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STATISTICAL INFORMATION AND LIKELIHOOD®

By D. BASU
Universily of Manchester and Indian Statistical Inslitute

PART 1: PRINCIPLES

SUMMARY. In part ono of this casay tho notion of ‘statistical inf: tion g tod
by a data’ is formulated in torms of some intuitively appealing principlos of data analysis. Tho
author comas out vory strongly in favour of tho unrostrictod likolihood principle aftor demons-
trating (to his own satisfaction) tho bl of tho Bayvs-Fishor poatulate that, within
tho framowork of a particular statistical modol, tho ‘whole of the relevant information in the

data® must bo supposod to bo summarisod in-tho likelihood function gonerated by tho data.

Part two bogins with a briof di ion on somo Bayosian likolihood mothods of data

lysis that originated in tho writings of R, A. Fishor. Tho central Fishor-thesis on likolihoed

thnt it is only a point function is challongod. Tho principlo of maximum likelihood is questionod
and the limitations of the mothod exposed.

Part threo of tho essay is woven around somo paradoxical countor 1 The author

T

domonstrates (again to his own satisfaction) how such los discrodit tho fiducisl argumeont,

undorline tho improprioty of improper Bayoesianism, exposo tho naivety of standard statistical
practicos liko (pin-point) null-hypothosia tosting, 3a-likelihood intorval catimates, ote. and how
at tho samo timo thoy illuminate and etrongthon tho likelihood principle by putting it into its
truo Bayesian porspoctive.

1. STATISTICAL INFORMATION

The key word in Statistics is information. After all, this is what the
subject is all about. A problem in statistics begins with a state of nature,
o parameter of interest w about which we do not have enough information.
In order to genero,te further information about w, we plan and then perform
o statistical expefirient @. This generates the samplo 2, By the term ‘sta-
tistical data’ we mean such & pair (&, z) where & is a well-defined statistical
experiment and x the samplo generated by a performance of the experiment.
The problem of data analysis is to extract ‘tho whole of the relevant infor-
mation’—an oxpression made famous by R. A. Fisher—contained in tho data
(&, z) about the parameter w. But, what is information 2 No other concopt

in statistics is moro clusive in its meaning and less amenablo to a generally
agreed definition,

*This’ essay e dodicated to tho momory of tho Lato Profvssor Prosanta Chandra
Mahalanobis.
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To begin with, let us egree to tho uso of the notation
Inf (&, 2)

only as a pscudo-mathematical short hand for the ungainly expression : ‘the
wholo of the relevant information about @ contained in the data (&, x). At
this point an objection may well bo raised to the following effect : The concept
of information in tho data (&, 2) makes sense only in the context of (i) the
‘prior-information’ ¢ (about w and other related entities) that we must have
had to begin with and (ii) tho particular ‘inferontial problem’ II (about w)
that made us look for further information.

\Whilo agreeing with the criticism that it is more realistic to look upon
‘information in the data’ as a function with four arguments II, ¢, & and =z,
let us hasten to point out that at the moment we are concerned with variations
in & and z only and so wo aro holding fixed tho other two clements of II and
g. That Inf(&, z) may depend very critically on z, is well-illustrated by the
following simplo example.

Example 1: Supposo an urn contains 100 tickets that are numbered
consecutively a3 w+1, @+2, ... w+100 where w is an unknown number. Lot
&, stand for the statistical experiment of drawing a simple rendom sample of
n tickets from the urn and then recording the sample as a set of » numbers
2, <23 < ... <z, Ifatthe planning stage of the experiment, we are asked
to chooso between the two experiments &, and &,y then, other things being
equal, wo'shall no doubt profer &y to &;. Consider now the hypothetical
situation where &, has been performed resulting in-the sample z = (17, 115).
How good is Inf(E,, ) ¥ A quick analysis of the data will reveal that w has
to be an integer and must satisfy both the inequalities

w1 € 17€ w100 and w+1 < 115 < w4100

In other words, Inf(&,, z) tells us categorically that w = 15 or 16. Now,
contrast the above with enother hypothetical situation where &,; has been
performed and has yielded the samplo 2’ = (17, 20, ..., 62), where 17 and 52
are respectively the smallest and the largest number drawn. With Inf(&,;, 2°)
we can now only assert thet w is an integer that lics somowhere in the interval
[—48, 16]). While it is clear that, in somo average senso, the experiment
83 i3 ‘moro informative’ than &,, it is equally incontrovertablo that the parti-
ocular samplo (17, 118) from experiment &, will tell us a great deal moro about
tho parameter than will the sample (17, 20, ..., 52) from &,. To bo more
specifio, with

Inf{8., (z1 2y, ..., 2,)}
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we know without any shadow of doubt that the true value of w must belong
to the sct

= {x,—1,2,—2, ..., zy—m}

where m = 100—(z,—2z,). In the prescnt caso the likelihood funection (for:
the parameter w) is ‘flat’ over the set 4 and is zero outside (a situation that
is typical of all survey sampling sct-ups) and this moans that the sample
(23, 23, ..., 2,) from experiment &, ‘supports’ each of tho points in the set 4
with equal intensity. Therofore, it scems reasonablo to say that wo may
identify the information supplicd by the data {&,, (%,, 2,, ..., z,)} With the set
A and quantify the magnitude of the information by the statistio m = 100—
(z,—x;)—the samller the number m is, tho more preciso is our specification
of the unknown w. Onco the experiment &, is performed and the samplo
(21, Zg, o+, Z,) Tecorded, tho magnitude of the information obtained depend

on the integer m (which varies from samplo to samplo) rather than on the
constant n,

Among contemporary statisticians there scems to bo a complete lack of
consensus about the meaning of the term ‘statistical information’ and the
manner in which such an important notion may be meaningfully formalized.
As a first step towards finding tho greatest common factor among tho various
opinions held on the subject, let us make a beginning with the following loosely
phrased operational definition of equivalenco of two bits of statiatical infor-
mation.

Definition : By the cquality or equivalence of Inf(&,, z,) and Inf{&,, 7,)°
we mean the following :

(a) tho experiment &, and &, are ‘related’ to the same perameter of
interest w, and

(b) ‘everything clse being equal’, the outcome z, from &, ‘warrants the
samo inference’ about w as docs the outcome z, from &,.

We plan to make an evaluation of several guidelines that have been
suggested from time to time for deciding when two different bits of information

ought to be regarded as equivalent. But beforo we proceed with that project,
let us agree on a few definitions.

2. DBASIO DEFINITONS AND RELATIONS

In contrast to tho situation regarding the notjon of statistical information,
thero exists a general of opini t-day statisticians

regarding o mathematical framework for the nohon ol‘ o statistical experi-
ment, We formalize a statistical experiment & as a triple (&0, Q, p) whero
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(i) 2, the sample space, is the sct of all the possible samples (out )

2 that a particular performance of & may give rise to,

(i) Q, the parameler space, is the set of all the possible values of an entity
w that we call the universal parameter or the stale of nalure, and

(iii) p = p(z|w), the probability function, is & map p : Lx Q- [0,1]
that eatisfies the identity

I plzlw)=1 for all weQ.
ze

To avoid being distracted by measurability conditions, we stipulate from the
beginning that both & and Q are finite® sets. There is no loss of generality
in the further assumption that

I pzlw)y>0  for all 2e.
e

It will frequently happen that we are not reslly interested in w itself,
‘but rather in some characteristic 0 = O(w) of the universal parameter. In
such cases we call O the parameler of inlerest and denote its range of values
by ©. If there exists a set @ of points ¢ such that we can write

Q=0x0 and w=(0,9),
we then call ¢ = @{w) the nuisance parameter.

With reference to an experiment & = (2, Q, p), we define & statistic T as
amap T : L7 of & into a space I of points ¢, Every point ¢ Z defines
a subset 24 = {z| T(z) = ¢} of &2 and the family {2 |te4]} of all theso subsets
defines a partition of . Converscly, every partition of & is induced by
some suitably defined statistic. It is convenient to visualize o statistic 7' as a
partition of the sample space 2.

Given & and a statistio T, we dcfine the marginal experiment 8 as

&r =(Z,Q, pr)
where the map p7: ZxQ-([0,1] is given by
prillw)= T p(x|w).
60,

Operationally, we may define&r as ‘perform & and then observe only
T = T(z)’

*Tho author holds firmly to tho viow that this contingent and cognitive universo of oura
is in roality only finito and, thoroforoe, discroto. Yn this ossay wo ploer ¢lear of tho logical quick
sands of *inflnity’ and thoe ‘infnitesimal’. Infinite and continuous models will bo used in the
soquel, but thoy are to ha look sl upon ay mare approximations to the finite realiticy.
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Still taking T os above, we may define, for cach feZ, o (conceptual)
experiment

&l = (2, Q, 1)
where the map 27 : & x Q—[0, 1] is given by the formula
Plz|w) =p@|w) I p(z|w)
e

for all xe0, and we). [The usual caro needs to be taken about a possible zero
denominator here.] We call &7 the conditional experiment given that T'(z) = ¢.
The experiment &7 may be loosely characterized as : ‘Reconstruct the sample
z from the information that PT(z) = ¢’. [In a later section we examino the
question whether such a reconstruction is operationally meaningful.) With
each statistic T we may then jate a ptual d position of the
experiment & into a two-stage experiment : ‘First perform &z and then
perform &7 where ¢ is the outcome of &7.'

We now briefly list a set of well-known definitions and theorems.

Definition 1 (A partial order): The statistio 7T : L2 is wider or
larger than the statistic 7* : Z— ', if for each ¢ € Z there exists a t'e 2’ such
that s C Ly, that is, if the partition of & induced by 7' is a sub-partition of
the one induced by 7",

Definition 2 (Non-informalive experiments) : An experiement &=(<, Q, p)
is statistically trivial or non-informative (about the universal parameter w)
if, for each 20, the function w— p(x|w) is a constant.

Definition 3 (Ancillary statistic) : The statistic T': @P—»7 is called an
ancillary statistio (w.r.t. w) if the marginal experiment &7 is non-informative
(about w).

Definition 4 (Sufficient statistic) : Tho statistic I’ is called a sufficient
statistic (for w) if, for all 267, tho conditional experiment &7 is non-informative
(about w).

Definition 6 (Likelihood function) : When an experiment & = (4, Q, p)
is performed resulting in the outcome zel, tho function w—p(r|w) is called
the likelihood function generated by the data (&, z) end is variously denoted
in the sequel 83 L, L(w), L(w|z) or L{w|&, 2).

Definition 6 (Equivalent likelihoods) : Two likelihood functions L, and
L, defined on the samo parameter space £ [but possibly corresponding to two
different pairs (&,, 2,) and (&,, 2,) respectively] aro said to be equivalent if
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there exists & constant ¢ > 0 such that Li(w) = ¢L,(w) for all weQ).- [The cons-
tant ¢ may, of course, depend on &y, 84, 7, and z,]. Wo write L~ L, to
indicate the equivalenco of the likelihood functions.

Definition 7 (Standardized likelihood) : Each likelihood function L on Q
gives riso to an equivalent standardized likelihood function L on Q defined as

Lw) = Lw) = Lw).

Note that our carlicr assumptions about  and p preclude the possibilitics
of the denominator being zero or infinite.

Theorem 1: A statistic T is sufficienl if and only if, for z,, x,e20,
T(z,) = T(x,) implies L{w|z;) ~ L{w|z,).

In other words, & statistic T : 2.7 is sufficient if and only if, for every
led, it is true that all points z on the T-surface & generato equivalent
likelihood functions. The following result is then an immediate consequenco
of the above.

Theorem 2: For any experiment & = (&, Q,p) the map (slatistic)
2L (w|z), from z to a (standardized) likelihood function L on Q, is the minimal
sufficient slatistic, that is, the above statistic is sufficient and every olker sufficient
statistic 18 wider than it

Definition 8 (Mizture of experiments): Suppose we have o number of
experiments & = (2, Q,p), ¢ =1,2,..., with tho samo parameter spaco
0, to chooso from. And let my, 7, ... be a pre-assigned sct of .non-negative
numbers summing to unity. The mizfure & of tho experiments &,, 8,, ...
according to mixture (sclection) probabilities m,, m,, ... is defined as a two-stage
experiment that beging with (i) a random selection of one of the experiments
8,, &, ... with sclection probabilities my, ,, ..., followed by (ii) the performing
of the experiment sclected in stage (i). Clearly, the sample space &2 of the
mixture experiment & = (4, Q, p) is ‘tho set of all pairs (i, y) withs = 1, 2, ...
and x6 X (that is, & is the disjoint union of the sots &, &, ...). And
tho probability function p: LxQ—[0,1] is given by

Plz| w) = mpy(xe| w)
when 2z = (s, 2).

It is important to noto our stipulation that the mixture probabilitics
Ty Moy vee BTO | °, lated to tho unknown

1 Y, fc

s and, tl

=4
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parameter w. Given an experiment & = (£, Q, p) and an ancillary statistic
T : -2, wo may view & as a mixture of the family

{aF :1e2}
of conditionel experiments, with mixture probabilities
m=pr(t|w), &I

which do not depend on w since 7 is ancillary.

Definition 9 (Similar experiments) : The experiments &, = (2, Q, p,)
and &, = (X, Q, p,) with tho same parameter space Q are said to be similar
or stalistically isomorphic if thero exists a one to one and onto map g: .,
=4, such that

Biry| ) = Pofgr; | w)
for el 2,60, and weQ. The function g is then called a similarity map.

e end this scction with a definition, due to D. Blackwell (1950), of tho
sufficiency of an experiment for another experiment and a few related remarks.

Definition 10 (Blackwell sufficiency): The experiment & = (0, Q, ;)
is sufficient for the experiment &, = (&, Q, p,) if there exists o transtion
function w: LyX [0, 1) (with the usual condition that I #(z,, z,) =1

X,

for all z,e20) which satisfies the additional requirement that

Pl 0) = E PAENTLCNEN
1

for all weQ and 2,62,

The sufficiency of &, for &, means exactly this: that the experiment
&, may bo simulated by first performing &, and noting its outcome z,, and then
obtaining & point z, in 4, via a sccondary randomization process that is defined
in terms of tho transition function z(zy, ;). Note that, for cach 2,62, the func-
tion 71(zy, *) defines a probability distribution on <2 that is freo of the unknown
w. Wo refer to Blaclavell (1950) for an alternative but equivalent formulation
of Definition 10 in terms of tho average performance characteristics of statistical
decision functions.

If for experiment & = (42, Q, p) the statistic T': -2 is sufficient (Defini-
tion 4), then tho marginal experiment &1 = (Z, Q, pr) is suflicient (Definition
10) for &. Tho converso proposition is also true. If &, and &; are similar
(Definition 0) experiments with g : & — & 88 & similarity ‘map, then tho
Kronecker delta function &(gx,, a;) may Do taken os tho transition function
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n(z,, 2,) to prove tho sufficiency of &, for &;. In a like manner the similarity
map g~} : X — &, proves tho sufficiency of 2, for &,. Furthermore, any
decision function &; for &, can bo completely matched (in terms of its averago
performance characteristics) by the decision function &, for &, defined as

0\(zy) = &,(gr,) for all 262,

3. SOME PRINCIPLES OF INFERENCE

Instead of plunging headlong into a controversial definition of Inf (&, 2),
let us follow a path of less resistance and formulate, on the model of A. Birnbaum
(1062) some guidelines for the recognition of equivalence of two different bits
of statistical information. Each such guideline is stated here as a Principle
(of statistical inference).

Looking back on definition 9 of tho previous section, it is clear that two
similar experiments &, and &, are identical in all respects excepting in the
manner of labelling their sample points. Since the manner of labelling the
sample points of an experiment should not have any effect on tho actual in-
formation obtained in a particular trial, the following principle is almost self-
evident.

Principle S (The invariance or similarity principle): If &, = (2,
Q,p,) and &, = (D, Q, p,) are similar experiments with g: D>, 0s8
similarity map of &, onto &,, then

Inf(&,, z,) = Inf(&,, 2,)

if gz, = z,.

Now, suppose the two points 2’ and z°, in the sample space of an experi-
ment & = (0, Q, p), givo riso to identical likelihood functions, that is, p(z’ | w)
= p(z" | w) for all weQ. e can then define o similarity map g : - Lof &
onto ijtself in the following manner :

{z if z¢{z’, 2"}
gz =

2’ or 2* acc. a8 z =" or z2',

The following is then a specialization of principlo J to the caso of a single
experiment &.
Principle S (A weak version of J): If plz'|w)=p(z"|w) for all
we), then
Inf(8, 2’) = Inf (&, °).
Principlo ” induces tho following equivalenco relation on tho samplo spaco
of an experiment :  Tho two points 2’ and 2* in tho samplo spaco <@ of an
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experiment & are equivalent or equally informative if they generate identical
likelihood functions.

Let us look back on Definition 2 in  Secction 2 and re-assert the almost
self-evident proposition : ‘No additional information ¢an be generated about
& partially known parameter w by performing a statistically trivial experi-
ment &’ It follows then that once an experiment &, has been carried out
resulting in the outcome y, it is not possible to add to the information Inf(&,, )
50 obtained by carrying out a further ‘post-randomization’ excrcise—that is,
by performing a secondary experiment &y, whoso randomness structure may
depend on the outcome y of &; but is completely known to the experimenter.
Let us formally rewrite the above in the form

Inf(&,, y) = Inf{(&;>8w)), (1,2)}

where (&;~> &) stands for the composite experiment ‘&, followed By &’
and y,z ore the outcomes of &, and &y, respectively.

Now let 7' : 2257 be & sufficient statistic for & = (0, Q, p) and let &1
and {87 : te2} bo respectively tho marginal experiment and the family of condi-
tional experiments as defined in Section 2. Now, we may look upon a perfor-
mance of & and the observation of the outcome z as ‘a performance of the
marginal experiment &y, observation of its outcome ¢ = T'(z), followed by a
post-randomization exercise &7 of identifying the exact location of z on the
surface & = {¢’| T(z’) = ¢}". Since T is sufficient, the conditional experiment
&T is statistically trivial for every te.Z. Looking back on tho argument of the
previous paragraph, one may now claim that the following principlo has been
sort of ‘proved by analogy’.

Principle S (The sufficiency principle) : If, in the context of an experi-
ment &, the statistic ' is sufficient then, for all ze22 and t = T'(z),

Inf(&, ) = Inf(&7, ¢).

IfTis suﬁcic.nt and 2 a particular T-surface, thon from S it follows that
Inf(&, z) is the samo for all 2e2%;. In the literaturo we often find the sufficiency
principle stated in tho following elternative (end perhaps s trifle less severe)
form :

Principle 8’ (Alternative version of 8): Inf(&, ') = Inf(&, z) if for
some sufficient statistic 7''it is true that T'(z') = T'(z").

From Theorems 1 and 2 of Section 2 it follows at onco that tho following
is an equivalont version of 8’ :
2
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Principle £': (The weuk likelikood principle) : Inf(&, z') = Inf(&, z%)
if the two samplo points 2’ and z* generate equivalent likelihood functions,
that is, if L(w|s') ~ L{w|z").

Clearly, £ implies /. Before we turn our attention to somo other guid-
ing principles of statistical inference, let us summarize our findings about
the logical relationships among the principles J, J#, &, &' and £ in the
following :

Theorem 1: V=S, S=—=8' & L' = J.

Whereas the sufficiency principle warns us to be vigilant against any
‘post-randomization’ in tho statistical experiment and advises us to throw
away the outcome of any such exercise a3 irrelevant to the making of inference,
the conditionality principle concerns itself in a like manner with any ‘pre-
randomization’ that may have been built into the structure of an experiment.
Consider an experiment & = (4, €2, p) which is a mixture (Definition 8, Section
2) of the two experiments &; = (%, Q, p), ¢ = 1, 2, where the mixture pro-
babilities 7 and 1—n are known. A typical outcome of & mey then be re-
presented as z = (i, zy), where i = 1,2 and z,eqy. Now, having performed
the mixture experiment & and recognizing the sample as z = (i, z;), the
question that naturally arises is whether we should present the data (for
analysis) as (&, z) or in the simpler form of (84, 21). To the author it scems
almost axiomatic that the second form of data presentation should not entail
any loss of information and this is precisely the content of the following.

Principle @ (The weak conditionality principle): If & is & mixture of
&1, &, s described above, then for any s {1, 2) and 2y &

Inf(&, (i, 2))) = Inf(&, zy).

In the literature we frequently meet a much stronger version of @ which
may be stated as follows :

Principle @. (The conditionality principle): If T :Q0— & is an nnci-
lary stetistic (Definition 3, Section 2) associnted with tho experiment
& =(, Q, p), then, for all 262 and ¢t = T(z),

Inf(&8, ) = Inf (&7, x).

[For & disoussion of @ in a somewhat related context sco Basu (1964).]
Wo aro now ready to stato tho centre-picce of our discussion in this essay—tho
likelihood principlo. Lot &,, &, bo any two expcriments with tho samo para-
meter spaco and let z; bo a typical outcome of &; (i = 1, 2).
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Principle £ (The likelihood principle): If tho data (&, z;) 2nd (&,, 2,)
gencrate equivalent likelihood functions on Q, then Inf (&), z,) = Inf(&,, z,).

Before going into the far-reaching implications of o0, let ug briefly examine
the logical relationships in which o stands vis a vis the principles stated earlier,
That £ = J follows at once from the definition of similar experiments.
From the definition of a sufficient statistic it follows that the likelihood fune-
tions L{w|&, x) and L(w| &2, t) wre equivalent, whenever T is sufficient and
t = T(z). So £== 8. Likewise, when T i3 ancillary, the likelihood func-
tions gencrated by the data (&, z) and (&7, z) are cquivalent, whenever
t = T(z). Therefore, £ == @ The following theorcm asserts that the two
weak principles ' and @ are togcther equivalent to L.

Theorem 2: (J and @)= L.

Proof : Suppose tho data (&), 2,) and (&,, x,) generate equivalent likeli-
hood functions, that is, there exists ¢ > 0 such that

L(w|&y, x;) = cL{w] &), x,) e (%)

for all weQ. Using &' and @ we have to prove the equality Inf(&,, z,) =
=Inf(8, 2,). To this end let us contemplato tho mixture experiment & of
&, and &, with mixture probabilities ¢/{(14-¢) and 1/(1+¢) respectively. Now,
(1, z,) and (2, z,) are points in the sample space of the mixture experiment
&. In view of (s) and our choice of the mixture probabilities, it is clear that
the data (&,(1,7,)) and (&, (2, %,)) generate idenfical likelihood functions,
and so from J it follows that

Inf(&, (1, z,)) = Inf(&, (2, ;).

Now, applying €’ to each side of the above equality we arrive at the desired
equality.

Sinco &' == #’, we immcdiately arrive at the following corollary which
was proved earlier by A. Birnbaum (1962).

Corollary : (S8’ and €)= L.

4. INFORMATION AS A FUNCTION
From our exposition so far it should be amply clear that we are looking
upon ‘statistical information'—in the context of a particular problem of in-
ferenee about a partially known state of naturo w—as somo sort of n function
that maps the space D of all conceivably attainable data d = (&, ) related to
w into an yet undefined range space A. TFor the logical development of any
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concept it is important to agreo in advance upon a ‘universe of discourse’.
In our ease it is the space of all attainable data d = (&, z), where & =(2, Q, p)
is n typical statistical oxperiment concerning w and z o typical outcome that
may ariso when & is performed. But what data are attainable, in other words,
what triples (&0, Q,p) correspond to performablo statistical experiments ?
The question is a tricky ono and has escaped the gericral attention of sta-
tisticians,

Given o stato of nature w, not all conceivable triples (40, Q, p) can be
modecls of performable statistical experiments. The situation is quito different
in Probability Theory where we idealize the notion of a random experiment in
terms of a single probability measure P on o measurable space (&0, A). These
days, with the help of powerful computers, we can simulate any reasonable
random experiment upto almost any desired degree of approximation., That
the situation is not quite the same with statistical experiments should be clear
from the following.

Ezample : Let w bo the unknown probability of heads for a particular
unsymmetric looking coin. Ono may argue that no informative (see Definition
2 in Section 2) statistical experjment concerning @ can be performed by anyone
who is not in possession of the coin in queston. With the coin in possession
we can plan an experiment & for which £2={1,2,3,..} and p(z w) =
w(l—w)™1, 2e L. It is not difficult to see how we can plan a (merginal) ex-
periment &, for which &, = {0, 1} and p,(0] w) = 1/(2—w). DBut can we plan
an experiment &, for which &, = {0, 1} and p,(0| w) = 1/w or sin (}7w) ?
Intuitively, wo feel that such strange looking functions of w are unlikely to
appear as probabilities in ‘performable’ experiments. They might, and an
interesting mathematical problem associated with our coin is to determine
the class of functions L that can ariso as likelihoods, that is

L(w) = Prob (4| )

where A is an event defined in terms of a ‘performable’ experiment with the
coin. But it is not easy to sce how we can give a satisfactory mathematical
definition of ‘performability’.

If we insist on our universo of discourse to be the class of all conceivable
triples (@, Q, p), then it is plausiblo that wo shall end wp with paradoxes such
as those that have arisen in set theory in the past. Vithout labouring the
point any further let us then agreo that wo are concerned with & rather small
olass € of ‘performable’ experiments. Lot this € be our tonguc-in-the-check
definition of performability I If &, and &, are performable experiments then
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it stands to reason to claim that any mixture of &,, &, with known mixture
probabilities is also performablo. In other words, we may assumo that the
class € is convex, i.e., closed under known mixtures. It also scems reasonablo
to claim that our class € is closed under ‘marginalization’, that is, if & =
(4, Q, p) is porformablo then for any statistic T : —» Z tho marginal experi-
nent 87 = (Z, Q pr) as defined in Section 2 is also performable. But how
secure i8 the case for the conditional experiment &7 = (&0, Q,pT)1 If T is
sufficient then, for every (6.2, the conditional experiment &7 is non-informative
and zo is performablo in a sense—tho experiment can bo simulated with the
help of o random number table. Now, note that for a description of the gencral
conditionality principle @ we need to assumo that for any ancillary statistic
T (and every ¢ in tho range space of T) the conditional experiment &7¢E.
[Refer to Basu (1964) for some discussions on this assumption. In that article
the author rejected the bl of .such an assumption and thereby
sought to explain away certain anomalies that he had discovered in en unres-
tricted use of principle @ in the manner advocated by R. A. Fisher. Those
anomalies arose only beenuse the author was then trying to reconcile @ with
the traditional ‘sample space’ analysis of data—in terms of the average per-
formanco' characteristics of somo infercnce procedures.] However, note that
our description of the weaker conditionality principle @' and our derivation
of &£ from ' and @ cannot be faulted on the ground of non-performability of
any experiment. In this tion it is interesting to look back on a deri-
vation of the above implication thcorem by Hajék (19067). Not only is
Hajél’s proof longer and somewhat obscure, but it appears to pre-suppose
(in a quite unacceptable manner) that © consists of all triples (2, Q, p).

Havirig recognized ‘information’ as a function Inf with its domain as the
space D of all data d = (&, z) with &6, let us finally turn our attention to
the range of Inf. If we accept the likelihood principle, i.e., if we agree that

Inf(&,, %,) = Inf(&,, ,)

whenever L(w| &, %) ~ L(w| &5, 2;), then we may as well take a short step
forther and agreo to view Inf as a mapping of tho spaco D of all attainable data
d = (&, z) onto the sct A of all roalizable likelihood functions L = L{w| &, 2).
Onee again wo repeat that our definition of equality on A is that of proportiona-
lity : Ly ~ L, if there exists ¢ > 0 such that L(w) = cLy(w).

5. FISHER INFORMATION

R. A, Fisher's controvorsial thesis regarding the logic of statistical inference
rests on an unequivocal and complete rojeotion of the Bayesian point of view.
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Ho drew the attention of the statistical community away from the Bayesian
‘prior’ and ‘posterior’ and focussed it on tho likelihood function. Although
wo do not find the likelihood principle explicitly stated in the writings of Fisher,
yet it is clear that he recognized the truth that statistical inference should be
based on the ‘wholo of the relevant information’ supplied by the data and that
this information is contained in tho likelihood function. However, quite a
few of tho many ideas formulated by Fisher are not in full accord with the above
principal theme of his writings. Ono such iden is that of ‘Fisher Information’
which we discuss bricfly in this section.

In the situation where tho parameter of interest is a number 0 belonging
to an interval subset of the real line, and some regularity conditions are satis-
fied by p(z| 0) as a function of 0, the Fisher Information is defined es

10 = B[ 2 og pix 1 0))’
26

= _E,{ai;: log p(X10)}

where X is regarded as a random variable ranging over & How did Fisher
arrive at such 2 notion of inference that does not depend on tho sample X = z ?
Has I(0) got anything to do with the kind of information that we are talking
about 2 We speculato here on what might have led Fisher to the above
mathematically interesting but statistically rather fruitless notion.

If 0 = 9(::) is the maximum likelihood cstimate of 0, then the true value
of 0 ought to lie in some small ncighbourhood of #—at least in the large
sample situation. Writing A(0) == log L(0)—dealing with log-likelihood was
a matter of mathematical convenience with Fisher—we can then say that

MO) = O+ (0—07A"C)

for all @ in a small neighbourhood of § (where the truo 0 ought to be). Writing
J(0) for —A(0), the log-likelihood may be approximately characterized as

AD) = A®)— % (0—8y2J(8)

where J(8) ia (normally) a positive quantity. Now, the magnitudo of the
statistic J(8) = —A”(f) tells us how rapidly the likelihood function drops
away from its maximum velue s & moves away from tho maximum likelihood
estimate. (Note that J(6) = —L*(8)/L(8) and this is the reciprocal of tho
radius of curvature of tho likelihood function at its mode.) It scoms clear
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that Fisher recognized in J(f) a convenient and reasonable numerical measure
for the quantum of information contained in a particular likelihood function.
For examplo, if z = (2, 2y, ..., 2,) i3 an n-tuple of i.i.d. random variables with
2y distributed as N(0, 0%), then
6% = Zrifn,  J(6%) = 2nfo*

and tho latter varics from sainplo to samplo (as information usually should).

At some stagoe of tho gamo Fisher became infercsted in the notion of
averago information available from an oxperiment, that is, in

E(J@)). w (9

It is not easy to get a ncat general expression for the above, and so it scems
plausible that Fisher had the inconvenient & in (s) substituted by 0 (the true
value, which ought to be near § anyway) and thus arriving at

E,J(0) = E, {— aﬂfﬂ log L(0|X)}

=2 {3 log2te10)} ptz10) . )

which is the Fisher information I(0). At this stage one may well wonder as
to whether Fisher ever thought of first re-writing J(8) as —L7(8)/L(8) and then
substituting 8 by 0 before computing its average value asin (w). For, in this
caso he would have arrived at the number zero as his average information |

6. TuUE LIKELIOOD PRINCIPLE

If wo adopt the Bayesian point of view, then the likelihood principle
becomes almost a truism. A Bayesian looks upon the data, or rather its
information content Inf(&, z), as some sort of an operator that transforms
tho pattern ¢ of his prior belicfs (about the parameter w) into a new (posterior)
pattern ¢*. He formalizes the notion of a ‘pattern of beliefs’ about w as &
probability distribution on €, and postulates that probability as a ‘measure
of (coherent) belief” obeys the same laws as ‘frequency probability’ is supposed
to obey. The transformation g—¢* is then effected through a formal uso of
the Bayes theorem (of conditional probability) as

7'(w] &, 2) = Liw| &, 2)g(w)/EL{w| &, 2)q(w)
~ o] &, 2)g(w)-

In view of the above, a Bayesian should not have any qualms about identi-
fying Inf{&, 2) with the likelihood function L{w| &, z).

Fisher wag not tho first statistician to look upon the sample z as a variablo
point in & sample spaco &, but it was certainly he who made this approach
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popular. He put forward the notion of ‘average performance characteristics’
of estimators and sought to justify his method of maximum likelihood on this
basis. In tho carly thirtics Noyman and Pcarson, and then Wald (in the fortics)
pushed tho idea of ‘performance characteristios’ to its natural limit. Principlo
o i3 in dircct conflict with this neo-classical approach to statistical inference.
With £ as the guiding principle of data analysis, it no longer makes any scnse
to investigato (at tho data analysis stago) tho ‘bias’ and ‘standard error’ of
point estimates, tho probabilities of tho ‘two kinds of errors’ for a test, the
‘confidence-cocfficients’ associnted with interval estimates, or the ‘risk funec-
tions’ associated with rules of decision making.

Principle o rules out all kinds of post-randomization. If, after obtaining
the data d, an artificial randomization scheme (using a random number table
or & modern computer) generates further data d,, then the likelihood functions
generated by d and (d, d,) coincido (are equivalent). Since the gencration of
d, does not change the information (i.e., the likelihood function), it should
not have any bearing on the inferenco about w, or on any assessment of the
quality of the inference actually made. Being only a principle of data
analysis, £ does not rule out the rcasonablencss of any pre-randomization
being incorporated into the planning of experiments. However, it docs follow
from £ that the exact nature of any such pre-randomization scheme is irrele-
vant at the data analysis stage—what is relevant is the actual outcome of the
pre-randomization scheme, not its probability. [The latter appears only as
& constant factor in the likelihood function eventually obtained.] This last
point has a far-reaching consequence in the analysis of data produced by survey
sampling. If wo are not to take into account the sampling plan (the pre-
randomization schemo choosing the units to be surveyed) at tho data analysis
stage, then wo have to throw overboard a major part of the current theorics
regarding tho analysis of survey data. [See Dasu (1069) for more details re-
garding this.] Recently a great deal has been written on the ‘randomization
analysis’ of experimental data. [Curiously, it was again Fisher who ini-
tiated this kind of analysis and we sometimes hear it said that this was his
most important contribution to statistical theory!] Principlo «£ rejects this
kind of analysis of data.

No wonder then that thero is so much resistance to £ among con-
temporary statisticians, But it is truly remarkable how wuniversal is the
acceptanco of the sufficiency principle (& and its variant 8’) oven though, in
the context of & particular oxperimont, the two principles £ and &' are
indistinguishable. The generel accoptance of & appears to bo based on a
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widespread belief that tho rcasonablencss of the principle has been mathe-
matically justified by thoe Complete Class Theorems of the Rao-Blackwell
vintage. Let us examine tho question briefly.

In tho context of some point-estimation problems, the Rao-Blackwell
theorem indeed succeeds in providing a sort of decision-theorctic justification
for 8. But this success is duo to (i) tho atypical fact that, in a point-estimation
problem with a continuous parameter of interest, the action space & may bo
regarded as a convex sot, and also to (ii) tho somewhat arbitrary assumption
that the loss function W = IV{w, @) is convex in a (tho action) for each fixed
we). Now, let us formalize the notions of (i) a statistical decision problem
as a quintuple

B =(D Q0,9 AW),

(ii) & non-randomized decision function as 2 point map of & into  and (iii)
o randomized decision function as a transition function mapping points in
£ into probability measures on A&, Let T : &2 bo a sufficient statistio
for the experiment (W0, Q, p). Then, for cach decision function §, we can find
an equivalent {in the sense that they generato identical risk functions) decision
function &* which depends on tho sample x only through its T-value 7'(x).
But the snag in this kind of Rao-Blackwellization is that §° will typically be
a randomized decision function and so its use for decision making will entail
a dircet violation of & (which is nothing but a rejection of all post-rendomiza-
tions). How can a principlo be justified by an argument that invokes its vio-
lation 2!

It is difficult to understand why among contemporary statisticians the
support for & is 80 overwhelming and unequivocal, and yet that for o£is so
Jukewarm. In & joint paper with Jenkins and Winsten, it was argued by
Barnard (1962) that 8’ implies £ Although this attempted deduction of
o« from &' turncd out to be fallacious, tho fact remaing that even as late as
1962 Barnord found it hard to distinguish between the twin principles
of sufficiency and likelihood. [In the writings of Tisher also it is very hard
to find an instanco whero he hns stated o£ separately from 8. It scems to the
author that Fisher always meant by a sufficient statistic 7 tho minimel sufficient
statistic and invariably visualized it as that characteristic of tho samploe knowing
which the likelihood function can bo determined upto an équivalence.] In
view of the many ‘unpleasant’ consequences of o€, Barnard scems to havo lost
a great deal of his carly enthusiasm for o€ though his conviction in & remains
unshelen.  Birnbaum (1962) deduced o from &’ and @ and stated that &' can
bo dedueed from @', implying thercby thet @ implies 2. In 1962 Birnbaum
found in @’ astatistical principlo that is alinost axiomatio in its import and was,

3
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therefore, duly impressed by o which he (mistakenly) thought to bo a logical
equivalent of @’. At present Birnbaum too scems to have lost his earlier
enthusiasm for o€, though it is not clear to tho author whether his conviction
in @ has suffered in the process or not.

Let us look back on the simplest (and perhaps the least controversial)
of the eight principles stated in Section 3, namely, tho invariance principle.
To the author, principlo J scems axiomatic in nature.  Yet one may argue that
Jis fur from convincing under the following circumstances. Let &, = (&0,
Q, p,) and &, = (,, Q, p;) be two statistically isomorphic or similar experi-
ments with g : -0, as tho similarity map. Principle J then asserts the
equality

Inf(&,, z,) = Inf(&,, z,)

for each z,6.0, and x40, such that z, = gr,. Now, suppose the samplo space
0, is endowed with an order structure that is in some way related to somo
natural order structure in the parameter space Q, whereas the sample spaco
&, has no such discernable order structure. For example, suppose &, consists
of the six numbers 1, 2, 3, 4, 5'and 6 whereas &, consists of the six qualitics
R (red), W (white), B (black), G (green), ¥ (ycllow) and V (violet). If tho
statistician feels that ho knows how to ‘relate’ the points in @, with tho un-
known w in Q, and if ho also feels that he does not know how to ‘relate’ the
points in &, with points in Q (oxcepting through what he knows about the
similarity map ¢ : ,—3), then he may ‘feel more informed’ about w
when &, is performed resulting in 2, than when &, is performed resulting in
x, = gz, When it comes to a matter of fecling, not much can be done about
it. It is howover difficult to sce how one can build up a coherent theory of
‘information in tho data’ that will allow ono to discriminate between the data
(&1, 2,) end its g-image (&2, gz,), where g is a similarity map.

Perhaps the point can be emphasized more forcefully in terms of the
weak invariance principle J’. [In Section 3 we recognized J’ as a corollary
to both J and the sufficiency principle.] If the two points 2 and 2’ in the
samplo space of tho experiment & = (&, Q, p) gencrate identical likelihood
functions, i.e., if p(z| w) = p(z’| w) for all weQ, then S asserts the equality of
Inf(&, z) and Inf(&, 2’). Now, a statistician with a strong intuitive feeling
for the relevance of ‘related order structures’ in & and Q will perhaps rebel
against principle  if ho is confronted with the following kind of a situation.
Supposo the statistical problem is the traditional ono of testing a simplo null-
hypothesis 11, about the probability distribution of a one-dimensional random
variable X on tho basis of the experiment & that consists of taking a singlo
observation on X. Let (&, Q, p) be a suitablo statistical model (for the
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experiment &) that subsumes I7; as the hypothesis w = w,. Consider now the
caso where we recognize two points z and 2’ in @ such that they both gencrate
identical likelihood functions and yet z is near the centro (say, the mean) of
tho distribution of X under JI;, whereas z’ is out at the right tail-end (say, the
19, point) of the same distribution: Notwithatanding &, which asserts that
z and 2’ are equally informative, our statisticinn (with the strong intuition)
may well assert that z (being near the centre of X under I,) sort of confirms
H,, whereas ' (being out in tho tail area) sort of disproves the null-hypothesis |

One may take an uncharitable view about the above kind of discrimi-
natory feeling and lightly dismiss the whole matter as ®» prejudico that has
been nurtured in the classical practice of null-hypothesis testing (formulated
without any explicit mention of the plausible alternatives). It will, however,
be charitable to concede that in great many situations it is true that points
in the tail-end of the distribution of X under If, differ greatly in their infor-
mation aspects from points in the centre part of the same distribution. We
should also concede that our formulation of the equality of statistical infor-
mation in the data (&, ) and (&, 2’) was made relative to a particular model
(42, Q, p) for the experimental part of the data. It is now plausiblo to suggest
that our statistician (with the strong intuition) is not really rejecting principle
J in tho present instance, but is only doubting the adequacy or appro-
priateness of the particular statistical model (42, Q, p).

This points to the very heart of the difficulty. All statistical arguments
are made relntive to some statistical model and there is nothing very sacred
and irrevocablo about any particular model.  When 2n inferenco is made about
the unknown w, the fact should nover be lost sight of that, with a different
statistical model for &, the same data (&, z) might have warranted o different
inference. No particular statistical model is likely to incorporate in itself
all the knowledge that the experimenter nay have about the ‘related order
structuro’ or any other kind of relationship that may oxist between tho sample’
space and tho parameter space. But if wo agreo to the proposition that our
search for the ‘whole of the relevant information in the data’ must be limited
to within tho framework of a particular statistical model, then the author is
hard put to find any cogent reason, for not identifying the ‘information in the
data’ with the likelihood function gencrated by it. If in a particular instance
the experimenter feels very upset by the look of the likelihood function gene-
rated by the data, then he may (and indeed should) re-examino the validity
and adequacy of the model itself. A strange-looking likelihood function
does not necessarily destroy the likelihood principle. [Later on, we shall
take up several such cascs of apparent likelihood principle parndox.]
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On p. 334 of Barnard, Jenking and Winsten (1862) we find the following
astonishing assertion which is in tho nature of a blank cheque for all violations
against &€ [In this and in the following two quotations from Barnard, wo
have taken tho liberty of slightly altering the notations so as to bring them in
line with those in this article.]

“In gencral, it is only when the triplet (&2, Q, p) can by itself be regarded
ag specifying all tho inferential features of an experimental situation that the
likelihood principlo applies. If & and Q aro provided with related ordering
structures, or group structures, or perhaps other features, it may bo reasonable
to apply a form of argument which would not apply if these special features
were not present.  The onus will, of course, be on anyone violating the likelihood
principle to point to the special feature of this experiment and to show that it
justifies his special argument.”

Does it ever happen that a triple (&2, Q, p) specifies ‘all the inferential
featurcs’ of an experimental situation 2 Can any experimenter be ever so
dumb as not to bo able to recognize some ‘related order structure or group
structures or perhaps other features’ connecting 2 and Q 7 If we are to take
the abovo assertion at its face value, then we must conclude that under hardly
any circumstances is Barnard willing to place his immenso authority wunequi-
vocally behind the likelihood principle ! As a discussant of Birnbaum (1962,
p. 308), Barnard made the point once again as follows :

“The qualification concerns the domain of applicability of the principle
of likelihood. To my mind, this applies to those situations, and essentially
to only those situations, which are describable in tering which Birnbaum uses
—that is, in terms of the sample space &, and the parameter space Q and
a probebility function p of 2 and w defined for 2 in L and w in Q. If these
clements constitute the whole of the data of a problem, then it scems to me
the likelihood principle is valid. DBut there are many problems of statistical
inferenco in which we have less than this specified, and there aro many other
problems in which we have more than this specified.  In particular, the simplo
tests of significance arise, it scems to me, in situations where wo do not have
o parameter space of hypotheses; wo have a single hypothesis essentially,
and the samplo space then is the only space of variables present in the problent.
Tho fact that the likelihood principle is inconsistent with significance test
procedures in no way, to my mind, implies that significanco tests should be
thrown overboard; only that the domain of applicability of these two ideas
should boe carefully distinguished. Wo also, on the other hand, havo situntions
where moro is given than simply tho samplo spnco and the parameter space.
Wo may havo properties of invariance, and such things, which cnable us to
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make far wider, firmer assertions of & different type; for examplo, assertions
that produco a probability when these extra elements aro present. And
then, of course, thero are tho decision situations whero we have .loss functions
and other clements given in tho problem which may chango the character
of the answers we give”.

If, following Barnard, we sct up tho test of significance problem in the
classical manner of Karl Pearson and R. A, Fisher—with a singlo probability
distribution on the sample space and without any tangible paramcter space—
—then the sample will not produce any likelihood function. Without a
likelihood function how can wo possibly violate principle o£ 2 In the other
kind of situations, where we have ‘invariance and such other things’, Barnard
says that wo can make assertions that are ‘far wider and firmer’. But, wider
and firmer than what ¥ What docs o€ assert that is not sufficiently firm or
wide 7 Wo must recognize this basic fact that £ docs not assert anything
that can be measured in terms of its operating characteristics. It appears
that in this instance Barnard is confusing principle £ with a set of his
favourite likelihood mothods of inference (sce Section 7) and it is this set of
likelihood methods that he is now finding to Lo generally lacking in width
and firmness. Before returning to the question of the true implication of £,
let us quote once again from Barnard and Sprott (1971, p. 176) :

£ applies to problems for which the model consists of a sample space @,
a parameter space Q and o family of probability functions p : L2x Q- RF....
For two such problems (&, Q, p) and (', Q, p’), principle £ asserts that if
zegeond z'e ) and p(z|w)/p’(x’ | w) is independent of w, then the inference
from z must be the same as the inferenco from 2. We may distinguish three
forms of o£:

1. Strongly restricted o£: Principle of applicable only if (&, Q, p) =
(2, Q, p’). This is equivalent to the sufficicney principle.

2. Weakly restricled £ : Principlo £ applicable (a) whenever (2, Q, p)
= (&, Q, 2’) and (b) when (2, Q, p) # (', Q, 2’) but thero are no structural
features of (0, Q, p) (such as group structures) which have inferential relevence
and which are not present in (&, Q, p’).

8. Unrestricled £ : Principlo o applicable to all situations which can
bo modelled as above.

4. Tolally unrestricled £ : As in 3, but, further, all inferontial problems
aro describablo in terms of the model given.
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As we understand tho situation, almost everyone would necept 1, while
full Bayesians would accept 4. George Barnard's own position is now, and has
been sinee 1957, 2.

The distinction that Barnard is trying to make above between the two
forms (3 and 4) of unrestricted £ is not clear and is perhaps not relevant to our
present discussion.  In 1 Barnard recognizes the equivalence of & and o in
the context of a single experiment and appears to have no rescrvations about
&. DBut in 2 we once again come across the same astonishing blank cheque
phrased this time in terms of the all-embracing double negatives : ‘thero are no
structural features...which are not present’,

Later on, we shall discuss in some detail the two principal sources of
Barnard's discomfiture with the unrestricted likelihood principle—the Stein
Paradox and the Stopping Rule Paradox. For the moment, let us briefly
diseuss what we consider to be the real implication of £.

Apart from identifying the information content of the data (&, z) with
the likelihood function L(w| &, x) generated by it, principle £ tells us hardly
anything else. It certainly does not tell us how to make an inference (based
on the likelihood function) in any particular situation. It is best to look
upon £ as a sort of code of conduet that ought to guide us in our inference
making behaviour. In this respect it is analogous to the unwritten medical
code that requires n Doctor to make his diagnosis and treatment of a patient
dependent wholly on (i) the case history of and the outcomes of some diagnostio
tests carried out on that particular patient, and (ii) all the background infor-
mation that the Doctor (and his consultants) may have on the particular
problem at hand. Tt is this same unwritien code that disallows a Doctor to
include a symmetric dio or a table of random numbers as a part of his diag-
nostic gadgets. It also forbids him to allow his judgement about a particular
patient to be coloured by any speculations on the types and number of patients
that he may have later in the week. [Of course, like any other rule thoe above
must also have it exceptions.  For instance, if our Doctor in a far away Pacifio
island is running short of a drug that is particularly effective against a pre-
valent discase, ho may then be forgiven for treating a less severely affected
patent in an unorthodox manner.]

In the eolourful language of J. Neyman, the making of inference is nothing
but an ‘act of will’.  And this act is no more (and no less) objective than that
of & medical practitioner making his routine dingnoses.  We aro all too familiar
with the beautiful mathematioal theory of Neyman-Pearson-\Wald about what
is generally recognized as correct inductive behaviour. In prineiple o wo
recognize only a preamble to an anti-thesis to tho currently popular N.P.V.
thesis. [For o well-stated version of o from the Bayesian point of view, rofer
to Lindley (1965, p. §9) or Savage (1061).}
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PART 2: METHODS
7. NON-BAYESIAN LIKELNIOOD METHODS

In Part I of this article our main concern was with the notion of statistical
information in tho data, #nd with some general principles of data analysis.
Now we turn our attention from principles to a few methods of data analysis.
By o non-Bayesian likelihood method we mean any method of data analysis that
neither violates .£—the likelihood principle—nor explicitly incorporates into
its inference-making process any prior information (that tho experimenter
may have about the parameter w) in the form of a prior probability distri-
bution over the parameter space Q. Tho origin of most of such methods may
be traced back to the writings of R. A. Fisher. In this section we list several
such methods. To fix our, ideas let us suppose that Q is cither a discrete or
an interval subsct of the real line. In the latter caso, we shall also suppose
that the lkelihood function L(w) is a smooth function and has o single modo
(whenever such an assumption is implicit in the method) and so on.

(8) Method of mazimum likelihood : Estimate the unknown w by that
point & = &(z) where tho likelihood function L(w), generated by the data
(&, z), attains its maximum value. Fisher tried very hard to elevato this
method of point estimation to the level of a statistical principle. Though
it has sinco fallen from that high pedestal, it is still widely. recognized as the
principal method of point estimation. Note that this method is in conformity
with « aslong as we do not try to understand and evaluate the precision of the

maximum likelihood estimate & = &(z) in terms of the sampling distribution
of the ‘estimator’ &. However, most users of this method quite happily
violate o in order to do just that. =

(b) Likelikood inlerval estimates : Choose and fix a fairly large number
A (20 or 100 are usually recommended values) and consider the set

I ={w: Ua)L(w) < 3}
where & is the maximum likelihood estimate of w. If the likelihood function
is unimodal then the sct I, is a sub-interval of Q and is intonded to bo used as
p sort of ‘likelihood confidence interval’ for the parameter w.

(0) Likelihood test of a null-hypothesis: If the null-hypothesis to bo
tested is defined as If, = Hypothesis that w = w,, thon the method is:
Rejeot 11, if and only if w, docs not belong to the likelihood interval I, defined
in (b) above. As before, 20 or 100 aro recommended values. [Tho numbers
20 and 100 correspond roughly to tho mystical 59, and 19, of the classical
tests of significance.]
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(8) Likelihood ratio method : If Q consists of exactly two points w,
and w, then .C implies that the likelihood ratio p = L{w,)/L{w,) generated by
the data (&, z) should provido tho solo basis for making judgements about
whether the true w is w, or @,. Tho method is : Choose and fix A (20 or 100
say) and then reject the hypothesis w = w,if p > A, and accept the hypo-
thesis w = w, if p €A™, but do not make any judgement if A' < p < A.
Wald's method of sequential probability ratio test is really an outgrowth
of the above. However, in a later section we shall discuss how principle £
is frequently violated in Wuld's analysis of sequentially observed data,

(e) General likelihood ralio method : In o general testing situation with
two composite hypotheses

II, = Hypothesis that weQ,C Q
and 11} = Hypothesis that weQ, = Q—Q,,

tho method requires computation of a ratio statistic p = p(x), defined as the
ratio L{Q,)/L(€,)

L) = sup Lw) (i =0,1)
wely

and then rejecting the null-hypothesis J1, if and only if the ratio p is considered
to bo too large—greater than a pre-fixed critical valuo A.  [This method, along
with the methods (b), (6) and (d) given above, draws its inspiration from tho
maximum likelihood method of point situation.] The method has great practi-
cal (computational) advantages when the basic statistical model is that of a
multivariate normal distribution (with some unknown parameters). Indeed, s
major part of the classical theory of multivariate ahalysis is nothing but a
systematic exploitation of the mecthod in a variety of situations. We should
not however lose sight of the fact that in these applications of the method the
critical value A for the ratio p is determined (almost universally) with referonco
to tho sampling distribution (under I7,) of the ratio statistic p and that this
constitutes (almost invariably) a violation of o£.

() Nuisance parameler climination method : Consider the situation
where w = (0, $), 0 is the parameter of interest and, therefore, @ is tho nuisance
parameter. From tho data (&, z) we have a likelihood function L(0, @) that
involves the nuisanco paramecter. Tho following is a very popular method

of climinating ¢ from L. Maximiso L(0, §) w.r.t. ¢ thus arriving at the climi-
nated likelihood function

L,(0) = sup L(0, $)
¢
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whero e denotes the fact of elimination. Having eliminated ¢ from the likeli-
hood function, the method then requircs that all inferences about 0 should be
carried out with the eliminated likelihood function L,(0) along the lines suggested
earlier.- Method (f) may be looked upon as a natural generalization of method
(e).

Let us end this section with a fow comments on some common features
of these methods.

(i) For going through the motions of any of theso methods, it is not
necessary to know any details of tho sample 2 other than the likelihood function
generated by it. In their pure (that is, unconteminated by the Neyman-
Pearson type arguments) forms, the methods are in conformity with principle
£. However, it should be borne in mind that none of the above methods
can be logically deduced from o£ by itsclf.

(ii) In none of tho methods we find any mention of the two elements
g and I1 that we bricfly talked about in Scction 1. Let us recall that in g we
have incorporated all the background (prior) information that the experimenter
has about w and other related entities. In IT is incorporated all other particular
features (such as, the relative hazards of making wrong inferences of various
kinds eto,) of the inferential problem at hand. The likelihood methods of
this section differ from standard Bayesian methods mainly in their failure
(rather, refusal) to recognize the relevance of ¢ and I1.

(iii) In their pure forms, theso methods do not require the evaluation
of tho average performanco characteristics of anything. This, however,
does not mean that we should not speculate about long term characteristics
of such methods. Advocates of likelihood methods are surcly not averse to
the idea of comparing their methods with any other well-defined method on
the basis of their averago performance characteristics in a hypothetical sequence
of repeated applications of the methods. [Even Bayesians, who do not usually
ocaro for the frequency interpretation of probability, do care very much about
one kind (perhaps, the only kind that is relevant) of frequency, namely, the
long term success ratio of their methods. After all, the real proof of the pudding
lics in tho eating.] From our description of the non-Bayesian likelihood
methods, it is not clear with what kind of average performance characteristics
in mind, these methods were initially proposed. Indced, in some later sections
we shall give examples of situations where simple-minded applications of
these methods will have disastrous long-term performance characteristics.
Such examples willnot, however, disprove .£ becauso the methods do not follow
from o€ by itself,

4
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(iv) The differences Dbetween the Bayesian and the (non-Bayesion)
Likelihood schools of data-analysis may Lbe summarised as follows : \Vhereas,
the Bayesian looks upon the likelihood function L(w) as an intermediate step
—u link between the prior and tho posterior—the Likelihoodwallah® looks
upon L(w) as a sort of an end in itself. TFurthermors, the latter looks upon
L(w) as a point function —L{w) is the relative magnitude (or intensity) with
which the data supports the point w—that should never (well, almost never)
be looked upon as somcthing that can gonerate a measure of. support (for
subsets of Q that are not single-point sets). In the next section.we discuss
this point in some detail.

8. LIKELIHOOD —A POINT-FUNCTION OR A MEASURE?

It was R. A. Fisher who first thought of likelihood as an alternative measure
of rational belief. Tho following quotation clearly spells out Fisher's own
ideas on the subject. [These remarks of Fisher appear to have greatly in-
fluenced the thinking processes of many of our contemporary statisticians.]
Discussing the likelihood function, Fisher (1930, p. 532) wrote :

“The function of the 0’s maximised is not however a probability and does
not obey the laws of probability; it involves no differential element d0, d0,
db, ... ; it does none the less afford a rational basis for preferring some values
of 8, or combination of values of the 0’s, to others. It is, just as much es a
probability, a numerical measure of rational bolief, and for that reason called
the likelihood of 0, 0,, 0;, ... having given values, to distinguish it from the
probability that 0,, 0,, 0,, ... lie within assigned limits, since in common speech
both terms aroe looscly used to cover both types of logical situation.

If 4 and B are mutually exclusive possibilities the probability of “4 or
B” is the sum of the probabilities of A and of B, but the likelihood of 4 or B
means no more than ‘“the stature of Jackson or Johnson”, you do not know
what it is until you know which is meant. I stress this because inspite of all
the emphasis that I have always laid upon the difference between probability
and likelihood there is still a tendency to treat likelihood as though it were
a sort of probability.

The first result is that there are two different measures of rational belief
appropriate to different cases. Knowing the population we can express our
incomplete knowledge of, or expectation of, tho sample in terms of probability;

¢ ‘Wallah' in Hindi moans a poddlor and is a non.dorogatory torm. Tho narae, Likoli.
hoodwallah, thon donotos a poddloer of an assortmont of non-Bayosian likslihood mathods.
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knowing the samplo wo can express our incompleto knowledge of the popula-
tion in terms of likelihood. e can state the relative likelihood that an un-
known eorrelation is +0.6, but not tho probability that it lics in the r'unge
.595-.605".

From the above it is clear that Fisher intended his notion of likelihood to
be used as some sort of & measure of (the degree of) rational belief. But all
the same he was very emphatic in his denial that likelihood is not a measure
like probability—it is not & set function but only a point function. It is not
however ?lcnr why this data-induced likelihood measure of rational belief
(about various simple hypotheses related to the populaton) must differ from
the other measure of rational belief (namely, probability) in being non-additive.
\Why can’t we talk of the likelihood of a composite hypothesis in the same way
we talk about the probability of a composite event ?

In our quotation we find Tisher lightly dismissing the question with the
curious analogy of “the stature of Jackson or Johnson, you do not know what
it is until you know which is meant”. Twentysix years later we find Fisher
(1956, p. 69) still persisting with the same analogy—only this time it was
“the income of Peter or Paul”. These analogies are particularly inept and
mislcading. Both stature and income arc some kind of mensure—tho former
of sizo and the latter of earning power. \Why can’t we talk of the total stature
or the total income of & group of people 2 It should be nofed that when
Fisher is talking of ‘Jackson or Johnson’ he is using the conjunction ‘or’ in
its everyday disjunctive sense of ‘either-or’. On the other hand, when we
talk about the degree of rational belief (probability or likelihood) in ‘A or B’
the ‘or’ is the logical (set-theorctic) connective ‘andfor’ (union).

Tan Hacking (1965) in his very interesting and informative book, Logic
of Statistical Inference, has givon o dotailed and eminently readable account
of how this Fisher-project of building an alternative likelihood framework
for o measure of ‘rational Lelief’ may be carried out. The expression ‘rational
belief” sounds a littlo awkward in the present contoxt as the whole exereiso is
about & mathematical theory of what ‘the data has to tell’ rather than about
what ‘the experimenter ought to believe’. Hacking therefore suggests an
alternative expression, ‘support-by-data’. About this theory of ‘support’
Hacking (1905, p. 32) writes :

“The logic of support has been studied under various names by s number
of writers. Koopman called it the logic of intuitive probability; Carnap of
confirmation. Support scems to be the most general titlo. ... Ishall uso only
tho logio of comparative support, concerned with assertions that one proposition
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is better or worse supported by one picce of evidenco, than another proposi-
tion is by other or the same evidence. ... . Tho principles of comparative
support have been set out by Koopman; the system of logic which ho favours
will be called Koopman's logic of support”.

The Fisher-project of building an alternative likelihood framework for
‘support-by-data’ is then carried out by Hacking as follows. Hacking begins
with Koopman's postulates of intuitive probability—the logic of support—
and enriches it with an additional postulate, which he oalls the Law of Likeli-
hood. A rough statement of tho law may Lo given as follows :

Law of likelikood : Of two hypothesos that are consistent with given
data, tho better supported (by the data) is the ono that has greater likelihood.

In terms of our notations, the Law tells us the following: If L{ey)
> L(w,) then the data (&, 2) supports the hypothesis w = w, better than the
hypothesis @ = w;. The Law sets up a linear order on the parameter space
Q. Any two simple hypotheses w = w, and w = w, may bo compared on the
basis of tho intensity of their support by the data. But how about composite
hypotheses like w = w, or w, ? Suppose 4 = {w,, wy} and B = {w], w)}
and suppose further that L(w) > L(w;), i =1,2. Would the statistical
intuition of Sir Ronald have been outraged by the suggestion that, under
the above circumstances, it is right to say that the data supports the hypothesis
wed better than the hypothesis weB 1. The author thinks not.

At the risk of scandalizing somo staunch admirers of Sir Ronald, the author
now suggests a stronger version of Hacking’s law of likelihood.

The' strong law of likelihood : Tor any two subsets .f and B of Q, the
data supports the hypothesis wed better than tho hypothesis weB if

T Liw)> £ L{w).
@l wtB

{Let us recsll the assumption (rather, assertion) in Section 2 that all our seta
(tho sample sprce, the parameter space cte.) are finite. Becauso of this we
run into no definition trouble.] Boforo looking into the possibility of any in-
consistencies that may arise out of this Strong Law of Likelihood, let us considor
some of its consequences.

With the Strong Law of Likelihood incorporated into Ioopman's logie of
support, wo can now identify the notion of ‘support-by-data’ for the hypothesis
wed with its likelihood L(A) defined as

L) = £ L{w).
o4
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Given a data d, its support for various hypotheses about the population is
then:a truc measure—the likelihood measvre of Fisher. Since o scaling factor
in the likclihood function does not alter its character, wo may as well work
with tho standardized likelihood function

L(w) = L(w)/L(),

and then tho corresponding set function 4A—L(4) gets endowed with all the
characteristics of a probability measure.

No Likelihoodwallah can possibly object to our scaling of the likelihood
to a total of unity. They can however challenge the Strong Law of Likelihood.
But observe that the Strong Law is nothing but the Law of Likelihood (which
all Likelihoodwallahs accept) together with an additivity postulate for the
logic of support-by-data. [It should be noted that the additivity postulate
is not in tho set that Hacking (1965, p. 33) borrowed from Koopman’s logic of
intuitive probability. However, in a later part (Chapter IX) of his book,
Hacking introduced this postulate in his logic of support with a view to deve-
loping the idea as a sort of “‘consistent explication of Fisher’s hitherto inconsis-
tent theory of fiducial probability”. The author had difficuitics in following
this part of Hacking's arguments.] One may ask: “How can you assume
that data support hypotheses in an additive fushion 7' But then the same
question may be asked ebout the other postulates also.

The author is willing to postulate edditivity beeause (i) it is not in conflict
with his own intuition on the subject, (ii) it makes the logio of support neat
and useful, but mainly beeause (iii) ho docs not know how to ‘prove’ it !
The author is not a logician., The long-winded ‘proofs’ that some subjective
probabilists give about the additivity of their measure of ‘rational belief’ leave
the author bewildered and Lbemused. 1o finds it a lot casier to accept addi-
tivity as a primary postulate for probability. \When it comes to likelihood
(» measure of support-by-data) he finds it equally casy to accept it as additive.
If we can accept that tho mind of a rationnl homo sapien ought to work in an
additive fashion when it comes to his pattern of belief in various cvents, why
can’t wo also accopt that tho inanimato data should lend its support to various
hypotheses in o similarly additive manner ¥ Let us not forget that Fisher
used tho term ‘rational bolief’ and not ‘support-by-data’. The ‘belief’ of what
rational mind was he contemplating 2 Certainly, not that of tho statistician
(experimenter). Because he is a rational being, the experimenter cannot
(and must not) forget all tho other (prior) information ‘that ho has on the sub-
jeet. It scoms TFisher was contomplating an oxtremely intelligent being—a
Martian perhaps—who at tho samo timo is totally devoid of any background
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information about « other than what is contained in tho description
of the statistical model (<2, Q, p) for the experiment & and tho data (&, z).
Qur intelligent Martian objectively weighs all tho evidonce givon by the data
and then makes up his own mind about the various possibilities related to w.
Fisher wanted to distinguish this posterior pattern of the Martian's ‘rational
belief’ with the ordinary kind of ‘rational belief’, which we call probability,
by calling tho former likelihood. But why did he insist 8o vehemently that
likelihood is not additive 2

The answer lics in Fisher’s preoccupation with the illusory notions of the
infinite and the infinitesimal. Supposo we have formulated in our mind an
infinite sct of hypotheses I1,, II,, I,... and suppose our experiment is the trivial
one of tossing a symmetrio -coin once, resulting in the sample H (= head).
Now, the data equally support each member of our infinite sct of hypotheses.
Thero is no difficulty in visualising the likelihood as a nice, flat point-funotion.
But how ¢an wo convert this into an ordinary kind of a probability measure 1
Even Hacking, the logician, seems to have been taken in by the force of this
argument. On p. 52 of his book Hacking writes : *Likelihood does not obey
Kolmogoroff’s axioms. There might be continuously many possible hy-
potheses; say, that P(II) lies anywhere on the continuum between 0 and 1.
On the data of two consceutive heads, cach of this continuum of hypotheses,
(except P(I) = 0) has likelihood greater than zero. Hence the sum of the
likclihoods of mutually exclusive hypotheses is not 1, as Kolmogoroff’s axioms
demand; it is not finite at all”.

The author finds the above remark all the more surprising because in the
very next paragraph Hacking writes :  *... , in any real experimental situation,
there are only a finite number of possible outcomes of a measurement of any
quantity, and hence a finite number of distinguishable results from a chance
set-up. Continuous distributions are idealizations.” If Hacking is willing to
concede that all sample spaces are in reality only finite, why does ho not agree
to the proposition that the parameter spaco also is in reality only finite ?

A finite and, therefore, realistic vorsion of the Hacking-idealization of the
parameter 0 = P(J{) lying “anywhere on tho continuum between 0 and 17
may be set up as followa :  Stipulate that 0 varics over some finite and evenly
spread out set like J = {.00, .01, .02, ... .00, 1.00}. On the basis of the data
(of two conscoutive heads in two throws) our Martian then works out his likeli-
hood measuro over the set J in terms of the standardized likelihood function
L : J-[0, 1] defined as

O] L) = oy ‘{SJ 0,
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Nnw, the above discrete’ likclihood measure can bo reasonably (and rather
usefully) approximated by a continuous (likelihvod) distribution over the
unit interval [0, 1] that is dofined by tho density function

(o) 0)do = 30%d0

Note that the (true) likelihood function L(0) in (s) has no differential element
attached to it, whereas its idealized counterpart in () has. In order to avoid
the logical hazards of the infinitesimal, it is better to look upon the density

function I{0) only as a convenient tool and nothing else.

Now, let us examine how our clover but very ignorant Martian reacts
to a re-statement of the statistical model in terms of a transformation of the
poarameter 0. Suppose we writo ¢ = 0* and deseribo the model in terms of
tho parameter §. In order to bo consistent with our earlier stipulation that
0cJ, we have to inform the Martian that deJ, where J, = {(.00)%, (.01)%, ...
(.99)2,(1.00)%}. Looking at the data of two consecutive heads, the Martian
will now arrive at his likelihood measure on J, on the basis of the standardized
likelihood function L, defined as

Lo =42 ¢

And this measure on J is entirely consistent with the measure on J obtained
earlier in (o). In view of tho fact that tho set J, is not evenly spread out over
the interval [0, 1], the idealized limiting version of tho above discrete distri-
bution on Jj is not given by the density 28 dd but by the natural progeny
of (ss) obtained in the usual manner as

igag = o) |35 a8

3
=5 V@dp 0<¢<L
- _3.
)
tation a8 a point function.: However, for reasonable scts 4, the intogral
| 1,(#)d¢ may be interpreted as the likelihood of the hypothesis ged but thon
i

only as an approximation.

1t should be noted that thoe function I(¢) +/$ has no likelihood interpre-

At this point one may ask the question : “Why is it that the Martian is
reacting differently to the two parametrizations of the model in terms of @
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and ¢ 1 In the first case we find that tho likelihood function L(0) is propor-
tional to the likelihood density 1(0). But in the second caso the two functions

L) and 1,($) aro not proportional. Tho answer lies of courso in tho fact
that the parameter spaces J and J, are differontly oriented.  Supposo, instead
of telling tho Martian that ¢eJ,, wo leave him to his own devices with the
vague agsertion that ¢ lics somewhere in the continuous interval [0, 1]. Now
the computer-like mind of the Martian will immediately translato our vaguo
(infinitesimal) statement ebout ¢ into a finite (realistic) statement like geJ
= {.00, .01, ... .99, 1.00} and procced to evaluate the evidence of tho data
in preciscly the seme wiy as he did for 0. His likelihood function I, : J—»(0, 1]
will now bo defined as

(*) L) =¢/E¢
ey

and its idealized continuous version will be deseribed in terms of the density
function

Li@)dg = 20dg, 0< ¢ < 1.

The fact that the density function I;(¢)d¢ is not consistent with the density

function ¥(0)d0 was the principal reason why Fisher rejected the idea of likeli-
hood as an additive mecasure. His mind probably worked in the following
fashion : The map 0—0°*=¢ scts up & one-onc correspondonce between
the intervals [0, 1] and {0, 1]. The statements 0¢[0, 1] and ¢¢[0, 1] are there-
fore equivalent in every way. If on the basis of equivalent background infor-
mation the Martian is liable to arrive at different (inconsistent) measures of
rational belief, then it is clear that we cannot trust his methods for converting
the likelihood function into an additive measure. It is therefore safer to regard
likelihood only as a point function. This way we cannot possibly land our-
selves into paradoxes of thoe above kind.

Let us analyse the flaw in the above argument. The assertion that 0—¢
is 0 one-one map is strictly true only in the idealized continuous case. To
recognize this we have only to look at & finite (non-infinitesimal) version, say,
Jof [0,1). Toreach 0 (in J) there is a ¢ (in J), which is woll-defined as ¢ = 0*
correet to its second decimal placo.  But now tho correspondence is many-one
and not onto. TFor example, the statement ¢ = 0 is the union of tho eight
statements 0 = .00, 0 = .01, ... 0 = .07, and tho statement ¢§ = .99 corycs-
ponds to no elementary statement about 0. Tho assertions feJ nand ¢eJ
are thereforo quito different (both logicnlly and statistically) in nature and our
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Martian cannot be faulted for reacting differently to two different bits of in-
formation. Even in tho ideslized continuous case, tho two statements 00, 1]
and ge[0, 1] are equivalent only in a logical sense. It is certainly not true that
the two statements aro equally informative in a statistical sense.

Let us look back on the passage that we quoted in the beginning of this
scction from Fisher (1030), Curiously enough, it was in this 1030 paper that
Fisher first introduced us to his fiduciul probability mecthods for constructing
an additive measure of support-by-data, which according to him must bo re-
cognized as ordinary frequency probability. It now appears that Fisher was
only protesting too much when he so severely deplored the “tendency to treat
likelihood as though it wero a sort of probubility”

The author can find no logical justification for the often repeated assertion
that likelihood is only a point function and not a measure. He does not see
what inconsistencies can arise from the postulation of the Strong Law of Likeli-
hood in the Koopman-Hacking logic of support-by-duta. On the other
hand, we shall show later on how some of the non-Bayesian likelihood methods
get into serious trouble because of their non-recognition of the additivity: of
the likelihood measure.

0. JAXDIUM LIKELIHOOD

Volumes have been written seeking to justify in one way or another
tho maximum likelihood (ML) method of point estimation (and its sister method
—the likelthood ratio method for test of hypotheses), and yet the author cannot
find any logical justification for upholding the method as anything but 2 simplis-
tic tool that may (with some reservations) be used for routino data analysis
in situations’ where tho sample sizo is not too small and the statistical model

not too shaky (unrobust). By definition, the ML estimato & (of the value of
w that obtains) is the point in the parameter space that is best supported by
tho data. But what logical compulsions guide us to the maximum likelikood
principle :“The best (or most reasonable) estimate of & parameter is that
valuo (of the parameter) which is best supported by the data” ? If we contem-
plate for a moment our very ignorant Martian, who is trying to make sense
of data related to a parameter about which he has absolutely no pre-conceived
notions, then we ought to be more prepared in our mind to accept the reverso
proposition :  “Tho most reasonable estimate of & parameter will rarely
coincide with the ono that has the greatest support from the data”.

If Fisher ever thought in torms of the idealization of u Murtiun, then
he must have visualized him (the Martiun) ns o rational being who not only is
b
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very ignorant (about the parameter of interest) but is also endowed with very
limited capabilitics. Fisher's Martian does not know how to add likelihoods,
he can only compare them. His recognition of points in the parameter space
is only microscopic (pointwise). - I{o compares paramecter points pairwiso—
ho can only tell how much moro likely a particular point is compared to
another.  Given two composite hypotheses wed and weB, the only thing that
le can do, in the way of comparing the likelihoods (of the composite-hypotheses
being truc), is to compare the likelihoods of the best supported points &, and
&, in A and B respectively. This is the Martian’s Likeliood Ratio method
for testing a composito bypothesis agoinst a composite alternative and is ana-
logous to & child’s method for picking the winning team in a tug-of-war contest
by concentrating his whole attention on the anchors of the two teams | Ho
has no understanding of any natural topology on the parameter space that
may oxist. And finally, ho docs not know anything about the relative
bazards of incorrect inferences. The six likelihood methods that wo havo
described inSection 7 arce geared to the needs and limitations of such a Martian.
It is casy to construct examples where uncritical uses of such methods will
lead to disastrously inaccurate inferences. Here is one such,

Example : 1 An urn contains 1000 tickets, 20 of which are marked 0 ond
the remaining 980 are marked 100, where 0 is the parameter of interest. A
ticket is drawn at random and the number 2 on tho ticket is observed. Tho
ML cstimate of 0 is then z/10. - In this case, the ML estimation procedure leads
to an exact estimate with a probability of .98. So everything scems to be
ag it should be. But consider a slight variant of the urn-model, where we
still have 20 tickcts marked 0, but the remaining 980 tickets urc now marked
0a,, Ou,,...0ay, respectively, and where the 980 constants ay, gy, ..., @y ave 2ll
known, distinct from each other, and all of them lic in the short neighbourhood
(9.9,10.1) of the number 10. The situation is not very different from the onc
considered just before, but now look what happens to our Martian. Noting
that the likelihood function is

.02 for 0=2
L(0)z) = { 001 for O=20), i=1,2,..
0 otherwise

the Martian now recognizes x as tho ML estimate of 0. He also declares (sco
method (b) of Section 7) that v is at least 20 times more likely than any other
point in  the purameter space and, therefore, identifics tho single-point sct
{«} as the likelihood interval I, with A = 20, [Irrespective of what the true
value of 0 is, the ML method now over-cstimates it with o factor of nearly 10
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and with a pobability of .08. As o confidence interval the likelihood interval
1, (with A = 20) has n confidence coefficient of .02,

The source of tho Martian’s troublo with this examplo is easy to fathom,
I ho knew how to add his likelihood measure, then he would have recognized
that tho likelihood of the true 0 lying in tho interval J = (z/(10.1), 2/(0.9))
is .08. Furthermore, if he could recognizo that (for medium sized z) the inter-
vel J is a narrow one and that small errors in estimation aro much less hazardous
than an over-estimate with a factor of 10, then he would surely have recognized
the reasonableness of estimating the true 0 by a point like 2/10 rather than
by the ML estimated 2.

We all know that under certain cirenmstances the ML method works
rather satisfactorily in an asymptotic sense. But the community of practising
statisticians are not always informed of the fact that under the same circum-
stances the Bayesian method : “Begin with a reasonable prior measure ¢
of your belief in the various possible values of 0, match it with the likelihood
function generated by the data, and then estimato 0 by the modo of the pos-
terior distribution so obtained”, will work as well as the ML method, because
the two methods are asymptotically equivalent.

And once wo take the final Bayesian step of ‘matching the likelihood func-
tion with some reasonably formulated prior mecasure of our personal belief’,
we can then orient the task of inference making to all the realities —w, Q,
¢, 11, &, z, ete.—of the particular situation. If we look back on tho six likeli-
hood methods described in Seotion 7, it will then appear that, excepting for
method (d)—the likelihood ratio method of testing a simple hypothesis against
a simple alternative—all the other methods are too simplistic and rather dis-
oriented towards the complex realitics of tho respective infercnce making
situations.

We end this section with another examplo to d trato how di y
disoriented the Martian can get (in his efforts to evaluate tho likelihood evidence
given by the data) becauso of his inability to add likelihoods. Let us look
back on methods (e) and (f) described in Section 7 and then consider the
following.

Ezample 2: Tho universal parameter w is (0, ¢), whero 0 (tho parameter
of interest) lies in the two-point set I = {—1, 1} and tho nuisance parameter
¢ lica omewhere in the set J = {1, 2, ... 080}. Our task is to draw o ticket
at random from an urn containing 1000 tickets and then to guess the true
valuo of 0 on the basis of the observed characteristics of the samplo ticket.
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About the 1000 tickets in the urn we have the information that (i) the number
# i3 written in large print on exactly 980 tickets and the number —0 appears
in large print in tho remaining 20 tickety, and (ii) the 980 tickets marked 0
carry the distinguishing marks 1, 2, ... 980 respectively in microscopic print,
whereas, the remaining 20 tickets carry the mark ¢ in microscopic print (whero
the unknown geJ). Let x and y be tho numbers in largo and small print
respectively on our sample ticket. Our samplo space then i3 IxJ, which
is also our parameter space.

Let us suppose for n moment that cither we do not have a magnifying
glass to read the small print y or for some reason wa consider it right to suppress
this part of the data from our Martian. The Martian will then be very pleased
to discover that his likelihood function (based on z alone) does not depend on
the nuisance parameter and is
98 when 0= 2«

@ LO=Logl=|

02 when 0= —2z"

and 80 he will come out strongly in support of the guess : ‘the true 0 is 2.
No doubt we should feel proud of our clever Martian because, irrespective of
what 0 is, the probability of his guessing right in the above circumstances ia
.08.

But sce what happens when we can read y and cannot find any good reason
for suppressing this part of the data. With the full samplo (2, y) in his pos-
session, the Martian will routinely analyse the data by first setting up the
likelihood function as

001 when 0=z geJ
(v0) L, 8|z, y) = < .02 when 0=—z, 4=y

0 otherwise

and then eliminating ¢ from (ss) as per method (f) of Seetion 7. Tho eliminated
likelihood function is

001 O0==2x
(se0) Li(0) = sup L(0, 6| z.y) = { 0

02 0= —2z

ond so this time the Martian comes out atrongly in support of the gucss 8 = —z.
With tho full data, the performance characteristio of tho Martian's method
is now ‘only 29, probability of success’ |
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Tt should be observed that the real sourco of the Martian’s debacle lies
in his inability to add likelihoods. Before the data was available, the Martian’s
ignorance about the parameter w = (0, @) extended over the 2x 930 points
of the set IxXJ. With the rample reading (z, y), the Martian correctly recog-
nized in (o) that his ignorance about (4, ¢) is cut down to the smaller sct
A B where

A ={(z,1), (z,2),...(z, 980)}

and B = {(—x,y))

and that the likelihood of each of the 980 points in 4 is .001 and that of the
single point in B is .02, From the Strong Law of Likelihood (see Scction 8)
it follows that the likelihood support (by the data) for the composite-hypothesis
wed (that is, 0 = z) should have been worked out as

L(A)= I L{0,¢|z,y)=.08
10,0104

and this compares very favourably with the likelihood support of .02 for the
hypothesis weB (that is, 0 = —z).

The elimination of the nuisance parameter ¢ by the above method of nddi-
tion (of the likelihood function over tho range of ¢ for fixed 0) certainly smacks
of Bayesianism, but it appears to be a much more natural thing to do than
the Fisher-inspired elimination method by maximization (w.r.t. ¢ for fixed 0).
[In the present example, it so happens that tho ‘addition method’ of elimination
(of @) leads to tho same eliminated likelihood function as was achieved earlier
in (+) by the ‘marginalization method’ of suppressing the y-part of the data.
However, the author cannot see how a good case can be made for such & margi-
nalization procedure, even though the distribution of z (as a random variable)
depends only on the parameter of interest 0, and that of y depends on the nui-
sanco parameter ¢ alone. Noto that, for fixed (6, ¢), the statistics z and y
are not stochastically independent. It follows that, even when the parameters
0 and ¢ are entirely unrelated (independent a-priori), suppression of y may
lend to valuable loss of information. In order to sce this, supposo that we
knew for suroe that ¢ = 1 or 2. Now, the statistic y will give us oxtra infor-
mation about 0 —if y > 2 then we know for sure that = z ete.]

Let us close this section with the remark that, however woll-suited tho
‘eddition method’ (of elimination) may be to the needs and capabilitics of our
ignorant Martian, the method is not being recommended here as a routino
statistical procedure to bo adopted by any knowledgeablo scientist.
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PART 3: PARARDOXES
10. A FALLACY OF FIVE TERMS

The author vividly recalls an occasion in Jate 1055 when Sir Ronald
(then visiting tho Indian Statistical Institute, Caloutta and giving o serics of
seminars based on the manuseript of his forthcoming book) got carried away
by his own enthusiasm for fiducial probability and tried to put the fiducial
argument in the classical form of the Aristotelian syllogism known as Barbara:
‘A is B, Cis 4, therefore C is B'. The context (data) was : A random vari-
able X which is known to be normally distributed with unit variance and
unknown mean ¢ about which tho only information that we have is, —oo
< 0 <co. The variable .Y is observed and the observation is 5. ~Sir Ronald
declared that the following constitutes a ‘proof’ :

DMajor premise : Probability that the variablo X exceeds @ is 1/2.
AMinor premise : The variable X is observed and the observation is 5.
Conclusion :  Probability that 0 is less than 5 is 12,

We know that in Aristotelian logic an argument of tho kind : ‘Cacsar
rules Rome, Cleopatra rules Caesar, therefore, Cleopatra rules Rome’, is classi-
fied as a ‘fallacy of four terms’—the four terms being (i) Caesar, (ii) one who
rules Rome, (iii) Clopatra, and (iv) one who rules Caeser. Sir Ronald is per-
haps the only person (in the history of scientific thought) who ever dared
(even in a moment of euphoria) to suggest a three-line proof involving five
different terms—tho terms being (i) Pr(X > 0), (i) 1 12, (iii) the observed value
of X, (iv) 5,'2nd (v) Pr{f < 5) |

About Tisher's fiducial argument Hacking (p. 133) writes: *“No branch
of statistical writing is more mystifying than that which bears on what he calls
the fiducial probabilitics reached by the fiducial argument. Apparently the
fiducial probability of an hypothesis, given some data, is the degree of trust
you can placo in the hypothesis if you possess only the given data.” Tho
confusion has been further compounded by Fisher’s repeated assertions that
in thosc circumstances whero ho considers it right to talk about fiducial pro-
babilities, the notion should be understood in exactly the same way as a gambler
understands his (frequency) probability. Neyman's theory of confidence
intervals aroso from his efforts to understand the fiducial argument and fo
re-interpret the concept in terms of frequency probability. Recently, Fraser,
with his structural probability methods, is trying to build a mathematical
framework for Fisher’s ideas on fiducial probabilities. \Vhereas Neyman
never had had any illusions about his ‘confidenco coefficients’ being the same
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a9 ordinary probabilities, it appears that Fraser (liko Fisher) deos not make any
logical distinction between ordinary and structural (fiducial) probabilitics,

On tho surfaco the fiducial method may appear to be of the true likelihood
vintage—an exercise in analysing the mind of the Martian (tho particular data
at hand). A little reflection (see Anscombe [1957] in this connection) however
will prove otherwise. Consider tho context where the variable X is known to
have & N(0, 1) distribution, tho only background information about 0 is that
-~ < 0 < o0, and the observed value of X is x.  The fiducinl argument leads
to the fiducial distribution N(z, 1) for 0. The argument has hardly anything
to do with the fuct that the data generates the likelihood funetion exp{—(0—z)?/
2}, but is based on (i) the fortuitous discovery of tho pivotal quantity X—0
with a standard normal distribution, (ii) a re-interpretation of our lack of prior
information about &, and of courso (jii) that X is obscrved as x. The fiducial
argument clearly does not respect the likelihood principle.

In the present context we have two unobscrvable entities—tho parameter
0 and the (pivotal) quantity ¥ = X—0. About 0 the statistician (rather,
the Martian) is supposed to know nothing other than that tho parameter lics
jn (varics over) the infinito interval (—o0,0). About Y, on the other hand,
Jio has tho very precise information that X () N(0, 1) irrespective of what
valuo @ takes. In a sense wo may then say that the (unobscrvable) random
quantity Y is stochastically independent of the parameter 0. .Now, tho sum
0+Y = X is observable and has actually been observed as 2. Tho fiducial
argument then somehow justifies the assertion that the observation 0+ Y = »
altered the logical status of the parameter 0 from that of an unknown quantity
lying somewhere in the interval (—oo, ) to that of a random variable with
tho probability distribution N(z,1). In particular, tho argument sccks to
prove Pr(0 < z) = 1/2. Following Neyman, we may interpret tho above only
to mean that if, under tho above kind of situation, wo always assert 0 < z
then, in a long sequence of (independent) such situations—with the unobservable
0's varying in an arbitrary manner and with varying observations z—wo shall
bo right in approximately 509, of cases. But Fisher (also Fraser) scems to
bo saying something more than this. In effect he is saying that tho obser-
vation X = & does not havo any effect on tho probability distribution of the
quantity Y = X—0—that i3, given X = x tho quantity Y = X—0 [ N(0, 1)
In other words, Fisher is saying that Y is independent of X( = ¢+Y). Note
the inherent contradiction between this axsertion of independenco und our
carlier stipulation thut Y is independent of 0. If 0 hus tho character of u
random variablo and is independent of ¥, then Y and - Y40 can' never bo
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independent of cach other unless Y is a constant (which it is not). 1f not,
then it is not clear what we aro talking about.

Let us try to understand in another way what Fisher really had in mind
when ho eaid (in the context of our present X and 0) to the effect : TWhen
X is observed ns x, wo can regard 0 as a random variable with Pr(0 < z) = 1/2,
and this irrespective of what z is. Furthermore, the statement Pr{0 < x)
= 1/2 can be interpreted in the same way as wo interpret the statement :
“For a fair coin Pr{Head) = 1/2.”

In order to do o, let us sce if we ean distinguish betweon the following
two guessing situations :

Situation L: Every morning Peter confronts: Paul with an integral
number z that he (Peter) has freshly sclected that very morning, and then
challenges Paul to hazard a guess (on the basis of the number z) about the
outcome Y of a singlo toss of a fair coin (to be carried out immediately after-
wards). Clearly, the number z gives Paul no information whatsoover about
Y. And if we are to believe in the fairness of the coin (as the frequency pro-
babilists understand it), then there exists no guessing strategy for Paul that,
in the long run, will make him guess correctly in more (or less) than 50%, of
the mornings on which he chooses to hazard a guess. In the language of Fisher,
Paul cannot 'r ’ any subseq of mornings on which the long run
relative frequency of occurance of heads will be different from 1/2.

Now consider

Situation 1I : Every morning Peter confronts Paul with a bag contai-
ning two tickets numbered respectively as 0—1 and 041, where the number
0 is an integer that has been sclected by Peter that very morning. "Each
morning Paul’s task is to draw a ticket at random from the Lag, observe the
number z on the ticket drawn, and then hazard a gucss on whether the
number 4 (the mean of the two numbers in tho bag) is z—1 or 24-1.

Clearly, situation II is a simplified (integral) version of the Fisher-problem
we started this section with, Let us supposo that Paul has no idea whatsoover
about how 0 gets selected on any particular morning. He only knows that tho
unobservablo 0 can take any value in the infinite set {0, &1, +-2,...}. He
also knows that for given 6, the observable X takes only the two valucs 0—1
and 041 with oqual probabilities. As beforo wo have tho unobservable
(pivotal) quantity ¥ = X—0 with a well-defined probubility distributiou.
In nccordunco with the Fisher logic, the only thing that the data X = x tells
on any morning about the purticulur  that obtains, is simply this : 0 is either
z—1 or z+1 with cqual probabilitics. It scems to tho author that Fisher
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would not have recognized any qualitative differenco between the two situa-
tions. Jf Paul cannot read the mind of Poter thon there is no way he can guess
right in moro (or less) than 509 of the mornings that he chooses to guess on,

Now, let us look at the following interesting argument given by Buehler
(1071, p. 337). That Paul can do better than being right in only 509, of the
guesses that he is going to make, is shown by Buchler as follows. Suppose
Puul refuses to guess whenever z < 0, but always guesses 0 as z—1 whenever
x> 0. Now, let us classify all futuro mornings of Paul on tho bosis of the
values of & (that Peter is going to selcot) as follows :

A0 € —2), 0= —1or0), I,0>1)

On Jf,-mornings, Paul. never guesses and, therofore, i3 never wrong. Paul
makes's guess on 50% of the 3 ,-mornings and iz always right on such ocensions.

On M -mornings Paul always makes a guess and is right in only 509 of such
guesses.

No doubt the Buehler argumeont will be endlessly debated by the advocat
of the fiducial and structural probability methods. But let us point out that
the argument is in the nature of & broadside against the improper Bayesians
also. An improper Bayesian is one who systematically exploits the mathe-
matical advantages of neat improper ‘priors’ and generally ignores tho first
requirement of Bayesian data analysis, namely, that the ‘prior’ ought to be an
honest representation of tho Baycsian’s prior pattern of belief. Observe that
in situation II abovoe, an improper Bayesian will note with great relish the fact
that the data allows him to assume that the parameter space is the unrestrioted
set I of all integers and that the likelihood function generated by the obser-
vation X = 2 has tho simplo form

1 when Osz—1, 241}
L)) = { ,
0 for all other §in I.
He will now simplify everything by starting with the uniform prior over the
infinite set I (an impropricty of tho highest order according to the author).
thus arriving at & posterior distribution which is the samo as the uniform
fiducial distribution over the two point set {r—1, z4-1}.

11. THE STOPPIXG RULE PARADOX
The controversy about the relevance of the stopping rule at the data
nnalysis stago is best illusirated by the following simple oxamplo :
Example : Suppose 10 tosses of a coin, with sn unknown probability
0 for landing heads, resulied in the outcome
x = THTTHHTHHH.
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Now, for cach of the following four experimental procedures :
E, : Toss the coin exactly 10 times;
E,: Continue tossing until 6 heads appear;
Ey: Continuo tossing until 3 consecutive heads appear;

E,: Continue tossing until tho nccumulated number of heads exceeds
that of tail by exactly 2;

and indeed for any sequential sampling proceduro (of the usual kind, with
prescience denied) that could have given riso to the above scquence of heads
and tails, the likelihood function (under the usual assumption of independence
aud identity of tosses) is the samo, namely,

L(0]z) = 0%(1—0)%,

Yrom the likelihood principle («€) it then follows that at tho time of analysing
tho information contained in the data (&, z), we need not concern oursclves
about the exact naturo of tho experiment &—our whole attention should be
rivetted on the likelihood function 06(1—0)3, which docs not depend on tho stop-
ping rule. In general terms, we may state the following principle due to
George Burnard :

Stopping rule principle (for n sequential sampling plan): Ignore the
sampling plan at the data analysis stage.

This suggestion will no doubt shock and outrage anyone whose statistical
intuition has been developed within the Neyman-Pearson-Wald framework.
Even some enthusiastic advocates of o€ find the stopping rule principle em-
barrasingly hard to swallow. It will be quite interesting to make a survey
of contemporary practising statisticians with a suitably framed questionnaire
based on the above example: However the matter cannot be settled demo-
oratically | Donnis Lindley, having seen an earlicr draft of this article, wrote
to say the following : “You may like to know that in my third-year courso
I have, for many years now, given the class the results of an experiment liko
you give, and ask them if they need any moro information before making an
inference. I have never had a student ask what the sample spaco was. I
then point out to them that they could not construct a confidence interval,
do & significance test, eto., olc. Although they uro not practising statisticians,
they have had two years of statistics. Thoy just don’t fecl tho snmplo spuce
is relevant. I have tried this out with more experienced audiences and only
occasionally had an enquiry about whether it wus direct or inverse sampling”.
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Tho rest of this section is devoted to u detailed discussion of the famous
Stopping Rulo Paradox®, whicl is generally bolieved to have knocked out the
logical basis of principlo . In order to isolate the various issues involved,
it will help if wo denote by & the following set of throe classical (Fisherian)
mothods of statistical inference.

The & methods : The data consists of the pre-fixed number n of inde-
pendent observations on a random variable X that is known to bo normally
distributed with unknown mean 0(—o0 < 0 < ) and known variance 1,
The data then generates the information (likelihood funotion)

(i) L(0) ~ exp{—n(0—2,,))/2}

where 2, = (z,+23+...42,)/n. Under the above circumstances, let &
consist of the trilogy of statistical methods :

Fa): If |2(,,—0,] > 3/+/5, then reject the null-hypothesis Hy : 0 = 0,
and declare that the data is highly significant.

F(b) : The statement 0¢(2,,—3//#, Z(,y-+3/+/n) may be mado with a
great deal (well over 99%,) of ‘self-assurance’ or ‘confidence’.

F(c): Tho sample mean Z,, is the most ‘appropriate’ point estimate
of 8 and tho cstimate is associated with a ‘standard error’ of 1f4/i.

Now consider the sequential sampling proceduro based on the stopping
rule :

#2: Continue observing X until the samplo mean 2,,, satisfiesthoe incqua-

lity |2n| > 8/v/a.
If N is the (random) sample sizo assooiated with our rule 72, then it is easy
to prove that N is finite with probability one if 0 3= 0, and when @ = 0 this
conclusion still holds. [The latter may be deduced from the Law of tho Iterated
Logarithms, but can bo proved much moro casily dircctly. It should be noted,
however, that E(N|0) is finite only whon 0 £ 0.] Thus our rule 72 is mathe-
matically well-defined in the senso that X is finito with probability one for all
possible values of 0. Suppose, following the rule 72, wo generate the sample
Z14 2y, oo Ty Our N is now random (not pre-fixed) but somehow the likelihood
function fails to recognize this fact, for it is in the familiar form (see (i) abovo)

(ii) L{0) = (V2n) N exp{—Z(x;—0)2

~ exp{—N(0—z4,)%/2}.

*Tho author is of who firat Jatod this clover paradox.
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Now, if we combine &£ with &, then looking back on (i) and (ii), we shall
be forced to admit that, oven when the samplo 2, z,, ... zy is generated by the
sequential sampling rule 72, the following $wo inferences are also appropriate :

(a’) The null-hypothesis Iy : 0 = 0 should be rejected, at a very high
level of significanco (assurance), since |Zx,| > 3/v/N holds by definition.

(b) We ought to place moro than 0(2% confidence or assurance in tho
truth of the assertion that the true value of @ lics in the interval (2(y,—3/4/N,
f(N)+3I\/N)A

The paradox: The stopping rule paradox lies in the observation that
method (a’) leads to a sure rejection of hypothesis /I, (at u high level of signi-
ficance) even when 7, is true. Also observe that the confidence interval
o+ 3/VN constructed for the unknown 0 surely excludes the point 0 =0
even when I, is true. Clearly, there must be something very wrong with
principle o£1

For tho moment let us only reverse the charge and claim thet the stopping
rule paradox, instead of discrediting o€, ought to strengthen our faith in the
principle by exposing the naivete of certain standard statistical methods that
are not truly in accord with the spirit of «£&. To prove our claim, let us first
of all concentrate our attention on the & (a) method of testing the null hypo
thesis Hy:0=0.

Intuitively, it scoms that the sequential sampling rule /2 used above is
especially well-suited to the problem of obtaining information on whether
the hypothesis I :0 =0 is true or not. When 0 is appreciably different
from zero we do not need too many observations on X beforo we lose faith in
I,, whereas when 0 is nearly zero, we need quite a large sample before we could
be reasonably sure that Hj is false.

Why then should a ‘reasonable’ sampling plan 72, when coupled with o
and the standard method (a), lead us to o testing procedure (a’) with a power
function

7(0) = Pr(Test ends with rejection of II,|0)

that is uniformly equal to one ! Is thore any paradox at all ?

Could the trouble lie in the fact that our rule 72 is not bounded above
and, therefore, is perhaps & non-porformable experiment ¥ To sce if this
might be 80, let us defino a bounded vorsion 22y of 72 as follows :

72y Continue observing X until tho samplo mean 2, satisfies the in-
equality |z(,| > 3/1/4 or n = M, whichover happens first. Our M isa fixed
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but possibly very largo integer. With such a ‘performable’ rule 72y
replacing 72, our power function may (0) will now have the familiar U-shape
that many of us like so much. Now, one might arguo that it is only in the
idealized limiting situation (3/— co) that our test becomes endowed with the
(very desirable) property of having maximum power® of discernment against
H,, when the hypothesis is false, coupled with the (rather undesirable 1) pro-
perty of non-recognition of If, when it is true. Let ug look at the problem
from another angle,

Is it not illogical to talk of a null-hypothesis 71, that is apecified by a parti-
cular value of a continuous parameter & 2 Are we not insisting from tho begin-
ning that all our realities are finito and thereforo discrete ¥ How can a pin-
pointed hopothesis like Hy: 0 = 0 bo classified as anything but an illusory
idealization ? Surely, such an ‘infinitesimal’ h‘ypothcsis (as H,) i3 ‘certainly
false’ to begin with, and ought to be rejected out of hand howover large the
sampleis, How can & testing procedure bo faulted for suggesting just that 1

In the same spirit that we replaced the unbounded stopping rule 72 by o
hounded version 72y, let us replace the infinitesimal hypothesis 71, by a non-
infinitesimal version.

H, : Hypothesis that 0¢(—$, ),

where § is some suitable positive number.

Let us see what happens to our paradox when we work with the finite
(bounded) stopping rulo 72y and finite (non-infinitesimal) hypothesis H, to be
tested. If z = (z,, 2,, ... zy) bo tho sample observations on X that we obtain
following rule 72, then what is tho quality and strength of our information
Inf(#2yy, z) regarding the hypothesis JI, ¥ Principlo o£ tells us not to take into
account any details of the statistical structure of the experiment performed
or of the samplo obtained other than the nature of tho likelihood function
L{(0|x) gencrated by the data, Fortunately, o£ does not stop us from using
any background (prior) information about the parameter 0 that we might
have had to begin with. However, only a Bayesian knows how to match his
‘prior information’ with tho ‘likelihood information’ supplicd by the data.
[Many valiant and rather desperato attempts have been made by believers in
L—liko Fisher, Barnard and others—to avoid taking this final Bayesian step,
but according to the author such efforts have not met with much success.]
So let us examino how the Bayesian method works in the present case.

*Indood it was tho stopping rulo paradox that awnkenod tho author (sbout five ycam ago)
to tho possibility of the Darling-Robbina typo teats with powor one for the hypothesin 0 C 0
against the alternative 6 > 0,
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Suppose, for the sake of this argument, that our Bayesiun decides upon
a uniform distribution over the interval (—20, 20) a3 a reasonable approxi-
mation to the information (or tho general lack of it) that he has about the
unknown . Looking back on (ii), it is clearly very unlikely that wo shall
end up with a likelihood funotion L that docs not lie well within (in the obvious
sense) the interval (—20, 20).  With L lying well within tho interval (—20, 20)
the ‘posterior density’ of 0 will be worked out by our Bayesian as roughly
proportional to L and so he will evaluate the posterior probability of JT, as
vN
Vin

@) Pr(ll|r)= ;: exp(—N(O—2,u,)/2)d0

= Pr{—8y/K—+/Nziy; < Z < 8/ N—+/Nz(}}
whero Z is o N(0, 1) variable.

The stopping rule 72y is sitch that with a fair sized N' the sample mean
Zyx is either roughly equal to 4-3/v/N or is some number in between. Let
us consider the situation when z, is just abovo 3/ v/ ¥ and ignore the overshoot.
Formula (iii) now becomes

(iv) Pr(H,|z) = Pr(~8VN—=3 < Z < 8V N—3)

and so the ‘Bayesian significance’ of the data depends entirely on the size of
tho statistic N. In order to sco this let ua suppose that 8 = 1/10. When
N =100, the right hand side in (iv) becomes Pr(—4 < Z < —2) which is
less than 0.025. Vhereas, when N = 10,000, the cxpression in (iv) becomes
Pr(—13 < Z < 7) which is far in excess of 0.990 1!

The point is clear : It is naive to propose (a) as a realistic statistical
method. Tt simply does not make good statistical sense to set up a pin-point
(infinitesimal) null-hypothesis like H,: 0 = 0 and then to recommend its
rejection whenever |2,,| > 3/v/n, where 2, is tho observed mean of
n (pre-fixed) independent observations on an X distributed as N(0, 1)
with —00 < 0 < 0. It should bo recoznized that the lovel of significanco
of the data vis a vis the hypothesis I, does not depend on the magnitude of
| v/# 2, | alone. It also depends, in a very crucial manner, on the magnitude
of the sample size 2. A Fisherian will perhaps feel quite satisfied with the
information that 4/m 2Z;,, = 3, and will, in any case, confidently reject tho hy-
pothesis I7;. But a Bayesian will surcly enquire about the size of #n (oven
though he may be quite unintorested at tho data analysis stage to know whether
= was prefixed or not). And, as wo have just scen, the Bayesian’s reactions
to the two situations, n = 100 and % = 10,000, will be entircly differcnt.
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In the first caso he will consider it very unlikely that tho true & lics in tho
interval (—0.1, 0.1), whereas in the second case he will have an cnormous
amount of confidence in tho same hypothesis,

The stopping rule paradox should really bo recognized as just another
paredox of the infinitesimal. To emphasize this onco again, let us bricfly
return to that part of tho paradox that refers to (') that is, to the fact that,
with 72 ns the stopping rule, the 3¢ likelihood interval 2(y,1-3/4/N will always
exclude the point 0 oven when 0 = 0. This should not worry the planncr of
tho oxperiment 22 if ho bears in mind the fact that, in an hypothetically infinite
sequenco of repeated trials with 0 fixed at 0, the variable N will usually take
extremely large values, since E(N|0 = 0) = co. For then ho will recognize
that the 3g-interval Zv, £ 3/V/N will in general bo extremely short and will
havo its centro exceedingly near the point 0. In other words, the 3« likelihood
interval will, with o great deal of probability, overlap very largely with the
experimenter's indifference zone (—34, 8) around the point @ = 0. Let usrepeat
once again that the pin-point hypothesis 0 = 0 is only a convenient idealiza-
tion and should never be mistaken for a reality.

12 THE STEIN PARADOX

In 1961 L. J. Savage wrote : “The likelihood principle, with its at first
surprising conclusions, has been subject to much oral discussion in many
quarters. If the principle wers untenable, clear-cut counter-examples would
by now have come forward. But such examples scem, rather, to illuminate,
strengthen, und confirm the principle”. In the following ycar, Charles Stein
(1962) took up the challenge and came up with his famous paradoxical counter-
example. It is popularly believed that the Stein paradox demolishes principlo
«£. We propose to show here why the paradox should really be regarded as
something that illuminates, strengthens and confirms the likelihood principle.

The counterexample is based on the function

fy) =y texp{—50(1—y )3, 0<y<eo

defined over tho positive half-line. Noto that lim f(y) = 0 both when y— 0
and y— oo, and that in the latter case tho rate of convergence (to zero) is slow

enough to make the integral f.f(y)dy divergo. We can therefore chooso a and
°
b such that
b b
) [ aftydy =1 wnd [ aftyldy = 0.00
L 1o

In point of fuct the number b is exceedingly largo—Lirger thun 10190,
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Now suppose that the probability distribution of the observable ¥ involves
the unknown 0 as a scale parameter in tho following manner. The probability
density function of Y is given by

{a*WW4L0<y<W

(ii) ply|6) =
y> b0

Let us ulso suppose that our only prior knowledge about 0is 0 < 0 < co.
With a single observation y on Y we end up with the likelihood function
exp{—100(0—1)3/2f) Prl<l<ow

(iii) LMﬁ~{
0<0gybt

Note that the maximum likelihood (ML) estimate of 6 is y itself. But from
(i) and (ii) we have

@) Pr(Y > 100]6) = l}; 2ly|6)y

= i'; Jy)dy = 0.99

!

>

In other words, we have a situation where the ML cstimator over-estimates
the truc 0 by a factor in excess of 10 and with a degree of certainty that is 899, 1
The force of this criticism is, however, not directed against principle £, Wo
have seen earlier in Section 9 that simple-minded,"unquestioning applications
of the ML method can lead us into serious trouble. The Stein examplo is
another such sign-post warning us against uncritical use of the ML method.
In this respect it is anelogous to the following variant of an urn-model that we
considered earlier in Section 0.

Example : Suppose 0 < 0 < oo and that an urn contains 1000 tickets
out of which 10 are numbered 0 and the remaining 990 are marked respec-
tively as Oa,, Oa,, ... Oaggy, where the ay’s are known numbers all greater than
10. The random variable Y is the number on a ticket that is to bo drawn at
random from the urn. Here Pr(Y > 100|0) = 0.99; and when Y is observed
a8 y, the unknown 0 becomes 10 times more ‘likely’ to be equal to y than
any one of the other 990 possible values, namely, ya;—1 (s = 1, 2, ... 990).

Stein’s ingenious arguments against principle o run along the following
lines : If Y were distributed as N(0, o), with —o0 < 0 < 0 and & known,
then an observation y on Y wonld have generated the ‘normal’ likelihood
function

(v) exp{—(6—y)}f207} —w<O< o
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and in such a case it wonld have been clearly correct (inethod &(b) of Section 11)
to make an assertion like

(vi) y—3r <0< y+30

with an associated level of assurance (confidence) that is at least 99%. Now,
if we look back on L in (iii) and remember that b > 10'%0, then wo have to admit
that, for all practical purposes and irrespective of what y is, the likelihood
function [ in (iii) is indistinguishuble from the one in (v) above with & = y/10.
Invoking principle £ together with the 3o-interval method (b), Stein
concludes that it must then be appropriate to associate at least 909, confidence
in the truth of tho proposition

(vii) (0. )y < 0 < (1.3)y

where y is the observed value of a random variublo Y distributed as in (ii)
and 0 is the value of the unknown parameter that obtains. DBut from (iv)
it follows that, having observed Y = y, we aro also entitled to make tho aa-
sertion

(viii) 0.<(0.1)y
Wwith a 999, degreo of confidence.

The Stein puradox then lies in the obscrvation that the two statements
(vii) and (viii) are mutually exclusive and, therefore, in no meaningfitl senso
can they both be associnted with degrees of confidence that are 28 high as 999;.
According to Stein, this paradox clearly proves the untenability of principle
&£, and a great many contemporary statisticinans reem to bo in wholehearted
azreement with him. ~

A re-examination of the Stein argument will muke it clear how the anomuly
was forged out of the union of o€ with method F(b)—the 3o interval-estimation
1nethod based on an observation y on ¥ ~ N(0,0), with —0 <0 <<wand
o known. But what is tho logical status of method () 1 And then, how
compatible is (b) with principle £1 We know all too well how the 3o-interval
is justified in the Neyman-Peargon theory in terms of the ‘coverage probabi-
lity* of the corresponding (random) interval-estimator (Y—30, Y+30). We
aro also aware of the Fisher/Fraser cfforts of justifying the same interval
in terms of fiducial/structiural probability. But such ‘sample space’ arguments
are not eompatible with o, nor are they applicable to the present case.

There are two well-known likelihood routes following whioh one may
«wek to arrive at method F(b) from principle £ The first route is briefly
charted out in our description of method (b) in Section 7 —the LR (likelihood

7
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ratio) method of interval estimation. Following this route, one first rocog.
nizes the 3o-intorval in (vi) and (vii) as the LR interval

Ii={6: L)L) < A}

where § {= y) is the ML estimate of & and A = e, und then the argument
is allowed to rest on the largencss of tho number A (= e'%). However, observe
that the Stein parndox doea not relent a bit even when one increases the A to
the staggering lovel of ef%-8—that is, replaces the 3o-interval by the 9g-interval.
In Scctions 8 and 9 we have argued at length against likelihood methoda that
are based solely on pointwiso comparisona of likelihood ratios. The Stein
paradox ought to be recognized as just another sign-post of warning against
uncritical uses of the My and the LR methods of Section 7.

Tho other slippery route that will generate the 3a-intervals (vi) and (vii)
from of is of course the way of the improper Bayesians. Looking at the likeli-
hood function (v), an improper Bayesian will immediately recognize the enor-
mous mathematical advantages of beginning his Bayesian data-anlysis ritual:
with the uniform prior over the infinite parameter space. This will allow him
to claim that, given Y = y, the posterior distribution of 0 is N(y,0). And
then he will arrive at the 30-interval (y—30, y+30) in the approved manner
and associate the interval with more than 999, posterior probability. In
& moment of euphoria an improper Bayesian may even put down the following
as a fundamental statistical principle :

Priniple S &: If the likelihood function I generated by the data'is
indistinguishable from the normal likelihood (v) above, and if our prior know-
ledge about the parameter 8 is very diffuse, then it is right to assooiate over
999, confidence (probability) in the truth of the proposition thet the true
0 lies in the 3o-interval (vi).

Stein’s denounciation of the likelihood principlo is apparently based on the
supposition that 4.8 is a corollary to «£. In his example, tho L in (iii) is truly
indistinguishable from (v) and this is so irrespeotive of the magnitudo of the
observed y. Tt is S8 (and not .0)(t-hen that justifies a posterior probability
mensure in excess of 099, for the interval in (vii), and this for all possiblc
observed values y for Y. 1Vritten formally as & conditional probability
statement, the above will look like : If 6 is uniformly distributed over th
parameter apace (0, ¢3) and if ¥, given #, iz distributed as in (ii), then

(a) Pr{A|Y =y)> 000 for ull y¢(0, c0),
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where the event A i3 defined by the inequality (0.7)Y < 0 < (1.3)Y. But
from '(iv) we know that

(b) Pr(4]6) < 0.01 for all 0¢(0, o0).

Of course, all our probabilistic intuitions will rebel against the suggestion that
there can exist a random event A whose conditional probability is either uni-
formly greater than 0.99 or uniformly smaller than 0.01 depending on whether
we choose the conditioning variable as ¥ or 01 But it should be realized that
the improper Bayesian has lifted the subject matter to therarefied, metaphysical
plane of infinito (improper) probabilities and so no mathematical contradictions
are involved, since both 0 and Y are (marginally) improper random variables
and the unconditional probability of A is infinite,

To a proper Bayesian, the Stein paradox lLimerely another paradox of
the infinite. In order to sce this, let us sce what happens if we couple a proper
prior density function ¢ to tho likelihood function in (iii) and then obtain the
shortest 999, confidence interval (in the approved Bayesian manner) as the
interval I(y) = (m(y), M(y)). We now have

Pr(0el ()| Y =y, g) = 0.99

And if we consider 8 as fixed and speculate about the ‘coverago probability’
of the (random) interval-estimator Io(Y), then we arrive at the performance
characteristic

n(6) = Pr{fel(Y)|0} = Pr{m(Y) < 0 < M(Y))0}.
Since ¢ is o proper prior, we now recognize (thanks to Fubini) that

T 2(0)q(0)d0 = 0.99
0

and wo are saved from an embarrassment of the kind that tho improper Baye-
sion suffered in (b) above—his #(f) was uniformly smaller than 0.01!

All of us have our favourite paradoxes of the infinite and the infinitesimal
The author cannot resist the temptation of setting down here his favourite
paradox of tho infinite.

Ezample : Peter and Paul are playing a sequence of even money games
of chance in which the odds are heavily stacked against Paul—the games are
identical and indepondent, and in each gamo Paul’s chance of winning is only
0.01. Paul, however, has the choice of stakes and can.decide when to stop
playing. Taul considers the situation to be highly favourable to himself, but
bomoans the fact that his chance of winning in & single game is not low ¢nough




52 D. BASU

__ho would have much preferred it to Lo, say, ono inn million.. Si.mplc!
Paul trebles tho stakes ufter each loss, and continues to play until his first
(or tho n-th) win. Observe that wo have opened our windows to threo infi-
nities :  Paul’s capital, Petor’s capital and the playing time—all are supposed
to be unbounded.

\What then is the real slatus of the 3o-interval in (vii) 2 Principle 8
notwithstanding, it is certainly wrong to say :  “No matter how large or small
y is, the interval J(y) = (0.7y, 1.3y) should Do associnted with o high degree of
confidence/likelihoot/probnbility for containing the true 4. Only a Bayesian,
working with a honest (und, therefore, proper) measure of prior belief, is able to
givo a reasonable answer to the question : “Under whint circumstances is
it plausible to associato n 37-likelihood interval like (vii) with a posterior
mensure of belief that iz in excess of 999" His anawer will be something like :
“\Vhen the prior distribution is found (o be nearly uniform (with » positive
density) over the 3o-interval”. Suppose, for the sake of the argument, that
the Bayesian regards a uniform * probability distribution over the interval
(0, €) as a fair representation of the state of knowledge that he started with
about the parameter 0. This means, in particular, that he has about 90%
prior belief in the proposition 0 > (0.1)C. So when he plans to take an obser-
vation on the Stein variable Y he is already very confident that the observa-
tion y will foll well outside the interval (0, €). He will not be at all surprised
to find the 3c-likelihood interval J(y) to bo disjoint with his parameter space
(0, €) and will naturally allot & zero measure of (pbstcrior) belief to the 30-
interval then.

Mathematics is a game of idealizations. We must however recognizo
that somo idealizations can bo relatively more monstrous than others. The
idea of a uniform prior over & finito interval (0, C) as o measure of belicf is 8
monstrous one indeed. But the super-idealization of a uniform prior over the
infinite half-line (0, o) i8 really terrifying in its monstrosity., Can anyone be
ever so ignorant to begin with about a positive parameter 0 that he is (infinitely)
more certain that 0 lics in the interval (C, c0) than in the interval (0, C) —and
thig for all finite C however largo ?! Naturally, everything goes completely:
haywire when such a person, with his mystical all-consuming belief in 8 > €
for any finite C, is asked to mako an inferenco about @ by observing a varinble
Y which is almost suro to ho at least 10 times larger than 0 itself !

According to the author’s inonstrosity scalo for mathcmatical idealizations,
the uniform prior over the half-line (0, co) is rated as only half as monstrous
as the prior distribution defined in terms of the improper donsity function
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d0)0. Stein cleverly exploited the logicol vulnerability of the former at tho
infinite end. The latter is vulnerable at the zero end also. Anyone endowed
with this Jatter kind of prior knowledge about & must regard each of the two
statements 0 < 0 < £ and € < 0 < oo as infinitely more probable than any
statement of the kind § < 0 << C —and thisforall¢ > 0and C < |

However, one point in ‘favour’ of the measure @ on (0, c0) defined by the
density d0]0 is that it is a (multiplicative) Haar measuro on the (multipli-
cative) group of positive numbers—the measure ig invariant for all changes
of scale (transformations like 0—ad, with a > 0, of (0, o) onto itsclf). This,
together with the fact that 0 enters into tho model (for ¥) as a scale parameter,
make @ almost irresistible to many improper Bayesians who will somehow
convinee themselves of the necessity of taking @ as a prior measure of rationul
belief. The rest of their arguments will then follow the standard Bayesian line
ending in the 999, posterior probability interval Jg(y) for 0.

With @ as the Bayesiun prior, tho posterior distribution of the seale para-
meter 0 is defined in terms of the density function

0 1
2(0)) = aﬁ"exp{—so(;—l) }, by <0
0 0<0< by

and is the same as the fiducialfstructural probability distribution of 0 that is
obtained in the usual manner from the pivotal quantity y/0. In view of tho
fact that the above density function is bimodal (with modes at b=y and at o
point roughly equal to 99y/100), the usual 999, posterior probability set
Jely) will in fact be tho union of two intervals and, therefore, different from
the 999 confidenco interval Js(y) = (b-'y, 10-1y) suggested Ly Stein. It
should however bo noted that the improper Bayesian will evaluate tho posterior
probability of the interval Js(y) as 999, and hence the two intervals Jg and
Js must have an overlap with at least 989, posterior probability.

At this point Jet us take note of the fact that any recommendation for
the use of the prior @ (for weighting the likelihood function) on the score of
0 being o scale parameter is contrary to the spirit of principle «£. This is
Dbecause the information that 0 is a seale parameter cannot be deciphered from
& description of the likelihood function alone. Curiously enough, of all persons
George Barnard also has » lot to do with the logical monstrosity of Q. In
Barnard (1962) we have a diseription of how he proposes to use the posterior
(Aducial) distribution ¢ above in conjunction with tho likelihood function L
to arrive at a confidence intorval Ja(y). The interval Jp(y) looks startlingly
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different from Jg(y) but has® the same 99%, ‘coverage probability’ ns that of
the latter.

Let us closo this section by asserting once again that the Stein paradox
illuminates the likelihood principle by focussing our attention on tho true
Bayesian profile of the principle, It also strengthens principle «£ by demons-
trating the logical inadequacies of somo so-called likelihood methods/principles
like ML, LR J&, ete.
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DISCUSSION

This three part essay was presonted to the Conference on Foundational
Questions in Statistical TInferonce held at the Institute of Mathematics of
Aarhus University, Denmark between 7th and 12th May, 1973. The cssay
was read in two instalments on May 0 and May 12 and was followed by
discussions on each occasion. The following ia a consolidated account of the
discussions that took place. The discussants were A, \V. F. Edwards, G. A.
Barnard, A. P. Dempster, G. Rasch, D. R. Cox, S. L. Lauritzen, O. Barndorff-
Niclsen, P. Martin-Lof and J. D. Kalbfleisch

Edwards : Professor Basu raised the question of why Fisher folt he had to
justify tho method of maximum likelihood in repcated-sampling terms. Y believe
o did 80 in response to an invitation by Karl Pearson :  ‘If you will writo mo a de.
fenca of tho Gaussian method [as Pearson termed maximum likelihood), T will cer-
tainly consider its publication’. Thus, ten years after he had originally proposed
tho mothod, Fisher oxamined its ropcated-sampling properties (1922). But by 1038
ho was writing ‘A worker with more intuitive insight then I might perhaps have
recognized that likelihood must play in inductivo reasoning a part analogous to
that of probability in deductive problems’ (sco Jefiroys (1938)).

Barnard : Concerning Fisher’s 1912 paper, the justification given for maximum
likolihood was to somo extent its “absoluta™ character, in being, unlike x2, indopen-
dent of any arbitrary grouping of tho obsorvations, or of any arbitrary choice of
variables for fitting momonts.

Tho Bayocsian position cannot be reckoned aa having been fully atated until they
spueify how the prior factor g, in the posterior Lg, is to bo dotermined. Tho last
posthumous paper by Jimmie Savage was a serious attompt to do this; but its very
length and comploxity (and that of a related paper by, T think Winckler, in JASA)
slow how much has yot to bo dono hore. Sometimes tho non-Bayosiun position is
attacked as loading sometinies to arbitrary conclusions; but any limited degreo of
arbitrariness thoro may bo is negligible compared with the much groater orbitrariness
roprosented by g.

Tt is importent to realizo that tho L factor i capablo of verification, by repcated
experimonts; hut the g factor is not. Thia does not mean that the L factor must
neceasatily be given an oversimplified “frequency” interpretation.

Dempster : Profossor Barnard appears to sot up s ridiculously strict double
standard by roquiring that tho Baycsian shall say oxuctly whero his prior distribution
comes from while assuming that tho likelihood is known boyond question. In fuet,
it ix often unclear which of tho two sources of uncertainty in the model is the more
dangerous.
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Rasch :  \While, of courso, admitting tho bonefit of prior knowledgo, if availablo,
T am disinclined to transforming “pure Loliof”’—whether superstitious or not—into
a “‘measure”, whother “probabilistic” in somo sense or not. Instead 1 shall ask
two questions : In what docs the prior information consist 7 and : Just where doos
it como from ?

There scoms to be two sources,

Ono is tho insight—direct or indircet—in the field of inquiry of the data, such as
it may have accumulated until tho actual investigation.

As regards such “‘insight” T may bo a bit moro explicit : As “‘direct” I take, for
ono thing, knowledgo about the conditions under which the data were in fact collected
(planned experiment, survoy, responses to questionnaires, routino records on the
part of tha Central Statistical Buroau, regular astronomical observations, or what
not). For another thing it includes availablo theory about the subject matter in
question. By *‘indirect” X am partly thinking of inspired analogics from rolated
fields—moro or less distant—partly of general views, o.g. philosophical and technioal,
both of which may infl the mathematical formalization.

As a case in point T may refer to my realizing tho common structuro of data on
misreadings by schoolchildren exposed to two or more reading tests, and accidents
occurring to the population of drivers, when they are riding on different road ento-
gories at different days. This gave riso to using the samo model in the two cascs
(the Multiplicative Poisson Model).

Howaever, both direct and indircct insight should, I think, enter into the cons-
truction of the model that is going to form the basis for the analysis.

The other source is experienco with same or related sorts of data, whether it
he from provious studies—whoever made them— or from parallel studies in diffcrent
places (such as serological analyzcs of tho same substances carried out at different
laboratorics, as organized by WHO).

But in such cascs the availablo data, or the results of analyzing them, might
simply be handled paralle] to the actualdata, on the basis of ;models expressed in ordinary
probabilistic terms—elaborated, of courso, withduorespeet todifferences in conditions.

Tn principle, this point of viow romoves the differenco botwoeen data collected
in the past and in future, in ono placc or another. Tt aims at giving 8 model, once
(tentatively) established, as broad a background as at all feasible for checking it.

As a case in point I may montion an investigation of tho dcath rates in Denmark
through 50 years which disclosed a certain structure in their dependence on age, in
xpito of relatively strong changes in living conditions. Afterwards the same structuroe
was found in Sweden, and again, some years later, in United Nations data from nu-
merous countries all over the world.

Barnard: Some notion of repeatability is involved in sny form of scientific
inferonce. We would not ha interested in the behaviour of Nilo floods if we knew

8
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that the Nilo, would disuppoar tomorrow, and, along with it, the area of Abyssinia
and other parts of Africa whose woathor conditions largely determine the Nile floods,

A repotition noed not Lo an oxact roplication. Thus a meusuroment of length
to 1 mm may bo “‘repeated” by a test whother the length is >or < 100 ems.  And
a measurement of rainfall around tho Bluo Nilo may indirectly “repcat” & measuro.
mont of the hoight of a Nile flood. Tho cssential feature is tho accumulation of
independent picees of ovidonco boaring on & given topio. And the meaning of “inde.
pendenco’” hero is not mero statistical indopondonce (cf. my 1949 paper, pp. 119-120).

Cox: Dr, Basu has talked of analysis not involving a samplo spaco. Yet the

. start of his treatmont is that a parameter w is given. Quito apart from the issuo that
the formulation of an appropriate w is often a key point, how can w bo given o physi-
cnl meaning without somo notion of repetition, oven if hypothetical, and kenco how
con consideration of somo samplo spaco bo avoided ?

Lauritzen : 1t scoms difficult to me to givo any moaning to the parameter
w without referring to outcomes of other experimonts

Rasch : Although agreeing with tho view, expressed by Stoffen annlzon
that assigning o probability distribution to & parameter in goneral would scem arti.
ficinl, I may add that thero are cases, albeit few in my own experience, whero such a
suporstructuro in warranted.

By way of an example I may mention measuring the diametors of 500 red blood
oorpusclos in each of a number of blood samplos, taken in quick succession from the
samo normal person. Lach samplo shows a most beautiful normal distribution and
tho estimated standard deviations Jio quite close to each other, but tho averag
dismeters varied much more than allowed for by the standard error. Tho resson for
this dlscrupnncy was, iowover, quite clear @ During the technicul prcpnrutmn of s
blood samplo it is exposcd to & certain pressuro, exorted by hand—therefore somotimes
o bit hardor than at othor tines, thus influoncing the sizes of all of tho blood colls,
but not noticeably tho difforonces botween them.

‘This, of courso, docs not turn the problem into a proper Baycsinn ono. In the
instances of ropeated sampling the model applied was: tho distribution N(£,0%
for dinmoters within samplo no. i and N(¢, 72) for tho variation of mean values §
betwecn samples, which loaves us with an ordinary estimation problem.

Barndorff-Nielsen: In relation to Professor Barnard's romark concerning
repeatability of exporiments, may I make the following comment. It seccms to e
that thero pxis(.s oxperiments—in the broad sense of the word—which are not re:
peatablo in auy real'senso, Lut which do properly bolong to the provinco of seienet.
I am, fntor aliu; thinking of dats pertaining to tha guoluglml I\Mory of the carth ef
“to tho ‘theory of avolulion,

?f‘f”!'fd The curront rovisal ol‘inltrch!; in geology is duv in lzu[:,u moasuro ¢

! ab Inul nother btxly tho \nonn—“lnoh i in some s

I *“'ropotition” of tho Ennh, nd” wo are begin tu obtsin * ul” informuties
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about Mars; 2) we have theories of geological processes (continental drift, ete.) whiclh
are still going on and which seem likely to onablo us cventually to predict earthquakes,
oto ; 3) experimontal work on the hehaviour of materials under ultra.light pressures,
though -difficult, is approaching rclevanco to geological processes. Thus, although
tho specific istory of tho earth is not replicated, the procosses involved can be, at
loast to somo extent.

Jlartin-Lof :  In responso to Barnard, I would like to stress that even when an
experiment cannot bo repeated (except in our thought os done by Gibbs and von
Mises with their ensembles and Kollektivs, respeetively) it may bo amenablo to a
statistical analysis. A typical cxamplo is Lauritzen’s (1973) treatment of tho gravita.
tional field of the carth as onc observation of o certain Gaussian random ficld. Tt
i3 quito onough that wo can draw verifiable conclusions from the probabilistic assump-
tions by moans of the interpretation clause which allows us to neglect events of small
probability.

Barnard : Professor Basu’s claim that the Bayesian will more often be right
assumes that the Bayesian’s prior will correspond with the actual frequencies arising
in the scquence of probloms dealt with., But there secms no reason to supposo this
will bo so. Thus tho Bayecsian may woll be less often right.

Edwards : A mcasure of tho undatisfactory nature of the confidenco estimato
is its sensitivity to variation in b, a somewhat hypothotical quantity. I suspect that
the likelihood interval is not so sensitive.

Dempster : 1 wish only to record that tho Stoin and Stopping Rule paradoxes
no longer scem 10 mo to doserve tho namo paradox. Tharo is no mathematical reason
to oxpeet Bayesian and confidenco probability levels to agreo, and their predictivo and
post-dictive interpretations are, in any ease, incommensurablo. The Baycsian
approach is right in principlo, but may be difficult in practice. If the required prior
knowledgo is too weak for any reasonably objective Bayesian inference to bo allowed,
I would back off and use a sampling-rule dependent confidenco method, carcfully
pointing out tho tricky and weak associated meoning.

Barnard : 1 may be wrong, but I believe Fisher did not assext any frequoncy-
covering propertics for likolihood intervals. He simply asserted that any specifie
0, outside theinterval

{0: L) L(0) < 100}

would have plausibility, relative to the maximum likelihood value 8, less than 1/100.
Whenover ono wishes to mako frequoncy statements concerning o single’ parameter
value 0y, considered by itself, one must consider sampling distributions in some way
(unless, of courso, onc is prepared to assume, a distribution of 0 (‘“‘prior* distribution)
a3 truo of tho sot of cescs with roferenco to which the frequoncy is asserted.)
Dempster ;T feol that tho non-Bayosians in this discussion have -not yct beon
sufliciontly nudged to faco tho dificultios in their position. T propose therefore that
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we consider a game which can actually be played, and which I belicve gocs to the
hicart of the issue. Imagine N pairs of statisticiane (A4, By) for§ = 1,2, ..., N where
Ay is non-Bayesian and B; is Bayesian. Each pair engages an agont Cy to determine
a parametor valuo &; whero 4; and B; have somo common understanding of how the
dotermination is to be mado (0.g., asking a random man in tho street for a random
numbor) but neither A¢ nor By aro givon the value 8,. Instead, an oxperiment is
porformed, say a sequential experiment, which allows 4; to ho estimated. Both
Ayg and B; havo a common access to tho results of the experiment. ¢ thon creates
a 959, confidenco interval Iy for 0,, which necessarily dopends on the sampling rule
as well as tho likelihood. By is then offered the choice of sides in a wager over eI}
and 0¢I; at odds of 19 to 1. A referce totals tho not gain or loss of the A team from
or to the B team over the N wagers, and declares tho winning team accordingly.

There i3 of course no guaranteo that cither team will win, even for very large
N. The dofining property of tho confid intervals undeniably holds when the
experimental model specification holds, but this property is inadequate to render
tho above gamo fair unless each B; chooscs his side of the wager according to a ruls
free from both prior knowledge and oxperimental data. Tn the real world, every
scrap of availablo information will bo used, hence the confidence interval property
is inadequate for much of statistical practice. A simplistic Bayosian property also
holds, namely, that the Bayesian can quite gencrally oxpect positive long run gain
under his assumed probability models. But this property is also inadequate since
no realistio Bayesian would expoct all his model specifications to hold up in a long-
run practice.

Where do we stand ! My own view is to distrust non-Bayesian decision theory
since it fails to modol tho freo choice agpoct of decision-making. Whilo thero is no
carte blanche in favour of Bayes, T do beliove that tho B-team will very often win in
tho real world precisely beeause it ean roflect rcal prior knowledge, at least suffi-.
ciontly well to stay in the black. This is a matter of judgement, not proof.

KRalbfleisch : Professor Dempster hasg raised the question as to why tho many
adheronts to tho frequentist theeries of inferenco have raised no specific objections
to this paper. For my part, I find that tho paradoxes outlined in this paper are
forceful and do lcad mo to the conclusion that (a) and (b) cannot bo viewed a3
solutions to all problems. But, tho arg ts leading to this lusion aro tham-
gelves frequontist in nature and thero is the feoling that this strongthens rather thas

ak the frequentist positi Tho justifications for accepting tho likelihood
principle that Professor Basu gives aro not essentially different from thoso given by
Birbaum, and as T have pointed out there are objections which can be raised to
theso arguments.

Tho fact that tho likelihood funetion alone is not gh, as Basu’s expositi
suggests, leada us to try to supplemont it—oithor with the prior information ¢ of
with various froquentist arguments—for the solution of certain problems. I think
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much is to be said for a weaker sequence of principles (like those I have suggested)
which allow for many different approaches such as tests of significance, confidence
procedures, procedures of the type Sf(a) and (b) and Bayesion methods, cach
applying to certain problems and not to others.

Edwards : Extromo paradoxes such as Stein's are intended to provido us with
resuits go conflicting that we are bound to vote one way or the other. In practico
they leave us bemused, and it may bo botter to focus on less extreme but moro realistio
examples which similarly contrast likelihood and confidence principles by making
use of distributions with unusually long tails.

Consider the case in which a theoretical physicist predicts the value of a funda.

-mental parameter to be g = 0. After many ycars' work practical physicists have
made just two mecasurements, 11.5 and 13.5, and then their apparatus blew up.
Tt is agreed that theso measurements may be regarded ag o random sample from a
normal distribution with unknown variance. Forming the statistic ¢ on one degreo
of freedom, it is 12.5, not eignificant at the 6% two-tailed point. But on a support
test (sce Tablo 6 of Likelihood) the increaso in support availablo iz In(1+(12.5)%), a
likelihood ratio of 157.25, an impressive amount.

Barnard :  Concerning ‘Professor Basu’s oxample about adding likelihoods,
1 said that the Bayesian consider it is always possible to add them, i.o. to find A such
that “‘« or g = Aa+(1—2A)4.

Dempster :  Only ‘‘always-Bayesians” think it aliays possible !

Barnard : 1 agree.

I 8aid it was only sometimes possiblo to add likelihoods. So long as we are consi-
dering only small semplo sizcs, Basu's noarly identical hypotﬁcses givo the same
likelihood orderings and o thoy clearly can be combined. But larger samples
could show up differcnces betweon the hypotheses, which could become important,
and then one could not add them. ™ Thus, in my view, one cannot always add,

Dempster (noto added in written version) : What I had in mind is that somo
Bayesians may feel comfortablo switching over to a significanco testing modo to
provide checks on thoir assumed modole. Such Bayesians, including myself, aro
‘‘somctimes Bayesians” (so B's in Barpard’s abbreviation) rather than ‘‘always
Bayesians™.

Barnard : Y boliove the stoping rula paredox was first brought up by Bartlett
in & letter to mo in the middle 50's. Armitago independently raised it in the discus-
sion initiated by Savago. Although my views on it have not always been tho same,
I now think it simply serves to show that likelihoods are relevant to comparisons of
pairs of (simplo) hypotheses; thoy cannot apply to statements involving a singlo
hypothesis, considered on its own. For the caso stated, with n fixed, and z being
the variable

1]
eV >
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rejects the hypothesis- st = 0. But if [F| [4/n is fixed, and «» is variable, the
test eriterion beecomes #; low values of » will tend 1o reject the hypothesis,

Author's reply :  We aro talking about statistical data—data equipped with sta-
tistical models. Woe aro debating about the basio statistical question of how a given
data d = (&, z), whore & = (40, 0, p) is tho modol and z is the samplo, ought to bo
analysed. My submission to you is that tho likelihood principle of data analysis is
unoxcoptionablo. Tho principlo simply assorts that if our intontion is not to question
the validity "of tho modcl & but to make relative (to tho model) judgements about
some parameters in tho modol, then wo should not pay attention to any characteristics
of tho data other than the likelihood function generated by it. From the discussiona
it would appoar that very fow amongst ua is in full agreemont with the above pro-
position. Tho Neyman-Pearson-Wald anti.thesis to tho likelihood principle is what
wo may call the principle of performance charaoteristics which requires us to eva-
luato the data in full perspective of tho samplo space. Few, if any, amongst us scem
to have any conviction in this unconditional ‘sample space’ approach to data
analysis.

What I am saying ia that, for one who truly believes in the likolilwood principle,
there is hardly any choico left but to act as a Bayesian. If L is the ‘whole of the re.
lovant information contained in the data’ then we ought to match L with ‘all other
information’ g on the subject. Tn point of faet wo usually havo a lot of other infor.
nation. How can wo ignoro ¢ ¥ It scems to mo that only an honest Bayesian can
give & sensible answer (howevor clumsy and incompetent it may appear to non-
Bayesians) to tho basio question: How to analyso a given data ?

Professor Barnard likes the likelihood factor L hut does not care for the Baye-
sian’s prior g. Ho is arguing that the former is verifiablo but the latter is not. Our
concern hore is not with the verification of 4 dels but with the question of
data enalysia relativo to such models. In any event, the kind of exporiments that we
come across in seiontific inforenco can hardly bo called ropeatablo in any moaningful
genso of tho term. Who has ever heard of a sciontific experiment being repeated
& number of times with the purposo of checking on the authenticity of an d
likelihood function ¥ Tho likelihood L is no less subjective and hardly any more
verifiablo than the prior ¢.

Irreapectivo of whether wo beliave in ropoatability of experiments and frequency
interprotation of probability or not, we are all immensely concerned with one kind
of frequoncy, namely, the long run relative freq y of in our infc
moking offorts. \Whother the Bayesion method of data analysis is superior to any
other well definod method cannot be proved mathomatically. The long run success
of an individual Bayesian will surely dopond on his ability to come up with roalistic
g'd and L's. Profossor Barnard romarked that a Bayosian can woll be less ofton right
if his specification of the prior ¢ is off the mark. He is apparently visualizing 8
soquenco of idontical exporimonts in which tho modol and, thorefore, the L factor is
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always right but tho samo off key ¢ is boing used ogain and again. If the Bayesian
is allowed to updato his prior 7 for each oxperiment in tho light of his past accumu.
Iated oxparience, then thero is 310 reason to bolieve that he will fare badly in the long
run evon in such an unrcalistioc hypothefical sequence.

In real life, a practising statistician faces a scquenco of different inferential
problems about differont parameters. If in each caso ho really applics his mind to
tho task of eonstructing a realistic likelihood scalo L and carcfully goes about the
task of quentifying the prior information g then it scems entirely beliovablo to mo
that our Baycsian will fare much botter then a traditional ‘sarplo space’ data onalyst.
For ono thing, the ‘somple space’ analyst has to work with a plethora of likelihood
functions—one for each point in hig somplo space. Naturally he can work with only
rather simplistio (and, therefore, unrealistic) statistical models. The Bayesian is
never inhibited Ly such constraints, Sinco he has to work with only ono likelihood
function—tho ono that corresponds to the observed sample—ho ¢an boldly reach
for more sophisticated (snd, therefore, more meaningful) statistical models.

T am certainly not averae to the idea of sample space.  As Professor Cox pointed
out, in somo cases even tho parameter (say, the truo weight of the chalk stick that
I am holding in my hand) cannot Lo defined without the idea of repeated measure-
montg. At the time of planning astatistical oxperiment we of course nced to speculato
about its sample spaco. But with an experiment already plannced and performed,
with the samplo z already before ug, I do not seo any point in speculating about
all the other samples that might have been.

Tho Bayesian and tho Neyman-Pearson-Wald theorics of data analysis aro tho
two polcs in current statistical tl\ought To day, I find assembled before me a number
of t statisticians who are looking for a via media botween the two poles. I
2an only wish you success in an cndenvour in which the rcdoubtable R. A. Fisher
failed.
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BARNARD-BASU CORRESPONDENCE

After the conforenco, Professor Barnard and Professor Basu corresponded on
somo pointa in tho essay presonted by Basu.  On the proposal of Basu, and with the
consont of Barnard, wo reproduce the correapondenco in tho following. (Referonco
to pages in tho essay aro in accordence with the present numbering).

Brightlingsoa, 18th May, 1973
Dear Dov,

1. It was good to soo you in Aarhus, and I hope we moot again soon. T liked
your paper, especially tho first part, which was a very clear account of issucs around
the Likelihood Principlo. But, ag I said, I think in Part II you are not wholly fair
to Fisher—and having checked with my own papers, which T could not do in Aarhus,
I think you are not wholly fair to me.

2. First, on p. 23 you say “Fisher tried very hard to elovato maximum likeli-
hood to the level of a statistical principle. Though it has since fallen...”. T don’t
think this is truo. The matter is not easy to disouss in a preciso way without specify-
ing precisely what wo underatand by the problem of point estimation. Nowadays
there are many people who acem to identify this with the docision problem, to find
a function of the observations which will minimize the mean square deviation from
the true valuo. Thisia certainly not the senge in which Fisher understood the problem.
But my undorstanding of Fisher is that ho pointed to tho advantages of the maximum
likolihood method, in regular situations, but nover claimed it as a matter of principle.
For instanco, the passago beginning *‘A realistic consideration of tho problem of esti-
mation...” on p.157 (st Ed.) or p.160 (2nd Ed.) in Statistical Methods and Scientific
Inference shows what T moan.

3. At tho same time, I venturo the following assertion about ML.: Let us
call a mothod of estimation “‘algorithmic” if, given the specification of the density
function of the observations (i.e. given tho model), the estimate derived can bo ob-
tained by a standard mathematical process such as solution of an equation, maxi-
misation of & given function, ete. T assert that no algorithmio method of estimation
is known which is superior to ML.

4. Can you produco & counter-oxamplo ¢ In case you should refer to Bayes,
X will accept integration of a givon function as an algorithmio process; but you must
ulso give an algorithim for determining a (reasonablo ?) “prior”.

5. Next, on your pp. 23-24 you refor to “likelihood intervals™ as “likelihood con-
fidonce intervals™. This would suggest that covering froquency properties are claimed
for them, when in fact this is not 8o, cxcopt in speoifio cases when additional conditions
are satisficd. It was, 5o far as I con remomber, always clear both to Fisher and to
me that an intorval defincd aa your J, would not nocessarily cover the true value with
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any partioular frequency. Your subsoquont examples which bring this out in a
vory strong way should therefore, I think, make cloar only that these intervals do
not possess a proporty which was never claimed for thom.

6. On p. 28 I think the statistical intuition of Sir Ronsld would have been out-
raged by the suggestion you make, since the data specificd are not inconsiatent with
tho following numerical valuos:

L(w,) = 0011, L{w;) =001, L{wy) =0.101, L{ws) =0.10 and the prior
probabilities 0.25, 0.005, 0.25, 0.405, rospeotivoly. A priori, the hypotheses wed
and wéB are equally probable, but given tho data, their probabilitics are 0.028 and
0.04955. Thus the data support B better than 1 in this case.  Wo certainly could
not say, in goneral, the opposite.

7. More gonerally, your supposition about adding likelihoods amounts to an
agsumption that all hypothosos are equally probably.a priori. This can bo made
self-consistent; but I do not accopt it ag true, any moro than Fisher did.

8. T find Fisher’s analogy of ‘‘the height of Poter or Paul” a good analogy. If
wo wero told that this wag to mean “Chooso Peter or Paul with equal probability,
and then wmeasure the chosen one’s hoight”, the phrase would acquire o definito
moaning, a3 & random variable,

9.. Your examplo on pp. 34-35 I find unconvincing, because if your Martion
wero propared to regard the range (9.9, 10.1) as of negligiblo width, he would do this
in the first place, and so reduco your second caso to the first. But if (as might bo),
ho wa3 interosted in being exactly right, with “‘a miss” Leing “‘as good as a mile”
(29 the saying goes), thon in the second caso hia best bot really would bo 0 = z.

10. In your discussion of the fiducial argument on p. 38, I think you should
say, to begin with, that X—¢ is N(0, 1), and then proceed to discuss ¢ and X on a
symmetrionl footing. Thero is no purticular reason to supposo thet ocither is un-
observable.

11. With Buehler's argument, on p. 41, I think you should point out that,
unless the JI, mornings havo positive donsity in tho long run—and there is nothing
to guaranteo this—then Paul will, in tho long fun, bo right no more oftan than 50%
of the time.

12. A small point, on your p.43. I enclose an offprint which indicates that
I was considoring tho stopping rule paradox beforo 1964, and the associated idea of
tests of power 1. The priority over Darling-Robbins is unimportant, but sinco
you have been roforring to mo, it should porhaps bo made clcar that, presumably,
T have some way of dealing with the problem.

13. Finally, on p. 54, you say my liketihood interval fails the Stein test “miser.
sbly”, T think you will find it meeta the frequency test oxactly.

Georgn
9
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Manchoster, 20th May, 1973
Dear Goorgo,

1. Many thanks for your lottar of May 18 which I find very intoresting and
informative. My viows on tho various issues raised by you aro recorded bolow,
Ploaso noto that tho paragraphs of this lottor correspond to those of yours.

2. I am roassured to learn that you rogard ML only as a mothod of point.
estimation. I am howover not so sure ahout Sir Ronald’s own views on tho subjeot.
In ony caso, hardly anything can be gaid about Sir Ronald’s views on Statisticul
TInferenco that cannot ho donied. Tn paragraph 3 of p. 49 in Hacking’s book you
will find a refetence to the Fisher Principle of ML.

3. I am somowhat bewildered by your challongo about producing an “algorith-
mio” mothod of point-cstimation that ig “‘superior”” to ML. Superior in what sonse 1
If you aro asking for a method B that is universally (i.0., for all modols) and uni.
formly (i.e., for all paramoter values in each particular model) suporior to 3L in the
usual sonso of some averago performance characteristics then I am afraid X have
nothing tangiblo to offer. But then I'can as easily counter your challengo by pro.
ducing a mothod B and then asking you to produce something “‘supcrior” to that,
In Secction 0 of my cssay I have claborated at length on my objections to ML as a
method. My objcotions stom mainly from (hc fact that the method has nothing
to do with the two ial ingredients of i making that aro always present
in eomo in evory realisti and which I have denoted in my cssay
by tho symbols ¢ and I1.

4. Regarding your remark in paragraph 4, I do not kuow how a (honest) Baye.
sian's prior can bo characterized in terms of the mathematical description of the model.
I havo made it amply olear why any such attempted characterization will violato the
likelihood principlo and, therefore, the very essenco of Boycsiunism.

5. Without disagreoing with your commontd in puragraph 5, I have only to say
that whon I uso the word “confidence” I tend to fato it with tho elusive notion
of 8 *'moasure of beliof”* rather than with thet of 'froquency probability”. With my
oxamples T have been trying to catablish this simple fact that thero exists no logical
{coherent) basis for supposing that a likelihood interval I, with a sufliciently large
A has s claim to a largo moasuro of assuranco about the true ¢ lying in that interval.
My examples underline the erueial (and to me sclf-ovident) fact that the “information”
contained in thoe likelihood function can bo analyzed only in the context of the back-
ground knowledgo g and the inferontial problem II. T consider it utterly golf-defeat.
ing to try to build a theory of inferenco on likelihood alone.

6. Your remarks in paragraph 6 mado mo happy in the knowledge that you
are nut svorss to prior probabilitics. It scems to mo that we are talking on slightly
different wave lengtiv but cssentiully about the samo thing. We are agreed then
that there arv two sources of information—tho prior knowledgo g and the likolihood
meusuro L of support-by-dats. You have produced an oxumplo whero tho L-support
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for tho composite hypothesis A is greater than that for B, tho g-support for A is the
some as that for B, but tho (L'+g)-pupport for A ia less than that for B. Whero
is the contradiction ?

7. Regarding your remark in paragraph 7, I shall readily concede that the
supposition that tho likelihood support-by-data is an additivo measure is tantamount
to tho supposition that to the data (or tho ignorant Martian) all simplo hypothesca
are oqually probablo a priori. Of course, I do not bolievo in the Martian’s “equally
distributed ignorance’ any more than you do or Fisher did. That is why this insis-
tance about the meaninglessness of L by itself and about the necessity of matching
it with an honest prior of the seientist.

8. Asregards “the height of Peter or Paul”, I still fail to sco why it is a botter
analogy to‘‘the likelihood of A and [ or B* than tho natural analogy of “the probabi.
lity of 4 and/or B", With this (falsc) analogy Fisher dismisscd the Bayesian insight
about the likolihood boing something that is meant to be weighted and then accu-
mulated. How docs your random vhoice between Peter or Paul make the analogy
& botter one 1

9. My examplo on pp. 34-35 was constructed to demonstrato the fact that
methods like ML, LR, eto. are disoriented to tho task of inferenco making. Apart
from tho fact that such methods do not make any use of ¢ and IT, they aro also based
on the popular misconception that likelihood is a point-function and as such can be
interproted only by maximization and by ratio-comparisons.

10. X must admit that I can never ceasa to bo mystificd by tho fiducial/structural
probability arguments of Fisher/Fraser, How can I “procced to discuss X and 0
on a symmotrical footing” when thoy aro not? I have observed X =2z and am
trying to make an inferonce about 0. I also have some pre-conceived ideas about
0. Where is the symmotry

11. Paul ought to bo ablo to recognize some event like 31, (0 = —1 or 0) that
haa “‘positive density in tho long run”. Otherwise, his ignorance about Potex’s 0
is of such a trously all ing kind (a uniform prior over all intogars ?) that
I refuse to spcculate about it.

12, Tt was very intorosting to read through the off-print you sont me. It shows

that tho stopping rule paradox led you to tho idea of tests with power one. I mean
to find out from Professor Robbins as to how he was led to the same idea.

13. T am gorry for the orror on my p. 34 whero I said that the interval Jg(y)
fails the Stoin test. Pleaso accept my apologies. I mean to ro-writo p. 34 with my
dobt to you acknowledged in a foot-note,

Vith all the bost,
yours sincorely,
D. Basu
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Brithtlingsea, 5thi June, 1873
Dear Dev,
1. Y had botter begin by confessing I writo this under the sclfimposed handicap
that I lost my copy of my letter; 80 pleaso forgive any resulting deviations from logical
order. My comments are numbered to youra.

2. T wish I could remember what Y faid that can have led you to the first son-
tenco. ML is primarily & method of point estimation, and as T read Fishar, this is
how he understood it. On referring to Haoking, T find T have marked tho passago you
mention as being in error.  And as far as Fisher's views on inforence aro concerned,
T would have thought we can take his ‘“‘Contributions to Mathematical Statistics™,
and “Statistical Mothods and Scientific Tnferenco' as reprosenting his views, and
it ia x ble to adk, if saya Fisher took a certain view, that ho should
bo asked to support the statement by somo reference to Fisher's works—not to
Hacking's, or anyono olso’s.

Tho nearest, I think, you could come to a quotation to justify your statement
ahout Fisher is to be found on p. 100 of Anthony Edwards’ book, last paragraph.
But I think this clearly, in fact, shows your statement to bo unjustified.

3. My challonge about producing a botter algorithm than DML stands—and
you con dotermino the sense of ‘‘superior” in any reasonable way you like, g0 long
a3 you say what it is. Of course I am not asking for something that is universally
and uniformly suporior.

4. T agrce. But sinco the mathomatics of Bayes Thcorem are vory simplo,
within the scope of any mathomatician who can integrate, accoptance of the Bayesisn
position means that statistics toxts will nced to concentrato on the very difficult
task of enabling pcople to assess for thomsolves their prior distributions and thoir
loss functions. I say very diffioult because for many of us, we are unaware ofton
of the existonce of those things (and, indeed, unpersuaded).

5. I have now checked what Fishor said about likelihood intervals, and it is
clear that ho, no moro than I, did not think that a likelihood inverval I, would have
(except in regular asymptotio casos) any perticular probability of containing the
truo valuo. Thus, in arguing as you do, T think you are flogging a doad horse.
But of course, tho fact that I, has no particular probability of containing tho true
value do not justify your ‘‘crucial (and to you solf-ovident) fact”. I agreco with
your last sentoncoe, but nonotholess think it worthwhilo to sco how far we can go
with a theory based on likelihood alone; and clearly I think onoe can go further than
you suggeat,

6. Considoring that I advooated tho usoe of prior probabilitics in 1946 whon
such a point of viow was far from popular I think it cloar that I am not averse to
thom, whon thoy oxist, in the sonse that thoy can bo subjooted at loast in principle
to some gort of objective verification. And of courso I agreo that thoro aro two
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sources of information.. But the queation is, can tho prior knowledgo always ho
oxpressed in terms of prior distribution ?

Az to tho examplo of courso there is no coutradiction; but there is u paradox.
If ona picoo of information is noutral as botween A and B and the other picco favours
A, it surely is odd that tho two togother should favour B. Such a thing cannot
happon with simplo likelihoods.

7. I think we agree here.

8. You think Fishor’s analogy false bocause you, unlike him, take a Bayasian
viow.

With rogard to your “‘and/or” what you say on p. 27 of your Part 2 is, I think,
falso, Bocause 4 will donote a different parameter value from B, and this will
imply that A and B aro incompatible. Thus tho “‘or” really is tho disjunctive ‘‘or”.
If it woro “andfor’” ono could say that tho likelihood of ‘A or A or A" was 3
times the likelihood of 4, wheich is absurd.

9. T agreo with what you say. But I do not find your demonstration con-
vincing.

10. The symmotry is, that I might have observed 0 and bo trying to make an
inferonce about z. As to preconceived ideas, I may also havo such idoas about z.
It is part of tho argument that I have no knowledge about 0 (or, respectivoly z), other
than that spooified.

11. A uniform prior for & over all integers is not roquired. I do not follow the
sonse of your “all.consuming”. The information givon by tho observations is not
“‘consumed” by tho prior ignoranco.

12. I would profer tho torm ‘‘tests with power one” to the wrms.“Dt\I‘ﬁ-'fg'
Robbins typo tests”, scoing that Barnard published and used such a test in practice
threo yoars hoforo Darling or Robbina.

Tho torm *“Darling-Robbins type tests” should, I think, bo used for teats whoso
power funotion is discontinuous.

13. Mony thanks.

Best regards
George Barnard

Manchester, 12th June, 1073
Dear Georgo,
Many thanks for your lotter of Juno 6. Excopting for two points, Imust concedo
you tho last word on all tho other issues.

I find your romarks on “andfor” in peragraph 8 very confusing. May bo tho
difficulty is only a matter of somontics. In ovory introductory courso on probability
thoory, don’t we always oarefully oxplain why tho expreasion Pr(d4 or B) must not
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bo understood to mean ‘‘probability of cither A or.that of B 2 Wo then explain
that the “*or” is not to Le used in its usual disjunctive sense of “‘cither-or’ but in the
“accumulative” sondo of the sot-theorcticflogical conmeetive unionfand-or. After
that we havo a ard time (espocially if wo take the subjectivist point of view) explain-
ing why Pr(4 or B) = Pr(4)+Pr(B) whon A and B are exclusive events. In p.27
of my cssay I only suggested that tho trouble with tho Fisherian analogy of “the
height of Poter or Paul” for “thae likelihood of A or B™ lics in tho fact that the “or”
in the former in tho disjunctivo '‘eithor-or", whereas the “or” in the latter ought
to bo understood in tho same accumulative sengo as wo underatand it in Pr(d or B).
Why not ¢ Aftar all Fisher wanted ws to look upon likelihood a3 an “‘alternative
mecasuro of rational holicf”

Regarding your comments in paragraph 11, tho “uniform prior over tho infinite
set of all intogars” was cited Ly mo only ag an oxamplo of a “‘monstrously all-con-
suming” (il you do not like the word *‘all-consuming™, pleasorcad it as*‘all-pervading)
stato of Paul’s prior ignorance about the integral paramotar 0 that makes him allot
zero (rolativoly, that is) prior probability to evary finite sct of integera. That sonsible
looking posterior distributions (or knowledge about 0) can ofton be (mathomatically)
derived from such a monstrous lack of prior information, ig nothing but a picco of
matheomatical curiosity to mo,

Vith all the bost,
yours sinceroly,
D. Basu

Brightlingsea, 18th June, 1073
Dear Dev,
Thanks for your lattar and for tho copics of mino. T now have them all clipped
togethar with your paper, 8o if I lose one T loso the lot.

About tho “or” and “and/or”, T guess I should try a difforont approach, along
lines T gave in my sccond talk in Aarhus. Lot ug agreo that a simple statistical hypo-
thesis IT is ono which apecifics complelely o probability distribution Pz : II) on a
sampla apaco S (finito, for simplicity; z i a pointin §). Sinco z is a point, it specifies
complelely a possible result of tho oxperiment to which H rolates; it can theroforo be
called o 2imple event.

Now it is a proparty of exporimonts that we con always imagine them modified
in auch & way that the kamplo spaco S becomes S', whoro tho points of S* correspond
to the sots of a partition of S, Thus, for oxample, in throwing a dice, 8§ = (1,2,
3, 4, 5, 8); wo can imagine oursolvos inoapable of counting the Rpots, but onty capabk
of secing whotlor thero is an evon or an odd numbar of thom, in which oaso ' =
{E, O) corrosponds to the partition S = {2,4,0) |J(1,3,6) of §. It is roasonabl
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to roquire that the hypothesis I should specify the probability distribution on S
as well as that on 8. Evidently this can bo dono if wo uso tho addition rulo, go that,
o.g. P(E:Il) = P(2:H{)4P(4:H)+P(6:H). This is, essontially, what leads us to add
probabilitics.

You will find distinctions such as those I havo indicated in any careful troatmont
of tho foundations of probability. Thus, for example, Renyi (in Foundations of
Probability) distinguishes bt tho oul of an experimont (my simple cvent)
and an evenl. An outcomo is & point in the samplo spaco, an event i3 a sot of points.
For Renyi, an experiment ¢ is & non-cmpty sct & of elements z called outcomes of
the experiment and 8 o-algobra £ of subscts of 42 called observablo events. He
writes £ = (40, A).

Tn Renyi's terminology, what I am saying is that given any oxperiment § =
(&0, A, and any sub-o-algobra 4’ of A, there oxists an experimont £ = (&0, A).
It is this fact that gives importance to tho addition rulo for probabilitics, in
applications to experiments.

Nor given a family @ of simplo hypotheses, with Hed, what general logical
process is thero that corresponds to going from 4 to A1 T assert thatin
general thero i8 no such process, although in special cases there may be.

Specifically, givon the experiment £ = (0, ¥), and a family O of (simplv) hypo-
theses (completely) specifying probability distributions on &2, T say that a subset of
@ i3 a disjunctive subsot iff thero exists a subalgobra A of f such that every I in
tho subsot assigns tho same probability to every member of 4. In the absonce of &
prior distribution over ), the disjunction of a st of hypotheses If can be considored
to exist only if tho sct is a disjunctive sot. Tor only then con the disjunction
itsolf bo rogarded as a simplo hypothosis (about tho experiment (&2, A7)

I fear you may find this all too muddling. I’ll sond you a copy of my sccond
Aarhus paper when I havo written it out.  Briefly, I am pointing to the fact that the
disjunction of simplo events can bo regarded as a simple evont in another oxporiment;
but tho disjunction of simple hypotheses can not in gencral bo regarded &g a simplo
hypothesis, becauso on arbitrary set of @ will not necessarily bo disjunctivo.

Incidentally, I have rofarred to Ronyi Leeauso T havo it handy; thoro ig o similar
distinction mado by Kolmogoroff, though I don't remember just how ho docs it.

Regarding tho “wniform prior”, I guess wo should ageco to differ. Al our
snalyses of real situations aro to some oxtont approximations. \Whether such *“com-
plote ignoranco” is a uscful approximation in any situation will be to some oxtent

o matter of tasto.

Yours,
Goorgn

Paper received @ May, 1973.
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