BAYESIAN SINGLE SAMPLING PLAN BY ATTRIBUTES WITH THREE DECISION CRITERIA FOR DISCRETE PRIOR DISTRIBUTION

R. J. PANDEY Indian Statistical Institute

SUMMARY. Single sampling plan by attributes with three decision criteria minimising the average amount of inspection at process average quality was developed by Pandey t of (1972s). The idea of the above three decision criteria was extended to sampling inspection by variables by Pandey (1972b). In the present paper Bayesian Single Sampling Plans by attributes with three decision criteria for discrete prior distribution have been considered. The plans provide minimum (rottricted and unrestricted) value of the cost function which is more general than the cost function considered by Hald (1960a). A double binomial with parameters p' and p' (p' < p') with weight of w_1 and w_2 respectively where $w_1 + w_2 = 1$ and in the limiting case a point binomial with parameter \bar{p} have been assumed as the prior distribution for the lot quality. Some examples and set of plans illustrating the computational procedures are given. The existence of unique solution is shown and it has been observed that the expected total loss is a non-decreasing function of the lot size with decreasing non-negative slopes.

1. Introduction

In practice the costs are more tangible to the industrialist and the corresponding choice is easier to make than the choice of risk points and risks. This is mainly because the various decision costs, difficult though some of them may be to determine, are closer to the kind of data that industrialist can supply on a rational basis than are the various risks and risk points. In practice the plans based on even the rough estimates of costs may be found quite satisfactory as Mr. Tippett (1958, pp. 146) has pointed out. During fifties, based on various decision costs some valuable works to develop economic plans were done. Some of them are by Anscombe (1950), Hamaker (1951), Sitting (1951), Weibull (1951), Champernowne (1953) and Horsnell (1957).

To evaluate the minimum expected value of the desirable loss or cost function, it is appropriate to consider some prior distribution for the item characteristic or the lot quality. Assuming prior distribution for the lot quality several papers on Bayesian sampling inspection such as Barnard (1954), Guthrie and Johns (1959), Wetherill (1960), Pfanzagl (1963), Hald (1960, 1965, 1967a, 1967b, 1968b, Johansen (1970), Hald and Thyregod (1971), Thyregod (1972) have appeared. These plans are based on two decision criteria i.e. they are either acceptance-rectification or acceptance-rejection plans. The concept

of three decision in sampling inspection was first introduced by Pandey et. al (1972a).

The purpose of this paper is to develop single sampling plans with three decision criteria for attribute inspection which minimises consumer's cost under the assumptions (a) the cost is a linear function of the incoming quality and has the model as given in section 4 (b) the incoming lot quality has a prior distribution given by double binomial (or in limiting case point binomial). It has been observed that the expected total loss is a non-decreasing function of the lot size with decreasing non-negative slopes. The existence of unique solution is shown. Some illustrative optimal plans are provided in tabular form. A comparison between plans with three and two decision criteria has shown a definite advantage in favour of three decision and further, this advantage becomes more and more pronounced as the proportion of incoming lots with deteriorated quality level increases.

2. THE THREE DECISION CRITERIA

The lot-by-lot acceptance sampling plans by the method of attributes, in which each unit in a sample is inspected on a go-not-go gauge basis for one or more characteristics and the lot-by-lot acceptance sampling plans by the method of variables, in which each unit in a sample is measured for a single characteristic, such as weight or strength, are either acceptance rectification or acceptance rejection plans. We shall refer to these plans as plans with two decision criteria i.e. (i) a lot either being accepted as a good one or being classified as bad one and acreened for the purpose of acceptance or (ii) a lot either being accepted as a good one or being classified as bad one and rejected. In practice situation arises where a 100% inspection of too bad lots and replacing or rectifying large number of defectives or out right rejection of moderately good lot may not be an economically valid proposal. In such cases it may be economical to operate the plan on the basis of three-decision criteria i.e. either (i) classify the lots in three quality grades A, B and C and accept grade A as good lot, screen grade B lots and reject a grade C lot out right or (ii) classify the lots in three grades A, B and C as before and accept grade A as good lot, accept grade B as moderately good or salvagable lots and reject grade C lot out right. We shall refer to the three-decision criteria (i) as D and (ii) as D* respectively.

Acceptance sampling plans by attributes with three decision criteria D are discussed in this paper. Acceptance sampling plans by variables with three decision criteria D* will be discussed in a separate paper.

The consumer is supposed in this paper, to operate the plan to safeguard his interest against accepting a lot which is too bad. The consumer bears the cost of inspection in the interest of the producer. He is not a narrow-minded consumer in the sense of Tippett (1938, pp. 137). The consumer allows a chance of 100% inspection for lots which are not accepted ordinarily but are not too bad. Every such lot should be accepted after screening. The lots which are too bad (grade C) may involve high cost of screening and neither the consumer, who bears the cost of inspection would allow screening of such lots nor the producer would find the cost of replacing or rectifying too many defectives as attractive.

The outright rejection of any lot may be deemed by the producer as a drastic action on the part of the consumer if screening be the general practice under two-decision criteria. However, the producer may agree to such a proposal provided:

- the consumer agrees to accept the moderately good lot (Grade B) either after imposing a penality to the producer or after screening.
- (ii) only too bad lots (Grade C) are rejected outright and
- (iii) the consumer agrees to bear the cost of inspection (or at least 100% inspection).

Single sampling acceptance plan by attributes with three-decision criteria D is defined by the parameters n, c_1 and c_2 and is to be operated as follows:

Take a random sample of n items from N and let x be the number of defectives in the sample then

Accept if
$$0 \le x \le c_1$$

Screen if $c_1 < x \le c_2$... (1)
Reject if $c_2 < x \le n$

Doublo sampling acceptance plan by attributes with three-decision criteria has been also developed and is discussed in a separate paper by Pandey (1972e).

3. The conditions for applicability

Though the inspection with three decision criteria is not in the current use it is not difficult to find practical situations where this can be gainfully employed. For the applicability of the criteria D all of the following five conditions should be satisfied.

- (1) Items are inspected on lot-by-lot basis.
- (2) Defective items in accepted lots cause some damage which is measurable in economic terms.

- Inspection does not involve any destructive or very costly testing i.e. 100% inspection is permissible.
- (4) Any defective item if detected can be either replaced with a good item or rectified.
- (5) The condition (p_u < p_p) for three-decision criteria as derived in Section 4 in terms of the break-even qualities holds.

It is felt that the conditions (1)-(4) are generally satisfied in those industrial situations where two-decision criteria i.e. acceptance-rectification or acceptance-rejection is in use. Thus, the condition (5) in fact, determines whether a three-decision criteria D can be used.

The economic advantages of the plans with three-decision criteria greatly depend on the weights w_1 and w_2 . For higher values of w_2 the plan with three-decision criteria will be more and more advantageous as compared with the plans with two-decision criteria (fig. 7 and fig. 8).

The acceptance sampling plan with three-decision criteria D^{\bullet} is applicable in those situations where the following five conditions are satisfied.

- (1) Items are inspected on lot-by-lot basis.
- (2) Acceptance of any defective item is undesirable but if accepted it does not hamper much the functional requirements.
- (3) Inspection involves either a destructive or costly testing i.e. 100% inspection is not permissible.
- (4) Any defective item if detected can be either replaced with good item or rectified.
- (5) The condition (p_u < p_v) for three decision criteria as derived in Section 4 in terms of the break-even qualities holds.

To point out a practical situation where D* can be applied the author wishes to montion the following experience during his consultancy work.

An organisation (around calcutta) purchases various store items from different local suppliers. One of the store items is a sort of bandages used for medical dressing. This organisation is using sampling inspection for the purpose of acceptance of the lot of bandages. The sample is subjected to the following two types of test:

- (i) scouring test (which is a destructive test) and
- (ii) test for determining weight per metro.

Any failure on the part of a bandage to meet the specifications in respect of the two characteristics is undesirable but it does not affect much the end use of the bandages. Depending on the test results a lot is either (a) accepted as astisfactory or (b) accepted with some penality to the supplier or (c) declared unsatisfactory and is rejected outright. The organisation has some amount of arbitrariness while deciding the percentage of penality to the supplier. This is mainly because the inspection is actually done on the basis of two-decision criteria and a good deal of arbitrariness arises while classifying the unsatisfactory lots into acceptable lots with penality and lots which are outright rejectable ones. The author feels (as was also checked by using some rough values of various costs) that an acceptance sampling plan by variables with three-decision criteria D* would be an appropriate plan in this situation. As mentioned earlier, such a plan is the subject matter of a forth coming paper.

4. THE MODEL

Let N and n denote the lot size and sample size and let X and x denote number of defectives in the lot and the sample respectively. The acceptance numbers are denoted by c_1 and $c_2(c_1 < c_2)$.

In this paper we shall consider the following linear cost function.

$$h(X, x, N, n, c_1, c_2) = \begin{cases} nS_1 + xS_2 + (N - n)A_1 + (X - x)A_2 & \text{for } x \leqslant c_1 \\ nS_1 + xS_2 + (N - n)T_1 + (X - x)T_2 & \text{for } c_1 < x \leqslant c_2 \\ nS_1 + xS_2 + (N - n)R_1 + (X - x)R_2 & \text{for } c_2 < x \leqslant n \\ \dots & \dots & \dots \end{cases}$$

where nS_1 denotes the cost of inspection and xS_2 denotes the cost proportional to the number of defective items in the sample. In fact S_1 includes sampling and testing costs per item and S_2 denotes additional costs for an inspected defective item including the repair costs per item in ease the defective items found in the sample are repaired. Thus the costs $nS_1 + xS_2$ associated with the sample give the costs of sampling inspection.

Costs of acceptance are given by $(N-n)A_1+(X-x)A_2$. The part $(N-n)A_1$ is proportional to the number of items in the remainder of the lot and A_1 usually will be zero or negligible. The part $(X-x)A_1$ is proportional to the number of defective items accepted and hence A_2 will often be considerable. If the accepted items are used as a basic raw material or components to manufacture some product A_2 may include the manufacturing cost or the price of an item, the costs of handling a defective item in assembling and disassembling and damage done to other parts used in the assembly. In case of inspection

of finished goods A₂ may include the cost of repair, service and guarantees plus loss of good will.

Costs of screening is given by $(N-n)T_1+(X-x)T_2$ and are composed of a part $(N-n)T_1$, proportional to the number of items in the remainder of the lot, and another part, $(X-x)T_2$, proportional to the number of defective items in the remainder of the lot. T_1 may include the costs of handling and costs of inspection per item whereas T_2 may include the costs of rework or replacement and the costs of delay per defective item caused due to screening.

Costs of outright rejection are $(N-n)R_1+(X-x)R_2$ and are composed of $(N-n)R_1$, proportional to the number of items in the remainder of the lot, and another part $(X-x)R_2$ which is proportional to the number of defective items in the remainder of the lot. R_1 may include the costs of storage per rejected item before disposal, the costs of handling per rejected item during disposal and the costs of delay in availability of the raw material or the components for manufacturing or assembling per rejected item. R_2 is generally zero or negligible.

From Hald (1967a) the cost function (2) becomes

$$h \sim \begin{cases} n(S_1 + S_2 p) + (N - n)(A_1 + A_2 p) & \text{for } x \leqslant c_1 \\ n(S_1 + S_2 p) + (N - n)(T_1 + T_2 p) & \text{for } c_1 < x \leqslant c_2 & \dots \end{cases}$$
(3)
$$n(S_1 + S_2 p) + (N - n)(R_1 + R_2 p) & \text{for } c_2 < x \leqslant n$$

disregarding the terms of order \sqrt{n} . The average cost can be written as

$$K(N, n, c_1, c_2) = \int K(N, n, c_1, c_2, p) dW(p)$$
 ... (4)

where W(p) denotes the cumulative distribution of p and

$$K(N, n, c_1, c_2, p) = n(S_1 + S_2 p) + (N - n)[(A_1 + A_2 p)P_a(p) + (T_1 + T_2 p)P_a(p) + (R_1 + R_2 p)P_f(p)]$$
 ... (5)

The probabilities $P_a(p)$, $P_s(p)$ and $P_r(p)$ are defined as follows:

$$P_a(p) = B(c_1, n, p) \qquad \dots \qquad (6)$$

$$P_{s}(p) = B(c_{s}, n, p) - B(c_{s}, n, p)$$
 ... (7)

$$P_r(p) = 1 - B(c_2, n, p)$$
 ... (8)

where $B(c, n, p) = \sum_{x=0}^{c} {n \choose x} p^x (1-p)^{n-x}$. Since it is assumed that the process average varies at random according to the cumulative distribution function W'(p), (5) represents the average costs over all the lots with a given process average i.e. a conditional average and (4) gives the overall average.

To simplify the notations let us introduce four cost functions :

$$k_s(p) = S_1 + S_2 p$$
 ... (9)

$$k_{\mathbf{A}}(p) = A_1 + A_2 p \qquad \dots \tag{10}$$

$$k_l(p) = T_1 + T_2 p$$
 ... (11)

$$k_t(p) = R_1 + R_2 p$$
 ... (12)

defined for $0 \le p \le 1$. The corresponding averages k_t , k_a , k_t and k_t are defined by

$$k = \int_{0}^{1} k(p)dW(p) \qquad \dots (13)$$

We shall make the following assumptions regarding the functions (9), (10), (11) and (12).

- (1) All these functions are non-negative and none of them is identical to zero.
- (2) $k_a(0) < k_l(0) < k_r(0)$ i.e. for a 100% good lot cost of acceptance per item is the least and the cost of screening per item will be quite low whereas the cost of rejection per item would be considerable.
- (3) $k_a(1) > k_i(1) > k_r(1)$ i.e. for a 100% defective lot cost of acceptance per item is the highest and the cost of screening would be considerable whereas the cost of rejection per item is the least.

Since $A_1 < T_1 < R_1$ and $A_1 + A_2 > T_1 + T_2 > R_1 + R_2$ it follows that $A_2 - T_2 > T_1 - A_1 > 0$ and $T_2 - R_2 > R_1 - T_1 > 0$ and the equations $k_d(p) = k_l(p)$ and $k_l(p) = k_r(p)$ have the solution $p_u = (T_1 - A_1)/(A_2 - T_2)$, $0 \le p_u \le 1$ and $p_v = (R_1 - T_1)/(T_2 - R_2)$, $0 \le p_v \le 1$ respectively. (We shall assume that $p_u < p_v$ Fig. 1).

(4) $k_s(p) \geqslant k_m(p)$ for $0 \leqslant p \leqslant 1$ where $k_m(p)$ is defined as follows:

If $p_u < p_v$, $k_m(p)$ is given by (14)

$$k_{m}(p) = \begin{cases} k_{a}(p) & \text{for } p < p_{u} \\ k_{i}(p) & \text{for } p_{u} \leqslant p < p_{v} \end{cases} \dots (14)$$

$$k_{r}(p) & \text{for } p \geqslant p_{v}$$

and if $p_u \geqslant p_v$, $k_m(p)$ is given by (15)

$$k_m(p) = \begin{cases} k_a(p) & \text{for } p < p_\omega \\ k_r(p) & \text{for } p \geqslant p_\omega \end{cases} \dots (15)$$

where $p_{\omega} = (R_1 - A_1)/(A_2 - R_2)$, $0 \leqslant p_{\omega} \leqslant 1$

when $p_u > p_v$ the three-decision criteria D reduces to two-decision criteria of acceptance-rejection plan (see fig. 1 and fig. 2)

Fig. 1. Cost functions when $p_a < p_p$, ka(p) = 720p, kr(p) = 10-85p, kr(p) = 20, $p_a = 0.0158$, $p_a = 0.1176$.

Further, it can be noted that under assumptions 1-4 the three-decision criteria is always better than the two-decision criteria if $p_u < p_o$. In cases where $p_u \ge p_o$ it is economic to use two-decision criteria (Fig. 2).

In this paper we shall assume that $p_u < p_v$. For $p_u < p_v$ the average minimum cost k_m is defined as

$$k_{m} = \int_{0}^{p_{M}} k_{a}(p)d \mathcal{W}(p) + \int_{p_{M}}^{p_{0}} k_{t}(p)d \mathcal{W}(p) + \int_{p_{0}}^{1} k_{r}(p)d \mathcal{W}(p) \qquad \dots (16)$$

 k_m given by (16) represents the average cost per item when the following decision rule is used.

Accept all lots from processes with $p < p_u$ Screen all lots from processes with p, $p_u \le p < p_v$ Reject all lots from processes with $p \geqslant p_v$

Fig. 2. Cost functions when $p_u > p_v$, ka(p) = 720p, kr(p) = 17 + 300p, kr(p) = 20, $p_u = 0.0405$, $p_v = 0.0100$.

 p_u and p_v are called break-even qualities. The break-even qualities p_u and p_v are used to classify the lots in three-quality grades as follows:

Grade A: lot of quality
$$p < p_u$$

Grado B: lot of quality
$$p$$
, $p_u \leqslant p < p_v$... (17)

Grade C: lot of quality $p \geqslant p_0$

Following Hald (1967a) we define the standardised form of (4) as

$$R(N, n, c_1, c_2) = (K(N, n, c_1, c_2) - Nk_m)/(k_s - k_m)$$
 ... (18)

which gives

$$R = n + \frac{(N-n)}{(k_{\rm d}-k_{\rm m})} \Big[\; (A_{\rm e}-T_{\rm e}) \; \Big\{ \int\limits_{0}^{p_{\rm d}} (p_{\rm d}-p) (1-P_{\rm d}(p)) d \, W(p) + \frac{(N-n)}{2} \Big\} \Big] \, . \label{eq:R}$$

$$\int_{p_{u}}^{1} (p-p_{u})P_{o}(p)d\Pi'(p) + (T_{2}-R_{1}) \left\{ \int_{0}^{p_{0}} (p_{o}-p)P_{r}(p)d\Pi'(p) + \int_{p_{0}}^{1} (p-p_{o})(1-P_{r}(p))d\Pi'(p) \right\} \right] ... (19)$$

In this paper we shall confine to discrete prior distribution. The case of continuous prior distribution has been dealt in another paper by Pandey (1973). Assume that the prior distribution is a double binomial or as a limiting case a point binomial. The double binomial distribution is a weighted average of two binomials with parameters p' and p'', p' < p'' and weights w_1 and w_2 , $w_1 + w_2 = 1$ i.e. the process average has a two point distribution. To justify, at least with practical point of view, the assumption of double binomial or point binomial as the prior distribution of the lot quality p, the following may be added:

In practice, generally a process is set to operate at a good or acceptable quality level (AQL) and as soon as it deteriorates to operate at a bad or rejectable quality level (RQL) corrective actions are taken to restore the good level. A process is desired and hence generally designed, to operate at the good level as long as possible (i.e. low value of p' with high value of p_1 and only occasional deterioration of the process to the bad level (i.e. high value of p' with low value of $w_2 = 1 - w_1$) may be considered as a normal phenomena. However, situations may arise where the process may continue to turn out large number of bad lots (i.e. $w_1 < w_2$) over a considerable period. The consumer may not have any other sources of supply and he may adopt a plan with three decision criteria to safeguard his economic interests.

In view of the above a double binomial (as also assumed by Hald (1960)) may be used as a prior distribution for the quality of the lots. Alternatively as a limiting case a well controlled process may be stable around the process average (say \bar{p}) and for the lots produced by this process we may assume point binomial (as also assumed by Dodge and Romig (1929)) as a prior distribution of the lot quality.

A necessary condition for a sampling plan with three decision to exist under the double binomial as a prior distribution is that $p' < p_u < p_p < p''$ (i.e. $\nu_{ij} > 0$ for i, j = 1, 2). Assuming that $p' < p_u < p_p < p''$ the standardised cost function can be written as

$$R(N, n, c_1, c_2) = n + (N - n)[\nu_{11}(1 - P_a(p')) + \nu_{12}P_a(p'') + \nu_{21}P_r(p') + \nu_{22}(1 - P_r(p''))] \qquad ... (20)$$

whero

$$\begin{split} \nu_{11} &= i v_1 \{k_1(p^*) - k_n(p^*)\} / (k_t - k_m) \\ \nu_{12} &= w_2 \{k_n(p^*) - k_1(p^*)\} / (k_t - k_m) \\ \nu_{21} &= w_1 \{k_r(p^*) - k_1(p^*)\} / (k_t - k_m) \\ \nu_{22} &= w_2 \{k_1(p^*) - k_r(p^*)\} / (k_t - k_m) \end{split}$$

Thus the average decision less per item is a linear combination of the probabilities $1-P_a(p^*)$, $P_a(p^*)$, $P_r(p^*)$ and $1-P_r(p^*)$.

5. Choice of risks

The consumer's and producer's risks are most widely used for characterising systems of sampling plans. The consumer's risk is defined as the probability of acceptance of a lot or process with deteriorated or lot tolerance percent defective (LTPD) quality. The producer's risk, a concept opposite to the consumer's risk is defined as the probability of rejecting a lot of good quality or acceptable quality level (AOL) by the consumer. The well known systems of plans which provide lot quality protection in terms of the consumer's risk are the Dodge and Romig's (1929) LTPD systems of plans. When a plan with three decision criteria is operated for a receiving inspection any misclassification of an inferior quality lot or process as a superior quality lot or process entails a risk to the consumer. To provide a lot quality protection in case of the plans with three decision criteria on the line of the Dodge and Romig's LTPD systems of plans, it may be therefore, logical to specify the consumer's risk in terms of the probabilities of misclassification of the above type. When a plan with the three decision criteria is operated the misclassification entailing a risk to the consumer would arise in two ways : (a) when a fairly good grade B lot is classified as grade A or (b) when a fairly bad grade C lot is classified as grade B or grade A lot. The consumer's risk, therefore, need be specified at two quality levels-one of grade B and the other of grade C. For this purpose the two quality levels p_1 and p_2 ($p_1 < p_2$) are chosen depending on the consumer's specification as follows:

The quality level p_1 is specified in such a way that the probability of misclassifying a lot of this quality under the plan as grade A is quite low β_1 (say .01 to 0.10) and the probability of classifying it correctly as grade B is fairly high. Similarly the quality level p_2 is specified by the consumer in such a way that the probability of misclassifying a lot of this quality as grade B or grade A is quite low β_2 (say .01 to .10) and the probability of classifying it correctly as grade C is fairly high (Fig. 3).

Fig. 3. Operating characteristic curve for the plan (n, c_1, c_2) with $n = 220, c_1 = 6, c_2 = 36$.

The risk β_1 is the probability of misclassifying a lot of quality p_1 as grade A. The risk β_2 is the probability of misclassifying a lot of quality p_2 either as grade B or A. These risks β_1 and β_2 are mathematically written as

$$\beta_1 = B(c_1, n, p_1)$$
 ... (21)

and

$$\beta_1 = B(c_2, n, p_2)$$
 ... (22)

using the sample criteria (1).

The concept of producer's risks say, a_1 and a_2 at quality level p'_1 and p'_2 (say) respectively (Fig. 3) can be similarly defined. Mathematically

$$a_{i} = \sum_{x=c_{i}+1}^{n} b(x, n, p'_{i}) \qquad ... (23)$$

and

$$a_2 = \sum_{x=c_1+1}^{n} b(x, n, p_2)$$
 ... (24)

where p_1' denotes the quality level such that when a plan with three decision criteria is operated the probability of misclassification of a lot of quality p_1' (grade A) as either grade B or C is quite low say a_1 whereas the probability of classifying it correctly as grade A is fairly high. Similarly, p_2' denotes the quality level such that the probability of misclassifying a lot of quality p_2' (grade B) as grade C is quite low say a_2 whereas the probability of classifying it correctly as grade B is fairly high. However, since the plans considered in this paper are on the line of Dodge and Romig's LTPD systems of plans (consumer's risks plan), the notion of the producer's risks is not relevant to the discussions in the subsequent sections.

From amongst the large number of plans satisfying specified values of the lot tolerance percent defective (LTPD), consumer's risk ($\beta=.10$), lot size (N) and process average (\bar{p}) the Dodge and Romig's LTPD systems of plans select the unique plan which minimizes average amount of inspection at process average quality \bar{p} . Similar to the above plans, Pandey et al (1972a) developed plans with three decision criteria for inspection by attributes. From amongst the large number of plans satisfying the specified values of the parameters their plans select the unique plan which minimises average amount of inspection at process average quality. In the present paper the criteria of minimum total average cost per lot has been used to select the unique plan.

As explained earlier in most practical situations the quality of items being produced by a process may be assumed either to be fluctuating on two levels in the manner as described in section 4 or to be stable around an average level. Further, it may be desired in some cases to have sampling inspection plans which either have some specified probability of misclassification (consumer's risk) at some specified level of quality or are free from any such restriction. Motivated by the above practical considerations, the subsequent sections we shall devote to the following three areas of the single sampling plan with three-decision criteria.

- (1) Double binomial restricted Bayes solution—Bayesian single sampling plans with double binomial as a prior distribution and having some restriction on the consumer's risks i.e. the plans are required to satisfy closely the specified value of the consumer's risks (β₁ and β₂). These plans are called restricted Bayesian plans with double binomial as the prior distribution and are discussed in the Section 6.
- (2) Double binomial unrestricted Bayes solution—Bayesian single sampling plan with double binomial as a prior distribution. In this case the plans (n, c₁, c₂) minimising R given by (20) and having no restriction regarding the consumer's risk, would be developed. In context of the plans of type (1), these plans will be referred to as unrestricted Bayesian single sampling plans by attributes (Section 7).
- (3) Point binomial Bayes solution. The limiting case of double binomial i.e. point binomial as a prior distribution is discussed in Section 8.

6. DOUBLE BINOMIAL RESTRICTED BAYES SOLUTION

In this section we shall assume that the prior distribution is a double binomial with parameters p' and p'', p' < p'' and weights w_1 and w_2 , $w_1 + w_2 = 1$ i.e. the process average has a two point distribution. The standardised average

cost is given by (20). The problem is to find (n, c_1, c_2) minimising (20) and satisfying (21) and (22). Let S be the set of plans (n, c_1, c_2) satisfying (21) and (22). For any plan (n, c_1, c_2) in S, if any one of n, c_1 and c_1 is fixed the other two are uniquely determined. For example for an arbitrary $c_1 = 0$ say, $B(c_1, n, p_1) \le \beta_1$ gives unique n = 52 and $B(c_2, n, p_2) \le \beta_2$ gives $c_1 = 2$ where $p_1 = .05$, $p_2 = .10$ $\beta_1 = .07$ and $\beta_2 = .10$. Thus a plan in S can be uniquely defined according to any one of n, c_1 and c_2 . We have chosen c_1 for this purpose. Let $S(c_1)$ denote a plan (n, c_1, c_2) and $R_1(c_1)$ be the value of (20). Using the notations of (6), (7) and (8) we write $R_1(c_1)$ from (20) as

$$R_1(c_1) = n_{e_1} + (N - n_{e_1})(\nu_{11}(1 - B_{e_1}(p')) + \nu_{12}B_{e_1}(p^*) + \nu_{21}(1 - B_{e_1}(c_1, p')) + \nu_{22}B_{e_1}(c_1, p^*))$$
 ... (25)

where n_c , denotes the sample size in a plan (n, c_1, c_2) and

$$B_{\epsilon_i}(p) = \sum_{x=0}^{\epsilon_i} \binom{n}{x} p^x (1-p)^{n-s} \quad \text{and} \quad B_{\epsilon_i}(\epsilon_2,p) = \sum_{x=0}^{\epsilon_2} \binom{n}{x} p^x (1-p)^{n-x}$$

with $c_1^{(q)}$ denoting the value of the second acceptance number c_1 when the first acceptance number c_1 equals c_i . The value of c_1 minimising R_1 is determined from the inequality

$$\Delta R_1(c_1-1) \leqslant 0 < \Delta R_1(c_1) \qquad \dots \tag{26}$$

Wo get

$$\Delta R_1(c_1) = (1 - \nu_{11} - \nu_{21} + \nu_{11}B_{c_1 + 1}(p') - \nu_{12}B_{c_1 + 1}(p^*)$$

$$+ \nu_{21}B_{c_1 + 1}(c_2, p') - \nu_{22}B_{c_1 + 1}(c_2, p^*))\Delta n_{c_1}$$

$$- (N - n_{c_1})(\nu_{11}\Delta B_{c_1}(p') - \nu_{12}\Delta B_{c_2}(p^*)$$

$$+ \nu_{21}\Delta B_{c_1}(c_2, p') - \nu_{22}\Delta B_{c_2}(c_2, p^*)) \qquad ... (27)$$

To obtain the bounds for the lot size for which the plan (n, c_1, c_2) satisfying (26) is the optimal plan we shall define the following auxiliary function from (27)

$$N_{\epsilon_{1}} = n_{\epsilon_{1}} + \left(\frac{1}{\nu_{22}} - \frac{\nu_{11}}{\nu_{22}} - \frac{\nu_{21}}{\nu_{22}} + \frac{\nu_{21}}{\nu_{22}} B_{\epsilon_{1}+1}(p') - \frac{\nu_{12}}{\nu_{22}} B_{\epsilon_{1}+1}(p'') + \frac{\nu_{21}}{\nu_{**}} B_{\epsilon_{1}+1}(\epsilon_{2}, p') - B_{\epsilon_{1}+1}(\epsilon_{2}, p'')\right) \frac{\Delta n_{\epsilon_{1}}}{II} \qquad ... \quad (28)$$

where

$$U = \left(\frac{\nu_{11}}{\nu_{22}} \Delta B_{\epsilon_1}(p') - \frac{\nu_{12}}{\nu_{22}} \Delta B_{\epsilon_1}(p'') + \frac{\nu_{21}}{\nu_{22}} \Delta B_{\epsilon_1}(c_2, \, p') - \Delta B_{\epsilon_1}(c_2, \, p'') \right)$$

The plan (n, c_1, c_2) is the locally optimal plan for the lot size N if

$$N_{\epsilon_1-1} \leqslant N < N_{\epsilon_1}, \Delta B_{\epsilon_1-1} > 0$$
 and $\Delta B_{\epsilon_1} > 0$... (29)

For two plans (n_1, c_1', c_2') and (n_2, c_1'', c_2'') satisfying (26) and having overlapping N-intervals according to (30) solving the equation $R_1(N, n_1, c_1', c_2')$ $= R_1(N, n_2, c_1', c_2')$ for N we get $N_{13} =$

$$\frac{(n_2-n_1)(1-\nu_{11})+n_2(\delta_1(n_2,c_1')-\nu_{11}+\delta_2(n_2,c_2'))-n_1(\delta_1(n_1,c_1')-\nu_{21}+\delta_2(\underline{n_1},c_2'))}{\delta_1(n_2,c_1')+\delta_2(n_2,c_2')-\delta_1(n_1,c_1')-\delta_2(n_1,c_2')}$$

where
$$\delta_i(n, c_i) = v_{i1}B(c_i, n, p') - v_{i2}B(c_i, n, p')$$
 $i = 1, 2$... (31)

It is clear from (20) that R for a given (n, c_1, c_2) is an increasing linear function of N and we have that

$$R(N, n_1, c'_1, c'_2) \leq R(N, n_2, c'_1, c'_2)$$
 according as $N \leq N_1$... (32)

... (30)

To discuss the uniqueness of the solution write the regret function $R_1(c_1)$ as follows:

$$R_1(c_1) = \begin{cases} N & 0 \leqslant N \leqslant n \\ n_{c_1} + (N - n_{c_1})G(c_1) & n < N \end{cases} \dots (33)$$

where $G(c_1)$ denotes the expected decision loss (standardised) as is defined in (34)

$$G(c_1) = \nu_{11}(1 - B_{c_1}(p')) + \nu_{12}B_{c_1}(p'') + \nu_{21}(1 - B_{c_1}(c_2, p')) + \nu_{22}B_{c_1}(c_2, p'') \quad \dots \quad (34)$$

Note that the function $R_1(c_1)$ for a fixed (n, c_1, c_2) is a polygonal line consisting of two segments with slopes 1 and $G(c_1)$ when plotted against N. Clearly the minimum of $R_1(c_1)$ would be attained for some plan in the set S for which the slope $G(c_1) < 1$. Thus, to consider the uniqueness of the optimal solution we can assume $G(c_1) < 1$. For a given c_1 the cost function R_1 has one and only one minimum with respect to this value of c_1 . Writing $N_{c_1} = n_{c_1} + \frac{1 - G(c_1 + 1)}{-\Delta G(c_1)}$ we note that $N_{c_1} > n_{c_1}$ for $G(c_1 + 1) < 1$ and $G(c_1)$ is non-increasing function of

 c_1 with increasing slopes as it can be seen from the figure 4. It can be easily shown that N_{c_1} is an increasing function of n. Further, if it is shown that for given plans $S(c_1^*)$ and $S(c_1^*)$ where $c_1^* = c_1^* + 1$, the regret function $R_1(N, S(c_1^*))$ and the regret function $R_1(N, S(c_1^*))$ as a function of N have at the most only one point in common and the common point is an increasing function of c_1 , the uniqueness of the solution is established.

Fig. 4. Expected decision loss (standardised) as a function of c₁ for Bayesian Plan with double binomial as a prior distribution p' = 0.01, p' = 0.15 and ω₁ = 0.93, ω₂ = 1 -ω₁ (Q(C₁) is given in the units of 10⁻⁹)

Since for the restricted plans of this section the cost functions $R(N, S(c_1^i))$ and $R(N, S(c_1^i))$ for a fixed c_1^i are strictly increasing linear function of N with constant slopes, there can be at the most only one common point say, $N(c_1^i, c_1^i)$ at which $R(N, S(c_1^i)) = R(N, S(c_1^i))$. The R functions for the plans in S (satisfying the two restrictions) for the costs as considered in the example 1 do not intersect (see fig. 5) and hence each of these is the optimal plan for the specified lot sizes. These optimal plans for $c_1 = 0, 1, \dots 6$ are given in the table 1.

Fig. 5. The values of R(c1) for varying lot sizes.

TABLE 1. SINGLE SAMPLING PLAN WITH THREE-DECISION CRITERIA FOR DOUBLE BINOMIAL PRIOR DISTRIBUTION WITH p'=0.01 AND p'=0.15 AND Wg=1- ω_1 RESPECTIVELY

lot aizo	sample -	coptanc	e number	· Ν̄	$K \bar{N}$	%
	sizo	9	c _a	. 14	Ajiv	saving
52- 846	52	0	6	209	15.36	•
847- 1811	88	1	12	1238	10.34	27.5
1812- 2674	120	2	18	2201	9.64	32.4
2675- 3011	150	3	23	2838	9.34	34.5
3012-11910	170	4	27	5989	8.84	38.0
11911-15765	200	5	32	13703	8.53	40.2
15766-62678	220	6	36	31435	8.38	41.2

Acceptance without inspection is more economic

In case the R functions intersect, the common point $N(c'_1, c'_1)$ is an increasing function of c'_1 as is shown below:

From (30) writing $N(c_1, c_1)$ as

$$N(c_1', c_1') = \frac{n \cdot (1 - G(c_1')) - n \cdot (1 - G(c_1'))}{-\Delta G(c_1')} \dots (35)$$

$$\Delta_{c_{i}} N(c_{i}'c_{i}') \Delta G(c_{i}'+1) \Delta G(c_{i}') = (-\Delta G(c_{i}'))(n_{c_{i}'+2}(1-G(c_{i}'+2)))$$

$$\begin{split} &-n_{c_1'+1}(1-G(c_1'+1)))-(-\Delta G(c_1'+1))(n_{c_1'+1}(1-G(c_1'+1))\\ &-n_{c_1}(1-G(c_1'))) & \dots & (36) \end{split}$$

Since $G(c_1')$ is non-increasing function of c_1' with increasing slopes and $n_{c_1}(1-G(c_1'))$ is strictly increasing function of c_1' the right hand side of (30) is easily shown to be positive and hence $\Delta_{c_1}N(c_1',c_1') \geqslant 0$ implying that the point of intersection is an increasing function of c_1' . This completes the proof that the solution is a unique one.

These optimal plans can be systematically tabulated as follows:

Step 1: Take some arbitrary value of c_1 and obtain a plan say $S(c_1)$ belonging to S by using (21) and (22).

Step 2: For the plan $S(c_1)$ so obtained, compute the value of N_{c_1} and $N_{c_{i-1}}$ uing (28).

Step 3: Choose c₁ = 0, 1, 2, 3... systematically and proceed as in steps 1-2 and tabulate the sampling plans and the corresponding bounds for the lot sizes,

Step 4: For two plans with overlapping N-interval use (30)-(32) to select the optimal plans.

Thus from tabulated plans an optimal plan for a given lot size can be obtained against the lot range in which the given lot size falls. For illustration lot us consider the following example.

Example 1: Obtain single sampling plan by attributes with threedecision criteria minimising the total average cost per lot when the following information is given:

The four cost functions be $k_i(p) = 23+35p$, $k_a(p) = 720p$, $k_l(p) = 10+85p$, $k_r(p) = 20$, the coefficients denote costs per item in monoy units i.e.

cost of sampling and testing is 23 money units per item in the sample, cost of accepting a defective item is 720 money units and the cost involved in rejecting an item out right is 20 money units etc. (see Section 4).

Let us further assume that lots are generated with probability $w_1 = 0.93$ from a binomially controlled process with p' = 0.01 and with probability $w_1 = 0.07$ from the process with p'' = 0.15. Also, suppose it is given that the probability of misclassification as a superior grade lot is 0.07 for a lot containing 5% defective items and it is 0.10 for a lot containing 20% defective items.

The break-even qualities work out as $p_{\rm m}=0.0158$ and $p_{\rm p}=0.1176$ From (13) and (14) $k_s=23.693$, $k_{\rm m}=8.096$, $k_s-k_{\rm m}=15.507$ and substituting the relevant values in the expression of ν_{IJ} as defined in (20) we obtain $\nu_{11}=0.217638$, $\nu_{12}=0.382606$, $\nu_{21}=0.545586$ and =0.012342. To indicate the computational procedure let us choose $c_1=1$ in the step 1. From (21) and (22) we get $c_2=12$ and n=86. To compute the bounds for the specified lot sizes for which (86, 1, 12) is the optimal plan we shall use (28).

The necessary quantities to compute N_{c_1} for $c_1 = 1$ are

$$\begin{split} \Delta B_{e_1}(p') &= 0.093020, \ \Delta B_{e_1}(p'') = -0.000010, \ \Delta B_{e_1}(e_1, p') = 0, \\ \Delta B_{e_1}(e_1, p'') &= 0.096490, \ U = 1.544128, \ B_{e_1+1}(p') = 0.880360 \\ B_{e_1+1}(e_1, p') &= 1, \ B_{e_1+1}(p'') = 0, \ B_{e_1+1}(e_2, p'') = 0.562450. \end{split}$$

Substituting these values in (28) we get

$$N_{\epsilon_1} = 86 + (78.351966) \times 34/1.544128 = 1811.224103.$$

Similarly $N_{e_1-1} = 847$.

Thus for any given lot size N in the range 847 $\leq N \leq$ 1811 the optimal plan is given by (86, 1, 12).

Optimal single sampling plans with three-decision criteria for the same set of values of the cost parameters as in the above example and $p_1 = 0.05$, $p_2 = 0.20$, $\beta_1 = 0.07$, $\beta_2 = 0.10$ and double binomial prior distribution with p' = 0.01 and p' = 0.15 with $w_1 = 0.93$ and $w_2 = 0.07$ for c_1 taking values 0 to 6 have been provided in Table 1.

Average cost of acceptance without inspection per item is 14.26 money units. The percentage saving increases with the lost size and for $c_1 = 6$ it is as high as 41 percent.

7. DOUBLE BINOMIAL UNRESTRICTED BAYES SOLUTION

To determine (n, c_1, c_2) minimising $R(N, n, c_1, c_2)$ given by (20) is the problem of unrestricted Bayesian solution. These plans are unrestricted in the sense that they are not required to satisfy any restriction on their operating characteristic function i.e. there is no limitation in terms of risks. The plans providing minimum R is to be used if the minimum R is less than the costs of accepting or rejecting all lots without inspection. As mentioned earlier a necessary condition for such a sampling plan to exist is that $\nu_{11} > 0$, $\nu_{12} > 0$ $\nu_{11} > 0$ and $\nu_{23} > 0$ i.e. $p' < p_{11} < p_{22} < p'$.

According to Hald (1967a) the value of (n, c_1, c_2) minimising R must satisfy the following three conditions

$$\Delta c_1 R(N, n, c_1 - 1, c_2) \le 0 < \Delta c_1 R(N, n, c_1, c_2) \quad 0 \le c_1, c_2 \le n, c_1 < c_2 \dots$$
 (37)

$$\Delta c_1 R(N, n, c_1, c_2 - 1) \le 0 < \Delta c_2 R(N, n, c_1, c_2) \quad 0 \le c_1, c_2 \le n, c_1 < c_2 \dots$$
 (38)

$$\Delta_{*}R(N, n-1, c_{1}, c_{2}) \leq 0 < \Delta_{*}R(N, n, c_{1}, c_{2}) \qquad c_{1} < c_{2} \qquad \leq n \leq N \quad \dots \quad (39)$$

Since
$$\Delta_{c_1}B(c_1,n,p')=b(c_1+1,n,p')$$
 and $\Delta_nB(c_1,n,p')=-p'b(c_1,n,p')$ we

get from (20)

$$\Delta_{c_1}R(N, n, c_1, c_2) = (N-n)(-\nu_{11}b(c_1+1, n, p')+\nu_{12}b(c_1+1, n, p'')) \qquad \dots \quad (40)$$

$$\Delta_{c_2}R(N, n, c_1, c_2) = (N-n)(-\nu_{21}b(c_2+1, n, p') + \nu_{22}b(c_2+1, n, p'')) \qquad \dots \quad (41)$$

$$\Delta_{n}R(N, n, c_{1}, c_{2}) = 1 - (\nu_{11}(1 - B(c_{1}, n, p')) + \nu_{12}B(c_{1}, n, p'') + \nu_{21}(1 - B(c_{1}, n, p'')) + (N - n - 1)(\nu_{11}p'b(c_{1}, n, p') - \nu_{12}p''(c_{1}, n, p'') + \nu_{21}p'b(c_{1}, n, p'') - \nu_{22}p''b(c_{1}, n, p''))$$

$$\dots (42)$$

Solving the inequalities with respect to n and N we find that a Bayesian sampling plan must satisfy the following three inequalities given by (43), (44) and (45) below:

$$\alpha_1 + \beta c_1 \leqslant n < \alpha_1 + \beta(c_1 + 1) \qquad \dots \tag{43}$$

$$\alpha_2 + \beta c_2 \leqslant n < \alpha_2 + \beta (c_2 + 1) \qquad \dots \tag{44}$$

where $c_1 < c_2$

$$\alpha_i = \log \frac{\nu_{ij}}{\nu_{ij}} / \log \frac{q'}{q'}$$
 $i = 1, 2,$... (45)

$$\beta = \log \frac{p''q'}{p'q''} / \log \frac{q'}{q''} \qquad \dots (40)$$

and

$$F(n-1, c_1, c_2) \leq N < F(n, c_1, c_2)$$
 ... (47)

where $F(n, c_1, c_2)$ is defined by

 $F(n, c_1, c_2) = (n+1)$

$$+\frac{1-\nu_{11}+\nu_{11}B(c_1,n,p')-\nu_{12}B(c_1,n,p'')-\nu_{21}+\nu_{21}B(c_2,n,p')-\nu_{22}B(c_2,n,p'')}{-\nu_{11}p'b(c_1,n,p')+\nu_{12}p''b(c_1,n,p'')-\nu_{21}p''b(c_2,n,p')+\nu_{22}p''b(c_1,n,p'')}$$
... (48)

For two plans (n_1, c_1', c_2') and (n_2, c_1', c_2') satisfying (43) and (44) and having overlapping N-intervals according to (47) then solving $R(N, n_1, c_1', c_2') = R(N, n_2, c_1', c_2')$ for N we get expression for N_{12} as given in (30) and using (32) we can select one of the two plans (n_1, c_1', c_2') and (n_2, c_1', c_2') as an optimal plan.

To discuss the uniqueness of the above solution write $R(N, n, c_1, c_2)$ as follows:

$$R(N, n, c_1, c_2) = \begin{cases} N & 0 \le N \le n \\ n + (N-n) D(n, c_1, c_2) & n < N \end{cases} \dots (49)$$

where $D(n, c_1, c_2)$ denotes the expected standardised decision loss and is given as

$$D(n, c_1, c_2) = \nu_{11}(1 - B(c_1, n, p')) + \nu_{12}B(c_1, n, p'') + \nu_{21}(1 - B(c_1, n, p')) + \nu_{22}B(c_2, n, p'') \dots (50)$$

The graph of $R(N, n, c_1, c_2)$ as given by (49) is, for a fixed (n, c_1, c_2) a polygonal line consisting of two segments with slopes 1 and $D(n, c_1, c_2)$. Consider the nature of the infimum R function i.e.

$$R_0(N) = \inf. \qquad R(N, n, c_1, c_2) \qquad \dots \tag{51}$$

$$\psi = \{n, c_1, c_2\}$$

where ψ is the set of all plans (n, c_1, c_2) , $0 \leqslant c_1 \leqslant c_2 \leqslant n$.

Define a set of plans So was

$$S^{\bullet} = \{(n, c_1, c_2); D(n, c_1, c_2) < 1\}. \qquad ... (52)$$

From (49) we note that $R(N, n, c_1, c_2)$ is a concave function of N for (n, c_1, c_2) εS^* and

$$R(N, n, c_1, c_2) \geqslant N \text{ for } (n, c_1, c_2) \varepsilon \psi - S^*.$$
 ... (53)

It follows that the minimum in (51) may be attained for $(n, c_1, c_2) \in S^*$ only. In fact for $(n, c_1, c_2) \in \psi - S^*$ the minimum value of $R(N, n, c_1, c_2)$ is N and the

optimal procedure is as good as inspecting all the items (i.e. n=N). We shall assume that n< N. Thus to discuss the optimal plans we need consider only the plans $(n,c_1,c_2)cS^*$. Arguing as Hald (1007a), the inequalities (43) and (44) show that for each n there exists one and only one minimum R with respect to c_1 and c_2 as it can be easily seen that $1<\frac{1}{p^*}<\beta<\frac{1}{p}$ and the optimal value of c_1 and c_2 are given by $c_1=[(n-\alpha_i)/\beta]$ for i=1 and i=2 respectively. Thus to find the global or absolute minimum of R with respect to c_1,c_2 and n we need, therefore, consider the values of $(n,c_1,c_2)cS^*$ and satisfying (43) and (44).

For each c_1 and c_2 the inequality (47) defines N uniquely as a function of n if $F(n, c_1, c_2)$ as defined in (48), is an increasing function of n. From (48) write $F(n, c_1, c_2)$ as

$$F(n, c_1, c_2) = n + 1 + \frac{1 - D(n, c_1, c_2)}{-\Delta D(n, c_1, c_2)} \qquad \dots \quad (54)$$

Since $D(n, c_1, c_2) < 1$ for all plans in S^* and observation shows that $D(n, c_1, c_2)$ is non-increasing function of n with increasing slopes (see fig. 6), we have

Fig. 6. The expected decision loss (standardised) as function of the Sample Size for double binomial prior distribution with p' = 0.01, p' = 0.15 and ω₁ = 0.03, ω₂ = 1-ω₂.

 $\Delta D(n, c_1, c_2) < 0$ and $F(n, c_1, c_2) > n+1$ for all n satisfying (43) and (44). To show that $F(n, c_1, c_2)$ is an increasing function of n we need show $\Delta_n F(n-1, c_1, c_2) \ge 0$.

R. J. PANDEY

Note that, taking all differences with respect to n

$$\Delta F(n-1, c_1, c_2) \Delta D(n, c_1, c_2) \Delta D(n-1, c_1, c_2)$$

$$= 2\Delta D(n, c_1, c_2)\Delta D(n-1, c_1, c_2) + (1-D(n, c_1, c_2))\Delta^2 D(n-1, c_1, c_2) \quad ... \quad (55)$$

and since $\Delta D(n, c_1, c_2) < 0$ and $\Delta D(n-1, c_1, c_2) < 0$ (fig. 6) the first term on the right hand side of (55) is positive and it is sufficient to show that $\Delta^* D(n-1, c_1, c_2) \geqslant 0$. Since

$$\Delta^{2}D(n-1, c_{1}, c_{2}) = \Delta D(n, c_{1}, c_{2}) - \Delta D(n-1, c_{1}, c_{2}) \qquad \dots \tag{56}$$

and $\Delta D(n, c_1, c_2) < 0$, $\Delta D(n-1, c_1, c_2) < 0$ and $|\Delta D(n, c_1, c_2)| < |\Delta D(n-1, c_1, c_2)|$ for the values of n considered (see figure 6)

$$\Delta^2 D(n-1, c_1, c_2) \ge 0$$
 and hence $\Delta_n F(n-1), c_1, c_2 \ge 0$.

The regret function R for a given value of c_1 (and c_2), and n satisfying (43) and (44) would be according to (49) a non-decreasing piecewise linear function of N with decreasing non-negative slope. The proof to uniqueness of the minimum is complete if we further show that $R(N, n_1, c_1, c_2)$ and $R(N, n_2, c_1+1, c_2)$ have only one point in common, and that this point increases with c_1 (and c_2). If the slopes of the two regret functions are equal i.e. $D(n_1, c_1, c_2) = D(n_2, c_1+1, c_2)$, they will intersect at only one point and that is infinity because the numerator in (30) is finite. Suppose one of the intersection point is $N(c_1, c_1+1)$ given by

$$N(c_1, c_1+1) = \frac{(n_2-n_1)+n_1D(n_1, c_1, c_2)-n_2D(n_2, c_1+1, c_2')}{D(n_1, c_1, c_2)-D(n_2, c_1+1, c_2')} \dots (57)$$

and $D(n_1, c_1, c_2) \neq D(n_2, c_1+1, c_2)$. Since $D(n, c_1, c_2)$ is non-increasing function of n with decreasing slope at $N(c_1, c_2+1)$ we have

$$D(n_1, c_1, c_2) > D(n_2, c_1 + 1, c_2).$$
 ... (58)

Suppose the plans (n_1, c_1, c_2) and (n_2, c_1+1, c_2) intersect at another point $N'(c_1, c_1+1)$ also where $N'(c_1, c_1+1) > N(c_1, c_1+1)$. At $N'(c_1, c_1+1)$ we must have $D(n_1, c_1, c_2) < D(n_1, c_1+1, c_2)$ which contradicts (58). Hence the two plans can intersect at one point only. The point of intersection can be easily shown to be an increasing function of c_1 (and c_2) as in Section 6. This completes the proof to the uniqueness of the minimum.

The plans discussed in this section can be tabulated as follows:

Step 1: Compute ν_{ij} , i, j = 1, 2 from the expression given in (20) and hence compute α_1, α_2 from (45) and β from (46).

Step 2: Choose some arbitrary c_1 (say $c_1 = 0$) and using the value of a_1 , a_2 and β as obtained in the step 1 compute the lower limit $1(c_1)$ and the upper limit $u(c_1)$ for n from (43) such that $1(c_1) \le n \le u(c_1)$.

Step 3: Take c_1 as c_1+1 and compute the lower limit $1(c_1)$ and the upper limit $u(c_2)$ for n from (44) such that $1(c_1) \le n \le u(c_1)$.

Step 4: In case $1(c_1) \le u(c_1)$ choose c_1 as c_1+1 and the values of n satisfying both (43) and (44) would lie in the closed interval $1(c_1, c_1) \le n \le u(c_1, c_2)$ where $1(c_1, c_1) = \max\{1(c_1), 1(c_2)\}$ and $u(c_1, c_2) = \min\{u(c_1), u(c_2)\}$. In case $1(c_2) > u(c_1)$ increase c_2 systematically till we get $1(c_2) \le u(c_1)$.

Step 5: Choose $c_1 = 0, 1, 2, ...$ systematically and proceed as in steps 2-4 and list the values of n satisfying (43) and (44) corresponding to each pair of c_1 and c_2 .

Slep 6: For the plans listed in the step 5 using (47) compute the bounds (N-intervals) of the specified lot sizes for which these plans are optimal.

Step 7: For two plans (n_1, c_1', c_2') and (n_2, c_1', c_2') having overlapping N-intervals select one of these plans as an optimal plan by using (30)—(32).

Example 2. Using the costs as given in the example 1 of section 6 and assuming that the lots are generated with probability $u_1 = 0.93$ from a binomially controlled process with p' = 0.01 and with probability $u_2 = 0.07$ from the process with p' = 0.15 the steps 1-7 gave the values of c_1 , c_2 , n and N for the optimal plans as given in table 2.

where $\alpha_1 = +3.696568$, $\alpha_2 = -24.850612$ and $\beta = 18.761415$.

The detailed calculations along with intermediate tables are given in Pandey (1974). The values of δ_1 and δ_2 corresponding to each combination of c_1 , c_2 , n and the N-interval are also given in the table 2.

The values of cost per lot of the size \overline{N} (the geometric mean of the limits of the lot size range) divided by the value of the geometric mean have been computed and is given in Table 2. The percentage saving effected by the use of the plan with the three decision criteria as compared with the average cost involved in accepting an item without inspection is found to be increasing for the increasing lot sizes. It can be seen from Table 2 that the above percentage saving in cost is at least 40 percent for the lot of size 2115 and above. The computational results given in Table 2 show numerically that the optimal

TABLE 2. OPTIMAL SAMPLING PLANS WITH THREE DECISION FOR $w_1=.93$ AND $w_2=.07$

36.85	39.93	39.60	-						_	•	_	9		13			
	က	39	38.47	36.78	34.74	32.48	30.12	67.11	54.5	51.69	48.71	45.60	12.4	11.3	10.3	9.39	23.5
16.48	22.35	28.34	34.28	40.05	45.67	50.78	55.65	30.80	35.21	39.58	43.88	48.02	81.29	83.16	84.86	86.41	72.79
3.88	6.71	6.59	7.48	8.30	9.14	9.92	10.74	12.22	13.09	13.95	14.80	16.64	2.91	3.10	3.28	3.47	4.04
95.10	94.15	93.21	92.27	91.35	90.44	89.63	88.64	87,75	86.87	86.01	85.15	84.29	96.82	96.60	98.39	96.16	95.93
7.43	12.20	14.80	17.04	19.35	21.46	23.42	25.10	26.50	27.77	29.17	30.43	31.20	31.35	31.42	31.49	33.31	34.86
13.20	12.52	12.15	11.83	11.50	11.20	10.92	10.68	10.48	10.30	10.10	9.93	9.81	9.79	9.78	9.77	9.51	9.29
3 20	\$	53	99	78	92	118	7	167	108	245	305	364	367	370	376	481	621
	-	•	~		7	-	-	81	41	41	**	84	•1	61	64	**	n
• •	0	0	•	•	0	•	٥	•	•	•	•	•	-		-	-	-
√ 10	9	٢	80	a	70	=	12	13	2	18	16	7.1	28	29	30	31	33
n 66	63	89	11	88	105	129	155	179	220	272	342	368	309	371	381	109	636
33-	9	4	69	72-	87~	106-	130	156	180-	221-	273-	313-	367-	370	372-	382	-809
20 27 00 17 00 00	39 6 0 1 36 12.88 9.68 95.10	39 6 0 1 35 12.88 9.68 95.10 43 6 0 1 43 12.52 12.20 94.15	53	33 6 0 1 29 13.50 14.50 14.50 43 6 0 1 43 12.62 18.20 94.15 63 7 0 1 64 11.62 14.80 93.21 71 8 0 1 64 11.83 17.04 92.27	33 4 0 1 29 15.50 14.50 9.00 43 6 0 1 36 12.68 95.10 63 7 0 1 43 12.62 18.70 91.15 71 8 0 1 64 11.80 93.21 86 9 0 1 78 11.60 19.35 91.35	33 4 0 1 29 15.50 17.50 9.00 43 6 0 1 35 12.58 9.68 95.10 63 7 0 1 43 12.52 9.15 90.15 71 8 0 1 64 11.83 17.04 92.27 86 9 0 1 78 11.60 19.36 91.35 105 0 1 95 11.20 21.46 90.44	33 4 0 1 28 13.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.21 15.20 15.21 15.20 15.21 15.20 15.21 17.04 15.21 17.04 15.21 17.04 12.27 15.21 15.20 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21 15.21	33 4 0 1 28 15.50 1.43 90.00 43 6 0 1 33 12.62 18.20 94.15 63 7 0 1 43 12.62 18.20 94.15 71 8 0 1 53 12.15 14.80 93.21 86 9 0 1 64 11.80 17.04 92.27 105 10 0 1 78 11.50 21.46 90.44 129 11 0 1 116 10.92 23.42 89.63 155 12 0 1 116 10.68 25.10 88.64 1	33 4 0 1 28 13.20 14.35 0.00 43 6 0 1 3 12.62 12.20 93.21 53 7 0 1 43 12.62 12.20 93.21 71 8 0 1 64 11.80 19.35 91.21 105 10 0 1 78 11.50 19.35 91.35 105 10 0 1 85 11.20 21.46 90.44 129 11 0 1 116 10.92 23.42 89.53 135 12 0 1 141 10.68 25.10 88.64 179 13 0 2 167 10.48 26.50 87.75	33 4 0 1 29 13.20 13.50 10.00 43 6 0 1 3 12.62 9.68 95.10 53 7 0 1 43 12.62 9.68 99.11 71 8 0 1 64 11.80 19.36 99.21 105 10 0 1 78 11.60 19.36 99.27 105 10 0 1 10 11.50 21.46 90.44 129 11 0 1 116 10.92 23.42 89.53 155 12 0 1 116 10.92 23.42 89.63 179 13 0 2 167 10.48 26.50 87.75 220 14 0 2 167 10.30 27.77 86.87	33 4 0 1 29 13.20 14.50 20.00 43 5 1 35 12.62 12.08 95.10 53 7 0 1 43 12.62 12.06 93.21 71 0 1 64 11.80 93.21 86 9 0 1 64 11.80 13.70 92.21 105 10 0 1 85 11.20 21.46 90.44 129 11 0 1 116 10.92 23.42 89.63 135 12 0 1 116 10.92 23.42 89.63 179 1 14 10.66 25.10 88.64 179 1 14 10.66 25.10 88.64 179 1 1 1 1 86.60 87.73 2 1 1 1 1 1 86.60 8	33 4 0 1 28 15.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.71 17.50 17.71 17.50	33 4 0 1 28 15.50 14.85 96.00 43 6 1 35 12.62 12.20 94.15 63 7 0 1 43 12.62 12.20 94.15 71 8 0 1 64 11.83 17.04 92.21 105 10 0 1 64 11.83 17.04 92.21 105 10 0 1 16 11.50 21.46 90.44 129 11 0 1 116 10.92 23.42 89.53 130 0 1 141 10.08 25.10 88.64 11.35 220 14 0 1 141 10.48 26.50 87.13 230 14 0 2 167 10.48 26.50 87.13 231 16 10 2 10.90 20.43 85.15 342 </td <td>33 6 0 1 28 12.88 9.68 98.10 43 6 1 35 12.62 12.20 94.15 53 7 0 1 43 12.62 12.20 94.15 64 1 64 11.83 17.04 92.27 92.27 86 9 0 1 64 11.83 17.04 92.27 105 0 1 64 11.80 17.04 92.27 129 11 0 1 185 11.20 21.46 90.44 129 11 0 1 116 10.92 23.42 89.53 135 12 0 1 141 10.68 25.10 88.64 179 13 0 2 167 10.48 26.50 87.73 220 14 0 2 163 10.30 27.77 86.01 342 16<td>33 6 0 1 29 12.52 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 14.15 14.80 13.21 14.80 13.21 14.80 13.21 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15</td><td>3.3 4 0 1 2.9 1.2.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0</td><td>3.3 4 0 1 2.9 1.2.9 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1</td></td>	33 6 0 1 28 12.88 9.68 98.10 43 6 1 35 12.62 12.20 94.15 53 7 0 1 43 12.62 12.20 94.15 64 1 64 11.83 17.04 92.27 92.27 86 9 0 1 64 11.83 17.04 92.27 105 0 1 64 11.80 17.04 92.27 129 11 0 1 185 11.20 21.46 90.44 129 11 0 1 116 10.92 23.42 89.53 135 12 0 1 141 10.68 25.10 88.64 179 13 0 2 167 10.48 26.50 87.73 220 14 0 2 163 10.30 27.77 86.01 342 16 <td>33 6 0 1 29 12.52 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 14.15 14.80 13.21 14.80 13.21 14.80 13.21 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15</td> <td>3.3 4 0 1 2.9 1.2.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0</td> <td>3.3 4 0 1 2.9 1.2.9 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1</td>	33 6 0 1 29 12.52 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 14.15 14.80 13.21 14.80 13.21 14.80 13.21 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.80 13.21 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15	3.3 4 0 1 2.9 1.2.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 1.4.5 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0	3.3 4 0 1 2.9 1.2.9 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1.4.5.0 1

373

TABLE 2 (comd.). OPTIMAL SAMPLING PLANS WITH THREE DECISION FOR $w_1 = .03$ AND $w_2 = .07$

100 100 100 PAP') PAP') PAP')	4.27 75.05 21.76	4.51 77.15 20.06	4.74 79.12 18.45	1.04 93.64 4.29	1.10 94.28 3.89	1.16 04.87 3.52	1.22 95.40 3.19	1.44 89.78 8.97	1.52 00.69 8.21	1.60 91.64 7.50	1.68 92.31 6.84	0.39 97.74 1.53	0.41 97.97 1.39	0.43 98.18 1.25			0.59 98.84 2.81	0.62 97.14 2.55
100 P _a (p')	95.70	95.46	95.21	98.83	98.76	98.69	98.62	98.54	98.46	98.38	98.30	99.66	19.64	99.51	99.48	99.43	99.40	99.37
(%)	35.55	36.46	37.23	37.51	37.59	37.59	38.43	39.20	39.62	40.11	40.48	10.60	10.60	41.02	41.44	41.03	41.80	42.00
$K \overline{N}$	9.10	9.00	8.05	8.91	8.90	8.90	8.18	8.67	8.61	8.64	8.49	8.47	8.47	8.41	8.35	8.32	8.29	8.27
١×	110	871	1021	1130	1164	1180	1458	1830	3115	2606	3063	3289	3320	1090	6316	6189	7404	8519
8	ຕ	n	ю	m	6	n	8	•	•	•	•	•	•	•	ю	89	10	10
10	-	-	-	64	84	61	61	64	61	61	61	m	m	ຄ	n	n	en	•
*	33	34	35	41	48	49	90	19	52	53	20	99	67	83	70	11	72	73
	193	926	1165	1163	1165	1196	1778	1883	2376	2859	3281	3297	3361	4977	6299	6744	8129	8927
>.	637-	194	-256	1156	101	1166	1197-	1779-	1884-	2377-	2860-	3282-	3288-	3362-	4978-	2680-	6745-	8130-

TABLE 2 (could.). OPTIMAL SAMPLING PLANS WITH THREE DECISION FOR w. - .03 AND w. - .07

							-												
100 P _s (p')	0.61	0.48	1.29	1.17	1.06	96.6	0.21	0.19	0.17	9.64	0.49	0.45	0.40	0.09	90.0	0.21	0.19	0.17	0.16
$P_{r}(p^{*})$	95.60	90.33	98.66	98.69	98.81	98.92	69.68	99.72	99.78	99.39	90.45	09.50	99.66	99.87	16.00	99.77	99.79	18.66	99.83
100 P _s (p')	0.16	91.0	0.20	0.21	0.22	0.24	90.0	90.0	0.08	0.08	0.08	0.08	0.09	0.02	0.02	0.03	0.03	0.03	0.01
100 P _a (p')	99.82	18.00	99.79	00.10	99.77	99.76	99.93	99.70	90.93	99.83	28.60	18.60	80.60	99.07	10.00	19.90	19.60	90.97	90.90
(%)	42.07	42.21	42.43	42.50	42.64	42.64	42.70	42.70	42.70	42.78	42.85	42.82	42.92	42.99	42.99	43.06	43.06	43.13	43.13
KIN	8.26	8.24	8.21	8.20	8.18	8.18	8.17	8.17	8.17	8.16	8.16	8.14	8.14	8.13	8.13	8.12	8.12	8.11	8.11
lҳ	9020	11149	14597	17112	20623	23125	23746	24084	29031	34872	38739	46595	20008	61635	14900	91629	102800	125542	148274
S.	10	ю	•	20	9	89	•	•	9	7	1	4	7	7	7	80	80	80	6
ç	-	-	7	•	4	4	4	10	9	89	10	ю	10	9	•	w	9	•	۰
£	86	87	68	8	16	83	104	105	106	107	108	109	110	122	125	126	127	128	129
	9161	13583	15687	18666	22564	23699	23794	24378	34571	35176	12662	16809	61633	61638	91016	97247	114782	137310	160113
N	8963	9152-	13584-	15683~	18687-	22565	23700-	23795	24379~	34573-	35177-	42663-	50803-	61634	61639-	91017-	97248- 114782	114783- 137310	137311- 160113

TABLE 2 (com4). OPTIMAL SAMPLING PLANS WITH THREE DECISION FOR w₁ = .03 AND w₂ = .07

N	e	હ	5	Ŋ	KĮN	(%)	100 Ps(P')	100 Ps(p')	100 P.(p°)	100 P ₄ (p ²)
160114- 160116	2	2	&	160114	8.11	43.13	66.66	10.0	99.66	0.03
160116- 180117	142	1	90	160116	8.11	43.13	88.66	0.01	90.06	0.03
160118- 164674	143	-	80	162380	8.11	43.13	66.66	0.01	90.06	0.03
164676- 166798	144	7	00	166633	8.11	43.13	86.66	0.01	99.06	0.02
166799- 222350	145	7	a	192581	8.11	43.13	88.88	0.01	99.91	90.0
222351- 306371	146	7	a	261001	8.10	43.20	88.86	0.01	99.02	0.07
306372- 367664	147	-		335621	8.10	43.20	89.99	0.01	99.93	0.01
307665- 400133	148	-	œ	383555	8.10	43.20	66.66	0.01	99.93	90.0
400134- 400135	160	- 00		400134	8.10	43.20	100.00	0.0	86.66	10.0
400136- 400386	191	80	œ	403248	8.10	43.20	100.00	0.00	90.98	0.01
406387- 669222	162	•	•	521111	8.10	43.20	100.00	0.0	86.66	0.01
668223- 695201	164	œ	9	676058	8.10	43.20	100.00	0.0	99.97	0.03
635202-812787	165	∞	2	748272	8.10	43.20	100.00	0.00	90.91	0.03
812789- 978829	166	80	01	891053	8.10	43.20	89.80	0.01	99.07	0.03
978330-1000153	167	80	9	089434	8.10	43.20	89.88	0.01	99.97	0.03
1000154-1000169	179	۰	01	1000161	8.10	43.20	100.00	0.0	69.80	0.00
1000170-1535285	182	•	=	1239171	8.10	43.20	100.00	0.00	80.66	10.0
1535286-1804106	183	•	=	1664277	8.10	43.20	100.00	0.0	88.88	0.01
1801107-2146163	181	a	11	1907716	8.10	43.20	100.00	0.0	80.88	0.01
2146164-2594620	186	۵	11	2359702	8.10	43.20	100.00	0.0	99.99	0.01
2594621-3000168	186	•	=	2700035	8.10	43.20	100.00	0.00	80.08	0.01
3000109-3000172	193	01	11	3000170	8.10	43.20	100.00	0.00	100.00	0.00
3000173-3250170	199	10	=	3122070	8.09	43.27	100.00	0.00	100.00	0.00

sample size increases with the lot size and the optimal decision loss per non-sampled item decreases with the sample size (Fig. 6). These two results were observed by Thyregod (1972) also for plans with two decision criteria.

The probabilities of acceptance and the probabilities of screening are computed for the lot quality p' = .01 and the probabilities of rejection and screening are computed for the lot quality p'' = .15 for each of the optimal plans in Table 2. The probability of acceptance at p' increases with the optimal sample size whereas the probability of screening decreases with the increasing lot sizes as it should be. The probability of rejecting a lot of quality p'' = .15 out right increases with the increasing optimal sample size whereas the probability of screening a lot of this quality increases in the beginning (upto $\overline{N} = 141$) and then decreases for higher lot sizes.

The identical values of K/\overline{N} in Table 2 tempt to work out a system of nearly optimum plans containing only one plan for each pair of acceptance numbers c_1 and c_2 . Such plans are provided in Table 3. The procedure of simplification used to obtain the plans in the table 3 was to compute n as $(1(c_1, c_2) + u(c_1, c_2))/2$ where $1(c_1, c_2)$ and $u(c_1, c_2)$ are the values as obtained in the step 4 such that the closed interval $1(c_1, c_2) \leqslant n \leqslant u(c_1, c_2)$ gives the possible optimal values of sample sizes corresponding to a particular pair c_1 and c_2 . The N-intervals were computed by using (30). A comparison between Tables 2 and 3 shows that the system in table 3 provides considerable simplification

of the optimal system and the nearly optimum plans for most practical purposes

is just as satisfactory as the optimal plans.

Though the figures 1 and 2 in the section 4 clearly brings out the definite advantages of a plan with the three-decision criteria over the one with two-decision criteria in certain cases yet it may be interesting to attempt a numerical assessment of the advantages for an illustration. For this purpose in example 3 we shall consider the situation similar to one in the example 1 but with a plan with two-decision criteria (acceptance/screening). We shall work out average total cost of inspection and decision per item for such a plan with two-decision criteria and will attempt an comparison between these values and the corresponding values for a plan with three-decision criteria as obtained in Table 2.

Example 3: Let us assume that the prior distribution of the lot quality and the three cost functions viz. cost of inspection, cost of acceptance and the cost of acceptance be the same as in the example 1 and the following sampling procedure be used.

Table 9. Nearly optimal plan with three decision criteria for $\omega_1=.93$ and $\omega_2=.07$

							In the support of the			0 6 m min	
×		e	e1	5	N	KIÑ	(%) saving	100 × P.(P')	100× P _s (p')	100 x P _r (p')	100 x P,(p')
7	146	80	٥	7	13	19.17		92.27	7.48	34.28	38.47
147-	363	18	0	04	230	10.22	28.33	83.45	16.48	62.03	42.60
364−	609	27	7	04	410	9.64	33.10	97.03	2.73	79.20	13.58
1010	1134	37	-	n	108	9.10	36.18	94.71	5.24	82.64	16.52
1135	1783	9	61	n	1422	8.79	38.25	98.00	0.09	92.93	4.73
1783-	3331	53	64	•	2437	8.58	39.97	98.22	1.76	93.03	0.23
3333- 4	4721	10	6	•	3000	8.43	40.95	19.66	0.35	97.20	1.87
4723-	8950	74	ო	10	6200	8.33	41.65	90.34	0.65	97.41	2.33
8951- 13	13140	83	-	ю	10845	8.24	42.21	99.85	0.13	98.98	0.69
13141- 2	23514	93	•	8	17578	8.19	42.56	99.75	0.26	00.03	0.87
23516- 3	35801	102	ю	9	29014	8.16	42.78	99.94	0.05	90.62	0.20
35802- 0	86100	112	10	7	46539	8.14	42.93	99.90	0.10	99.63	0.33
60499- 8	97192	121	•	1	76631	8.13	43.06	80.08	0.03	99.80	0.10
97193- 117709	7709	131	0	æ	106987	8.12	43.06	99.96	0.04	99.86	0.13
117770- 409222	9222	141	7	80	210531	8.11	43.13	69.68	0.01	00.85	0.03
409223- 555699	2699	158	80	•	470809	8.10	43.20	100.00	0.00	99.98	0.02
655700-1125149	5149	168	œ	01	790724	8.10	43.20	60.66	0.01	99.68	0.0
1125160-1428735	8735	111	0	01	1207888	8.10	43.10	100.00	0.00	88.88	0.01
1428736-3000168	89100	187	٥	=	2070373	8.10	43.20	100.00	0.00	80.80	0.01
3000169-5000175	27100	198	10	:	3873160	8.10	43.20	100.00	0.00	100.00	0.00

Acceptance without inspection is more economic.

Take a sample of size n from a lot of N items and let x denote the number of defectives observed in n then

Accept the lot if
$$x \le c$$

Screen the lot if $x > c$ (59)

The cost function K(N, n, c, p) can be written as

$$K(N, n, c, p) = n(S_1 + S_2 p) + (N - n)((A_1 + A_2 p)P_a(p) + (T_1 + T_2 p)P_s(p))$$
 ... (60)

where the symbols have the usual meaning and $P_a(p) = B(c, n, p)$ and $P_b(p) = 1 - P_a(p)$ denote the probability of acceptance and the probability of screening respectively. The unavoidable minimum cost $k_m(p)$ would be defined as

$$k_m(p) = k_a(p')w_1 + k_l(p'')w_2$$
 ... (61)

and the standardised cost function is

$$R(N, n, c) = n + (N - n)(\nu_1(1 - P_a(p')) + \nu_2 P_a(p')) \qquad \dots \tag{62}$$

where

$$v_1 = w_1(k_l(p') - k_d(p'))/(k_s - k_m)$$

$$v_2 = w_2(k_d(p'') - k_l(p''))/(k_s - k_m).$$

It is required to obtain (n, c) which minimises (62). The necessary expressions to determine the optimum plans are

$$\alpha + \beta c \leqslant n < \alpha + \beta(c+1)$$
 ... (63)

where

$$\alpha = \log \frac{\nu_2}{\nu_1} / \log \frac{q'}{q''}$$

$$\beta = \log \frac{p''q'}{p'q''} \left| \log \frac{q'}{q''} \right|$$

and

$$F(n-1,c) \leq N < F(n,c)$$
 ... (64)

where F(n,c) is defined by

$$F(n,c) = n+1 + \frac{1-\nu_1+\nu_1P_a(p')-\nu_2P_a(p'')}{-\nu_1p'b(c,n,p')+\nu_2p''b(c,n,p'')}$$

The points of intersection for the two plans (n', c') and (n'', c'') having overlapping N-intervals is given by

$$N_{12} = \frac{(n'' - n')(1 - \nu_1) + n''\delta(n'', c'') - n'\delta(n', c')}{\delta(n'', c'') - \delta(n', c')} \qquad \dots \tag{65}$$

where

$$\delta(n,c) = \nu_1 B(c,n,p') - \nu_2 B(c,n,p'')$$

For this example $\nu_1=0.217638$, $\nu_2=0.382606$, $\alpha=3.696567$ and $\beta=18.761415$. Using the expressions (60)-(62) and the values from Tables 5 and 6 in Pandey (1974) and proceeding as Hald (1960) we obtain the optimal plans with two-decision criteria as given in Table 4.

TABLE 4. OPTIMAL SAMPLING PLAN WITH TWO DECISION CRITERIA FOR $w_1 = .83$ AND $w_2 = .07$

	_							
	N	n	c	N	K/N	(%) saving	100 × Pa(p')	100 × P _s (p")
27-	33	4	0	29	13.21	7.36	96.08	47.80
34-	41	5	0	37	12.80	10.24	95.10	55.63
42-	50	6	٥	45	12.46	12.62	94.15	62.29
51-	60	7	0	55	12.11	15.08	93.21	68.94
61-	73	8	0	66	11.81	17.18	92.27	72.75
74-	88	9	0	80	11.51	19.28	91.35	76.84
89-	107	10	0	97	11.22	21.32	90.44	80.31
108-	131	11	0	118	10.95	23.21	89.53	83.27
132-	160	12	0	145	10.69	25.03	88.64	85.78
161-	198	13	0	178	10.47	26.68	87.75	87.91
199-	247	14	0	221	10.25	28.05	86.87	89.72
248-	313	15	0	278	10.06	29.45	86.01	91.26
314-	406	16	0	357	9.88	30.71	85.15	92.57
407-		28	1	407	9.80	31.28	96.82	93.73
408-	41)	29	1	409	9.79	31.35	96.60	94.51
412-	413	30	1	412	9.79	31.35	96.39	95.20
414-	424	31	1	418	9.78	31.42	96.16	95.80
425-	426	32	1	425	9.78	31.42	95.93	96.34
427-	442	33	1	434	9.77	31.49	95.70	98.80
443-		34	1	443	9.77	31.49	95.46	97.21
444-	463	35	1	453	9.76	31.56	95.21	97.57
464-	485	38	1	474	9.73	31.77	94.97	97.88
486-	487	37	1	486	9.73	31.77	94.71	98.16
488-	511	38	1	499	9.72	31.84	94.45	98.40
512-	1391	39	1	843	9.27	34.99	94.19	18.88
1392-	1454	54	2	1422	8.98	37.03	98.30	99.15
1455-	1422	55	2	1488	8.96	37.17	98.22	99.25

B, J. PANDEY

TABLE 4 (contd.). OPTIMAL SAMPLING PLAN WITH TWO DECISION CRITERIA FOR $w_1=.03$ AND $w_2=.07$

_									
	N		n	٥	\vec{N}	KĮN	(%) saving	100 × P _u (p')	100 × P _s (p*)
	1523-	1524	56	2	1523	8.05	37.24	98.13	99.34
	1525-	1602	67	2	1563	8.95	37.24	98.04	99.42
	1603-	4128	58	2	2572	8.73	37.38	97.95	99.49
	4129-	4324	74	3	4225	8.60	39.69	90.34	99.73
	4325-	4534	76	3	4428	8.50	39.76	99.31	99.76
	4535-	10795	76	3	6996	8.49	40.46	99.28	99.79
	10790-	11254	91	4	11022	8.43	40.88	99.77	99.87
	11255-	11749	92	4	11499	8.43	40.88	99.76	99.87
	11750-	11782	93	4	11765	8.42	40.95	99.75	99.90
	11783-	12361	94	4	12088	8.42	40.95	99.74	99.91
	12362-	28655	95	4	18821	8.38	41.23	99.72	99.92
	28656-	30502	110	5	29564	8.35	41.44	99.91	99.95
	30503-	30938	111	5	30719	8.35	41.44	99.91	99.96
	30939-	32517	113	5	31718	8.35	41.44	99.90	99.97
	32518-	74730	114	В	49295	8.33	41.58	99.89	99.97
	74731-	78152	129	6	76422	8.32	41.65	99.97	99.98
	78153	81833	130	6	79971	8.32	41.65	99.96	09.98
	81834-	82220	131	6	82031	8.31	41.73	99.96	99.99
	82230-	86228	132	6	84205	8.31	41.73	99.96	99.99
	86229-	90579	133	6	88377	8.31	41.73	99.96	99.99
	90580-	212623	134	6	138778	8.30	41.80	99.96	99.99
	212624-	225122	151	7	218783	8.30	41.80	99.98	100.00
	225123-	500142	152	7	335549	8.30	41.80	99.98	100.00
	500143-	1250160	168	8	790733	8.29	41.86	99.99	100.00
	1250161-	1307850	184	9	1278680	8.29	41.80	100.00	100.00
	1307851-	3200180	187	9	2045814	8.29	41.86	100.00	100.00
	3200181-	3400180	205	10	3298665	8,29	41.86	100.00	100.00
	3400181-	3600180	206	10	3498751	8.20	41.88	100.00	100.00
	3600181-	3800180	208	10	3698828	8.29	41.86	100.00	100.00
	3800181-	8500200	209	10	1182898	8.29	41.86	100.00	100.00
	8500201-	9000200	226	11	8746628	8,29	41.86	100.00	100.00
	9000201-1	5000200	227	11	11610157	8.29	41.86	100.00	100.00
	15000201-1	6000200	260	13	15492134	8.29	41.88	100.00	100.00
	16000201-1	7000200	261	13	16492623	8.20	41.86	100.00	100.00

The figure 7 shows the average total cost of inspection plus the decision cost per item against the lot sizes, \bar{N} , for the plans with three decision and two (acceptance/screening) decision criteria (Tables 2 and 4) with p' = 0.01, p' = 0.15 $w_1 = .03$ and $w_2 = .07$ as the double binomial prior distribution. The figure 7 clearly shows that the plan with three decision criteria is more economical than the plan with two decision criteria.

The advantages of the plans with three decision criteria as compared with the plans with two decision criteria will be more pronounced for higher values of w_1 i.e. when considerable number of lots with deteriorated quality levels are submitted for inspection the plans with the three decision criteria will have definitely substantial reduction in the values of K/\bar{N} as compared with the plans with two decision criteria. To illustrate it, in example 4 we shall consider the plans with three decision criteria and the plans with two decision criteria for the same set of cost functions as in the example 2 and 3 but with p'=0.01, p''=0.15 $w_1=0.10$ and $w_2=0.90$ as the double binomial prior distribution.

Fig. 7: Cost curves for plans with two and three decision criteria for $\omega_1 = 0.93$, $\omega_2 = 0.07$

Example 4: The necessary quantities to obtain the plans with three-decision and two-decision criteria (acceptance/screening) for the double binomial prior distribution with p' = 0.01, p' = 0.15 and $w_1 = 0.10$ and $w_2 = 0.90$ and for the cost function $k_t(p)$, $k_a(p)$, $k_l(p)$ and $k_r(p)$ same as in examples 2 and 3 are

$$k_s = 27.76; \ k_m = 18.72$$

 $\nu_{11} = 0.403762; \ \nu_{12} = 8.487278; \ \nu_{13} = 0.101217; \ \nu_{21} = 0.273783$
 $\alpha_1 = 19.074527; \ \alpha_2 = 0.520389; \ \beta = 18.701415 \ \text{and} \ \alpha = \alpha_1,$
 $\nu_1 = \nu_{13}; \ \nu_2 = \nu_{14}$

Using the above values of ν_{ij} 's, α_{1} , α_{2} and β in (43), (44) and (30) we obtain optimum plans with three-decision criteria in Table 5 through Tables 8 and 9 in Pandey (1974). Similarly, using the above values of α , β , ν_{1} and ν_{2} in (63), (64) and (65) we obtain the optimum plans with two-decision (acceptance/screening) criteria in Table 6 through the Tables 11 and 12 in Pandey (1974). The figure 8 shows the average total cost of inspection plus the decision cost per item against the average lot sizes (\bar{N}) for the optimal plans both with three-decision (Table 5) and two-decision (Table 6) criteia. It is clear from the figure 8 that the plans with three-decision criteria is more economical than the

Fig. 8: Cost curves for plans with two and three decision criteria for w. = 0.10, wa = 0.90

plan with the two-decision criteria. A comparision between figure 7 and 8 confirms that the advantage of three decision is more pronounced for higher value of w_a .

8. Point binomial bayes solution

As a limiting case of the double binomial prior distribution assume that the prior distribution of the lot quality is point binomial with the parameter \bar{p} . The cost function, under the assumption 4 (Section 4), has its minimum value when the following decision rule is used

> Accept all lots from processes with $\bar{p} < p_u$ Screen all lots from processes with $\bar{p}, p_u \leqslant \bar{p} < p_v$... (66) Reject all lots from processes with $\tilde{p} \geqslant p_v$

TABLE 5. OPTIMAL SAMPLING PLANS WITH THREE DECISION CRITERIA FOR $\omega_1=0.10$ AND $\omega_2=0.90$

N		•	•	69	ΙZ	KĮN	(%)	100 × P _e (p')	100× P _s (p')	100× P.(p")	100× P _* (p*)	
98	8	82		_	63	23.29	16.21	17.00	20.22	91.83	6.71	
-69	78	23	0	-	73	22.85	76.66	76.23	20.79	92.84	6.92	
98	83	83	0	-	98	22.39	77.13	75.47	21.36	93.73	5.22	
4	109	8	۰	-	101	21.99	77.64	74.52	21.89	19.16	4.69	
-011	130	8	•	-	611	21.62	77.82	73.97	22.42	95.20	4.04	
131-	167	31	0	_	143	21.25	78.30	73.23	22.93	95.80	3.65	a)IA
153-	174	33	٥	_	165	21.00	78.65	72.60	23.43	96.34	3.11	
176-	171	45	-		178		78.08	92.64	6.43	97.36	2.08	
P11		11	_	~	178	21.44	78.10	91.95	6.83	97.93	1.63	
179-	182	8	-	•	180		78.13	91.66	7.10	98.17	1.44	DAD
183-	184	6	-	~	183	21.39	78.16	91.36	7.33	98.33	1.27	
-581	061	2		64	181	21.36	18.19	91.08	7.56	98.68	1.13	
181		19	-	•	161	21.34	78.21	90.75	1.19	98.75	1.00	
193		83	-	•	193	21.36	78.19	90.44	8.03	98.90	0.88	
193-	800	63	_	•	196	21.32	78.22	90.13	8.25	89.03	97.0	
201		99	-		102	21.30	78.25	89.82	8.49	89.18	69.0	
202	310	22	-		202		78.28	89.60	8.72	89.22	0.61	
211-	220	8	-	•	216	21.20	78.35	89,18	8.95	99.34	0.63	
221-	624	67			310	20.36	10.01	89.88	9.18	99.42	0.47	•
								i				•

TABLE 5 (comd.). OPTIMAL SAMPLING PLANS WITH THREE DECISION CRITERIA FOR 14, - 0.10 AND 11, - 0.00

×		£	ď	s	ı×	ΚĮÑ	844.448 (%)	100 × P _a (p')	100× P ₄ (p')	100× P ₇ (p ^c)	100× P.(p')
525-	249	74	04		636	20.03	79.64	96.16	3.18	99.73	0.21
550	1284	42	81	m	840	19.59	79.00	96.03	3.27	99.76	0.19
1285	1346	91		•	1316	19.38	80.21	98.06	1.1	18.66	0.10
1347~	1111	03	n	•	1378	19.35	80.24	08.61	1.16	98.89	0.09
1412-	3159	93	e	•	1112	19.14	80.48	99.66	1.19	99.00	0.08
3160	3302	108	~	ю	3230	19.04	80.56	99.52	0.40	90.64	90.0
3303-	3462	109	•	ю	3376	19.03	80.67	99.51	0.41	99.08	0.04
3463-	3458	ï	4	10	3463	19.02	80.08	99.47	0.41	99.06	0.03
3466	3628	112	•	ю	3640	19.02	80.58	99.43	97.0	99.86	0.03
3629	3812	113	•	10	3719	19.00	80.00	99.43	0.47	99.81	0.03
3813-	8851	130	10	•	6089	18.93	80.67	80.78	71.0	99.99	10.0
8852~	9313	131	10	•	9009	18.86	80.75	90.78	91.0	99.90	0.01
9314	21596	147	•		14182	18.81	80.70	90.93	90.0	80.99	0.01
21597-	22636	148	•		22110	18.78	80.82	89.92	90.0	99.09	10.0
22637-	23772	149	•	-	23197	18.78	80.82	99.62	0.02	60.00	0.00
23773	62686	164	7	s c	33356	17.76	80.84	99.01	0.03	100.00	0.00
82586-	54745	166	1	80	53654	18.75	80.85	99.07	0.03	100.00	0.00
84746-	57184	166	7	80	19699	18.76	80.85	99.07	0.03	100.00	0.00
57185	57571	167	7	80	57377	81.76	80.85	99.97	0.03	100.00	0.00

TABLE 5 (could.). OPTIMAL SAMPLING PLANS WITH THREE DECISION CRITERIA FOR w. - 0.10 AND w. - 0.80

*		_ ا	4	°.	I۶	KIÑ	(%)	100 × P _a (p')	100 × P ₄ (p')	100 x P _r (p")	100× P,(p')
67572-	60541	168	7		60037	18.75	80.85	19.66	0.03	100.00	8
60543-	60542- 132900	183	60	•	89068	18.74	80.86	60.06	0.01	100.00	9.0
132901- 139287	139287	184	00	٥	136056	18.73	80.37	90.09	10.0	100.00	0.00
139288- 145455	145455	186	00	0	142338	18.73	80.87	99.90	0.01	100.00	0.00
146456		186	00	a	146456	18.73	80.87	99.99	0.01	100.00	0.00
145457-	145457- 152699	187	80	۰	149034	18.73	80.87	88.88	0.01	100.00	0.00
162700- 161173	161173	188	90	a	156879	18.73	80.87	88.88	0.01	100.00	0.00
161174-	361878	305	۰	10	241606	18.73	80.87	100.00	0.00	100.00	0.00
361879- 343154	343154	206	a	10	372364	18.72	80.88	89.68	0.00	100.00	0.0
383165-	889083	÷1	01	=	583657	18.72	80.88	100.00	0.00	100.00	9.0
889084- 941634	941633	223	01	=	916410	18.72	80.88	100.00	0.00	100.00	0.0
911639-1000193	1000193	125	91	=	972019	18.72	80.88	100.00	0.00	100.00	9.0

*Cost of acceptance without inspection - 97.02 money units.

TABLE 6. OPTIMAL SAMPLING PLANS WITH TWO-DECISION CRITERIA FOR $\omega_1=.10$ AND $\omega_2=.90$

		*		Ŋ	KĮ₩	(%)	100 × P _e (p')	100 x P _e (p'')
30-	33	20	0	31	26.51	72.92	81.79	96.12
34-	38	21	0	35	26.17	73.27	80.97	96.71
39-	44	22	0	41	25.75	73.70	80.16	97.20
45-	50	23	0	47	25.38	74.08	79.36	97.62
51-	57	24	0	53	25.08	74.41	78.57	97,98
58-	66	25	0	81	24.71	74.76	77.78	98.28
67-	77	26	0	71	24.36	75.12	77.00	98.54
78-	90	27	0	83	24.03	75.46	76.23	98.76
91-	107	28	0	98	23.71	75.78	75.47	98.94
108-	127	29	0	117	23.41	76.09	74.72	99.10
128-	154	30	0	140	23.14	76.37	73.97	99.24
165-	187	31	0	170	22.88	76.63	73.23	99.35
188-	189	46	1	188	23.12	76.39	92.25	99.48
190-	193	47	1	191	23.09	76.42	91.95	99.55
194-		48	1	194	23.07	76.44	91.66	99.61
195-	201	49	1	197	23.04	76.47	91.36	99.66
202-		80	1	202	23.02	76.40	91.06	99.71
203-		51	1	203	23.02	76.49	90.75	99.75
204-	212	52	1	207	22.99	76.52	90.44	99.78
213-		53	1	213	22.97	76.54	90.13	99.81
214-	222	54	1	217	22,95	76.56	89.82	99.84
223-	510	55	1	337	22.39	77.13	89.50	99.86
511-	531	70	2	520	22.16	77.36	96.67	99.90
532-	554	71	2	542	22.12	77.41	96.54	99.91
858-		72	2	886	22.11	77.42	96.42	99.92
556-	882	73	2	568	22.09	77.44	96.29	99.93
583-	609	74	2	595	22.06	77.47	96.16	99.94
610-	1429	75	2	933	21.77	77.77	96.03	99.95
1430-	1500	92	3	1464	21.63	77.91	98.61	99.97
1501-	1675	93	3	1837	21.61	77.93	98.56	90.98

BAYESIAN SINGLE SAMPLING PLAN

TABLE 6 (contd.). OPTIMAL SAMPLING PLANS WITH TWO-DECISION CRITERIA FOR $\omega_1=.10$ AND $\omega_8=.00$

		n	٥	R	ΚĮŇ	(%)	100 × P₄(p′)	100× P _s (p')
1576-	3668	94	3	2404	21.47	78.07	98.50	99.98
3660-	3858	111	4	3762	21.40	78.14	99.47	99.99
3859-	8988	112	4	5888	21.33	78.22	99.45	99.99
8986-	9420	128	8	9200	21.29	78.26	99.81	99.99
9421-	9888	129	8	9051	21.29	78.26	99.80	100.00
9889-	22048	130	8	14765	21.26	78.29	99.79	100.00
22049-	23008	145	6	22523	21.24	78.31	90.93	100.00
23009-	24062	146	6	23529	21,24	78.31	99.93	100.00
24063-		147	6	24063	21.24	78.31	90.92	100.00
24084-	25294	148	6	24671	21.24	78.31	99.92	100.00
24295-	88531	149	6	38477	21.22	78.33	99.93	100.00
58532-	61069	165	7	59787	21.21	78.34	99.97	100.00
61070-	63966	166	7	62501	21,21	78.34	99.97	100.00
63967-	64423	167	7	64194	21.21	78.34	99.07	100.00
64424-	67753	168	7	66067	21.21	78.34	99.97	100.00
67754-	154703	169	7	102380	21,20	78.35	90.97	100.00
154604-	162319	186	8	158465	21.20	78.35	90.00	100.00
162320-	372269	187	8	245818	21.20	78.35	90.99	100.00
372270-	395524	203	9	383720	21.20	78.35	100.00	100.00
395525-	400266	204	9	402338	21.20	78.35	100.00	100.00
409267-	937693	205	9	61489	21.20	78.35	100.00	100.00
937694-	941370	220	10	939530	21.20	78.35	100.00	100.00
941371- 1	000100	221	10	970334	21.20	78.35	100.00	100.00
1000191-		222	10	1000191	21.20	78.35	100.00	100.00
1000192- 1	059020	223	10	1029185	21.20	78.35	100.00	100.00
1059021- 2	143070	224	10	1506504	21.20	78.35	100.00	100.00
2143071- 2		230	11	2213348	21,20	78.35	100.00	100.00
2285931- 2		240	11	2356273	21.19	78.36	100.00	100.00
2428781- 2		241	11	2400189	21.19	78.36	100.00	100.00
2571641- 2		242	11	2642105	21.19	78.36	100.00	100.00
2714501- 6		244	11	3022092	21.19	78.36	100.00	100.00
5666901 (261	12	5831184	21.19	78.36	100.00	100.00
6000231- 3		262	12	6708458	21.19	78.36	100.00	100.00
7500281- 1		296	14	7746247	21.19	78.30	100.00	100.00
8000281 1		298 297	14	8250187 12035253	21.10	78.30 78.36	100.00	100.00
8620281-11 17000301-1		297	14	17402156	21.19	78.30	100.00	100.00
1,000301-1	0000300	200	4.0	11402100	21,19	10.30	100.00	100.00

where pu and po are the breakoven qualities as defined in the Section 4.

The above prior distribution amounts to having a full information of the lot quality. In such a case the optimal procedure is given by (66) resulting in the following decision costs.

$$k_{m}(\bar{p}) = \begin{cases} k_{d}(\bar{p}) & \text{if } \bar{p} < p_{u} \\ k_{l}(\bar{p}) & \text{if } p_{u} < \bar{p} < p_{v} \end{cases} \dots (67)$$

$$k_{r}(\bar{p}) & \text{if } \bar{p} < p_{v}.$$

where we assume, as mentioned earlier, $p_u < p_v$. If $p_u \geqslant p_v$ the three decision criteria reduces to a two-decision criteria with cost function as given in (15).

9. CONCLUDING REMARKS

Bayesian plans with three decision criteria discussed in this paper have a definite economic advantages over the plans with two decision criteria under the situations as pointed out in the paper. The three decision procedure with its cumbersome cost functions appears some what complicated. But it should not create any difficulty to a user if the optimum plans for most of the practical situations are made available in a standard tabular form (it is intended to publish tables of optimum plans with three-decision criteria for most of the common values of v_0 , i, j = 1, 2 with most common double binomial prior distributions soon). A vigilant management with a good feed-back information system will find it rather quite easy to obtain reasonable estimates of v_0 's.

The economic advantages of such plans, in the absence of standard usuable tables, may make it quite tempting to work out these plans with the help of an electronic computer by following the systematic steps given in the paper.

A simple extension of this paper may be done by considering three quality levels i.e. a trinomial prior.

It would be interesting and useful to carry out a sensitivity analysis of the optimum plans for the possible fluctuations in the values of vy and to study asymptotic properties of these plans. The asymptotic properties of these plans are going to be discussed in a forthcoming paper. It would be rather for theoretical interest to consider k-decision criteria for even more general cost model and derive the three-decision procedure as a particular case. Some thought has been already given to develop sequential sampling procedure with three-decision criteria and to examine its proporties.

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks to Prof. K. G. Ramamurthy for his encouragement during preparation of this paper. He expresses his gratitude to the referce for his very valuable suggestions which were quite useful during the revision of the original version of this paper. The author records his indebtedness to his colleague Shri S. R. Mohan who kindly helped him initially in programming computations on Honeywell-400. His thanks are due to Shri J. Sharma of SQC T & P Unit for his excellent typing assistance.

Reseasors

- ANSCOMBR, F. J. (1950): The cost of inspection. Statistical Method in Industrial Production. pp. 61-87. Royal Statistical Society, London.
- BARNARD, G. A. (1951): Sampling inspection and statistical decisions. J. Roy. Statist. Soc., B, 16, 151-174.
- CHAMPERNOWNE, D. G. (1953): The economics of sequential sampling procedures for defectives.

 Appl. Statist., 2, 118.
- Donge, H. F. and Roxto, H. G. (1929): A multod of sampling inspection. Bell. Syst. Tech. J., 8, 613-631. Reprinted in Dodge, H. F. and Romig, H. O. (1959). 'Sampling Inspection Tables'. Wiley New York.
- GUTHRIE, D. and JOHNS, M. V. (1959): Bayes acceptance sampling procedures for large lots.

 Ann. Math. Stat., 30, 800-925.
- HALD, A. (1903): The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distribution and costs. Technometrics, 2, 275-340.
- —— (1965): Bayosian single campling attribute plans for discrete prior distribution. Mat. Pys. Str. Don. Vid. Scisk, 2, No. 2, pp. 89, Munk-gaard, Copenhagen.
- (1967a): On the theory of single sampling inspection by attributes based on two quality levels. Rev. Int. Statist. Inst., 35, 1-20.
- —— (1967b): Asymptotic properties of Bayesian single sampling plan. J. Roy. Statist. Soc., B. 29, 162-173.
- (1964): Bayesian single sampling attribute plan for continuous prior distribution.
 Technometrics, 10, 067-083.
- HALD, A. and TRYREGOD, P. (1971): Bayesian single sampling plans based on linear costs and the Poisson distribution. Mat. Fys. Skr. Dan. Vid. Selsk., 3, No. 7, Munksgaard. Copenhagen
- HAMARER, H. C. (1951): Exonomic principles in industrial sampling problems. A general introduction. Bull Int. Statist. Inst., 33, V, 105-122.
- RORSNELL, G. (1957): Ejonomical socoptance sampling schemes. J. Roy. Statist. Soc., A, 120, 149-175.
- JORANSEN, S. (1970): Asymptotic proporties of the restricted Bayesian double sampling plan. Technometrics, 12, 647-067.
- PANDEY, R. J. and CGAWGHARY, A. K. (1972a): Single sampling plan by attributes with three decision criteris. Sankhyd. B. 84, 205-278.

- PANDEY, R. J. (1972b): Single sampling plan by variables with three decision criteria. Tech. Report No. Math. Stat. 15/72, Indian Statistical Institute.
- --- (1972a): Restricted Bayesian double sampling plan by attributes with three decision criteria. Tech. Report No. Math. 9tat. 32/72, Indian Statistical Institute.
- —— (1973): Rayesian single sampling plan by attributes with three decision criteria for continuous prior distribution. Tech. Report No., Math-Stat. 42/73, Indian Statistical Institute.
- (1974): A comparative study of Bayesian single sampling plans by attributes with three and two decision criteria for discrete prior distribution. Tech. Report No. Math. Stat. 1874, Indian Statistical Institute.
- PPANZAGL, J. (1903): Sampling procedure based on prior distribution and costs. Technometrics. 5. 47-81.
- SITTINO, J. (1951): The economic choice of sampling system in acceptance sampling. Bull. Int. Statist. Inst., 33, V, 51.
- TUYREOOD, P. (1972): Bayosian single sampling acceptance plans for finite lot sizes. Monograph. The Institute of Mathematical Statistics and Operations Research (INSOR). The Technical University of Denmark 2800 Lyngby—Denmark. J. Roy. Statist. Soc. 1974, B, 36, 305-319.
- Tippert, L. H. C. (1953): A guide to accoptance sampling. App. Statist., 7, 133-148.
- WETHERILL, G. B. (1980): Some remarks on the Bayesian solution of the single sampling inspection scheme. Technometrics, 2, No. 3, 341-352.
- WEIBUL, I. (1951): A method of determining inspection plans on an economic basis. Bull.

 Int. Statist. Inst., 33, V, 95.

Paper received: August, 1972. Revised: November, 1974.