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Chapter 0 INTRODUCTION

This thesis has grown out of efforts to understand in an equivariant set up two
old problems which were revived and developed extensively by Quillen, and
also by others. The first problem concerns a de Rham type theorem over the
field of rationals @ for a G-simplicial set where & is a finite group. The second
problem deals with equivariant plus construction, classification of equivariant
acyclic maps, and equivariant G-homotopy type of a G-space where G is a
compact Lie group. More specifically, the content of the thesis is governed
by the following two theorems, and our main objective is to look for their

generalizations in suitable equivariant categories.

Theorem A (Cartan [7]). If A is a cohomology theory over a commuta-
tive ring R with 1, and A*(K) is the associated differential algebra of a

simplicial set K, then there is a natural isomorphism of graded R-modules
H (A (K)) = H(K; R(A)},

where R(A) 15 an R-module functorially determined by A.

Here a differential algebra means a differential graded algebra, which is a
graded R-module ®,5oM7? having a differential § : M? — MP*! with §% = 0,
and a multiplication M? @ M9 — MP™ satisfying the Liebnitz rule §(af) =
(6a)B + (—1)*a(88). A cohomology theory is a contravariant functor from the
indexing category A for simplicial objects to the category DGA. of differential

algebras over R satisfying certain axioms (see Chapter 6).
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Theorem B (Kan-Thurston [15]). If X is a path connected CW-space, then

there exists a group n with a perfect normal subgroup N such that X has

the homotopy type of K(w,1)3.

Here K(m,1)% is the space obtained from the Eilenberg-MacLane space
K(n,1) by applying the plus construction of Quillen {25] with respect to N,

Theorem A has its origin in the commutative cochain problem which was
posed by Thom in 1957. A solution to this ijlg}zkcigl}entails In constructing

(
a contravariant functor A' : TOP — DGA so as to yield a de Rham type

theorem which asserts that there is an isomorphism
H(A'(X)) = H'(X; [K)

for every topological space X, where the cohomology on the right is the singular
cohomology. For example, the classical de Rham theorem provides a solution
for the subcategory of smooth manifolds where A*(X) is the differential algebra

over the field of reals B of smooth differential forms on a manifold X. On

the other hand, there does not exist a differential algebra over the integers 7
(the commutativity fails) and, as realized by Steenrod some 50 years ago, this
accounts for the existence of cohomology operations, such as Steenrod squares,

etc,
In [24], Quillen solved the rational commutative cochain problem in an ab-

stract setting and the solution obtained is rather complicated, Later Sullivan
[27] gave another proof using his theory of minimal models and the de Rham
complex A'(K) of rational polynomial forms on a simplicial set K. An inde-
pendent proof, which is based on an earlier proof by Thom in the real case, was
given by Swan 28] when the coefficient ring R is a field of characteristic zero.
Finally, Cartan [7] formulated the main ideas of Swan in the form of axioms for
a cohomology theory, and proved Theorem A. This work of Cartan generalizes
Sullivan’s theory to arbitrary coefficient ring R. The main feature of both [28]

-~ and (7] is that they avoid integration of forms which is standard to proofs of |
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de Rham type theorems. 1t may be noted that de Rham theorem for arbitrary
coefficient was also proved by Miller in [20], and that McCleary [19] proved
a local coefficients version of Theorem A. It is also of interest to note that a
method of calculating integral cohomology of manifolds using differential forms
appeared earlier in [1].

The equivariant rational cochain problem which we present here preserves
all the features of Theorem A. Let G be a finite group, and O¢ the category
of canonical orbits whose objects are left coset spaces G /H and morphisms are
equivariant maps G/H — G/H' with respect to left translation. Let Cq be
the category of cohomology theories over @ in the sense of Cartan. Then a
(G-cohomology theory over Q is a contravariant functor A : Og — Cg. On the
other hand, given a G-simplicial set X, which is a simplicial set together with a
given action of G on K by simplicial maps, and a coefficients system A, which is
a contravariant functor from Og to the category of R-modules, we can construct
equivariant cohomology groups H. (K ; A) in a natural way. That this is a usable
cohomology follows form the fact that the Bredon-Illman cohomology groups
(4], [14] of a G-space X with coeflicients system ) are isomorphic to the groups
Hp(SX;A) where SX is the singular G-simplicial set associated to X. Then

our first main theorem is

Theorem (6.4.3). Given a G-cohomology theory A over Q and a G-
gimplicial set K, there is a differential algebra A'(K) over Q, and a
coefficrents system Ay from the category O¢ to the category of rational

vector spaces such that

B (A (K)) & Hy(K 50,

The theorem can be translated easily to the category of G-spaces using the
geometric realization functor and the Bredon-Illman cohomology.
The origin of Theorem B may be traced back to Kervaire who in 1969 used

in his study of homology spheres and their fundamental groups a special case
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of a general theory which says that by attaching 2-cells and 3-cells to a path
connected CW-complex X one can kill a part of its fundamental group (X))
without changing the homology.

This technique was rediscovered and developed by Quillen [25] with the
name ‘plus construction’. Given X and a perfect normal subgroup N of m (X)),
there is a space X}, obtained by attaching 2-cells and 3-cells to X, and an
acyclic map f: X — X} with ker m,(f) = N. Note that a subgroup is perfect
if it equals its commutator subgroup, and that a space is acyclic if its reduced
integral homology is trivial, and a map f: X — Y is acyclic if its homotopy
fibre is acyclic, or equivalently, the induced map f, : H,(X; f*L) — H.(Y; L)
is an isomorphism for every local coefficients system L on Y. If fis an acyclic
map on X, then m(f) is always an epimorphism with kernel a perfect normal
subgroup, and these subgroups of w(X) classify acyclic maps on X in the
following way. Two acyclic maps f: X — Yand f': X — Y’ are equivalent
if there is a homotopy equivalence b : Y — Y such that Af ~ f’. Then the
set of equivalence classes of acyclic maps on X correspond bijectively with the
set of perfect normal subgroups of 7 (X ) (see [13]).

In a remarkable paper [15], Kan and Thurston showed that for any path
connected CW-space X, there is a group 7 with a perfect normal subgroup N
and a fibration p : K(#, 1) — X with domain an Eilenberg-MacLane space of
type (m, 1) such that p is acyclic and ker m(f) = N. This result together with
the classification of acyclic maps imply Theorem B.

Our approach to obtain equivariant analogues of these results uses G-spaces
X, where G is a compact Lie group (and we agree to consider only closed
subgroups of G), with base point ©g € X® such that X has the G-homotopy
type of a G-CW-complex, and such that, for each subgroup H of G, the H-fixed
point set X" has the homotopy type of a connected CW-complex. We define a
G-space X to be G-acyclic if each X is acyclic, and a G-map f: X — Yis
G-acyclic if its G-homotopy fibre is G-acyclic.

An Og-group is a contravariant functor from Og to the category Grp of
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groups. An Og-group N is a perfect normal Og-subgroup of an Og-group A
if each N(G/H) is a perfect normal subgroup of A(G/H). Similarly, we have
the notion of Og-homotopy group =,.(X) of a G-space X, where = ,(X (G /H)
is just w,l(XH, zg). Also a G-map f: X — Y induces a morphism 7,.(f) of
Og-groups given by 7,(f Y G/H) = m,(f"), where f7 = f|XH,

Given an Og-group A and an integer n > 1, there is a G-space X such that
(X)) = Xand 7;(X) = 0if § # n. The G-space X is actually a G-CW-
complex, and is called an Eilenberg-MacLane G-space K(A,n) of type (A, n)
(see {10}). These are classifying spaces for the Bredon-Illman cohomology [4],
[14].

Theorem (8.1.1). For any G-space X there exists an Og-group A with a

perfect normal Og-subgroup N, and a G-acyclic map
p: K(\1) — X,
such that kerm,(p) = N.

For a G-space X and a perfect normal Og-subgroup N of (X ), one can
construct a G-space X} by applying the plus construction of Quillen to each
X" with respect to the group N(G/H), and then piecing the resulting spaces
together by means of a functorial bar construction. Then our second main

theorem is

Theorem (8.1.2). Given a G-space X, there exists an Og-group A with
a perfect normal Og-subgroup N such that X has the G-homotopy type of
K(A1)%.

- The thesis is organized as follows. The proof of the first main theorem
depends on results that we develop in Chapters 1 through 6. On the way to

this goal we make a number of detours in Chapter 3, each with the purpose of
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expounding a particular point of interest, but none are irrelevant to the main
theme of the thesis,

In Chapter 1, we start with the ideas and language of simplicial sets, and
then introduce the notion of G-simplicial sets, G-Kan complex, etc, with some
of their properties. These concepts formalize a point of view which has to
dominate the development of the proof of the first main theorem.

In Chapter 2, we define equivariant cohomology groups Hy(XK; A) of a G-
simplicial set K with a coefficients system A, and study their relation with the
Bredon-Illman cohomology groups of a G-space.

In Chapter 3, we first review a normalization theorem for non-equivariant
simplicial cohomology, and then generalize it to the equivariant case. We also
prove that under certain conditions on K and G the groups HL{K; A) are finitely
generated where ) is a suitable coefficients system. The remaining part of the
chapter deals with equivariant Euler characteristic. Brown [5], [6], (see also
Serre [26]) defined the Euler characteristic x(G) of a discrete group of finite
homological type. If an arbitrary group GG acts on a simplicial set K in such
a way that the simplicial set K/G has only finitely many non-degenerate sim-
plexes, and the isotropy group G, of every simplex z of K has finite homological
type, then one can choose a finite set X of representatives for non-degenerate

simplexes of K/G and define the equivariant Euler characteristic of K by

xc(K) = 3 (1) x(Gs).

L&,

We show that for a free action of &G on X

xc(K) = x(G) > (1) dim Hi(X; Ag),

¥

where Ag is a suitably defined coeflicients system from Og to the category of
rational vector spaces. This formula also helds if &7 is a free group of finite

rank, or, in general, if G has finite cohomological dimension and it is of finite

homological type.



In Chapter 4, we study the closed model structure in the sense Quillen [22]
of the category G'S of G-simplicial sets, and also of the category of simplicial
objects in Vecg, which is the category of contravariant functors from Og to
the category of rational vector spaces. We also prove the Whitehead theorem
for G-simplicial sets which says that f: K — L is a G-homotopy equivalence
if and only if each f# is a homotopy equivalence.

In Chapter 5, we study Og-Eilenberg-MacLane complexes K(A, n) of type
(A, n) where n is a non-negative integer, and X is an Og-group which is abelian
if n > 1, Such a complex is a contravariant functor T': Oz — &, where § is
the category of simplicial sets, so that for each subgroup H of G, T(G/H) is -
an ordinary Eilenberg-MacLane complex K{A(G/H),n). The principal result
of this chapter is a classification theorem which says that there is a bijection
between Hi(IK; A) and the set of homotopy classes of natural transformations
OdK — K(A n), where ®QK : Oz — S is given by ®K(G/H) = K.

In Chapter 6, we define G-cohomology theory, and prove the first main the-
orem (Theorem 6.4.3). The proof uses more deeper properties of simplicial sets,
namely, the W- and W-constructions for a group complex and the uniqueness
of universal principal twisted cartesian product (PTCP) of type (W).

Last two chapters (Chapter 7 and 8) deal with the second problem of the

thesis. In Chapter 7, we generalize the Kan-Thurston theorem [15] partially.
We prove that if X is a reduced G-simplicial set, then there is a G-fibration
tK  TK — K such that {K induces isomorphism on equivariant cohomology
H.(K;\) — HL(TK;)) for any Og-abelian group A (Theorem 7.4.1}. This
theorem appears in a more general form in Chapter 8 (Theorem 8.1.2). In this
last chapter, our basic assumption is that G is a compact Lie group. Here
we introduce equivariant local coefficients system on a G-space, homology Oc-
groups, G-acyclic maps, and equivariant plus construction, and finally prove

our second main theorem (Theorem 8.1.2).



Chapter 1 PRELIMINARIES

1.1 Introduction

This chapter, except for Section 1.5, is meant for a review of simplicial theory.
Over the next three sections we recall some facts about simplicial sets, their
geometric realization and homotopy theory. This serves to set up notations

and state results which will be used throughout, More deeper properties about

simplicial sets will be recalled later when we have the opportunity to use them.
The standard references for these three sections are [18), (8], and [12]. Finally

in Section 1.5, we define and study some properties of simplicial sets with group

action.

1.2 Simplicial objects in a category

Let A be the category whose objects are ordered sets [n] = {0 <1< ... <n},
n > 0, and morphisms are non-decreasing maps f : [n] — [m]. It is important
to focus attention on some distinguished morphisms, the faces g; : [n—1] — [n]

and the degeneracies o; : [n + 1] — [n], defined as follows :

. Py

aG) = 37 7S (n>0,0<ig<n)
J+1 521
Py

oi(J) = {j J_l n>0,0<i<n
1—1 7>1.

The faces and degeneracies together generate the category A, and they verify

the simplicial (actually, cosimplicial) identities :
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9,0, = 0,0,y if i<y, o0 = Ti0 741 if i<y

gio;-y i 1<j

id if ¢=3,or i=7+1 (1.1)
Oi_yo; if i>341.

A simplicial object X in a category Cis a contravariant functor X : A — C.

-
AR~
i

Equivalently, a simplicial object is a sequence {X, },>q of C-objects, together
with C-morphisms
d1 : Xu —? Xu—l_ and Si - Xn '_'+ Xn+1: 0 S ? S T,

verifying identities which are dual to the identities in (1.1). A simplicial map

f: X — Y between two simplicial objects in a category C is a collection of

C-morphisms f, : X,, — Y, commuting with the d; and the s;.

A simplicial object K in the category SETS of sets is called a simplicial set
(or a complex). Elements of X, are called n-simplexes, and a simplex x € K|,
is degenerate if z = s;x’, for some 2’ € K,..; and 0 < ¢ £ n — 1, and is non-
degenerate otherwise. Throughout & will denote the category of simplicial sets
and simplicial maps,

The simplicial set Aln|, n > 0, is given by the contravariant functor

Aln|([p]) = Homa((p}, [n),
where Hom A ([p], [n]) denotes the /-morphisms from [p] to [n]. The face and

degeneracy maps are clear. The only non-degenerate n-simplex of A[n| given
by id : [n] — [n} will be denoted by A,. The morphisms §; and o; in A give

rise to simplicial maps by composition which we again denote by
6 : Aln—1] — Aln), o;: Aln+1] — Afnl. (1.2)

If K is a simplicial set and z € K,, then there is a unique simplicial map
% : Aln] — K with £(A,) = z. The n-skeleton K™ of K is by definition the

simplicial set generated by simplexes of dimension less than or equal to n. The
(n — 1)-skeleton of A[n] will be denoted by Afn].

9



1.3 Geometric realization

To every simplicial set K we can associate a topological space |K|, called the
geometric realization of K, as follows. Give K the discrete topology. On the

disjoint union

K= ]_["}DKH x A"

define an equivalence relation

(dikmunml) ~ (kmaiun—l)

(Sikmun-i-l) ™~ (k“,U,‘ﬂH+1),

where k, € K,, u,—; € A" and u,41 € A™!. Here A" denotes the standard

Euclidean n-simplex, and §; : A" — A" and o; : A™™ — A™ are the maps

ai(tﬂ'.l*"!tﬂ-'l) - (t[}a*"iti-lioith'”1tn-1)
gi(tﬂa"-atn-kl) - (tﬂj""!ti—llti+ti+l!ti+21"'1tﬂ+l)'

Then |K| = K/ ~ is a CW-complex with one n-cell for every non-degenerate
n-simplex of K. There is a homeomorphism |K x L| — |K| x |L] if |K | x |L]
is a CW-complex, where K x L is the simplicial set with (K x L), =K, x 1L,
and coordinatewise face and degeneracy maps. The Euclidean n-simplex A" is
the geometric realization of the simplicial set A[n].

If f: K — L is a simplicial map, then f induces a continuous map
| f| : |K| — |L| defined by |f|[k.,u.] = [f(ks),u,), where [k,,u,] denoctes
the equivalence class of (k,,u,). Let TOP denote the category of topological
spaces, then the geometric realization functor | |: & — TOP has a right ad-
joint S5 : TOP — &, the total singular complex functor. If X is a topological
space, then SX,, is the set of singular n-simplexes f: A" — X of X. The face

and degeneracy maps are defined by compositions with 9; and o; respectively.
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1.4 Homotopy theory of simplicial sets

Let K be a simplicial set. Then its homology and cohomology groups with
coefficients in an abelian group G are defined via the chain complex C(X),
where C,(K) is the free abelian group generated by the n-simplexes of X,
and the boundary homomorphism 8 : C,(K) — Ch1(K) is 3.1 ,(—1)'d;, the

alternating sum of the face maps. Then

H(K:G) = H,(C(X)®G)
H'(K:G) = H'{Hom(C(K),G)).

|

Two simplicial maps f,g : X — L between simplicial sets are homotopic
if there exists a simplicial map F : K x A[l] — L with F(z,(0)) = f(z)
and F(z,(1)) = g(z). Alternatively, we may define homotopy of maps using
functions h; : K,, — L,1, 0 < i < n, which satisfy the following identities

dOhU — fa dn-l*lh‘u =

dh; = hd;, 1<)
dj+1hj+1 = dj+1hj (1‘3)
dh; = hidi_y, 1> 7+1
sih; = hj18, <]
sih; = hysicy, &> 5

We then have the notions of homotopy equivalence, contractibility etc. of sim-

plicial sets.

Definition 1.4.1 A simplicial set K is a Kan commplex if for every collec-
tION Lo, -+ y Thels Thtly .+ s Cup1 Of 4+ 1 n-simplexes satisfying the compat-

ibritty conditions
diz; = d;_ 1 (i<yg, i#k JF#Kk)
there exists ¢ € K, ., with dyx =x;, i #Ak,

11



If X is a topological space, then its singular complex SX is a Kan complex.

Homotopy of maps in general is not an equivalence relation. However one
has ([18] p.20)

Theorem 1.4.2 If L is a Kan compler them homotopy is an equivalence
relation on the set of simplicial maps K — L for every simplicial set
K. m

The homotopy groups =,,(K ) of a Kan complex K are defined combinatori-
ally as the quotient set of certain subset I(, of K, by certain equivalence relation
(see Section 4.4, p.52). For a general simplicial set K, the homotopy groups are
defined by setting =, (K) = m,.(5|K|). It follows then that =, (K) = =, (| K |).
There is yet another description of #,(X) for a simplicial group K (which is
a simplicial object in the category Grp of groups), where =, (/) appear as
the homology groups of certain chain complex (see [18]). A simplicial set K is

connected if the set (X ) is a singleton,

Definition 1.4.3 A simplicial map f: K — L i3 a Kan fibration if for
every collection @y, ..., TeatyThrts- .-y Tus1 of 4+ 1 n-simplexes of K satis-

fying the compatibility condition
diiﬂj = dj—lﬂ?i (i <J t1¥#k JF k),

and for every y € L, with diyy = flx;), i # k, there exists x € K, 1 with
dix =x;, 1#£k, and flx)=1y.

If yo is the simplicial set generated by yy € Lo, then the simplicial subset
F1(3y0) of K is called the fibre of f, and we then have a long exact sequence of
homotopy groups of the fibration. We also mention in passing that according
to Quillen [23] the geometric realization of a Kan fibration is a Serre fibration.
A simplicial set K is a Kan complex if and only if the constant map K — *

is a Kan fibration, where * is the simplicial set generated by a point.
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Definition 1.4.4 A simplicial map f: K — L between two stmplicial sets

is a weak homotopy equivalence if it induces isomorphism on homotopy

groups.

If K is a simplicial set then the simplicial map ¥(X) : K — S|K | given by

PK)(z)(t) = |z,1],

where ¢ € K,, t € A", is a weak homotopy equivalence. We then have the

Whitehead theorem

Theorem 1.4.5 A weak homotopy equivalence f: X — L between Kan

complexes is a homotopy equivalence, m

Definition 1.4.6 A Kan complex K is said to be minimal if for any two

simplexes x, y, dix = dyy, 3£k, tmplies dix = diy.

Minimality is a very strong condition on simplicial sets. For example we

have the following result (see [8] p. 112)

Theorem 1.4.7 A homotopy equivalence f: K ~— L between minimal

Kan compleces is an tsomorphism. m

1.5 Preliminaries on G-simplicial sets

Every group G determines a constant simplicial group & with &, = G for
all n > 0, and all the face and degeneracy maps the identity map of G. A
G-simplicial set (or a G-complex) K is a simplicial set together with an action
of G on K by simplicial maps. This makes each K, a G-set and the face and
degeneracy maps commute with the action of G, Let G'S denote the category of
G-simplicial sets and simplicial maps commuting with the G action. Morphisms

in GS will be called G-simplicial maps or simply G-maps.
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For each © € K, there is a unique G-map % : An] x G/H — K such

that #(A,,, eH ) = z, where the action of G on Aln] is trivial, H is the isotropy
subgroup G, at z, and _Ci[_l_‘_f 1s the constant G-simplicial set determined by
G/H.

If K’ is a G-simplicial subset of K, and f: K’ — L is a G-map, then the
adjunction L' is a G-simplicial set, where L is obtained from the disjoint union
K, 1] L, by identifying = € K! with f(x) € L,. Clearly, I’ is the push out of
the diagram K A KL L, and L’ is obtained from L by attaching K via f{.
In particular, if K™ is the n-skeleton of K (which is a G-simplicial set), then
K™ is obtained from K1 by attaching [{yce A[n] X G/ H via certain G-map
i Hggﬂ in|xG/H — K1 where H is a representative of the conjugacy class

of the isotropy subgroup at a non-degenerate n-simplex of K. The resulting
G-map [lpce Aln] x G/H — K™ is the characteristic map of the attaching
(cf [11], p.145).

The notion of homotopy between two G-maps is given as follows

Definition 1.5.1 Two G-maps f, g : K — L between two G-stmplicial
sets are G-homotopic if there exists a G-map F . K x A[l] — L with
F(z,(0) = flx) and F(z,(1)) = g{x). Here we consider K x A[l] as a
G-stmplicial set with trivial action of G on A[l].

~ Alternatively, we may define G-homotopy using G-functions h; : K, —
L,+1, 0 £ i £ n, satisfying the identities (1.3). One then has the notion of

(G-homotopy equivalence, G-contractibility etc. of G-simplicial sets.

Definition 1.5.2 A G-simplicial set K is a G-Kan complex if the H-fized

point subcomplex K¥ is a Kan complex for every subgrouwp H of G. Here
(K1), = (K,)".

Clearly, if X is a G-space then its singular complex SX is a G-Kan complex.

As in the non—equivai*iant case {Theorem 1.4.2), we have

14



Theorem 1.5.3 If L is a G-Kan complex, then G-homotopy is an equiv-

alence relation on the set of G-maps K — L, for every G-simplicial
set I,

First note that if X and I are G-simplicial sets, then we have another G-
simplicial set L¥ defined as follows. The n-simplexes of L¥ are simplicial maps
f: K x Aln] — L with the G action given by

(9 )=, t) = gf(9™ ", 1).

The face and degeneracy maps are
di(f) = fo(idx 8), s(f)= folidx o)

where 8; and o; are as in (1.2). Then the n-simplexes of the G-fixed point
set (L)Y are precisely the G-maps f: K x A[n] — L. In particular, the
O-simplexes are G-maps I — L and 1-simplexes are G-homotopies.

The proof of Theorem 1.4.2 is adaptable to the equivariant case. To see this,
recall from ([18] p.17) that if p, ¢ are non-negative integers, then a (p, g)-shuffle
(1, v) is a partition of the set [p+ ¢ — 1] into two disjoint subsets p; < ... < p,
and v; < ... < v,. A (p,q)-shuffle (p,v) is completely determined by u or
v, and it may be one of the following three types with respect to an integer

i € [p+ gl
e Type L Ifi< pyj,ord,i—1e{v,...,»}ori=p+qgi—1=uv,

o Typell. i<uy,ori,i—1€e{u,... pp),ori=p+aqgi—1=p,.

e Type III. Otherwise.
To each {(p,q)-shuffle (1, ) and each ¢, one can associate a new (P, g)-shuffle

(jI,7) and an index r such that
(1) p=p, =g~ 1if (n,v) is of type 1.
(2) P=p-1,7=qif (4,v) is of type I
(3) P=p, G=qif (u,v) is of type IIL
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In case (1), z; = pj for j S rand fI; = p; — 1 for r < § < p. In case (2), 7; = v,
for j <rand 7; = v;—1forr < j< q. Incase(3), fI; = p; for j # r and i, = i.
Also, to each (p, q)-shuffle (i, v) and each i, we can associate a (p+ 1, g)-shufle
(fi, 7) and a second index ¢.

Let F: K x Alq] — L be a G-map, and (¢, v) be a (p, g)-shuffle. Then, we

can define a G-function h,,) : K, — Ly, by

iy (y) = F(Su.; 8 Yy Syt 81 D) (1.4)

It can be checked that the family of G-functions {A,,)} satisfy the following
four conditions :
(a) dihguw) = hfi"ﬁ) if (1, v) is a (p, ¢)-shuflle of type I and index r with respect

to 2.

(b) dihguy = hapdioe if (p,v) is a (p, q)-shufle of type II and index r with

respect to 1.

(c) dihuy = dihgp if (1, v) is a (p, q)-shuffle of type III with respect to .

(d) sihguwy = hgpsio if (#,v) is a (p, g)-shuffle and ¢ is the second index of
(1, v} with respect to i.
Oonversely; given a family of G-functions h(, y : K, — L,,, indexed by
the (p, q)-shuffles (¢ fixed) (i, v) satisfying the conditions (a)-(d) above, we may
define a G-map F': K x Alq] — L by setting

Fy, dyt - G180 8 D) = dypr - dyahiuy(y). (1.5)
Theorem 1.5.3 follows directly from .

Theorem 1.5.4 If L is a G-Kan complex, then the G-fized point set (L*)¢

is a Kan complex for every G-simplicial set K.

Proof. Let fo, fise«os fe=1> fer1s .-+, fo De a collection of q (g — 1)-simplexes of
(L¥)C satisfying the compatibility condition

dif;=d;_fi whenever i<y i#k, J#Kk
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Then f;: K x Alg~1] — L, i # k, are G-maps and we need to find a G-map
fi K x Algl — L with d;f = f;, i # k.

The G-maps f; determine by (1.4) a family of G-functions {hf, ,} indexed
by the (p,q — 1)-shuffles (p,v). We will define G-functions A, ,) indexed by

the (p, q)-shuffles (1, v) satisfying the conditions (a)-(d) above. Then the cor-
responding G-map f: K x Alg] — L determined by (1.5) will be the required

extension.,

The construction of the G-functions hy,,) is similar to the non-equivariant
case ([18], p.20), and is based on an induction scheme with respect to an order-
ing of the (p, ¢)-shuffles (g fixed) which is defined as follows: (u,v) < (¢',v’)
if up = pi for i < jand p; < p; The first shuffle of this ordering is the
(0, g)-shuffle, and we define

h-(n’q) ' I({} —3 Lq

as follows. Take a simplex y in Ky and consider it as a simplex of the fixed
point set K where H = G,. Then the simplexes .’zfo!q_l)(y), 1 £ &k form a
compatible collection of (g — 1)-simplexes of L¥. As L is a Kan complex, we
may find a ¢g-simplex z with d;z = hjy,_,(y). Now set hpgq = 2, and extend
h(o,q) equivariantly on the orbit of . In this way we may complete the induction

proceeding as in [18]. o

Remark 1.5.5 If X is a G-simplicial set, then its geometlric realization
K| 45 a CW-complex with a cellular action of G in the sense of tom
Dieck (9] (note that G has discrete topology). The action is cellular,
because non-degenerate n-simplexes of K correspond bijectively with n-
cells of |KK|. Therefore |K| is actually a G-CW-complex, by a result of
tom Dieck [9], p.101. |

We conclude this section with a basic property of G-simplicial sets, satisfy-

ing a connectivity condition.
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Definition 1.5.6 A G-simplicial set K is G-connected if each fized point

simplicial set K¥ is connected for every subgroup H of G.

Theorem 1.5.7 Let I be a G-connected G-Kan compler with a G-fired
0-sitmplex. Then K has the G-homotopy type of G-Kan complex with a

single 0-simplex.

The proof will appear in Section 4.4 after we prove the Whitehead theorem
for the category GS.
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Chapter 2 CoOHOMOLOGY GROUPS

2.1 Introduction

To every G-simplicial set K and a suitably defined coefficients system A, we as-
sociate certain cohomology groups Hy.(K; A). We then show that the equivari-
ant singular Ilman cohomology groups H(X; A) [14] of a G-space X (where G
is discrete) are isomorphic to the groups H;(5X; A), where SX is the singular
(G-simplicial set of X,

2.2 Definition of cohomology groups

‘Throughout R will denote a commutative ring with 1. For any group G, Og
will denote the category of canonical orbits of G.

For future use we record some standard facts about Og. The category Op
has as objects orbits G/H and as morphisms G-maps G/H — G/K. Any
G-map @ : G/H — G/K is of the form a(gH) = gak, for some a € G with
o~ Ha C K. Moreover @ = b if and only if ab™! € K. There is a bijection
Homo (G/H,G/K) & (G/K)" given by @ — aK. Let R-mod denote the
category of R-modules. Then an Og-R-module, or a coeflicients system, A is a
contravariant functor A : Oz — R-mod.

For any G-simplicial set X and an Og-R-module A, let C"(K; A} denote
the R-module of functions ¢ defined on n-simplexes ¢ € K, such that ¢(z) €
MG/G,), where G, is the isotropy subgroup at . The inclusion G, C Gy,
gives rise to a morphism € : G/G, — G/Ga4, in Og. Denocte by A(d;z — x)
the induced homomorphism of K-modules A(G/Gy..) — A(G/G:). Then the
-~ homomorphism " : C*(K; A) — C*"(K; A) defined by

n+1

& (c)(z) = Z(—*l)i,\(dﬁm — x)e(di;)

1==()
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verifies
Lemma 2.2.1 §MFlo g = 0. N

We define an action of the group G on C' "(K;A) by

(9¢)(z) = A(9)(c(g ™ w))
where ¢ € C*(K;A), z € K,, and A(9) : M(G/Gy1z) — A(G/G,) is the

isomorphism induced by the conjugacy relation g7'G,g = G,
Lemma 2.2.2 IfC%(K; A) denotes the submodule of G-invariant cochains
(CH(K;N))C, then §(CL(K;A)) C CEHK;A).

Proof. Let c€ C4(K;A) and g€ G. Then for © € K,
g9(dc)(z) = A(g)(éc)(9™ x)

n+l

g)z (D' Mdig™e — g7 2)e(dig ™ )

I

ni-1

= ) _(=1)'Mdiz = 2)A(§)c(g™ diz).

i=0
The lemma now follows as ¢ € CE(IC; A). m

We then define
HAIC A = HY(C LK A)).

Any G-map f : K —= L between G-simplicial sets induces a cochain map

FiC(L;A) — CH(K; A) defined by

Ple)(a) = A(fe = a)e(fo).
Here A(fx — z) : A(G/Gr) — A(G/G,) is the homomorphism induced by

the inclusion G, C Gy,. Hence we have a homomorphism
f o Hg(Ly A) — Hp (K A)

in cohomology. Given a G-simplicial subset X' of K, we may now define the
relative groups H& (K, K'; A) in the usual way, and obtain a long exact sequence

in cohomology of the pair (K, K},
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Theorem 2.2.3 If f,g: I — L are G-homotopic G-maps, then
fr=g"1 Hg(L;A) — Hp(K; A).

Proof, We shall show that ff, ¢ : CL(L; ) — C4L(KX;\) are cochain homo-
topic. Choose a G-homotopy

hi . I{n B Ln-[-l (0 S ) S ﬂ)

where h; are G-functions verifying the relations (1.3) of Section 1.4, Define

h:C%i(LiA) — CHHK;A) by

rn—1

hc)(z) =) (1Y ARz — z)c(hix).

i=0}

Then some messy calculations will show that 8h 4+ hé = ff — ¢ "

Remark 2.2.4 If the action of G on K is free, then we have HL(K;A) =
H' (K/G; MG /{e}) for every Og-R-module M.
2.3 Another description of cohomology groups

We now present an alternative description of the cohomology groups. Given a

G-simplicial set K, define an Og-R-module
Cn(K): Oc — R-mod
for each integer n > ( in the fallawihg way
C.(K)(G/H) = C\(K"; R),

where C,(K"; R) denotes the free R-module generated by the n-simplexes of
K" and, fora: G/H — G/H',a 'Ha C H',

C.(K)&)=a,
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where a, is the chain map induced by the left translation a ; K¥ —s
K#. Clearly this gives a chain complex Q,(X) (where the boundary & :
C(K;R) — C,4(K : R) is defined by 8(G/H) = 8y : C,(K7) —
C,.-1(K*")) in the abelian category of Og-R-modules, and if A is an Og-R-
module, then Hom((',{K ), A), which is the R-module of natural transforma-
tions C,(K) — A, becomes a cochain complex of R-modules.

Theorem 2.3.1 There is an isomorphism
U: CLK ;) — Hom(C.(K),A)
of cochain complezxes.

Proof. Let c € C'%(K; A). Define a natural transformation
U(c): C (K} — A

as follows. If w € K¥, then H C G,, and this induces a homomorphism A(G, —

H) : MG/GL) -—-—-—r"/{(G’/H)* Then ¥(c)(G/H) : Co(K*; R) — MG/H) is

the homomorphism
V(c)(G/H)Nw) = A(G: — H)c(z).
We must check the following points :

(i) ¥(c} is indeed a natural transformation.

(ii) ¥ is cochain map.
Proof of (i), Let a'Ha C H’, then @ : G/H -— G/H’ and A(@) :
MG/H'Y — MG/H). It is required to check the commutativity of the follow-
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ing diagram

C.(KY Ry —CM) \G/H

2y

L

C(K";R) —YECL \G/H)

Ty

Aa)

T

For this purpose, take © € K#'. Then, since H' C G, and H C G,,, we have a

commutative diagram

Consequently

A@)P(cH(G/H ) (=)

sl run
ey

I
L

A ey
|

G/H — GG

7| s

G/H' — G/G,

M@A(Gy = H' )e(x)

A(Gra = H)A(@)c(z)

MGz — H){ac)(az) = ¥Y(ac)(G/H ){az)
U(ac)(G/H)a,(z) = V(c)(G/H)a,(z).

Because ¢ € CL{K; A), this proves naturality of ¥(c).
Proof of (ii). If x € K|, then

T (5c)(G/H)(@) =

{

\(G. — H)(é)(x)
MG, — H) g(-‘l)i/\(dﬁ?} — z)eldsz)
?.'L_ZD(----1)"1)\((}":;‘;E — z)c(d;x) = S(¥(c))(z).
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This shows that ¥ is a cochain map.
Next, we define g : Hom(C,(K),A) — CL(K;\) as follows. If T :
C,(K) — Ais a natural transformation and « € K,,, then

w(T)(z) = T(G/G,)(=}.
Then, as before, we check the following points

(iii) p(T) € CE(XK;A).

(iv) p is a cochain map.
Proof of (iti). Let g€ G, and x € K,,. Then, since T'is a natural transforma-

tion, there is a commutative diagram

T(G/Gg_.j:}
CH(I{GFII ; R) = A(C:/C;.f}'_]I)
g )
Y 1]
. TG {Gy
Cn(I{G: ;R) = }"" /\(G/G:t:)

Therefore

(Gu(D))(x) = A@ET) =)
= MGT(C/Cy.) (g 0)
= T(G/Ga)() = u(T)(w)

This completes the proof of (iii),
Proof of (iv). We compute

u(T)() = 3 (-1'A(de - a)u(T)(dhe)

Y (~=1)'A(diz — 2)T(G/Ga.) (dix).

i=0
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Once we observe that G, C Gy, the commutativity of

GiGy.,
Co(KS R —2%) L X(G/Gy.)

Y

Cu(KS;R) ——2 . \G/G.)

shows that p is a cochain map. This completes the proof of (iv).

Finally we observe that

W (u(T))(G/H ()

i

AG; - H)p(T)(x)
AMG. = H)T(G/G;)(z) = T(G/H )(=)

and
p(¥(c))(z) = ¥(c)(G/G,)(x)
= MG, — G;)clz) = o(x).
This completes the proof of the theorem. »

The category of Og-R-modules is an abelian category (see [16] p. 258), and
has sufficiently many injectives (cf. [21]). The coeflicients system C,(K) is
projective in this category. Let A' be an injective resolution of A, We have
then a double complex Hom(C . (K), A*). The homological algebra applied to

this double complex yields an universal coeflicients spectral sequence.
By = Bxt"(H (K ),\) = H(K;A).
where H,(K) : Oy — R-mod is given by

H(K)(G/H)=H(K";R) and H(K)a)= H/a)

For any G-simplicial set K, let RI{ denote the G-simplicial set with
(RK), = RK,, where RK, is the free R-module with basis X, and the face
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and degeneracy maps are the linear extensions of the corresponding maps of K.
The G-action on RK is also obtained as the linear extension of the G-action

on K.

Proposition 2.3.2 For any Og-R-module A : Oy — R-mod, there i3 an
rsomorphism
Ho(K;A) = HG(RK 5 A)

for every G-simplicial set K.

Proof. The groups H;(K; A} and HL(RK; A) arise from the cochain complexes
Hom(C,(K ), A) and Hom(C.(RK ), A) respectively. These cochain complexes
are isomorphic by the cochain map 8 : Hom(C,(¥K),A) — Hom(C,(RK), )
defined by

O(THG/H)D> mnw)) =T(G/H) > niz;.m

Theorem 2.3.3 Let f: K — L be G-map such that % : X¥ — ¥
induces tsomorphism in the classical homology with R coefficients for
every HC G. Then

[ Hg(L;A) — Hy (K5 A)
is an isomorphism for every O¢-R-module ).

Proof. The G-map f gives a natural transformation f, : H,(K) — H,(L) of
O¢--modules defined by
f(G/H) = f/.

Observe that f,(G/H) is an isomorphism for every subgroup H of G. As the
category of Og-R-modules is an abelian category, and £, is both an epi as well
as a mono in this category, f. is an isomorphism. This natural transformation
extends to a morphism f, between the universal coefficients spectral sequences

corresponding to X and L. As f, is an isomorphism at the IYs level, the theorem

follows. | | =
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Remark 2.3.4 A pre-simplicial set is a sequence of sets {K,} equipped
only with the face maps d; . K,, — K, _; satisfying did; = d;_d;, whenever
i < 3. A G-pre-simplictal set is a pre-simplicial set together with an
action of G which commutes with the face maps. We remark that if K is
a G-pre-simplicial set then also the groups HE(K ;) can be defined. All
the properties that we have mentioned above hold good for these groups,

except for the homotopy invariance (Theorem 2.2.3) where the degeneracy

maps are essential,

2.4 Relation with Illman cohomology

In this section we shall prove a theorem relating the equivariant singular co-
homology groups of a G-space X and the cohomology groups of the associated
singular G-simplicial set X, where G is discrete.

We briefly recall the construction of the equivariant singular cohomology

groups of Illman [14].

An equivariant singular n-simplex in X is a G-map
T: A" x G/H — X,

where G is acting trivially on A" For 0 < i < n, the i-th face T of T is the

equivariant singular (n — 1)-simplex given by the composition
A x GIH EE A< G/H 5 X

Let A be an Og-R-module, and 8%(X; A) denote the R-module of functions ¢
defined on equivariant singular n-simplexes T : A" x G/H —+ X such that
e{T) € M(G/H). Then, 6: §4(X;2) — S5F(X; ) defined by

n4-1

5(c)(T) = Y (~1)e(T)

1=y
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verifies §* = 0, and we have a cochain complex S%(X; ). Say that two equi-

variant singular n-simplexes in X
T:A"xG/K— X and T":A"xG/K'— X

are compatible under a G-map h: A" X GfK — A" x G/K', f T"oh =T
Since h covers the identity map of A" and G is discrete, h is of the form (id, @)
for some G-map @ : G/K — G/K'. Let h* denote the homomorphism A(a) :
MG/K'Y — MG/K). Let S4(X ;) be the submodule of 8%(X ; \) consisting
of those ¢ € S%(X ; A) which satisfy the condition that h*c(T") = ¢(T) whenever
T:A"XG/K — Xand T': A" xG/K' — X are compatible under a G-map
h: A" x G/K — A" x G/K'. Then S3(X;)) is a cochain subcomplex of
S4(X;)), and the equivariant singular Illman cohomology groups H%(X ; A) of
X are by definition the homology groups of the cochain complex S&(X; A).

Theorem 2.4.1 Let X be a G-space with G discrete and A an Og-R-

module. Then there ts an tsomorphism
Hg(X;A) & Hg(SX;A)
which is functorial with respect to X.

Proof. We shall exhibit an isomorphism
Cu(SX;A) — SL(X;A)

of cochain complexes.
Let T: A" x G/H — X be an equivariant singular n-simplex in X. Then

op: A" — X with op(z) = T'(z,eH) is a singular n-simplex in X, that is, a

simplex of the singular G-simplicial set SX, Moreover H C G, for if h € H

(hor)(x) = hop(z) =hT(z,eH)
= T(x,eH) = op(z).
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Thus we have a homomorphism A(G,, — H) : AM(G/G,,.) — AG/H). Define
4 C™SX;A) — S2(X; ) by setting p2(c)(T) = A(G,, — H)c(or). We now
check the following

(i) If c € CE(SX;A) then u(c) € SE(X;A).

(i) p is a cochain map.
Proof of (i). Let c€ C&(S5X;A), and

T:A"xGIK— X, T :AN"xG/K'—X
be two equivariant singular n-simplexes in X compatible under a G-map h =
idxa: A" x G/K — A" x G/K', where & : G/K — G/K' is given by

a subconjugacy relation a™Ka C K'. We need to check that h'u(c)(1T") =
w(e)(T). As before, we have that K C G, and K’ C G,,,. Also note that

UTI(E) = TI(.'.B, GI{!) = t’I—lTrh(ﬂS,ﬁff)
= a 'T(z,eK) =a 'op(z).

Therefore referring to the commutative diagram

G/K —— G/G,,

d |+

G/K' ——r GG,

we have

MaB)MGo,, — K')e(or)
= MG, — K)N@)c(a™ o7)
(
(

h*u(e)(T')

|

MGop — K )(ac) (o)
MGy — K)e(or) = ule)(T).
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This proves (i).
Proof of (i). Let ¢ € C&(SX;A) and T': A™ x G/H — X be an equivariant
singular {n + 1)-simplex in X. Then

5(u(e))(T) = 2(—1)*@(6))(1"“’)
- é(—l)iA(G%(ﬂ ~ H)elopa)- (2.1)
On the other hand
w(Se))(T) = MGop~ H)(bc){oT)
' = ;(-—-1)5)\((}‘? —~ HYMdior — op)e(dioq). (2.2)

Then d;or = 0@, and the commutativity of orbit maps prove the equality of

(2.1) and (2.2).
Next, we define a homomorphism

W 8L (XA) — CMSX;A)

as follows. Let ¢ : A" — X be a singular n-simplex in X. Then T, : A" x
G/G, — X, given by
To(z, 9Go) = go(x)

is an equivariant singular n-simplex in X. We set ¥(c)(c) = (7},). As before,
we check the following points.

(iii) If c € SE(X;A) then T(e) € CE(SX;A).

(iv) ¥ is a cochain map.
Proof of (ii). Let ¢ € S:(X;A). Then we have for g€ G

(9%(c)) (o) = (@) (c)(g™ o) = A(@)c(Tg10),
where the homomorphism A(7) : AM(G/Gy1,) — MG/G.) arises from the

conjugacy relation g~'G,g = G4-1,. Now observe that

T :A"xG/G, — X, and T, : A" x Gy, — X
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are equivariant singular n-simplexes in X which are compatible under
h=(idg): A" x G/Gy — A" x G/G 1,
Therefore

M@elTyo) = olTy)
= ¥(c)(o),

and hence g¥(c) = ¥(c) showing that ¥(c) € C%(SX ;). This completes
proof of (iii).
Proof of (iv). Let ¢ € SE(X;)) and o : A™! — X be a singular (n + 1)-
simplex in X. Then

01

6(¥(c)){e) = 2(—1)“(&0 — o) ¥(c){d;o)
— ";}(“1)1'\('{{1{7 —= J)C(Td‘ﬂ).
On the other hand
V(sc)o) = (6)(T)
nt1
= Y.(-1)'(T).

i=0
As the singular simplexes flff) and Ty, are compatible under the G-map A" X
G/G, 25 A" x G/Gy,, we have
ME)e(Tyo) = Mdio — 0)e(Tue) = (T3),

and therefore, the two expressions above are equal. This shows that ¥ is a

cochain map.
Finally we compute the two compositions Wou and poW¥. Forc € C*(SX;A)

and o a singular n-simplex in X we have

(Cop)(e)o) = ¥(u(e))(a) = p(c)(Ty)
= A(GUT., — GH)C(JT.,) = _C(‘T)v
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since o, = o and as AM(G., —+ G,)) = id. On the other hand , if T': A" X
G/H — X, then

(o WY eHT) = w(¥()(T)
— ’\(GJT — H)\I’(C) (U‘T)
= MGy, = H)e(Ty,) = c(T),

since the n-simplexes T" and T, are compatible under the G-map id X € :
A" x G/H — A" x G/G,; where € is given by the inclusion H C G,,. B
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Chapter 3 SOME APPLICATIONS

3.1 Introduction

Iﬁ this chapter we prove a normalization theorem for cohomology in analogy
with the non equivariant case. We then prove that under certain conditions the
cohomology groups H}.(I; Ar) of a G-simplicial set K with suitable coefficients
Ap are finitely generai:ed‘ We also discuss the equivariant Euler characteristic
of Brown vis-a-vis the ‘equivariant Euler characteristic’ arising out of the finite

generation of the groups Hy. We start by recalling the normalization theorem

in the non-equivariant case.

3.2 Normalization

If A is a simplicial abelian group, let C,A denote the chain complex with

C,A=A4,, and
d = Z(""l)idl : Orr.A — Cu—lA:
i=0

the alternating sum of the face maps, as the boundary. Let NA denote the

graded group
NA,={ze€ A,  dx=0,0<1i<n},

and C,NA denote the chain complex with C,,NA = NA,, and
d=(-1)"d,: CuNA — C,_1NA
as the boundary. We then have the normalization theorem [18].

Theorem 3.2.1 The inclusion chain map i : C.NA — G, A induces an

tsomorphism wn homology. ~ m
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There is a direct sum decomposition C,A =% C,NA® C,DA, where C,DA is
the chain subcomplex of C, A generated by the degenerate simplexes of A, We

also note that NA is a pre-simplicial abelian group (see (2.3.4)).

3.3 G-Normalization

Let K be a G-simplicial set. For any commutative ring R with 1, let RK

denote the free simplicial R-module as considered in Proposition 2.3.2. Let

NRK denote the G-pre-simplicial R-module
NRK, ={z € RK, : dix = 0,0 £ i < n}.
Then we have the contravariant functors

ﬂ,(RI() . OG — R-mod
H,(NRI{) : OG' — R~mod

defined respectively by

H,(RK)(G/H) = H(RK";R), H,(RK)() = H.(g)
H.(NRK)(G/H) = H.(NRK";R), H,NRK)@ = H.(g)

Theorem 3.3.1 (G-Normalization) For any G-simplicial set K, there i3 an

tsomorphism
He (I M) £ Hp(NRK; A)
for any Og-R-module A.
Proof. Observe that we have coefficients systems
C.(RK)(G/H) = C,(RK";R)
C.(NRK)G/H) = C.,(NRK",R)

and the inclusion chain map

i : C.(NRK) — C,(RK)
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(note that C,(NRK) and C,(RK) are chain .complexes in the abelian cat-
egory of Og-R-modules). By Theorem 3.2.1, i(G/H) : C,(NRK";R) —
C.(RK%; R) induces isomorphism on homology with R-coefficients. Conse-

quently the natural transformation
i, ' H,(NRK) — H,(RK),

given by i,(G/H) = i(G/H),, is an isomorphism of coefficients systems. The
natural transformation 4, : H,(NRK) — H .(RK) induces a morphism of
respective universal coefficients spectral sequences. The theorem now follows

by an argument similar to the one given in Theorem 2.3.3. =
The splitting mentioned at the end of Section 3.2, and Theorem 3.2.1 to-

gether imply

Corollary 3.3.2 If K is a G-sitmplicial set with no non-degenerate

simplezes in dimension above some N, then HE(K;A) = 0 whenever

n > N, -

Remark 3.3.3 The corollary also follows from the corresponding fact in
the non-equivariant case coupled with the fact thal for ¢ > N the coef-
ficients system H,(RK) is zero, and a standard argument tnvolving the

untversal coefficients spectral sequence.

Let Ar denote the Og-R-module defined by Ap(G/H) = Hom(R(G/H), )
where R(G/H ) denotes the free R-module with basis G/H. If g: G/H —
G/H', then Ap(§) = Hom(R(g), id).

Theorem 3.3.4 Suppose that the action of G on the G-simplicial set K
ts such that
o K/G has only finitely many non-degenerate simplexes.
o The isotropy subgroup of every non-degenerate simplexr of K has
ﬁiaa’te index in G.



Then the cohomology groups HE(K ; Ag) are finitely generated.

Proof. According to Theorem 3.3.1, the groups H{(K'; Ag) are the same as
the groups HL(NRK; Ag). Consequently it suffices to show that the cochain

groups CL(NRK ; Ag) are finitely generated. Let z;,...,z; denote the repre-
sentatives of the orbit classes of the non-degenerate n-simplexes which lie in

NRK. Suppose that for 1 < I <k, the isotropy group G, has index my in G.

Fix a coset representation
G/G:r:; = {ahGIn RRE ﬂ"fm'G.'I-j}T 1 < ! i:. k: ay; € G.

Then define cochains ¢;; by

0 il
C,;j(:ﬂg) — (a'iiG-'ﬂr)# j= l, 1 S 7 S T}
D 7=11> My

where (a;;G,,)" are basis dual to a;,G,,. There is an unique way to define ¢;; on
the orbit of z; so that ¢;; € CE(NRIC; Ag). It is also clear that the set {c;;} is
a linearly independent set. For, if } ay;¢; = 0, oy; € Q, then

Z difcij (1) Z asicii ()

riy

Z Cl’ﬂﬂ.;..GI, = (.
1=]

I

This implies that for 1 <1 < my, ay = 0. Repeating the argument for various

z;, we see that all a;; = 0. It is now clear that any invariant cochain can be
written in terms of the ¢;’s. This proves the theorem. m

As a simple consequence we get

Corollary 3.3.5 If the action of G on K satisfies the conditions of the
above theorem then dim Cu(K;Ag) = o, [G @ Gy)), where [G : Gy, is the
index of Gz, in G. | | _



3.4 Equivariant Euler characteristic

In this section we indicate how, under certain conditions, the equivariant Euler

characteristic of a G-simplicial set may be obtained using the groups He..
Serre [26] and Brown [5] defined (see also [2]) Euler characteristics of groups

which satisfy certain homological finiteness condition. We quickly recall some

definitions.

Definition 3.4.1 4 group G is said to have finite cohomological dimen-

sion if the ZG-module Z (with trivial G action) admits a resolution
0 — P,— ... — By — 2 — 0,

where each P, 15 a projective ZG-module.

The group G is said to have virtually finite cohomological dimension (we
write ved G < o0) if it has a subgroup of finite index with finite cohomological

dimension.

Definition 3.4.2 A group G is said to be of finite homological type if the
following conditions are satisfied :

o vedG < 00, and

e cvery torsion free subgroup of finite index has finitely generated

rational homology.

If G is a group such that its rational homology is finitely generated, then

its naive Euler characteristic is the rational number

¥(G) =Y (-1)'dim H;(G; Q),

1

where the homology on the right is the group homology (see [6]).
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Definition 3.4.8 If G is a group of finite homological type, then its Euler

characteristic is the number

X(G) = [5(629]‘

where G' is a torston free subgroup of finite index |G : G'].

That this definition is independent of the choice of G’ follows from Theo-

rem 3 of ([5], p.237). The Euler characteristic need not be an integer, unlike
the naive Euler characteristic which is always an integer. Clearly, if GG is a finite
group then it has finite homological type and its Euler characteristic equals the

reciprocal of the order |G| of the group G.

Suppose that K is a G-simplicial set and the action satisfies

e K/G has only finitely many non-degenerate simplexes.

o The isotropy subgroups G, have finite homological type.

Definition 3.4.4 Under the above conditions the equivariant Euler char-

acteristic xq(K) of K is defined to be the rational numoer

x6(K) =D _(-1)""*x(G.),

where the sum 1s over the set of representatives of non degenerate sim-

plexes of K/G.

Now, if the isotropy subgroups have finite index in G, then by Theorem 3.3.4
we might consider the alternating sum of dimensions of the groups H; (K Ag).

It would be interesting to know how this alternating sum is related to xc(X).
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Theorem 3.4.5 Let G be a group acting freely on the simplicial set K
such that
o K/G has only finitely many non-degenerate simplezes.

e the isotropy subgroups G, have finite index in G.
Then xc(K) = x(G) (1) dim HL{K; Ap).

Proof. The group G is necessarily finite. Therefore x(X) is defined and, by
Theorem 3.3.4, the groups H:{XK; lg) are finitely generated. As the action is

free we have
YolK) = Z( ~—1 ‘N Z ‘dlmH1 (K/G;Q),

where N; denotes the number of non-degenerate i-simplexes K modulo the
action. Consequently, xc(¥ ) = x(X/G }, the Euler characteristic of X/G. On

the other hand the nature of the action implies
He(X; de) = H'(K/G;Q(G))
(see Remark 2.2.4), and, as
dim H'(K/G;Q(G)) = |G|dim H'(K/G;Q),

the theorem follows. | -

More generally, we have

Theorem 3.4.6 Let G be a group of finite homological type and finite
cohomological dimension. Let K be a G-simplicial set where the action
satisfies the conditions

o /G has only finitely many non-degenerate simplezxes.

o the isotropy subgroups G, have finite index in G,
Then xc(K) = x(G) T(-1) dimHL(K; Ag) .
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Proof. Since G has finite cohomological dimension, it is torsion free ([6], p.187).

As G is of finite homological type, by a result of ([5], p.237), the isotropy groups
G, also have finite homological type and hence x(G,) is defined. Then we may

write x(G;) = x(G)[G : G,] ([6], p-248). Therefore

> (=1)""x(G.)
Y (1) x(G)[G : G
X(G’)Z(w—-—l)i G G,

dim (K/G) | |
X(G) 2, (—1)dim Cu(K; Ag),

i=0

X6 (X)

by Corollary 3.3.5. As we are dealing with vector spaces, it is not difficult to
show that

dim (K/G) | | dim (K/G) | |
=0 i=0
This proves the theorem. m

Remark 3.4.7 In particular, if G is free of rank n then it is of finite ho-
mological type, because its virtual cohomological dimension is n. More-

over ts rational homology is finitely generated, because there exisis a
K(G,1) with one 0-cell and n 1-cells [6]. Therefore x(G) =1—n, and

Xc(K) = (1 —n) ) (-1)'dim Hg (K Ag),
where K ts a G-8tmplicial set and the action satisfies the conditions of
Theorem 3.4.6.
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Chapter 4 CLOSED MODEL STRUCTURES

4.1 Introduction

In this chapter we study the closed model structure on the category &S of G&-
simplicial sets and prove the Whitehead theorem in this category. Let Veci,
denote the category of rational vector spaces and Vecs the category of con-
travariant functors Og — Vectlyg. We shall investigate the closed model

structure of the category of simplicial objects over Vecg. The results of this
chapter are crucial to the proof of the first main theorem in Chapter 6, and
that of a generalization of the Kan-Thurston theorem in Chapter 7.

4.2 Preliminaries on model categories

We recall some definitions and results about closed model categories, all of

which may be found in Quillen [22].

Definition 4.2.1 A calegory C with three distinguished classes of mor-
phisms called cofibrations, fibrations, and weak equivalences is a closed
model category if the following conditions are satisfied. A fibration (resp.
cofibration) which is also a weak equivalence is called a trivial fibration
(resp. trivial cofibration).

o C is closed under finite projective and inductive limits.

o The following problem, which is called a left Itzftmg problem (LLP),




has a solution B — X whenever t is a coftbration, p a fibration,
" and either i or p a weak equivalence.
o Any morphism f may be factored as f = poi, where p its a trivial
fibration and i a cofibration, and also as f = poi where p is a
fibration and i is a trivial cofibration.

o Fibrations (resp. cofibrations) are stable under pull backs (resp.

push outs), compositions, and any isomorphism 1is both a trivial
fibration and a trivial cofibration.

¢ The pull back (resp. push out) of a trivial fibration (resp. trivial
cofibration) is a weak equivalence.

o ForX-Ly-% Zin C, if any two of f, g, gof are weak equivalences,
so 13 the third.

o Fibrations, cofibrations, and weak equivalences are closed under

retracts in the category of diagrams in C,

If C is a closed model category, the first condition guarantees the existence
of an initial object @ and a terminal object *. An object X in C is fibrant (resp.
cofibrant) if the unique morphism X — * (resp. 8 — X)) is a fibration (resp.

cofibration).

Example 4.2.2 The category 8 of simplicial sets i3 a closed model cate-

gory with the following structure (see [22])

fibrations : Kan fibrations

coftbrations ;  dimenstonwise myjective maps

weak equivalences : maps inducing fsombrphism mm homotopy
fibrant objects  : Kan complexes

cofibrant objects : simplicial sets.

Example 4.2.3 The category G of simplicial groups 1s a closed model

category with the following structure (sece [22])
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fibrations : Kan fibrations

weak equivalences : maps inducing isomorphism of homotopy groups
coftbrations : maps having LLP with respect to trivial fibrations
fibrant objects ! every object is fibrant

cofibrant objects : every object is cofibrant.

The category 8 Vecty of simplicial rational vector spaces is also a closed
model category with structure similar to (4.2.3). We now quote two results

which we shall need later.

Proposition 4.2.4 A map f: A — B in 8Vecty is surjective if and only
if f is a fibration and mo(f) 7s surjective. m

Proposition 4.2.5 ([3], p.16). Every trivial cofibration i : A — B 1n a
closed model category C with A fibrant admiis a retraction, | m

We continue with more definitions. In what follows C will always denote a

category closed under finite projective and inductive limits.

Definition 4.2.6 A morphism f: X — Y in C is an effective epimor-
phism if for every object T in C, the sequence of sets

Hom(Y,T) -2 Hom(X,T) "B Hom(XxxX, T)
is exact in the sense that pri(a) = pro(a) implies f'(b) = a for some b.

Here X x yX is the obvious pull back.

Remark 4.2.7 It is easy to see that if C is the category GSETS of G-sets,
then a morphism in C is an effective epimorphism if and only if it is a

genuine set theoretic suryection.
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Definition 4.2.8 An object P of C is called projective if whenever X —'Y
18 an effective epimorphism the induced map of sets Hom(P,X) —
Hom(RY) is surjective ., Also, C is said to have sufficiently many pro-
jectives if for every object X, there exists a projective object P and an

effective epimorphism P — X,

Definition 4.2.9 If C s closed under arbitrary inductive limits, then an
object A in C 13 small if the functor Hom(A,—) commutes with filtered

limits (which are inductive limits with countable indexing sets).

Definition 4.2.10 A classU of objects of C is a class of generators, if for
every object X there 13 an effective epimorphism T — X where T is the

direct sum of some members of U.

For any category C, sC will denote the category of simplicial objects over C.
Any object Pof C gives rise to a constant simplicial object Pin 8 C where P, = P
for all n, and all the face and degeneracy maps are the identity morphism of P.

Let X and Y be simplicial objects over C and K a simplicial set. Then
an indexed family f = (f{0)) : X x K — Y'is defined to be a collection of

C-morphisms
flo): Xy — Yo,

one for each g > 0 and o € K, such that the following diagrams commute

x, 2. v x, 2. vy
g o
f(dio) f(sio)

Xewg — Y,y Xgp1 — Yo

Let Map(X x K,Y) denote the set of indexed families f: X x K — Y. We
then have a functor Hom( , ) : 8C?® x oC — & given by

Hom (X, Y), = Map(X x Aln],Y). .
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We now state a fundamental theorem which is due to Quillen.

Theorem 4.2.11 [22|. Let C be a category closed under finite limits and
having suffictently many projectives. Define a map f: X — Y in sC to

be a fibration (resp. weak equivalence) if the simplicial map

Hom (P, f) : Hom (B, X) — Hom (P,Y)

is a fibration (resp. weak equivalence) in § for every projective object P in
C, and a cofibration if it has LLP with respect to trivial fibrations. Then
sC is a closed model category, if any of the following two conditions holds

o Fuvery object is fibrant.
o C s closed with respect to arbitrary inductive limits and has a set

of small projective generators. N

4.3 Closed model structure on GS

Recall that GSETS denotes the category of G'-séts, and GS, the category of G-
simplicial sets, is the category of simplicial objects over GSETS. In this section
we shall show that GS is a closed model category and determine its structure.

We also prove the Whitehead theorem for G-simplicial sets. Standard reference

for the categorical notions we use is [17]. We begin with a

Lemma 4.3.1 GSETS 1s closed under finite limits mzd every G-set is

projective,
Proof. Straightforward. »
Lemma 4.3.2 GSETS 15 closed under induetive imnits,

Proof, It suffices to check that GSETS has coequalizer of any pair of G-maps,
and coproducts, Indeed GSETS has arbitrary coproducts (disjoint union),
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and the coequalizer of a pair of G-maps f,g : 4 — B is the quotient map

B — B/ ~, where ~ is the smallest equivalence relation which contains all
pairs (f(a')!g(a’))i a € A. |

Lemma 4.3.83 GSETS has a set of small projective generators.

Proof. Every object in GSETS is small. Also the coproduct in GSETS is
disjoint union. We may write any G-set B ag

B=[]G/cy

be B

where the disjoint union is over one element from each orbit class of B. Then
U ={G/H : H asubgroup of G} is a set of small projective generators for

GSETS. n
Lemmas 4.3.1-4.3.3 together with Theorem 4.2.11 now imply

Theorem 4.3.4 GS is a closed model category. n

In what follows, we study the closed model structure of GS. It is clear that
the functor Hom{, ): G8” x GS — 8 takes the form

Hom(K, L) = (L* )¢,

where (L%)¢ is the simplicial set defined in Section 1.5. Since we may regard
a G-set G/H as a constant G-simplicial set G/H, OF may be considered as a
subcategory of GS?. Then there is another functor of two variables

‘I)( , ):OG@XGS-—-——}S
defined by ®(G/H, K ) = K".

Lemma 4.3.5 The functors Hom( , ),®(, ): O™ x G§ —+ S are natu-

rally equivalent,
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Proof. Define a simplicial map
T)(E;_/_EJ{) :M(G/H, K') — K¥

as follows. If f: G/H x Aln] — K is a G-map, that is, an n-simplex of
Hom(G/H,K), then Wo/mk)(f) = fleH,A,). 1t is easy to see that 7 is an

equivalence. | .

Proposition 4.3.8 A G-simplicial set K is fibrant if and only if K is a
G -Kan-complex.

Proof. It f: K — « is a fibration in GS, then Hom(P, f) is a Kan fibration
in & for every G-set P. Specializing to P = G/H, consider the commutative

diagram

In view of Lemma 4.3.5, the top horizontal arrow is an isomorphism. Since the
left vertical arrow is a Kan fibration, the right vertical arrow K¥ — % a Kan
fibration. Therefore, X" is a Kan-complex, and hence X is a G-Kan complex.

Conversely, if K is a &-Kan-complex, then Theorem 1.5.4 implies that
Hom( L, K) is a Kan-complex for every G-set P. Consequently

Hom(P, f): Hom(P, K) — Hom(P,*) = *

is a Kan fibration for every G-set P. This shows that K — * is a fibration in

GS. . -
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Theorem 4.3.7 A G-map f: K — L is a fibration if and only if each
fA . K% — LY i3 a Kan fibration.

Proof. Assuming that f: K — L is a fibration, the method of Proposi-
tion 4.3.6 shows that each f# is a Kan fibration.

Conversely, assume that the G-map f: K — [ is such that the simplicial
map f7: K¥ — L# is a Kan fibration for each subgroup H of G. For any G-

set P choose a coproduct representation [[, G/G,. Then clearly Hom(P, K') &
[1, K ©», and we have a commutative diagram

Hom(P, K) —— [, K%

l 1

Hom(P, L) — [1,L°

[T -

As the horizontal maps are isomorphisms, and the right vertical map [T, f©
a Kan fibration, the left vertical map Hom(P, f) is a Kan fibration for every

G-set P, This proves the theorem. -

Along similar lines we may prove

Theorem 4.3.8 A G-map f : K — L between G-simplicial sets i3 a

weak equivalence if and only if each f# . K — L¥ 1s a weak homo-

topy equivalence. .

A weak equivalence in GS will be called a weak G-equivalence.
Lemma 4.3.9 If f: K — L is a trivial fibration in GS, then every LLP
An)xG/H -~ K
(ixid) /

Aln)xG/H L. [

L e
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has a solution h : An} x G/H — K with ho (i x id) = a and foh = 8,

where i : Aln] — Aln] is the inclusion.

Proof. We have a commutative diagram

3 fH
Y
Aln) £~ L#

where o/(z) = a(z,eH) and §'(z) = f{x,eH). By Theorem 4.3.7 and 4.3.8,
the map f7 is a Kan fibration and a weak equivalence. Therefore, since i is a
cofibration, there is amap &' : Afn] — K¥ such that h'oi = o’ and ffoh! = ',
Then the G-map h : Aln] x G/H — K defined by h(z,gH) = gh'(z) is the
required solution, »

Theorem 4.3.10 Every (dimensionwise) infective map f: K — L in GS

is a cofibration.

Proof Recall from Theorem 4.2.11 that a G-map fis a cofibration if it has
LLP with respect to trivial fibrations p. Consider such a LLP,

K —— K’
I
L~ [

We may suppose without loss of generality that f is an inclusion. Define G-

simplicial subsets L(n) of L in the following way:
L(-1)=K, and L{n)=L"UK, n2>0.
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Then L = UL(n); and L(n) is obtained from L(n—1) by attaching [[cq Aln] %
G_/ H via a G-map k, : ycq A[n] X g_@ — L{n — 1}. We shall define
inductively G-maps h,, : L(n) — K’ such that h, o f = a and poh,, = 8. Then
the G-map h : L — K' defined by setting h|L(n) = h, will be the solution te
the LLP.

Take h-; = « and assume that h,,_; : L(n — 1) — K’ is already defined
such that h, o f = o and po h,_; = B. Now, since the following diagram

commutes
Uxea A[n] x G/H fin_10kn K
ixid p

L[HEG A[ﬂ] Pt G/.H _@EL I

where k&, is the characteristic map corresponding to k,, and since p is a trivial
fibration, we may use Lemma 4.3.9 to complete the above diagram by a G-
map h, ¢ |1 nce D[n] x G/H — K' so that the resulting triangles also become
commutative, Now define h,, : L(n) — K' by h,{(x) = hp-1(x) if z € L(n — 1)
and h,(z) = h,(x) otherwise. It may be checked using a push out diagram that

h,, is indeed the G-map we are looking for., This completes the proof. a

Remark 4.3.11 The above theorem shows that every G-simplicial K set
is cofibrant, and the canonical G-map (K ) : K — S|K| is a trivial
cofibration. If K is a G-Kan-complex, Proposition {.2.5 guarantees a

retraction rg : S|K| — K.

By a G-Kan pair we mean a pair (K,L) of G-simplicial sets where both
K and L are G-Kan-complexes. As in the topological case, a result basic to

proving the Whitehead theorem is the following result on extension 'of_simplicial

maps.
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Proposition 4.3.12 Suppose (K, L) and (K',L') are G-Kan pairs with f:
L' — K' a weak G-equivalence. If |

k:Lx{l} — L and F:Kx{0}ULxAfl] — K’

are G-simplicial maps with fok = F|L x {1}, then there exist G-simplicial
maps
F:KxAQll] — K' and k:Kx {1} — I’

such that F|(K X {0} UL x All]) = F and fok = FIK x {1}.

Proof. The G—-simpliciél maps k& and F give rise to G-maps between G-CW-

complexes
k|| Lf x {1} — |/} and |F|:|K|x {0}U|L} x ] — K'

by means of the geometric realization functor. The corresponding extension
problem for |F|, |k|,1f] has a solution (see [9] p.106)

FlolK|xI— \K'|, k':|K|x {1} — |L'|.
These give G-simplicial maps
SF': S|K| x A[Y] — S|K‘| and Sk’ S8|K|x {1} — S|L].

Then the G-simplicial maps #=rg o SF' o (X x A[l]) and k = Sk’ give the
required extension, where 7k is the retraction of Remark 4.3.11, N
We may now easily prove the Whitehead theorem in GS§ following exactly

the steps of the corresponding proof for G-spaces [9].

Theorem 4.3.13 A G-simplicial map f K — L between G-Kan-
complexes 18 a weak G-equivalence if and only if it 15 a G-homotopy

equivalence, L)



4.4 Proof of Theorem 1.5.7

Recall from [18] that two n-simplexes & and y in a simplicial set X are homotopic
if dix = d;y, 0 < i < n, and there is a 2 € K41 (called a homotopy from = to
y) such that

dnz = , dﬂ-’rlz =9y, and diz = sp1dix = 5,145y, 0 <i< n.

If K is a Kan-complex, then homotopy of simplexes is an equivalence relation.
Let X be a Kan-complex with a zero-simplex xp. Any degeneracy of zg will
again be denoted by x,. Let K, denote the set of n-simplexes of X having all
its faces at mg. Then the n**-homotopy group m,(K) of K is by definition the
set X, modulo the relation of homotopy. |
We shall modify the above relation to obtain a proof of Theorem 1.5.7. Let
K be a G-Kan-complex with a vertex mp € K§. Define the sets

{z0}

J{a:G/H— K, |a is a G-map, da€ Fuy, 0<i<nhn21,
HCG |

t

Fo
Fy

|

and a relation ~ in F, as follows :

(1) dyx = d;8 where d; : K,, — K-, 0S¢ < n.

x~ [ <> § (2) There exists a G-map 7 : G/H — K, with d,y = a,
dy1v = B, and dyy = 8, 1die = Sp1di0, 0 <1 < n.

\

We shall then say that o and 3 are related via 7.

Lemma 4.4.1 ~ is an equivalence relation.

Proof. (i) (Reflexivity). Let a : G/H — K, be a G-map. Then the G-map
v: G/H — K, |, where v = s,«, has the property that -

du'}' = O, ﬂ!,;.i,l’}’ = (&, and dnr — Su._.ld-iﬂf —- S”_..ld,'ﬁ, 0 <1< n.
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(ii) Symmetry. Let o and 8 be related via 4. It is then clear that the n + 1-
simplex y(eH ) is a homotopy from the n-simplex a(eH) to B(eH) of K¥. As
K" is a Kan-complex, we can find a (n + 1)-simplex z which gives a homotopy
from fB(eH) to a(eH ). We may now easily check that 3 and « are related via
the G-map 7' : G/H — K, defined by v'(gH) = gz.

(iii) Transitivity. Let o and § be related via 7, and 8 and 6 be related via
v'. Proceeding as in (ii), we see that a(eH) and 8(eH) are homotopic. We
may find, as above, a G-map 4 which relates « and 6. _

Let K denote the (-simplicial set generated by the G-set

K'=U,K, where K, = |J {orbit(a(eH))| a:G/H— K,}.

aEL,

Here 32, denotes the set consisting of one element from each equivalence class

in F,/ ~. Clearly, K has only one zero simplex. We then show that
Proposition 4.4.2 K is a G-Kan-complez.
Proof. We check that K" is a Kan-complex for every subgroup H of G. Let

Ty v o0y L1y Thplye oo 3 Ty
be a compatible collection of (n — 1)-simplexes of K¥, that is,
d,‘fﬂj = dj_.l:nt- (L < j, ) f;\l—' Ah _?7& k)

These @; are also compatible as simplexes in K/, and as X" is a Kan-complex,
there exists an € K with dix =x;, 1 # k. 2 € K we are through. So
suppose that © ¢ K", Then we have a G-map «, : G/H — K, defined by
ay(gH) = gz. We may now find a G-map #: G/H — K, such that a ~ [
and A € ©,. Then the n-simplex # = f(eH ) has the property that d;z = ;

and & € ff;’;’ . This completes the proof. _
The following proposition now completes the proof of Theorem 1.5.7.

r
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Proposition 4.4.3 The inclusion mapi: K — K is a G-homotopy equiv-

alence.

Proof. In view of Theorem 4.3.13, it suffices to check that each homomorphism
i o (K1) — m (K7

is an isomorphism for each n > 0.

(1) i is one-one.

Suppose that #)([z]) = ([y]). Then the simplexes i¥(z) and i#(y) are ho-
motopic in K#. If z is a homotopy from ¥ (z) to i¥(y), then the G-maps
Q,, @, : G/H — K, defined by

az(gH) = gi"(x), and o (gH) = gi"(y)

are related via the G-map v, | G/H — K, defined by v,(gH) = gz. If
Y: € Lpy1, we are through, If not we can always find a G-map v’ with v, ~ 7’
and 4’ € £,,,. Then the (n + 1)-simplex v'(eH) € K* gives a homotopy from
x to y. This shows that if is one-one.

(ii) i7 43 onto.

Let (2] € m,(K"). We havea G-map o, : G/H — K, defined by o, (gH) = gz.
Let « denote the G-map which is related to o and v € L,. Then clearly
% =~(eH) e K and i"(z) = [a). | N

4.5 Closed model structure on sVecq

Recall that Vecty denotes the category of rational vector spaces, and Vecg the
category of contravariant functors Oy — Vecty. Then .Vec; is an abelian
category (see [17] p.258), and therefore a morphism s : T'— 5 in Vecg is
epi (resp. mono) if and only if s(G/H) is epi (resp. mono) in Vecty for each
subgroup H of G. In this section G will consistently denote a finite group. It

is then a result of Triantafillou that



Theorem 4.5.1 (Triantafillou [29]). The category Vecg has sufficiently
many projectives. .

Let 8 Veeq denote, as usual, the category of simplicial objects over Vecg,
and fibrations, cofibrations, weak equivalences in éVecG be defined as in The-

orem 4.2.11. It will be seen in Proposition 4.5.8 below that every object in
s Vecg is fibrant. Consequently Quillen’s theorem will imply

Theorem 4.5.2 8Vecg i3 a closed model category. =

Before studying the model structure of s Vecg, let us briefly recall from [29]
the description of projective objects of Vecy. -
The G-set G/H may be written as a disjoint union

G/H=(G/H)huy...... U (G/H )"

where Ho = H, H,,..., H, arc distinct subgroups of G conjugate to H, As
NH/H acts on (G/H )™ on the right (NH is the normalizer of H), and as
the sets (G/H ) arc all isomorphic, NH/H acts on (G/H)" in the same way.

Each of these action is free and transitive, and is given by
(gH Y(aH ) = gaH.

If H' is a subgroup of G, then (G/H )" contains those (G/H )" for which
H' C H, Conscquently, there is an action of NH/H on (G/H)"" which is
trivial outside those (G/H)" which are contained in (G/H)". Hence the
rational vector space Q((G/H)"') with basis (G/H)" becomes a free right
O(NH/H )-module with a basis consisting of one element from each (G/H )
for which &' C ;.

Now, if Vi is a left Q(NH/H )-module, then we have a contravariant functor

Vi : Og — Vecty defined by sctting

YulG/H'Y = QG/H)") @qunrmy Vi
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on objects G/H' of Og, and, i@ : G/H' — G/H" is a morphism in O, then
V(@) : Yu(G/H" ) — Vy(G/H') is given by

KH(H)(3® V) = (guﬁ) R v,

where b € (G/H)”" = Homo,(G/H",G/H) and v € Vy. 1t is then not very
difficult to see that Yy is projective as an object of Vece. Also observe that
Q(NH/H ) is semi-simple, and hence every left Q(NH/H )-module is projective

Again if A is a G-set, define an object Q(A) € Vecs by QAN G/H) =
Q(A), where Q(A”) denotes the Q-vector space with basis AY. Therefore, if
we take Vy = Q(NH/H), we have

Vu(G/H') = QG/H)") ®qunm/my QUNH/H)
= Q((G/H)")
= QIG/HNG/H').
Thus Vi = Q(G/H), and this implies Q(G/H) is projective as an object in
Vecg. As every G-set A is the disjoint union of its orbits, the object Q(A) in

Vece is also projective,
We now proceed to the study of closed model structure of s Vecy. First, note

that the category 8 Vece of simplicial objects over Vecg is same as the category
of contravariant functors from Og to the category s Vecty of simplicial vector -
spaces. Any such contravariant functor 7': Og — s Vecty may be identified

with a contravariant functor 8T: A — Vecg by means of the bijection
B : Contra(Og, 8 Vecty) — Contra(A, Vecg) = s Vecg
given by ST([n))(G/H) = T(G/H),. Now look at the following diagram ot

categories and functors,

Qxpf

Oz x Contra(Og, 8 Vecty) ——— Vece™ x sVece
Ev //L’!r-ﬂ'—"-r—!/
S



Here Q@ : Og — Vecg is the covariant functor G/H v Q(G/H), Hom is the
functor explained in Section 4.2, and Ev is the evaluation functor

Ev(G/H,T) = T(G/H).

Observe that for M € Vecs and T € sVecg, Hom{M, T) is a simplicial Q-vec-
tor space. Henceforth we shall identify Contra{Og, s Vecty) with s Vecg.
~ For G/H in Og and T'e Contra{Og, s Vecty) = s Vecg, we define a map

nauy - T(G/H) — Hom(Q(G/H),T)

as follows. Let « € T'(G/H )o be a zero simplex. Then 77y (z) is a collection

of natural transformations

nany(z)(o) : AG/H) — T,

one for each ¢ € A[0], and each ¢ > 0. For g = 0 and ¢ = (0), the natural

transformation nery(z)(e) is given by the linear transformation
ey (@) (eNG/K) : Q((G/H)") — T(G/K)q
where
(=N e) G/ K )(@) = T(@)(=).
This definition makes sense, because we have a bijection (G/H)* —
Homo,.(G/K,G/H) which provides the vector space Q((G/H)") with a basis
consisting of G-maps @ : G/K — G/H. Now extend nry(z) (o) simplicially

to all degeneracies of o and @. In general, if z € T(G/H ), is non-degenerate,

we define the natural transformation
nenm(E)(D,) 1 QG/H)— T,

by setting

() () (D )NG/ K WNE) = T(a)(x),
and then extend it simplicially over all faces and degeneracies of z and A,,.
This process defines neryy on the whole of T(G/H). 1t is now clear that
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Lemma 4.5.3 The map nqyy: T(G/H) — Hom(Q(G/H), T) as defined
above is a stmplicial map. -

Next, we define a map
iy : Hom(Q(G/H),T) — T(G/H)

(which will be the inverse of 9y y) as follows. Let f = (f(o)) be an n-simplex of
Hom(Q(G/H),T). Then f(A,): Q(G/H) — T, is a natural transformation.

This gives a linear transformation

FANGIH) : QUC/HY) — T(C/H)n.

We then set
E(T:H)(f) — f(An)(G/H)(E)a
where &: G/H — G/H is the identity map. Then

Lemma 4.5.4 &y Hom(Q(G/H),T) — T(G/H) is a stmplicial map.

Proof. Let f=(f(¢)) € Hom(Q(G/H ), T,) be an n-simplex. Then,

di§rmy(f) = &((f (D, )(G/H))(E)).
Let d;f = (h(c')). Then, by definition, the (n — 1)-simplex d;f is given by
natural transformations
ho') :Q(G/H) — T,

one for each ¢ > 0 and ¢’ € Afn — 1}, such that

h(e) = f(8i0),

where ; : Aln — 1) — Aln] is the usual simplicial map. Therefore

Erm(dif) = h(D,.)(G/H)(€)
— f(aiﬁu—l)(G/H)(E)
= fldidD)(G/H)(E),
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because G;A,_; = d;/A,. Now since fis an n-simplex, we have a commutative

diagram
o(6/my L2 1,
.
ol 1421, ,

Hence &pmy(dif) = dif (D) (G/H)(E) = di€imun(f). We may similarly check
with the degeneracies. This completes the proof. "

Lemma 4.5.5 {yy oy = id.

Proof. It is enough to check this on the non-degenerate simplexes of T'(G/H).
If x ¢ T(G/H ), is non-degenerate, then

&y o nay(e) = Emm{namm(z) (o))
= nmm)(e)(L,)(G/H )(E)
= T(€)(z) =

as T'(€) is the identity. "

Lemma 4.5.6 TH) © f(;r;;;) = 1d
Proof. Let f = (f(c)) be an n-simplex of Hem(Q(G/H),T). Then denote

ey © Ermy(f) = nmmy(F(L.)(G/ H ) (€)) (4.1)

by h, where h = (h(0)), say. To show h = f, it suffices to check that h{A,) =

A(D,). Now these are natural transformations
fD),h(A,) : QG/H) — T,
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and hence there are linear transformations

WONGIE), FIONGIK) : Q(G/H)K) — T(G/K),.

where in view of (4.1), h has the form

MAW(G/K N@) = T(@)(f(ANG/H)(&)).

Now, since f(A,) is a natural transformation, we have a commutative diagram

[{(Da)(G/H)

Q(G/II)H ' T(G/H)u

| Y T(ﬁ)
}

Q(G’/H)H [ GK) . T(G/K),

where & © G/K - GJH is considered as an clement of (G/H)X via the
identification (G/H )Y — Homo,(G/K,G/H). Therefore h(A,)(G/K (@) =
FIN NG/ K )@), and the lemma is proved. .

Now suppose that 8 : T~ T is a natural transformation of Og-simplicial

vector spaces. Then the following diagrams commute:

T(Gr/ _H‘) ,,,,M..wif:immh &ﬁﬂ(@(c/ff )1 T)
| | et (4.2)
Yﬂ(c’;/ [}') —— L{f.::i-}mwp ﬁgz?ll(@(G/I{) 1TI)

TG /) L Hom(Q(G/H),T)

WG| | lnid) (43)
&r !

T(G/H) s~  Hom(Q(G/H),T')

()



To check the commutativity of diagram (4.2), choose a non-degenerate sim-

plex © € T(G/H ),. Then (Hom(id, ) ofr))(®) has the form (s onrny(z)(a).
Hence |

(8 0 ez (®)(@))(G/ K )(@) = s(G/K ) T(@)(x). (4.4)

On the other hand

ne,mns(G/H) () = npogy(s(G/H)())
= () (s(G/H)(z))(0)),

so that

rn)((G/H)())(0)(G/ K )(@) = T'(3) (s(G/H ) (x) (4.5)

The expressions of (4.4) and (4.5) are clearly equal since s is a natural trans-
formation. To check the commutativity of diagram (4.3), we compute

s(G/H) o §ru)(f) =s(G/H)f(L,)(G/H)(@).
On the other hand

Hom(id,s) o () = &nfs o £(0)
= s(G/H)(8)(G/H) @)

Keeping Quillen’s theorem (Theorem 4.2.11) in mind, we now study the

closed model structure of s Vecg.

Theorem 4.5.7 A morphism f: T — S in 8Vecg is surjective if and
only if it is a fibration and n(f(G/H)) 3 surjective,

Proof. Assume that f: T — §is a surjection, that is each f(G/H) is
surjective as a map of simplicial vector spaces, Proposition 4.2.4 then implies
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that mof (G/H) is surjective. If P is any projective object of Vecg, we show
that the simplicial map

Hom(P, f) : Hom(P,T) — Hom(P, S)

of simplicial vector spaces is a Kan fibration in &, It suffices to show that the
map Hom(P, f) is surjective. Let h = (h(¢)) € Hom(P,S), be an n-simplex.
Peﬁne h = (h(c)) € Hom(P, T') as follows. If ¢ > 0 and ¢ € Aln],, then
h{o) : P— T, is defined to be the solution of the problem

which exists since f, is surjective and P projective. Clearly, we have
Hom(P, f)(h) = h. To prove the converse, we look at the commutative di-
agram (4.3). As Q(G/H) is projective in Vecg, Hom(id, f) is a fibration in S
and hence in the category of simplicial rational vector spaces. As mo(f(G/H))
is onto, the homomorphism 7(Hom(id, f)) is onto, and hence Hom(id, f} is
surjective. As §ry) and sy are isomorphisms, f(G/H) is surjective. This

proves the surjectivity of f. N

Proposition 4.5.8 Every object in s Vecg is fibrant, N

Proposition 4.5.9 If f: T— S in 8 Vecg is a weak equivalence, so 13 the
map f(G/H):T(G/H) — S(G/H) of simplicial vector spaces.

Proof. We make use of the fact that Q(G/H) is projective and the simplicial
map Hom(id, f) in diagram (4.2) and (4.3) is a homotopy equivalence. These

commutative diagrams and a simple computation now proves the proposition.
o | i
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Proposition 4.5.10 Every object in s Vecg is cofibrant

Proof. It suffices to show that every trivial fibration p : 7 — § in s Vecg
admits a section s : § — T, because an LLP of a map 0 — U with
to p has a solution.

As the fibration p : T' — § is trivial, p(G/H) : T(G/H) — S(G/H)
is a weak equivalence (Proposition 4.5.9), and hence a homotopy equivalence
since T(G/H) and S(G/H) are Kan-complexes. Consequently mo(f(G/H)) is
surjective and hence, by Theorem 4.5.7, p: 7'~ § is surjective. We therefore

have a split exact sequence

respect

0 — ker p(G/H) — T(G/H)" LY s(6/H) — 0.

with isomorphism T\G/H) & 5(G/H )®ker p(G/H) which is natural because of
the following commutative diagram arising from a morphism @ : G/K — ¢ [H
ill O(;.

0 ~—= ker p(G/H) —— T(G/H) —— S(G/H) —=0

¥ Y t

0 —- ker p(G/K) — T(G/K) —— S(G/K) —0

This means that we have a section $(G/H) : S(G/H) — T\G/H ) for every

H C &, and these make up the section s by naturality.

4.6 Homotopy in sVecq

There are two notions of homotopy in 8 Vecg : |
(i) the left homotopy coming from its closed model structure, and

(ii) the abstract homotopy coming from combinatorial considerations as de-

scribed by the relations (1.3) of Section 1.4,
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We shall show that the two notions are essentially the same.

First let us loak“ at abstract notion of homotopy in 8 Veeg. Let QI : Og —
s Vecty be the contravariant functor defined by QI(G/H) = QI and QI(@) = id,
where QI is the rational simplicial vector space generated by I = Al[l]. Note
that if {eg,e1,...,€,41} is the basis of the vector space (Qf),, where e, =
(0,0,...,0,1,...,1) {with n — &+ 1 zeros and k& ones) € All},, then

(Q-l)n = Qeg & - - - D Qeny1.

If T': O — s8Vecty is another contravariant functor, define a contravari-
ant functor T® QI : Og — sVecty by T® QI(G/H) =T(G/H) ®@l. Also,
define natural transformations ¢y, 4y : T — T'Q QJ by

io(G/H){(z) =2 Q{ep,0,...,0) and zl(G/H)(m) =z®(0,...,en1). (4.6)

Lemma 4.8.1 Two simplicial maps f,g: T — S in 8Veeg are homotopic
(in the abstract sense) if and only if there exists a simplicial map

FiT@QI— S
with Foig= f and Fo1i, = g. =

Lemma 4.6.2 Every homotopy equivalence in sVecg is a weak equiva-

lence.

Proof. It suffices to prove that if f,g: 71— S in s Vecs are homotopic, then

Hom(P, f), Hom(P, g) : Hom(E,T') — Hom(P, S)

are homotopic simplicial maps (P being a projective object in Vecg). Let the
morphisms h; 1 T, — Spe1, 0 <0 < n, be a homotopy from f to g. Then

hi : Hom(P, T}, — Hom(P, S)u+1 defined by

E(a)(ﬁs,m) =hoal(d,), a€ Hom{P,T)x
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is the required homotopy. .

Now we turn to the notion of left homotopy in a closed model category C.
Let A Vy A be the push out of the diagram A — § — 4 in C and

Vi :AVA— A

be the corresponding folding map. Recall from Quillen [22] that in a closed
model category C, a cylinder of an object A4 is an object JA together with
morphisms ig,4; : A — JA and p : IA — A such that i + 4, : AVgA — JTA
is a cofibration, and p is a weak equivalence, such that po (ig +i;) = 4. Two
morphisms fo, fi : A — B in C are called left homotopic (fo ~c fi) if there
is a morphism H : JA — B such that fy = Hodg and f; = Ho4,. Quillen
proved that if A is cofibrant then 45 and {; are trivial cofibrations, and the left
homotopy relation ~¢ is an equivalence relation.

In the closed model category sVecg, every object is cofibrant (Proposi-
tion 4.5.10), the initial object @ is just 0, and, for an object T T'Vy T'is simply
T®T with the folding map r: T®T — Tgiven by yr(G/H)(z,z') = z+z".
We define IT=T® QI, and natural transformations éy,; : T'— IT by (4.6),
and p : IT — T by p(G/H)(z ® u) = x. Then the natural transformation

to + 1, : T T — IT is given by
(io + i2) (G/H )(z,2") = oG/ H )(z) + ir(G/H) (s,

and we have p o (ip + i) = ¥pr. Also, pis a homotopy equivalence in the

abstract sense with homotopy inverse iy, Therefore, by Lemma 4.6.2, p is a

weak equivalence in 8 Vec.
Again i -- 4, is a cofibration, To see this, consider a LLP of i + ¢; with

respect to a trivial fibration q: U -— Vin sVecg.

|

TeT - {J
to-+iy q (4.7)
TQQI CHERN
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We can identity T'® Qf with T'® T'® S, where S = coker(iy + 1;), by means of
a splitting of the exact sequence

0 —TOT-—TRQY — S — 0,

(note that ig + i; is injective). Also, the LLP of the cofibration 0 — § with

respect to the trivial fibration ¢ : U — V has a solution «: S — U such that

qo~ = . Then a solution to the LLP (4.7} is given by a+v: T T® S — U.
We have proved

Lemma 4.6.3 In the category s Vecg, T® QI is a cylinder object for T. m

Theorem 4.6.4 Two morphisms f,gT— S in 8 Vecs are left homotopic
if and only if they are homotopic in the abstract sense. Consequently,
the homotopy between morphisms in the abstract sense i3 an equivaience

relation. - .
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Chapter 5 CLASSIFICATION THEOREM

5.1 Introdﬁction

‘We have proved in Chapter 4 that homotopy is an equivalence relation on the
set of simplicial maps between simplicial objects in sVecg. In this chapter
we shall show that if G is a finite group and A is a contravariant functor from
O¢ to Vecty, then, for any G-simplicial set K, there is a bijection between
the cohomology group HE{(K;A) and the set of homotopy classes of simplicial
maps BQK — K()\, n) in 8 Vecg, where K(A,n) is what we call Og-Eilenberg-

MacLane complex.
In Section 5.2, we recall some basic facts about Eilenberg-MacLane com-
plexes. In Section 5.3, we define Og-Eilenberg-MacLane complexes K(A,n)

and prove their uniqueness. Finally in Section 5.4, we prove the classification

theorem.

5.2 Filenberg-MacLane complexes

Recall that if 7 is a group, which is to be abelian if n > 2, then an Eilenberg-

MacLane complex of type (m,n) is a Kan complex K with

% T 1="n
i —
0 i#n

A minimal Eilenberg-MacLane complex of type (w,n) is denoted by K(rm,n).

A standard fact about Eilenberg-MacLane complexes is

Proposition 5.2.1 [18]. If the groups , x' are abelian, and fi o — 7' 43
a homomorphism, then there exists a unique simplicial homomorphism

o : K(m,n) — K(r',n)
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with @, = f: K(z,n), — K(x' n),. | N

As a consequence, minimal Eilenberg-MacLane complexes are unique upto
iIsomorphism,

Example 5.2.2 Let w be an abelian group and let C*(Alg);n) denote the
normalized cochain complex. Then for n > 0, L{m,n + 1} defined by

Lmn+1),=C "(AIIQJ;?I'J- 720,
is a group complex, and the subcompler K(m,n) given by
R(,n)e = Z"(Algs )
with obvious face and degeneracies is a K{m,n) (see [18] p, 101).

Theorem 5.2.3 [18]. For any simplicial set K, there is a bijection between
H'K;7) and |K, K(x,n)], where [K, K(n,n)} is the homotopy classes of
simplicial maps K — K(mw,n). | -

5.3 ¢ Eilenberg-MacLane complexes

Let A : O — Ab be an Og-abelian group and n > 0, and for a G-simplicial set
K, 7, {(K): Og — Grp be the'_Oc;-group defined by 7, (K WG/H) = m,(K7).

Definition 5.3.1 An Og-Eilenberg-MacLane complex of the type (A,n) is
an Og-simplicial set T, which is a contravariant functor Og — & such

that
(¢) T(G/H) is a K(MG/H),n).
(%) T(@) : T(G/H) — T(G/H') is the umque azmpltcml homomor-
phism induced by the homomorphism A7) (GZH ) — MG/H').

(itd) mpoT=X andm;oT=0if i #n.
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Example 5.3.2 The contravariant functor Z"(A[ ;A) : Og ~— 8 defined
by

Z4(A[ N (G/H) (lg)) = ZM(Alds NG/H))

18 an Og-Filenberg-MacLane compler of the type (A, n).

The following theorem shows that the Og-Eilenberg-Maclane complex of
the above example is uniquely defined upto isomorphism.

Theorem 5.3.3 Any two Oc-Eilenberg-MacLane comptea_:es of type (A, n}
are naturally isomorphic. - o

Proof. Suppose that T, 5 : O — 8 are two Og-Eilenberg-MacLane com-
plexes of type (A,n). Define a natural transformation ¢ : T'— § by setting
o(G/H) : T(G/H) — S(G/H) to be the unique simplicial homomorphism
induced by id: A(G/H) — A(G/H). Since there is a bijection

[T(G/H),5(G/H)| « Hom{XG/H),NG/H)),

©(G/H) is a homotopy equivalence, and hence an isomorphism by Theo-

rem 1.4.7. Now the following diagram commutes.

T(G/H) - p(G/H)

~ S(G/H)

T(};“)l ‘S(‘E)

G/l ,
ATET): 0 PRAARI ey : O

This is so because S(§)op(G/H) and p(G/H')oT(g) are the unique s@plicial
maps induced by A(g) o idygmy and tdyeynn) © A(G) respectively. This proves

the theorem. "
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5.4 Classification theorem

Throughout this section G' will denote a finjte group and A will denote a con-
travariant functor A: Og —— Vecty. We may then define functors

CuAlg) : Og — Chy
C*'(AlglA) © Og — Ch,

|
3
>

C'(Alg); A(G/H) q; AM(G/H)),
COlg)NG/H) = C.(A[g;0),

where Chg denotes the category of chain complexes and Ch{ that of cochain

complexes over Q. All chain and cochain complexes are understood to be
normalized.
Fix n > 0, and define functors

Lan+1),K(An): O — 8§
by setting

Lan+1)(G/H)[ql) = C™(Alg; MG/H))
KAn){(G/H)(lq]) = 2™(AldsMG/H)).

As we have already observed in Example 5.3.2, K(A,n) is an Og-Eilenberg-
MacLane complex of type (A\,n). Let K be a G-simplicial set. Form the
G-simplicial set QK, where (QK), is the vector space over Q generated by
the set K, and define a contravariant functor ®QK : Og — S by setting

PQK(G/H) = QK". Then define a map
Y i Hom(®QK, L(A,n + 1)) ~— Hom(Cu(K ), A)

as follows, Let f: ®QK — L(A,n + 1) be a natural transformation. Then
f(G/H) : QK" — L(A\n + 1)(G/H) is a simplicial: If = € K# then
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f(G/H)(x) € L{(An+ 1)(G/H) = C*(An]; MG/H)) is a cochain. Since
the vector space C*(Aln|; \(G/H)) is the vector space of all linear transfor-
mations from the vector space QA, with basis A, to A(G/H ), we may identify
it with A(G/H). Then define Zf : C,,(K) — X by setting

(ZFNG/H)(z) = (F(G/H)(2))(D,).

It is straightforward to check that Lf defined as above is natural with
respect to morphisms in Og.

Next define
A : Hom(Cn(K),A) — Hom(PQK, L(\, n+ 1))
as follows. Let T': C, (X ) — A be a natural transformation. It is sufficient to
define simplicial map
. AT)G/H) : QK" — L(A\,n+1)(G/H).
Let = € QK. This induces a simplicial map Z : QA[g] —+.QKH with 2(A,) =

x, Then
5 : CH(KH A(G/H)) — CH(AEMG/H)

is a cochain map. Observe that C"(Alg]; AM(G/H)) = L(A,n + 1)(G/H )([4]).
We then set

(AT)(G/H)(z) = 3" (T'(G/H)).
The definition of A will be complete if we show that AT is natural. To see this,

consider

Lemma 5.4.1 There is an isomorphism 0y between the cochain groups
Cu(Aln] x G/H,A) and C*(A[n); M(G/H)) which is natural with respect

maps induced from morphzsms in Og.

Proof. Define 8y : C¢(A[n] x G/H;A) — CH(Aln); A(G/H)
By(c)(w) = c(An,eH).

Clearly, 8, is the required isomorphism,
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Lemma 5.4.2 AT 15 a natural transformation.

Proof. Let §: G/H' — G/H be a morphism in Og. As we are working in the
normalized set up, it is sufficient to check the commutativity of the diagram

T(GIH
ot —CM  pon+1)(G/H)

/| . @ (5.1)

AT(G/H') ‘_ b(k,ﬁ-}-l)(G/H’)

QKH

only for n-simplexes. First we reinterpret A in the following way. As seen
in Theorem 2.3.1, we may identify T € Hom(C,(K),\) with T € Ci(K;N),
where T'(x) = T(G/G.)(z). Given z € K}/, there is a G-simplicial map Z :
Aln] x G/G, — K defined by (A, eG;) = z, and hence a homomorphism

B OGN — Ch(A] x G/Ga M),

Now consider the following sequence of homomorphisms:

gl

CL(K ) o Ch(A[] x G/GwA) T Cr(Al] x G/H;A) 4
C"(An}; A(G/H)),

where €: G/H — G/G: is induced by the inclusion H C G;. Now

1l

"
L,
b

o)
£t
1)
=
P-
8

Oy(id x &)'%" (T) A

LI | i
2 X
=} f.
=)
—
_l_',_:>

o
"}

[ |
Srm gt



AsT:C,(K) — Alis a natural transformation, the diagram

T(G/G:)

C"(K'G:) — /\(G/G)

| e

Cu(k") —2L. o/n)

commutes, where the left vertical arrow is induced by the inclusion X % C H.
Therefore,

On(id x €)% (T)(An) = T(G/H)(x).
On the other hand, '

AT(G/H)(@)(A) = T'(T(G/H))(A)
T{G/H)(z).

i

Hence, AT(G/H )(x) = 0y(id x &)*% *(T). Now observe that there is a commu-

tative diagram

o

»

CLK;N) ~—  Ci{(An] % G/Gps A)

T = (idwe)"
t f
Ca(AD[n] x G/G,; A) - CU(Aln] x GfH'; A) 2, C*(An; A(G/H'))
(m\ AF)' | |
Cu(A[n] x G/H; ) , C’f(&ln};A(G/H )
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The upper triangle and the lower left square commute because the correspond-

ing maps at the simplicial level commute. That the lower right square commutes
has already been seen in Lemma 5.4,1. Then, if z € K¥ we have

MP(ATYG/H)(=) = MG)0ulid x &)'5* (T)
= Op(id x &) (g2 (T
= (AT)(G/H' }{gx).

This proves the Lemma. .
Next we compute

(ZoA)(T)(G/H)(s) = L(AT)(G/H)(z)
= (AT)(G/H)(z)(D)
= T (T(G/H))(L0)
= T(G/H)(x).

On the other hand, if f: $QK — L(A,n+1) is a natural transformation, then

(Ao ZY(F)G/H)(z) (D) = AZFG/H) () (D)

O(id x €)' " (Tf)(A,)

(id x 8)'% ' (SHA,, eH)

A@F (EF)(An G ) = ME)(ZF)(z)
AE)(ESF)G/G, ) (=) = (Bf)(G/H )(=)
F(G/H)(=)(An).

I

li

i

I

il

We have thus proved

Proposition 5.4.3 The map L is an isomorphism between the functors
- Hom(®QK, L(A,n +1)) and Hom(C,(K), ) with inverse A. n

Let 3 : Hom(C.(K),A) — C&(K; ) denote the isomorphism of Theo-

rem 2.3.1, with inverse ¥, Denote the composition

no¥ i Hm{®QK, L(\n+1)) — CL(K;A)
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by I, then I" is an isomorphism.

Proposition 5.4.4 The map ' 73 an tsomorphism between the cocycles
Ze(K; \) and Hom(BQK, K(A,n)) with inverse T'' = Ao P,

Proof. Let f € Z%(X;A).: We need to show that (WfYG/H ) z) €
K(MG/H),n), for all * € K and H C G, that is (¥f)(G/H)(z) €
Z™MAlgl; M(G/H)). But this is true, because

SI'T(C/H) (=) = SAYT)(G/E)@)
| = §(8y(id X e)‘”"(lI’ T))
= &(0ylid x €)'2'T) = 0.

Conversely, suppose that (Uf)(G/H )(y) € Z*"Algl; M(G/H)) for all y € Kf.
Then, if € K41 is non-degenerate, we find that

SHE) = S (- — o))
3-(~1)\ (e = 2)(1)(6/ )
311\ 9)7(6/Gan ) A
31 £(G/6. ()
YCUTHCLEAOIS
tﬁé( -1) f(G]G, ) () (BiA)

Z(#l)lf(G/GI )(m)(diAwH) = ()

|

|

|

v, @ , ' '
This proves the proposition.



Theorem 5.4.5 Let fy, fi € Hom(PQK, K(A,n)). Then fy ~ fi if and only
of T'fo and T'fy are cohomologous.

Proof. Let F: PQK @ QI — K(\,n) be a'hamotopy between f, and f
(see Section 4.6). Therefore for each H C G, the simplicial maps fo(G/H)

and fi(G/H) are homotopic by the homotopy F(G/H). Let us look at the
definition of T more closely. Given f: ®QK — L(A, n+1), f(G/H) : QK? —
L(A,n+ 1D(G/H) is a simplicial map. Now If: C,(K) — X is defined by

(BF)G/H)(w) = F(G/H)(z)(A).

Therefore by definition of i (see Theorem 2.3.1), T'f € C&(K; A is given by

Now we may identify L(A,n 4+ 1Y{G/H )([»]) with AMG/H), theformer being
the vector space of homomorphisms from QA,, into A(G/H ). Then define an
element uy of the n-cochain group C*(L(A,n+ 1)(G/H); \(G/H )) by setting
ug(c) = ¢(A,). This gives a homomorphism ' |

F(G/G,) : CHIL(An+ 1)(G/G: )\ MG/G,)) — C"(QK“; MG/Gy))
such that

f(G[G:) (ug,)(w) = ua,(f(G/G.)(=))
= f(G/G:)(z)(A,)
= [ f(x).

Now as the simplicial maps fo(G/G:) and f(G/G,) are homotopic,
£(G /L) = F1(G/G,)'. Consequently Tfy =T fi.

Conversely, suppose that fo, fi : PQK — K (A, n) are such that T fo and
I'f, are cohomologous, that is, I'fo = T'fi + 8h, where h € QK A). Tt
suffices to find a v € Z%(QK ® QI;A) such that i(y) =T fo and ii(y) = Th
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where iy, 1) : QK — QK ® QI are the inclusions like (4.6). Then the natural

transformation
I'(v) : QK ® QI — K(\,n)

will be a homotopy from fy to fi. To get such a -y, write v, = p'(Tf) €
Z ¢(QK ® Q1; A), where p is projection QK ® QI — QK. Then

i5(70) = #1(%0) = T'fo.

Further, regarding b € C§F'(QK; ) as a cochain defined on i,(K), we may
choose a cochain 8 € C% QK ®QI; A) which extends h and vanishes on 7 (K).

Thus i§(8) = 0 and ;3 = h. Now take ~ =~ — 6. This completes the proof.
n

We have in effect proved

Theorem 5.4.6 (Classification). For any G-simplicial set K, there is a
bijection {PQK, K(A, n)] « HE(K; ). n

Note that although this is not the most general classification theorem that
one expects, this result suffices to prove a generalization of the Cartan’s theorem

in Chapter 6.
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Chapter 6- FIRST MAIN THEOREM

6.1 Introduction

In this chapter, we prove our first main theorem. This theorem generalizes a
result of Cartan {7) (Theorem A of Introduction) for the case when the group
is finite.

In Section 6.2, we recall Cartan’s theorem in more details. In Section 6.3,
we recall the W-construction of a simplicial group, and prove that it is naturally

contractible. Finally in Section 6.4, we use our earlier results to prove our first

main theorem.
Throughout this chapter G will be a finite group and R a commutative ring

with 1.

6.2 Theorem of Cartan

Definition 6.2.1 A differential graded algebra over R, is a graded R-
module A' = ®,>0A" with an associative R-linear multtplication A™ Qp

A" — AM™ and a degree 1 homomorphism 6 : A* — A* satisfying
& = 0
b(zy) = (6x)y+(=1)"lz(éy)

Let DGA /R be the category whose objects are differential graded algebras
over R, and morphisms are degree zero maps commuting with the differentials.

Deflnition 6.2.2 A simplictal differential graded algebra A, over R i3 a
contravariant functor A!: A — DGA/R.

Note that the upper degree denotes the algebra index and the lower suffix
the simplicial degree, Thus, for each p 2 0, we have a differential graded
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algebra A} = @,504; over R together with face and degeneracy maps
d;' A; —- A;-—li S; ‘A; — A;+]

which are homomorphisms of differential graded algebras satisfying the usual
simplicial identities.

Definition 6.2.83 A cohomology theory in the sense of Cartan over R is

a simplicial differential graded algebra A! over R satisfying the following
conditions :

() (Homology axiom)., The sequence
AR A

of R-linear simplicial differentials is exact, and the simplicial R-
algebra Z° A = Ker(6 : AY — Al) is simplicially trivial, that 1s, all
the face and degeneracy maps are isomorphisms.

(47) (Homotopy axiom). m;(A") = 0, wheneveri >0, n>0.

Given a cohomology theory A}, and a simplicial set K, we may define a

differential graded algebra
A'(K) = Hom(K, A') = @,>cHom(X, A")

over R, where Hom(K, A") is the R-module of simplicial maps X — A", and
the differential in A'(X) is induced by that of A}.

Theorem 6.2.4 {Cartan [7]) Let A* be e cohomology theory. Then there

is an tsomorphism of graded R-modules
H'(A'(K)) = H'(K; R(A)),
where R(A) = (Z°A)g, for every simplicial set K.
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Proof. For a cohomology theory A*, the second part of the homology axiom im-
plies that the simplicial R-module Z°A4 = Ker(§: A — A?) is a K(R(A4),0).
The exact sequence

A A" 2 A — .
gives rise to the short exact sequence

O——-"}ZHA*““PA"'“—?Z"-HA"——-?O, HEO,

where Z" A = Ker(§ : A* — A""!). As the map A" — Z"*1 A is surjective, it
is a Kan fibration with fiber Z"A. Induction and the homotopy exact sequence
of these fibrations imply that Z" A is a K(R(A), n).

We may also identify Z".A with the set of simplicial maps K — Z"A.
Moreover, a simplicial map X' — A" is in the image of § : A" 1(K) — A*(K)
if and only if it factors through é§ : A*™! — A”. The homotopy axiom now
implies that a morphism K — Z"A4 is a boundary if and only if it is null

homotopic. We may thus identify H"(A'(K )) with [K, Z"A], and as Z"A is a
K(R{A),n), the theorem follows. m

Example 6.2.5 .Let C) = @,5,C"(A[pl; R) be the differential graded al-
gebra of cochains of the contractible simplicial set Alp]. Then C' is a

cohomology theory. In this case
H'(C'(K)) = H'(K; R).

Example 6.2.6 Let It = R, the field of real numbers, and §);, = Q' (APF), the
differential graded algebra of smooth differential forms on the standard
p-simplex AP in RPY, Then ' is a cohomology theory, and in this case

H'(Q'(K')) = Hyp(IGR),
where Hy, denotes the de Rham cohomology.
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6.3 W- and W-construction

Recall that if A is a group complex, then the group complex WA is defined by
setting (WA)o = * and for n > 0,

(_WA)H — An—l X e X AU

with the face and degeneracy maps as

(9:1—-21-”:,90) 'i =0
di(gn-—l:-”:gﬁ) = .
(di-—lgu—li .oy dogn-—'l' " In—i-1yGn—i-25¢ -1 90) 0 <1 S n

30(5'?1—1: £ ;Q'U) = (emgﬂ-lz ARR .90)
3::+I(gﬂ—11 v 190) = ('Sigﬂ-—l‘l e v oy 30— Cn—iy In—i—19+ - :9{]): 1 2 0

where e; € A; is the identity. Then WA is a Kan complex and acts as the
classifying complex for A. The complex WA is given by
(WA), = A,x--xd, n>0
do(Gns -1 90) = (dogn* G102, .+ %)
di(gn, - +r90) = (digns-- . doGnei * Gu—i=1, Gn—i-21+-- 1 g0) 1> 0
80(Gns-+++90) = (S0Gn+€nsGu-1s--+,0)
Sitt(Gns -1 80) = (8i41Gns SiGu-is+ - > 800n—ir Cucir Gn—i-1s- -+~ Jo)- 1 2 0.

Then WA is contractible (see [18]), and the map p : WA — WA which

sends (gn,.-++90) ¥ {Gn-1y.-., ) is & PICP (principal twisted cartesian prod-
uct) of type (W), with group A. Define a function T": (WA),, — (WA),41
by T(gny.+-+90) = (€ns1,Gus-+-»9). The contraction in WA is given by the

functions

hn_i(gu*s R 190) - (eﬂ-}-l'l IO 1f3i+11d;]lﬂign et d{]gi+1 TR S PRRRE 90)-

0 <t <n We may write
hi =84 ' oTody™,
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where the exponent indicates the number of times a map is to be iterated, It

is then not very diflicult to check the following very crucial fact.

Proposition 6.3.1 The functions h; defined above give a contraction of
WA which 1s natural with respect to the simplictal homomorphisms f :

A — B. N

6.4 G-Cohomology theories
Let Cr denote the category of cohomology theories over R, as defined in (6.2.3).

Definition 6.4.1 A G-cohomology theory over R is a contravariant func-

tor A: Oz — Cp.

Given a G-cohomology theory A : Og — Cg over R, each A{(G/H) is a
cohomology theory. We may then define an Og-R-module A4 : Oz — R-mod

by As(G/H) = R(A(G/H)). Recall that R(A(G/H)) = (Z°(A(G/H)))y,
where Z°(A(G/H)) is the kernel of the homomorphism

6” ‘ AD(G/H) —% AI(G/H)
We also have functors

A" Op — sR-mod
Z"4A : O — sR-mod

defined in the obvious manner. Then

Proposition 6.4.2 If A : Oy — (g ¥s a G-cohomology theory over @,
then each A" : Oz — sVectg is contractible as an object of sVecg.

Proof. For every H C G, we have principal fibrations
0 —> Z A(G/H) — AMG/H) — 2 (G/H) — 0, n>0.
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This is naturally isomorphic (see [18]) to the universal PTCP of type (W)
given by the W- and W-constructions on the appropriate complexes. As the
contraction in the universal PICP of type (W) is natural with respect to the
simplicial homomorphisms, the result follows. n

Starting with a G-cohomology theory 4 : O — Cg over Q, and a G-

simplicial set X, we can construct a differential graded algebra
Hom(® K, A') = @,>0Hom,y...(PQK, A™).

Since each A(G/H) : A — DGA /Q s a simplicial differential graded algebra,

Hom(® K, A’) is a differential graded algebra in an obvious way. We shall denote
Hom{® XK, A*) by A*(K) .
We now come to the first main theorem.

Theorem 6.4.3 For any G-cohomology theory A: Og — Gy over Q, there
is an 1somorphism

Hy (16 A0) % H'(A'(K))

for every G-simplictal set K.

Proof. Recall that the coefficients system A4 : O — R-mod is defined by
M(G/H)Y = R(A(G/H)) = (Z°(A(G/H)))o. Clearly Z"A : Og — sVectg is
an O¢-Eilenberg-MacLane complex of the type (Aa,n).

Let n > 0. We have a short exact sequence

0 —— Z"A — An — Zﬂ-f-l — 01

in the category s Vecg. We may therefore identify Z"A'(K ) = Ker(A"(K) —
A K)) with Hom(®QK, Z"A), which is the R-module of simplicial maps

from QK to Z™A. There is an obvious map
Hom(®QK, Z*A) — [PQK, Z" A} & HL(K; My),
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where the isomorphism is as given in the classification theorem (Theorem 5.4.6).
We shall show that if f € Hom(®PQK, Z"A) is homotopic to constant, then it
factors through p: A"~ — Z"A. Consider a commutative diagram:

BQK ® 0 - Ar!

0 r

QKR ] ——— Z7A

where the horizontal map on the top is the constant map, # is a homotopy

between f and the constant map, the vertical map iy on the left is a trivial
cofibration. Since p is surjective, it is a fibration. Consequently, the above

LLP for iy with respect to p has a solution, by Theorem 4.5.2,
F:00K®T — A

such that p o FI®QK ® 1 = f. This proves the theorem when n > 0.
For n = 0, we argue as follows. As Z°A(K) = Hom(®QK, Z%4), two
morphisms f, g € Hom(®QK, Z°A) are homotopic if and only if they are equal.

This completes the proof of the theorem. -
We conclude this chapter with two examples of G-cohomology theory.

Example 6.4.4 Consider the contravariant functor A: Og — Co defined

by
A(G/H) =C"( ;MG/H)),

where A . Og — Vecly is a coefficients system, and C'(Alq; M(G/H))
denotes the ordinary singular cochain group. That A(G/H ) is a cohomo-
logy theory follows from Ezample 6.2.8, and A is a G-cohomology theory.

Observe that we have Ay = A, and hence by Theorem 6.4.3

Hy (1)) = H (A'(K)).
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Example 6.4.5 ‘If A is a cohomology theory over Q in the sense of Car-
tan, and Mg : O — Vecly i3 a coefficients system as defined in Sec-
tion 8.3, p.84, then A¢: Og — Cq defined by AS(G/H) = M(G/H)® A
18 a G-cohomology theory, where Ag(G/H) s considered as a simplicial

differential graded algebra concentrated in dimension zero. Observe thatl

A§ = A® R(A). Hence

Hy(K; M) = H'(AS(K)).
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Chapter 7 CoHoMoLoGY OF A G-SPACE

7.1 Introduction

In this chapter, we shall show that every G-space has the same cohomology
of some Eilenberg-MacLane G-space. This result was first proved by Kan-
Thurston [15) in the non-equivariant case. Explicitly they proved

Theorem 7.1.1 (Kan-Thurston) For any path connected space X with base

point there exists a Serre fibration
tX TX — X

which is natural with respect to X and
o The map tX induces isomorphism in homology and cohomology
with any local coefficients on X,
o T(TX)=0 i>1 and m{tX) ts onto.

Thus TXX is an Eilenberg-MacLane space, and X has the same homology
and cohomology as TX. It further turns out that ker m(tX) is a perfect nor-
mal subgroup of m(TX), and that X can be obtained from TX by applying
plus construction of Quillen {25] with respect to the perfect normal subgroup
ker 1 (tX) of m (TX). |

The equivariant version of the above theorem uses equivariant singular 1ll-
~ man cohomology, and Eilenberg-MacLane G-spaces of type (A, 1), which is,
roughly speaking, a G-space Y such that 7,(Y") = A(G/H), and m(Y") = 0
for i > 1 and every H C G, where A : Oy — Grp is a contravariant functor

(see Chapter 8 for a precise definition)., We shall prove
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Theorem 7.1.2 Let X be a G-path connected G-space, with G discrete,
and a G-fized base point. There is a G-fibration

IX:TX — X
such that |
(¢) tX induces isomorphism in equivariant singular Hlman cohomo-
logy.

(i17) TX is an Filenberg-MacLane G-space.

Here “G-path connected” means that each X% is path connected.

We shall consider Theorem 7.1.2 again in a more general setting in Chap-
ter 8,

7.2 Elmendorf Construction

The main ingredient of the proof of Theorem 7.1.2 is a construction due to
Elmendorf {10}, We shall adapt this construction to a G-simplicial setting.
Recall that in [10], Elmendorf described a beautiful method of constructing
(G-spaces with prescribed fixed point data., Let O;& denote the category of
contravariant functors Op — 8. Such functors will be called Og-simplicial

sets. In particular, if K is a G-simplicial set, then ®K : Oz — & given by
(DK )G/H) = K
is an Og-simplicial set.

Theorem 7.2.1.(Elmendorf). There is a functor E; OgS — GS, and a

natural transformation
n:PE — id
such that for an Og-simplictal set T and a sub_gmup H of G,
n(TYG/H) : ET? — T(G/H)

is a homotopy equivalence.
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Proof. Given an Og-simplicial set T, we form the bar complex B,(T}Og), the
n-simplexes of which ave (n + 2)-tuples (¢; fi,..., f,: z), where

G/H, 2 G/H,y — - — GJH, 25 G/H,

are composable morphisms in Og, t € T'(G/Hy), and « € G/H,. The face and
degeneracy maps are given by

([ (AT (£1)(t); far- .-, i ) i=0
(dit;flf”-rfiO.fi—f-l;u-,fn;ﬂ:) 0<i<n

\ (dnt;fl;-'--,ﬂ;_.l;ﬂ;m) i=n

Si(t;flw-':fn;m) = ('Sit;fli‘."Ifi!idlff+1!‘"'1fﬂ;m} | L=n

where the face and degeneracy maps on the right are those of appropriate
complexes. There is an obvious action of G on the last coordinate which makes

B.(1} Og) a G-simplicial set, Define ET'= B,(T}Og). Then, since the action is
only on the last coordinate, the n-simplexes of the simplicial set ET'? consist
of (n -+ 2)-tuples (t; fi,..., fu; f) where f: G/H — G/H,. There are also

obvious simplicial maps

my: BT — T(G/H) and ¢&;:T(G/H)— ET”

di(t; fio ooy fuy @)

i

given by
?ﬁ;(t; fl'.u- ' 1.fﬂ; f) = T(fi GO f?l)(t)j and
Eu(t) = (tid,...,id;id),
where id : G/H — G/H. Cleatly nf;o&}; = id. We shall show that & orj ~ id.
First note that 7 is natural, however & is not, The homotopy is given by the
functions
h, ¢+ ETH — ET:L_I, 0<i<n, where
hi(t;.fh' X }fn;f)- =_ (t;fls*_-* 'Iaﬁifi-{-l-a 0 Ju Oﬁfdi'.” 12d; id)
It is straightforward to check that the f;'s constitute the required hnmﬁtopy.

This completes the proof, l
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Corollary 7.2.2 If K is a G-simplicial set, then NPK ) G/{e}): BEOK —
K 13 a weak G-equivalence. m

In general, for a G-simplicial set T, ET'is not a G-Kan complex. The above
corollary however shows that

Corollary 7.2.3 If K is a G-Kan complex then every fized point simplicial
set EOK" has the homotopy type of a Kan complez. ' _

These are the results central to i;he proof of Theorem 7.1.2, Note that a
topological version of Theorem 7.2.1 may be obtained by replacing the cate-
gory S8 by TOP (see Theorem 8.4.1). This topological version will be used in

Chapter 8.

7.3 Kan-Thurston Theorem

In this section, we sketch the proof of the following simplicial version of Theo-
rem 7.1.1. This will be used in the proof of Theorem 7.1.2.

Theorem 7.3.1 For every reduced sitmplicial set KX, there exists a fibra-
tion
tK :TK — K

which is natural with respect to K and has the following properties.
(1) tK induces isomorphism on homology and cohomology with local

coefficients
(#) m(TK) =0 for all i > 1, m(tK) is onto
(741) m{TK) has the same cardinality as K.

Proof (Sketch). Associated to every reduced simplicial set K is its loop group

LK, which is a free simplicial group given as follows
(1) LK, is the group which has one generator T for every » € Ky and one

relation 3% = e for every = € K,,.
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(2) The face and degeneracy maps are

ot = (diz)ldyz) i=0

5% = 847,

There is a natural homotopy equivalence
ig: K — WLK (7.1)
(see [8]). Then Kan-Thurston constructed a natural sequence
| 0= 0K — LK —> ... — ['K — LK —s .. (7.2)
of simplicial groups and homomorphisms, together with compatible maps
'K — LK™,

where K () is the n-skeleton of X, such that in the inductive limit, the induced

map -
WLYK = Wlim L"K — Wlim LK" = WLK

is a fibration natural with respect to XK satisfying (i)-(iii). Then fibration
tK : TK — K is obtained as the pull back of this fibration by the homotopy

equivalence X — WLK. .
Note that all the constructions L'K, LK, WLK considered above are func-

torial.

7.4 Proof of Theorem 7.1.2

The proof will be obtained as a corollary to the following

Theorem 7.4.1 For every reduced G-simplicial set K, there is a G-fibra-

tion
tK :TK — K

such that
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(9) m(TK) = 0 whenever i > 1.

(4 ((K)* : Hz(K;N) — HL(TK;)) is an isomorphism for all Og-
abelian groups A,

Proof. We consider the simplicial groups L"K in {7.2) as functors from O to
S:

OK,WLK,WL*K: 05 — S
defined by

dK(G/H) = K"
WLK(G/H) = WL(K")
WL*K(G/H) = WL=(K").

We also have natural transformations

i ¢+ &K — WILK
t : WIRK — WLK

where i(G/H) is the natural homotopy equivalence {7.1), and {(G/H) is the
natural map as constructed in the proof of Theorem 7.3.1. Then, the Elmendorf

construction (Theorem 7.2.1) gives a diagram of G-simplicial sets and G-maps.

EWL®K

Et

Ei .
BEOK —~  EWLK

Observe that
(1) for each HC G, (Bi)" : (EQK ) — (EWLK )" is a homotopy equiva-

lence.
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To see this note that there is a commutative diagram by Theorem 7.2.1

Bex) B (gwrk)s

where the vertical maps are homotopy equivalences. Then, since i(G/H) is a
homotopy equivalence, (Ei)¥ is also so.

It may be noted that
i ((EWL*K)Y)=0, for i>1,

by Theorem 7.2.1 and 7.3.1.

(2) the simplicial map (Et)? : (EWL®K)? — (EWLK )¥ induces isomor-
phism in cohomology.

This readily follows from the commutative diagram

(EWL=I)¥ - -~ (EWLK)HY

WL (KH") - -~ WL(KY)

since the vertical maps are homotopy equivalences (Theorem 7.2.1), and the
lower horizontal map induces isomorphism in integral homology by Theo-
rem 7.1.1. Again Theorem 2.3.3 (in conjunction with the observations (1)

and (2) above) gives the following isomorphisms
Hy(K;\) & Hy(ESK;N) = Hy(EWLK; \) & Hy(EWLSK; \)

induced by appropriate maps.
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Let £ : K — EDK denote the pullback of BWL®X — EWLK by Ei
Then look at the composition

K -5 EoK - K

of G-maps. Since G& is a closed model category, this composition may be

factored as
K—TK 2 K

where the first is map a weak equivalence and £X is a G-Kan fibration. Then
tK has the required properties (i), (ii). Note that m;(TK?)=0fori >1. =

Proof of Theorem 7.1.2. Choose a subcomplex SX of SX of the same G-
homotopy type as SX with no other vertex than the base point. This is possible

because of Theorem 1.5.7. Consider the composition
v X E%
ITSX| — |SX| — |SX| — X.

Clearly we have a factorization of this composition into a weak equivalence

followed by a G-fibration :

ITSX| — TX — X

Then tX is the required G-fibration.
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Chapter 8 EQUIVARIANT HoMOTOPY TYPE

8.1 Introduction

In this chapter we shall consider the other aspect of the Kan-Thurston theorem
(Theorem 7.1.1). We shall prove an equivariant version of a consequence of
this theorem which says that any connected CW-space has the homotopy type
of a space obtained from an Eilenberg-MacLane space by applying the plus
construction of Quillen [25).

Throughout this chapter, we suppose that ( is a compact Lie group, and we
consider only closed subgroups of G. All G'-sPa{::,es X are compactly generated
weakly Hausdorff with a stationary point p € X© as base point such that X
has the G-homotopy type of a G-CW-complex [9], and, for each subgroup H of
G', X" has the homotopy type of a connected CW-complex. For example, X
may be a smooth G-manifold such that each X¥ is connected. All G-maps and
G-homotopies are base point preserving,

Recall that an Og group is a contravariant functor A : Og — Grp. Then
a perfect normal Og-subgroup N of an Og-group A is an Og-group such that
each N(G/H) is a perfect normal subgroup of A(G/H ). A homotopy Og-group
7,.(X) of a G-space X is an Og-group ifn = 1 and an abelian Og-group ifn > 1,
and this is defined by 7, (X }(G/H) = m (X", ) and =, (X )(§) = mu{g), where
§:G/H — G/K is a morphism in O, g 'HgC K, g: X¥ — X* is the left
translation by ¢ (cf. Section 5.3). A G-map f: X — Yinduces a morphism of
Oc-groups T, (f) : m,(X) — m,(Y) defined by m,(f)(G/H ) = m.(f” ), where
fH — .ﬂ XH. | |

In Section 8.3, we introduce the concept of homology Og-group _E[f (X;2).
We say that a G-space is G-acyclic if Ef (X;Z) = 0, for all n, and a G-map
f: X — Yis G-acyclic if its homotopy fibre is G-acyclic.

Given an Og-group A and an integer n > 1, there is a G-space X such that
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T(X) = A and m(X) = 0 if § # n. The G-space X is actually a G-CW-
complex, and is called an Eilenberg-MacLane G-space K (A, n) of type (A, n)
(see [10]).

Then in line of Theorem 7.1.1 we have

Theorem 8.1.1 For any G-space X there exists an Og-group A with a
perfect normal Og-subgroup N, and a G-acyclic map

p: K(A\1) — X,
which is natural with respect to X, such that Kerx,(p) = N.

In Section 8.4 we caﬁstruct, for each G-space X and a perfect normal Og-
subgroup N of m(X ), a G-space Xy by applying the plus construction of
Quillen to each X" with respect to the group N(G/H), and then piecing the
resulting spaces together by means of a functorial bar construction [10) (which

is a topological version of Theorem 7.2.1).
Then the main theorem of this chapter is

Theorem 8.1.2 Given a G-space X there exists an Ocg-group A with a
perfect normal Og-subgroup N such that X has the G-homotopy type of

K(\ 1),

The proof of this theorem will follow from the following existence and

uniqueness theorem of G-acyclic maps from a given G-space (cf. [13]).

Theorem 8.1.3 If X is a G-space and N a perfect normal Og-subgroup of
n;(X), then there exists a G-space X§, and G-acyclic map f: X — X%

such that Kerm (f) = N.
Theorem B.1.4 If f: X — Y and f' : X —v Y’ are G-maps, where f

is G-acyclic, then there is a G-map h 1Y — Y', which is unique up to
G-homotopy equivalence, such that hf ~¢ f' if and only if Kerm (f) C
Kerm(f'). In addition, if f' is G-acyclic, then h is also G-acyclic, and
h is a G-homotopy equivalence if and only if Kerm(f) = Ke'rﬁl_(f’).
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The proofs of these theorems appear in Section 8.4.

8.2 Equivariant Local Coefficients

Recall from tom Dieck [9], that the discrete fundamental group category ITX
of a G-space X is a category whose objects are G-maps = : G/H — X, and
a morphism from z : G/H — X toy : G/K — X is an equivalence class
of pairs (§,¢) consisting of a G-map §: G/H — G/K and a G-homotopy
¢ : G/H x I — X from = to y o §, where two pairs (§1,¢1), (Go, @2) 1 & — ¥
are equivalent if there exists a G-homotopy ¥ : G/H x I — G/K from §
to g2, and a G-homotopy ® : G/H x I x I — X from ¢; to s, such that
®(gH,0,t) = x(gH), and ®(gH,1,t) = yo U(gH,t). We shall denote the
equivalence class of (g, ¢) by [g, ¢l.

We have a bijection a : Mapg(G/H, X) — X" given by a(f) = f(eH) and
a~*(z)(9H) = gx. Therefore we may identify an object : G/H — X with a
point z(eH ) in X¥. Then a pair (§,¢) : ¥ — y corresponds to a path < §,¢ >
from x(eH) to gy(eK) in X", and if two pairs (§,¢1), (Fa,02) : £ — y are
equivalent, then < @, > is freely homotopic to < §3,¢, > along the path
t o W{eH,t) in X¥ (see (30], p.98). |

If G is trivial, then JI1X reduces to the opposite of fundamental groupoid
PX of X. Also, for a fixed H, the objects z : G/H — X together with mor-
phisms of the form [idg/y, ] constitute a subcategory of IIX which is precisely

(PXY)er

Definition 8.2.1 An equivariant local coefficients system on X ts a con-
travariant functor M from 11X to the category Ab of abelian groups.

If G is trivial, then M reduces to the classical local coeflicients system on

X. We define homomorphism and pull back of equivariant local coefficients

systems as in [30]
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If M is an equivariant local coefficients system, then the restriction M g =
MI(PX" )% is an ordinary local coefficients system on X%. Moreover, a mor-
phism §: G/H — G/K in O gives rise to a homomorphism M(g) : Mx —
9'Mp of local coefficients system on XX defined by M(g)(z) = M[j, k], where
G, k} : a™*(x)0F — a~!(=z) is the morphism in ITX given by the constant homo-
topy & on a™!(z) 0. Here g* My is the pullback of the local coefficients system
Mpy by the map g: X* — XH. Conversely, given local coefficients system My
on X# for each H C G connected by homomorphisms M) : My — g'My,
where § : G/H — G/K, we obtain an equivariant local coefficients system
M on X by setting M{z) = My(a(x)), and M[G,¢] = M(G) o My(< G, >).
Clearly the above correspondence is a bijection.

Definition 8.2.2 An abelian Og-group X is o 71(X)-module if there is a
natural transformation a : m;(X) X A — X such that, for each H C G,
a(G/H) is an action of the group m(X)(G/H ) = m (X", 2p) on A\(G/H).

Suppose A is a (X )-module. Since X7 is connected, the 7 (X", zg)-
module structure on A(G/H) gives an ordinary local coefficients system Ly
on X# so that Ly(z) = A(G/H), = € X" ({30], p.263). It is not difficult to see
that if §: G/H — G/K, then A(G) : Ly — g¢* Ly is a homomorphism of local
coefficients on X*, Thus a (X )-module X defines an equivariant local coeffi-
cients system on X, In particular, the Og-group 2x,(X), where Zx, (X )(G/H )
is the integral group ring Zm(X?, z,), is the same thing as an equivariant local
coefficients system on X.

Let £ be the category whose objects are (X, A; M), where (X, A) is a pair
of G-spaces and M an equivariant local coefficients system on X. A morphism
Ff=(fi,fa): (X,A: M)} — (¥,B; N) consists of a G-map f; : (X, A) — (¥ B)
and a homomorphism f, : M — fiN of equivariant local coeflicients system
on X. Clearly f induces a morphism f¥ = (fI, fi) . (X*, A", My) —
(Y, B"; Ny ) for each H C G, where f¥ = f | X* and f7 is the homomorphism
induced by fo on X, ‘
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8.3 Homology Og-groups

Let H, denote the classical homology with local coefficients system [30]. Then,
an object (X, A;M) in £ determines, for each integer n > 0, an Og-group
Og —+ Ab by sending an orbit G/H to H,(X", A" ; My ), and sending a G-
map §: G/H — G/K to H,(g) : H, (X%, A% My) — H (X7, A¥; My),
where g : (X*, AX s M) — (XM, A¥; My) is the morphism given by the left
translation g: (X¥, A%) — (X¥, A7), and the homomorphism M(7) : My —»
9* My defined in Section 8.2. We shall denote this Og-group by H(X, A; M ),
and call it the n-th homology Og-group of (X, A) with equivariant local coeffi-

cients system M.
In particular, taking M as a constant coefficients system with M(z) = Z

and MG, ] = id, we have the reduced homology Og-~group EE(X, Z).

We now recall some facts about acyclic maps.

Definition 8.3.1 A space X i3 acyclic if its reduced integral homology is
trivial. A map f: X — Y i3 acyclic if its homotopy fiber ts acyclic.

Theorem 8.3.2 The following conditions on a map f: X — Y are equiv-

alent.
s f s acycelic.
e fo: H(X; /L) — H,(Y;L) is an isomorphism for every local co-

efficients system L on'Y.
o o H(X; fzm(Yyo)) — H,(Y;2Zm(Y y)) is an tsomorphism. - m

Theorem 8.3.3 f: X — Y is a homotopy equivalence if and only if f s

acyclic and m (f) is an isomorphism. N

The proofs of these theorems, and other facts about acyclic maps, which we

shall use, may be found in [13).
Turning now to the equivariant situation, note that a G-map f: X — Yis

a G-fibration if it has equivariant homotopy lifting property. This implies that
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the fibre F'= f~!(y) is a G-space, and that each ¥ : X¥ — Y# is an ordinary
fibration with fibre 7 = FN X%. We may replace any G-map f: X — Y
by a G-fibration f: X — Y up to G-homotopy equivalence, i.e., there is a
G-homotopy equivalence i : X — X such that foi = f. Also, any G-map may
be replaced by an inclusion up to G-homotopy equivalence.

Definition 8,3.4 A G-space X is G-acyclic if each X is acyclic, and a
G-map f: X — Y is G-acyclic if its G-homotopy fibre ts G-acyelic.

Clearly a G-map f: X — Yis G-acyclic if and only if for each subgroup
HCG, f#: X" — Y" is acyclic. We now have

Proposition 8.3.5 4 G-map f: X — Y is G-acyclic if and only if f
induces isomorphisms of homology Og-groups

HY( X, FM)= H (Y, M),

—

for any equivariant local coefficients system M on Y.

Proof. The direct implication is immediate, since the category of O¢-abelian
groups is an abelian category. The reverse implication follows by specializing
to the equivariant local coefficients system M = Zx,(Y), and then applying
Theorem 8.3.2. »

The equivariant Whitehead theorem, says that a G-map f is a G-homotopy
equivalence if and only if each f# is a homotopy equivalence ({9], p.107). 1t is

then immediate that

Proposition 8.3.6 A G-map f s a G-homotopy equivalence if and only

if it is G-acyelic and m,(f) is an isomorphism. | n
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8.4 Proof of the Theorems

The main tool of the proofs is a topological version of Theorem 7.2.1, We

record this result here for convenience.

An Og-space is a contravariant functor Oy — TOP. Let O — spaces be
the category of Og-spaces, and G-spaces be the category of G-spaces, and for
a G-space X, ®X be the Og-space Oz — TOP as defined in Section 7.2. We
shall use the following topological version of Theorem 7.2.1.

Theorem 8.4.1 (Elmendorf) There is a functor

E : Og-spaces — G-spaces,

and a natural transformation n: ®E — id, such that
nTWG/H): (ET)" — T(G/H)

is a homotopy equivalence.

Proof of Theorem 8.1.1. First note that the Elmendorf functor F gives a

G-homotopy equivalence
HeX)G/{e}): B&X — X.

Now Theorem 7.1.1 guarantees for each H C G the existence of a group AMG/H)
with a perfect normal subgroup N(G/H ), and a fibration

p(G/H): K(\G/H),1) — X”
satisfying the conditions :
o p(G/H) is acyclic, and
o Kerm(p(G/H)) = N(G/H).
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By naturality, these fibrations produce an Og-fibration ¢ : B —s ® X, where
the Og-space B is given by B(G/H) = K(MG/H), 1). Applying Elmendorf
functor to it, we get a G-map

Eq: EB — EPX,
where KB is actualiy an Eilenberg-MacLane G-space. Then the composition

EB =% EdX "2 x
is the required G-acyclic map p. | | n

Proof of Theorem 8.1.3. If X is a G-space and N is a perfect normal Q-
subgroup of o (X ), then applying the plus construction of Quillen [25] to each

X7 we get an acyclic map
AGIH) : X7 — (X" )farny

such that Kerm(f(G/H }) = N(G/H). By naturality of the plus construction
[13], these maps give a morphism X — (&X )7, of Og-spaces, where

(2X)MG/H) = (X7 ) fomy-

Denote E(®X)}. by XJ§. Then the Elmendorf functor gives a G-map f' :
E®X — X%, and a composition of a G-homotopy equivalence X — E®X

with f’ gives the required G-acyclic map f: X — Xj3. This completes the

proof. n

Proof of Theorem 8.1.4. If h exists, then 7, (f') = m;(h) o (f), and there-
fore Kerm (f) C Kerm(f'). Conversely, consider the G-push out diagram,

and its restriction to each H-fixed point set

H
X 21— vy oxH Ly
f'l |9' o ' g'”
H
Yy e YURY yH e Y v
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The second diagram, which is also a push out, implies that g is acyclic,
since f# is so [13]. Now the van Kampen theorem gives a homomorphism

m{g™?) 1 m(YH) — m (YT Uyw YH#) = m (Y7 ¥y (XH) m (Y7,

which is an isomorphism, since Kerm(f”) C Kerm (f'¥). Therefore g¥ is
a homotopy equivalence, and hence g is a G-homotopy equivalence, by the
equivariant Whitehead theorem. Then, if ¢' is a G-homotopy inverse of g,
h=gog':Y — Y is the required G-map with ho f ~¢ f. Clearly
h is G-acyclic if f’ is so, and, since m (k) is an isomorphism if and only if
Kerz;(f) = Kerz,(f'), the last assertion follows.

To see that h is unique up to G-homotopy equivalence, suppose that j :
F ~— X is the G-homotopy fibre of f: X — Y. Then, since fo j ~¢ yy, f
extends to a G-map k : X U; CF — Y over the equivariant mapping cone of
4. The G-map k is actually a G-homotopy equivalence, because its restriction
to each H-fixed point set ¥ : X¥ U CF — Y is acyclic and (k") is an

isomorphism. Thus we have an equivariant coexact sequence
F—aX—-—Y-—LEK

where 2 F'is the equivariant suspension of F. Since 5F¥ is simply connected and
H,(LF72) = 0, 5F is contractible. This implies that S Fis G-contractible by
the equivariant Whitehead theorem, considering a point as a G-CW-complex
with one equivariant 0-cell G/G x D°. Thus the map f* : [KY']& — [X, Y%
in the Barratt-Puppe sequence ({9}, p.142) is injective, where [I{Y’]?; denotes
the set of base point preserving G-homotopy classes of G-maps Y — Y7, This

ensures the uniqueness of h, and the proof of Theorem 8.1.4 is complete, n

Proof of Theorem 8.1.2. By Theorem 8.1.1, there exists an Og-group A
with a perfect normal Og-subgroup N, and a G-acyclic map f: K(A, 1) — X.
Then Theorems 8.1.3 and 8.1.4 together give the desired result. .
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