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SUMMARY. Single sampling plan Ly attributes with threo docision critoria minimising
the avorago amount of inspection at process ovorage quality was developed by Pandey ef al (1972a).
Tho idea of the above threo docision critoria was extended to sampling inspection by variables
by Pendey (1972b). In tho present puper Dayesian Single Sampling I'lans by il with
threo decision crileria for discrote prior distribution have been idered.  Tho plans provido
minimum (rostricted and unrostricted) value of the cont function which is more general than the
cost function considored by Hald (1060a). A doublo binomial with paramoters p’ and p* (p* < p”)
with weight of w, and w; respectively whoro 1)+ vy = 1 and in the limiting caso a point binomial
with paramoter p have becn assumed a3 the pnor distribution for tho Jot quality, Somo examplos
and sct of plana il ing tho i d ora given. Tho existenco of uniquo
molution is shown and it hes beon observed Lhat tho cxpectod total loss is a non-decressing
function of tho lot sizo with deercasing non-negativo slopes.

1. INTRODUCTION

In practice the costs are more tangiblo to the industrialist and the cor-
responding choice is easier to mako than the choice of risk points and risks.
This is mainly because the various decision costs, difficult though some of
them may be to determine, are closer to the kind of data that industrialist
can supply on a rational basis than are the various risks and risk points. In
practico the plans based on even the rough cstimates of costs may bo found
quite satisfactory as Mr. Tippett (1958, pp. 146) has pointed out. During
fiftics, based on various decision costs some valuable works to develop cconomic
plans were done. Some of them aro by Anscombe (1950), Hamaker (1951),
Sitting (1951), Weibull (1951), Champernowno (1953) and Horsnell (1957).

To evaluate tho minimum expected valuo of tho desirable loss or cost
function, it is appropriate to consider some prior distribution for tho item
characteristic or the lot quality. Assuming prior distribution for the lot quality
several papers on Bayesian sampling inspection such as Barnard (1954), Guthrie
and Johns (1959), Wetherill (1060), Pfanzagl (1063), Hald (1960, 1965, 1067a,
1967b, 10G8), Johansen (1070), Hald and Thyregod (1971), Thyregod (1072)
havo appeared. Theso plans are based on two decision criteria i.0. they uro
cither acceptance-rectification or acceptanco-rojection plans. Tho concopt
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of three decision in sampling inspection was first introduced by Pandey et. al
(19720).

The purpose of this paper is to develop single sampling plans with threo
decision criterin for attribute inspection which minimises consumer’s cost
under the assumptions (a) the cost is o lincar function of the incoming quality
and has tho model as given in section 4 (b) tho incoming lot quality has a prior
distribution given by double binomial (or in limiting case point binomial).
It has been observed that the expected total loss is a non-decreasing function
of tho lot size with decreasing non-negative slopes. The existence of
unique solution js shown. Some illustrative optimal plans are provided in
tabular form. A comparison between plans with three and two decision cri-
terin has shown a definite advantage in favour of three decision and further,
this advantage becomes more and more pronounced as the proportion of in-
coming lots with deteriorated quality level increases.

2. ToE THREE DECISION CRITERIA

The lot-by-lot acceptance sampling plans by the method of attributes,
in which each unit in a sample is inspected on a go-not-go gauge basis for ono
or more characteristies and the lot-by-lot acccptance sampling plans by tho
method of variables, in which each unit in a sample is measured for a single
characteristio, such as weight or strength, aro cither acceptance rectification
or acceptance rejection plans.  We shall refer to these plans es plans with two
decision criteria i.e. (i) a lot cither being accepted as & good onc or being olassi-
fied as bad ono and screened for the purpose of acceptanca or (i) a lot either
being accepted as a good one or being classified as bad one and rejected. In
practice situation arises whero o 100%, inspection of too bad lots and replacing
or rectifying largo number of defectives or out right rejection of moderately
good lot may not be an cconomically valid proposal, In such cases it may be
economical to operato the plan on the basia of three-decision criteria i.o. either
(i) classify tho lots in three quality grades A, B and C and accept grade A as
good lot, screen grado B lots and reject & grade C lot out right or (ii) classify
the lots in three grades A, B and C as before and accopt grado A as good lot,
accept grade B as moderately good or salvagable lots and reject grade C lot
out right. Wo shall refer to the three-decision criteria (i) as D and (i) as D*
respectively.

Acceptanco sampling plans by attributes with threo decision criterin D
are discussed in this paper. Acecptance sampling plans by variables with
threo decision criteria D* will be discussed in & scparato paper,
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Tho consumer i3 supposed in this paper, to operate the plan to safeguard
hig interest against accepting a lot which is too bad. The consumer bears
the cost of inspection in tho interest of the producer. Ho is not a narrow-
minded consumer in the scnso of Tippett (1938, pp. 137). The consumer allows
a chance of 1009, inspection for lots which are not accepted ordinarily but
are not too bad. Every such lot should bo accepted after screening. The
lots which are too bad (srade C) may involve high cost of screening and neither
the consumer, who bears the cost of inspection would allow sereening of such
lots nor the producer would find the cost of replacing or rectifying too many
defectives as attractivo.

The outright rejection of any lot may be deemed by the producer as a
drastic action on the part of the consumer if serecning be tho gencral practico
under two-decision criteria. However, the producer may agree to such o
proposal provided :

(i) tho consumer agrees to accept the moderately good lot (Grade B)

cither after imposing & penality to the producer or after sereening.

(ii) only too bad lots (Grade C) are rejected outright and

(iii) tho consumer agrecs to bear the cost of inspection (or at least 1009,

inspection).

Single sampling acceptance plan-by attributes with three-decision criteria
D is defined by the parameters #, ¢, and ¢, and is to be operated as follows :

Take & random sample of  items from N and let z bo the number of defee-
tives in tho samplo then

Aceept if 0 z< ¢y
Screen if ¢ <z 6 e (1)
Reject if ¢, <z n

Doublo sampling acceptance plan by attributes with three-decision criteria
has been also developed and is discussed in a separate paper by Pandey (1972c).

3. TRE CONDITIONS FOR APPLICABILITY

Though the inspection with three decision criteria is not in the current
use it is not difficult to find practical situations whero this can bo gainfully
employed. For tho applicability of tho criteria D all of the following five
conditions should bo sutisficd.

(1) Items arc inspected on lot-by-lot basis.

(2) Defectivo items in accepted lots cause somo damage which is measur-

ablo in cconomic terms.
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{3) Tnspection docs not involve nny destructivo or very enstly testing
i.e. 1009, inspection i3 permissiblo.

($) Anydefective item if detected can be cither replaced with a good itom

or reetified.

(5) The condition (py < p,) for three-decision criterin as derived in
Section 4 in terms of the break-cven qualities holds,

It is felt that the conditions (1)-(4) are generally satisfied in thoso indns-
trial situations where two-decision ecriteria i.c. acceptance-rectifioation or ac-
ceptance-rejection isin use. Thus, the condition (5) in fact, determines whether
a three-decision eriteria D ean be used.

The cconomic adsantages of the plans with three-decision criteria greatly
depend on tho weights 1o, and w,. For higher valucs of 1, the plan with threco-
decision criterin will be more and moro advantageous as compared with tho
plans with two-decizion criteria (fig. 7 and fig. 8).

The acceptance sampling plan with three-decision eriteria D* is appli-
cable in those situations where the following five conditions aro satisfied.

(1) Ttems are inspeeted on lot-by-lot basis.

(2) Acceptance of any defective item is undesirable but if accepted it
does not hamper much the functional requirements.

(3) Inspection involves cither a destructive or costly testing i.e. 100%,
inspection is not permissible.

(4) Any defectivo jtem if detected can bo either replaced with good
item or rectified.

(6) Tho condition (pu < p,) for three decision criterin as derived in
Section 4 in terms of the break-oven qualitics holds.

To point out n practical situation where D* can be applied the author
wighes to montion tho following experience during his consultancy work.

An organisation {around ealeutta) purchases various storo items from
different local supplicrs.  One of the store items is a sort of bandages used for
medical dressing.  This organisation is using sampling inspection for the pur-
pose of acceptance of the lot of bandages. The samplo is subjected to tho
following two types of test :

(i) scouring test (which is a destructive test) and

(ii) test for determining weight per metro,
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Any failure on the part of a bandage to mecet the specifications in respect of the
two characteristics is undesirable but it does not affect much the end use of
the bandnges. Depending on the test results a lot is either (a) accepted as
ratisfuctory or () accepted with some penality to the supplier or (¢) declared
unsatisfactory and is rejected outright. The organisation has some amount
of arbitrariness whilo deciding the percentage of penality to the supplier. This
is mainly because the inspection is actually done on the basis of two-decision
criteria and a good deal of arbitrariness arises while classifying the unsatis-
factory lots into acceptable lots with penality and lots which are outright
rejectable ones. The author feels (as was also checked by using some rough
values of various costs) that an acceptance sampling plan by variables with
three-decision criterin D* would be an appropriate plan in this situation. As
mentioned earlier, such a plan is the subject matter of a forth coming paper.

4. THE MODEL

Let N and 7 denote the lot sizo and sample size and let X and z denote
number of defectives in the lot and the sample respectively. The ncceptance
numbers are denoted by ¢, and ¢,(¢, < c,).

In this paper we shall consider the following linear cost function.
S +z8s+(N—n)d+(X—2)d, for z <¢

hX,z,N,n,¢,¢)= < n8+28,+(N—n)T,+(X—2)T, for ¢, <z<e,

n8,+28,+(N—n)R,+(X—2)R, for e, <z n
@

where 7S, denotes the cost of inspection and xS, denotes the cost proportionnl
to the number of defective items in the sample. In fact S, includes sampling
and testing costs per item and S, denotes additional costs for an inspected
defective item including tho repair costs per item in case the defective items
found in the sample are repaired. Thus the costs #8,+2S, associated with
tho sample give the costs of sampling inspection.

Costs of aceeptance are given by (N—n)4,+(X—2)4,. The part(N—n)4,
is proportional to the number of items in the remainder of the lot and A,
usually will be zero or negligible. The part (X—z)4, is proportional to the
number of defective items accepted and hence A, will often bo considerable.
If the accepted items are used as a basic raw material or components to manu-
facture some product 4, may include tho manufacturing cost or the prico of
an item, the costs of handling a defective item in bling and dk bli
and damage done to other parts uscd in the asserbly. In case of inspection
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of finished goods A, may include the cost of repair, service and guarantecs
plus loss of good will.

Costa of screening is given by (N—n)T,+(X—2)T, and aro composed
of o part (N—n)7), proportional to tho number of items in the remainder of the
lot, and another part, (X —x)7T,, proportional to the number of defective items
in the remainder of the lot. 7, may include tho costs of handling and costs
of inspection per itemn whereas 7y may includo the costs of rework or replnce-
ment and the costs of delay per defective item caused duo to screening.

Costs of outright rojection are (N—n)R,+{X—z)R, and are composed
of (N—n)R,, proportional to the number of itema in the remainder of tho lot,
and another part (X—z)R, which is proportional to the number of defective
items in the remainder of tho lot. R, may include the costs of storage per
rejected item before disposal, the costs of handling per rejected item during
disposal and tho costs of delay in availability of the raw material or tho com-
ponents for manufacturing or assembling per rejected item. R, is generally
zero or negligible.

From Hald (1067a) the cost function (2) becomes

(S, +S,p)+(N—n)(4,+4.p) for =z <¢,

b~ {8+ S.0)+H(N—n)T\+Top) for ¢, <286 ... ()
(S, +S,p)+(N—n) R+ Ryp) for e <z
disregarding tho terms of order 4/#.  The averago cost can be written as
K(N,n, ¢, ¢) = [ K(N,n, ¢, ¢, p)d (D) e (4)
where 17(p) denotes tho cumulative distribution of p and
E(N, n, ¢, ¢ p) = n(8,+5,9)+(N—n)((4,+4:p)Pa(p)

+(Ty+T22)Pa(p)+(Ry+Ryp) Py(p)) e (8)
The probabilities Pa(p), Py(p) and P,(p) are defined as follows :
Pa(p) = Bley,n, p) e (6)
Py(p) = Bley, n, p)—Bley, n, ) o (7)
Py(p) =1-Bleyn.p) - (8)

where B(c, n, p) = T ( :) P*(1—p)"-2. Since it i8 assumed that the process
=0

averege varies at random according to the cumulative distribution funetion
W(p), {5) represents tho averagoe costs over all the lots with n given process
averago i.o. u conditional averago and (4) gives tho overall averago.
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To simplify tho notations let us introduce four cost functions :

ki(p) = §,+8,p - ()
ka(p) = dy+dsp we (10)
kip) = T\+T.p e (1)
k(p) = B\+R.p o (12)

defined for 0 € p <1. The corresponding averages &y, ka, k¢ and &, are defined
by

k= {: Hp)dI¥(p) e (13)

We shall make the following assumptions regarding thé functions (9), (10),
(11) and (12).

(1) Al these functions are non-negative and nono of them is identical
to zero.

(2) ka(0) < k4(0) < k(0) i.e. for a 1009, good lot cost of acceptance per
item is the least and the cost of sereening per item will be quite low whereas
the cost of rejection per item would be considerable.

(3) ka(1) > k(1) > k(1) i.e. for a 100%, defective lot cost of acceptance
per item i the highest and the cost of screening would be considerable whereas
the cost of rejection per item is the least.

Sinee 4, < Ty <R, and d,+A,> T\+T,> R+R, it follows that
Ay=Ty>T—4,>0 and T,—R,> R,—T, > 0 and tho equations ks(p)
= ky(p) and ky(p) = k,(p) have tho solution py = (7~ 4,)/(ds—T4), 0 < pu < 1
and pp = (R,—T)(T3—R,), 0 € p, < 1 respectively. (Ve shall assumo that
Pu <p, Fig. 1).

(4) k(p) > km(p) for 0 < p € 1 where ky(p) is defined as follows :

If pu < Py, kn(p) is given by (14)

ka(p) for p<py
kn(p) =  (p) for pu <p<po e (14)

kfp) for p>p,
and if py > po, km(p) is given by (15)
kal. for p<
x-,@):{ ? P=Ps . (15)
k(p) for p> py
where pp = (Ry~4)/(4,—R,), 0K pp < 1
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when py > P, the three-decision criteria D reduces to two-decision criteria of
acceptance-rejection plan (sco fig. 1 and fig. 2)

€5,
33

43

73]

3s,

)
w?
23

COST ——p

ke (D)

02 06 10 19 8 22 26 *30
b —
Fig. 1. Cost functions when py < p,, ka (p) = 720p, kr (p) = 10—=806p, Lt (p) = 20,
Pu = 0.0158, py = 0.1176.

Further, it can be noted that under assumptions 1-4 the three-decision criteria
is aliways better than the two-decision criterin if p, < p,. In cases whero
Pu 2> Dy it is economic to use two-decision criteria (Fig. 2).

In this paper we shall assume that p, < 2,. For p, < p, tho average
minimum cost ky, is defined as

? 0
bn = E‘ful‘a(}’)fl”f'(P')+ x{’ k(p)dlW(p)+ .fl"r(P)dW(P) o (16)
u Py

km given by (16) represents the average cost per item when tho following
decision rule is used.

Accept all Jots from processes with p < py

Secreen all lots from processes with p, p, < 2 < 25

Reject all lots from processes with p > p,
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cosT

02 ‘06 10 14 ‘18 22 26
b—>

Fig. 2. Cost funotions whon p, > p., ka(p) = 720p, kr{p) = 174 300p, kr(p) = 20,

Pu = 0.0405, p, = 0.0100.

2Py 8nd p, are called break-even qualities. The break-even qualities p, and p,

are used to classify the lots in three-quality grades as follows :
Grade A : lot of quality p < py
Grado B : lot of quality p, py £ 2 <2y
Grade C: Iot of quality p > p,
Following Hald (1067a) we define the standardised form of (4) as
RN, m,cp, ¢0) = (K(N, m, €y, ¢)— Nk Y (ks—km)
which gives

—n)

R= 4 B (4= { [ pu= P Palo) Vo) +

(a7

(18)
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Po
[ 0=pPutpHW (D} +T— R { [ (PP )+

{ (p—p1 =P oNA (p)) - (19)
P

In this paper we shall confine to discrete prior distribution. Tho caso of conti-
nuous prior distribution has been dealt in another paper by Pandey (1973).
Assume that the prior distribution is a double binomial or as a limiting case
a point binomial. The double binomial distribution is a weighted average of
two binomials with parameters p' and p%, p' < p° and weights w, and w,,
10,410, = 1 i.c. the process nvernge has a two point distribution. To justify,
at least with practical point of view, the assumption of double binomial or
point binominl as the prior distribution of the lot quality p, the following may
be added :

In practice, generally a process is set to operate at a good or acceptablo
quality level (AQL) and as soon as it deteriorates to operate at a bad or reject-
able quality Jevel (RQL) corrective actions are taken to restore the good level.
A process is desired and hence generally designed, to operate at the good level
as long as possible (i.e. low value of p* with high value of 10,) and only occasional
deterioration of the pracess to the bad level (i.e. high value of p* with low value
of w, = 1—1,) may be considered as a normal phenomena. However, situa-
tions may arise where the process may continue to turn out large number
of bad lots (i.e. w, < 10,) over a considerable period. The consumer may not
have any other sources of supply and he may adopt a plan with three decision
criteria to safeguard his cconomic interests.

In view of the above a double binomial (as also assumed by Hald (1960))
may be used as a prior distribution for the quality of the Jots. Alternatively
8s a limiting case a well controlled process may bo stable around the process
averago (say p) and for the lots produced by this process we may assume point
binomial (as also assumed by Dodge and Romig (1929)) as a prior distribution
of the lot quality.

A necessary condition for o sampling plan with three decision to exist
under tho double binomial as a prior distribution is that p' <p, < p, <2°
(ie.vy> Ofori,j =1,2). Assumingthatp’ < p, < p, < p” the standardised
cost function can be written as

RN, n, ¢y, ) = n+-(N—n){pyy(1 — Pa(p'))+1:Pa(p") +
i Pr(p) +va(1=Py(p")) - (20)
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whero v = 0, (k@) —ka(P W (ke—Em)
vy = wy{ka(p”)— k(" (ke —kim)
vay = w,{ky(p") = ki(P")H(ke—knm)
vee = w{kr(p")—ke(p")} ks —Km)

Thus the averago decision loss per item is a linear combination of the probabi-
lities 1 —Pa(p’), Pa(p®), Pe(p’) and 1—Py(p).

5. CHOIOE OF RISES

The consumer’s and producer’s risks aro most widely used for characterising
aystems of sampling pluns. The consumer's risk is defined as the probability
of acceptance of a lot or process with deteriorated or lot toleranco percent
defective (LTPD) quality. Tho producer's risk, a concept opposite to the
consumer's risk is defined as the probability of rejecting a lot of good quality or
acceptablo quality level (AQL) by the consumer. The well known systems
of plans which provide lot quality protection in terms of the consumer’s risk
are the Dodge and Romig’s (1929) LTPD systems of plans. When & plan with
three decision criterin is operated for a receiving inspection any misclassification
of an inferior quality lot or process as & suporior quality lot or process entails
a risk to the consumer. To provide o lot quality protection in caso of the
plans with threo decision criteria on the line of tho Dodge and Romig's LTPD
systems of plans, it may le therefore, logical to specify the consumer’s risk
in terms of the probabilities of misclassification of the above type. When
a plan with the threo decision criterin is operated the miselassification entailing
o risk to the consumer would arise in two ways : (a) when s fairly good grade
B lot is classificd as grade A or (b) when a faitly bad grade C lot is classified as
grade B or grade A lot. Tho consumer’s risk, therefore, need be specified at
two quality levels—one of grade B and the other of grade C.  For this purposo
the two quality levels p, and p, (p, < p,) aro chosen depending on the consu-
mer’s specification as follows :

The quality level p, is specified in such a way that tho probability of mis-
classifying a lot of this quality under tho plan as grade A is quite low 8, (say
-01 t0 0.10) and the probability of classifying it correetly as grade B is fairly
high.  Similarly the quality level p, is specified by the consumer in such a way
that the probability of misclassifying a lot of this quality as grade B or grade
A is quito low f, (say .01 to .10) and tho probability of classifying it correctly
as grade C is fairly high (Fig. 3),
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Fig. 3. Oporating characteriatio urve for the plan (s, ¢,,c;) with n = 220, ¢, = 6, ¢, = 30.

The risk £, is the probability of misclassifying a lot of quality p, as grade A,
The risk B, is the probability of misclassifying o lot of quality p, cither as
grade B or A. These risks §; and #, are mathematically written as

P = Bley, n, py) e 21
and By = Bley n, py) (22
using the sample criteria (1).

The concept of producer’s risks say, a, and a, at quality level p; and p;
(say) respectively (Fig. 3) can be similarly defined. Mathematically

a = bz, n, p}) . (23)
Zety+l

and a,= Zn b(z, n, py) . (29)
Zcg+l

where p; dcnotes the quality level such that when a plan with three decision
criteria i3 operated tho probability of misclassification of a lot of quality
p: (grade A) as either grado B or C is quite low say a, whereas the probability
of classifying it correctly as grade A is fairly high. Similarly, p; denotes
the quality level such that the probability of misclassifying a lot of quality
2, (grade B) as grade C is quite low say a, whercas the probability of classi-
fying it correetly as grade B is fairly high. However, sinco tho plans consi-
dered in this paper are on the line of Dodge and Romig's LTPD systemns of
plans (consumer's risks plan), tho notion of the producer’s risks is not relovant
to the discussions in tho subsequent secti
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From amongst the large number of plans satisfying rpecified values of the
lot tolerance percent defectivo (LTPD), consumer's risk (f = .10), lot sizo
{¥) and process average (p) the Dodge and Romig’s LTPD systems of plans
select the unique plan which minimizes average amount of inspection at process
average quality p.  Similar to the above plans, Pandey ef al (1972a) developed
plans with three decision criteria for inspection by attributes. From smongst
the large number of plans satisfying the specified values of the parameters
their plans select tho unique plan which minimises average amount of inspection
at process average quality. In the present paper the criteria of minimum total
average cost per lot has been used to select the unique plan.

As explained carlier in most practical situations the quality of items being
produced by a process may be nssumed either to be fluctuating on two levels
in the manner as described in section 4 or to Lo stable around an average level.
Further, it may be desired in some cases to have sampling inspection plans
which cither have some specified probability of misclassification (consumer’s
risk) at some specified level of quality or are free from any such restriction.
Motivated Dy the above practical considerations, the subsequent sections we
shall devoto to the following three areas of the single sampling plan with three-
decision criteria

(1) Double binomial restricled Bayes solution—DBayesian single sampling
plans 1with double binomial as a prior distribution and having some
resiriclion on the consumer's risks i.e. the plans are required to satisfy
elosely the specified value of the consumer's risks (8, and f,). These
plans are called restricted Bayesian plans with double binomial as
the prior distribution and are discussed in the Section 6.

(2) Double binomial unresiricted Bayes solution—Bayesian single sampl-
ing plan with double binomial as a prior distribution. In this case
the plans (n, ¢,, ¢,) minimising R given by (20) and having no res-
triction regarding the consumer’s risk, would be developed. In
context of the plans of type (1), these plans will be referred to as
unrestricted Bayesian single sampling plans by attributes (Section
7).

(3) Paint binomial Bayes solution. The limiting cuso of double binomial
i.e. point binomial ns a prior distribution is discussed in Section 8.

6. DOUBLE BINOMIAL RESTRICTED BAYES SOLUTION

In this section wo shall assume that tho prior distribution is o doublo
binomial with parameters p’ and p, p’ < p” and weights w, and vy, wy+1r, =1
i.e. tho process avernge has a two point distribution. Tho standardised average
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cost is given by (20). Tho problem is to find (n, ¢,, ¢;) minimising (20) and
satisfying (21) and (22). Let S be the set of plans (n, c), ¢,) satisfying (21)
and (22). For any plan {n, ¢, c;) in 8, if any one of n, ¢, and ¢, is fixed the
other two are uniquely determined. For example for an atbitrary ¢, =0
say, Bey, », p,) < f, gives unique n = 52 and B(cy, 7, p,) < By gives ¢, =2
whero p, = .05, p, = .10 f, = .07 and §, =.10. Thus a plan in § can be
uniquely defined according to any ono of n, ¢, and ¢, We havo chosen ¢, for
this purpose. Let S(c,) denote a plan (n, c,, ¢y) and R,(c,) bo the valuo of (20).
Using the notations of (6), (7) and (8) wo write Ry(c,) from (20) as

Rifer) = mg (N =n, Yony(1—B, (0N +aBe (p)+
w(1-B, (¢, PN +veB, (6 p7) e (25)
where n, denotes the sample size in a plan (n, ¢, ¢,) and

()

¢ ‘2
Bp= X (1) pt—pr and Bfer) = E (] ) p-ps

with :‘;‘) denoting the value of tho sccond acceptance number ¢, when the
first acceptance number ¢, equals ¢ Tho valuc of ¢, minimising R, is deter-
mined from the inequality

ARy(c;—1) € 0 < ARy(¢,) - {26)

Wo get
AR(er) =(1—Vu—V:|+VuB¢,n(P')""uBc,H(P‘)

FvnBe yler P)—vaaBe 4 ca P NAN,

—(¥ =1 JoubB, (p)— B (B)

+“nABc‘(C:-P')-VuAB;l(C:- ?°) . (27)
To obtain the bounds for the lot sizo for which the plan {n, ¢,, ¢,) satisfying (26)
is the optimal plan wo shall define the following auxiliary function from (27)
l'

’u+"u B W )__IA B, ”(p)

Vs Vm ]

Ny, = "c,+(

ne
2 B aslen P)=Beyulea 2) : 28)
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where

v 5 Vie sV o .
U = (A8 ()= M () H2 A, (60 7)~AB, fe2. 1))

The plan (n, ¢,, ¢,) is the locally optimal plan for the lot size N if
N S NN, AB,, >0 and A B, >0 ae (29)

Yor two plws (ny, ¢, ¢;) and (ny, €5, ¢g) satisfying (26) and having overlap-
ping N—intervals according to (30) solving the cquation R,(N,my, ¢, c;)
= R\(N, ny, €3, ¢3) for N we get

Ny=

(“1“”1)(1—Vl|)+”z(31('"zﬁ)"‘"n4:52("1» c;n:_’h(&l(nv f;)—"2|+5z("1. C;))
8,(ng, €1) 85y, €3)—8,(my, €,)—8,(ny1 ¢5)

(30)
where 8in, &) = vy Bles n, ') —vi,Bles, m, p°) i=1,2 e (81)

1t is clear from (20) that R for & given (n, ¢, ¢,) is an increasing lincar function
of N and we have that

RN, ny, €5, €) S R(N, ny, ¢y, ¢;) accordingas N S Ny, o (82)

To discuss the uniqueness of the solution write the regret function R,(c,) as
follows :

0LNLn

Ryley) = (33)
"’e,"'(‘v —n,l)G(c,) n< N

where G(c,) denotes the expected decision loss (standurdised) as is defined in

(34)

6le) = (1B (0N + 1B, (0" )+vul1— B, o3, PN+ vuB 0 p) e (39)

Noto that the function Ry(c,) for a fixed (n, ¢,, ¢,) is & polygonal line consisting
of two segments with slopes 1 and G/(c;) when plotted against N, Cledrly the
minimum of Ry(¢,) would be attained for some plan in the set S for which the
slope G(c,) < 1. Thus, to consider the uniqueness of the optimal solution
we can assume G(c,) < 1. Fora given ¢, the cost function R, has one and only
1-Gle+1)
—AG(e,)
wo noto that Nq >, for Gle,+1) < 1 und ((c,) is non-increasing function of

one minimum with respeet to this value of ¢,.  Writing N‘. =n,+
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¢, with increasing slopes as it can bo seen from the figure 4. It can be casily
shown that &, is an incrensing function of n. Further, if it is shown that for

given plans S(c;) and S(c;) whero ¢] = ¢;+1, the regret function R,(N, S(c))

and the regret function R (N, S(c;)) as a function of N have at the most only
ono point in and the

point is an i ing function of ¢,,
the uniqueness of the solution is established.
800
PLANS 6
G ¢ _
o T L0
v20 t 12 e 46278
2 18 120 260°4
3 23 150 o8
4 27 o 62'9
€00 3 32 200 349
6 36 220 158
T 4«0 z40 €9
6 a7 200 30
480 9 31 300 22
ss 320 o
62 360 (%4
67 380 o3
SG36a 69 400 ol
s> 73 420 oo
© 77 440 00
80 480 o0
240 84 as0 oo
88 300 o0
$? 350 o0
20
o
o 0 13 14 [} 8

Fig. 4. Expeotad docision loss (standardised) as @ function of ¢, for Bayesian Plan with double

binomial as a prior distribution p’ = 0.01, p* = 0.15 and w, = 0.93, wy = 1—1; (G(C))
is given in tho units of 109)

Sineo for the restricted plans of this seotion tho cost functions R(N, S(c;))
and R(N, S(c;)) for a fixed ¢ are strictly inoreasing linear function of N
with constant slopes, there can be at tho most only one common point say,
N(ey, ¢}) at which R(N, S8(c})) = R(N, 8ic;)). The R functions for the plans
in § (satisfying the two restrictions) for tho costs as considered in tho
examplo 1 do not interseot (sce fig. 5) and hence each of theso is the optimal

plan for tho spocificd lot sizes, Theso optimal plans for ¢, = 0, 1, ... 8 aro
given in the table 1.
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Values of R(Cy) (in units of IO!)

o

o [y

pon W

PLAN

10 30

50

70

Lot Sizes (in unit of 107

90

Fig. 5. The values of R(c,) for varying lot sizes.

TABLE 1. SINGLE SAMPLING PLAN WITH THREE-DECISION CRITERIA
FOR DOUBLE BINOMIAL PRIOR DISTRIBUTION WITH p’ = 0.01

~ —ol2

AND p° = 0.15 AND WEIGET w; = 0.93 AND w; = 1=,

RESPECTIVELY

lot sizo lu'nphuw RIN %
s o e saving

52— 846 52 0 [} 200 15.36 *
847- 1811 86 1 12 1238 10.34 27.8
1812- 2674 120 2 18 2201 9.64 32.4
2675~ 3011 180 3 23 2838 9.8¢ 3.5
3012-11910 170 4 21 5089 8.84 38.0
11011-157656 200 1] 32 13703 8.6 40.2
15766-62678 220 L] 36 31438 8.38 d1.2

A without i is more

c2
6
12
L]

82

86
120
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In cnse the R functions interscct, the common point N(e, ;) is an in-
creasing function of ¢; as is shown below ¢
From (30) writing N(c;, ¢;) as
n 0 =)=, (1~6(c}))

NG ) = g (a6)
8, NEEAGE+1IAGE) = (AT, 1~0(6+2)
(1= GG+~ (—AGE+ ., (1=l +1)
—n(1=0(ci)) e (36)

Since G(c;) is non-increasing function of ¢; with increasing slopes and
n’.(l—G(c;)) ia strictly increasing function of ¢; the right hand side of (30) is
1

easily shown to be positive and hence A .N(c;,c}) > Oimplying that the point
1

of interscction is an increasing function of ¢;. This completes the proof
that the solution is & unique one.

Theso optimal plans can be systematically tabulated as follows :

Step 1: Take some arbitrary value of ¢, and obtain a plan say S(c,)
belonging to 8 by using (21) and (22).

Step 2: For the plan S(c,) so obtained, compute the value of Ne, and
N, _, ving (28).
Step 3: Choose ¢, = 0, 1, 2, 3... systematically and p d as in steps

1-2 and tabulate the sampling plans and tho corresponding bounds for the
lot sizes,

Step 4:  For two plans with overlapping N-interval use (30)-(32) to sclect
the optimal plans.

Thus from tabulated plans an optimal plan for a given lot size can be obtained
against the lot rango in which the given lot size falla, For illustration lot us
oconsider the following example.

Ezample 1: Obtain single sampling plan by attributes with three-
decision criteria minimising the total averago cost per lot whon the following
information is given :

The four cost functions be Kki(p) = 23+35p, ku(p) = 720p, ki(p) =
10+85p, ky(p) = 20, the coefficients denote costs per item in monoy units i.e.
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cost of sampling and testing is 23 monoy wnita per item in the sample, cost of
accepting a defective item is 720 money units and the coat involved in rojecting
an jtem out right is 20 money units ete, (sce Scction 4).

Let us further arsumo that lots are generated with probability w, = 0.93
from n binomially controlled process with p’ = 0.01 and with probability
10, = 0.07 from tho process with p” = 0.15. Also, suppose it is given that
the probability of misclassification as a superior grade lot is 0.07 for a lot
containing 5%, defective items and it is 0.10 for a lot containing 20%, dofective
items.

The break-even qualities work out as p, = 0.0158 and p, = 0.1176
From (13) and (14) k, = 23.693, ky = 8.096, k,—km = 15.507 and substituting
the relevant values in the expression of vy as defined in (20) we obtsin vy, =
0.217638, v;, = 0.382600, v, = 0.545586 and = 0.012342. To indicate
the computational procedure let us choose ¢, = 1 in the step 1. From (21)
and (22) we get ¢, = 12 and n = 86. To compute the bounds for the specified
lot sizes for which (86, 1, 12) is the optimal plan we shall use (28).

The necessary quantities to compute N¢l for ¢, =1 are

AB, (p') = 0.093020, AB, (p°) = —0.000010, AB, (¢, ') =0,
AB, (¢, p") = 0.006400, U = 1.544128, B, ,\(p) = 0.880360

B e ) =1, B, 1(p") = 0, B,p,fea p7) = 0.562450.

Substituting these values in (28) we get
N,; = 80+(78.351966)  34/1.544128 = 1811.224103,

Similarly Ne.-x = 847,

Thus for any given lot size .V in the range 847 < N < 1811 the optimal plan
is given by (86,1, 12).

Optimal singlo rampling plans with three-decision eriteria for the same set
of values of the cost parameters ns in the above examplo and p, = 0.05,
Py = 0.20, A, = 0.07, f, = 0.10 and double binomial prior distribution with
2’ = 0.0l and p°* = 0.15 with w, = 0.93 and w, = 0.07 for ¢, taking values
0 to 6 have been provided in Table 1.
Averago cost of acceptance without inspeotion por item ia 14.26 money units.
The porcentago saving increnses with the lost sizo and for ¢; = 6 it is as high as
41 percent,
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7. DOUBLE BINOMIAL UNRESTRICTED BAYES SOLUTION
To determine (n, ¢,, ¢5) minimising R(N, n, ¢,, €5} given by (20) is the prob-
lem of unrestricted Bayesian solntion. Theso plans are unrestricted in the
sense that they aro not required to satisfy any restriction on their operating
characteristic function i.c. there is no limitation in terma of risks, The plans
providing minimum R is to be used if the minimum R is leas than the costs of
accepting or rejecting all lots without inspcotion. As mentioned earlier
a neceszary condition for such a rampling plan to exist is that v, > 0, v, > 0
vy > 0and vy > 06, p’ < py < 2, < D",
According to Hald (1067a) the value of (n,¢,,¢,) minimising R must
satisfy the following three conditions

ARV, 1, €—1,6) € 0 <A RN, m,c1,6) 0 K €pyeg € m6y<ey oo (37)
AGR(Y, 1, ¢,6—1) € 0 < AcRIN, mycp0) 0 ey € 16y <y (38)
ARNn=Y ¢ c) € 0 AR mepe) <6 <akN .. (39)
Since A, Bley, n, 8") = bley+1, 5,2 oand A,Ble, n, ) = —pble,, n, 2) wo
get from (20)

B, RN, n, ¢, ¢) = (N=n)—vy;d(e,+), m, p')Fopbley+1, %, p°)) e (40)
BRIV, 0,0y, 6) = (N=m)(—vyblegt 1, 7, o' vdlegt L0, 7)o (41)
A,R(N, n, ¢, ¢3) = 1—=(vy(1—=B(cy, 2, p')+1aBle, n, p)4+va(1—=Bley, 5, 7))

FvaeBlca n, p))+(N~n—=1)(,2'bley, 1, 2')—1122"(61 7, P°)
Fvu@’b(es, 7, ') —vup"b(es, 7 2%)) - (42)
Solving the inequalities with respect to » and N we find that a Bayesian

sampling plan must satisfy the following three inequalitics given by (43),
(44) and (45) below :

a+fe, € n <y +-ple+1) e (43)
ayt+pey € n < agtple,+1) o (49)

where ¢, < ¢,
a = log :%“/log g', i=12, o (46)

B =log %/lm% .. (46)
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and Fin=1,¢,6) & N < F(n,c;,¢) e (47
where F(n, ¢,, ¢,) is defined by

F(n, ¢y, ¢p) = (n41)

, 1=vy vy Blo,n,p')—neBley,n,p") — vy +on Blesn, p') — vy B(csm,p”)
T —vapblamp) e beunp)—vup blesn.p')+ P b np")
. (48)

For two plans (n,,¢;, ¢;) and (n,, ¢}, ;) satisfying (43) and (44) and having
overlapping N-intervals according to (47) then solving R(N,n,, ¢}, &)=
R(N, ny, ¢, ¢3) for N wo got expression for Ny, a3 given in (30) and using (32)
we can select one of the two plans (n,, ¢}, ¢g) and (my, c;, ;) 88 an optimal
plan.
To discuss the uniqueness of the above solution write R(N,n,c,,¢c,) a3
follows :
N oLNLn
R(N,n, ¢, ¢) = e (49)
n4(N—n)D(n, ¢;,¢) n<N
where D(n, ¢,, ¢;) denotes the expected standardised deocision loss and is given
as
D(n, ¢;, ¢3) = vy{1—Ble,, #, ') +w12Blcy, 7, 2°)+vn(1 — Bley, 7, 7))
+vpaB(ey, 7, 2°) .. (60)
The graph of R(N, n, ¢,, c,) as given by (49) is, for a fixed (n, ¢;, ¢,) & polygonal

line consisting of two segments with slopes 1 and D(n, ¢, ¢,). Consider the
nature of the infimum R function i.e.

Ry(N) = inf. R(N,n, ¢,, ¢) o {(B1)
¥= ("' €y cl)
where y is the set of all plans (s, ¢;,¢,), 0 € ¢; < ¢y € 2.
Define a set of plans S*C y as
8* = {(n, ¢1, )i Din, ¢y 00) < 1} - (62)

From (48) we note that R(N, n, c,, ¢,) is & concave function of .V for (n, ¢;, ¢s)
€8°® and

R(N,n,¢5,¢,) > N for (n, ¢, c,)ey—5". e (83)

It follows that the minimum in (61) may bo attained for (n, ¢, ,)6S° only.
In fact for (n, ¢;, ¢,) —8* the minimum value of R(N,n,¢,, cy) is N and tho
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optimal procedure is as good ns inspecting all the itema (ie. n = N). We
shall assumo that n < N. Thus to discurs the optimal plans we need consider
only the plans (n, ¢, ¢,)eS°. Arguing as Hald (1007a), tho inequalities (43)
and (44) show that for ench n there exists one and only ono minimum R with
respect to ¢, and ¢, as it can bo ensily scen that 1 < ;}, <p <%, and the
optimal valuo of ¢, and ¢, are given by ¢; = [(n—a)/f] for i =1 and i =2
respectively. Thus to find the global or absolute minimum of R with respect
to ¢, ¢y and n we need, therefore, consider tho values of (n,¢,,¢,)eS* and
satisfying (43) and (44).

For each ¢, and ¢, tho inequality (47) defines N uniquely as a function of
n if F(n, ¢,, ¢,) as defined in (48), is an increasing function of n. From (48)
write F(n, ¢,, ¢,) a8

Fln ey ¢,) = n+l+l_—_A%((% . (54)

Since D(n, ¢,, ¢,) < 1 for all plana in S* and observation shows that D(n, ¢,, ¢)
is non-increasing function of n with increasing slopes (sce fig. 6), we have

0B

oy

0Un, ¢ ) ——
[-3 o
= b3

o
£

0 02| (,-I,(,r!
—

4 L) [ 6 20 24 20 32 36 L
n—

Fig. I
e 8 The expoctod dosision loss (standordisod) as funotion of the Sample Size for double bino-
mial prior distribution with P’ = 0.01, p” = 0.18 and wy = 0.03, vy = ! —w,.
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AD{n,c,, ¢)) <0 and F(n,c,, ¢;) > n+1 for all n satisfying (43) and (44).
To show that F(n, ¢,, ¢,) is an increasing function of n we need show A, P(n—1,
A XN

Noto that, taking all differences with respect to n

AF(n—1, ¢;, c)AD(n, ¢;, ¢)AD(n—1, ¢, €5)
= 2AD(n, ¢, c,}AD(n—1, ¢y, 6,)+(1—D(n, ¢;, e, )AWD(n—1,¢,,¢,) ... (55)

and since AD(n, ¢;, ¢;) < 0 and AD{n—1,¢,,¢,) <O (fig. 6) the first term
on the right hand side of (55) is positive and it is sufficient to show that
AD(n—1,¢,,¢q) 2 0. Since

A*D(n—1, ¢y, ¢g) = AD(n, ¢}, &) —AD(n—1, ¢,, c,) . (56)

and AD(n, ¢,, &) < 0,AD(n—1,¢,,¢,) < 0 and |AD(n, ¢, ¢,)] < |AD(n—1,
¢,6,)| for the values of n considered (see figure 6)

AtD(n—1, ¢, ¢,) > 0 and hence A F(n—1),¢,,¢,) > 0.

The regret function R for a given value of ¢,(and ¢,), and = satisfying (43)
and (44) would be according to (49) a non-decreasing piccewise linear function
of N with decreasing non-negativo slope. The proof to uniqueness of the
minimum i3 complete if we further show that R(N,n,, ¢, ¢;) and R(N, n,,
¢;+1, ¢y) have only one point in cornmon, and that this point increases with
c,(and ¢,). If the slopes of the tiwo regret functions are equal i.e. D(n,, ¢,, ¢;)
=D(ny, ¢;+1, ¢), they will interscct at only one point and that is infinity
because the numerator in (30) is finite. Suppose one of the intersection point
is N(e;, ,+1) given by

_ {ny—n)4+nD(ny, ¢, &) —nyDiny, 141, ¢3)
Nevertl) = D(ny, ¢y, ;l)—D("b 6+ l:Cg) e (51)

and D{n,, ¢, ¢;) 5= D(ny, €41, ¢5). Since D(n, c,, ¢,) is non-increasing function
of n with decreasing slope at N(c,, ¢,+1) we have

D(my, ¢1,¢) > Ding, e4+1, ). .o (58)

Suppose tho plans (ny, ¢, c,) and (ng, ¢, 41,¢;) intersect at another point
N'(¢y, €,+1) also where N'(c,, ¢,+1) > N(¢y, 6 +1). At N'(cy, ¢,+1) wo must
have D(n,, ¢,,¢;) < D(ny, ¢,+1, ¢;) which contradicts (58). Heunco the two
plans can interscct at ono point only. Tho point of intersection can bo
easily shown to be an increasing funation of ¢, (and ¢,) as in Section 6. This
completes the proof to the of tho i
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The plana discussed in this scction can be tabulated as follows :

Step 1: Compute vy, 4,5 = 1,2 from the expression given in (20) and
hence compute a,, &, from (45) and £ from (40).

Step 2: Chooso somo arbitrary ¢, (say ¢, = 0) and using the value of
a,, a, and A as obtained in the step 1 compute the lower limit 1(c,) and the
upper limit u(c,) for n from (43) such that 1(c;) < n < ule,).

Step 3: Take ¢, as ¢,+1 and compute the lower limit l{c,) and the
upper limit u(c) for n from (44) auch that 1(c,) € n < uc,).

Step 4: In case 1(c,) & ule,) choose ¢, 8 ¢,+1 and the values of n satis-
fying both (43) and (44) would lie in tho closed interval 1(c,, ¢5)} < n < u(c), €5)
where 1(c;, ¢,) = max {}c,), 1{c,)} and u(ey, &) = min {u(c,), u(cy)). In caso
1(ey) > u(c,) increaso ¢, systematically till we get 1(c,) < u(cy).

Step 5: Choose ¢, = 0, 1,2, ... systematically and p d as in steps
2-4 and list the values of n satisfying (43) and (44) corrosponding to each pair
of ¢, and ¢,.

Step 8: For the plans Jisted in the atep 5 using (47) compute the bounds
(N-intervals) of the specified Jot sizes for which these plans are optimal.

Step 7: For two plans (m, ¢;,¢;) and (my, ¢;, ¢g) having overlapping
N-intervals select one of these plans as an optimal plan by using (30)—(32).

Ezample 2. Using the costs as given in the example 1 of section 6 and
assuming that the lots are generated with probability s, = 0.93 from a bino-
mislly controlled process with p’ = 0.01 and with probability w, = 0.07
from the process with p* = 0.15 the steps 1.7 gave the values of c;, ¢, n and
N for the optimal plans as given in table 2.

where @, = -}-3.696568, ay = —24.8500812 and B = 18.761415.

The detailed caloulations along with intermediate tables are given in Pandey
(1074). The values of &, and 8, corresponding to each combination of ¢, ¢y, »
and the N-interval are also given in the table 2.

Tho values of cost per lot of tho size N (the geometric mean of the limits
of the lot size range) divided by the value of the geometric mean have been
computed and is given in Table 2. The percentage saving offected by the use
of tho plan with the three decision criterin as pored with the averago cost
involved in accopting an item without inspection is found to bo increasing for
tho increasing lot sizes. It can bo seen from Tablo 2 that the above percentage
saving in coat is at least 40 percent for the lot of sizo 2115 and above. The
computational results given in Table 2 show numerically that the optimal

7
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376 R. J. PANDEY

sample size increases with the lot size and tho optimal decision loss per non-
sampled item decreases with the sample sizo (Fig. 6). Theso two results
were observed by Thyregod (1972) also for plana with two decision criteria.

The probabilities of acceptance and the probabilities of sercening are com-
puted for the lot quality 2" = .01 and the probabilitios of rejection and screen-
ing are computed for the lot quality »° = .15 for cach of the optimal plans in
Table 2. The probability of acceptance at p’ increases with the optimal sample
sizo wherens the probability of screening decreases with the inereasing lot
sizes as it should be. The probability of rejecting a lot of quality " = .15
out right increases with tho increasing optimal sample size whereas the pro-
hability of screening a lot of this quality increases in the beginning (upto

N = 141) and then decreases for higher lot sizes.

The identical values of K/N in Table 2 tempt to work out o system of
nearly optimum plans containing only one plan for each pair of acceptance
numbers ¢, and ¢,. Such plans are provided in Table 3. The procedure of
simplification used to obtain the plans in the table 3 was to compute n as
ey e)+ulcy, €3))/2 where 1{cy, ¢;) and u(c,, ¢,) are the values as obtained in
the step 4 such that the closed interval 1(c,, c,) € n < u{c,, c,)gives the pos-
sible optimal values of sample sizes corresponding to a particular pair ¢, and ¢,
The N-intervals were computed by using (30). A comparison between Tables
2 and 3 shows that the system in table 3 provides considerable simplification
of the optimal system and the nearly optimum plans for most practical purposes
is just as satisfactory as the optimal plans.

Though the figures 1 and 2 in the section 4 clearly brings out the definite
advantages of a plan with the three-decision criteria over the one with two-
decision criteria in certain cases yet it may be interesting to attemapt o numerical

t of the advantages for an illustration. For this purpose in example
3 we shall consider the situation similar to one in the example 1 but with &
plan with two-decision eriteria (acceptancot ing). We shall work out
average total cost of inspection and decision per item for such a plan with
two-decision criterin and will attempt an comparison betiween theso values and
tho corresponding values for a plan with three-decision criterin as obtained in
Table 2.

Ezample 3: Let us nssume that the prior distribution of the lot quality
and tho three cost functions viz. cost of inapeetion, cost of acceptanco and the
cost of sereening bo the same as in the example 1 and the following sampling
procedure bo used.
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378 R. J. PANDEY
Take a sample of size n from a lot of N items and let z denote tho number
of defectives observed in n then
Accept the lot if z ¢
Screen the lot if 2> ¢. o (59)

Tho cost function K'(N,n, ¢, p) can bo written as
K(N, n, ¢, p) = n(S,+8:p)+ (N—n){((A,+Asp)Pa(p) +(T1+ Tep) Pulp))

... (60)
where the symbols have the usual meaning and Py(p) = B(c, n, p) and Py(p)
= 1—P4(p) denote the probability of acceptance and the probability of screen-
ing respectively. The unavoideble minimum cost km(p) would be defined as

En(p) = kalphoy 4 hu(p" oy . (81)
and tho standardised cost function is

R(N,n, ¢) = n+(N—=n)(ny(1—Pa(p'))+v,Pa(p")) - (62)
where v = wy(ki(p")—ka(p'D/(ke—km)

vy = wy(ka(p")—ku(p")) (ke —Fm).

It is required to obtain (n, ¢) which minimises (82). The necessary expressions
to determine the optimum plans are

atfo < n < atplet+l) o (63)
=log”t [log .
where a = log ,,: / log ¢

=10Lq,'loq—’-
8 gmlsq.

and F(n—1,c) € N < F(n,c) o (64)
where F(n,c) is defined by

= l_V|+V1Pa(P')_V:P¢(P')
Flm o) = 14 = e, m, 2)Frap b, m 5

The points of intersection for tho two plans (', ¢’) and (a*, ¢”) having overlap-
ping N-intervals is given by
_ ("= )1 —v)+n"8(n’, ") —n'8(n", ¢')

N S, ¢ )—a(w', ¢) (63)

whero 8(n, ¢) = v B(e, », p')—wnB(c, n, p°)
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For this examplo v = 0.217638, vy = 0.3820068, « = 3.696567 and
£ =18.761415. Using the exprossions (60)-(62) and the values from Tables
5 and 6 in Pandey (1074) and proceeding as Hald (1060) we obtain the optimal
plans with two-decision criterin as givon in Table 4.

TABLE 4. OPTIMAL SAMPLING PLAN WITH TWO DECISION CRITERIA
FOR w, = .03 AND w, = .07

N n e N 1.0 .ii/’:.’,g ;’2?:’) ?.?:')

27- 33 ] 0 20 13.21  7.36 96.08 47.80
- a1 [] 0 37 12.80 10.24 95.10 55.83
@ 80 [ 0 " 12.46 1262 .15 62.20
51- 80 7 0 113 12,11 15.08 93.21 63.84
ol- 73 8 0 ] 11,81 17.18  92.27 72.78
- 88 [ ° 80 151 19.28 91.35 76.8¢
B~ 107 10 0 97 11.22 21.32  90.44 80.31
08~ 131 11 0 118 10.05 23.21  80.83 83.21
132 180 12 0 146 10.69 25.03 88.64 85.78
18- 198 13 0 178 10.47  26.68 B87.75 871.91
19— 247 14 0 221 10.26 28.05 86.87 80.72
248~ 313 15 [ 278 10.06  20.46 86.01 91.26
A 408 16 0 87 9.88 30.71 85.15 92.87
407- 28 1 107 9.80 31.28 06.82 93.73
408- 41 20 1 400 9.70 31.35 96.60 94.51
412 a3 30 1 412 9.70 31.36 96.39 95.20
M- e 31 1 as 9.78 $1.42 96.16 95.80
25~ 42 a2 1 426 9.78 31.42 95.03 06.34
- 2 23 1 Y 8.77 31,49 95.70 08.80
“- L1 1 0 9.77 31.49 96.46 97.21
W= e 3 1 3 9.76 31.56 95.21 97.87
464 486 38 1 I 9.73  81.77 94.07 97.88
486- 487 37 1 488 0.73 31.77 94.71 98.16
488 811 38 1 400 0.72 31.84 04.45 08.40
s1- 1391 30 1 843 0.27 34.00 04.19 68.61
1392~ 1484 5 2 22 8.98 37.03 98.30 ©0.18
MEs- 1422 55 2 188 8.96 37.17 98.22 09.28
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TABLE 4 {contd.).
CRITERIA FOR v, = .03 AND w, = .07

B, J. PANDEY

OPTIMAL SAMPLING PLAN WITH TWO DECISION

— (%) 100x  100x

N n ° N KIN saving Py p’) P(p")

1623- 182¢ 56 2 1523 8.05 37.24 08.13 09.34
1526 1602 87 2 1563 B8.95 37.24 08.04 99.42
1803~ 4128 88 2 2672 8.73 37.38 97.86 00.49
4129- 4324 4 3 4225 8.60 30.60 90.34 60.73
4328~ 4534 76 3 4428 8.50 39.76 99.31 90.76
4538 10796 76 3 6908 B.49 40.46 9D.28 90.79
10700~ 11254 ol 4 11022 B.43 40,88 99.77 09.87
1255~ 119 92 4 11499 8.43  40.88 09.76 99.87
11750- 11782 2 4 11766 8.42 40.05 90.75 99.90
11783~ 12381 H 4 12068 8.42 40.95 09.74 98.91
12362- 28655 95 4 18821  8.38  41.23 99.72 90.62
28636~ 30502 110 5 20504 8.36 41.44 00.91 99.95
30503~ 30038 11t 1] 30719 8.35 41.44 900.81 90.08
30039~ 32517 n3 5 N8 8.36 41.44  00.00 ©9.97
32518~ 74130 114 B 49205 8,33 41.58 09.89 90.97
74731- 78152 120 8 76422 8.32 41.65 00.07 00.98
78183~ 81833 130 [ 76071  8.32  41.85 99.06 09.98
81834%- 82220 1 8 82031 8.31 41.73 99.06 ©0.99
82230~ 88228 132 (] 84208 8.31 41.73 00.06 99.00
80220~ 00570 133 L] 88377 8,31 41.73 00.06 09.09
90580~ 212623 134 8 138778  8.30 {1.80 90.06 99.09
212024~ 225122 181 7 218783 8,30 41.80 09.68 100.00
225123- 500142 152 7 335548 8.30 41.80 90.98 100.00
500143~ 1250180 188 8 700733 8.20 41.86 00.99 100.00
1250161~ 1307850 18¢ ] 1278680 8.29 41,80 100.00 100.00
1307851- 3200180 187 1] 2045814  B.20 41.86 100.00 100.00
3200181- 3400180 205 10 2203665 8.20 41.86 100.00 100.00
3400181~ 3600180 208 10 3408751 8.20 41.88 100,00 100.00
3800181~ 3800180 208 10 3008828  8.20 41.86 100.00 100.00
3800181 8500200 200 10 5083511 8.20 41.86 100.00 100.00
8500201~ 9000200 220 11 8740028 8.20 41.86 100.00 100.00
9000201-15000200 227 n 11810187 8.20 41.86 100,00 100.00
15000201-16000200 260 n 15402134  8.20  41.88 100.00 100.00
16000201-17000200 281 13 10402623 8.20 41.86 100.00 100.00
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The figure 7 shows the average total cost of inapection plus the decision
cost per item againat the lot sizes, V, for the plans with three decision and two
(acceptance/sereening)decinion eriteria (Tables 2 and 4) with p* = 0.01, p* = 0,15
w, = .03 and 1, = .07 aa tho double binomial prior distribution. The figure
7 clearly shows that tho plan with three decision criteria is more economienl
than the plan with two decision criteria.

The advantages of the plans with three decision criteria as compared with

the plans with two decision criteria will be moro pronounced for higher valucs
of w, i.0. when considerable number of lots with doteriorated quality levels are
submitted for inspection the plans with the three decision eriteria will have
definitely substantial reduction in the values of K/N as compared with the
plans with two decision criteria. To illustrate it, in example 4 we shall consider
the plans with threo decision criteria and the plans with two decision criteria
for the same zet of cost functions as in the examplo 2and 3 but with p’ = 0.01,
p° =2 0.16 w; = 0.10 and w, = 0.90 as the double binomial prior distribution.

—— GO Ourve bor ploa ik 2 Covinen

—— o Corve ot pisn i § brnen

T 3 » [ B0 0 mOM0 400 600

% 0w
wor me B oo b —s

Fig. 7: Cost curvos for plans with two and thros dosision oriterla for w,=0.93, wy—0.07

Ezample 4 : The necessary quantities to obtain the plans with three-
decision and two-decision criteria (acceptance/screening) for tho double binomial
prior distribution with p’ = 0.01, p" = 0.156 and w, = 0.10 and wy = 0.90
and for the cost function ki(p), ka(p), k() and k(p) same as in examples 2
and 3 aro

by = 21.16; kp = 18.72

iy = 0.403762; v, = 8.487278; vy, = 0.101217; »,, = 0.273783
@ = 19.074527; a, = 0.520389; # = 18.701415 and a = a;,

N=vni vy =y,
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Using the above values of v;4's, a,, @, and B in (43), (44) and (30) we obtain
optimum plans with three-decision criteria in Table 5 through Tables 8 and 9
in Pandey (1074). Similarly, using the above values of @, ﬂ, " and ve m (63),
{64) and (65) we obtain the optimum plans with two-d

ing) criteria in Table 6 through the Tablea 11 and 12 in Pundey (1074) The
figure 8 shows the average total cost of inspection plus the decision cost per
item against the average lot sizes () for the optimal plans both with three-
decision (Table 5) and two-deoision (Tablo 8) criteia. It is clear from tho
figuro 8 that the plans with three-decision criteria is more economical than the

e e CoMl cute of plons wAa B éreaien

—— Ol (wee o pa Sl Jaainan

(
l

Yoo » © @ '100 o "o - wo 100 000
we e B 22, et

Fig.8: Cout curves for plans with two and threo decision ariteria for w, m0.10, wy=0,90
plan with the two-decision criteris. A comparision between figure 7 and 8

confirms that the advantage of three decision ia more p d for higher
value of 1,.

8. POINT BINOMIAL BAYES SOLUTION
As a limiting case of the double binomial prior distributi that
the prior distribution of the lot quality is point binomial with the parameter
p- The cost function, under the tion 4 (Section 4), has its minimum

P

value when the following decision rule is used

Accopt all lots from processes with 5 < py
Screen all lots from processes with 5, p, € P < 2, - (66)

Roject a1l lots from processes with 5 > p,
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TABLE 6. OPTIMAL BAMPLING PLANS WITH TWO-DECISION CRITERLA
FOR w; = .10 AND wy = .00

N n ° N R)N M‘\?ng }’0,‘(););) }":(or)s)
30- 3 20 (] 3 26.61 172,62 81.70 96.12
- 38 21 38 26,17 173.27 80.97 96.71
39- " 22 0 41 26.76 73.70 80.16 07.20
45 50 23 0 4 £5.33 74.08 179.36 97.62
8- 57 2 0 83 25.00 74.41 78.57 97.08
88— L] 28 [} [J] 24.70 .70 71.78  98.28
87— n 28 [] n 24.36  75.12 177.00 98.54
78~ 90 27 0 83 24.03 75.46 76.23 98.76
9~ 107 28 0 1] 23.71 16.78 75.47 98.%4

108- 187 29 0 1u? 23.41 76,00 T4.72 00.10
128~ 154 30 0 140 23.14  176.37 73.97 99.24
185- 187 31 0 170 22.88 76.63 73.23 90.35
183~ 189 [t} 1 188 23.12 76.30 52.25 99.48
190- 183 4 1 191 23.00 76.42 91.95 90.55
194 a8 1 104 23.07 76.44 0l.60 ©0.61
185- 201 49 1 197 28.04 76.47 91.36 90.88
202- 50 1 202 23.02 76.40 91.08 99.71
203~ 81 1 203 23.02 76.40 90.75 80.75
204~ 212 ] 1 207 22.99 76.62 90.44 99.78
213- 53 1 213 22.97 716,54 90.13 99.81
24 22 54 1 17 22.05 76.66 80.82 09.84
223- 810 58 337 22.30 77.13 89.50 09.88
81— 31 70 2 520 22,16 77.36 98.67 §6.90
832~ 84 n 2 542 2812 T1.41 96.54 9.91
883 7 2 585 22,11 77.42 96.42 99.92
586~ 582 k] 2 568 22.00 77.44 08.29 99.93
583~ o8 K] 2 598 22.08 71.47 06.18 99.04
10— 1429 78 2 933 21,77 77.77 96.03 99.95
1430~ 1800 02 3 1464 21,68 71.91 08.81 60.97
1501- 1578 23 3 1837 21.81 77.83 08.56 90.98
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OPTDIAL SAMPLING PLANS WITH TWO-DECISION

(%) 100x 100X
N n o N KIN saving  Py(p) Pyp?)
1576~ 3068 o4 3 2404  21.47 718.07 08.50 09.08
3000- 3868 1Ml [ 3262 2140 78.14  00.47 99.09
3850~ 6088 112 ‘ 5888 21.33 78,22 09.45 09.00
8086~ ™20 128 ] 0200  21.20 18,20 00.81 00.99
$421- 9888 129 [ 9051  21.20 78.26 90.80 100,00
0889 22048 130 5 4765 21.26  178.20 99.79 100.00
22049- 23008 148 [ 22623 21.24  78.31 00.03 100.00
23000~ 24062 146 [} 20520 21.24 78.31 00.03 100.00
24063- 147 6 24083 21.24  78.31 90.02 100.00
20086~ 25204 148 [ 24671 21.2¢  78.31 $0.92 100.00
21205~ 88531 e ] 38477 21.22  78.33  09.03 100.00
68532- 61069 165 7 50787 21,21 78.34 90.87 100.00
61070~ 63066 168 1 62501 21,21 78.34 90.87 100.00
63007- 64423 167 1 64104 21,21 78.34  99.07 100.00
81424~ 07753 168 1 66007  21.21 78.34 ©90.97 100.00
87764~ 154703 109 1 102380 21,20 78.35 90.67 100.00
15460+ 162319 188 8 188465  21.20 78.35 90.09 100.00
162320 372260 187 9 245818 21.20 78.35 ©00.09 100.00
372270~ 905524 203 [] 383720 21.20 78.35 100.00 100.00
395525~ 400208 208 [} 40238 21.20 78.36 100.00 100.00
400267~ 937603 208 [] 61489  21.20 78.35 100.00 100.00
937604- 041370 220 10 530630  21.20 78,35 100.00 100.00
941371- 1000100 221 10 970334  21.20 78.35 100.00 100.00
1000191~ 222 10 1000191 21.20  78.35 100.00 100.00
1000192~ 1050020 223 10 1020185 21.20 78.35 100.00 100.00
1050021~ 2143070 224 10 1500504  21.20 78.35 100.00 100.00
2143071- 2285030 230 11 2213348 21,20 78.35 100.00 100.00
2285031~ 2428780 240 11 2350273 21,19 78.38 100.00 100.00
2428781~ 2571640 241 1 2400180  21.10 78,36 100.00 100.00
2571841~ 2714800 242 11 2642105 21,19 78.36 100.00 100.00
2714501~ 5666000 244 11 3022002 21.10  78.36 100.00 100.00
5606901~ 8000230 261 12 5831184 21.19  78.36 100.00 100.00
6000231 7500280 262 12 6708458  21.10 78,36 200.00 100.00
7500281 8000280 206 M 7740247 21,09 78.30 100.00 100.00
8000281 8520280 208 14 8250187  21.10 78.30 100.00 100.00
8520281-17000300 207 14 12035263 21,19 78.36 100.00 100.00
17000301-18000300 208 14 17402156  21.19 78.30 100.00 100.00

4
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where p, and p, are the breakoven qualitics as defined in tho Seotion 4.

The above prior distribution amounta to having a full information of the
lot quality. In such a ease the optimal procedure is given by (66) resulting
in the following deceision costs,

ka(@) if p<p,
kn(@) =< k(P) if pu<P<pe . (67)
k@) if P <.

where we assumo, as mentioned enarlier, pu < py. If pu > P, the thres decision
criteria reduces to a two-decision criteria with cost function as given in (185).

9. CONCLUDING REMARKS

Bayesian plans with three decision criteria discussed in this paper have
A definite economio advantages over the plans with two decision criteria under
the situations as pointed out in the paper. The threo decision proccdure with
ita bersome cost functi 0t some what complicated. But it should
not create any difficulty to a user if the optimum plans for most of the practical
situations aro made available in a atandard tabular form (it is intended to pub-
lish tables of optimum plans with three-decision criteria for most of the common
values of vy, §,j = 1, 2 with most double binomial prior distributi
soon). A vigilant management with a good fecd-back information aystem will
find it rather quite easy to obtain reasonable cstimates of wy's.

The economic advantages of such plans, in the absence of standard nsuable
tables, may make it quito tempting to work out these plans with the help of
an electronic computer by following the systematio steps given in the paper.

A simple extension of this paper may be done by considering three quality
levels i.e. & trinomial prior.

It would be interesting and usoful to carry out a sensitivity analysis of the
optimum plans for the possible fluctuations in the values of vy and to study
asymptotio proporties of these plans. The asymptotio propertics of thesa
plana aro going to be discussed in o forthcoming paper. It would bo rather for
theoretical intereat to consider k-dccision criterin for oven moro general cost
model and derive the threo-decision proceduro as a particular case. Some
thought has been already given to develop sequential sampling procedure with
three-decision criteria and to oxamine its proportics.
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