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CHAPTER I

INTRODUCTION AND OPEN PRO BLEMS

This thesis is concerned chiefly with certain families of smooth
mappings from domalns in IHn_ to R" which arise as natural generali-
sations of complax analytiﬁ mappinges These ''Fuster'! familiss have
important !'‘hypercomplex?!! subfamilies defined via convergent lLaurent
series in one quatarnipniu'nr octonionic variable (with central cosffi=-
cients). The various families and subfamilies ars closed under compositior
and inUB;sipn'(whan defined) of mapplngs = consequently they form pesudo-
gpoups'nh which one can mbdsl_manifoldsr .Ths geometry of manifnlda which
oarry suph,"antarF' or '*hypercomplex'! structure turns out to be guite
riph:;'In partiqular,_they have canonical foliaticns and the leaves of
foliations carry naturel complex manifold structures. Further, such
manifolds come equlipped with a fibrs=bundle projection to spheres of
appropriate dimensiuﬁf- These propertiss %lluw ﬁs to investigate the
topological and analytic atpuctuha of Fueter and hypercomplex manifolds
‘using the mathnds of alggbraic tupalﬂgy and function theory. For example,
'mé_p:nua in_Chﬁptar IV, uaing_fairly subtia,tapdlogy,-thét'tha.dnly'
sompact simply connected manifolds which can possibly allow quatefniunin |
(respectively octonionic) structures are 54 (resﬁ&ﬁtiuely SB).(thase
arsj#he,quatarnidhiq ah@ octonionic prn&enﬁiue-spacaa) and 5° x'Sz

.(:espactiuely _52 X 85).-



In order to study these manifolds equipped with Fuster and/or
hypa;u@mplsx coordinate systems it is of course Iimperative to first
understand the geﬁmatric and analytic nature of the Fueter and hyper-
.ppmplsx_mappinga_themaeluea- This study is carried out in-Chapters I
and_III; Indsed, we find that the hypercomplex mappings satisfy certain
generalised Cauchy=iiemann palatinns;_ We are able to eupplamen£ the
Cauchy~Riemann relations wifh sdma extra algsbpa—diffsrential_identities
satisfied Ey our mappings} Thus wWe ©an characterise Fuster and hypar-
'cnmplex mappings by a fixed aystem of partial differantial equations.

We determine conditions for the K-quasiconformality of our
mapping'in_thé sense of Ahlfors [l] ’ .

The prbb;gm af'whéthar a glvan 1Euu ‘manifold can ha'assigned
hypercemplex /Fueter structurs is of course intimatsly related to whether
the structure group of the tangent bundle of the manifold can be reduced
tp.the gﬁdup of Jacﬁbiana,afih?hércnmplex/Fuatar diffenmarphiqma-_ We
.tharsfure study ths Lie_grnupé of Jacobian matrices and their nurréspnnding'-
Liﬁ_algahmas;._Wa find that the invertible Jacohian métriuss,(which we
axplidifly dstsrmina)'fﬁfm_a_family*dstis'subgruups of GL(n, IR) -~ all
members of the family being mutually isomorphic subgruupa: Tﬁs.whnle;
family turns out to be parametrised by bartain real projective apane%.

- For hlgher tpr F uetsr mappings, the Lia grnu;::s are again all dsomorphic

of dimsnslnn (Zp + h) and tha whole family 1e parametriaad by the
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X ess X Sn - (p Pactors) modulo a -certain involution.

quotient of 5"
The results of Chapter IV might therefore be approachable by purs
differential geomstric methods using the conclusions of the previous
Chapters.

Imaeda and Imaeda ([17}51)5}), have also pursued analytic
Punctiuna.uf_hyparcumplax variables, extending work of Fuster st al..
We dssqriba the connection between our functions and Imaedas? Funatinnﬂ;
Sesg Datta [9] .

We would like to mention heres that our geometrical interpretation
nf,tha Fueter transform gives a precise meaning'ﬁa a series of the form
) a; AL _F(ﬂ)_.whsra V' is a vsctor variable Frqm.ﬂﬂi_ IR" (irrespece
tive of whether this JH”P oarriea”an algebra structure or not)» When
ﬂr=.2f_¢r 8 our intarﬁrstatian exactly coincides with the usual inter~
pretation as & series in a complex, quaternionic cr-nctuniunic variable.

In Chapter IV we start to implement the programme of characterising
_hypernnmplax and Fuster manifnlds tnpclnginally and analytically by
| uﬁ;}iaipg,ﬁurlunderetanﬂing_ﬂﬁ the nharacter‘af these classes.nf mappings
that ws have ashisved from the previous thepters. .

We dafina and study pseudogroups of Fuster énd hyparcomplex
-diffenmﬁrﬁhiﬁms; _A dwdimensional (or B&diﬁaﬂsionai) manifold modelled
on these 'Fueter paeudngruuﬁs' turqé.qut to be a quatarnioniu".'_

~ (respectively octonionic) menifold.



- We characterise cumpact_FUepgrimanifplds ag being products of
compact Riemann surfaces with appropriate dimensiocnal sphergs. It then
trangpires that a connscted compact quaterﬁiunic (IH) (respectively
ostonionic OQ))),manifalﬂl,x, minue a finite number of circles (its
*real set!), is ths orientation double oovering of the product Y X IPZ ’
(respectively. Y X JPS),.where Y 18 a bonnentsd surfaca'equippﬂd with
a canoplical dnnfazmél structure and 1bn is nndimahaional reél projecs
tive spacs: A cnrnllary ls that the ﬁnly simply connected uﬁmpanﬁ'
manif‘alda wh:.l::h pan allow |H (reepectiuely@) structure ars. 54 and
82 X S (raspactiualy SB and 52 X S ). Se8 Nag, Hillman and Deatta f:24]

Marchiafaya [21—_] and Salamon [25] have studied vary closaly=~
ralatad_slaases nf maﬁifﬂlde_by diffarential.génmatric methods. They
discovered characterisation theorems similer to ours. Ue exﬁlain the .
connection between their structures and ours-

In Chapter Il we have discussed in detail a geomatric ﬁharac-,,
terlisation of Fuet'ér rnappings and the Fuster transforme . This prénipitat'es
a rather surprising applinatinn of our thaury in Chapter Ua Indéad, we
can characterise the location of tha Zeroes DF quatarnlonlc and Uctoninnin
;analytie functiuns ~defined by convergent power or Laurent saries with
central GDEfflﬂlﬁnta. |

Wa prnua that the zarﬁ get uf any quatarnlnnic (ur uctﬂnianic)
'analytic Functian f with central (i#El' real) cueffiqients is the |
disjoint union of'chiﬁension EWo épherés in IH&'(rashaﬁtiuely'in. IHB)



and certain purely real pointss In particular, for polynomials witin
real coefficients, the cumhleta_rgnt-éet is geometrically characterisable
from the lay=out of the roots in tha cnmplpxlplana: The root-set becomes
the union of a finite number of codimension two Euolidean spheres togsther
with a finite number of real ppinﬁﬁ; We also find the preimages F-l(ﬂ)
for any gquaternion (oxr qctqnion) A
Ve damanatrate,that thie gurp:iaing phanumahun of ncmp;ata spheres
beiﬁg_part_nf.the.sqlution,ia very markedly a special ' pgall phanumenung
For exampls, the guaterpnionic or octonionic Nth roots of sny nonereal
guatarqiﬁn (raapadtiualy octonion) turn out to be precisely N distinct
pnintsl- I .
~ An EmUsihg fupulﬁgicﬁl applinétinn df_these roesults is to exhibit
natural self maps of the Euclidean unit spherse of dimension 3 and 7
(uiz. the gquatsrnionic and actnﬁionio unit spharee) which are of topological
degree N (N eny integer) such that svery fibre has precisaly INI distinct
points, while all the exceptional fibtres actually contain undlmenalﬂn one
aybsphareql The number of exceptional fibres is one for N =2 and tuwo
otherwise. Using thé Fueter transform we are also able to study & naturel
ganara;;sation of these qélf-mappings on spharaé of arbitrary dimension.
Sae Datha and Nag [11] .
) The panul#imate chapta: of this thesis is déuﬁtsd to plaocing our
-wﬁrk}in propex context with raépent'tn the past and present 1itérature-in

- the theory qf'hyparcamplax mappings and manifolds. From the basic



rof orencas Yanln [2 B] , Ishihara and Yaro [2@ y Ishihara _[.19] we learnt
about cluéaly related types of geometric structure on manifolds considered
by other authors. UWe compare these various diffarential geometric and
analytic structures on gsmooth mﬁnifolda;' l

We have proved that a n-timsnsional Fueter manifold " has 2
and (nﬁQ)-dimanaional transverse foliations with & patural cumhlax str U
ture on tﬁe Z;dimanéiﬁnal léayes: Also there ié a niaas of canonical I
bihn;ombrphisms batween the 2~dimensional lsaves and the Zfdimenainnal
,fﬁliatian is obtained from apaybmerainn g = mn ena 5™, sipilar
naaulta-ara true for highér tyéa Fueter structure.

We have alsg established the.ralatinn betwesh Fueter atrﬁcture
and Yeno's f‘-sfructufe_.. Indesd,s Fueter ma'nifald is & smooth manifald.
parrying 4 cananigél integrables f-structurs.

~ The rslations bstwasn Fuster and hypebcomplax structurejand

Ishihara's quaternion structure have heen discuaaed:  See Uafﬁa[jﬂ]-;

Zp 20

In Chapter VII we prove the interesting theorsm that S°7 X S

-neuarrallqms_almast ¢umpléx st:uctuge Bxcept for a smaii_finita numbper
af cases#.  Wéuknaw poepissly<which caste allows  This question
became important For us in settipg up énme ﬂduntermexamples to compars
anﬁ_goﬁtrast the ua:inus types of h?parnampiax strﬁdturas we met in
Chapter VI. The prnﬁflnf,tﬁis-th@nrem uses characteristic class

technigues suggested by Prof. M5 . Naraaimhén and Prof« MaS. Raghuﬁathah:



I am axtramElY'gratﬂfﬂltfar thair guidaﬂéb~i The calculation uaingh

. Chern classes we:e,carriad-pqﬁ in}spacial.méses first by S. Suhramanién

and was later generalissd by us. OSae Datfaiand SuEramanian [Il] . Thisl

ﬂhaptarfia rathar indapénded% nf.tha':sgt afithe thesis anqlcnntains a

: singlé*thaupem_mhiph ia'quiéa interesting in its own right: The result

; has applicatigﬁs!id”Chapfer VI -uaéa;akamplagﬁaﬁ.ﬁ.h ' ;
| We uish'QO"bﬁncluda this intfmdUctiuﬁ'by indicating just a fou

.uﬁhnrené;-daqgiing from the uunk_d%%hié thesis. It is clear that

gﬂitabla,quatarnianiq asrisg,ipftwa.(bp mpre){yapiablsa can be also used

to fnrm‘paéudmgrqupa; Unfngﬁunata;y'tﬁe High?r type Fueter transform of

] | N
yariables (s ee Chepter II)

holomorphic functinn,ﬂf two (or more) complex
do not aaem to.bé.diragyly relataﬂ to the corresponding quaternionic series
obtained by replacing-‘the camplex_uariablas by_dpatsrniun;c variaplea;

(This wag the case for ops quaterniﬂnic:and mctu?innin variable.)
.Saihaw_shnuld nné.study_ths properties 5f mappinds and manifolds of more
than one quate#nimnip variable 7 (It is to be noted that since any two
octonions geherate.an agsoclative subalgébra, we werse in no trouble when
daaling,withhsefiea in one aptcnipnin_uariabl@ withacentral_caeffinianta;
The difficulties arising from nun-assdciaéiuity wﬁen degiing with series

in two or mare octonionic variables would Re formidable. Ua dc not dare

to even ask the quEstiona_; )



Another important area in which to extend our research would be
to deal with variables from arbitrary Clifford algebra and consider power
sgries stc. formad with these uariébles- ﬁhlfnrs]:z] has made a start
in studying these functions with a visw to spplications for highser dimen-
sional Mobius transformation groups, (and conssquently to higher dimen~
sional hyperbolic manifolds).

A third impapﬁant arga of reéearah would be to investigate whether
complexX or almgst complex structure exists on twisted sphere bundles over
ephaqes_uqing,tsahniﬁUgg_aimi;ar te the anes utilised in Chapter VII.
Prof« M.5. Narasimhan reised this query hanﬁusa the Pehrase tuistor thaory
shows that & ceptain S? bundlg over 84_-dues carry complex strﬁctﬁra -
the cumplgx'struptufa.of ImlP? . .

It may bo worthuhile ko pursus these and related quastiors in tha

future.



CHAPTER 1L

FUETER AND HYPERCOMPLEX MAPPINGS

2.1 The Fueter transform

In this section we shall define Fuster transforme of complex
apalytic mappings of one and several complex variables. We shall also
Introduce ths Fueta:,mappings_an&,tha,Laureht sgriea of hypsrcomplex
variables and explain the rslation.bétwqen them. We then prove soms
easgntlal propertiss of Fuster mappings. |
2.1.1

IR

uill_daqgtegthe usual'Eucliﬁaan_nfdimensiﬂnal space With
coordinates (xa, xl,gf,,xn;l) and standard und t veotors Eu,al,;;-,aﬁ;l:i
We idsntify ,(ﬁéyx,l‘,;';ﬁn_l) with xgep +.ese + X o0y and with
Xq + X181 + voe ¥ xn-lan-l p
Set 'IR" to be (R minue the x, = axis, iee.,

RD = |ﬁ“ -g(xa, Dy oo, 0) 3 Xy € IH} (1)
Sn“ will deﬁﬁte the unit apﬁara in Iﬂn+l '

n

For n=4 and 8 we will often think of IR a8 the space

of quaternions (IH) and octonions (@) respectively. Ue recall hers

the laws of the algebras H and )
In I { & =ey = ~1, 7 =1,2,3 (2)
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where Eﬁ Bd*e = =], Moans

= B_. G =R =g 8 =0 3
0.9, | (3)
In ) (using same interpretation as above) -

94 EE =E¢’.'i. ES E7

= -l . (4)

2 - i,
Er- = El 92. E}‘”—' i;]2 EE 95 - EE

HEIEE_? Ez = 57, E‘l ES,

il
mf.ﬂ
e
Eo)
)
-

¢) is a non associative algabra; But it is_well#knuwn that any two
gptoniﬂns generate an associative subalgebra. This will bg'quite

crucial for us because all our arguments will consequently hould uniformly
for any of the algebras we deal with.

2.)].2

i i—

let D be a region in jUf (f is the standard upper half-plane
in @ .,') et @ ‘D ~ (' be a complex analytio (hulnmqrphic) mapping

with real and ;maginary part decomposition ® =§ + 171 .

The n~dimensional (n 2) Fuster transform F (¢) e F (D) -—;-an
of ¢ is defined as, . .
-1 ' -l X, -
F (9) (x,+ = x, 8 =§(x,y)+2 -J'-'iﬂ(x,y)a (5)
0 D R R | 0 ~ 0
j=1 J=1
whereo, | - ‘
| - n e 1ah |
fn(p) 1={ (xqs xl'f“’x ) € lffl. . (xn, y) € D}c‘- IR . (6)

and, y = J(x'  sas + X n¥l 1/2 , (the positlive squre root is used

always):'



il

If moreover ¢ has real boundary values where the real axis
abuté__D -then a direct application of the Schwarz reflection principle
guarantees that Fn_(Q) can be defined real analytically on the rsvolved
domain Fn (D) toyather with the corresponding portion of the Xq—axis.

This is completely clear.

REMARK ° In this connection note thet, we also can define Fueter transform
of a holomorphic mapping whose domain of definition D is a subset of the

P
¢

lower half-plane L by the rule |
Fa Y ) = F (W) . . (7)
where ;j . :j2 (D) --9 ¢ given by
Y () = V(@)
(1.6. W = i, oW o 3,).

(Here jz is the complex conjugation, 4i-s., j2 (z) = Z )

Then for a symmetric holomorphic mapping % on a domain D which . is

itself symmetric about the xg-axia, (1.8, ¢ commutos with jz and

= F_(0 [ ).

52(0) = D), one checks that Fn (¥
DAL

1 )
*ony
A mapping of a dpmain in IR" to IR" will be called a Fugter

mageiﬁg, if it 'is (a restriction on an open subset of ) some Fueter

transform of a holomorphic mapping as defined aboves



Wo now define the higher type Fueter transforms of analytic
mappings of saveral complex variables. (For the sake of simplicity
of notation we restrict ourselves to the cese of tuwo complex variables,
no new ideas are necessary for more gcmplax_uariablasn)

Let, 9 = (9, ®,) {D(EUXU) ~> o
_be'an analgtic mapping;._The type~2 Fueter transform
Fn(z) (¢) f-Fn(z) (D) == IR x R" of @ is defined as,

n.l S - nel

(2) | |
@) Oigp* 2oy %g1 0 %00 % I 2y %y 0)
j=1 =]
N, n=l R nz' el |
= b —
A R R ER L R A LR (8)
(2) ' Ne~J, ' Nl |

uhere, F_ (D) .{(xﬁ g jzl § %35,17 %0,2 + El ¥ xj’z) _ (9)

: (xo,l + 1y, Xa,2 +1y,) € DLC VIR ’_IR1

_ S g 2 o 2 1/2 .
O = E tAN Y, ”"(xl,k,'*' .o+ ”‘n-_-l,k) , k= 1,24

REMARK, > The Fuster transform F_ dofined in 2.1.2 would bo rnm

in the present notatinn: Whenever we write Fn it will be understood

that one complex variable is being used.



2.1.4 PROPOSITION: o

(a) F (a @) = a F @) . «fﬂ’f"( aclk

(b) F _((pl + fpz) =F (<P1) +F ((92),'

(c) Fe ((Pl G ¢’2) =F_ ((Pl) o F_ (fpz), ( whenever 9, 0@, 1s dofinad)

(d) F_(dp 0®) =4 oF (9), (uhere j_ is the conjugation in IR"
_iiEi’ jn (XD_,Xl?ﬁ ’.I’xﬂ"l) = (}(G' -~ }Cl’ami, -— Xn“l)) a

g | a1

(E) Fn((p )= Fn((P) ’
(whenever ¢-¢' is well defined with domain in V) .

4 and B8:

(P) Fp (@ « @) = Fﬁ (@) « F (@) for

Here, we are identifying IRY with IH and IR° with @

Proof <« (a), (b), (c) and (d) follow from definition.

R

(e) follows from (o).

ThEn,
q]l "’02 =(§l §2 -ﬂ1ﬂ2)+ 1 (Elnz +_ gz nl).
Now, | |
- 8,Xy Tt 85X, + 8 1 -
(F4(¢l) d Ffl.((pz)) (XD!Xlixz IXS) = fgl(xnﬂf') + "L‘;‘“%uﬂl(xniyﬂ ¢

| BaXa + 8oy + 8% |
1R, 89%g T O34
£, (xgy) + . N, (Xps y)]
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(where y = (xi +.3§ + xg)l/2 ;)
' - ByX, Tt 8,%. *+ B_X
| 1" 202 . T3
= (Elﬁz *ﬁﬂiﬂz) (XG’?).+. y (glnz +'§énl) (XU’ Y)

= Fy (@ « ) (xgy %10 %50 xg) o
The result f’nllmws', Similarly for l-'B (fPl . (92) . ////

'211;5
;n[:zs] Nag'studiad gonvergent Laurent series on hypercomplex
(1.0+ quaternionic and octonionic) vaeriables with real (i.e. central)
caaffiuianta-arouﬁd real centres. Namely,
@™ o ® ,
$ a (W4 5 b (Va=c)™ (10)
B S =
(En ’ hm_, o ;re ?egla .?
We observe (for example by using Proposition 231;&) that theee saries

(and hence in particular powsr series) of hypercomplex variables with
central coefficisnts ars the Fuster trapsforms of the analgtic nappings
whigh have the '!'same!' Laurent expansions in one complex uariabla;

Namely, lst R

® ®

9(z) = £ a (z-0)'+ I b (2 -c) ", (11)
n=0 " =1

(2. b s c are reals, the annulas of convergence being = < [F~cl < R)s

then,

Y & 1
L b (V=o)™

;m ‘ _ |
Fﬂ.((P)(U) = 3 En (U — G)n + =

ne=0



Mhere, VV = x_ + alx1-+ Bo Xy + Bz X is a8 guaternionic variable.

0

Similarly, FB(¢) will be represented by the same Laursnt series (10)
vhere VU is an octonionic variable. Ue note that the domain of

converqence for SIDE is sxactly the ring domain » < [IV~cil <R

in Euclidean space IR4 and IRB resgactiuelgi' Indeed,these ring
domaing are ~Fn (r < R~c| < R), as is to be EXpsnted; The convergence
in these domaing follows because Hadamard's radius of sonvergence formula

holds for power series with variable in any Banach algebra.

REMARK It is worth noting here that in the light of the above funda~

mental cobr@spundﬁnca between Fuster and hypercomplex mappings, our
general Fueter transform in any dimenmsion n can be thought of ae

giving & precise meaning to a series of the form X a, V™ where Vv,

is a vector variahle from any iHn. and an's reala (This is irrespective
of whether iR" carries an algebra structure or nots) In case n = 2,4,8
ocur intarpystat;nn is seen to exactly coincide with the usual and natural
interpretation of X . V7 as a series in a complex, quaternionic ar

octonionic variable.

. 2.2 Geometrical Ideas about the Fueter trapsforms

In this section we will show that the Fueter transform of an
analytic mapping ¢ 4is obtainable by a certain rigid geometriocal

rotation of ¢ around the xu-axiaQ
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20241
Ue can identify IRT with U x thg using the mappings
h | 1 Rl /
XD"l" Elxl + 2:: b E}n_lxn_l i‘"‘""’> (XU + iy ,('“'y"" gosay "T)) - (-12)

where y = (xi t oesc + xi_l)l/z ]

A

One can think of fU"EfU'xlfk}j,__for any K&€S" 9 88 the rotatad

K
position of the standard half-plane_"U'Efox{'(l, 0, ¢;., ﬂ)} in R
The axis of rptatinn ie of ocourse the xg-axis- Let ¢s also set

€. =Uk U gxn;qgirs} UU, to be the kf-rnta:!:ead_pusitinn of

i

1l

€ x{(1,0y.4,0)f . Note thet €, =C_ -
- To be quits speoific ws explain the identification of U with
Uk . The relevant "kFrnatipn" mapping i
(xgt Y Qv"‘:ﬂ)iF;'>' (XD: kly’:%;!k#;lyj | (13)
for k = (kl,aag,kn;l) 2 5““2 » Notice that this mapping Is nothing
but the restriction to ;(xﬁ, v ) half=plane of any arientatian,praaaruing
Euclidean isometry (i.s., SO(n) matrix) of the Porm

r | vy

1 80 0 ... O
| o

0 Ky

Do oAE# N

a & & £ @

el
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~where N is arbitrary as long as M(k) € 50(n).

Notice that
k) o @

il

Fo (®) o M(k)
on the (XD, y) plane.

The Fueter mapping _FE (¢)_ on Fn (0) (whers D 4is the domain
of ¢ within U) is then the *function of revolution' obtained by
'revolving' the Punctiﬁn ¥ and its dﬁmain D around the xﬂ-axis.

We state ﬁhis as the ° Revolution Principle + A Fueter mapping P (®)
preservas each half—plane.'Uk, in the sense that _Fn (®) maps 'Uk
into m;, and Fh {¢)_restricted to Uk 4 Fﬁ (D), for any g;B Sn_2 ;
is_identifiabla with the original mapping ¢ om D uhen 'Uh is

identified with U by the explained k-rotation.

REMARK ¢ Note that eince D € U, sach €, intersects F_ (D) 4n

two components, ®ach component being a rotated version of D. Here e

identify €, with € under either of the k or =k rotations.

+ m~ -
i €N Fy (0) = b, UD , then F_ (¥) restricted to

ﬁ:‘hpr Dk will coincide with 9 on 0O, provided one uses the same

rotation on the domaln and range.

~Alternatively, we can start by Extending. ¢ by symmetry to a

o

holomorphic function ¢ on the {two~component) region D U (32 (D))

via @ (Z) =9 (£) on D and ¢ (z) -"-CP_(:"-':) on  J, (D);
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(As before is the conjugation in T , 1.8+, jz (Z)g%=5'-) Then

3y
F'n (3) ﬁgatriutsd to [Bk /) _F‘n (D) ‘is precisely this :éfxtensimn of ¢
wheze €, 1is identified with € under sither of thejtwo possible
. rotations, provide we make the same rotation to idaﬁﬁify'tha Tange Ek
fwith L. In this connection Remark (after dafinitinn 2.1.2) may please
be noted.

More explicitly Ue have the following |
_3:552 THEORENM . Let O be an open subset of the upper haifuplane- The
mapping f = (fD,..ﬂ,fn;l) defined on some Fﬁ (D) (or defineﬁ ﬁn an open
subset ’5; of some Fn (Q) is a Fueter mapping if and only if the following
conditions are satisfisd.
(8) Fy(Rgoeresy) ¥ Falxgreeosxg) ¥ ove T8 lxgeneex

'y & #
&

R B

i

"1
for all (xm,f..,xﬁ;l) > FrI (D) .
(6 fq (xgreess x ) = 1y (kg O+ o s & M0y ey 0)
() (fi.+ ces + fi;i) (xu,.;{,xa;l) o ;
= (2w ) (xgy GG 4 e R ) 040)
(d) ¢ (=7 |p) :I..D_:"} ¢  {that 4s,
- ‘:P(XU"'iY) = fG(XU:YrD:“;rD) + 1 fi (X[Ju Yy -Dt”"rﬂ)-)’;

is complex analytic on De.
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Praof . The definition of Fuaterltranaform shows that for a Fueter
mapping (a), (b}, (c) and (d) hﬂld: |
Conversely, if f & atisfies (a), (b), (o) and (d) then
=_FI (#) where ¢ 4is the restriction of f on F_ (0) A Uy Lesey

P (XD’ )’) f (xgi Yr Oy 404 ’ 0). | | ////

2.3 Analytic Charaoteriaatiun of Fgetar and thsrcamelax MEEEinga

2.3.1 THEOREM & Let P 3 (fgpeeey £ ;) =F (p) Fo (D) => IR

»

be a Fuster mappinge Then. K f satlisfies the following_pslatinns‘.

(2) 9 f, ='-aj Py (350, (9 --E-ﬁ; P = 0pese )

n

o ] , ] -
(e) < 7 o vfj/ =0:, (37 0)-

0 z‘. FRNE (2-n)
_ 3=l

Whensver X, # 0,.p = 1, >+,n=l

2 2 2
= i(2-n) (fl + voo + fn_l)l/z/(){i + o460 Kn_l

(d) Supsrtrace uf‘Jac (f) (= ‘90 £

) /2 at (xu,-f‘:,xn_'l)

(In case n = 3_1 (d) bscomes cag Fa -c)l 1’1 = 0 uwhich is the second
Eaunhy - Riamann relation.)

(e) (agfg)xk = 2( 3kfj)){j, k” 0

(In case n =2, (e) also reduces to the Second Canchy =~ Riemann

relation.)



ZU

(f) Jy®, is & function of x, and (xi toese ?‘;21..1)'1/2 =y only,
equiyalantly,
91(dg.fg)  9,{dg Pp) 0,1{0g fo)
(F') *}( — " - — N N -“n;_m-
"1 2 Ml

‘f'nI‘ }{l':n#’ xnﬂl ?! 0)

3, f. e,
VL Jn T
(g* “";(""";—'I' = L for all p, q, J, k,> G, xj*xk'xp‘xq 7! o,

K 3 *»%q
and k # 3, P # q.

9, F |
() £l is a function of x. and (>c2 ¥ oues + X )1/2 =y only,
X1 xj 0 1 N1
for k # 3 and iy k > O.
Equivalently,
in O, Fs . . a‘l’ : af’ Jl_
RN X EERTPRR
K ™3 CL K ™3 *2 k "4 N1
foxr Xl & }{21'- sae g xl"l"'l f 1 |
(1) F‘l( e Y= ( Dy P o= (55 4 vas 2-)%)
B er-iilxn_l = 0 ﬂ'—' Xl e xn-—l Xk }(j Xp
for k, J g 0, Kk # Js xk : Xj # U’ | D 2 0 &
o | d, f. Ol 0n Fr) L2 a9y fy)
(3) yc)%f'u-yac)%(;{-g-}-l)+2y K XD : + L (=300
P X
o - kT K p q
I IR U TEEE: NI SO 9, T, -
ey Peliiely Glny vty g Gkl a
xk xj xr r xk Xj X, 8 X 0 xk xj

Fﬂr k f j*, k,j,r,p 'q'E' m>0, xj'xkixplquxrﬁxs‘xm f U'

1
:L)/2

((j) is unambiguous because of (fll_-) and (h'__ )),

2 .
where y = _(xl+ ot X
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(k) VZCB-E-(—?;,;E—-- - 3y2 ik v y-c)q(%‘—l) = 0
p BTN B k 73
j'x p 'f 0, kK f J and j? Ke Py 4 ? 0

REMARK ':: Notics thatr(g) says that ths, f‘D = ganstant hypersurfaﬁas _
interssct orthogonally the fj = constant hyparsunféaaa for all j zll.
When interpreted as quatsernionic or octonionic analytic functions, this
principle is a cleer generalisation of the fact that the reél pnart and
imaginary part level curves of any holomorphic function form an orthoganal

net+» The various other relations above are also interesting symmetrios

satlisfisd by the Jacobian matrices of any Fueter (or hypercomplex) mappinga

Proof 3 Here f = F '(¢), ¢ =& + i is hmlamnrphin.

(3) (d ) (Xl,:#n,x l) ..a-ld 0 <ng Y), , '(Ki‘*' ves + xi_l)lfz )
= - J%E (xﬂr y)

'5; F (XU,c-¢,Xn_l)
e ( C)jfu) (XE,;;J,Xn”l)

(b) For k # 3 ﬁ
X,
PP — -J-
A fFy (Xgreensx ) =) (541 (xg ¥))
XX | XL

=*""3§£ﬂ (*D' y) + ;,},J'C)kﬂ (XEI’ y)
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XX | XX -
= -'-":3—71 (xgs ¥) + —3:2-71), (xgs ¥)

{'). F (XB,H-,X l)

i

(D) <VFUI vfj7 <( (')DFUI"’!C)n lf ) (C.)Uf pr ey ()n_l 3)>
| - <( ('.)UfD! anfl!""! "tf)n“lf‘u)t ( aﬂfjpﬁil' an-lfj)>
it pa X XyX |
= — . e -l N
@y Txg" "M Ty Mg ’<5’ ﬂ"ﬂ.' v Ty
%. X Z X | X
- ~5pdn,. b ny"—%ﬂ+%""’ 3 Ty __ﬂ:%_in)>
y Y Y y
Zin o4 Hleod_mn - (2 2 )
= n'n + x+...+ o T £ iR JTEPORE N
Yy D Y y l XD y3 ] nn-l xo. y
D ¢
-=4nn
y 0
X X . X X
2 el N F NN medf) N et
Y *n 4 yz XD' Y Xg ¥ y2 XU
= [0 a
-2 2
S A P
(d) C);jfj' =—*-§ o ys T + Yz 'r]y and therefore at (XD,"H,xn 1)
R , | 2 - L2 2 /A
dgfg ~ I O4fy = &, = (n=1) T+ : a =0 - = 2 =
J=d 0 y y
_ o n,n
= 7). e e
v (1en) v ny

whenevear . }(j_ # U' j ' l, v 6 #'n-l '

|



23

K_J{k ' X.Xk 5
kK 3 2 Y 3
4 Y
2 2
S ), X
"¢ K T
AP, = el 7] 4 -
2 3
ks Yy Y
Therefore,
M=l l'r-l o
Apal
p G - XX X
=[“J¥ﬂ - sk“)]'*[“g'” +
’ y

X X
' K K
k‘n&f y L y i

= MMy TR t0 = %90

() follows from the Pact that
(.anD) (xﬂ_"”’xn-_l?_ = gxg

(g) and (h) follow from equation (15):

For (i), we have from equation (15)

d.f. 1N

ka_ :!'*'n .
Vv Nt s for J ¢k .
K3 ¥y oy |

(xﬂ, y)y Uhere Y =-(x§+:¢r+ %

5

Mol

y1/*
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Therefors,

' 7
' 2 4.k i)y - 1Y)
)(p ( C_)D-FD — (}{i d L0 T ¥ - ) ) A (E

(j) From (i)

ﬂ=5’(c30fu)-¥3(";¢k—x§') U‘kr Je
' 3 . _EL__;U
2n =y () -y o ( e

And,

3,
- z—ﬁ-(c) f»)+y-c9-<-i-( 3, #0) = 6y

e %y
c)Y
' 29 ook iy
- &y y<x‘;;)- f—(f—(xk 7
. l c'-)k
.__-!ikakcaw) i—a (qa dp fg Ao

' ' o,
e éJ___L L .La (___1)
“Eiar(xkxa)" sa(m .m xka

| U
Hence (j) follows by using Laplece equation ()
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d - 3 9y f
5;{;11’9 = %cmu g ~ Y ;:;‘i')
2 P DR P S
- 2 9k T k Ty
= dgfg+ % c)p(c')DFD)-Sy xkxj+¥<; aq("k"j)

Dy Ay Ky 370 4 3 #K i

Now, ws have the following theorem s

2,3,2 THEOREM?

f o~ ('FD;"’”f fﬂ"l) : D (E 'Lﬂn) -*-} lﬂn 1s a Fuetar mapping

if and only if it satisfies Pormulas (a), (), (g), (h), (i), (3) and (k)
. 7.2 L2 a1p2
Pr?uf . Lﬂt }' = (Xl + “.' + )'{n_l) v
29 T
(it is unambiquous becauss of (f), (g) and (h)) then (by (1))

' X
. >

The equation (a) says

| | X -
Ay fg ==dgf, = --}-;-ﬂxd-, for k7 0 .



Jd, f J ., f

1. =l 0

Therefore, ,__-].-_}.{__E = oeee = —ﬂ-ﬁ-‘-—-—
1 Nl

equivalently FD- depends on X0 ‘and y only (which means that on

X, and y constant loci f, takes constant values)

One may thersfors unambiguously define
& (I;(D*, y) = f‘U ()(D + E;l xl+ soa 't Bni-l xn-l)"

Then by squation (a) §y = -]

i
Qo
O
v
oy
§
3
*

and by equation (k) Ex
0

The egquation (j) says 7 is harmonic in the relevant domain of the

(xD, y) plana;

Now one verifies that  f = Fn (g + 1 1) on the relevant dﬂmain ’ ,%V

]

2.4 Connection between Fuster and Imaeda's reqular mappinas

:KQ'Imaeda and M. Imaeda [17] had defined some genesralisations
of analytic functions of an octonionic variable which are similar to
those for guaternionic variables defined and discussed by_R# Fueter [}S] .
Imasda and Imaﬁda [lBJralsq gensralised these concepts over variables
from more general algebras. The Fuster maps and the regular maps
defimed by Imaeda and Imasda actually f&cm disjoint classes (except
for the constant maps, being mambers of both)s However, thers is some

connection between these two classss which we are going to discuss

in this section.
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20401  DEFINITION (dus to K+ Imaeda and M« Imaada) of regular functions?

i ] = (7 'y, - i + 'y :w EEJRH
A mapping + = (FD’ y 1n-l) 9 FD ve + En—l Fn-l ( )

W_ -3 " is called left regular (respectively right ragular) if

[l
Of = 0 (respectively fD = 0) where D = ¥ a (3 j=a%)
j=U

aﬁd' éj Eg+ o) @y = 2 6J,k f

2-4;é"PH9PDSIT;DN . A wapping f 1is both Fuster and regular (in the
sense of Imaeda) if ﬁnd anly if_it is 8 real gnnstantQ

Proof Let f o U (& 'IR™) —> R" be. both lePt regular and

Fuetar in W ilE¥' Df (KD, b owny x )‘ﬁ 0 for (KD, ;r;, Xn-a) E W

M=l
and there exists holumarphic mapping 9 = £ + i M on the relevant

domain, such that f =F_ GP”4H - Equivalently,

.

(9, + 5 a ) (x, y) + 3 ki (x, y))
+Ea (E{x_, y) + X Ln (x y)) =0
j=1 0 =1 Y o
2, '2' 1
(where vy = (xl toarst Kn_l) /2)
| °1.%1 n=l " pel
ar <§Xu + y ‘nXD +_f" + y *nxﬂ) |
2/ | 2 xz % X X
X y=xy/y Xy | :
-1 1 1 L] n=1 "1
+ El(gy T + 81 ( 5 n + v ﬂy) + 8y "5 ‘T]y T see Bn-—l 5 n}‘)
Y Y Y
.‘2 l - l
*ey(e, T+ 8y LB be (—pm n+—-'n)+m+a -D——ﬂ)
2 2 1
A A v
o 2 | 2
X Xo X N 2. YA X g
Nl 1Nl N T LK __l'_'}_:.];
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2 . 2 2

| y x2/y X Y - X 4 /Yy X
| ~ Xq/3 1 Al 1
or gx . - ( 2 n + _-_z"n) - Ny (_--nnﬂzlrl-tﬂumﬂ ui- mﬂ-iény) = (3
0 - Y Y y y
(Here we arse using Cauchy~Riemann relatiorse £, =7 and & =7 )
XD Y Y xD

(l'"l;"l) y2 - (K2,+ l..lii 3 }(2“ ) - '
1 Pl _ _
OII E}: P 3 #rﬂﬂ ny _— D -
O | Y T

And therefors again by Cauchy=-Riemann relatiors betwsen & and N

Therefore for n > 2 we have 7 = 0, which impliss ¢ and thersfore

f are constant maps with constant real valuss. Similarly for right

reguiarity; | A%V
For even dimansipnaannalcan generate regular mappings in the

senas of Imaeda from Fueter mappings. For intersst's sake we state

this copnection below (sep Imaeda [IZ])

'?-4.3.-PRGpDSITIGN

iF F W (¢ [RZE) > [R*2 is a Fuster mapping then

2 .
[¥ fis both left and right requlars (where I =0D= ¥ ‘Jj ) o
J=U

REMARK Note that for the trivial 2-—dimensional case Fuster maps and

Imaeda's reqular maps all coincide with usual holomorphic mappings.



CHAPTER  III

DIFFERENTIAL ANALYSIS OF FUETER AND HYPERCOMPLEX MAPPINGS

3.1 Pseudogroups of fueter and hypercomplex mappings

We will introduce two important classes of real analytic
diffeomorphisms on lHn_u the Fueter pseudogroups and hypercomplex
pseudogroups, Naturally, our chief interest will be in analysing
smogth manifolds modelled on these pseudogroups.

3.1e1

~ (a) Lgtlyék;ﬂannta the pseudogroup of all diffeomorphioms
which are fuster mappings obtained by taking Fueter transform of
holomoxrphio mappings with domains in U and ranges are also in U.
gprnpoéitich 2#1:& ((c) and (d)) guarantees that thess classes form
peeudogroups » )
- (b) Obviously the above classes have higher type generalisations.

Namely,

y%}J =-{ fueter diffeomorphisms which a;;“ Fip) of analytic
méppings.uf p complex variables with domains ang
“rangef both in UF’}
{a') An n~dimensional manifold NE with atlas of coordinates
apph that all the transition fumctions are inéﬁ%‘mill be galled a
nnﬂimanaiﬂnal Fuatﬁr'ménifuld. 0f course, Mr]ia a smooth (in fact

realranalytic)_manifnld; (since all Fueter mappings are clearly

real-analytio).

29
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(b') Any Pn=dimensional manifold Ngn with atlas of coordinates
such that all the transition funntianﬁ are in1/%“p will bhe called a pn-
dimensional Fueter type —~ p manifold. Again any such manifold is cleérly
again real-analytio.

3.1.2

- The family of diffeomorphisms which are restrictions of convergent
Laurent series ((10) as introduced in 2+1.5) with central coefficients will
also form psseudogroups (in dimension 4 and.dimahsinn 8. Menifolds (4 and
8 dimsnsiahal) modelled on such pseudogroups (1584 the coordinate transition
functions are from these pasuﬁngrnups) will be daliad l~dimensional caentral
quaternionic (raspactiualy aqtnninnic) manifolds. Briefly we will call them
'hyperpomplex.manifalds'_(with IH and 0 structure respectively). Of

course, such manifolds ars real analytic.

3.2 Jacobians of Fuetsr and hypercomplex mappings

Ulg start mith'a little algebra ﬂsscribing those matrices in GL(n,{R)'

which will turn out to be the Jdacobian matrices of invertible Fueisr mappingse
Our interest will be in studying the Lie groups and Lis algebras

formed by the Jacnbiana_af Fuster mappings arises from a differential
geometric attempt at determining which smooth manifolds will alloy Fuetér
(or hypercomplex) structure. Nabturally, the idea is to try to see whether
the structure group of the tangent bundle can be reduced to these Lie groups
which we determine. .Tﬁis is uF_nﬂufae just a first step in attacking thE-

qusstion of existence of 'almost Fueter' or ‘almost hypercomplex' structure.
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' » . ' -2 .
3.2»1 DEFINITION -~ for any K = (kl, vovyg K .) E 5" y We consldern

Ml
a subgkoup. of GL {n, IR) .

3 | - ' —
. @ Thky “ky e bR
| 2
Jn(k) H{?\.(a,b’[},k) —. bkl ﬁﬂ(l-kl}ﬂ Dklk2 vouoo lekﬂﬂ'l
2
bk, ckyk, am(l-kz)cu-u okyk 4
j:vl.—nlrt.:t‘.r:-ll1-"Ht:-r-llq-lﬂﬂi.-.-#ﬂ'#.i"ﬂll-l'li_ril"fl.ﬁ#!-ﬁ'l‘""
bk | ek kl ok, K .es a-—(l—k2 Je
L=l Tln-l 2 Nl n=1
ayb,c reals, (a,b) # (0, 0) and a # c }E GL (n, IR) | (1)

3+2.2 PROPOSITION »
' b
(a) N (a4bye,k) = M(k) Ma,byc,l) n(k)

where the 'base~point' (1,0,...,0) in g N~ is identified with 1 and

F

I

Mm{k)

*e e ..
+%x R

-
~
T
bt
Y
N
e’

N being any {n~l1) x {n=2) matrix such that

M(k) is an orthogonal matrix i.e., N(k)t =:N(k)"l .

(b) dst.(h(a,b,c,k)) = (52 + hz) (a = c)n-z.



Proof of (a) o
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M (k) N (ayby0,1) M(Kk) -

= M{k) (a-ﬂt:)In t

= (E-G)In'+ M (k)

=-(a~c)1n +

A (a,b,m,k)

™

F

0 G §) . 0
0 -0 B ocss -0 m{k)®
i - TV TR I T ™ T
I 1] &~ & V¥ O W n & o J e
»; g il - D_I
5 =b O . o
b C 0 oue 0
t
0 0 8 ... 0| nlk)
#U D U L ] U-‘L
' - mul- -"‘"‘b'k
bk, oKy ckyky ere ckik_ 4
3 1
bkz | Dkzkl Dkz v~ E:|=<2 kn-*l
bk K K Kk k k2
el “fnel”1 fpeit2 CKn.1

(3)

(4)
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Progf of (b) . From (a) det (Ma,bycsk)) = det (Ma,b,c,1))
= (az + bz) (a _G)n-Z .

(Also by direct calculation it can be proved that

det (AN(a,b,c,k)) = (a + b ) (a ~ D)nﬂz) | Vi
3.2&@ THEOREM

(é) J _(k) are 3-dimensional commutative Lie subgroups of Gl{n, IR) »
(b) Any tuo such subgroups are isomorphic to each other.

(c) 2 (k) :Jn-("'k) |
(d) For (kil),” ' k(l)) (1) F + km = + (k(z),---.k(z)) '

.:Jn(k(l)){] Jn(k(z)) ={aln: a 75 o, In is the n X n identity matri:-;}. |

-~ Proof of Saz |

Commutativity follows from the fact thab

h(aljblsél:k)?%(ﬂzibziﬂzik) =ﬂh(azsbz!Ggfk);%iai!bltﬂl?k)

= ?\(ﬂ blbz’albz T Dy8ps 838 T 038y =010 - by by ok (5)

and al 7 C,9 8y # 0, implies that aja, - bib, # a,0, + ¢,8, = ¢,0, = byby.

. ' 2 ,
=L ) _.;(.._____L_
Also  Mayb,e k)™ = Mg ;‘:‘ 773 a;_’f"'b , k) (6)
a +b (& +b (a-c) |
A (ac + b2).. -
and a f ¢ implies 55 % 5 > .
a”+h (a~+E }{a-c)

That Jn(k) is a 3~gimensional Lie subgroup is ohvidlus any May but also

proved in 3.3.
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P

Proof of gbﬁ . %(a,b,c,k(l));n—ﬁ>'h(a,b,c,k(Z)) gives the desired lsomorphism.

Proof of (c) & Follows from the definition of Jn (k)
Proof of (d) - Observe that

o060 = 200 s 503,15 ()
-Bonuaraely, lat h(al,bl,cl,k( )) —*%(ﬁzg ;czpk(z)) £ J (k(l))fiﬂ (k(Z)) v

If b ff 0 (.% 5 f'ﬂ) comparing the terms DF h(al,hl,ﬂl,k(l)) and

%(ez,bz,uz’k( )) we get, Either hoth kil) and ki ) are zsro or both
non Zero and for non zZero ki 1) and (2)
2
) (kil))
(k, (% g0
-—7-—5—-(k 5 ) > = (2 = 1
i £ (12
which implies k(l) =+ k (12) and tharaf‘ure by, = + b2, consequently k( )=+ I<( 2)
e
Similarly, if we assume Gl f 1 (n ’ n2 f D) then i )'= 0
(1) (1) _ =« 1) (1)
if _Eind Unly if Bl 1 I — -rlll - len""l i = 0
(2) (2) B £2)  (2)

i
-

if and only if ook, Ky = ~f# Cn K el 1

(1) _ 4 (2)

»

if and only if k£ ) - = 0 and hence by the same argument Kk

| (2) | _ A
Thus for k 74:;; k we have b, = 0 = c, (and therefore b, = 0= {32)-////

S
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'REMARK + Note that in virtus of (c) end (d) of the theorem 3.%.3, the

distinct subgroups are paramstrissd by iPrPQ(lﬁ) (real prﬂjectiua_spaca)-
3.2.4 THEOREM « For any A asb,o,k) € 3 (k) = 3, (=KD (k = (Kypesosk_)E
Sn#? and n i}Z),_and for any point P i$|¢{the 2=plane generated by the

vectors (1,0,0,,44,0) and (U:fkli“”..l kﬁ_*l)j-«i:eal linejﬂ-i(nute, if p =

| -, e ; ) ) RO
(_XU,'XI,.#-, xn*‘l) then xl » kl :. Xz w kz - ey Xn-.l > kn_l)' thara
exists a Fueter mapping f = (FU,--r,fn_l) (i.e., there exists holomorphic
mapping @ with f =F_ (¢)) such that

dp,f = [?ac (Fl] o = A (a,bs0,k)

*
&

Proof . h.(a,b,c,k)‘slﬂn(k)
Let p = (pU, plkll.a-, plk )
0

M=l

We may assume p,

(Since if p; < 0 ue can replace py by = pyy kK by =k and b by =b). |

| a8 =b
Consider the matrix 'b J = ?\*(a :b)
a

There exists a complex analytig¢ function @ = ¢ + i defined in a neighbour~

hood D of (pgy p,) in U to © uith NP s p,} = (a~c)p; such that

[Fee(@)] = N(ayb)

Cunsider thé Fuetsr function F ==Fn(¢)
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Then,
| E)UFD . C)nv-lfﬂ ]
[Jan(f‘)] =l dgfy .. 200 dpafy |7
P
ng’n L o an__lfn_lJ
L, o
P
M 1
Ko ‘ X | ’ b S
n “n ° -J; ""'n 2 _"2" A w ..'n B J:n}-
Y Xo ¥ Xg Y Xg Y
' Z S KXo X . X |
M x _x ' .
M 1 .. N 172 n | 1 ned n
o -y o o N - 'y -
ﬂxa v yz(ﬂy y) v _F-( v y) -—F—(ﬂy y)
. . ) . | .
X XX ‘ o : ' ‘ X -
a e Py _-n o o PR u-——_.p{n oo
Y 7y v) (y 7Yy 2y ")
e Lo V Y
i L S e T T T T U P T
1 | . f ‘ N | 2 .
| X% n-l xn-l N ' xn-l ‘Q_ n
jnx"“?r_ 61 ”") '-15-( y_";) Y. @7 y}+';'
! y y y
P
= ?}(a,b,c,k) ; v/

b
»

3.2.5  THEOREM
(a) de;: ( [Jac: Fn(CP)]

) (7.1) datof[jac((ﬂ)} D’y)

(Kﬂ,xl,n-.,xn l)
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o ap
where P =& 4+ N and y = (xi T xzn-l)

#0.

(_b) Fueter and hypercomplex {with |[H or @ strusture)} manifolds are

orisntables
Proof of (a) + det [ Jac rnw)] )y
- (}(U’xlitﬂa,xnul)
I X X X
ny -'nx“' """!"' %A ﬂ # -J]i
g Y Xo Y
| X o % 2 X ‘
= det Mo = (T} = &) vou SN

( g Y 20y y) y 2 ( v y) )

b Y
Fl**"!ﬂ'ﬂ'ﬂﬂ-n-r«auuuvuuuunuaq-ayguﬂiunu;nﬂ#in#nalﬂlyurlnﬂﬁT
ii‘i;dHﬂpvulubﬂliﬁ;u'ﬂulul.-*llrltlf..-#ﬂ-iliﬂﬂi-l#ﬂ;izai-rllliupn'u;.;q
n , -0 () A “21(7] -1y 1
Xg Y Y Y Y Y Y

L | Y Y 3 (x_ay)
L 1124

= det(Ma,b,c,k))

Y 0
ﬂ(X'; )
c =T (XU' Y) ““_"E_Li
= (52 + bz) (a - n)n-z = (7_3_)11 2 dot ( Jac((P)] ) .

Proof of (b) . From (a) the determinants of the Jacobian matrices of the
transition mappings of Fuetsr manifolds are positive, since T is positive-
Also, whenever the hypercomplex mapping is & diffeomorphism (egquiva-

lently 1lim % 5‘ 0) the determinant is again positive, since in this ocase

y 0

ﬁ is evan. We are dans. . | : ////
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3.2.6. For type-=Z2 Fueter transformation F'n

}(ﬂrb:ﬂsdrﬁrfrgihspQQrk!m) =

(2)

the Jacobians are

a c -K,8 e g ~K, 8 =0 .-
2 d KT —myh ~K,T 0 o
2
kla klg a-(l—kl)p kimlp_ klkzp klmzq .o
nf oo kb ddlenpda migb  mma g
k€ kég klkzp mlkzc ae(l—kg)p kﬁTZF .o
oMb kgmb  mma  gmb  d=(lemp)g ..
| 1 Knoa8 KiKaaP o mka® KPP Mkge e
mn;_l‘?‘ rﬂn'__lh klmn-lb m lmﬂ_iq kzmn-lb mzmn_iq -

Fle2

of the torm
"knrla -mnrig
”knﬂif- -mnfgh |
klknflp klmn-lc {
mlk__lb mlmnflq
2"n-1P 210
m,K_ 3D mam 39 . !
a—(l—kz- Ip k. m. c
o=l n=-1 n-i
kﬁ_lmn_lb d={ l-.-mi_l)q i

uhere k,; m €8, a to g being real numbers. (This is a 2n x 2n matrix of course.)

Here,

det (h(aﬂbicidieIflgihiplq!k!m))‘

((af:!----l:ar:)2 + (eh-gf')z) (a-ﬂ)n"2 (d-CI)n-Q .

sa-

(7)

(8)
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The above result for Jacobians of higher type Fuster mapping can

also be thought of in a way analogus to the one variable case treated just

before. We have,

h(a!b!cjdialfiglh!plqika)

A 0 0 ... 01 ' C -8 0 ... O
= 0 AL O ... O +*M(k,m) B C 0 ... O
R T I N A SR I I L b Bl R e b r ey
T v S g o o w B g M ¥ w9 g0 o oa om ok ! N B TR WU TR B - T IR R
{ 0 0 ...AC 0 4 d wo 0
- ot e —
I %
A 0 ... O
= (ko) = mlkym)
B A 0 ... 0] |
0 0 A«l . g
o
0 g @0 A=G
Jon . v
Notation « 0O denote the appropriate sized zero matrix
> - ot e :
a @ 8 9 fr
HGI‘B, A = , B = | . £ =
h d f h b
. - - A |
L a t 5oa {
| 0 0 ‘oa 0
and M(k,m) = K1
D D ... 0
Knul .

b

N(k,m)t



40

vhers kK = (kl"*"knu“)’ W = (ml"'“’mnwl)’ 1= E

o

For 3 = lyeergn=l o

-
tl
O

m
L 3
In analogy with the proof of (a) of Proposition 3.2.2 it therefors

seams justifiable to denote Nayb,cydyeyf ygeh,pssk,m) by hz(H,B,E,K)

whare A,;B,C arg as abovs, and
K 0 kz D vee K 0
K = (I’( aduted K ) = / l . & l
11 "=l & 0 m 0 m s 0 m
l 2 e nﬂl
= ((kyoeeeakyg)s (mppeeey o)) €877 % 8™,

Alaso denote M({k,m) by NE(K) (in analogy with ™M™{k) seen in 3.2.2(a)).

Then__
% | |
M (R8,CK) = ML(K) A(AB,C,L") M, (K)° (11)
" 1 000 ... 0 DY
where, 1 = .
0100 ... 0 0of

Now (8) follows immediately.

Utilising the above convenient notation for these large matrices, it
is egasy ta prove in analogy with theoreh 3.2.3 the following p
3.2.7. THEOREM & |

-~ (a) 3, (K) ==,{}2(H,B,C,K) . at least one of A,B is nop-singular

and A - C nonsingular ;} v
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(here A,B,C are as in (10).) are (2u22 + 2)~dimensional subgroups of

GL{(2n, [R) for sach fixed K.

(b) Any two such subgroups ars isomorphic to each othsr.

(6) 3, (K) = 3, (=)

() Far k) g, g wWyn 3, (K27

A 0 ... O
UA R 0

= g Trreemements . A any nonsingular (2 x 2) rsal matrix }'
00 .. A

*-
L]

3.2.7 EDHDLLAHY1: The family of Lis subgroups JZnCK) as K variss is

parametrised by the quotient of tha % Bnm2 moduio the involution o of -

2
(Sn-Q) on itself where a(K) = -~ K.
REMARK « For higher typs-~p fueter mappings the Lie groups of invertibls
Jacobians are turning out to be non-cammutative subgroups of GL{pn, IR)s

We have been showing the calculation for p =2 to keep notational

simplicity. |
3.3 _The Lie algsbra of the Lis groups of Jacobians
3D al

Let us first deal with the usual type~l Fuster mappings Fh(¢) ’

Let us set,; for any fixed k € s”‘?, X . Jn(k) ——r > IR" , to be the mepping »

NMayhyo k) => (a,b,c).
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X identifies Jn(k) as the opan subset of IR given by,{(a,b,c)la IR

(a,h)_f_(u, 0), & f'G-; -.. The multiplication in Jﬁ(k) is equivalent to

3 3
the mapping « [RT X IR7 ==t lR; glven by .

((aysby007)s (2)9bp90))) 1> (28, ~ bybys &rby * by3y, ajoptera, - o0
- byb,) (11)

This is clsarly C“?_and A8 ybyo k) frmmem> h(a,b,c,k)_l is squiualant to

. . .3
the mepping « "R w=> Ls giusn by (8ybyC) leme> (s 2 B —?M)s
a +b 8

246" (a°+b% ) amo)
(whers 53 ={(a,b,o) £ R° - (a,b) ¥ (0,0), a # o } - (12)

which i8 also clearly c® B

o

REMARK + This shows directly that Jn(k) is a 3-dimensional Lie subgroup
of GL(n, [R) for svery fixed Kk € Snm2 » The group structurs is'inds—
pandent of Kk by equations {1l) and (12) so that it is no surprise that all

the 3n(k) were isomorphic to sach other.

Notation « For the calculation below ws will set (a,b,c) = (xl, xz, xz) and

ai = c)/ ()Xi f‘_c:r convenience of notation.

We now calculate axplinitly the Lie algebra L(J (k)) of the Lis
Qroup _:Jn(k). Fix k. Let T (:1 (k)) = <al,ez,53 :’ e, ={(dy; ) } be the
tangent space of Jn(k) at the identity e = N(1,0,0,k).

Let c{f (Jn(k)) 'be the all left invarient vector fields. Then,
L (3,000 = Cxpy s X, Ay Lt (), 3 1= 1,2,3)
Heye.,th is lefi~translation by A in the group. (See Brickell and Clark

5, p.219] for notation.)
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The vector fields ~Xl’ Xz, XS arg given at the point g & Bn(k)_by

3

Ol = 2 (0;(<" a L))y (9y)

so that if g h(al,b 9Cy k) than,

1
(xi) ( ai(a '*"L'J x )) (C)l) T ( (') (8 A ‘HIJ X )) (C)g)

+ (0, ((al-cl)x + nlxl - blx ), (C)S)g (13)
Therefors,
(), = a0 dy) * 5(9,), *+ ey(dy)
(), = =by(d;) + s () = 1(3g),
(5), = (ay =0y) (3

1 2 2
Xy = %05+ % gy + X7 g
. _ 2 1 . _ 2 |
_,1 3
X:} -— (X ey }'{ )C)S

Since, Jn(k) is commutative, of course all Lis backsets vanish«

332

We procesd to the type~2 Lie groups JZH(K)EEGL(Zn, IR)» For

-2

=2 Sn_

»

(k’m) € 3 Jzn(k'm‘) "—-"{?\(a,b,c,d,e,f‘,g,hm,q,k,m) ”

a#p, d# q, {(ad, eh) # (bo, gF)} < 6L(2n, IR} is a nan-—cﬂmmutatiwa Lie

’

group with multiplication as follous
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N ﬂlihl 70y ’dl’_al ’Fll’gl_'hl’pl’ql yKgm ) o A ?2 s, €y :dz A ’FZ $95 1) Py ,qz,k,m)
_ i i .
Majayte by=e18y=afpr B8 Td by =fo)yfar 810%0d,7819,70 My s
o d of O - Yo f +o. g + +
by8y Uy 0y F 19,01y s 818,76, Py 0180 by e ByByFd Fo¥Ty3, %y by s

ayg,*e,hy*s,0,%g, 4, bygy*dyh 0, Thdy, Cy by -0 0,0, TE, Pyt
Py PyPys B10p~F 9NNyt dyg)¥aydp =419, 4 Kem) (15)

And the Lie algsebra of any of the Lie groups is

L(Jn(k,m)) = <xl,...,.,xm, [+] > uwhere
1 2 | 9
X1=X_C)l+x dzf?<5c)5+?{ﬁc)6+_xc)g
3 4 7 B 3
= X c)l+xc32+xc)5+x c)6+>cc)g

2 2 5 - 2

N 4 T 8 10
X =B =xBd +xd + KD -5,
5 1 ? 5 6 g
7 : 3 Ay 7
- 5 1 2 5
X,?-I-—x O =% Q4 * X c),?+x dg = % 91g
4y B 3 4, 8
Xa-——x (‘)El-x (94'1'}{ ()7+X dB .X C)lﬂ
1 O
)(9--()( 'x)ag

2107 (x* - xlu)‘aln ' _ ' (16)
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and E":L'Xs] = [ xS,xﬂ = [x.?,xS] = E}‘B’XTJ = X,
[xﬁ,xll = [xa,xz] = [X%g] = %, o] =%
[X:L’X'?] = :><5,x3] = [’xs g = ["7 Xy = %,
|'_'><4,x2J = :xﬁ,xE] = X
{xz ,x,?: = :xs,xz] = X~ X%
[Xs’x7: = A
[xz,xs] = Xyt Xyg = X = Xg

B

[ﬁi,Xi] Q uhﬁnauer [xi,Xj] or [Xj,Xi} {17}
are hot amongst the above.,

- The calculationsifcr_the results ahove are of course more cumbersame
byt exactly similar to the caloulations shown in 3.3.1.
3.4 Uuasicanformity of Fuster mappings

We have obtained Fueter mappings from holomorphic mappings. Locally

invertible holomorphlo mappings have the famous classic property of confors-
mality following from the Cauchy-Riemann equatlons. It is natural therafaore
to investigate to uwhat degree the Fuéter mappings are conformal or fail to
be conformals. This is all the more natural since we saw that some degree of
conformality is present in Fueter and hypercomplex mappings, indeed the
genepalissd_Cauchy;ﬁismannlreiatinns - 1n particular (c) of Theorem 2,31
asgserted that real part ndnstant level surfaces are -orthogonal to each of

the 'imaginary! part constancy level surfaces for Fueter (hypercomplex)

mappiﬁgﬁ .
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The correct measure of conformality in high dimensions is Ahlfors'

noticon of quasiconformality defined below. It is to bs recalled that in

>3

[t

dimension n the only conformal maps are the Mdbius transformations-.
REMARK ! A Mobius (pmnfqrmal) transformation (in dimensions nwz;S) may
not be a Fuster mapping. Indeed even the translation VU tee» YV + b,

b not purely real, alresady fails to be a Fuster mapping.

3.4.1 DEFINITION ¢ (due to Ahlfors [1]) Consider a differentiable

mapping
fFoo (< IRM) =3 IR"
Define, Sf = E'(Df + (Df}7) -';Tr(DF)In (1B

where Of is the Jacoblan matrix of § and Te{Df) = Trace of DF

{1511 = (Sum of the sguares of the entries of Sf)l/2 v Then f is
said to be K~quasiconfaormal if (l/nl/b) | ISf 1] 5.K{ A mapping is

called quaéicunfurmal if it is K=~gquasiconformal for soma K < @ .

| Fn(¢) is a Fuster mapping.

3.4.2 PROPDSITION « Suppose f

f is K~guasiconformal if lﬂy -Tl/y l < 2K (19)

gver the domain of ¢ = § + iN ,

bl

Proof -«
-~ - .
sf =(1-&n =D 0 0 -0 -
2 2./ | 'ﬂ_ . ._ﬂ, ﬁ;‘_ k _ﬂ, f
0 (kq~= ﬂﬁ)my'" y_) klkz(ﬂy y) - Kk n-l(ny ,f.';
| Ly 2B ~Dy e Kk M =)
0 ki =9 (g D= Peee Kokeally =y
| v i
- ,ﬂ' -n o, kz o g")(ﬂ -




Therefare,
2
I of it =
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T 742
- - 4 =
m, -3 !ﬂ(l =)
2 2.2 2 2
+%(k1 ~ 5t kgl el ) f
pi 2 2.2 2
+ I e R LR - N 200 BT U SRS T VI TS N VI N TR RS P T
+ R AR R P RS SRR L
2 2 2 g@}]
+i(klkn-l) T (kzkn-—l) to +(kn-l - n)
o2 | 22 (,2 22, .2 2 ]
m, =7 =B+ {0 =B i) (-1 )]
+ T R N T R I RPN S PR - TP PR VRN U R T SR R AP TR R
+ w‘.;;.ir;.-f:...q,.,.-lﬂ#luukuﬂﬂ-lffﬂ'ﬂ#iliiﬂﬁf
2 2.2 ., 2 7, '}
+g(kn-l - H Ky (1= kn-—l)§ |

o onef 2.2 . 4 2 2

o

' 2
R S L)
n

N2 {, A, .4 _4 2., i
(ﬂy - ';,") [l“’ n tnoe nz n (kl+“'+kn—l) * (k1+ +kn—li}
032 (; LA, A _4
mywy)(l =+ = == 1)

(21)
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Hence,

1/2 o - 1/2 v L __7.1. L tﬂ e )
(1/n*7%) nsei = (2n - &) n tny -l <3 n, -of o (22)
The result follows: | /4

3 .43 CORDLLARY « Any Fueter mapping is quasiconformal an any

. relatively compact subdomainv

A suitabls K can bs determined from the suprsmum of

tﬂy -1 /Yy l over the subdnmain' | | W



CHAPTER IV

COMPACT FUETER AND HYPERCOMPLEX MANIFOLDS

In this chapter we start to implement the programme of charac

terising hypercomplex and Fueter manifolds topologically and analytically
by utilising our undsrstanding of the character of the ¢lasses :of (Fueter
and ~hyparcomplex mapaings#tnmt wsﬂhaqefaahieuedaf%&m;thafprauiuus chaptexrs s
We define and study pseudogroups of Fuster and hypercomplex '
diffeomarphismsu  A 4~dimensional (or B=dimensional) manifold modesled
“on these *Fueter pseudogroups' turns out to be a guaternionic(raspectively
octonionic) manifold-
 We characterise compact Fueter manifolds as bsing products of
compact Riemann surfaces with appropriate dimensicnal spheres. 1t then
transpires that a connected compact quatsrpionic (iH) (respectively
octonionic (@) )) manifold 1X',Jminus a fipite number of circles (its
'real set'), is the orientation double: uouaringluf the product Y X EPZ R
H.ﬁrespactiyely er_lpﬁ), where Y 18 a copnnected surface squipped with
a canonical copformal structure and p" ie n-dimensinnai real projective
spaces A corollary is thﬁf the unly simply connected compact menifolds

. ' 2
which can allow IH (rsapectiue;y-a)) structure are 54 and 82 X 9

| and 52 % 55_), Sea Nag, Hillman and Datta [?b,] ‘

(respectively S
Marchiafava [le and Salamon [25-} have studied very closely

related classes of mapifolds by differential geometric methods. They

A9



discovered characterisation theorems similar to ours. We explain the
connection betwsen their structures and ours-

4.1 Characterisation of Fuster Mapifolds

08 Ty 2 O Mg el o

||
Recall the identification IR" = " ~ {xD - axis } with

U X g N2 by the mapping;{

X, X, X
) > (kg + dyy (5 F e, ) e U xs

(}( + Elx towet ©
Y y
(1)

0 1 nulxnnl

where 'y'= (xi + sua + xi___l)l/2 (positive sguare rnmt);

Us will think of U, =V x {0}, for any 0 € 5" , as the
rotated position of a standard upper half-~plane 'U'x*{(l, Oy »evy D)}
.

in R The axis of rotation is of course the Xqmaxis » e can

therefors identify any U, with V.

From -the Revolution principle (see 2.2.1) it now follouws

immediately that for any n~dimensional Fueter manifodd X there is an
intrinaicallg defined C% gubmersion

g 3 Xl , (2)
i.ev g(x) =0 determines the half-plane U, in which x € X 1ies with

respect to any Fuster coordinats mhart around X. By the Revolution

principle the mapping g is wall-defined and eaqh fibre of q has the

structure of a l-dimensional compleX manifeld. Note that neighbouring
fibres have canonical local (bihglomorphic) identifications determined
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aimply by the Fueter structure of X. Indsed the local identifications
are obtained by identifying Q& wi th 'Q&,.(by rotation around the
xg~axie) in the image (in 'IR™ of any.Fueter chart. Again because of
Revolution principle the identificaetions do not depend on the Fueter
chart used, (charts will always be required to have connected domains) s

Clearly if X 1ls compact then the fibre of g is a pcompact
Riemann surface R, and g is_allcuu fibre bundle (being a proper
aubmeraion)- 8y standard compactness arguments we can then show that
there are canonical global biholomorphic identifications between any
two fibres of ¢g. We thersfore derive -
delol THEUREN.: Any compact nedimensimnal*FuetEr manifold X is
Fueter=-category isomorphic to the product of a compact Riemann surface
R with Sn"?1; (In fact, R X% 5“’2 has a canonical Fueter structure
for any Riemann surface R in an obvious way. We remark that if

2 =R ()

R =:‘U‘/I3, G an arbitrary Fuchsian group, then R X 5
ag a Fueter manifold« G can be allowed to possess elliptic slements,
and svery Rismann surface R tﬁen cocurs asi'U]E);

Details of the proof of the above Theorem are omitted because
they are exactly analogous to, (but much simpler than), the proofs for
the more subtle hypercomplex manifold :esults which we explain below.
In fact the proofs for the hypercnmplex.caéesljuat go through verbatim

oXcept that we do not have to worry about the '‘resl set.''
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4.2 LCharacterisation of hypercomplex manifolds

Recall that any Fueter or hypercomplex manifold is orientable
(ses 3.2.5(b)).
Thus if we choose a fixsd orientation for IRa any H mapifold

then gets a canonical orientation

4.2.1  DEFINITION . The set of points in a hypercomplex manifold X
whqse image under any hypercomplex chart is on the real ('xt});axq.a is a
closed l-dimensional submanifold of X called its 'veal set! p. =D .

X
Clearly, if X 1s compact ﬁx je a finite union of cirrtes

smoothly embedded in X.

Now, any central |H or  Laurent series will map any 2~plane
containing the xDIr-axia intd ltsalf ; 80y Wsing the faots for F4((»°) y
(Revolution principle), we canl underatand @ |IH or () Laurent series
function as a 'function of revolution'! cbtained by revolving a complex

analytic function around the resl axis. 2-planes in R" through X,

s A

axis are parametrised by the real projective space P~ , so on the

hypercomp lex manif'ﬁiid X we can define a naturel ¢® submersion,

(in analogy with (2)),

g o X.-px s -‘F‘nﬂz (n=40ox8) ' | (3)

A2 .2 EXAMPLE ¢ Let X = 84 = IH% U {m} » We can give this a

e il ot e g i i -l

IH-stTucture analogous to the complex structure of the Rismann sphere,

_ | 1
by assigning the ldentity chart on 184 and obtaining V2 7 98

L . 4 |
the transition function to the obvious chart covering (IR = qrigin)

Uim}-
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Notice P 1is then the 'real circle! { xD-axis} N { mj and

. B h o4 2
the mapping q « X = P IR™ -~ 1P is precisely the 2nd -~ component

el

of the ldentification mapping (1) followsd by tha_stancla.rd double
covering 7 . 52 - IF?E_ + The fibres of g are two disjoint half~planes.
(.‘3B has similar octonionic description).
' Thus §° is quaternionic projective space lPl( )

Note that for g to be well~defined we must b’é mapping to IF'2 '
and not to 52 : because -if (U, P) is a IH=chart on X then so is
(Vy «®); and the map @ V V =~ _'lﬂé U x 54 assigns the 5% values
antippdal to those determined by «§ + V = R* Notice further that .
the uppsr haif-plane element assigned by ¢ +to any X € U(IC- X) is the
reflection across the y=-axis (in U} of the U-element associated to X
by = .
4.2.3 THEOREM : Let X be a connected compact hypercomplsx manifold

with resal set £ . Then

(a) g : X ﬁ«a‘vlij'“*""_2 (n=4 for IH, 8 for O ) as defined in (3_).
ie a C© fibre bundle which is not globally triuiali,_ Lat the flbrse
g_l (k) for any k € iPn-z be donated X(k) (& X ~P).

(b) X(k) is an orientable surface with at most two componments. It

has & canonical conformal structure induced by the hypercemplex structure

0f X
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(c) The clogurs ?Cm of X(k) in X is precisely X(k) U R
(for all k& 1p™%). X(k) is itself ﬁrientabla, and if P is none
empty then YGT)' is connected.

(d)

transition functions are holomorphic ar conjugate~holomorphic) and

I

| X(L:) 1s a compact surface with a conformal structure, (i.e.

there is a global conformal identification of X(k) with X(kT) fox
all k' in a neighbourhood of k. These identificabtions are determiped
by the hypercomplex structure of X and act as the identity when
restricted to ﬁ.
Proof - We deal only with the IH=-case since now new ideas come i.n for
d »

First notice that q is surjactiﬁe; Indeed, if - P is empty then
g being submersive and X being compact says g dis onte. If P has =
point £ in it thén any .nhant' ¢ around £ will map to a &-—dimensinnal
open neighbourhood of @(&), (P(¢) is on xD-a'xis), and already every
2-plane is intersected :_Bn g 1is onto- |

Note that the last argurﬁant shows that 'eacn-poiint_ of P is a
limit point of every fibre g“l(k), ‘and then the first part of ()

follows easilye.

_ Cunsidér noY any shart (Y, qi‘)', VC X 9 =assigns tg eagh point

of U-;ﬂ' a paint in thZbEU X 5% (.racall'(l))a Thus to any

| 5
« £ Y0 , ¢ assigns ap element of U and ap element of 8 « Ue denote
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the map 9 restricted to (V-P)A X{k) by @(k), {k & le) « Wa can
think of ®(k} as a chart on a small piece of X(k), mapping it to VU ,
(by cutting down the size of we may assume {(V-P)N X{k) is
connected ~ so (k) maps to exactly one half-plape). If {u, WV ) is
another chart arcund x € X-P %then ‘,V ‘assigns to X either the same
SZ‘! ~ yalue or the opposite 52.~ualua to that assigned by @ . Since the
hypercomplexX central Lauresnt seriss are essentially Fusﬁer mappings We
sea from the fundamantal 'Reyolution principle! tha£ ®(k) and Y (k)

are holomorphically related near X € X(k) if the 52

and are anti~holomorphically related if the _Sz-ualuas ware antip.dal.

~saluss coincided,

In any cass X(k) has a conformal structure, which, by Ltéing
charts at points of P also, clearly extends to a conformal structure
an all of m .

Nm_u lat us explain the local conformal identification of fibres-
As for Fueter manif’ﬂlds, these come by using charts and rotating half=
nlanes to fall on one another. Let (v, ®) be a 'small chart! on X
with a 'small' image in ‘ lRa'_ , 10+ O(V) does not intersect any psir
of opposite half=planes. In that case

(k' )™ o O(k) o (8
for nearby values of k and lt:1 will be @ conformal idantificatinn of

| . |
a plece of X(k) with a piece of X(k ) - Notice that if Wg use &

differant chart (LLI,\IJ ) the identifications ars still the aame »



56

W)™ oy (1) =20') 0 0k") 0¥ () oy (k) 0 9k 0 0(k)
= 9k )" ach(k ) oy(k )™ T o ¥ (k) o @(K)™] 0 9(k)
-‘ﬁ(k ) o ¢(k) (5
because the square~bracketed mappings cencel each other off by the revo-
lution principle.
Thus, & point Xq BL_X(k)_ is identifised with a point Xo £ X(kl)

! A
{k near k) precisely uhen the U-values assigned to X, and X, are the

same_via any small chart containing both x, and Xy in its domain-

1
It is obvious that X(k) can now be copformally identified with X(k )

vl

" (for k! 4in a small neighbourhood of k in IF’2) by extending unese |
canonical identificatiocns to R, the extension being the identity on R
(Since 'f('lﬂ' is compact there is no problem in using 2 finite number of
small hypercomplex charts to cover X{k), and thus get the conformal |
mappings globally from all of X(k) to aach X(k') , for K suff‘iciantly_
near to k) '

Since we have now got a canonical may to map the fibre X(k) onto

2
X(k') , for all k' in a small naighbuurhcnd of k in IP ) it is

clear that we have lgcal trs.u:.alitz ; and so ¢ is & C f‘ibm bundle -

2
The bundle capnot be globally tpivial sincs a product Y X IP_ |

.G,Hnnnt, be orientabls for any surface Y whatsosvers Since X-P is

| orientable we also s.se that the fibre X(k) must be orientable ainge |

the local triviality of the bundle makes X(k) x (small 2~disc) an open
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subset of the orisntable X0 . This says nothing, however yat, for
orientability of the compact surface X(K) = X(k) U P , (8.g- a Klein

bottle minus a circle can ba an annulus) » The fibre homotopy exact

&

sequence for g «

PR nl.(x - P) -_} 7y .( lpz) > Tgp (X(K)) > (X =Py > .

shows immediatalylth}at' X{k) has at most twa companents -

To complete the proof of Theorem 4.2.3 we need to prove the

rather subtle assertions of part (ec). We abstract this situation into
the following topological proposition-
4.2.4 PROPOSITION « Let X be a connected oriented blnéed smow th
A-manifold with a non~empty smooth closed l-submanifold P such that
there is a bundle projection g + X ~ P -brle , With fibre F » OStippose
that for sach Kk € IP2 the closure X(K) in X of the fibre g”l(k) =
#(k) is X(k) UP , and is a closed 2-submanifold in X+ Then

(i) P is 2~sided in X(k) ,

(i) m is orientable ,

(441) m is c..c:nnecte.d
Note . (ii) =» (i) of course.

Proof - Since X and P are nriént_abl’e , the normal bundle of P in

X is orientable and therefore trivial . a0 P hgs a closed p:p'nduct

3

neighbourhood N .Ihameumarphim (£5) to P x D | in X o l{Ja may (Qither' .

using the geometry of our hypsrcomplex X or by_ tupnlngy) choose N



58

50 that 9|x.-fnfﬂ/' is still = bundle projections The new fibre G

is then a surface with boundary, intGACF .

Ly .
if PI(ﬁS ) is a component of P , and f, = pl X 52 is the

corresponding component of oN, the restrictiun le to IFJ2 is again

' 1 the fibre of
2 fibre bundle« The fibre homotopy exact sequence says that g|_m has

A

aither 1 or 2 components ~ necessarily circlass

But, in fact the Pibre must have 2 (circle) components because

the total space of any Sl;-bundla QVer IP2

1

can never be Sl % _52@{41) '

(The same principle holds for S x 8" fibering over IP" , n2 2 .

-

The n =6 case ia needed for ogtanionic manifolds ‘)

Hence ths fibre of -glx*Fﬁf/V , say G(k) above any k € IP2 )
has boundary QG(k) =P x{-;l.,l} g-

Again by the homotopy exact sequence we ses thal 'ﬂl(!“ll) meps

trivially to ﬂ.‘l( le) , therefore g|m- factors through the double

covering 7 ‘ 52 m} IF:'2 via a map B :_ml - 52. which is itself a

| 2
bundle map with fibre Sl . Now, the only Sl—bundle over S with

total space homeomorphic to Sl X 527 is the trivial bundls, S0 We may

1 2 - -
choose a homeomorphism 'hl ’ Nl% 5" x §° such that € = pr,0 hl End
so that g‘ml =7 o pr, 0 hl ’ (pr2 _.is prujantim _tn the sacond fPactor |
of GGUESE)nI

We make this choice of homeomorphism hj' for each companent Dj

of P , and nleérly we can 'radially’ extend the union of all the hj
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X . 3
to a homeomorphism H - M > P x D” ., so that H{P) =P x { _B} and
2 Tl T, : 3
g‘lm_p is 7o RT,0 H uwhers PT, P x (D ~ {ﬂ}) ) -52 projects
onto the second factor and then normalizes.

We have therefore proved that 9 |- p is bundle equivalent to
S L

aunion of copies of the obvious bundle Sl_x {DE w 4 0F) - P2 .
1t follows that the closure in N of any fibre of Q!N n 1is

- homeomorphic to P x [—l, ;L] » @nd hence that for any k € |I11‘2 the

circles P are two-sided in X(K) = G(k) U P x [-l,]] .

We cjp not yet know that the annuli P x E-—l,lj are attached to
G(k) so as to produce an orientable X k-, but this can now ba derived
as follows.

Note first that an orientation for a disc neighbourhood of k

\ 2 .
in [P determines a transversse orientation of the normal bundle of

G(k) in. X = intN, and in particular of 'gG(kK} in ON » It will
suffice to check that the orientatiuns determined in this w'ay by
T o PT, :.Sl X 82 - |F'2 on _51 X.{D’} 'and 51 x{_-ﬁf _(héra {’J, -ﬂ} -
= Ir"l(k)) Exfand compatibly ..tu 51 x &, .whara_ 5 _is t_ha diameter in
|FI3 connecting 0 and ~0 _: . . . |
Nowy an orientation on the segment 5 must point invard at_

one end and outwards at the other en&, 'sn.ilt' determines opposing transe
varse ariantatiun& ab#ut g 8pd -U- ’ B_n_nmrsely, since the covering.

involution of 52 OVeTr ' |P2 18 orientation ra'usraing, the .t_ranaueras



60

orientations we had induced at O and ~0 from a local orisntation

B :
around K & {P° must again be opposite, =~ so they give rise to &

consistent orientation of the diameter & « (It is erucisal that we are
daaling with svep dimensionsl projective gpaces here }) .

Thus, G(k) uwes orientabls (being within the orisntable X(k),
and we now see that the orientation extends over the attached snnuli,

proving X{k 3 is orientable.
i's prove z s is conngcted by constructing another bundla over

"
[P~ with closed fibre by & process analogous both to surgery and to

blowing~up. Let B be ths mapping cylinder of the covering 7t p 52‘} IPZ >

Then B is a J~manifold with boundary 52 and it fibres over lﬂz

with fibre —l,%] . In fact B is homeomorphic to a closed regular

neighbourhood of ‘|P in IP3 , and thersfore to (|F‘3 - intug) v Lat

2
W= (X - inth) UP x B - Then Y 4is orientable and it fibres over P

o . o ~

with fibre F =G U i_x [}finll.' Simoe W is orientable f is too
P x {=~1,1 | |
(just as in the proof’ for orientability of X{k}). UWe cannot straight-

away ldentify Gl with X(K) =1F but from the_cnnstructinn we see that

they have the same number of components (and indeed FAF if and. onl_y

if F 1is orieptable, which we know it ig) «

To ses that T 3 and hence XZk; y 1s nnnnected we note that B

contains @ loop projecting to the non—triU1al Elsmant in 7, (IP )

1]} alao has such a lnup End n (lll)-‘HI (IP )
o~
is surjectiueu By the Fibre hnmntapy aaquenca, therafﬂra, F ls

Thereforse, since P f'¢,

connected- | _
This Bﬂmplétas Proposition 4+2-4 and Theorem 4123 "
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Our prime example of manifolds with hypercomplex structure we

i

Will describe in the next -
4:2.5 PROPOSITION + Let G he torsion~free Fuchsian group cperating
on U, let Y be the Riemann surface U/G , and Sb =1 U L UT be
the full region of discontinuity for G (on JE) . {Here L is the
lower half-~plane and JEF is the portion (pnssibly empty) of JSU on

IR u.{ cu}-) . Then X = Xe = I ERT 'b"/rn(c) is a manifold with (central)
hypsrcnmplsx structure, rsal set P being the ideal boundary of Y ,
and (uith previous terminology) X(k) =U/G U LG =Y U (HY); ang

XTKT =J2/6 = the Schottky double of Y .

| , - aztb a- b
Proof v This is clear since if f(z) = g € G, (c d)E SLZ(IH),
+ | , |
then _Fn(f) (V) = 'EH y V being |H or §) variabls + Clearly theze
give transitions in the allowed pseudogroup (éxpand as Laurent saries

around ~d/o) - | 1/

XB will be cnmpast precisely mhent’b/G is compact:
For a finer description of cumpact-ﬁypercomplax manifolds uwe nesd
to understand. the 'mﬁnodramy!,of the local ideﬁtiF?ing maPS_bﬁtwaen the
fibres of g : i-g« 1if we takéﬁa composition uf a finite chaiq of thé
identifying maps between nearby fibras;.aay,  o .
X(Kk) => x(kl) - x(k,z) > ve & K(kn) ~2 X(k) , then uhat will the final
conformal automorphism of X(k) look like ? (The idantiFiaatibﬁa aluays

e#tsnd-tu X{k) by the identity on P , and they aluays
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praserve angles but not nscassarily orientations) » X  is asauméd 40
be & compact connected _IH(QJ) manifold in all thﬁt follows.
I LEMMA » The composition of any finite chain of the canaonical
mappings batween nearby fibres of ¢ always produces on any  X{k)
aither the identity or a certain camonical fixed-point frea
involution T{k) .
Eﬁﬂﬂﬂﬁ.:"t(k) extends to X(k) by the identity on P , and in fact
the proof following shows that near © ~ T(k) is precisely guaternion
(octonion) conjugations Thus, Lf P  is non-smpbty then T(k) is
orientation reversing antl-conformal on the conneoted compact Riemann
surface ':E'(TZ)' . . .
Progf ~ Cansider ap equivalence relation. on X ~ P defined as
fallows Xy y € XeP are ~y esquivalent if there exists a finite
gsaquence of points Xy = Xy xz,n--,xﬁ =y such that sach consecutive
pair Ki’ xi+1. are in the (gmnnected) domain of some chart (Ui, @i) |
and the U~element assigned by ¢i to X and %41 coincide. This is
clearly ap squivalence relation-

Of courss, ir vV, e a amall chart then 'Xighﬁxi+l exactly
whan the canonical identification nf;fibres maps  Xs t” Xj4p Thus~

carresponds procisely to compositions of several local identifying

mappings of the type (4)
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We claim that if X~y zZ then there exists a gipgle hypercomplsx
chart (V, (P) With Xy z € ¥V  apd Uwevalues coincident for x and z
via ¢ . This will follow if we can fuse together charts and extend
them 'in the Szﬂf‘actc}r direotinns'; we achisve this by applying the
revolution principls.

To fix notations suppoge X,y are in (T, ¥) chart and Yyrv Z
area in (M,W) chart, both being small charts and without loss of Qeneraw
lity ‘essums W/l T is connectedr y € W/} T of course- Then let
o{y) =k , 20 we may aseume W - T X(k) is a noneempty connected

open subset of the fibre X(k) +« Define extension of the B~chart by

o5t _ {.g on T
Fal8(k) oy (k)™) o an ‘f"“l( ¥ (1“)0"'4(9)3' (6)

where W(K)(WA TN X(k)). =0 C U (upper half-plane).
" Note, we have arranged (k) n}y(k)'l to be bholomorphic on DC U
(into U) by I‘EPlacing. & by its negative if necessary .(sea paragraph
Preceding Theonem 4,2 »3)+ Then clearly G-E'x{" will he in the hypér"
complex atlas of X and its domain contains x and z with aamé
Usvalue being asaignaﬁ by 8°*% to both pointss hfa can thus establish
our claim by inductiun¥

Wle can show that on any fibre K(k_) the relation v idantif’_iaa
points in pairs, =~ anﬁ this is inudlut.ory automorphism T{k) of X(k)

which we have in the statement of Lamme 42 460
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In fact, let x, & X(k) be within a small chert (V,¢) around

¥ :
it~ Lﬂt fP (?,J) UXS = IHd' » Thus Kk = lpz—class of 0 »
Connect U to «~0 by a half-~circle Y an 5_2 « We claim that thers
AP

oxists a chart (U,;P) which extends ¢ and (W) IR& intersects all
the half-plames correspanding to points of Y + If this were not true
there would be a first point J; on }’ (starting from O) uhich is
not included in any such chart. But by taking limits and using comp&cte~
ness we see there is some point in X~? corresponding to (5§ ,0;) + Ue
take any spall chart arcund this point and use the previcus fusing of
charts argument to extend ¢ a little Fuﬁthar in the Sz-dirant'ion, i
Gll cannot exist- It is not herd to ses that O, nanﬁat be «0 esither:
Thus, we will have a ('big') chart (V ,@) containing X, and
also containing a point X, such that (ﬂ(xz) = (ﬁ .,-0) « Thus Xy w X
(hoth on X(k)), and (k) interchanges x; and X, on X(k)+» Bscauss
of the revolution principle a different choice of charts makes no effect

on the definition of <T(k) ) the proof of this is similar ta the equations

(5) in the proof of Theorem 4+2+3+.
- .
Lamma 4+2+6 is proved- Indsed, note that our )) on 5

2 .
represents the non-trivial element of .7‘1( P~ )y and continuation of

charts along Y has led to the imolutinn t(k) on X(k) - Conti-

nuation of charts along 2 ))l which represents the trivial alement qf‘

1> ) ‘would produce the identity identification on X(k) This
(%) > Hut(K(k)) W

Ty {
closely resembles @ 'monodromy’ mep Hl
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»

huZ o7 LETWA o If P is pon-empty then the fibres X(k) must have
two, components, Y and =Y, (mirror images of each nther}, sach with
ideal boundary P - X(K) must be the Schottky double of Y (and

hence Gﬂnﬁﬁﬂtﬂd); and T (k) 1s the canonical reflection on the doubls-

P:mc:f . Consider any component A of X{k)» T(k) (=7 say} maps
componente to components, so, if T(A)}N A is non=-empty then T(R) =
But A, must haye pisces of P as its boundary since we proved
m = X(K) .U P was connected: Now, © acts as reflection near
nointe of P , (remark following Lemma 4+2+6), and this ié imposeible
i T(A) = Ae So there must be a component distinct from A and all

the assexrtions follow. I | W/

4.2+8 THEOREM « Let X be a connected closed hypercomplex manifold
with real set P « Then thers is a natural P mapping

B2 X-P~> Y X P, (ned, 8)
which is the orientation double covering mappings here VY = X(k)/f(.k)
is a connected surface with a conformal structure (fix any k € iF' Y

If P 1s not empty then Y must be a:unply a compunant of the
pibre X{(k) and the compact manifold X 418 isumnrphic to tha manifold

Xg ©Of Proposition 4.2+5 with ¥ =1/6 and X-° is isomorphic to
Y X S”_Z y o S
ADDENDUM » If P 1s empby mar_n_ay sgparate the casas (i) X(k). has

2-components, (1i) X(k) is connected« In oase (i) sach component 1s

a pompact Riemann surface Y t(k) maps one component to the ather

and X is diffeomorphie to Y X 5™ « (If genus (_Y) > 1 thep X__ is
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isomorphic to g = ! Iﬂn/Fn(G), as hefurﬁe). In case (ii) X{k) is
a compact Riemann sunface- If T(k) is oriantation preserving then

= X(k) /A{Kk) is itself a compact Riemann surface and X is diffeo~
morphic to Y x 5" . 1y T(k) 4is orientetion reversing then Y
is a compact non-ﬂrienﬁab.le surface with conformal structure, and X
is the orisntation double covering of Y X I'E’r'm2 ;
Proof  The second-factar of the map B is our original fibre bundle
0 » Fix eny k; € P, and define Y = X(kgd fe(kg) « We nou take
any X € X=P , say x € X(k) , identify X(k) with X(ky) by any
chain of the onanonical local fibre~identifications+ Then the image of
X in X(kﬁ) is wellwdefined when we go module the !monodromy! T(-kn)i
This defines B and shows it to be two~tp=-one, and thersefore a covering
spaca-'_ Since X~ is ariented, but Y X |P2 is never orienta’ "& for.
any surface Y, we see B must be the orientation double covering:
(Repall that any oriented covering space nf’ ] non~orientable manifold
factors through the orientation double coverings) Y dis connsoted
because X is- o

The lagt a’catémant of the theorem f’ﬂlic:rwa' by pulling back the

bhundle g : Xop) -‘p-]le pver 5% ‘and noting that the neu total spaue:
X-D hag two mnmpnnﬂnta, since by Lemma 44247, X(k )—fibraaf 9 ‘has
‘twn somponenta, (use the exact homntopy gsequencae of the pullhack

bundle)s So each componsnt of K- wust be a copy of X~P itself,
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e
and since X« is a double covering of Y X 32 {by pulling back f)

we spe that XL = vy x'Ez - /4

In view of our previous results all the oclaims

are now estah}ished without difficulty. W
As2+9_ _COROLLARY - The only simply~connected compact manifolds which
can allow hypercomplex structure 'are Sa anf:i.szxﬁz (,fon--quatenninqin);
(SB and ISZ X 56 for cetonionic) .;'"

E_:n_g_t_::_f_:: Hl_()() = 0 Jimplias J_Tl(X-Q) = [JI- ‘Then comparing B with the
double oovering Y X 52 => Y X .EPZ shows Xe0 2 Y ¥ 52 for soms
surface Y . But almple nhnnaatiuity aays JIJ_(Y) =0 4 and the only
slmply connected surfaces are U or 82,; Since P is a finite union
nf‘,_circles'mmpac:'bifying Y X 52_ it must have exactly one component
for Y "'-"-_.'U' case and no components fop Y = 9‘2 - The results follou. j/

REMARKS + Ws do not know whether S° x §™2 carries [H (or @)

structures

Our central gquaternionic manifolds aré extremely akin ltu,
(but nevertheless distinct from) the integrable almost gquaternionic
manlfolde studisd by Marohiafaua_[z.ﬂ and Salamon [25] gt alss
Actually the derivatives of our transition mappings ((10} in 2.1.5)
~do not in éanaral lie in thé group GL(l,lH) = IH* » Indeed, the
Jaoobian of one of our ﬁuo:dinate trapsitions falls in IH* anly for

¢(z) = az + h, (¢ as in ({11) in 2._1.5)).' Seos Datta and Nag [ll] *
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Thus the hypercomplex manifolds we. are doaling

with need not be integrable almost guaternionic manifolds -~ daspite

the marksd similarity .

It has hbeen proved (ses [21] ’ [25] ), that amongst the class
of lntegrable almost quaternianic manifolds the only compact simply ~

connected one is 84 + The reader may compare with this our corollary
4

ahove «

As general references for the work of previous authors ue Quote

[22] , (251, [26] .



CHAPTER

ZERD-BETS OF HYPERCOMPLEX FUNCTIONS

In Chapter 11 we have discusséd in detsil a goomstric

charaptarisatian of Fueter mappings and the Fueter transforms.

This presipitatos a rather surprising applinatinn of our theory

in this nhaptnf} Indesd, we can cheracteriss the location of the
zeﬁoaa of quaternlonic and octonionic analytic functions defined by
cnnﬁergant power or Laurent seriss with poptrpl coefficients.

We prove that the zero set of any quaternionic (or sctonionic)
analytic function f with central (i.e., rgal) coefficients is the
diejoint union uf,codimension‘twp spheres in|lﬂa(respﬁctivaly.in IHB)'
and certain purely real po;ntsi In perticular, for polynomial with
real coefficisntes, the complete root~set is gsomsirically characto=
risaphle from the lay=put of the roots in the complsx plana-"Tha
rout-set-bepnmgs the undon of a finite number of cndimansidn tuo
fuclidean spheres together with & finite number of real points. We
~algsc find the praimages ,f’"'l (A) for any guaternion (or octionion) A.

We dmmunatfata,that this surpfising phanaménoh of nqmpléts
ﬁphérea being part of the solution is very markedly a special 'real
| phgngmanﬁn; For example, tha quaternionic or octinionic N roota of

any nope-pesl queternion (respsctively cctonion) turn out to be

precissly N distinct points.
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- An amusing topological application of these results is to
exhibit natural self maps of the Eﬂq:lidﬁan unit spheres of dimepsion 3
and 7 (viz» the guaternionic and octonionic unit spheres) which are
of topological degres N (N any integer) such that svery fibre has
precisely [N| distinct paints, while all the exceptional fibres
actually contain codimension one subspheres. The number of
exosptlonal fibres is ons for N = 2 and twp obherwise. Using the
Fuater btransform we are slsp able to study a natural gensrallsation

of these salf%@ppinga on spherss of arbitrary dimension. See [11} >

54l Zoromsots of hyoercomplex mappinge by Fuster analyeis

Lot us recall (sep 24145} thaf. i1f 9 hee Laurent expansion
with real coofficients about real centres, that is,

? hm(z'o)m y | (1)

@ n
P(z) = £ a{z~0) +
n ' m=.1

n=0
- where a_ s bm’ C arg reals: the apnulus of corvergence is
r < |2""‘C}l < R' than
® o | . -
N {1 |
Fa((p)(U) = ) En(U-G) + E bm(U-c) - . (2)
| n=0 om=l
where V = xn+elxl+82x2+azx3 is a guaternionic variable: Si milnr;y,.
FB((P) will be represented by the fesms! Laurent gevigs with V  an

octonienic variable« The corresponding domains of nnnuergeme are

| 4 .8
the ring-domeins r© < [{V=cif <R i Fuclidean space [R and IR

respectivelys
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Also recall the Revolution principle (see 2.2.1), 'Tif @ is
a symmetric (abput real axis) function then Fh(fP), pPresarves sach
[GO y that is, Fn(CP) maps €, - into itself~ 1In fact, FIH(CP) rastricted
to €;nF (D) (for any 0 & 5™) is identifiable with the original
- mapping ¢ on O uwhen @ :'I.s identified with &, by either of two
possible rotations provided we make the same rotation on the rengs €'

From this geometrical interpretation it is svident that, whensver

¢ has Laurent expansion (1) we will have :

' Jlu e |R" .: Fn("iP)(U) = p.,} = Fn(-{z s @(z) =4 j) (3)

Fur any real number A-
We sse immediately the following .

5.1-1 THEOREM-» Let & be any Laurent series with central coefficisnts

(in {H or @ veriabla V), as in (2),convergent in = < [jU=cff <R

name ly
@ I -
8(v) = 5 a (V)" + % b (Vs)
r=0 . m=l

(an, "n? c' are reala)s The zero-set of this t‘unt:tinn é-','namelY
{U“ &V) = } is simply the above I‘Dtatlnnﬁtranafﬂrm Fri or FB

applied to the -ara-aet of the complex analytic function ‘P(Z)

(dofined by (1) in = < jz=0] <R
The set F A of a point is & 2~gphere orthogonal to gach of

the planes U, provided the pnint iz not on the xumaxis- u_n tho
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xﬂ-axis of Gﬂuram'mtatiun changes nothing. In fact,
Foldarig}) =3y = 2, 2.2 _ 2l
4({ 81 E_U Q +alxl+ezx2+azx3uxl+x2+x3 =B .

Similarly for Fg v

~ In particular, for polynomials we state uhet we nouw knou
saparately4 | |
5a+le2 GO | y » I oV s
ROLLARY Lfﬂt {&l i iﬁl"" ",-am i iBm,fl’-ri,yk‘ Q'fj ’Bj ,}’p
. reals, Bj >0, 3= lycorymyp = 1,---,k} be the set of complex roots
of the polynomial sguation
yM

V™ Feaat agy + ag = g, 3, 5:_ Ry J =0yrse N » (4)

Then the quaternionic (occtonionic) roots of (4) form the set

m

3""'.1 a ’Bj i)/l.“*,))}

where - j’B = ({(I. + iBj}) y n =4 (or 8) -

REMARK « In tha above situation it appaara reasonable to think of the

aphers § LB, 2e occurring with multiplicity ij, uhere m, is the

J J
multiplicity of the root (a + iBj) of the compleX pulynam::.al (4)

The total multiplicity over all compnnenta of the quaternionic or

octonionlc aalu’citan sgt then adds up to tha dagrae Nw |
When we wish to solue 9-(U) =p, A ¥ IR, e can still apply

our rotation prmeaw Since A 9( H—'{, all the rnnta must lie in

preciaely the same &; which contains A its_elh” Therefore it
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only remains to rotate A into the standard position of the complex

plane (namely, A = a + I 8.3, > a + fa,uvhere a=( 5 a-) >0

n=4 {or 8) and consequently the roots of #(V) = A are nothing but
the roots of ¢¥(z) = aj + 1a rotated back into the @U position-

. -2
Note, O here is (al/h,nu-,an_l/h) e s . We state thersfore the

following thaarqmu S
-1.3 _THEOREM + The root-set of &V) = A, A € |R, is
n=1 _a_i ,
={a + B I 95 A W + 1B is a root of 9(z) = aU+:La in E}
=1

where A =a,+ Jle.a, , &= (£ &) >0 . The multiplicity of
.1= j J st 'J .
. i i
Copel
a+ B Z Ejaj/é; is the same as that of a + i as a root of
J=l

¢(z) = a5 + ia -
(Here n =4 or 8 according as V is a quaternionic or octonionioe
Uariabla—)
REMARK - The set.identity (3) for any quaternion
R=ag ™ ea) ¥ 88y ¥ a8y 1o _ o _
noe | | _ # _ _
L{U e IRV - F(®)V) & F ({4] )} = F‘n({z s 0(z) = a5 + j_a}) (5)

whera, a = (ai + ag +ra§)l/2 >0 .

«2 - -Zero sets of quatsrhionic and actonionic

central coefficients by algebraic method -

The Corollary 5-.1.2 can be proved by straightforward algebrae

We deal only with the quaternionic case since no new ideas come in

for octonionse»
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Firstly note that eny quaternionic polynomial with real co-
efricients can be factored into the product of quadratic end linear

polynomials with reel coefficients. Namely,

UN+a UN"11+;J-+ a, Vta, = (U2 + b

N!-'l 1 D vV 4 cl)lll

1

.
v e =V +me+0m?(U+d2m+l) eoe (V + dy) (6)

with b? - 4cj <0, 3= 1ycer,me Consider therefors such a quadratic
polynomial

WV rwre=0 (7)
where b, ¢ € |R, h2 -~ 4c < 0 (and therefore c¢ > 0) .
If V= X0 + 91Xy + 8o X0 + 93x3 is a root of (7) thsn one notes
that ||U{F = ¢ and U2 = an V -11U|12 = ZxUU-ﬂ- Conaequently,

2xﬁ+b = 0 . This implies that V 1liss on the sphers

= ’ - 2, 2,2 2 |
{u = xln+slx;+52x2+azx3 Xg = =b/2 X tx+x, = (4c~b )/a} .

The Corollary 5.1+2 now follows since there are no zZero divisors in
|H Dr(Z) .
It is to be noted that when there exist thinitsly many roots

of a polynomial like (6) then the polynomial actuelly allows irfinitely

many distinct factorisations-

5.3 A racursive representation of pouers of a hggarcﬂmglex-uariabla,
with applications.

As any non-zZero quatefﬁiun is the product of a nanunagatiua |

- real number and a quaternion;0F norm 1, we will consider anly
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quaternions or octonions with norm 1- In tact,
e« N l 1 /N v N 1
v v =l = fuan M xu P = d et > o),
Now JJ V]l = 1 is equivalent to
2
U = 2XgU~L, whers U = xgte X te Xote X, - (8)
(Again V ocould be an octonion without any extra trouble.) This

gives, inductively,
) .

Where Pk-

variable Xg* The Fk gatlaly the recursive relations

is a real polynomial of degree (k-1) in the single (real)

Note that Pl =1 and P, = 2x, from equation (8). Equations (9) and
(10) provide a convenient representation of powers of a H or variebls.

As ap application note the apalysis of

UN =fA =a_+ g,a, + e,a, + B8, (11)

g 171 272

Then V 4is a root of (11) prscisely when

XgPy{%p) “'pm.a(xn) ] (12)

and PN(xU)xj =ag J = 1,23 - (13)

JI

If A is real then the solutions of Cll) are descfihsd in
Corollary 5.1¢2 {(and may bs obtained from (12) and (13) alsg). If
A ishnahnreal, than'nﬁts that PN(xU) # 0, becausa otheruise

yM =--PN l(xﬁ) would be raal- In this case (12) has exactly N
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solutions, all real. {1ndeed, the real parts of the complex roots of
N 2

. \ 2 241
* “0 +l(al *oa, + 53) /2 are precisely the roocts of (12). Therefors,

N .
by (lS), V' = A Hhas axantlg N distinct solutions in {H+ This confirms

the conclusion of Theorem 5.:1:3.

NOTE - The roats of l/‘UN = A also beshave similarly, since

1

=R S (l&)
UN 1 U|FN |

Eﬂ.@ﬁﬁ. ¢ The polynomnials Pn(.x) ébwe are universal for all the algebras
E. y Hy @ + They are psgentially related to Tehebysheff's polynomials
Tn,rdef‘ined by Tn{nna 8) = cos n& - In fagt, both systems are snluti-ﬁns
of the same difference esguation (10), with the respective ipitial condi-
tiunsf

P.(x) =1 To(x) = 1

P, (X) = 2x T(x) = x - (15)

L

They are related by the following formulas -«

2 — -
T =P = Pha

r— . o v :. -: ' (lﬁ)
Pn+l 2(Tn ¥ Tn-z * ) | :

In the cage of @ these formulase can he thﬂl.lght of as conssquences aof

de Moivre's fopmula.

5.4 Applications to topology

. N — o
Cansider the natural meps ?N(U) =y 4 (N =1 1, +2, y)y @8

self~maps of the unit spherass 5 or sl - v being a quaternionic
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(respectively octonionic) variable of unit norm. From Theorem §.1.3
and by Section 5+3 we know that the preimage via Py of every none
real point is precisely N distinct poipts. The preimages of the
tuo real points + 1 are described in Corollary 5.1.2. Let us denote
by AN, * 1) the number of codimension cne subapheres which &Te COnN-

tained in f'[:'l(_-i; 1). Then, Corollary 5-1.2 implies

Jﬂ-lg"i if N is odd,

AMN,L) =
AL -1 37 N is sven,
A= 5§ 18 odd,
h(N""’l) — '

(Jg-'- ~1l if N is even- (17)

It is convenient to note that we need not resirict to spherss

of dimensions 3 or 7 anly because ws have the Fueter transform aof
\ : , , _
) at our disposal in any dimensione Thus Fy = Fd+lC¢N)

d

Z lames Z
MR _
is again a real-analytic self-map of S~ - The fibres of theses general

FN ~mappings are also describable just as above because the ‘Revuvlution

Principle! appliss-

It is natural to ask for the topological degree af the mepPings

f, and whether their restriction above Sd -{j—_(l,ﬂ,”;,ﬂ)} is a

N
IN j=shested covering space or note The answers are interesting and

provided belowe
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First of all we notice Prom Corollary 5.1.2 that the

R(N,l)-+ h(N,&l) (=8| ~ 1) codimension one subspheres in -Sd

d

separate § -{i(l,ﬂ,*”,ﬁ)} ~into IN| cylinders (that is

Sd"; x (0,1)) sach of which maps homeomorphically onta
Sd -{i(l,q,a-h,ﬂ)}' ' The two ideal boundary componesnts in sach
cylinder are getting collapssd to the points (1,0,¢+-0) and
(=140y.-+,0)+ Thus * |
5+4>1 PROPOSITION » The reetriction of Fy to Sd_-{}ad(iﬁl,ﬂ,-w*,ﬂ))}
is a trivial |[N{~fold covering of Sd "’{i(llu!"'lu)} ¢

Ag for the degree, the answers are given in .
5,4,2 PROPOSITION » If d is odd, fN " Sd q>-5d has degres dég(fﬂ)
=N. If”'d. isiauan,

+ 1 if N dis odd,
dag(?m) =

0 3f N is evens

# .
[

REMARK

Algebraic topologists have already been interested in special
nases of the sbove. 5Sea Dold [xa,psas]’ for the complex and quatere

nignic cases

it is convenient to prove a lemma first.
N is homotopic to I # (-I)#I#(-I)#;.n»'
((_1)3-11)_ Here I denotes the identity mapping unfﬁd, ~] daepotes

5.4-3 LEWMA - For N 21, f

the antipodal mapping, and % denotes the usual operation by which
d
mappings are composed in the homotopy group Hd(s }o (UWe will give

a formal definition of # in the prhuf#]
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Proof « Let us parametrise 5 by polar coordinates (-B-D,”.,'E}d l) .

20 = cos By

Xy = 81n E-U cos &,

Xo = ain &, sin Elrl cos &, ,

F IR TR B R N L BN U BN B R B BRI B R R

Ximl = sin E-U sin &, sin 8-2 v45 COB &dg-l R

X5 = sin &, sin &, 8in &, -« 8in @, . , (18)

g.ll,,..,ed__l.s [D_,Tr),. &, & [-#,m). In that case one realises {eay by

the 'Revolution principle') that Fd+l((PN)(E'D'f"'é'd-l) = (N&qsByy - "&d-—l)'

Now define # as follows » we will say two self-maps f, g :

Sd - Sd are #~composable if

g(oi El’;”i"edwl) - f(i T[le'l]":"’e'd_l) 'FUI.' all

- ],
(91, “r? ’E'd-l) & [.D ,TT)

Then define

| e m TR

(f*g)(ﬁoi;'*!&d_l) = . .
9(2'90—” !B.ll “'"Igld_l) if 6'08 [-ﬂ - '{] U[‘z'"n] ¢



80

This is clearly the usual % product in the definition of composition

d
inm {87)» It is now trivial to check that

N-lI)

I*(_I}ﬂ.Iﬁ- “ ;-H-((-l) (90’ e ’E“d_l) = (NE'D,&]., ¥ ’E'd__l)

for all (Q-O,....,e-d_l) €[, ) X [G,H)d"l '

Proof of §5.4:2- Recall the following standard facts about

»

the degres »
deg(f o g) = deg{f)deg(qg) (20)
deg(f # g) = dag(fdeg(g) » (21)
Using these relations we immediately obtain the claimed values of
~deg(fy) for N positiver For N negative, notice that

N =Nl INp N |

crt

whers jd+l is the tconjugation map,' in JR 1 that is ,

jd-l_l(xﬂ’xl’llr’xd) - (xﬂ’—xl’#i#'ﬁxd) ¥
But deg (jd+l) = (--l)d (see for example Vick [27]), consequently the

proposition is proved completely-



CHAPTER VI

FUETER STRUCTURE, HYPERCOMPLEX STRUCTURE, YAND'S F-5TRUCTURE,

l-—ﬂw———-——————-’——_—n—-.___._.______I___,___—___ﬂ'

ISHIHARA'S QUATERNION STRUCTURE AND FOLIATIONS ON
SMOOTH MANIFOLOS

- This chapter comparss various differsntial geomstric and analytic
ﬁtpuptgraa cn smeoth manifolds which have previously studied ip the lite~
rature~ All the structures are related to quétarniunic and octonionlc
structuress

In particular we treat the relations between (a) Fuster structurs
(Datta (9], Fueter [14] ), (b) hypercomplex structure (Nag, Hillman and
~Datta [24 ] )5 (c) Yano's f~structure (Yano[ 28} , Ishihara and Yano[ 20 1)
and quaternion structurs (Ishihara [19] )-

In Section 6.1l,we havae proved that a p~dimsnsional Fuster manifolds
M, . has 2 and.n;ﬁ_dimanainnal transverss foliations with a natural complex
structure on the two dimensional lsaves« Moreover, the 2~dimensional
foliation is obtaiped from a submersion g ; Wn > SH'?' » Dimilar
results are true for higher type Fuster structures -

In Section 642, we have established the relation betweer ,ueter
structure and Yano's f-structure. A Fuster manifold is & smnﬁth manifold
with integrable festructurs»

~ In Section 63, the relations bstween Fuster and hypercomplex and

Ishihara's quaternion structure have been discussed» In this sectlon we

81
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we utilise the theorem on non-existence of almost complex structuras

on products of even~dimensional spherss-
6<1 Foliations on Fuster manifolds

In the final saction of this chapter we will sep from a
difforent point of view that Fueter manifolds are foliated. But in
this section we will show the ssme by finding appropriate pseudogroup

on which one can model Fueter manifold and which shows that the Fueter

manifolds are follatede
Racall that Fueter manifold i{s a smooth manifold which ia

maodelled on the pssudogroup of diffanmdrphiama which are Fueter

o

| mappings .

. b
Let Nm{a Fuster manifold- Let x* £ Mn and (W ,LP) b @ coordie~

- % * % * * * -
nate chart with O(x') = (xQXyKys-er g% K ¢}y where (Kjgaee )k ;) €8
ond Xy > 0+ (See Chapter II for the definitions:)

. .*. | - a
if (kl"‘**’knﬂl) f (Utruuiﬁ,l), choose. o
v ={x e U ¢ (kyyeeagk 3) # (Dgeve,0,1), (1)
wha?a'¢(x) = (xﬂfxlkl""’xlkn-l)‘}

gt

and defing @ + U e R" as
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K

| k
1 - 2
T(x) = (xgoxys T 1*7*r T ) (2)
n-J. M.

(The last coordinates correspond to steragraphic projection from
(0yre4,0,1) of 57 on [R™2.)
# *
Supposs (kl!”""knul) happens to be the ''north pola'!
(D}"frﬂrl)
* * H# #
Consequently P(x ) = (xo,,ﬂghf,ﬂ,xl), with X1 > 0, choose

Tl? ={x £ W : (kl’.'”"kn—-l) F){ (U,n!,ﬂ,--l) where Cﬁ(x)

and define @ » ﬁ — lﬂn | piven by o . |
9 o ,
P(x) = (xwxl,kl/(l-t-kn_l),~~,kn__2/(1+kn_1))- (4)

| (Stérng.raphic'prqjantiun from ''south pole'' nou!), Then,
{(G‘;(ﬁ) . (U,9) ore Fuatcar_charts} (5)

formfan atles, and with respect to this atlas M_ is a Foliated

manifold modelled on the pseudegroup of local diffeomorphismse

Gftl ={P = (pY,r0,p™) 2 D(C RM) —=> RM I ¢l and 4
depend only on first two uariablea.andl fl Ll :I._f’.'2 is complex analytj.c
(in the obvious sense) and edther ('f’z,*--,i’n)-- (Ki';-'#§X5) = (33'1”'_* pxh)

2 (85 yerns?) (xpyeerykg)

= (__).(.3......_.... gy xn ), uhen (xlIXZIUI"'rU) ?D} ' (6)

2 2 2 2
)(3+n--+){n X3+! ’ l"l"xn
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1 ¢ . - n o 1 2
B =40 = DS R = IR, Elxppereyx ) = (F7(x),%,), P7(x)1%),
KggeregX )
and f‘ + 1#% s complex analytic in x; + ixz}
{f'DC R - {(X ;ij gty 0) * Xy1%, Slﬁ)}(; ~> IR T
= (el X
F(xlr""x ) (f (Xl!xz)!F (xl,XQ),W !“‘i?:"ﬂ:'i“)
:'(3 XS » 4 Xn
and fL+if2 is complex analytic in Xy + ilef | (7)

= pl U Ql (say)

. Thus we haua (Ffom the definition oFﬁ Gi).

G«1lsl .THEGHEN :_ Fach Fueter manifold M_ has. i-_ﬁnﬁ n=2 -dimensipnal
'ltrﬁnsuarsa fﬁliétiﬁns with natural complex structurs on 2-dimensional
legaves induced by the tueter structure- | /i

Conversely, let Nn be medelled on thse pseudogroup Gi =
pi'UQi and § be the complete atlas corresponding to Gi ¢+ QDofine o
relation as on Q as + (U@)~(V,¥) 1P there exist (Ul,cpl),.”,
(Uni¥p) € & with - (UysP)) = (U0), (U49) = (VW) Ugh Uy non
empty and CPi+i o fPIl £ P,J.;. fPor 1 = 1;""13“"1' Than, ~ iE an EQUiualence
ralation which dafine.a partition of -@ intc two classes {as .mn~

nath connected) él and'éz (aay)
Lot (W,9) € §» 1f (U,0) €, then define @ 5 U =3 |R" as

lexn-l
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where, P(x) = (xﬂ,xl,-ff,xn_l)* (The formulas come from the inverss
stefﬂgraphia projection-)

On the other hend, if (U,9) € &), then define @ & U = |R" ag

2 2
2 *-}{2 war & Wy
+ C + R -] FV
X9 +X il 1 Xot +xn_l~fl Xptevrtx 4]

whare P(x) = (xﬂfxl"f"xn;l) a
Then, g =,{-(m,$) : (LU,QP) > §} forme an atlas, and by direct caleculaticn
one can check that for tuo intersecting cherts (W ,E»") and (U’,\E)’ iﬁi"l
~ 1s a Fueter mapping. | |

§+¢le2 COROLLARY ; Structure groups of Fuetex manifﬁlda are reducible
to U(1) X 5f;;2)'

Iggggﬁ_f This follows From the fact that Fueter manifolds can be modelled
on fGﬁ}land the Jacobians of maps in Ei are matrices in U(l) x 0(ne2 )
clearly.

REMARK y Inlfact,_tha foliation discussed above is obtainasd from a sube
mersion g - Mﬁ ey SFP? » (See Section 4+1+} More explicitly lst "
be a Fueter manifold with Ffuster atlaa{ {Ua,‘lPEJ . a € I}r Then for

X € ma, if ¢ (x) = (xﬂ,xlkl,r“,xlkn_l) with x; > 0, vhere X € U, ,
then for any other B €I with X & UB y We have -CPB(x) _ia. of -0

‘ M2 ¢
form (&M kl"“’ﬂkn-l)..'.' SF}’ the mapping g - M_ ~> 5777y glven by ¢

Q(K) = (kl’#"’kn-l)" (10}

is well dafinEdQ Clearly this g 4is a submersione



86

Similar types of results are true for Fueter manifolds of highar
type (See Section 3.1 for defipition)- Let an be a higher type-p
Fueterdmanifnld- In this casg there exists a2 submersion

9 :Wp > (s772)P (11)

and f,, has two transverse foliations of respective leaf dimensions
2p anpd (naZ)pf_ As bafore the 2p-~dimensional leaves carry naturally
thé structurs of pe~dimensional complex manifolds.
6:2. Relations bstwsen Fuester structure and Yapo's f-structure

K- Yano [287] had defined f-structure op manifolds which are snma_'
gensralisation of complex structurer In this section ve will show how
f-strﬁnture comes in a very natural way on a Fueter manifold. And uve
also show that the f-structure is integrable (in the sense of Ishihara
and Yano [ZU])-

Lot us first recall sona definitions and propositions about
f=structure (Yano and Kon [29, p-379]) -

632l DEFIMIIIDN ¢ A structura on an n~dimensional manifold Nn given

by a non-null tensor Flald f of type (l l) satisfying =
f3+f‘=0- (12)
18 nalled an f-structurEr

6242 PROPOSITION (Yanc and Kon [29, p+379]) » The rank of £ 1is a
constant, say =+ {(i-es for each X € M the rank of f ¢ Tx(mn) —

T;(mﬁ)_ is r+)
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6+2 3 PROPOS ITION (Yana and KnnJ[ZQ,p-—SBEﬂ) : A nocossary and sufficiont
- condition for an n~dimensicnal manifold Mn admit an f.~structure f of
rank © is that r is even (say » = 2m) and the group of the tangent

bundle of Mn be reducable to U{m) x O{n~2m) -

6+2+4 OBSERVATION - From Corollary 6-1-2 and Proposition 6-2:3 it follous

that each Fuster mapifold has rapnk 2 f-structures
In this section we will show this explicitlye.

6«2 +5 DEFINITIUN.: An festructurs f is ssid to be integrable if thers

exists o ocoordinate system in which f has the constant components

[0 -1 0]
o .I'ﬂ.

P= |1 0 O}
" |

0 0 0 | (1.3)

= 2m having rank of f-

To show the existence of f~structure on Fueter manifold we will

first show that there is a natural way to define rank 2 P-structure on

D

‘ [F{n = (Rn --(;xﬂ axis} ; Wwphich can be identifiad with UxS ine

Pixed fashions Indeed, ue map

. X" . .
-l =

uhera y = (X ****22 1)1/2 (569*593tiﬂniz42').

Let us also idantify T ( iﬁn) by Rn p S |R" "

For K =+(k1!-.lrkn-l) Sn - ! racall }\(ﬂ'b c'k)
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]

réT ook ~bk, v oo ~bk__; ﬁ]
bk, an(l-k%)c ok Ky Vo ckk 1 :

g PSR I
ok 1 okgk ciok e e={ 1 Yo

Theso were studied in Chapter 111, eince they are the Jacobian matricaes
of Fueter mappings- dee Section 32 of Chapter III.
Considar the map J on T,(1ﬁﬂn)_giuan by .

3((Z,k),U) = ((z,k),ﬁ(ﬂgl,ﬂ,k)u) . o (16)
Ths_n._.'.'l3 = = (iegs, 33+3 = ()

Dafing a f~structure f-qﬁn on ”ﬂn by

(f . OON(zk)) = IK(z k) (17)
IR |

Then f : +f = 0 apd clearly it is of vank 2

Now, let ﬂn be a Fuater manifold. Take % €0, and lat

(W,9) be a Fueter chart around x.and ®(x) = {z,k)¢ Define,
= = '  (18)
fmn(x) =(d9)" of llﬂn(z,k) o df | (18)

is well defined, since f depends only on K and 1’.l

Mn.
commutes with the Jacobians of Fueter maps, since they arse of tha

porm Ma,b,c.k) (See Section 342): This f”n ia a f~structure on
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Mn and tho matrices of fy ~ With respect to Fuster charts are of
. ,

the form A(0,1,0,k) at the points of (g)”l(k)-
We intend to show that this f-structure on Hn ls integrabls-
~ Therefore, consider the atles of coordimate charts of 'IR" .
consisting of two Ehﬂrtﬁ_(w*,¢*) and'(U%,gpﬂ) where

A
W = 'lﬁn "{(xnror'“rﬂrxnhl) : >{n-.-.l ? Ui

.i. » ! : & )
| J = 'Hn -~ { (XD,U prov 'U’xn'ﬂl) e Xn__l < Gf (lg)
_ . '. * .. . ! )
o" o ~> |R" given by *
| . - Xy X
¢ (x gt X ) = (x 'Y s Pty oo
and ¥ S => R" given by °
- . X X
% 1 N=2
'\V (x ’Ihf’x ) == {x 'y’ o ] 'l-r-ll’ ) (zﬂ)
’ -l / ‘ﬁxn-l wxn-l
2 2 \1f2
whﬂrﬁ Yy | = (xl+ X *+)_<n"'l) »
Than, with respect to these new coordinate cherts, f o is of the form
. . . R

A0,1,0,1), and hance with respect to the charts (0,0) defined in (1),
(2), (3) and (4) where (U,P) are Fuoter ;harta,-fhi is of the form
| . n R |

A0,1,0,1). That is,

1 0 0 s O}
(21)

|

n (0 0 0 «ve 0}

F TR B BT R NPT e R Y B B

0 0 Q0 es O]

i

Consequently, fm is clearly integrable. Thqa wa have
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GeZ o6 THEOREM :IEugry Fueter manifold has a natural integrable rank-2

f~atructure of Yanos

6.3 Relations between Fueter, hypercomplex and Ishihara's quatsrnion
gtructures on 4n~dimensional smooth manifolds
Ishihara's ([19]) quaternion structure is the follumihg .
6¢3-1 DEFTNITION » Let Nn be an n~dimensiocnal manifold with 8 rapked
real vector bundle H cunsiating:nf-ﬁensors of type (1,1) over m,
satisfying the following eonditions .
. In any coordinate neighbourhood W of Mn' there exists a local
basis F,G;H of V such that .
_F2'= G2 ==H2 = wl, (I ﬂsﬁnta'thé idsntity-tansur)-_
'GH-’-“-'F=-H{.?,HF=E=-FH,FG=H=-GF. . -
Then the bundle V is called an almost quaternion structure in Nn, and

(NH}U) an almost guaternion manifolde.

6-3.2 OBSERVATION (Ishihara [}B] ) An almost quatsrnion manifold is

necassarily of dim< n = 4m»
6-3-3 DEFINITION - The almost quaternlnn structure ¥V in N is called

intEQrablF if there exista a cunrdinata system in which F,G H _haua

constant components of the form

[ ) - T (oo 1]
0 -1 0 O 0.0 -1 0 o |
2 T
I 0 0 O 00 0 I 0 0 -1
F = m ’ G = i ,H: (22)
60 0 0~ 1 0 0 0 | 0 1,0 ﬂl
0 0 1 0| 0 -1 0 D.J 1. 060 O |

where n = 4m, Im is the idéntity m X m matreixe
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-

6+3-4 OBSERVATION » Every almost quaternion manifold is almost complex
and integrable almost quaternion manifold is a complex manifold-

Proof . Each of ths tensor fislds F,G,H defines an almost complax
structuras In case the almost quaternion structure is integrable (hy
Definition 6+3+3) sach F,G,H is locally constant -~ conseguently the
almost complex struatureg FyG4H are integreble.

_Tha Fﬁllnwing examples will demonstrate that there is po
necessary logical relationship between Fuster structure and Ishiharals
 quaternion structure, and aleo hetween hypercomplex (See Section 3ul
af Qﬁapter III) and_I3hihara*s quaternion structure.

6.3+5 EXAMPLE © Let, M =5T x 5T x 57

X Sl* Frnm'Thaﬂrém 4olel
| '(Chépter II1) it is sasily sesn that M does not admit any Fueter
structure; But M has an integrable quaternion structure. To show

thié, consider the almost quaternion structure on |Rd given (glﬂbally)

"

by «

- .
0 =~1L O U‘\ [U 0 «~1 O 0 0 0 w1
1 o 0 u 0 ¢ D 1 g 0 «l 0
F = ’ L = [ $ H = (23)
0 C 0 -1 1l 0 0 @© . o 1 0 0
0 b 1 @ 0 -l C O 1 0 O 0

Now, M can be modelled on the pseudegroup - |
» ' 4 b — |
{f‘ . D {< IHA) ~> IR f(XUrxl-erixg) = (xﬂ+mﬂ,xl+ml,x2ﬂ12,!3+m$) ’

where mp E¥ , p= 0,1,2,3'} {24)
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Then, of course, FyGyH commute with the derivatives of the maps in

this pseudogroup« 5:::', We can transfer the almost quaternion structurs

4
of IR to M by means of coordinate charts corresponding to the above

plaeudaglrnup- Thus, if (U,9) is a chart around x & Fy thon

~ - ~ -],

FX -- (dxq))# 0 F(p(}() O (dxtp), GX = (d}((p) . %(X) O (d?{(pJ 3

P~ i | -] |

He = (d @)™ o o ) O (d @) o (25)
define F, _and.ﬁ ‘on Me¢ And ae F,5,H (and tharefors ?,H and H |

locally) are of -the form (23), this quaternion structure is integrabla.

62346 EXAMPLE » Let mdn = Szxshnuz y» {n 2 3 be any positive integer)-

From Theorem 4.l+1 (Chapter 1V), it Pollows that M, adnits

Fueter structure (of type~l and dimension :-’_m)» But M does not admit

an
any Ishihara's almost quaternion structure- This follows from observation

6+3+4 and the fact that 5%xg2" y for m 2 4, naver allous apy almost complex
| gtructure. See Chapter VII for a proof of this last fact.

65+3+7 EXAWMPLE + Lot M, = 51 = ]Rn U {m} sy N =4 or 8. UWe can give on
this a hyparcgmplex (respectively quatsrnionic or octonionic) structurs
analogous to the complex structurs of' the Hiémann- spheare, by assigning
the identity .r:hr:_'irt or lﬂn(n = 4 or B) and obtaining V l-—}-é'- as the
transition function to the obvious chart m_:nu_ering (lﬁr_l - nrigin) U f m}n
I ndeet N;_I' is quaternionic or uctqnibnic projective space.

But this doss not admit any almost quaternion structurc. This

follows from the Observation 6.3 +4, since Sa and SB do not permit any

almost complex structure (Borel and Serre [E])-



CHAPTER VII

NON-EXISTENCE OF ALMOST COMPLEX STRUCTURES ON
PRODUCTS OF EVEN~DIMENS IONAL SPHERES

In this chapter we prove the theorem that 52’:1 x.szq allows

almost complex structurs if and only if {p,q) = (1,1), (2,1), (3,1),
Sharmlassly agsuming P = q)-
(3,3 j . Thie question became important for Ms ip setting up some
counter~examples to compare and contrast the various types of hyper-
p;hmplax, _si:ructuras we met in Chapted UI-? The proof of the theorem
‘uses characteristic class techniques - the chief tools being Bott's
periodicity and ringégralj_ty, theorems- See Dattas and SUbr.amﬂn__ian [12] ,
| Thi._s,,chéptar.is rather Iindapendsnt of the rest of thé thesis and i
contains a single thaorem which ia,quita interaesting in ite own right.
The result has applications in Chapter VI ~ ssea gxampla 6/346. .
Tel As is very wsll~known, Borel and Serre [3 ] had proved in 1953

that _52 and Sﬁ are the only even dimensional spheres allowing

almost complex structures. In passing it may be remarked that Calabl

and Eckmann [?] had shouwn that complex si:xuctur_e'a do sxist on

SZPH‘ X 32q+l for all p,qQ 2 0» Here we prove the Pollowing .

Telel THEOREM . The nnly' products of even dimensional spheres that

2 o2 o6 c2 of . b 4
allow almost complex structuras ars §° x5y 8 X587,8 x5 ,-54)(5;

SAKSZ‘, 52):56:' | sjlxs-d.
) o
REMARK © OF course S% x 52, 85 x 55 , ond 56 x 8% allow slmost

complex strugtures by Borel and Serre (3 - It is sssy fo ses

o |
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4 Vi
that 5 X 57 is difFEumorphically ambeddable in H{?- In fact, for

any ny m > 0, §7 x gMm is embedded in. RTFHL in the following way -
Sﬂ . Sm 0 X I 0 + m - - et 1
M (R xR} x5 -@—)Rn oy RITFMEL

b

where, CE(XDg*“,Kn) = (xnr”":xn__lfxn'i' 2)!
i is the inclusion mapping,
I is the identity mapping.
okl bl |
Here 'Hﬁ =R —{(XG:”“*rxn_lrﬂi‘“'rG) . xj Eﬁ} "':'Hn*-m*(l” Rn
and wg defins
B((xﬂ'.i“,xn“l’y)’(kl’lﬂ;,knﬁ_l))-ﬁ (XU’#”"xn-]_’ykl"“’ykﬂﬁ‘l)'

Thus B':'l( ' *n Fotm |
e B g g1 = (g )y (e, 222

2 2 |1/
where, y = (xn-k---+xmm)l/.2 > 0. The mapping B is a diffeomerphisme

Thorefore by Calabi's resﬁlt (_E\J, which says that any 6-dimensional
orientable manifold immersed in E'?.allnws almost complex structurp, we
. and §3xsY |
4 2974 |
X 5 2 do. - allow almost complex structures

Notice that our diffeomorphism [ betuween mnn-l-rrrl'l and

see tﬁat g

»

HENHHK

) X 'E_m -is a npatural:generalisation of the idess ws used

oritically in Chapter 1I, ses 2-lsls
7.1.2 DEFINITION ¥ The Charn character ch(hf_) of & cqmplax'wctar

bundle W of rank n over a base B8 1is dafinad to bs'tha formal

sum
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N
. K
Here Ek is the polynﬂmial Bk(Gl’#f*,Gn} = iEl ti 4 wherse GJ, the

#

J=th Chern class of U, is the J-th elementary symmetric function in the
veriables ty9es+st o Ses Milnor and Stashoff [99 4 ps 195 ] for more
detalils.,

Proof of the theonem

" Let, T (52p X qu) bs-tha £angant bundle of '52P X qu. Supposs

there is éh almost complex structure on 52p X qu* Thep ue have

T(Pxs?) @c = V@ T . (2)

- W

it

:mhare 'V is a complex Uactdr bundle and V 48 ites conjugate vector
s | ? 2 . - Ol
bundle, V d1s isomorphic to T (5 P X S q) as a real vector bundls.

First of all we claim that the Chern character of V i

A i o e i oy i oy i i et L

iptegral 1.q.
2
ch(y) € H* (52p X 5 q: 2},

Proof -of the -Claim

Recall &
(a) The intcgrality theorem of Bott, which says that for any complex

2k
yector bundle W on 5

ch(u) & H' (5°% 4 7). )
(See HusemOller [15, p. 280 ])

(b) The Bott periodicity theorem, uhich says that _
2 2 2 g
(5P xs D=k (5P) ® (577 (4)

(5es Husemoller [16 , 0,137 _|;)
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By (b) V .can be written as a direct sum of tenson products of bundlies
2 2
on $°F and on 9 1. Loneequently, the multiplicativity of Chern

character implies, utilising (a), that our claim of integrality is true.

Nou, HZK(s*P x 5%9) =0 for k #0, p, q, prq i (5)
HZk(SQP X qu, ) =2 for k=0, p, q, ptq except when p = q = ke
Therefors by our pravious claim ak/kl is an integer except when
p=q=k and if p=q =k than (sk/kl)z- is an integer.

Also C) =0 = 8, for k #'0, Dy q, PFQe (6)
'mWWMMMM““”MMﬁﬂfméﬁfé%é§§wi§h£5mﬁbﬁéiﬁhé radiction to iﬁfééraiity; o

From Newton's relatiun,(ﬂilhur and Stasheff [22: P'lgé])

- 3;1 —Iql_- 13{-1._&1-_-{— .Bé Bn-—2 Faaot _-(.-l)n-"l 'ch_l 31 ~t-.(n-l)rl ncn = ) (7)
Assume p > q 21
By using {6) we have
5q * (~1)° qn%r=‘0 (8)

For, p=-q#q i-, p ¥ 24
—l)p_qﬂ

5, + (-1)9 ¢

+ (*ﬂ)p P c, =_U_

q %p-qg * p~q %q

or 8, b (1P po, =0 " Sy (e (%)

Fory, p~q=4q i.e+y p =120

__q + ‘=U- - -gh_
® + (1) Cq 8 2q %24 | .)

~+(;l)q Sy S +(-¢)p C

St ] (1) (pra) ey = O (20)

p g
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Recall also, o, (v @ V) = 3 ¢ ("u') G ( )
| mEn=ik T

and GJ(TJ“) = («1)3 ¢ (U)

Thersfore,

gV @ T

= Dp-{-qw).‘*’ GP(U) C (F) t G (U) DP(F) + Gp-*'q(v)
= (l+(-l?p+q)(c (U)+(-l)q c (V) ¢ (U)) (11)
For p #2q ivev, p~-q#qg
cp (V ® V) = 6, (V) + Cpg (V) nq('f!") + o(V) o _c;('»:.?) + cp("ﬁr‘)
= o, (W) + o)) = (1+ (1) o (122)
For p = 2g -
oy (V@ T =0, @ T) = 00(V) + (1) 0 (T) + 0, ()
| = 200 * I(-l)q nﬁ (12b)
oq (V@ 1) = o (V) + o (T) = (1+ (<1)T)e, (13)
since the tangent bundle of a sphere, and hence of 52[3 X qu is
atably trivial, all the Chern clalsaes nfl Y @ 'L'!'- are zero~ So,
(1+(=2)P79) (np+q + (_----‘.L)q C cq) =0 (14)
(1+{~1)P) o, = 0 if p¥2a (15a)
2c,, ('---1)';l ci =0 if p#2q (15b)
(2+(~1)9) cé =0 I . | | . (16)

Let us first consider the gase when P $ 20 and p > q +

From (E) (93) and (10) we haue,

g = (-7 (50) (o0 - cpﬂ,) - © (200)
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Subcase «-13 p and g both are odd
From {14) we have

a8
g T Bp X Gy T X (by (8) and (9a))

Therefors,

(P-;l;-i!. (q-lim'T = E%" ‘?’ ez (by (6))

Here we have used the fact that top Chern class = Euler characteristic

1204, cp+q(U) = X(v) =% (T(s%P x 5°9))

i

bo

Therefore, F"'"'l : o - £ 7
. , L . r

This is a contradiction for p E’_ 5.

Subpase -~ II ¢ p is odd end g is even

We have from (16)

=
°q

which implies sq = 0. (by (8))

Therefore, e, = (ptq) ot (by (10a))

0 N - g . z{ |
= , £
or T’E'E'Tpm—l i '(Esﬂq :
4 = -(-—-(—M e & 7
ilE.ll Ep+q_1 F': p+q-l H |

This 18 & contradiction for g even and P 2 qo



Suboase ~ 111 y P 1s even and g is odd,

From (15a) we have

C = (0
P

= (p+

| | | ¢
which implies '(mihm= ﬁ € ¥
: 4 é

This is a contradiction for p 2 4

Therefore, s

Subcase -~ IV: p and g both are sven

L

From (14) we have

p+g P q
8 8
O R« |
p q
C--{_ - EE | 8.
—I - S
o ) (e i A
A

1484 P"’l T Q"'l : E Z

This is a contradiction for p,q positive sven inteqers with p 7 q.

Thus thes theorsm is prwadf’nr all positive integers p, g with p 7 q _7'_‘_ 1

and p 7!251' ((py Q)# (3,1).)
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Now, we ars considering the case when p = 2q. We have from
(8)y (Sb)and (10)

g9
T - =
sq ( }) g Sq 0 -'(B)

q
+-' —
% (_l) Cq Bq + 2g QZq = 0 . (9b)

5

3q + (1) Dq qu + DZq Sq +{wl) 34 DSq = ) (10b)

which give

= (=1)% f—q-

0
i

2

8 3

. £ s 24
3

S
| 1> < I 29 _ 9
39 g 2 x_g?ﬂ 2

i
i
N
I
!
1'.']
|

on

(-l!q S%SSM X S !
((gm1)T)’

8 * 5 3 |
2
v t?q " ?ﬁﬁf —'Lc?g'-)rﬂ_' q"‘) L

Fach term. in the right hand side ls an integ'sr. |

S0, e 7
i (cq-—-m)ﬁ .

This is a cuntradictisn fﬁr q ;z.4 ’
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For g =3 and thersfore P =6 uwe have,

2
20 i~ ——rd
o ~ °3 0 (by (15b))
and 3 3
S,, w = = '
| 3 ~305 =0 or o, = (by (8))
From (9b) we have,
36“0353+606=U
2 Z
or S, -.303 + 303 = 0
or 8, = 0
Therefore from (10b)
105
Sgtgzey~dxd4 =0
S . S
’9 0! 323
nr (-g-r) » 2 "+ (3’1") ot 3 — D

or (EE')S = 3(1 - 2. x(7!1) f'?')

3! 9!

' N ®3 .3 °3
which implies 3 is a factor GF-QTT and hence 3 is a factor uf'31-

o o Vo g
which implies 9 is a factor of (12 x (7})--5%)- This is a
" g
. .. _9
contradiction since 9 is a factor of 2 x (7!)e 37
Also for ¢ = 2 and therefore p = 4, we have, (vrom (16))
= O

“a

and therefors ¢ .. = 0 | ‘ (by (14))

g

This is a contradiction since cp+q(U) ='}f(U) = A s

H
o
o
-
: I |
1v
g
T
L)

Thus the theﬁram is proved for all p,qd with P
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Finally,; we are only left with the cases when p = g (> 1)-

In this case we have the following relations

i q —
8q (=~1)" g Gq 0

= - | =
._52q+(1) Cq 8q + 29 8¢ 0
which give
| 2
And
| - o , - T
% (v & U). ®q (v) + Cq (U'}Dq (V) C9q (V)
G 24
— + -
m:- 1 (ﬁczq ( l) Gq)
and U

- _ q
nq(U @ V) = ({-1)") c

Thus if g is odd then

2
26, = ©g = (54/a)
200 8q.2
or 29 > -*(E%ﬁ € 2
((g~1)!) '
- _ﬂwﬂﬁnmnﬁ-s Z
((g=1)!)

This a contradiction for g 2 &

1¢ q 4is even, then by (12¢c)

0
1l
o

(8)
(10c)

(18)

(1lc)

(12¢)

(by(ﬂ))

( by{10c)
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| N o
2q - 2
| = TN
A G0 L ¢y L
.. A
gy ¢ 7
This again the desired contradictions

Thus we have proved the Theorem for p = q (p = q f 143) }%7

HENHHK':‘ Notice that when using stable triviality of T(Szk) Wwe ars
tacitly assuming that the standard differentiable structure of Szk is
being usede We do not knou how our theorem would he affected in.cese

sxotic differsntiable Bﬁrunturea (1f such exist) are imposed on the

spheres.

.

REMARK 5 Note that s x_s_? allows almost complex structures and is

the trivial S? bundle over S&r In facty; there is a famous twisted

*82, bundle over lsq'.which also not oply allous almost complex structures
but actually allows the complex manifold structure of E{PS « This
arises in the Penrose twistor theoryes It may be worthuhile to investigate
almost complex structures and cﬁmplex structures on twisted sphere bundles

over spheres rathsr than in just trivial product bundles treated above~
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1., 6Gth and 7th 1ines (seee. = the chief tools being Bott's periodicity

and integrality theorem. .....) of page 93 should read

" esese ~ the chief tools being Kunneth isomorphism theorem and

integrality theorem of Bott., .ov.. M|

2, The last line of page 93 should read

" complex structures as 52 ang Sﬁ allow, ,.sa0.™ .,

3o The last three lines of page 95 should resad
" (b) The Kinneth isomorphism, which says that
H(STPY @ H(529) & H'(52P x 5°9)
(See Milnor and Stasheff [22, p.268] )" .,

4. The first three lines of page 96 should read
" The multiplicativity of Chern character implies, utilising

(a) and (b), that our claim of integrality 1ls true ",

5. 0Ons extra Remark of the end of Chapter VII
AREMARK ¢ From the last part (SZp X 52p allows almost complex
1 or 3) it follows that ™ s allows

!

structures implies p

almost complex structures implies n=20r 6 " ,

6, Ono more example at the end of Chapter VI,

6.%.8 EXAMPLE ¢ Let M =5 x5°, Then TM is trivial (since,

Tiale S —, 3 !

T53 is trivial and TSS is stably trivial) and therefore 0

allows Ishiharals guaternion structure, But from Corollary 4,2 .9

(Ehaptar IV) M does not allow Hypercomplex structure,

F



