Then the
following are eguivalent
) 4 has a (1,3} inverse
(i) CptA) has 3 (1,3) inverse . ie, there exists a matrix § = (55’<;'>x<:» such

3
that z:—.’gmy = 1 and (CAAS) is summetric
Ed

Proof. ()=(ii) is obvious from the properties of compound matrices

Gir=t)  Suppose there exists an (Nx(7) matrix S satisfuina (D). Then we
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claim that the matrix G =(g;;) given by the equation

B 3
9= & 5a;; 8!
B 7
is a (4,3) inverse. From Theorem 122. we get that G is a g-inverse of 4. To
prove that (46) is symmetric, we shall prove that (46);,= (48));

Fixing 2« and g we have,

1431 if i=j and i€a
3 . _f O if iga .
I ! ’{ 0 if i j€a @3.n
U
LAV e e, g

From this we get that
8

A 5 smlAsl for i=j 2.3.2)
a,Bi€8
and
E sEME{‘ for i 233
ag
metry of Ch(4S gives summetry of (4G) o

Analogous result for the existence of (1,4) inverse follows

Theorem (2.31Y. Let 4 be an m x n matrix of rank r over D. Then the
following are equivalent.
1) A has a (1,4) inverse
(i CptA) has a (1,4) inverse . ie, there exists a matrix § = (sﬁ;(;,)x(,’.) such

that Zsﬁl,{;} =1 and (SCA(4) is summetric
af
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In the above Theorems, the choice of (sg) which plays an important role

is a little difficult to find during the computation of G. In the following
Theorems we shall give a different set of necessary and sufficient conditions,

8

in which case, the choice of (sg) is a little easier.

Theorem 232. Let A be an m x n matrix of rank r over D. Then the
following are equivalent.
(i) A has a (1,2,3) inverse
(i) There exists a (Px(7) summetric matrix § such that

TAICHASCAAY = 1.

Proof. (i) = (i) Suppose A has a (1,2,3) inverse, say G. Then

E lcﬁuAﬁl =1
@B

But 6 = GAG = 66*4*, 50 that

165

S ichne* gl
.8

and we aet
S kee®EaR g = 1
Erond
ie, > 1agiee®§ g = 1 @34
8,7
which 1mplies that for § = CRGG™), we gst TAICAASCAA¥I=1 239
=) Let 5 be a summetric matrix satisfying the given condition .
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Then we claim that G obtained by the eguation

_ B8, X7 1<ign
9= 2’ Bl aa uﬂl 1o @236
R

set p5CHA%) =

is {1,2,3) inverse. By Theorem 122 we get that G is a g-inverse. From (2.36) we
= ACHA) =

1, so from Theorem 1.3.3, we get that G is a reflexive
g-inverse of 4. Now,

n
(4d)y; = ; 2k

o

= D> Sl MEI
k=1 a.B

> AU s
keg

8,7 j€a

and (2.3 1) gives us

(AG)“ = E lﬂﬂl SglA* ] fori=j 237
«B87T:i€a,
ey = LA/ D) BT kor i @38
06,15 iga
From (237), (2.38) and symmetry of Cr(A)SCr(‘)* we get (AG)l- = (‘G)ji. a

Analogous result for the existence of (1,2,4) inverse follows

Theorem (232 Let A4 be an m x n matrix of rank r over D. Then the
following are equivalent

(1) 4 has a (1,24} inverse



(i) Trere exists a (Fx() summetric matrix S such that

TrCrA¥s Cpr = 1

The above theorems lead us to a result similar to the result proved in

Theorem 2 2.10

Theorem 233. Let 4 be an m x n matrix of rank r over D. Then the
following are equivalent.

() 4 has (1,2,3) inverse((1,2,4} inverse)

(ii) There exists a (Mx(?) summetric matrix § such that

CrAS Crd® = 1 TriCra*s Crd = 1

(i ot 4 = ooh and A%4 is resular. ( a044% =000 and A4¥ is resular).

Frocf is similar to Theorem 2.2.10

I D is the complex field, for example, § in the above theorem can be
chosen to be 3 diagonal matrix with all diagonal elements being [C,-(AA*)]_L Now
we shall consider some integral domains over which the conditions in the above
theorem become simpler. Z, the ring of integers, and any principal ideal domain

with trivial involution satisfy the hypothesis of the theorem below

Theorem 234 Let D be a principal ideal domain such that for any

summetric elements py,..pn for which the ideal (py..pn ) = D, there exist

n
symmetric elements ay, .an with Erqu =1 Then the following are equivalent
i




A has a (1,2,3) inverse

wp (3 1aE14Zl)g are relatively prime, where a runs over all
reelement subsets of (12,...m) and @ runs over all r-element
subsets of (4,2,...n)

Proof. Over any principal domain every regular matrix has a rank
factorization. Let A = BC be a rank factorization of A. Since AGG*A¥A = 4, ne
get that 55* has inverse and that C has left inverse. So we get

= > 18%al 8% is invertible 239
and that there exists kﬂ € D such that Zkﬂ ICel =1 (2310

From the properties of D we get summetric elements pg's such that

E pglCal ICgl = 1 2341
B3

1

by multiplying (2.3.9), (2.3.40) and u™" we get that

‘;;B(glzgwg )=

where zg = u™'pg is symmetric in D

an=w 1 E 1431145 1) are summetric and relatively prime, then by the

condition on D, we can get sg symmetric elements in D such that

‘;sﬂ(zagnﬁl) =

So proof of (i)= (1) becomes easier as in case of (iii)=(ii) of earlier theorem

by takina S = diag (sg) o
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Analogous result for the existence of (1,24) inverse follows

Theorem (2347 Let D be a principal ideal domain such that for anu

summetric elements p,,..on for which the ideal (py,..pp ) = D, there exist
n

summetric slements gy, -...ap with 33p;a; =1. Then the following are equivalent
=

i) A has a (1,2.4) inverse

an E 1431143 )e, are relatively prime, where @ runs over all
~-element subsets of (1,2,..m) and 8 runs over all r-element

subsets of (1,2,....n)

24 Generalized Cramer rule for finding various solutions.

In this section we shall give a method similar to the Cramer rule for

finding various tupes of sclutions, which we shall call “Generalized Cramer

Rule”. We start with finding Gy, where G is a g-inverse of A4

Theorem 24.4. Let A be an m x n matrix over an integral domain D and

4x =y be a consistent linear sustem. Then Gy is a solution for the sustem A4x
y where G is the matrix obtained by the eguation (1.2.9), given in the above

Thecrem, and

G =u§ cﬁ M(Hy)gl 24.0

where A -y is the matrix A with j-th column replaced by ¥

5z



8 3 42
Proof. Since gj; = 3, ca zo— 45!,
e 3a;; B8

2
(Guy = 2 91
et

- 8 2 _14%
2 ca(‘éjz 5! “

=3 DE 1AGwGl
B JEB

Corollary 2.4.2. Let Ax=y be a linear system over an integral domain D
such that G is the Moore-Penrose inverse of 4, then Gy, the Moore-Fenrose
solution (called least square-minimum norm solution if D is the field of complex

numbers) is given by

Gy);

uHARIAG G @42
af Ties

Proof. Easily proved as in the case of Theorem 2.4.1

Remark. More generally, we can rewrite (2.4.2) as

wey; = E 1A AG s G
f T IE8

and we can sau that a linear sustem Ax y has Moore-Penrose solution if and
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only if u divides > 414Gy 1 for all 1<) < m. Equivalently,
B JER

S AG g %
{ E VAZNAG 49 OG1 }“ i<m
.l

JEB

are all in (), the ideal generated by u

We shall call the method given in Theorem 2.4.1 and Corollary Z.4.Z and
the remark above as “Generalized Cramer Rule”, which reduces to the known

Cramer rule in case 4 is invertible

Remark. ¥ D is an integral domain satisfuing the Rao condition,

n
squivalantly > a&;&; = i implies that &;'s are zero except for one a; (see (iiD)
=

= (i of Theorem 2.2.9) matrix A in Corollary Z 4.2 has exactly one non zero

minor, saw  Agl such that I4g0l is invertible. In this case Generalized Cramer

Rule takes a very simple form and

2%0 -1 45 %o

@)y = IAg 114G g |
Remark. A (1,2,3) solution (also called minimum norm sclution over the
complex field) and (4,2,4) solution (called least square solution over the complex

f1eld) can be obtained by the Generalized Cramer Rule as in the earlier case.

Remark This Generalized Cramer Rule depends only on minors of the
giver matrix and this is easier and more general than the Cramer rule for

matrices using the method of Bordering obtained by Ben-lsreal in (1]



25 Generalized Moore-Penrose Inverse

We consider matrices over an intearal domain D with involution a - &,

unless indicated ctherwise. Let .4, M and N be matrices of order m x n, m x m

and n x n respectively, where MMN are invertible. An n x m matrix G is called

the Generalized Moore-Fenrose Inverse of 4 with respect to MN if the

conditis
(D AGA = A @ GAG = G
@ tac*= HaG @ wea* = NGA

are satisfied, where ¥ denctes induced involution cver matrices (e, A%= (0T
Ue dencte a Generalized Moore-Fenrose inverse of A with respect to M and N
by A
The main results of this section consist of, for any matrix 4 over D and
invertible matrices M, N of corresponding sizes,
1) necessary and sufficient conditions for the existence of an A ;
(@) the uniqueness of and a formula for 4}, , whenever it exists; and
3 a generalized Cramer rule to find a generalized Moore-Penrose solution
with respect to M and N
We shall start with a necessary and sufficient condition for the

existence of A} for a column (m x 1) matrix 4 over D

Lemma 254. Let 4 be a nonzero column matrix over D. If M is an
invertible matrix of size m x m and N is the 1 x 1 identity matrix then 4%,

exists if and only if A M4 is symmetric and an invertible element in D



Proof. First, suppose that Af exist and let G =A% . Then AGA = 4, and
since 4 is a nonzero m x i matrix over an integral domain, GA = 1. Now, since
HAG iz summetric, we have MG A¥H*4 —4 and hence artc*a¥mta = 4
Therefore 4*M4 is invertible in D. By multipluing with A from the risht and A%
from the left, the equation

*a*r*= Hac

MA is summetric.

Conversely, if 4*M4 is invertible and summetric in D, then it is easy to

verify that (S ¥ ¥ s an A, o

For 2 row matrix we give a similar result in the following lemma, without

proof

Lemma 252. Let 4 be a nonzero row matrix over D. If N is an invertible

matrix of size n x n and M is the 1 x 1 identity matrix then 4% exists if and

*

only if AN is symmetric and an invertible element in D. In this case

N AR s an At

Now we shall give necessary and sufficient conditions for a matrix 4 to
have a generalized Moore-Penrose inverse with respect to M and N, when A4 has

a rank factorization over D .

Theorem 253. Let A be an m x n matrix of rank » over D and let 4 = BC

be a rank factorization for 4. If M and N are invertible matrices of size m x m



and n x n respectively, then the following are equivalent

(1) 4 has a generalized Moore-FPenrose inverse with respect to M, N.

(i» 5¥148 and cN™ic¥ are summetric and invertible over D
i E ;AZ\ |<N"A*M)ﬁ| is invertible in D, where &, 8 run over r-element
C
subsets of (1,2,.....m) and (12,.....n) respaectively, and A¥MA and AN"14¥ are

summetric matrices

Proof. (i) = (i) Suppose Af, exists and let G = A% Then

AcHG* ¥ ¥ = 4 @5.0

(Since MAG is summetric). Since 4 = BC is a rank factorization over D, B is a

full column rank matrix and € is a full row rank matrix over the field of

quotients of D, B is left cancellable and € is right cancellable over D. So from
(25 1) ve gst

- *C*E*N*E =1

¥t

which impli B is invertible. Similarly by considering the equation

Nt a* ¥ Ga = 4 @s2

we get cNTiC* is invertible

Since G is a reflexive g-inverse of A4, G has a rank factorization G = UV
over D tfor example, take U = GB and V = CG) such that CU = I and VB = I. From

the condition (3) we aget

mev = u¥p¥a*

@s
By multiplying 5* on the laft and B on the right, w= g=t E*H*E i= symmetric
Similarly by considering the condition (4) we get

wuc = crutn® @55

from which we can get CN'C¥ is summetric. Hence @ = (b
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¥t
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Since G is a reflexive g-inverse of A4, G has a rank factorization G = UV
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the condition (3) we aget
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@s
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N ¥t ¥y aca¥ - ate®

; +
is an b,

Corollary 254 Let 4 be a matrix of rank 1 and 4 = BC be a rank

factorization of 4 over D. Then 4%

unique whenever it exists.

Proof. Assume Af,, (sau G ) exists. Since it is a reflexive g-inverse, it
can be written in the form G = UV where CU = I and VB = I. From (25 4) and

(253) we get

@se
@s9

and

6 = Ntk ict igtie ¥t

= wicrsrvrenich e et since  ontich”
E*rEtare in D

= N ARt e et g ket

= Nta¥r¥reavtic sk

= Nt e Lk
So 4}, is unigue. whenever it exists o

Corollary 255 Let 4 be an m x n matrix of rank ~ and M. N be

vertible matrices over D such that 4*M*4 and AN'4* are summetric. Also, let

4 = BC be 2 rank factorization of 4 over I Then 4 has a generalized Moore-



Fenrose inverse with respect to M and N if and onlu if Cp(4) has a generalized

Moore-Ferrose inverse with respect to CrM), and Cr(N)

Proof. From the properties of compound matrices, it is clear that Ca(4)

eralized Moore-Penrose inverse with respect to  Ce(M), and ChN)

whenever 4 has a generalized Moore-Fenrose inverse with respect to M and N

To prove the converse, first cbserve that, Cn(4) has a rank factorizaton
as 4 has a rank factorization. By (i) = (iii) of Theorem 253, applied to Cpld),

we get that the summation E Crd)y, afCrNT tepa®

qunw ta*

Crg , .+ which is the same

N
ol is mwrnms since A*M*4 and anta* are symmetric and

2 |A§|\rr4“‘.-1*m§| is invertible, by (i) = (i) of Theorem 253, A has a

3
ger@rslized Moor e-Ferrose inverse with rescect to M and N o

Remark. It is easy to cbserve that the existence of a generalized
Mocre-Fenrose inverse for Cpld) with respect to CpM), and CAN) is not a
sufficient condition for the existence of a generalized Moore-Fenrose inverse
for A with respect to M and N. For example, let D = €, the field of complex

numbers with respect to conjugation as the involution, =nd let

1 0 i 0 10
A= M= and M=
o1 o o 1
Then  Cald) = 1, C = -1, €M) = & =nd Cald) has a generalized Moore-Penrose

viith respest to Cpith, armd Cpt) But 4 has no generalized Moore-



Fenrose inverse with respect to M and N

Mow e shall consider matrices which may not have any rank
factorization over an integral domain D and we shall give necessary and
sufficient conditions for them to have generalized Moore-Penroses inverse with
respect to M and N First we shall consider a matrix 4 of rank 1 and in the

followina Lemma obtain a necessaru conditon for the existence of Af ..

Lemma 256. Let 4 be an m x n matrix of rank 1, and M and N be

invertible matrices over D. Then [TrtN'4*MA0 iz invertible whenever 4%,

ists

Proof. Let & = 4%, =z, exist Let r; dencte the i-th row of 4 and ¢

the i-th column of G, where i = 12, ,J =12 . .n Define matrices 4 of

order 1 x mn and & of order mn x 1 such that

& = teyTeaT . ep™T
We claim that & is s Moore-Penrose inverse of A with respect to I and
Tt

® N (where ® stands for the tensor product of matrices)

nce A is of rank 4, every Z x Z minor of 4 vanishes and hence for all

ik

255 21 = A 2n @511
Using 4G4 = A and @S54 it can be seen that > aye;; =t e, A3 =
]

Therefore 454 = 4, 845 = & ana &% = 28

Mo
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factorization 4 =

where B is a column matrix and € is a row matrix over the
field of quotients of D. Let G = UV, where U and V are matrices over the field
of guotients of D such that CU = 1 and ¥B = 1 By (258) and (25.9) ne gat

*

v = @fepiatet

u = wickenicht

BT® Cand 6 = VT@ U

tTig NG = MTe MItTE UNBTEON
= mTiTETE NUC
= a*tat e nea 25.42)

i1s summetric So & is a Moore-Penrose inverse of A with respect to 1 and

MTieN  Therefore, by Lemma 252 we eot AMTeN 4%, which is eaual to

Trav A% | is invertible in D o

Lemma 257. Let 4 be an m x n matrix of rank 1 over D and M and N be
invertible matrices of appropriate sizes. Thenm 4, exists if and only if

Trav 4t 44 iz invertible in D and A*M*4 and ANU4* sre summetric. A

+
s A

is unicue whenever it exists

Proof. (f part) Let 4%, exist cver D. The summetry of A¥M*a, ante¥

At over the field of quotients of D follow

and the invertiblity of Tr¢

from Theorem 252 From Lemm2 ZSS5S we get TrN La*14 is invertible in D
Hence the proof of the “if” part cof the Lemma

*ra iz invertible and 4¥*4 At are

Only if part) Suppos A




summetric then ve claim that
G = (Trn A maor i ta¥ et
is an 4h

ATA =ATe At ) gt g

= Tt At rar bt ¥ ¥ 4

BHmr e et iacn ekt e
by taking 4 = BC a
s

rank factorization over the field of quotients) Since
¥4 is summetric , B*M¥B iz summetric over the field of quotients of D. So
we get 4GA = BC = A. Similarly it can be verified easily that GAG = G, and that

MAG and NGA are summetrie. So G is an 4%,

Uniqueness follows from corollary 25 4.

In the following theorem we shall obtain necessary and sufficient
conditions for the existence of A;,N even if A4 does not have a rank

factorization cver D.

Theorem 258. Let A be an m x n matrix of rank ~ over D and M and N be
are invertible matrices of appropriate sizes. Then the following are equivalent
(i) A has generalized Moore-Penrosa inverse with respect to M, N
(il Cr# has a generalized Moore-Penrose inverse with respect to Cp(h)
3nd CrM), also, A*MA, ANL4* are summetric

(D) TrICAN T A* MM s invertible in D and 4*MA4 and AN'4* sre summetric

In this case 4}, is unique and

€3



¥ %,8
al

MAD N

> Trtenn”
A

| 521431 @5.13)
i
awves Al

Proof : ()= (i) can be verified easily as in the case of ()= (D) of

Theorem 253 and (i) =tiii) follows from Lemma 257.

(=) Suppose TrCAN™*4*MAN s invertible in D and A*MA and AN-Le*
are summatric. By (i) =() of Thaorem 253 we gst G =4}, over the field of
quotients of D. But C(@) is a unique generalized Moore-Penrose inverse with
respect to Cn(M) and Cn(N) (by Lemma 2 57, so

Cr(@ = (TGN AR M C N Gt Gty

From Theorem 132 we get

2,5 E CTrecrv AR ran - La¥rh8) 521481
B .

fer sl l= 42 n.j=42..m. , uhich implies that G is a matrix over D. Also,

from Theorem 232 and  the uniquaness of G, micyny We 32t the uniqueness

of At o

Remark. If Ax = y is a given linear system over D and G is a generalized
Mocre-Penrcse inverse with respect to M, N, then Gy is a generalized Moore-
Penrose solution. In fact it is easily verified using 2543 that

Gy = > (Trrc,zN"A*MA>J)"|(N".4‘M’y§||4(14y>g|
(2]

vihere 4ty is the matrix obtained by replacing the i-th column of A4 by u. If

€4



MM are positive definite matrices in € tcomplex numbers with usual conjugation
3= invslution), then the generalized Moore-Fenrose inverse is referred to as

the minimum N-norm M-least square g-inve

of A4 (see [439)) which alwauas

exists and in which case

orm M-least souars

solution

26 Khatri inverse

He consider matrices over an intearal domain with an involution a - &,

indicated othervise. Let 4, M and N be matrices of order m xn, m ¥ m and

oectively, where M and N are invertible (ot necessarily summetricy
AN n % m matrix § is called the Khatri-inverse of A4 (see Rao and Mitra (491 )
with respect to M, N if the conditions

1) AGA

A 2 GAG = G

@) o*M = Mae @ @GN = NG

2re sstisfisd, where 4% denotes (07T 1F M and N are positive definite over the
complex field, then & is called minimum MN-morm M-least square g-inverse of 4,

dencted by AL, 1431 pS2)

The Khatri-inverse is unique whenever it exists; this can be seen by

suitably manipulating equations (1)-(4"). In (23] and [49] it has been claimed that

Khatriin.er

=rists af and only if 4 M4 = 0N AY) 2 004, where o denotes
the rank The condition can be seen to be necessary from equations (1)-(4%
Heuever the condition is not sufficient as can be seen from the example siven

belo The error persists in [43), p 63 where the result is given as an exercise

™
ul



Example. Let D = C, the field of complex numbers,

. 10
4=t 20%, M= L N=
0 0
This A has no Khatri-invarse with respect to M, N althoush aa¥ra) =acan 4% =
o In 1291, G = WAt tab At At is siven as the formula for the

Khatri-inverse. In this example the matrix G cbtained by using the above

formula is 204 43, and it does not satisfy (3) and 4"

Meow we shall give necessary and sufficient conditions for the existence
of the Khatri-inverse. It easily follows from the definition that if the Khatri-

invarse of A with resoact to M and N exists, then oM =ountab = o

Theorem 26.4. Let 4 be an m x n matrix of rank r and let 4 = BC be a
rark factorization of 4 over D. Then the following statements are equivalent :
i) 4 has a Khatri-inverse with respect to M and N

cnic* are invertible and

ap 8
@*rerieti = e iatet @50

o ettt @62

cHenic

Proof : Let & be the Khatri inverse of A Since G is a reflexive g-

ree it can be written in the form G = UV such that

vB=1land CU=1 263

From the condition (1) and (3") we get
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AGH a4 = 4

scarte*c*atipc = s
vihich implies
«amic*ciatp = 1
So that B*MB) is invertible. By (3 we set MBK = K*E¥ and hence

@*rew = 8% « since sh ¥ b, @5

B = V*E*HS (since VB = 1) 265
From (Z£ 4) and (26.5) we get
v = @¥um et = et iptet

nce 8*MB is invertible. Similarly we can prove cN*c¥ is invertible and

nEtc*en¥c

Conversly, if (i} of the theorem holds then it can be verified that
6 = rricken ettt ia ¥

is the Khatri- inverse of A4 with respect to M and N o

Corollary 262. Let 4 be an m x n matrix of rank 1 with a rank
factorization over D Then 4 has a Khatri-inverse with respect to M and N if

‘4*M4) is nonzero and the matrices BCMMN satisfy

and only if Trd

(Z€ 14262 In which case

G = et AFHAT N

is the Khatri-inverse

Proof. Let 4 =BC be a rank factorization of A. Note that Tr(N ‘A



FewteR e e B M = Trv AR M A and

HickiatE) whareas

the result follows from Theorem 26 1 o

Corollary 263. Let 4 be an m x n matrix of rank r with a rank

factorization 4 = BC over D. Then 4 has Khatri-inverse with respect to MN if

and only tf KA MB14Z) 15 tnvertible snd @6 1, (26 2) are satisfled
a7

Proof. By Cauchy-Binet formula we get

e iR s¥ e = S g e sk e |
«,8,1T,n

- 3
= E N u*méuAgr
B

and hence the result follows from Theorem 2.6 1

e now prove the main result of this section

Theorem 264. Let 4 ke an m x n matrix. Then the following are

equivalent
) 4 has 2 Khatri-inverse with respect to M and N

w0 ot 2o A = 00, amd e, ¥ are resular s al=c

the equations
Akt a¥rie aca¥i® - atrg®
La¥earttaty 4 @67

¥ oantat 4

1ed for any choice of g-inverses
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Furthermore, if i) is satisfied,

¥, ¥

G = Nt ARt - ¥ ze®

1S the Khatri-inverse for anu cheice of

inverses

pcanta%y =

Proof. If (D) satisfied, then as remarked earlier, 0’/4"‘74)
204 holds and sls0 it can be verifisd essily that 6M6%, 6¥NG are a-inverses of

a4 and ana* res

/ely. Therefore the ices At a®, skt o 2X,

A tata and At %4 are invariant under the choice of s-inverse. It

(286 and (26.7) over D are equivalent to (Z6.4) and (26.2) over

field of D and (ii) satisfied bu Theorem 2 &1. Conversly, if (i) is

satisfied then it can be verified that G given in (268 is the Khatri-inverse 0O

Analogous to the result proved in Theorem 258, in Theorem 2 &4 also

vie 03N Zet that u = TrICAN ' A* M) is invertible in D

Theorem 265. Let 4 be an m x n matrix of rank r over D and let u =

Trtere At 1f

(5j% the Khatri-inverse of A4 with respect MM exists,

then

>t ARGl B8 1< gn, 1< < m 26D
Crd i

Proof. Let G be the Khatri-inverse of 4 with respect to M and N. Then it
essily follows from multiplication property of the compound matrix that Ch@G) is
the Khatri-inverse of Cp(4) with respect to CrM) and CnN). Since Cpld) is of

rank one and since the Khatri-inverse is unique whenever it exists, we have



from Corollary 2.6.2, which is valid over the quotient field of D, that,

Frof)

1651 = u
for all subsets a, 8 of (4,.m), (4,..n) respectively, it follows from

Theorem 1.32 that G must be given by (2.6.9). Since u is invertible in D, terms

given in the expression (26.9) are well defined over D o
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CHAPTER 3
GROUP AND DRAZIN INVERSES

34  Introduction.

It 15 viell known that over the field of real numbers a square matrix A
h2s = orour inverse if and only if Rank(4) = Ranki4®) and that every matrix has
@ Drazin inverse (See (2] and (431 ) In this chapter we shall investigate the
problems of existence of group inverse and Drazin inverse for matrices over

general intearal domains

The main results of this chapter consist of, for a sguare matrix over an

intearal domain,

4 necessary and sufficient conditions for the existence of a group

‘21 2 new formula for finding a group inverse when it exists, and

(3 necessary and sufficient conditions for the existence of a Drazin
inverse

For

= existence of a group inverse we find necessary and sufficient

cenditions in terms of its £ x r minors  akin to the results of Chapters 1 and

We zalso generalize some results from Rao and Mitra (431 ch. 4 for

integral domains Incidentally we aive an interesina necessary

ndttion for Rank (4 = Rank (4%




Mow we shall recall some notation. For an m x n matrix 4, A= stands for
2 generalized inverse of A, C(4) stands for the module generated by columns of

A and

stands for the module generated by rows of A4

stands for a a-inverse of 4 with C(47) = €4 (equivalently

Codr C Eidn

stands for a g-inverse of 4 with R4

=%(4) (equivalently

x Stands for a grinverse of 4 with G4 = CA and Ridgy = R

(equivalently Cldzy) C Cid) and Ridzy) C R4

32. Existence of Apy

He shall start this section by generalizina Lemma 4.1.1 given in [49]. Let

D be an intsaral domain. We consider matrices over D

Lemma 32.4. Let 4 P and Q be matrices over the integral domain D. Then

4 has 3 g-inverse of the form PCQ for some C if and only if

) OGAF) = pA)

and  ui) QAF is reaular

In which case C is a g-inverse of G4F A g-inverse with the above properties

is uriaus whenever 004 = O(P) = p@

Proof  (only if part) : First note that the Cauchu-Binet formula gives us




that 2DE) < min (D) , EN. Let PCQ for some C be a g-inverse of 4

Then 4 APCDA = APCOAPCDA. So o4 < 0(@AP). Again since 4 = APCDA, we

have that Q4P = @APCQAP. So p@AR) < 004). Thus we have () and (ii),

Gf part) : Let C be a g-inverse of G4P. So (QAPIC@QAR) = QAP. Since p(GAP)
= 204 we have that 0td) = 0@4) =p(4P). If 4 and GA are considered as matrices
over the fleld of quotients F of D, oid) =0(@4) gives us a matrix D over F such

that 4 = DA Similarly there exists a matrix £ over F such that 4 = 4PE

Nowr @4Fy

14F) = GAF gives us AFCGA = DOAPCOAPE = D@A = 4. So we are done

A similar argument gives the umigueness also (see the last part of the

crocf of Lemma 4 1 1. of [49)) a

Theorem 3.22. The following statements are equivalent for a square

@ pid) =045 and A% is regular

W) A = pi4® and A%is regular

4 = 204 and A%is resular

oy

Proof. ()=tiv) follows from Lemma 3.2.4 bu taking P = 4and @ = I

(B2 Lt us verify that (4574 (47 is 2 s-inverse of 4%Since 404 =a(43),

there ax) 2 matrix £ over the guctient field of D such that A4 =42F So

AR AL A = A D A A A



= ALPEAD A2
= A4
=4
So (45 44P" is 2 s-inversa of 4%
W= is clear.
(=i} follows from Lemma 3.2.1. In fact Mdpy = 44™4
(iD= is trivial.

U= S0 h=iiD=ii) hold by similar arguments

Remark.  The two concepts 4* and Az are identical and af(so, Az is
unicus. For, firstly, that A® is an Az, follows because
At = At
=t aqt
=44
So A" is an agy

condly Apy is an A* follows because, as observed in the proof of
wDSULD it is enough to verify the equations (1,2 and (5) for G = A4™"A4
Equation (1) is clear by the definition of a g- inverse. For equation (2),if E is a
matrix cver the fisld of quotients such that 4 = 4%, then
GAG = AL A4 AE

= A AE

= A4 A

= G
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Eaustion S), i, 46 = GA also follows similarly. The uniqueness of Atis easily

proven from its definition

Remark.  From the previous remark, the existence of 4% is squivalent to

2ll the six statements of Theorem 322 Also, since trivially existence of a
EAMMULING 3-inverse of 4 s equivalent to the existence of A%, the =ix
statements of Thecrem 322 are equivalent to the existence of a commuting a-

inverse of 4

Remark. = A7445 when ot =p0t4%. and 42 is resular

Remark. More genarally , for a regular matrix A, there is a g-inverse

of the form PCG

for some C.if and only if there are a-inverses Gy and Gz of

the +

"D and EQ respectively. In fact G 4G, serves our purpose

23. Existence of the group inverse of A in terms of its minors.

In Theorem 122 we saw that a3 matrix 4 of rank r over D is regular if
and only if a linear combination of all the r X r minors is one. In chapter 2
we showed that a matrix of rank r over D has a Moore-Penrose inverse if and
only if 2 particular linear combination of all the r x r minors is one). The aim
=F this s=ction iz to sive a =imilar condition for the existence of A% We =hall

#

ok that 47 2

= if and only if E ul4Z1 = 1 for some u
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First we shall prove the condition for matrices of rank 1

Lemma 334. If 4 is a square matrix of rank 1 over an integral domain D,
then 4 has 2 group inverse if and only if the trace of A (Trid for short) is

invertible 1n D. In this case the sroup inverse A% = (Tra) “24)

Proof.  Let 4 be a matrix of rank & over D Over the field of quotients
we can write A = xyTwhere x and y are n x 1 matrices over the fisld. Note

that 57x is the trace of 4
Gf part) : Suppose Tri) is invertible in D. Then we shall prove that G =

(Tr4V*4 is the group inverse of 4 -

AGA = ATrAN 244
T2 Tt
y

= xyTeg T

=xy = A

Similarly we can prove that GA4G = G and 4G = GA . So G = (Tr(d)24 is the

aroup inverse of A

{only if part) : Suppose that 4 has a group inverse. Then o) = pt4P = 1

regular (by Lemma 322 If B = 4% then the (4,)-th element of B is

bjj = E Bike Bej @30

and 4%

in

Since B is regular and o(B) = 1, there ex 9;i € D such that

E gy by = 4 @32

4,7
wting (23 L) in (3.3.2) we get
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Z Fii Bk Sy =1

Lik

Since 24 = 4, we have ajay; = aya;;

So . (Ek skkl [ E g“a“J =1 @33
7

@2

2) now implies that E Sy = Tr(A  is invertible in D [a]
3

Thereom 332 : Let 4 be an n x n matrix of rank ~ over an integral

domain D Then 004 = 004% and 42 is resular if and only if E 1431, where ¥

runs over all ~ -element subsets of (1,2,

N3 is invertible in D.

Proof. (only if part) : Let 04 = 0(d® = ~ and 42 be resular

2 ACHATD = KCHAD ) = 1 and Cr4® is resulsr From the only if part of

Lemma 22.4 we gat that Tr(CrA) = E M],! is invertible in D.
&

Gf part) : Let E 1471 be invertible in D. First we shall prove that

204

4% = r Suppose 04 % 04D , Then 04 < r Csince 04 = 1), and

1431 - 0 @34
for all  r -element subsets o, 8 of (12 . n)

But.

1% > Agiag

= S LA A, since aCroAn = 1
<



= Mg S>ial @3s

Since | 471 is invertible in D , from (33.4) and (3.3.5) we set| A%l =0

g
for all - -element subsets o and 8. This contradicts the fact that 04 = r. So
we must have A4 =0(4d= r

Now it remains to prove that 4 is resular. Since S 4)l = u is

tible in D, we have,

u"(Z 1421) ‘;| A) =y

1e > wEagAg = 1,

B

and U'ZIAEHAgI =1, bacause A(CAAN = 1 (3.3.6)
B

By the Cauchy -Binet formula we have

145%) = z }AgllAﬁ} 337
8

By substituting (337 into (336) we aet

E u2HADE = 1 @38

orem 122 by taking CE =0 fora #8 and u?fora=4g,itis

regular. Hence we have proved the theorem a

clear that 42

Theorem 3.33. Let 4 be an n x n matrix over D such that o(4) = r. Then
the follornng are equivalent

) 4 has a aroup inverse



2 Crt4) has a group inverse
(i E 1431 is invertible in D

-
@) oA = 4% and A% is resular.

Proof. w = (i) is trivial from the properties of compound matrices
(D= il follows from Lemma 33 4, (iid)=(iv) is a part of Theorem 3.3.2, (i) =)
follows from Lemma 322 o

Corollary 334. Let A be an n x n matrix of rank r over D. Then the

following are equivalent

4 .4 has Moore-Penrose inverse

@) 4*0 has aroup inverse snd od¥ a4 =oc

(110 44*) has sroup inverse and ooid® = o

Proof. ) = (i) Suppose that 4 has Moore-Penrose inverse, then by
Theorem 226 §I1431 i= invertible in D, which sives ot a =004

But,
>G> e
.8 a8
Z * 48
= [Z] ‘}!I
7

o from L= ) of Theorem 333 we gt 4*4 has sroup inverse

2 = By ) = (i) of the Theorem 333 we get

It



Zﬂ ol = S 1agiag)
:z

€ dnvertible which implies that 4 has Moore-Penrose inverse (Destiid) is

similar o

He know that over a field the aroup inverse of a matrix 4, whenever it

c2n be written as a polunomial in A4 with coefficients from the field (See

2] and (43D Ue shall prove this result in case of integral domains also

Theorem 3.3.5.

t A4 be a square matrix of order n over D for which A%

over D Then 4%

is a polynomial in A with coefficients from D

Proof. Let the characteristric polunomial of 4 be

D= Al = pex T p a0, 7

where ~ 1s the rark of 4 and (41)“0,, is the sum of all the principal minors of

order k. Observe that 1) pn the sum of 21l the r x r principal minors of A4,
vibach s invertible in D by our Theorem 233 above) Now by the Cayley-

Hamilter Theorem,

E .
R N g g +aca” @33
o
vihere —: for 0< kK < r-1 ard  gp= % @bserve that ar., ... g, are

elements of D)

Fultielying both sides of (33.9) by (4 e gat

#

A% = arjaatia an +agA" "4,

3.3.10

20



and multipluing both sides of 33 10 by 4, we get
AP A = arogAvap o ih . rag A" @340

Substituting (3.3.11) in (3.3.10) gives us

ner

A= (@ +ar DA G G gt ar A +goA

and this is a polynomial in 4 over D

Incidentally, from the proof of the equivalence of (iid) and (iv) of
Theorem 3.2.3 we obtain the following remarkable condition for o(4) to be equal

Lo oid?

Theorem 336. Let 4 be a square matrix of rank r over D. Then p(4) =
2t4% = r if 2nd only if the sum of 21l the r x r principal minors of A is

ron,

Proof. e observe that for any a and @ (r-element subsets of

1.z n»
14351 = (o) 1 A5 3342
7
ere ¥ runs over all r-element subsets of (4Z,....n). Since D is an integral
domain, we et that
000 = D) if and only if > 1Al # O ]
7

=28



34. New formulae

e have seen in the previ

section that if > 14]1 is invertible in D,

then 4% o #

s We shall give in this section a method of finding A" whenever it

exists

First of all, observe that from second remark at the end of Section 2, it
follows that 4 has a commuting s-inverse if and only if E IA:;] is invertible
7

Thereom 34.4. Let 4 be a matrix of rank r over D. Then

W If

E I A),I is invertible in D, then G = (g;; defined by
5

is » commuting g-inverse of A

GO IF U E 14:}| is invertible in D, then G = (g;) where
T

2, B 3 a
i lAa,Ia:‘—JIABI

E2
is the group inverse of A

Proof (i) : First we shall prove that 6 = (g; obtained from the

formula

-3 % 2
Fr ji"’l @.4.0)

is = commuting g-inverse of 4 MNote that G is a g-inverse of 4 over D (by

2

424 and (129, taking cg = 0 for a= 8 and ¢ = u

o
[



Mow we shall prove that G commutes with A

ie. (AG)j; = GA; For all i, . 342

1<k <n

343

i _7(261::’”) W™t S0 GAy; = G,
L

= S>> u"ﬁj—kw-’,'\

Kk TIi€Y

I
3552 lATl
Z kBay T

- E IA;\CJ)U(L)l ut
RELN Y 2

i 3 140 =
i€ E 35—yl = 0
T e

1451 345
o 8 i€ j€a JEB igR

Simlarly ve get

-1
(AG)j; = u

5
Hreueh!
v i€7, jeY
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= ! 1451
@8 i€, Rxi8R,IER

= (AG);
hence G commutes with A

New we shall prove part i of the thearem. Since u = S W)l is

invertible in D,

(Zu"m?,(]‘ = u"za:u&l 1451
ey

nce pCAA) = 1,

141 1451 = 1451 1481

and herice

E uRAg 8=
@B
He claim that the matrix G = (9 obtained from the formula
9= DoutaigR 14
g 4

is the aroup inverse of A.

MNote that Cp( A*) is the group inverse of CrC A. But, by lemma 2.2.4, we

Cra® = TG “2emm
=u2C
¢
Therefore 14%51 = w24l

#

Since 47 is 3 refexive g-inverse of 4, by (122 we get
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-2, 8 3
ATy Is - 14G1
> B2y, 8

£
|

248, 8 4%
= u | Agl5—14g!
Z “8a;; 8

_ -2 48 3 .
=>u Mala-—ﬂijlﬂal

a8

So we gat G = A" Hence the proof o

Remark. Theorem 34.4. provides a direct proof of (iii) = (v of

Theorem 3.3 3

5. Drazin inverse

In this section we shall give necessary and sufficient conditions for a

square matrix over D to have a Drazin inverse over D

Theorem 35.1. Let A4 be a matrix over D. Then 4 has a Drazin inverse

ovar D (satisfuing @ ) and (1K) if and only if for that k, oG = oKt and

4K+ iz regular. Also the Drazin inverse when it exists is unigue

Proof. (only if part) : Let 4 have a Drazin inverse, say G, over D.

Condition (15) sives us that o) = pAK*Y and alsa,

es



ke akeag

= A4%*464 (from condition () )

= AKH+1gKH 2K (erom condition @)

So 4** iz resular

¥y = ocAf* Y and 42K+

Gf part) : Let k. be a positive integer for which O(A
. o gzkrs ke .
is regular. We shall prove that G = A"(4*“"")"4% is a Drazin inverse of 4

s

Sirnce 0t¥) =p(4¥*) ¢or all positive integers J, there exist matrices D, £

and F over the field of quotients of D such that

A+s ks
Ao parkes
‘k Azk+ic
so
4G = Adk k- gk
= DAKHHE = e
Similarly
Ga = A4k 4
YN
o ke
Hence GA, ie. (5 holds
Abig o ke ek,
_aEkei gaken akesg
_ ke
= A
Hence (1)

624 = 66 = AFAFHY LN | since 64 = A0



B AV

Hence (). Thus G is a Drazin inverse of 4

Mow  we shall prove that the Drazin inverse is unique when it exists

First cbs=rve that if G satisfies (%) then G satisfies U™ for all m zkIFF

40 Drazin inverses of A4 we can choose a k such that £ and G both

satisfy the conditions @5 and (%) By repeated apolications of © and (15) e

R+ yzktickss Gk+e 4

and

Gkt Rksghons | gk | o

Remark. Let us observe that if 4 has Drazin inverse over D and if the

wndex of 4 is b, then o(4” = p(4"") and that 4% is reaular. If 4 has & Drazin

inv

H over D, then considering 4 as a matrix over the field of quotients

4% has s geinverse over this field. So 4 has a Drazin inverse G over

of b,

this field and § satisfies @5 and (1"). By the uniqueness of Drazin inverse

er the fisld we have then G = H. So H satisfies (@) (5) and (4P}, Theorem 3.5 1

2ives our statement. Also we have the following result: A has Drazin inverse
over the intearal domain D if and only if 4°7*'is reaular, where £ is the index
of 4

Remark Over an integral domain D, for a given matrix 4 over D there

reed not

=t =0 inteser k such that 04¥) a0t and 4K s reclar cver D



For example , Take D=Z and A

o) = oA = 1 for all positive intesers k. But 4 is not resular for k > 2

Remark. Hote that 4 has a Drazin inverse with index p if and only if A°
has group inverse (t is easy to verify that G”is a group inverse of 4°, and in
fact p is the smallest positive inteser for which A” has a aroup inverse
Conversely, if 4° has a aroup inverse, then 4°° iz resular with o4 = oa®®

vihich implies that 4°7*'is regular

MNow we shall prove the following theorem

Theorem 352 Let 4 be a matrix over D with index p and o(4%) = 5. Then
the follomina are equivalent

) 4 has a Drazin inverse

in Cst4) has a Drazin inverse
o
tin Cgtd” ) has a group inverse
o P!

vy TriCst4”y is invertible over D and 4*%is reaular

- .
W) A 'has a group inverse

o4n
wir 4%*is regular for all positive intesers n

2
@) 477 is reaular

Proof.

=i follows from the properties of Csld)

=610 Since Cs(A) has 3 Drazin inverse with index < k, Cs(4¥) has a

aroup inverse tfrom the last remark following Theorem 3.5.2)

) = ) is trivial by Lemma 3 34



() =) holds from Theorem 332

= Wi If n is a positive integer, choosing m such that n < (m-1)p, we

have 04D = 24" = oA™*) and since 4™ is resular, 4*Pis resular

w1 = Wil is obvious
@ib=(D) holds from first remark followina Theorem 3.5.4 a]

It is knoun that over a field every matrix has a decomposition (See (23,

ch 4 and [43), ch 4)of the form
A= A4, with the properties
@D ptap=0d,
(i) 4 is nilpotent

and

(i) Aydy = A4, = O
We shall row investigate whether over an integral domain also such a

decompesition as above (or similar) exists for every matrix

Observe that over a field condition (i) is equivalent to
i) Ay has a group inverse.

In the following Theorem we shall aive a necessary and sufficient condition

for 2 sauare matrix over an integral domain to have a decomposition satisfuing

the propertiss (%, (i) and (iii)

Theorem 353 A square matrix 4 over D has a decomposition 4 = A,+4;
satisfuing  ¢) (D and (i) if and only if 4 has a Drazin inverse. Such a

decomposition is unique

EE]



Proof. Gif part) If 4 has a Drazin inverse K over D, then, by defining

4y = a4 = k® and 4, = A - 4y, one can check as in the proof of Theorem 10, ch

4 of (2] that 4, and 4, satisfy (i) (i) and (iii).

‘only if part) : Suppose that 4 has a decomposition of the form A4 =A; +

Az with (% (D) 2nd (ii). Then there is a positive inteser m such that A7= 0 For
this m, "= 41" Since AT = A", the index of A = 4 < m. Since A, has 2 group

4 .
rse, 47'=4" has sroup inverse

Since scme power of 4 has a sroup inverse,
A has a Drazin inverse

Uniguenes:

of the decomposition follows as in the real case. a
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CHAPTER 4
BORDERING, RANK FACTORIZATION
AND
SERRE'S CONJECTURE

4.4 Intoduction

Kentaro Nomakuchi in [28] presented a characterization of Generalized

inverses of matrices over the field of complex numbers using Bordered

Specifically, Nomakuchi showed that if 4 is an m x n matrix of rank r

matri
over the field of complex numbers, there exists an invertible matrix

A F
T = of size (men-r) x (m+n-r) where P and @ are matrices of size

m % (m-r) and (n-r) x n respectively Nomakuchi in fact showed that all go-

inverses of 4 can be obtained bu looking at the inverses of matrices T in

BA = (7 = QR / P, Q are matrices of size m x (m-r) and

(n-r) x n respectively , and T is invev-uble) 4.4.0)

The above results hold good even for matrices over any field. But, over an

arbitracu rina it may not be possible to find a bordered matrix of the above

kind for every matrix, as the next example shows. From our Theorem 424, it
follows that even for a regular matrix over an arbitrary integral domain it may




not be possible to find a bordered matrix of the above kind

2 4
Example. Consider the matrix 4 = 2 4 over the ring of integers

Z This is a 2 x 2 matrix of rank 1. For this 4 theré is no bordered matrix

where 7 is an invertible 3 x 3 matrix over Z, because |T| is divisible by 2

vhatsver ke F, @ and R. Hence (4 = @ over the rina of integers.

In Theorem 4 24 we shall give necessary and sufficient conditions on an
integral demzin D so that every regular matrix over D has a bordered matrix of
the sbove tupe. Towards the end of this section using our results and Guillen

X,

and Suslin th em we shall show that Flx,, p-. 1 is projective free ( An

1 domzin is =said to be projective free if every finitely generated

erojective module is free) for amu principal ideal domain P, thus extending

n result te infinitely many variables

4.2. Bordering and g-inverses

In thas

on we shall aive necessary and sufficient conditions on an
irtearal domzin D so that every regular matrix has nonempty B(4). If TEBA we

can fu

2 g-inverse of 4 as shown in the following theorem

w
N



Theorem 424 Let 4 be an m x n matrix of rank “r

F
Let T= € BA  and T4 = where G44,G42.8z25,and Gz; are

ponding to the partition in T. Then G4, is a g-inverse of A4

Proof: Frosf of this theorem can be borrowed directly from the proof

oy Kentare Nomakuchi in (28] by considering T over the field of quotients

o

Mow we sha

11 prove a lemma which is useful in proving the main theorem

of this chapter

Lemma 422, Let 4 be an m x n matrix of rank r over D and suppose that

Fis an

% m-r matrix such that T = [ 4, P ] has a right inverse. Then 4 is

resular, and £ has 2 left inverse P ™' such that P

=0 and P TP = I

Proof. Suppose T  has a right inverse. Then there exists a linear

combination E TEI =% of m x m minors of T which equls one.

12, E Th e = 1 @z

Sinc

A =, 204 PD=mand 4 P are of size m x n, m x m-r respectively,

wa et 4F1 1z mer, also, ITHI could ba nonzerc only if « contains the indices

N+l nez, mn-m Let o = aMpel, ne2, sm+n-r} whenever IT§| is nonzero

Then

w
w



e
1731 = > sancniPdorllag |

o
where T = (Ty, 75, . Yppd an (m-ri-elements subset of (4,2,.m),

s3n(T) and 7° = (1,2,.. mN\7 (by Laplace expansion). Hence by

dering only the nonzero ITH, (4 2.1 can be rewritten as

’ >= sgnwnplpuAZﬂ) P @z
<

3

z (z sgr.-('hIAZ::I 15 [ SN @23
=

and the matrix obtained P ™! by

® = (>0 sonnLall | &%
i

4.z.4)

[124) 425

Clesrly, P7! obtained by (424 1s 2 left inverse of P. Since the matrix ™

cbtained by replacing (n+i)—th column by k-th column of 4 is of rank strictlu

than m, we et

(R =Zf;

side in (422) is a linear cobination of

minors of 4 we get that A is regular Hence the proof o

Lemma 423. Let 4 be an m x » matrix of rank r over D and let Q be

such that T

_ | has 12t 1nverse Then A is regular and



! such that 427t = 0 and [-1- N S

similar to Lemma 422

e following theorem we shall characterize integral domains over

thich svery ular matrix 4 has nonempty B4

Theorem 424, Let D be an intearal domain . Then the following are
equivalant
) Every finitely generated projective module over D is free

@2 Every regular matrix has a rank factorization. (See p.& for defn)

i) For every regular matrix 4, R4 = @

Remark.(i} above is the statement of Serre’'s conjucture for intearal

domains

Proof. ) = b - Let every finitely generated projective module over D
be fres Let 4 be an m x n regular matrix of rank k. Consider 4 as a module

homemorghism frem D7 inte D™ Since 4 is resular there exiztz 2 matrix

G D™ 4 D" such that 4G4 = A Lle chser

e that AG is an idempotent linear map

on D" into D™ and Range(d) = Rense(dd (= S, saw Mow cbsarve that for ang

ent linear map T : Do D™, Range(T is projective So we get that § is

projective 2nd by the hypothesis it iz free Suppose that S is isomorphic to D

for some integar 1 throush an izomorph. Let € = ¢4 and 8 = i,

vihere 1 5o 07

is the inclusion man €, where B is anm x 1



matrix and C i

3

an 1 x n matrix. Mow we shall prove that k= 1

is isomorphic to DY, € D"+ D! is onte. Since S is 2 direct

Since

summand of D, there exists a matrix ¢’ : D'+ D” such that CC' is identity

map and § is 2 direct summand of D", there is 2 matrix

" such that B'B is identity. Mow, since CC'=Ij and B'B = I , also A = BC, we get

1 Herce 4 =BC is a rank factorization

(1) = (i Suppose every regular matrix has a rank factorization. We

shall prove that for every regular matr.

A4, BG4 is nonempty. Let 4 be an m x n

matriz of rank £ and G be a reflexive g-inverse of 4. Then Ip -4G and I -GA

idempotent matrices and so, thew are regular of rank m-r and n-r

(n fact, over an intearal domain if an indempotent matrix has a

ion then 0(4) = tracel4) More generally, over a commutative ring
if =n idempotent marix 4 has a rank factorization BC such that B has a left

inverse and € has a right inverse then 20d) = tr

e(4). Since every regular

as rank fsctorization, Ip -4G and In -GA have rank

Im -45 = B x m-rCmer x m @286

4= Fn g oper Gner xon @zm

Since Im -43 and Iy -GA areidempotent matrices . we get

~ Using (426 and (427 we also get that

and @6 = 0 Herce we get that

5
~ -l 1S 3N man-r X men-r matrix with inverse




i) = () - Let X be a finitly generated projective module with ¥@ ¥ o~
n

for some module ¥ and some inteser n. Let 4 : D" 4 D7 be the natural
projection onto X and o(4) =r. Then 4 and 5 = I-A4 are idempotent matrices and

=0 B is regular. From (iii) we get that B(B) is nonempty and let

w

e G E B
T= = | € BB with inverse T = Then we get that has
a 5 F o H

Q

2 left inv

= By Lamma 422 we can obtain a right inverse Q™! of @ such

= In.r Since [ & £ 1is a left inverse of al v
GB +EG =1 428

By multinying both sides of 4.2.8 on the risht by Bg™* we set that
=5t @z

Since (- GEXI-B) = I- B and (- BXI- GB) = I - GB, we get that Ransed- GB)

- B) and this inturn Range(l- GB) = Range(d = X. From 4 22 we get that

B) = RangeE@ = Range(E) last equalitu is because @ has a left inverse

} is free because £ has a left inverse. Thus, ¥ is free o

Corellary 425. Qver an integral domain D if every finitely generated
projective module is free then everu m x k regular matrix of rank k can be

completed to an m x m invertible matrix

Froot follows from ) =

above theorem o



Remark. From the proof of the above theorem, it is clear that a regular
matrix 4 over D has nonemptu B(4) if and only if its kernel and cokernel are

free In other words B(4) is nonmemptu if and only if I -GA and Ip -45 have

rank fsctorizations for any g-inverse G of 4

Corollary 4.26. Over an integral domain D, the statement that “svery

equivalent to any of ), (D & (i)

regular matrix has the Smith normal form”

of Theorem 424

Proof. If a reaular matrix has Smith normal form, it is easily verified
that it has 3 rank factorization Conversely, if 4 is a regular matrix, from
condition i) of Theorem 4.24, 4 has a rank factorization, say, 4 = BC. Then

from Corollary 4 25, the matrix B can be completed to an invertible matrix P of

size m x m and C can be completed to an invertible matrix @ of size n x n and
o

that 4 = F| | _ |2 Hence the corellary. =]

we get

Remark. i) of Thecrem 4 2 4, namely “for every reaular matrix 4, B4 is
nonempty” 1S equivalent to the statement that “for every m x n regular matrix
4 of rank o there 1s an  m x m-rmatrix P such that [ A4 P 1 1s right

ti)

Remark. Corollary 426 generalizes a result (Theorem 1. of [53) of

Sontza In [S3] Sontag showed that over the rina of polunomials in saveral

th cemplex coefficien being regular is same as having Smith




CHAPTER S
GENERALIZED INVERSES OVER RINGS

1 Introduction

In this chapter we are concerned with generalized inverses of matrices

over various tupes of rings

In the second section of this chapter we shall characterize those rinas

over which every matrix has Moore-Penrose inverse

In the third section we shal see that with respect to g-inverses, rinas

with trivizl idempotents behave almost like integral domains

n

ion 4, we shall observe that the Rao condition on a ring is
equivalant to the condition “ If G is a (1,3} inverse of an m x n matrix 4, then

ez, en), where eye; .. en are summetric idempotents” which

the Robinson, Puystjens and Van Geel (S6] result

In sections S and 6 we shall discuss about the existence of a g-inverse

for a matrix over rings of A -valued functions on topological spaces

2. Moore-Penrose inverse over rings

It is known that over a field every matrix has a g-inverse. But, it is not
necessary that over an arbitrary ring, every matrix has a g-inverse (see the

example aiven in chapter 0). As early as 1336, von Neumann found necessary and

£ficient conditions on a ring so that every matrix over that ring has 2 g-

100



inverse [63]). See Brown and McCou [11) for an elegant proof of this result. von

Meumann’s result is the followina

Theorem S24. Let A be a ring, not necessarily commutative Every
matrix over A has a g-inverse if and only if A is reaular ie, for every a in

A there is a 2 in A such that aga = 2

A natural question which arises is “what are the rings over which all

matrices have Moore-Penrose inverses ?”. The following theorem answers this

question

Theorem 522. Let A be a ring with unity and an involution 2 - 2. Then
every matrix 4 over A has Moore-Fenrcse inverse if and only if A is regular

and is

finite with respect to the involution ‘- in the sence that

383, =0 =&; =0 foralli S2.0

Proof. Suppose that every matrix has Moore-Penrose inverse over A.
Then by Thecerm 52.4. we get that A is regular. Now we shall prove that
83, =0 =5, =0for all i.Let A = (ay.85.....a79) be such that 4%4 = 0
Multinluing by 4%, we et
A§~ {A =0

A EaFcant*oad e get A = Ad

A=0

Converselu, let A be regular and satisfy condition (52.4). Let 4 be an

% over A. First we shall prove that A4 satisfies ¥-cancellation




<, for any arbitrary choice of 4. ie

A*ap = Atac sB=C

Let x be 2ny n x 1 nonzero matrix and A*4x = 0, then we set x*4%4x = 0. Since

4 satisfiss SZ 1, we 9t Ax = O Hence A%45 = 4*4C = B = . We =hall show

that Aty acat a-a* is the Moore-Penrose inverse of A. Since
datand a0, WAt ara iarist undes e

s-inverses of 44%, by the ¥-csncellation properts of A we set Adtoadta = A

and aadtyata = 4 so sty st o454 = 4. Similarly it could be verified
that a*aatyaa*a-a* is a reflexive s-inverse and acatcadty- st a- 4%,
adracataratia sre summetric. Trerefore  AXaa¥r it o 4* is the Moore-

Fe

e inverse of 4 a]

Remark. The sbove (S2.1) is in fact alsc a necessary and sufficient
ceondition for every matrix 4 over A to have a (14,3) inverse (or for every

matrix to have a (1,4} inverse). Cao,Chang-Guang proved a similar result in (14]

53. Rings with Trivial Idempotents.

Ve =au that a commutative ring A has trivial idempotents if it has only O
and 1 a= the idempotents. In this section we shall give necessary and sufficient
cenditions for a matrix to have a generalized inverse over A, when A has
only the trivial idempotents. In Ch. i we have seen that, over an integral

domain, 3 nacess.

T and sufficient condition for a matrix to have a g-inverse
is that Crtd) has a g-inverse. But this condition is not sufficient over an

arbit:

md ring. For exampls, let A = Z,. the ring of intesers modulo 12,




has no a-inverse even though Cpld) = 4 which is regular

MNow we state a theorem from (52). Throughout this section A is a
commutative ring with identity having trivial idempotents unless otherwise

indicated

Theorem 53.4. (Bhaskara Rao [52). Let r be the determinantal rank of a
nonzero matrix 4 over a commutative ring A with identity. In the following, () =
() = (i) = UK = () = Wi If 0 and 1 are the only idempotents in A then (wi)
=W

g

) Thers exist (cg) in A such that E & Mgl o=t

8 :
4D There exist (e in A such that a; (5 cf 14%1) = ay; forall i

iz A is reagular
) Cpid) is reaular
) There exist (c5) in A such that A;’( E c |Ag|) = AZ for all ¥ and §.

@i The

s ex

t §) in A such that > 5 1431 is a nonzero idempotent

Proof. Since all 2 x 2 minors of Cpl4 can be written as a linear
combination of all r+k x r+k minors of 4, k 2 1 [31), every 2 x 2 minor of Cr(4)
vanishes and we get 0(Cn(A) is one. Now the proof follows the steps of Theorem

1zz o



Mo e shall derive several interesting consequence of this Theoerm

F @
Corollary S32.Let 4 =| _  _ |beakx1l matrix such that ot =
2Py, where P is m x n, @ is mx 1-n, R is k-m x n and § is k-m x 1-n matrix

over A If P is regular , so is A

Proof. If P is resular, then by Theorem $3.1, there exist (cd) in A such

P51 = 1, where § runs over all r-elements subsets of (1,2,..m)
er all ~- slements subsets of (L2,....m. Then choose df = o if «
is 2 subsst of (12, m) and 8 is a subset of (12,..n), and di = O otherwise.
Since 1431 = IF§1 for @ C €4, 2,..m) and 8 C (1,2,..n), we set
Gnxm O
o is a a-inverse of
vhere G is 3 g-inverse of P whose «, Nth entry is g;; o
Corollary 53.3. Let 4 be an m x n regular matrix of rank r over A. If
A
= o4,
¢ »p
then D is uniquely determined for aiven choice of B and C
4 B 4 A
In fact must be of the form for some matrices F and £
< b FA Fag



Proof. By Theorem S3.4. find (c9) such that > of 1431 = 1 Let 6§ be

dafined by

LB _a

9;; m_mgl
@B i
s 0 A4 B

By Corollary 532 we get that o g | is @ minverse of o I
therefore

A4 B G 0 A B AGA  AGE A B

¢ pjo ofc b | lceacer| | ¢ D
determines D uniquely from B and ¢ The second part follows easily o

Mow we shall look at aroup inverses and generalize Theorem 3332 to

with trivial idempotents

Theorem 534. Let 4 be a square matrix over A. Then the following
statements are equivalent
[$3] A has group inverse
(i 04 =0t and 4% is resular

[§553) 1471 is invertible in A
2
<

Proof. (h=ii). Let G be the group inverse of A. Then 4GA = A aives us

A% = 4 which in turn implies that  0(4%) =0(d). Since 4G = GA, A%G24% = 4% ang

2

A% is regular



(s i Suppose 4% = 4 and 4% 1s resular. From Theorem 5.3.1,

5 n A suen that

> f 1% =1
<
Soof uEnadl =1

8,7

STl STk g =1
o

a8

from which we est that > 1471 is invertible.

ti=() Proof is similar to the case of part (i) of Theorem 3.4.4. G

obtained by

3 Y
sji= >y Bl

is a commuting g-inverse of 4 and GAG is the group inverse of A. o

Remark. It can also be shown that (i), (i) and (iii) of the above theorem

are equivalent to the statement “Cn(4) has group inverse”
Corollary 535. If A% is the sroup inverse of 4, then 4% is a polunomial
in A cver the ring A

Froof is similar to that of Theorem 335 o

Using Theorem 5.3.4 we shall now generalize Theorem 2.2.6 for matrices



over rinas with trivial idempotents. ke need a result due to Fuystjens [45] .

First we define

Definition : A matrix 4 is said to be %-cancellsble if

4*4B = 0 implies that 4B = O

44*B = 0 implies that 4*8 = 0

Lemma 53.6. Over a commutative ring if a matrix A has Moore-Fenrose

inverse, then 4 is ¥-cancellabe

Proof

Theorem S53.7. Let 4 be an m x n matrix of rank r over A Then the
following are equivalent
<) A has Mocre-Penrose inverse

i puat D= o0 and Fa® exist

E 1351471 is invertible.
EX

Proof. () = (i) : Suppose that 4 has Moore-Penrose inverse over A. Then
we set 04%4) = 04 and A and Cp4 are %-cancellable by Lemmma 536. In
caze Cra*4?) = 0, we set CHA*AY) = Cra®) Cra CrA®) Crtt = O which
impliss  CHb = 0. Therefore we set CAA¥4?) = 0 and oAa* 0% = 0. 1f A" is
the Moore-Penrose inverse of A4 then 4*4**4*4**is a a-inverse of (4*4% and

*

hence (4* 47 is resular. So we set (4¥4) has group inverse, by Theorem 5.3.4.

i = b © Suppose a4t A% = o0 and (A% exist. Since



Sowatagi = Sz
g “B

sertible

by Theoram 524 we gat E AFIAZ) is b

(iD= (1 : Bd Theorem 2 2.4, we get that G obtained by the equation

% 3 &%
53k = gl 526!
Exd Ld
is a {43} inverse and similarly it is a (14,4) inverse which ensures the

stence of Moore-Penrose inverse. Note that G itself may not be a reflexive

a-inverse but GAG definitely is a Moore-Fenrose inverse o

5.4. Rings with Rao condition

Let A be an associative rina with identity. Following Robinson [S6] we

that & satisfies

Rao Condition : If 332,3; = &, in A then a; = 0 for iz 1
T

3 Bhaskara Rao [53] showed that over an integral domain with trivial

invelution, satisfuing the above condition, only matrices with Moore-Fenrose

M 0
Ses are those which are permutationally equivalent to o 0 with M

invertible In Theorem 542 we shall see how a matrix which has (4,2) {1,4n

inver

inver

over an associative ring A satisfuing Rao condition, looks like. In the
folloning lemma we shall first see that an idempotent summetric matrix over a

ring A sati.

“ing Rao conditen is permutationally equivalent to a diagonal



% with summetric idempotent entries

Lemma 544 Let £ be an n x n summetric idempotent matrix over an

asscciative rina A satisfying Rao condition. Then E = diagieyesz ..en) where

ey.€2 ..en are summetric idempotents

*

Proof. Let (i, pth entry of € be e;; Since E* = £ EE’ E and we

aet

eu = ek

By Rac condition we get e

O foriskand e;

is a summetric idepmotent. O

Theorem S54.2. Let A be an associative ring with identity. then the

followin

2re equivalent

satsfies Rao condition

i 1f G is a (1,3) inverse of an m x n matrix A, then AG = diagleyea,

en),
wihere eyez ...en are summetric idempotents.

i) If Tad; = 1in A, then 3;a; = O whenever i = J .

GiY 1f G is a (1,4) inverse of an m x n matrix 4, then GA = diag(fyfz, ...fn),

vhere £, fn are symmetric idempotents

Proof. (i) = (i) is trivial by earliar Lemma

(Do D cIf Sayd; = 1in A, let A = lag &2 an*. Note that
T

* is 3 (1,2 inverse of 4. Also, by (i) we get &;3; =0 for i # J

G =t(ay 82 . . apd

= a; in A. Since a, is summetric and

i = ) : Let >a
T

1= api-3p +3 8;5; + 38;8;
%l 1

109



=0 for every i and j except for 1 =y = { and 4- a

for every j

which implies that 2, is symmetric idemootent and 3; =0 for j = 1 () =G =

(21 = ) Follow

similarly o

In the ab

e theorem if the only summetric idempotents in A are O and 1

1t reduc

to the theorem given below

Theorem 543. Let A be an asscciative ring with trivial summetric

noctents then the following are equivalent

) A satisfies Rao condition

inverse of an m x n matrix 4, then 4G = diagte,es, ...ep),
n are either 0 or 4
in A, then than 3a; =

22y 2 (1.4} inverse of an m x n matri: A then G4 = diag(f y,f . )

where £z fp are ether O or 1

Theorem S544. Let A be an asscciative ring with trivial idempotents

Then the folloiung are equivalent

= Rao condition
28I 20 m x 0 matrix 4 has (4.3) inverse, then there exist a permutation
M
mstrix P such that 4 = £ { 0 } vhere M has a right inverse

au' I snom ¥ nomatrix 4 has (1,4} inverse, then there exist a permutation

matrix @ such that 4 =[N 0 JQ uhere N has a left inverse



Proof. w= i)  Supposs § be a (1.3} inverse of 4. Then by (= i) of

en), where e; are O or 4. Therfore

hat 4G = F

’ M
A= 4G4 =P Fa=p where M =[ I 0 ]pPA
° o o [ o ] t ]
Sirce
o
FrAGE =
o

28t that M has 3 right inver

o

Simlarly we can prove () = (i) (D = @)

= ) follol

from the earliar theorem o

Dl Robinson Et Al. [56) proved that A satisies Rao condition if and only

rices which have Moore-Fenrcse inverse are permutaticnally equivalent to

Mres O
o a

vihere My is an invertible matrix

Remark. If A is a commutative ring in the above theorems it is very

CECTRER

if that r. s which correspond to the sizes of M and N are equal to

the dsterminantal rank of the matrix



55. A-valued Functions over Topological Spaces

In this section we shall consider matrices with coefficients from an
sdditi.e cateaory of functions from a set X into a commutative ring A with
trizal adempotents We denote this category by F({, A). Note that $(X, A) is
3lse a commutative ring with identity e consider mainly the rings &(X, A) of
continucus functions on X, DX, A) of differentiable functions on X whenever X
is a topological space and A is also a toplogical space and differentiation of

functions 1

viell defined . We have the real line or complex numbers as a

candidate for A in this case

In the following theorem we shall consider matrices with constant rank
over A, 1e, 0L is fixed for all x in X, and characterize those matrices
which have Moore-Penrose inverse We say that a matrix 4 over X, A) is of
constant rank if 0L40) is constant for all x in X whenever 400 is considered

25 a matrix over A

Theorem SS5.4. Let X be a tcpolosical space and 4 an m x n  matrix of
constant rank r over the ring (X, A} Then the following are equivalent
4 is regular

b €

b is regular.

‘i) Thers exist cf in FOX, A) such that 2 55|Ag| = 1, where a, 8 run

.8
ver all r-slements subsets of (1.2,..m) and

.n) respectively.



Proof. Proof of (U= (ib), tib= () are similar to the cases (iii)=(iv) and

o=

of Theorem 52.4

(iD=(iid)  Let Cp(A) be reaular and échlG be a g-inverse of CHA), where
2.8 run over all r-elements subsets of (1.2, m) and (1,2,.. n} Since Cpld(x) is
of rank one for every x in X and (CE‘X”a,a is a g-inverse of Cr(A(x) , we get

— g @ o
> 25145k = 1 for every x in X. Hence 2 céx,w =1 o
B a8

Similar results can be obtained over the rings &(X, A), DX, A). where A

3 ring with trivial idempotents In the following theorems we shall consider

the case T = &X, R), &X, ©), DX, R), DX, © and derive conditions on matrices

which have Moore-Penrose inverse and group inverse.

Theorem 55.2. Let 4 be an m x n matrix of rank r over T. Then A is of

constant Fank (of

rse, F) over X if and only if A4 is invertible.
- als
2

Proof. Let 4 be a matrix of constant ramk r over we get that

E 1231143169 is nonzero for every x in X. Since the mapping x - x! is

a8
continuo

and differentisble on AN for A = € or R we sst > (AFI4%1 is

invertible in T

Conversely, if E VGI4F1 is invertible in T, then
ETd

(S mgnagi) oo ( > 1AZ1AZ o = 1 for all x in X which implies that
Erd ez

= 0 for every a. 8 | is empty Hence we get that o(A(x) = r =



A4 and 4 1= of constant rank a

Remark. In the above theorems the hupothesis that 4 has constant rank

over is essential. For, if X is not a connected space orme can construct an

easy sxample of a matrix 4 in ¢

R) which has Moore-Penrose inverse but

> 1A%114%1 is not invertible and not sven a matrix of constant rank

Exd

Mo we shzall give a necessary and sufficient condition for a matrix 4 of

) to have a g-inverse

necessary that

Theorem 553. Ly

4 be a sguare matrix of ra

 r over T in which case

* be 2 connsctad topological scace Then the following are equivalent

B) such that > c§|AE| = 1, whers , 8 run

<,
cver sall r-slements subsets of {1 al

nd {1.2,.... .n) respectively

() 4 is of constant rank

Fenrose inverse

Proof. Froof of () = (i) is clear

(i = i) Let  Cp) be regular and (cg)‘w3 be a a-lrverse of CpA),



vhere

run cver all r-elements

m) and (1,2, m). Since

g
Cridizn is of rark one or zero for svery x in X ard (chtil, g IS 3 a-inverss of

t

Crtdix) | we

E cgmgum = 1or O for all x in X

o
Since nectad. we ast that

> cﬁmgm =1 for all x in X or O for all x in X

pLAGoy =1 ) is nonempty (since 2L4) = r), o we get that
E cgmﬁuxr =1 for all x in X
B8

S5 =1

} can be proved 3as in the proof of Theorem 552

) = 4w I A4 is of constant rank, from Theorem 552 we gst that
-_

> 1AZNAZL is invertible. Hance

— e

145 1o
i P

ermines the Moore-Penrose inverse of 4 at x for every x in X. Therefore

1451 s 14%1
sl 52

the Mocre-Fenrose inverse of 4 over T

trivial o

sven for T = RNy, Hp.. Xpl'(see




cht . for definition) That (iD = (v follows , because (E 1EFAF) 7t s in

B3
whenaver 1251451 does not have a zero. Thus
aliig

Jp of Sontag( (59, Theorem 2)

Theorem 55.4. Let 4 bs 2 square matrix of rank » over T such that 4 has

ver ¥. Then A has group inverse if and only if E 4% is

1milar to the ca:

of the Moore-Ferrose inverse o

56. Generalized inverses over Banach algebras

In  the finite dimensional case, all questions of controllability,

and stabilizability for linear sustems have been reduced to

by many mathematicians

(621, but due to the

wnfinite-dimensional =

stems, 2all the above mentioned three

ecome manifold and difficult Chen Wanui [6S] gave necessary and

sufficient conditions for right and left inver

tibility  of a matrix over a

commutative Banach algebra in connection with finding necessary and sufficient

for controllability of a agiven control sustem. In this section we

shzll consider ma

ces with con

stant rark over the carrier space of a given
commutative Banach algebra with unit, and characterize all regular matrices
This caracterization is useful in solving the linear sustems like, state eguation

of a contrcl problem MNow we

all state Gelfand-Maimark theorem which we




rmad Lnbhout

Theorem S56.4. If B is a commutative Banach algebra, then the map

is a homomorphi

of B into the CY-alesbra oo of all

ntinuous funct:

2ns on X, where X is the set of all nonzero homomorhisms of B

into € ¥ B is unital, then X is compact and the spectrum of an element b in B

15 Spgekr = BU0 (This ¥ is called the carrier space of the Banach algebra)

Corollary 56.2. For an element b in a unital Banach algebra B, & in &%)

tible if and only if b is invertible in B

Proof. Since Spglb) = £, in case b is not invertible, then 0€5pgi) =

) whach imolies that B is not invertible. Therefore £ in €00 is invertible if

and

1f b is invertible in B o

Mo e shall see that a matrix 4 has Moore-Fenrose inverse whenever A

the matrix corresponding to 4 in &

has constant rank over X

Theorem S63. Let 4 be an m x » matrix of rank r over a commutative

a B ruth unit and te the carrier space of B. Then the following

alent

Macre-Penrose inverse and > IAZIASI is invertible in B

a .o a
resular and there exist ¢ in B such that E A

where a,

& run over 211 r-alamen of (12, m and (12, M




not exist any linear functional x in ¥ such that x(43D = 0

Proof. ) = (i is trivial
D = uib Let A = (F;p be a reaular matrix and there exist cf  in B
that E g.a|4 I'= 1 Then we ast E CQ‘AGI = 1 in &%) which implies A has

ant ranic aver X and

MIxEx/ 1AZI00 = 0) =2
an 4 g

which gives the result

win = W ppose for a matrix 4 = ;5 there does not exist any linear

functionzl x in X such that x(14%D = O for 211 @, 8 , then we get

€x/ 1li‘§<z,«.> =0) =2

n
@B
1431 is invertible in (%), where u Eﬂ 1331451 in B

=

= E I4ZN14Z1 is invertible in B by corollry 56.2. From Theorem

.

5 =
N IAEI 1A5| 55.0
)

determines the Mocre-Penrose inverse of 4 over ¢OX and hence

2 B %
‘B'a;“”B'

daterm




Corollary S56.4.(Chen Wanui [65). Let 4 be an m x n matrix over a

commutative Banach algebra with unit. Then the following are equivalent

i) There exi

t an n x m matrix G such that 43 = I

i) For =ach x in ¥, 400 considered ss a linear transformation from €7 to
"

" iz ento

il For each x in ¥, the rank of the scalar matrix AGO is m

Proof. ()= () follows from (id= (iil) of Theorem 563, since |4G] =

S14glI5"1 = 1 Gin=() follows from (iD= () of Thaorem 563 as follows
3

since > 12F14E1 =144%1 is invertible we o=t that G =4%adN ! satisfies the
7

condition () of the corrollary. (i} & (iid is trivial

Theorem 565. Let 4 be a square matrix of rank r over a commutative

Esnsch 2lgsbra B with unit and let the carrier space X of B be connected. Then

the fcllowing are eauivalent

= arcup inverse

S 1431 i= invertible, wher= 7 runs over r- slements subsets of (L2,..m
<

) There does not exist anu linear functional x in X such that

SCHAD

o

Proof. (0 = (D © Since 4 has sroun inverse, 4% is a resular and since



the carrier space is connected we get that 4% is of constant rank over X
Therefore > 147100 # O for every x in X, we set > iyl is invertible in €GO
ki

5
and hence Z I‘q| is invertible in B
i
(ii)=(i) can verified easily.

(i) & (ii) is trivial o
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