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Chapter 1
Introduction

Cellular Automata were originally proposed by John von Neumann as formal models of
self reproducing organisms. The structure studied was mostly on one and two dimensional
infinite grids, though higher dlmensmns were also considered. Computation universality
and other computation theoretic questions were considered important. See Burks [24] for a
collection of essays on important problems on cellular automata during this period, Later
physicists and biologists began to study cellular automata for the purpose of modelling in
their respective domains. In the present era, cellular automata is being studied from many
widely different angles, and the relationship of these structures to existing problems are
being constantly sought and discovered,

An important boost to the study of cellular automata was provided by Wolfram,.in his
experimental and theoretical studies conducted in the mid-eighties. It is in this period that
finite cellular automata began to be studied seriously. The paper by Martin, Odlyzko and
Wolfram in 1986 [115], is the first attempt to study a special class of finite cellular automata
‘called additive (or linear) cellular automata. By using algebraic techniques, they were able
to derive a large number of results on the state transition diagram (STD) of this class of
cellular automata, In the process it became evident that algebraic techniques were going to
play a pivotal role in the further exploration of linear cellular automata.

The next important step in the study of finite linear cellular automata is its application
to designing VLSI structures. It has been argued that the regular and homogeneous nature
of cellular automata are well suited for VLSI implementation and has spurred a great body
of research in suggesting alternative cellular automata based structures for many practical
applications. This work has almost exclusively concentrated on linear (or affine) cellular
automata, since this kind can be tackled using linear algebra. On the other hand non-
linear cellular automata are not amenable to known mathematical techniques and hence
little work has been done towards finding VLSI application of this kind of cellular automata.
However, the diversity of non-linear cellular automata holds out great promise. The work
on application oriented aspects of finite linear cellular automata have led to some interesting
results. On the other hand, finite linear cellular automata were also being studied from a



more theoretical viewpoint and led to interesting algebraic techniques. The important object
from both theoretical and practical viewpoints is the structure of the state transition diagram
(STD). While VLSI applications concentrate on designing hybrid cellular automata whose
STD have certain desirable properties, theoretical 1nvest1gat10ns fix a cellular automata and
try to analyse the STD completely.

In this thesis, we take a more theoretical approach, though a VLSI implementable cellular
automata based private key cryptosystem is proposed in Chapter 7. An important theme
of the whole thesis is the study of the reversibility of different kinds of finite linear cellular
automata. A major contribution of the thesis is to provide and in some cases develop
algebraic foundation for the study of the above class of cellular automata on one or more

dimensions.

1.1 Thesis plan

In the rest of the thesis we will abbreviate both cellular automata and cellular automaton
by CA. We will consider different varieties of CA, but the exact structure meant will always
be clear from the context. The thesis is based on [147, 145, 148, 146]. Results which have
not been cited as appearing elsewhere are original to the best of our knowledge. Next we
provide a brief summary of the chapters which appear in the thesis.

We begin the thesis with a review of CA research in Chapter 2. There is an excellent
survey of CA by A.R. Smith, III [158]. However, it is more than two decades old. Currently,
1t 1s perhaps quite impossible to survey the whole of CA research. There is a good survey
on computation theoretic aspects of CA {43]. There are also books on CA [64, 104]. In this
survey we try to cover the major topics in CA research which are closer to computer science
than physics or other applications. However, we would like to point out that any review of
CA is bound to be incomplete. We have been motivated in choosing topics based on our
knowledge and interest. |

In Chapter 3, we provide the necessary preliminary material required in the later chapters.
The structure studied in this chapter is uniform one-dimensional CA. The basic concepts
of CA are introduced with reference to this structure, and in later chapters we only point
out the modifications required for other varieties of CA. A major portion of the chapter
concentrates on providing a detailed proof of the derivation of the minimal polynomial for
null and periodic boundary one-dimensional CA. The results have already appeared elsewhere
- for null boundary CA in (168, 151] and for periodic boundary CA in [168]. We provide a
new simple proof of the result for null boundary CA. The motivation for providing a proof
of the result for periodic boundary CA is twofold. The first is that it is an important result,
and the proof in [168] is sketchy and depend on ideas scattered throughout the paper. The
second reason is that the proof is a nice illustration of the kind of argument required in the
analysis of linear CA. We also prove some new results on the inverse of the global map of
null boundary CA. In analogy with the order of irreducible polynomials, we introduce the
notion of exponent of a matrix and prove some interesting results on the exponent of the



matrix representing the global map of one-dimensional null boundary CA. These results are
used in Chapter 6,

In Chapter 4 we study hybrid CA, which is a CA where each cell has its own local rule.
From the VLSI point of view, the hybrid 90/150 CA is the most studied structure. We provide
an algebraic setting for the study of this structure in terms of continunant polynomials. This
is a crucial connection which we exploit extensively to prove results on the reversibility of
this particular variety of CA. In particular we show that the strings which encode reversible
90/150 CA (both null and periodic boundary), form a regular set. We use the regular
expression for null boundary CA to count the number of reversible strings (both null and
periodic boundary) of a fixed length, These results are then used to prove some negative
results on the synthesis problem for this type of CA.

Uniform two-dimensional CA have been studied before by Sutner {161} and Barua and
Ramakrishnan [15]. In Chapter 5 we tackle two open problems on two-dimensional CA
proposed by Sutner in [161]. One of them is completely solved, while investigation of the
other leads to some interesting results on the factorisation of a certain class of trinomials.
Factorisation tables of such trinomials are presented in Appendix A. The analysis indicates
‘that the reversibility problem for uniform two-dimensional CA on square grids is intimately
related to the roots of a certain sequence of polynomials called w-polynomials, which are
binary versions of the Chebyshev polynomials.

In Chapter 6, we tackle multi-dimensional CA. A key contribution is the representation
of the linear operator as a sum of Kronecker products. Based upon this representation, a
necessary and sufficient condition for reversibility is obtained, again in terms of roots of #-
polynomials. Using this condition a lot of interesting results are derived. The characteristic
polynomial of the linear operator is obtained in terms of resultant of #-polynomials. We also
extend the results to different variations of multidimensional CA.

Lastly in Chapter 7 we provide an application of linear CA to private key cryptosystem.
The advantage of using CA as a cryptographic primitive is the ease of implementation in
VLSI. We introduce the notion of composite CA and construct suitable composite CA, having
desired cycle lengths. A complete characterisation of composite CA is presented in a more
formal setup of products of finite autonomous automata. A suitably constructed composite

CA serve as the core of the block enciphering and deciphering hardware.

1.2 Prerequisites

It is assumed that the reader is familiar with basic linear algebra and polynormials over finite
flelds. Some introductory material on Kronecker products and resultants is provided in the
Appendix. The reader is referred to [13] for Kronecker products and to [120] for resultants.
All necessary material on finite fields is available in [110]. In Chapter 4 we use some basic
ideas of finite automata and regular expressions, all of which can be found in 82]. The thesis

requires no previous knowledge of CA. |




Chapter 2

A Review of Cellular Automata

Research

2.1 Classical

2.1.1 Beginnings

Cellular Automata (CA) were originally introduced by von Neumann. The simplest descrip-
tion of a CA is a one-dimensional array (possibly two-way infinite) of cells. Time is discrete
and at each time point each cell is in one of a. finite set of possible states. The cells change
state at each clock tick, and the new state is completely determined by the present state
of the cell and its left and right neighbours, The function (called the local rule) which de-
termines this change of state is the same for all cells. The automaton does not have any
input and hence is antonomous. The collection of the cell states at any time point is called
a configuration or global state of the CA and it describes the stage of evolution of the CA.
At time ¢ = 0, the CA is in some initial configuration and henceforth proceeds determinis-
tically under the effect of the local rule, which is applied to each cell at each clock tick. The
application of the lecal rule to each cell of the CA results in a transformation from the set
of all configurations into itself. This transformation is called the global map or global rule
of the CA.. This is a very simple description of a CA though it is perhaps the most studied
structure. The automaton described by von Neumann is a two-dimensional infinite array
of uniform cells, where each cell is connected to its four orthogonal neighbours. This was
originally called a cellular space, but the term CA is more popular now. It was introduced
by von Neumann [180] as a formal model of self reproducing biological systems. Key ideas
of the construction can be traced back even earlier to his talk on modelling of biological
systems [178]. The main purpose of von Neumann was to bring the rigour of axiomatic and
deductive treatment to the study of "complicated” natural systems. The basic idea of a
self reproducing automaton is presented in [178] and is a beautiful adaptation of the idea of



constructing a universal Turing Machine (TM). Here we present a brief sketch of the idea.

F'irst let us note that it is not very difficult to imagine the following two kinds of automata.
The first kind is an automaton A which when given an instruction I can use it to construct an
automaton (or machine) which is encoded by I. In fact J can be considered to be composed of
simpler instructions, each of which is used to construct the basic parts along with instructions
which specify how to put these basic parts together. The second automaton (say B) is even
more simple, It copies an instruction I into the control part of some other automaton. Now
consider A and B along with a control automaton ¢ which operates as follows. Given an
instruction 7, C runs A to create an automaton A; corresponding to I and then runs B to
copy the instruction I into the control part of A;. Let D consist of A,B and C. Then clearly
D 1s an automaton which require an instruction I to operate. Let Ip be the instruction which
codes D. Let E be an automaton formed from D by copying Ip into the control portion of D.
Now 1t 15 easy to see that E constructs itself and hence is capable of self reproduction. This
simple description ignores the coding and other formal details, These were later formalized
by von Neumann himself in [180], where he describes a cellular space where each cell can be
in any one of 29 possible states. The structure is capable of non-trivial self reproduction in
the sense that it can support a universal computer. The process of self reproduction can be
visualized as follows [158]. Initially the machine is placed in an environment where in each
direction there is any amount of hardware available (a " hardware soup”). Following the local
rules the initial configuration goes through a sequence of steps, whereby it extends an "arm”
into the hardware soup and creates a copy of itself and then detaches the newly created
machine from itself. The original proof of von Neumann was simplified and reformulated
several times (7, 11, 171]. The notion of self-reproduction introduced by von Neumann is
asexual, in the sense that the offspring is derived from a single parent. In this form of
reproduction the offspring is constructed from a single ”genetic” tape which contains an
encoding of the machine. Sexual reproduction have also been considered, and (176] contains
a, description of a machine which constructs an antomaton from two "genetic” tapes, where
the resulting offspring is not an exact copy of either parent.

It is important to note that a self reproducing machine is to be non-trivial in the sense
of being capable of universal computation. Otherwise, a 1-d array with a single quiescent
cell and a local rule copying this cell to the left and right neighbours can be considered to
be self reproducing. This brings up the question of CA capable of universal computation
and universal constructors. If a machine can construct a set of automats then it is called an
universal constructor over this set. If this set contains the automaton itself, then it is self
reproducing. Before we discuss the question of universal computation, we briefly mention
the general problem of pattern replication. | - | |

Amoroso and Cooper in an interesting paper [5] have described 1-d and 2-d CA which
after finitely many steps reproduces its initial pattern, The rule used is very simple, For 1-d
1t is the sum of the left neighbour and itself modulo k, where k is the number of states a cell
can assume. For 2-d the rule is modified to include the neighbour vertically above the cell.
f& generalisation to higher dimensions is proved in [132]. Moreover, the pattern "reproduces”
In a quiescent environment if k is prime. The CA rule used is linear and is one of the early

10



examples of linear CA.
It is not very difficult to see that a CA is capable of universal computation. The basic

idea is that a CA can perform a step by step simulation of a single tape Turing Machine
(TM). For convenience assume that the tape of the TM is two way infinite. Each cell of
the simulating CA will have two components. The first component stores the tape symbol
of the corresponding cell of the TM tape and the second component indicates whether the
head is scanning the corresponding cell of the TM. Then from the TM’s transition tunction

it is easy to derive the local rule for the CA. The essential idea is the following.

1. If the head is not scanning the cell or its left or right neighbour, the contents of the
cell do not change.

2. If the bead is scanning the left cell and there is a right move, then in the next step the
head scans the present cell. Similarly for the other direction.

3. If the head is scanning the cell, then at the next clock tick, the contents of the first
component of the cell is updated and the head no more scans the cell.

Note that this step for step simulation of TM by CA destroys the inherent parallelism of CA.
There have been attempts to bring out the power of this parallelism [157|. Later work has
shown how to simulate TM by reversible CA [55]. Albert and Culik [4] describes a universal
CA Ay with 14 states which can simulate step by step any CA, whose initial configuration
and local rule is encoded as an initial configuration of Ay. Computation universality of one-
way CA and totalistic CA (See subsection 2.1.2) have also been proved [4, 43|. The problem
of deciding whether a CA is computation universal based on the local rule is undecidable,
since otherwise the problem of deciding whether a Turing machine is universal would be
decidable.

An early technical question regarding CA was different kinds of trade offs - between the
size of cell (number of possible states) and the size of the neighbourhood and between the
size of cell and the speed of computation. The idea of trade off is an immediate consequence
of reformulation of von Neumann'’s original proof of self reproducing machines, The original
CA described by von Neumann used 29 states per cell. Codd [35] gave an 8-state machine.
Arbib [7] provided a simple description where each cell can execute a short program - and
hence the number of states per cell is large. Banks [11] provided a 4-state cell which could
be used to build a self-reproducing CA. Each of these constructions is for 2-d infinite CA
and uses the so called von Neumann or 5-cell (orthogonal ones and itself) neighbourhood.
Generalisation of these trade off ideas to construction and computation universal machines
is natural and has been studied in some depth. The simplest known construction universal
machine with 4 states per cell and von Neumann neighbourhood is that of Banks [11]. He
has also described the simplest known computation universal 2-d CA. (3 states per cell and
von Neumann neighbourhood). However, for 9 cell or unit square neighbourhood (also called
Moore neighbourhood), 2 states per cell is sufficient and a particular local rule called ” Game
of Life” (see Section 2.2.2 ) has been shown to be computation universal [158]. Smith [156]

11



provides a list of neighbourhood size versus state set size trade off results for computation

universal 1-d CA capable of self reproduction.
The other kind of trade off results is related to simulation of & CA by another CA which

is a basic technique for proving results on CA. Specialization of such results to computation
“universal CA yields the results just described. It has been observed (but not proved) that
the cost of reducing neighbourhood or increasing speed leads to an increase in the size of
the state set. For a neighbourhood of M cells and n states per cell the size of the state
set increases to abont M™ when reduction is to Moore neighbourhood (a generalisation
of the 9 neighbourhood for 2-d CA). Reduction of Moore neighbourhood to von Neumann
neighbourhood is difficult and increases the state set size fraom nton’, where V is the volume
(number of cells) in a d-dimensional sphere of radius 2d? [156]. For 2-d and 3-d case this
cost can be significantly reduced {25, 75]. Simulations can be carried with neighbourhoods
smaller than von Neumann. For example, a neighbourhood consisting of the cell itself and
a neighbour in each dimension suffices for a step by step simulation of an arbitrary CA. In
fact, the cell itself can also be left out [156]. If a strict step by step simulation is not required
then the initial encoding may be omitted and the CA can itself perform the initial encoding.
The reverse trade off - decreasing the state set size by increasing the neighbourhood is also
possible (156].

Given a CA it is possible to design another CA which simulates the given CA k times
faster at a cost of increase of state set size, assuming Moore neighbourhood before and after
simulation [156]. Both decrease in neighbourhood and speed up can also be achieved at a
cost of increase in the state set size. But there seem to be no theoretical results on the limits
of trade off possible. For example, assuming finite neighbourhood, what is the maximum
speed-up possible at a cost of increase in state set size ? Investigation of this and similar
questions can lead to interesting results.

2.1.2 Variants of Cellular ‘Automata

A CA is characterised by four features - the geometry of the underlying medium which
contain the cells, the local transition rule, the states of the cell and the neighbourhood of a
cell. In the following paragraphs we briefly discuss different types of CA that can arise by
varying the four features mentioned above. |
Geometry A |

This can be a d-dimensional (possibly infinite) grid. Usually the term CA is used for such
structures. In case of finite grids it is possible to define different boundary conditions, The
grid is supposed to have a periodic boundary condition in some dimension if 1t is considered
folded in that dimension. The dimension has a fixed boundary condition if the extreme
cells are considered to be adjacent to cells in some prespecified state whose value does not
change during the computation. In case this prespecified state is the quiescent state, then
the boundary condition is called null boundary condition. For linear CA, the quiescent state
is the state zero and in general the quiescent state is a state g such that the local rule maps
(g,-..,q) to g. Note that it is possible for more than one such state to exist but usually one

12



particular state is defined to be the quiescent state. Among the fixed boundary conditions
only the null boundary condition have been studied seriously. However, see [115] for a brief
discussion of other possibilities. It is also possible to consider one end to have periodic
boundary condition and the other end to have fixed boundary condition [12].

A more abstract way of defining the geometry is through group graphs. The following
definition is from [77]. A group graph is a tuple N = (G, h), where G is a group which
defines the nodes for the cells and h defines a map from G to G* by h(g) = (h1.9,...,hx.g),
where h; € G and . is the group operation. The map h provides the neighbourhood for
the cells. The concept of group graph is a convenient way to describe "uniform” geometry -
a connection pattern which “looks same” at all points. Non-uniform connections have also
been studied, though the relation between uniform and non-uniform geometry have not been
fully understood (see [94]).

So far we have considered, what is called static CA - the node set and the interconnection
pattern do not change with time. It is possible to consider node static CA where the node
set does not change with time but the interconnection pattern may change. Such a structure
is still considered static and has not received much attention (see [175]). However, dynamic
CA - both node set and connections may change - have been studied extensively due to its

use in modelling of biological systems.

Neighbourhood -
In some cases like group graphs the geometry itself determines the neighbourhoed of a.

cell. However, if we are considering a d-dimensional grid it is possible to define different
kinds of neighbourhood. The von Neumann (orthogonal) neighbourhood and the Moore
(unit cube) neighbourhood have already been mentioned in connection with the trade off
results. "It 1s possible to define input and output neighbourhoods of a cell. A cell takes
its input from its input neighbourhood and its state is available to the cells of its output
neighbourhood. If the sizes of the input and output neighbourhoods are equal, then the
CA is balanced. For balanced but non-uniform neighbourhoods, the connection to uniform
neighbourhood has been studied in [94]. A variant of CA where the local rule depends on
the sum of the states of the neighbouring cells is called totalistic CA and was introduced by
Wolfram. Computation universality of this kind of CA have been proved in [43].
Cell States

A CA where the cells can have different state sets is called a polygeneous CA. Such CA
have not received much attention except for the work of Holland [80].
Local Rule

The local rule is usually assumed to be deterministic. This however is not necessary and
non-deterministic maps have been studied in connection with language theory [157, 150] and
reliable computation [131]. A CA where each cell has its own local rule is called hybrid.,
Such structures have been studied in connection to VLSI applications [151, 31, 86]. It is
possible for a cell to change its local rule at each time step. In the VLSI context, this is
called a programmable CA [128] and in theoretical studies on CA the structure has been
called a tessellation automata. |

Next we discuss three variants of CA which have received more attention.
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Tessellation Automata
This is a CA with an input line distributed to all cells. The setup can be visualized

as each cell having a finite set of local rules and the input is used to choose the particular
local rule to apply. See [195, 197] for a nice discussion on tessellation spaces. An interesting
problem which is inherently tessellation automata theoretic is the completeness problem
and is related to the "Garden of Eden” problem for CA. The problem is stated as follows.
Starting from an initial configuration with only one non quiescent state, is it possible to
apply input to drive the automaton to any specified finite configuration ? If the answer
is yes for some subclass of automata, then the subclass is called complete. There are only
partial answers to this question {196, 116, 117]. Tessellation automata have also been called
time varying CA and their formal language theoretic properties have been studied [114].
Iterative Automata

This is a CA where only one particular cell is given an input. Such structures have been
considered in connection with language recognition studies {103, 150, 29]. Different trade
off results (similar to CA) for this class have been considered in [36]. In [157] it is shown
that this class is an inherently slower device than usual CA. Iterative automata languages
contain the context free languages [103]. A 1-d iterative automaton requires O(n®) steps to
accept a string of a CFL of length n. The non-deterministic 2-d version of iterative automata
can accept in linear time any language accepted in linear time by a non-deterministic multi-
head TM with a tape of arbitrary dimension {150]. The paper also contains the result that
the non-deterministic d-dimensional iterative spaces can accept in linear time any language
accepted in time n® by a non-deterministic multi head TM but with a 1-d tape. See [90] for
additional results.

An interesting application is a linear time multiplier designed by Atrubin [9]. The binary
representation of the multiplicands are fed to the first cell (least significant digit) first and
the product is output from the first cell (again least significant digit first) with no delay. See
. [102] for a good exposition of the algorithm. Iterative linear arrays have also been used in
VLSI applications [105).

Note that the concepts of tessellation and iterative automata can be generalised to tes-
sellation and iterative graph automata by defining such structures on group graphs [158].
One Way CA

A one way CA allows only one way communication, i.e., in a 1-d array each cell depends
only on itself and its left neighbour. One can also consider dependence on the cell and
its right neighbour. However, both side dependence is not allowed. This lack of two way
flow of information can be considered to be a restriction on the power of the automaton,
However, there are results which indicate otherwise. Morita [125) has shown the computation
unwersahty of 1-d, one way reversible CA. See Subsection 2.1.5 for formal langu age properties
of this class of CA A related class of automata motivated by design of systolic systems and
algorithms is the class of systolic trellis automata, which have been quite extensively studied
by Culik et al {23, 26, 40, 41, 42]. This class is equivalent to bounded space real-time one-
way CA. Study of systohc arrays modelled as 1-d, 2-d, one-way CA and iterative arrays
have been carried out by Ibarra et al [89, 90]. This work has resulted in the development
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of many easy-to-implement systolic algorithms . One way CA on Cayley Graphs have also
been studied [144].

2.1.3 Biological Connection

CA were originally proposed by von Neumann to provide a formal framework for study of
"complicated” natural systems. Later work in this direction used dynamic CA for madelling
of biological systems. One of the early attempts was by Lindenmayer [111], who proposed a
model of growth for filamentary organisms based on ideas of CA. Later work on such systems
were mainly formal language theoretic and a survey appears in [98).

Another interesting biological connection has been studied by Holland [81]. He used
CA as a model to study the spontaneous emergence of self-replicating systems. The CA
is used as a model of the universe (called the a-universe) where each cell has two parts.
The first part stores the state of the cell and the second part indicates the nature of the
bond (strong or weak) the cell has with its left or right neighbours. Stochastic operators are
used to manipulate the states in accordance with the bonds and in a conservative manner
- elements are never created or destroyed, they are only moved about and rearranged by
the operators. The operators are themselves encoded by the states of the cells, The crucial
parameter studied is the expected time till the emergence of self replicating systems, which

is an arrangement of the universe which can replicate itself.
The first attempt at modelling artificial life with CA was von Neumann's self reproducing

antomata. An implementation of this construction has been done in [137]. For other work
on modelling of artificial life see [91, 1]. A great amount of work has been done in using CA
for modelling of biological systems Examples of recent work in this direction can be found

in [108, 101]

'2.1.4 Fault Tolerant Computing

The idea of fanlt tolerant computing also originates from von Neumann [179], who showed
how to build a reliable Boolean circuit out of unreliable components. For the case of CA,
the unreliable components are taken to be the cells. Each cell can misoperate and assume
an incorrect state, i.e one not dictated by the local rule. Early work in this area assumed
a fault model called k-separated misoperation [131] 1.e, there exists a finite set K of Z¢
such that given a cell z € Z¢ at most one cell in the set & + K will misoperate (here d is
the dimension of the grid). In [131] it is shown how to construct a CA which will correctly
simulate an unreliable CA with k separated misoperation, step for step. The basic idea is
to encode the initial configuration of the unreliable automaton suitably to form the initial
configuration of the simulating automaton, The coding is carefully designed so that each
cell in the coded configuration can use a majority voting rule to decide its state. The local
rule of the simulating automaton is almost the same as the Grlglnal one, except that at
each step each cell of the simulating automaton corrects any error in its neighbouring cells
before applying the local rule. This leads to an increase in the neighbourhood size. It has
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been shown that under the same fault model, unreliable CA. over group graphs can also be

simulated in an error free way [76].
Later Gacs [60] has shown how to construct a 1-d CA which can reliably perform arbitrar-

ily large computations, and where each cell can perform an error with a positive probability.
The fault model so considered is important from ergodic theory point of view and Gac’s result
leads to the refutation of the " positive probability conjecture” in statistical physics, which
states that any one dimensional infinite particle system with positive transition probabilities

is ergodic. For recent work on reliable cellular automata see [61).

2.1.5 Language and Pattern Recognition

A finite CA can be thought of to be a language acceptor by considering the initial configu-
ration to be the input string and acceptance or rejection is determined by a specific cell (say
the rightmost)} going to an accept or reject state. For a 2-d CA the problem is one of pattern
recognition and the accept cell can be the northeast one in a rectangular grid or it could
be the easternmost cell in the northernmost row for a general 2-d layout. Certain language
classes can be defined by both restricting and enhancing the power of CA. This is done by

introducing the following four conditions.
1. One way communication giving rise to one way CA.

2. For an input of n symbols, the number of steps of computation required is exactly n.
This is called real time computation.

3. For an input of n symbols, the number of steps of computation is proportional to n.
This is called linear time computation. |

4. The local rule is nondeterministic, giving rise to nondeterministic CA,

The symbols O,r,] and N are used as prefixes to the word CA to denote a particular language
class. As an example, rOCA denotes the class of languages accepted by real time one way
CA. The relationships among CA language classes as well as their relationship to the classical
language classes have been extensively studied. See [114] for a good survey of results and
techniques used in this area. Here we briefly mention several important results, The first
(and easy) result is that the language class CA is equal to DSPACE(n). The class 1CA
is a subset of OCA [29, 88, 90]. This is obtained by considering the relationship of both
OCA and ICA to sweeping automata [29]. It is also known that rOCA is a proper subset
of rCA [26, 40], and rCA is equal to IOCA [26]. The PSPACE-complete language QBF
(quantified Boolean formulae) belongs to OCA [88] and NSPACE(,/n) and ATIME(n) are
subsets of OCA. The class OCA lies between NSPACE(y/n) and CA=DSPACE(n) and
proper containment between OCA and CA would separate these two classes, improving
Savitch’s result. It is also conjectured that 1CA is properly contained in OCA, since ICA is a
suset of P and OCA contains QBF, any proof that ICA=0OCA will imply that P=PSPACE,
a rather unlikely result. For the nondeterministic language classes it has been proved in [58]
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that NOCA=NCA=NSPACE(n), the class of context sensitive languages. Further it is
known that rINOCA contains an NP-complete problem [89]. Open problems and examples
of languages contained by rOCA, rCA, ICA and OCA can be found in [114].

2.1.6 Invertibility and Garden of Eden

A major focus of research in CA has been related to question of invertibility. A CA rule p
is called invertible if there exists another rule p™!, called the inverse rule, which drives the
CA backward, i.e., if application of p to a conﬁgura.tion ¢ produces a conﬁguration d, then
application of p~! to d produces c. A CA is called invertible if its local rule is invertible.
Richardson [142) has proved that a CA is invertible iff its global map is injective. The
technique does not provide an inverse as topological arguments are used to prove the result.
For an automata theoretic approach to the problem see [37]. Amoroso and Patt have proved
that there is an effective procedure to determine invertibility of 1-d CA based on the local
rule [6]. Kari [95, 97) has shown that for a 2-d CA the question of determining invertibility
from the local rule is undecidable. The reduction is from the tiling problem in conjunction
with a special version of the tiling problem called the directed tiling problem.

The surjectivity of the global map of a CA have also been studied. A configuration is
called a ” Garden-of-Eden” configuration if it is not "reachable”, i.e it can occur only as initial
configuration in any evolution. Existence of such a configuration shows that the global map
is not surjective. Myhill and Moore [127] have proved that a global map is surjective iff its
restriction to finite configurations is injective. The surjectivity of 1-d CA is decidable [6].
Kari [95, 97] proves that the problem is undecidable for two dimensions by showing that
the injectivity problem restricted to finite configurations is undecidable. To tackle finite
configurations Kari introduces a special class of tilings having the "finite tiling property”.

See (95, 97] for details.
Given a. 1-d CA, it is possible to construct an invertible 1-d CA which can simulate

the original CA [126]. It is even possible to simulate TM by invertible CA [55]. Toffoli
[172] has shown how to simulate any k-d CA by an invertible (k¥ + 1)-d CA. This proves the
computation universality of invertible CA for dimensions higher than one and from the result
~ of [126) 1-d invertible CA is also capable of universal computation. However, the question
of whether a k-d CA can be simulated by a k-d invertible CA is still open for & > 1. The
invertibility question is of fundamental importance to physics, as it can be used for modelling
microscopically reversible dynamical systems. See [174] for a survey.

For a finite CA, an injective global map has to be bijective. Moreover, if the glﬁba] map
of a finite CA is injective it does not necessarily mean that there is an inverse CA, in the
sense that there is an inverse local rule that can be used to force a configuration to retrace
the original evolution. So a finite CA is said to be invertible if the global map is a bijection.
In this case it is trivial to see that the non-existence of Garden-of-Eden configuration is
a necessary and sufficient condition for invertibility of the global map. It is in general
difficult to determine invertibility of finite CA. See [77] for a discussion of the dynamics
of finite CA. If the global map is a linear transformation, then the problem becomes more
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manageable. Extensive discussion on properties of linear or additive CA can be found in
[115]. In this thesis we will discuss the invertibility of different kinds of linear CA on one or

more dimensions.

2.2 CA Games

2.2.1 Firing Squad Problem

This is basically a synchronization problem but can also be thought of as a game. The
problem was first proposed by Minsky around 1957 and it first appeared in print in [123].
The following is a simple description of the problem. Consider n soldiers (out of which one
is a general) to be standing in a row. The soldiers (including the general) can communicate
only with their immediate left and right neighbours. The general gives the command to fire,
Ultimately the soldiers and the general are required to fire simultaneously and for the first
time. In CA terms the problem is to design a cell and a local rule such that starting from
- an initial configuration where only one cell is on and the other n — 1 cells are off, there is
an evolution such that all the cells enter a predesignated state all at once and for the first
time. Note that the problem can also be considered on an infinite 1-d array, but then the
other cells must all be in the quiescent state and remain so throughout. The basic problem
15 to design a cell which is independent of the number of soldiers and hence will work for
an array of arbitrary length. This means that none of the cells can count upto n. In case
the general is one of the end cells, it is easy to see that the minimum time required for
- synchronization is 2n — 2 steps. Waksman [181] provides a solution in 2n — 2 steps. The
solution depends heavily on the idea of signals propagating through the array at different
speeds. Implementing such signals using CA cells are discussed in [39]. For a solution to the
problem where the general can be any cell see [124]. Culik [38] has considered several other
varations and have used the results to disprove a conjecture of Ibarra and Jiang that real
time one way CA cannot accept certain languages. The problem has also been generalised
to higher dimensions [130, 154] and node static and dynamic CA [79, 175]. A generalisation
to arbitrary graphs called the Firing Mob Problem have been introduced in [39] where an
efficient solution is also provided. The introduction to [39] also contains a brief history of the
Firing Squad Problem and the solutions attempted by various researchers. The central result
that it is possible to design such a CA is called the firing squad theorem and has been used
in language and pattern recognition studies of CA [157, 38]. A related desynchronization”
problem is to design a CA such that all cells are initially in the same state and ultimately
only one cell goes to a predesignated state. The problem has been called the ” queen bee”
problem [158]. |
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2.2.2 Game of Life

This game was originally proposed by Conway and has been made popular through Martin
Gardner’s column in Scientific America [62, 63]. The original motivation for the problem
was to design a simple set of rules to study the macroscopic behaviour of a population.
The criterion for choosing the rules were based on the principle that growth or decay of the
population should not be easily predictable. After a great deal of experimentation, Conway
chose the following set up. The population is represented by a configuration of a 2-d infinite
array of cells with Moore (unit square) neighbourhood, where each cell can be in one of the
states 1 or 0. The local rule is described by the following rules. The resulting CA is an

example of totalistic CA (see Subsection 2.1.2).

1. Survival : If a cell is in state 1 (alive) and has 2 or 3 neighbours in state 1, then the
cell survives, i.e remains in state 1. |

2. Birth : If a cell is in state 0 and has exactly 3 neighbours in state 1, then in the next
time step the cell goes to state 1.

3. Deaths : A cell in state 1 dies (goes to state 0) if it has O or 1 neighbour (loneliness).
Also it dies if it has 4 or more neighbours (overcrowded). o

Each configuration is called a population and the evolution of the population is studied. As
with many CA evolutions, the " Game of Life" show fantastic variation in the growth patterns
of the initial population. It has been shown that there is a simple initial configuration, that
grows without limit. The configuration grows into a "glider gun” and after 40 steps fires
the first "glider” and thereafter continues firing gliders after every 30 moves. It has been
informally proved that the ”Game of Life” is capable of universal computation. For a good

account of the game and for some good pictures see [62, 63].

2.2.3 o(o")-Game

This game was first proposed by Sutner [165] and is based on the battery operated toy
MERLIN [136]. It is a two person game and is played on a 2-d finite grid where each node
has a bulb which can be either on or off. A move is made by choosing a node and as a result
the states of all the bulbs in orthogonal neighbourhood positions toggle. A configuration
of the game is a state of the grid where some of the bulbs are on and the others are off.
Player A chooses two configurations, the initial and the target configurations. Player B has
to make a sequence of moves starting from the initial configuration and reach the target
configuration. It is easy to see that choosing a node twice is the same as not choosing it
at all. Also the order of the choice of nodes is not important. Thus any winning strategy
(solution) for B can be viewed as a set rather than a sequence. This set of nodes can then
- be thought of as a configuration of the grid (the bulbs in the set are on, the others are off).
Suppose the initial configuration is the all O configuration and the target configuration is X;.
If Z is a solution to this instance then o(Z) = X, where ¢ is the global rule of a finite 2-d
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CA whose local rule is the sum (modulo 2) of the four orthogonal neighbours. Again Z is a
solution for the pair (X, X;) iff 0(Z) = X, + X; and hence the number of solutions (if any
exists) is 2%, where k is the corank of the linear map ¢. 'T'hus the study of o-game reduces to
the study of linear 2-d CA (15, 166]. The corresponding game where the state of the chosen
bulb also changes is called the ot-game. Both o and o*-game have been studied on 2-d and
multidimensional grid. In fact this thesis will present results on multidimensional CA which
have direct relevance to multidimensional o(o*)-game. The game has also been considered
over arbitrary graphs [161, 163} but results are more difficult to obtain in this setting.

2.3 Modern Research

2.3.1 Empirical Study

The mid-eighties form an important period in the history of CA and this is largely due to the
work carried out by Wolfram. The nature of the quéstions asked represent a paradigm shift
in CA research. Wolfram carried out an extensive phenemological analysis of the growth
patterns of CA. The early paper by Wolfram [189], discusses several statistical parameters
of the space-time patterns of CA evolution. Later work extended and clarified much of the
intuition in several directions. An excellent source of papers on this period of CA research is
the book by Wolfram [193]). The major viewpoint was to consider CA as models of complex
systems, in the sense that very simple CA rules can give rise to extremely complicated
patterns. The mathematical simplicity in CA description is thought to be a significant
advantage in using CA for modelling rather than using systems of differential equations. A
related phenomenon of CA evolution is self-organization. Starting from random unordered
configurations having maximum entropy a CA evolves to states of lesser entropy. This is
contrary to the second law of thermodynamics which states that reversible systems evolve
to states of maximal entropy. The microscopic irreversibility of CA. is the reason behind
this selforganizing behaviour. The type of CA extensively studied by Wolfram is the 1-d, 3
neighbourhood, binary CA. A numbering system for the possible local rules of such CA can
be found in [193]. Two important rules are 90 and 150. Rule 90 is the sum modulo 2 of
the states of the nearest two neighbours. Rule 150 is the sum modulo 2 of the states of the
nearest two neighbours and the state of the cell itself. Note that both 90 and 150 are linear
rules. |

The approach taken in [191] to study the growth patterns of CA was to define several
local and global statistical parameters and study their behaviour. Some important local

parameters are

1. average density of non-zero sites, which is a "rough” measure of the growth of CA
evolution. |

2. the average number of triangles or triangle density T'(n) of triangles of base length n,
in the space time pattern.
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3. sequence density @;(n), which is the density of sequences of exactly n adjacent sites

with the same value 2.

Both the triangle and the sequence density follow an exponential rule for evolution from
initial disordered state. For example, for large n, T(n) ~ A™™ and the parameter A distin-
guishes between linear (A & 2) and non-linear (A ~ 7) rules. Another important feature of
the space time evolution from initial disordered state is that triangles of all sizes are obtained

and-hence the structure is generated on all scales.
For a finite N-cell CA one can consider the finite set of 2% configurations to be an

ensemble where each configuration have equal probability of occurrence. After evolution for
a few time steps an equilibrium is achieved where the configurations'have different probability
according to some distribution function. On taking average over the ensemble, properties of
configurations with higher probability dominates. This indicates the self organizing character
of CA evolution. Another measure of self organization is entropy. For a finite CA, the entropy
is defined as ¥, p; log p;, where p; is the probability of configuration i. For irreversible CA,
this entropy decreases from an initial maximum (for random initial configuration) to lesser
values. A corresponding entropy called "block” or ” Renyi” entropy can be defined for infinite
1-d CA and shows a similar phenomenon. For second order (next state depends on present
and previous state of neighbours) reversible infinite CA, the entropy almost always increases
with time. |

Another interesting approach to characterisation of CA evolution comes from formal
language theory. It has been shown in [190] that the set of configurations that can appear
after ¢ time steps forms a regular language. The size of the minimal DFA after ¢ steps
provides an indication of the complexity of the set of configurations after ¢ steps. For many
CA rules, the minimal DFA becomes more complicated at each step and do not appear to
exhibit any overall structure. Again for some CA rules the infinite limit set of configuration
(the set of configurations reachable at arbitrarily large time steps) is also a regular language,
but there are others whose regular langnage complexity grows with time and hence seem
to generate non-regular language in the limit. In fact Hurd [87] has provided examples of
CA having strictly non-regular, non-context free and non-r.e. limit sets. In [69], a CA is
described whose limit set is NP-hard. A modification to this approach associates to each
node of the minimal DFA a weight corresponding to the probability P: that they are visited.
One then computes the entropy measure $° P, log F; and uses it to study the growth pattern
of the configurations. For details of this approach see the Appendix (Table 11) of [193].

2.3.2 Classification of CA

A major problem that stemmed from Wolfram’s work is one of classifying CA rules according
to their behaviour. The initial empirical classification was proposed by Wolfram himself in
[191]. His classiﬁcation 18 based on entropy measures and identifies the following four classes.

1. Evolution leads to a homogeneous state.

2. Evolution leads to a set of separated simple stable or periodic structures.
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3. Evolution leads to a chaotic pattern.

4. Evolution leads to complex localized structures which are sometimes long lived. It is
believed that this class is capable of universal computation.

Later work cohcentrated on formalizing the intuitive classification by Wolfram. Culik and
Yu [46] have proposed the following classification. Let p be the local rule for a CA. Then,

1. Rule p is in class one iff every finite configuration, i.e configurations in which only a
finite number of cells are in non-quiescent states, evolves to a stable configuration in

finitely many steps.

2. Rule p is in class two iff every finite configuration evolves to a periodic configuration
in finite number of steps.

3. Rule p is in class three iff it is decidable whether a configuration occurs in the orbit of
another,

4. Class four comprises all local rules.

They show that the problems of deciding membership of a rule p in classes one and two
are I1}-hard. Similarly class three is X%-hard.. Sutner [164] has shown that class one and
two are II3-complete and class three is £3-complete. The arguments are based on encoding
of TM instantaneous descriptions by natural numbers and the simulation of TM by CA.
It is important to note that the above classification considers only finite configurations.
Infinite configurations in general cannot be finitely described and hence cannot be tackled
by conventional computability theory. A classification of periodic boundary condition CA
(whose configurations can be thought of as spatially periodic configurations of an infinite
CA) have also been proposed [165]. Using a non-standard simulation of a TM by a CA, it
is shown that the problem of 'deciding membership in the hierarchy is undecidablé.

In a recent study Braga et al [22], have provided a classification of CA based on their
pattern growth. The pattern growth properties are show to be dependent on the truth table
of the local rule of the corresponding CA. This provides an algorithm for classification of
CA rules and hence defines an effective hierarchy of CA rules, which is in sharp contrast to
the undecidability results discussed above. The essential technique is the fact that certain
shift like dynamics in the evolution can be discovered by looking at the truth table of the
local rule. Then a proper grouping of rules exhibiting similar dynamics yields a classification
which is close to that of Wolfram’s. | |

Other attempts at classification have been reported. Gutowitz [72] provides a hierarchical
classification of CA based on action of CA on n-step Markov measures. There is also an
algorithm which efficiently constructs all rules in a given class at a given level of the hierarchy:.

. Gilman [65] has introduced a dynamical system based classification of CA. See [43] for

additional details on various classification schemes.
A preliminary study of 2-d CA [133] shows that it is possible to classify 2-d CA along
the same lines as 1-d CA. This suggests that the global behaviour of 2-d CA is similar to
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1-d CA. However, 1-d and 2-d CA show marked difference with respect to other properties.
Golze [67) has shown that for 1-d CA every recursive configuration (a configuration each of
whose cell values can be effectively calculated) has a recursive predecessor but in the 2-d
case even a finite configuration may fail to have a recursive predecessor. Again invertibility
of 1-d CA is decidable while it fails to be so for 2-d (and higher dimensional) CA.

2.3.3 Limit Sets and Fractal Properties

One of the important directions of CA research in the modern era is the study of the limit
sets of CA space time patterns. Harly work in this area was done by Willson [184, 185] and
the topic received an impetus from Wolfram [189, 191]. However, the notion of a limiting
set of configuration obtained by evolving a CA was introduced by Podkolzin [140]. Later we
mention some of the work done in this area. The space time pattern that is observed during
simulation shows several kinds of interesting characteristics (see appendix of [193]). One
of the important features is a sort of scale invariance and self similarity on different scales.
~ This immediately suggests the idea of computing the fractal dimension of such patterns.
Wolfram’s empirical investigation [189] outlines two natural ways to do this. In the first
approach a parameter T'(n) is defined which measures the density of triangles of base length
n. A geometrical construction shows that for rule 90, T'(n) ~ n~'% and for rule 150,
T'(n) ~ n~'%  The invariants 1.59 and 1.69 then gives the limiting fractional dimension
of the patterns. In the second approach, the space time configurations are scaled to fit the
same perimeter and one considers the set of all limit points. This gives rise to a fractal
dimension which is a "geometric” dimension and is also called the Kolmogoroff dimension.
Willson [187] investigates theoretically why the two approaches to computing dimension
should coincide and provides examples where the Kolmogoroff dimension differs from the
more usual Hausdorff-Besicovitch dimension.

Theoretical study of the limit sets of CA evolution via geometric invariants have been

performed by Willson [186]. The basic object of study is the sequence

w,Fw, F*w,... FPuw, ...

where w is a configuration of an n-dimensional CA and F is the global rule of some CA. If
we fix a state g, then we can think of the set of cells (in space time configuration) having
value ¢ as a set of points where each point is given by an (n + 1)-dimensional vector. Let
Xp be the above set corresponding to FPw. Consider the set X,/p where the vectors of
Xp/p are obtained by dividing each vector of Xp by p. This scaling ensures that the space
time configurations fit the same perimeter at each time step. Let Lim(w,q) be the set of
points in the limit p — oo. This limit is taken as an approximation of X » and properties
of the limit indicate the nature of growth pattern of the space time configuration. For
example if Lim(w, 1) is a tetrahedron then one would expect the configurations to grow into
a tetrahedral form. When the CA rule is linear (mod 2) it has been shown that the limit set
is a compact subspace of Euclidean space and can have fractional Hausdorff dimension. For
linear CA this provides a formal proof of Wolfram’s basic intuition. Space time patterns of
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arbitrary linear CA have also been studied [170]. The corresponding limit sets are generally
fractals. The self similar structure is characterised by a transition matrix, whose maximum
eigen value determines its Hausdorff dimension.

Limit sets have also been studied from a different direction using formal language theo-
retic methods [87, 45]. In this approach the set of configurations rather than the space time

is considered. For a d-dimensional infinite CA having S as the set of cell states

patterns o y

the set of configurations is S2° When S is endowed with the discrete topology then
with the product topology is compact by Tychonoff’s theorem and the global map & of the

'CA is a continuous function. Letting S%° = Qg and O = G(§%4_) for i > 1, each ; is a
compact subspace of S% and Q = (Visq § is the limit set for the CA. This Q is the object

of study. It has been shown in [45] that for d > 2, it is undecidable whether {2 contains
a finite configuration. Using the notion of limit set of a CA it 1s possible to define a limit
language as follows. Consider a 1-d CA. Then every configuration is a biinfinite word over

S. For a configuration c, define

Lic] = {w € §* :w is a finite subword of c}

and let L[C] = Ugc Llc] for a set of configurations C. Then L[] is the limit language.
The membership problem for such limit language is undecidable [45]. For a survey of result
regarding this limit language see {43]. Given a CA the complement of the limit language is
r.e. [43]. Also for any language whose complement is r.e., one can construct a CA whose
limit language yields the chosen language after intersection with a regular language and a
¢-limited homomorphism. This can be used to show that there exists a CA whose limit
language is not r.e. Similar properties have been obtained for Il, the closure of the points
periodic under the global CA map. See [43, 44| for details.

One can define a State Transition Diagram (STD) for an infinte CA by consmlermg
an infinite directed graph whose vertices are the configurations of the CA and the. edges
" represent one step evolution of the CA. This has been done by Podkolzin [140), where it
has been shown that the STD either has a single connected component or has uncountably
many connected components. If a CA has only one single connected component it is called
nilpotent. It has been proved in [140] that for two or more dimensions the problem of CA
nilpotency is undecidable. For one dimension the same result has been proved by Kari [96].
Podkolzin [140] has also shown that for any CA either the limit set is a singleton and the
CA is nilpotent or the limit set contains an infinite number of elements. See [43] for further
discussion on limit sets.

Another interesting approach to the study of dynamical prt)pertles of CA is to conslder
the CA as a computational device acting on bi-infinte strings on one hand and as a continuous
function on a compact metric space on the other. This gives rise to considerations of symbolic
dynamics on bi-infinite strings [17]. If S is the state set for a cell of a 1-d CA and Z is the
set of integers then 5% is the set of all configurations of the CA. It should be noted that
if G is a global CA map then it is a shift invariant continuous map from SZ to S%. The
converse that any shift invariant continuous map from S? to SZ arises as a CA map has
been proved by Hedlund [78). A topologically closed subset of SZ is called a subshift if it is
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invariant under the shift map. A subshift is said to be of finite type if any bi-infinite word
in it does not contain any block from an excluded finite set. A sofic system is the image of
a shift invariant continuous map acting on a subshift of finite type. It has been shown that
each sofic system is a ww-regular set and for each ¢ > 0, G'(S?) is an ww-regular set [47],

‘where G is the global map of a CA. See [47, 43] for a more detailed discussion.

2.3.4 Computational Complexity

Early indication of the study of computational complexity of CA is the study of the minimum
number of steps required to perform certain computation. Serious attempts at studying
complexity theoretic questions regarding CA is a later development. Wolfram [190] shows
how to construct a graph to represent configurations reachable after one time step of a 1-d
CA. All possible infinite paths through the graph represent all possible configurations. The
notion can be generalised to finite number of time steps and also to limit sets. The graph
can be regarded to be the state transition graph of a finite automaton which may be non-
deterministic. The equivalent minimum state DFA can be constructed and the number of
states in such a DFA provides a measure of the complexity of the corresponding configuration
set. For some interesting properties of this measure see [193]. Another way of looking at this
problem is to view a CA configuration as a bi-infinite word. Then the set of configurations
. reachable in one time step is a sofic system and from the results of [47], it is an ww-regular
set. A consequence of the above result is that the predecessor existence problem (PEP -
given configuration X : does there exist a configuration Y, such that ¥ evolves to X in
one time step 7) for 1-d CA is decidable. Note that all configurations must be finite, since
infinite configurations cannot be tackled by ordinary computability theory.

This lead to a more formal study of the computational complexity of CA. In particular, it
- was an important question to find NP-complete problems for CA. First such results appear
in [69) where a CA is constructed for which. the following problems are NP-complete.

¢ determining if a given subconfiguration s can be generated after {s| time steps.
e determining if a given subconfiguration s will recur after |s| time steps.

e determining if a given temporal sequence (values of a particular cell taken over time)
of states s can be generated in |s| time steps.

The particular CA described is quite complicated since an arbitrary structure of the 3-SAT
problem has to be encoded in the essentially Jocal communication mechanism of a CA. For
an infinite CA, certain problems [162] such as configuration reachability (CREP - source
configuration X; target configuration Y; is ¥ reachable from X ?), PEP, are undecidable.

Undecidability Of CREP is easy to see since a CA can simulate a TM and configurations of
the CA encode instantaneous descriptions of TM. Hence the halting problem for TM can be
translated to CREP by asking whether a halting configuration is reachable from the initial

. configuration. In fact CREP is T1-complete for infinite CA of any dimension. However, for
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PEP there is a marked difference for the 1-d and higher dimensional CA. From Wolfram's
characterisation of 1-d CA using regular grammars [190] it follows that PEP is decidable.
On the other hand, Yaku [194] has shown that for 2-d CA restricted to finite configurations,
PEP is equivalent to the problem of whether a TM halts on the empty tape and hence is
¥9-complete. |

Similar results for finite CA have been studied in {169]. For 1-d CA, PEP is NLOG-
complete and is NP-complete for all dimensions higher than one. In [169], examples of local
rules are constructed such that CREP is PSPACE-complete/NP-complete for 1.d CA. For
1-d CA, if one restricts attention to polynomially bounded version of CREP (i.e, the number
of steps is less than or equal to some polynomial in the number of cells), it is possible to
construct a local rule such that CREP is P-complete (w.r.t. log space reductions). For 2-d
CA, example of a rule p is provided such that CREP is NP-complete. A classification of CA
rules similar to that of Culik and Yu (for infinite CA) is connected to several deep problems
in complexity theory.

Durand [56, 57] provides complexity results for CA with a different flavour. The injectiv-
ity problem for 2-d CA restricted to finite configurations and von Neumann neighbourhoods
is co-NP complete [56]. This result is about arbitrary CA and is different from the above
results where examples of CA are provided for which a problem is complete for some com-
plexity class. Hence this kind of result may be called uniform complexity results. Durand
also proves [57] that the reversibility problem for 2-d CA restricted to certain types of finite
configurations is complete for the class RNP introduced by Levin in [109].

2.3.5 Linear CA and VLSI application

For finite CA, the dynamical properties are completely captured by the State Transition
Diagram (STD), which is a directed graph whose nodes are configurations of the CA and
there is a edge from node ¢ to node j iff configuration 4 leads to configuration j in one time
step. The notion of STD have also been defined for infinite CA (see Subsection 2.3.3). Since
a finite CA is an autonomous deterministic machine, it is easy to see that the STD will
consist of components with each component having an unique cycle and trees of height > 0
rooted on the cycle vertices. The cycles capture the steady state behaviour of the system
and are sometimes called attractors, while a branch in a tree captures the initial transient
behaviour. One can ask several important questions regarding the dynamical parameters of
the system; the number of cycles, length of the cycles, height of the trees, branching degree
of each node, efcetera. For an arbitrary CA such questions are very difficult to answer. For
CA with periodic boundary condition some results for reversibility and maximal cycle length
is presented in {77]. See {107] for recursive formulae describing STD of finite CA. However,
complete characterisation is not known and generalisation to higher dimensions is difficult.
For linear CA, much more information can be obtained using algebraic methods. The STD
in this case shows more uniform behaviour [115]; the trees rooted on any cycle vertex is
isomorphic to the tree rooted on the null configuration, the indegrees of all the nodes are
equal and is equal to the dimension of the kernel of the linear map, etcetera.
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For a wealth of results on the STD of 1-d periodic boundary CA see [115]. Some ad-
ditional results can be found in [71]. For 2-d CA, Kawahara et al [99], investigates when
the configuration reachable in one time step from the all ones configuration lies on a cy-
cle. The dimension of the kernel of 2-d linear CA have been studied by several authors
15, 161, 166, 168] and is related to the o-game mentioned before. For multidimensional CA,
it is difficult to obtain a characterisation of the dimension of the kernel but a characterisa-
tion of reversibility will be presented in this thesis. An important problem in the algebraic
analysis of linear CA is the representation of the linear global map. Martin et al in [115] use
dipolynomials to represent the configuration of a periodic boundary CA. The next configu-
ration is obtained by multiplying the present configuration with a fixed polynomial (which
represents the local rule) modulo X¥ — 1, for an N cell CA. The algebra of dipolynomials
is then used in the algebraic analysis of the map. In fact dipolynomials are not necessary
and polynomials can be used as has been shown in [14]. The extension of this method to
multidimensional CA is possible but requires working with multivariate dipolynomials which
is difficult (see {115] for details of this approach). However, the technique of dipolynomials
cannot be directly used for null boundary condition. Modification of this approach where
a truncation operator is applied at each stage have been reported in (141]. Another way
to use dipolynomials (or polynomials) to handle null boundary condition arises from a nice
technique introduced by Martin et al [115], whereby an N-cell null boundary 1-d CA can be
embedded in a (2N 4 2)-cell periodic boundary 1-d CA. Kawahara et al [99], have extended

- this approach to study 2-d null boundary CA. However, the polynomial method fails for

hybrid CA. A different approach to the problem and one that is extensively used in VLSI
applications, is to represent the global rule of a CA by a matrix. For an uniform periodic
boundary 1-d CA, the matrix is circulant and for nearest neighbourhood null boundary 1-d
CA, the matrix is tridiagonal. The characteristic and minimal polynomial for this matrix

- encodes all information about the STD of the CA. For details of this approach see {168, 15].

A generalisation to multidimensional CA results in the linear operator being represented by
a sum of Kronecker products of certain special matrices. We will see more of this approach
in this thesis. Another approach to the study of multidimensional linear CA can be found in
(106}, where each cell state is considered to be a vector. All the above discussion is for CA
on grids. However, linear CA on arbitrary graphs have been studied by Sutner {163, 160]. In
(163], it is shown that the all-ones configuration is not a Garden-of-Eden for a linear binary
CA on any finite graph. For a CA on a finite undirected graph with addition carried out
in some finite abelian monoid, the predecessor existence problem is studied in [160]. It is
shown that the problem is polynomial time solvable if the underlying monoid is a group and

. is NP-complete for an arbitrary monoid. Further, a linear time algorithm is presented to

decide reversibility over a special class of graphs.

For infinite linear CA, there is a quadratic time algorithm to determine reversibility
and surjectivity of the global map [167]. The algorithm is based on the representation of a
configuration of a linear CA by a finite graph (a De Bruijn graph) as used by Wolfram in

i+ [190]. Earlier linear CA with the state space taken as Z,, for some positive integer m were

S

¢ studied by Ito, et al [92) and criteria for surjectivity and injectivity of the global transition
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function are presented. A more abstract treatment of linear CA, where the cell space is
an Abelian group and the state space is a finite commutative ring can be found in [8]. An
interesting decomposition of a CA with state space Z,, into a set of CA with state space
power of a prime which divides m, is also presented in 8]. In yet another approach to study
of linear CA, the generating function for the temporal sequence of a cell is studied and is
shown to be an algebraic series (112]. Additional results on linear CA can be found in the
work of Jen [93].

One important area of application for finite CA is in VLSI design {151, 141, 84, 128,
54]. See (30] for details of applications of additive cellular automata to VLSI. The local
communication structure of CA and the homogeneous nature of each cell are provided as
strong arguments in favour of using CA for VLSI. In its use as a VLSI structure it is often
offered as a replacement for the Linear Feedback Shift Register (LFFSR). Perhaps the most
successful area of VLSI application for CA is generation of pseudo random sequence (85, 52,
83] and their use in built-in self-test (BIST) {21, 86, 83, 54]. The successive configurations
of a CA are taken as a random sequence. The possibility of random number generation by
CA was first explored by Wolfram [192] who also proposed its use in cryptography [188].
However, such CA sequences are not secure as has been shown in [119]. Other areas of
VLSI where CA has been used are error correcting codes [31, 32|, private key cryptosystem
[128], design of associative memory [32], aliasing [151], testing of FSM (28], architectures for
exponentiation and inversion over finite fields [134, 16], etcetera. A VLSI architecture for
CA machine based on linear CA have also been proposed [100].
| In the VLSI context, the 1-d binary CA is most common though use of 2-d structure
~ have been reported [564]. Since non-linear CA cannot be analyzed satisfactorily, these are not
used in applications. Most applications are based on CA where the global map is a linear or
affine map. Another important feature of CA used in VLSI applications is the null boundary
condition, since periodic boundary condition require "long distance” communication between
the end cells. Also the CA structure is usually a hybrid one, where each cell has its own
local rule. For theoretical questions regarding hybrid 1-d CA see [12, 129, 152, 148].

2.4 Related Work

CA have been studied from several different angles other than the ones mentioned here.
These approaches are important but have not been included here mainly because they are
either new or have an extensive literature which require a separate survey. A (perhaps in-
complete) list of these topics would include modelling in Physics [48, 49, 193], Asynchronous
CA [139], Cellular Neural Networks {34, 33], CA machine [173], Quantum CA [143, 182],
relation to polyomino tilings (2], ergodicity of CA (149, 60], application to cryptography
188, 51, 119, 50, 70, 128, 19] and the interesting work done at Santa Fe Institute on evolving
. a CA with genetic algorithms {122, 121, 53]. See [177, 3, 158, 43, 113, 104] for additional
. surveys/books and [189, 193] for additional bibliographies.
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Chapter 3

Uniform one-dimensional CA

3.1 Introduction

In this chapter we will present basic results on uniform 1-d linear cellular automata (CA)
- and also present some new results on the inverse and exponent of the corresponding linear
operator. We introduce the simplest variety of CA, and state its properties. In later Chapters

| we will consider more complicated types of CA.

- 3.2 Preliminaries

By a 1-d CA we will mean a finite 1-d- array of cells where each cell can be in state 0 or 1.
~ The array can be circular giving rise to what is called periodic boundary condition or it can
~ be placed between twa cells in the fixed state 0 leading to the null boundary condition. The
local rule is the same for all cells and hence the CA is called uniform CA. Note that this is
the usual definition of CA and we call it uniform CA only to distinguish from a more general
- class of CA considered in Chapter 4, where each cell can have its own local rule. The next
- state of any cell is determined by the local rule and depends on the previcms states of the cell
itself and its left and right neighbours. Thus there are a total of 22 = 256 possible local
rules. A numbenng system for local rules is presented in [189]. The ldea is to consider any
three variable Boolean function to be encoded by an eight bit string where each bit specifies
the function value for a certain combination of the inputs. The decimal value of the eight
- bit string then gives the rule number. For example, rule 90 is encoded by 01011010 and is
- given by the follomng truth table. Here z{ is the state of the i cell in the ¢** time instant.

zi_,ziet,, [ 1117110 [ 101 | 100 [ 011 | 010 | 001 | 000
gt JO T 1o T[T o [1]0

I Note that rule 90 1s nothing but the sum modulo 2 (EXOR) of the states of the left and
- right neighbours. Similarly rule 150 is encoded by 10010110 and is the sum modulo 2 of the
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states of the cell itself and its left and right neighbours.
A configuration of a CA is an assignment of states 0 or 1 to each cell. At any point in

time a CA is in some configuration and evolves in one time step by the application of the
local rule to each of the cells. Thus at time ¢ = 0, the CA is in some initial configuration and
evolves deterministically in discrete time steps to successively new configurations. For an
n-cell CA the local rule determines a global map which is a function from the set of all n-bit
vectors into itself. If the local rule involves only the EXOR. operation then the corresponding
- global map is a linear transformation from FJ' into itself (here F; is the field of cardinality
2). In this sitvation the local rule and also the CA are called linear. There are eight possible
linear local rules including rules 90 and 150. |
The global dynamics of a CA is captured by a directed graph (V, A) called the State
Transition Diagram (STD), where V is the set of all possible configurations of the CA and
an arc exists from configuration ¢ to configuration 7 ift in one step configuration 4 evolves to
configuration 7. It is easy to see that the STD for a CA consists of components where each
component has a cycle with trees of height greater than or equal to 0 rooted on each cycle
vertex [115]. In case the CA is linear, algebraic techniques can be used to study the nature
of the STD [115]. If the global map is a bijection, then the CA is reversible or invertible,
and the STD consists only of cycles with no tree configuration. In this thesis we will study
the reversibility of linear CA in great detail.
The o-automata are a class of binary CA (state values 0 or 1) on a graph where the local
rule for any cell is the sum modulo 2 of the states of all its neighbours. If the graph is a
path F,, the o-automaton is same as an n-cell null boundary CA with rule 90 for each cell.
If the graph is a cycle C,, then we have an n-cell CA with periodic boundary condition. A
0" -automaton is similar to a c-automaton with the only difference being that each cell is
also considered to be one of its neighbours. On paths and cycles it is the same as rule 150
CA with null and periodic boundary condition respectively. Hence throughout this thesis
we will use the terms o and o*-automata to denote the corresponding CA. ]
To study the behaviour of a linear CA, one has to choose a representation for the global
linear transformation. In [115], dipolynomials are used to represent both the configuration of
- a periodic boundary CA and the transition function. In fact, dipolynomials are not strictly
. necessary and the same results can be obtained using polynomials [14). With dipolynomial
. or polynomial algebra, it becomes difficult to tackle null boundary CA. However attempts
have been made to do so (141, 99]. Another approach is to use matrix algebraic tools, where
a.configuration is an element of FJ, and the global map is represented by a matrix with
. Tespect to the standard basis. QOur approach to the analysis of linear CA will be using
" matrix algebra.
~ We will denote the field of two elements by GF(2) (or F;) and by GF(2') we will denote
the extension field of dimension ! over GF'(2). The set Vi = {(iy,...,4) : i; € GF(2),1<
. J £ 1} with the usual + operator is a vector space of dimension { over GF(2). Under suitably
. defined multiplication, V} is isomorphic to GF(2'). Hence we will drop the distinction between
¢ o the two and use the notation GF'(2') throughout. The exact meaning will be clear from the
4 context. Throughout the thesis the base field is (GF(2) and we will denote the identity matrix
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of order n by I,. By ¢(n) we will denote the Euler totient whose value is the number of
positive integers less than n and coprime to n and sord,(2), for odd n is the least positive

integer j, such that 2 = +1 mod n.

DEFINITION 3.2.1.

1. An S-matriz of order [, S;, 15 a square tridiagonal matriz of order [, defined as,

[sy] = 1 if[i—j] =1
= ( elsewhere

2. A C-matriz is a square matriz of order [, denoted by C), and is defined as,

] = 1 ifli—-jl =1
= 1 if(i=1landj=10)or(i=landj=1)
= () elsewhere

Thus the forms of S-matrix and C-matrix are,

01 0 0 0 01 0 ... 01
1 01 00 1 01 ... 00
S = 0, ¢ = 0
0. . ... 10 ll.,...lo‘j

It is easy to see that a C-matrix is circulant. The C-matrix operator corresponds {o
the global rule for an uniform one dimensional periodic boundary condition CA with rule
90, Basic properties of this transformation have been studied in [115] using the algebra of
. dipolynomials, The S-matrix on the other hand, corresponds to an uniform null boundary

condition CA with rule 90. Null boundary CA is of special importance in VLSI applications,

since it maintains local connection.

DEFINITION 3.2.2. (cf. .[168]} The w-polynomials are a sequence of polynomials over GF(2)
defined as, |

mo{z) = 0
m (E) = ]
ﬂ",-(:..':) = m:rri_l(:c) -+ ﬂ'i.__g(:u") for 1 > 2
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This definition of m-polynomials was introduced in [168], and in [159] they are called
binary Chebyshev polynomials. Similar polynomials were studied in [15]. Alternatively

mn(z) can also be written as (see [168))

Tn(z) = Z(;:i)xi mod 2

1

The 7-polynomials have several interesting properties. These have been systematically
studied in [168]. Here we list several of these properties, which are relevant to our work. For
proofs and more elaborate discussion, the reader is referred to [168].

LEMMA 3.2.1. (c¢f. [168, 15])
1. Tppqg = Tgp1Tp + MgMp1

2. mln & mylm,

J. ng(?rﬂ:ﬂ'm) = Tged(n,m)
k_1 ok
4. e, = ¥ 172
. 2 2
5 7T2n+1 — ﬂ-n-l-]_ + Trﬂ

— (ﬂn+1 T ﬂ'n)z

- DEFINITION 3.2.3. (cf. [168]) Let T be an irreducible polynomial. Then the depth of T 18
defined as dp(r) = min{n > 0: T divides m,}.

Let,
n = H T
dp(T)=n

Then p,, 1s called the critical term of my,.

Sutner [168] proves that for any irreducible polynomial 7, dp(7) exists. In other words,
any irreducible polynomial will divide a non-trivial # polynomial.

"THEOREM 3.2.1. (cf. [168]) For all positive n = 2Fp, where p s odd

m(m) = 7 12 @) = 2 I pula®)

d|p dlp
Furthermore, deg ps = ¢(d) unless d = 1. '

Y Th1s factorisation of 7, () in terms of irreducible factors is a crucial result for the analysis
of multidimensional CA.
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LEMMA 3.2.2. (cf. [168])

a; All irreducible factors of the critical term p, must have the same degree.

bi; The number of irreducible factors in p, 1s 23:;%2[2).

From this we note that if n is a prime such that ¢(r) = 2 sord,(2), then 7, = 7° with
7 irreducible.

LEMMA 3.2.3. (¢f. [168]) For any factor T of finy1, cork7(Ss) = degr, where cork(S)
denotes the dimension of the kernel of the linear operator S.

The connection between 5;, C; and the w-polynomials is given by the following.

PROPOSITION 3.2.1. (c¢f. [15]) The characteristic polynomial for S; is m, (z) and for Cy it
is zm{x).

LEMMA 3.2.4. (¢f [15]) S, is invertible iff n is even and ST is invertible iff n 3 2 mod 3.
Consequently z | mp(z) iff 1 is odd.

3.3 Minimal Polynomial

The minimal polynomials of S; and C; can be obtained in terms of the m-polynomials as was
shown in [168] by Sutner. The minimal polynomial for S; was also obtained in [151] in the
context of hybrid 90/150 CA. Here we provide a new simple proof for deriving the minimal
polynomial for S;. We also provide a detailed proof for deriving the minimal polynomial
for Cj, since we feel that the proof is more involved than what has been presented in {168].
Needless to say, the ideas in the proof can be found at various places in [168].

THEOREM 3.3.1. (cf [168])

1. The minimal polynomial for S) is m,1(z).

2. The minimal polynomial for C, is z7 1 (m) for even ! and is zy/m(z) for odd .

Proof : 1. Since S is a tridiagonal matrix with sub and super diagonal entries all ones, it
is easy to prove by induction that the (i + 1) column of the first row of Sf (i < 1 —~1) is
one and the 7'4 columns for j > 3+ 1 are all zero for all 1 < i < [. Suppose p(z) is the
minimal polynomial for S; and degree of p(x) is < I. But then it is easy to see that in
p(S) the (r + 1) column of the first row is one and hence p(S;) cannot be zero. Thus p(x)
cannot be the minimal polynomial. Therefore the degree of the minimal polynomial must
be ! and since m4.1(z) is of degree ! and annihilates S, it must be the minimal polynomial
for S;. | | | |

Before we prove 2 we will require the following two Lemmata.
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LEMMA 3.3.1. Let z be a configuration of o-automata on B such that the first cell is in
state 0 and the last cell 1s in state 1 and the total weight of the configuration is even. Then
Siz has odd weight, i.e, the configurationy = S;z has odd number of cells in state 1.

Proof : The proof is by induction on {. For the base case we may take | = 3, (since! = 1,2
are trivial) and then it is easy to verify the result for | = 3. So suppose the result holds
for all £ < [. Assume that z has at least four cells in state 1. The case where exactly two
cells of = are in state 1 is easy to settle. We write £ = 7'1z where z has exactly two ones.
Put ¥ = 41, and then length of y is less than z and hence by the induction hypothesis the
image of ¥ under rule ¢ has odd weight. Now several cases can arise.

1. y = wil and

(a) z = 11

(b) z = 011 |
(¢} z = 0w, ¢ > 2
(d)- z = 0101

(e) z = 010°1, i > 2
2. y = wll and z as above.

In each of the above cases it is easy to verify that S; z has odd weight. We verify just case
1(a). The image of y under rule g, is of the form v0, and the image of z = yl1l = w011l
under rule o is of the form v101. Hence the parity of the weight of z is the same as the
parity of the weight of v, which by the induction hypothesis is odd. o

One can also prove a similar result for the case where the first cell is in state 1 and the

last cell is in state 0.

LEMMA 3.3.2. If 18 a vector of even weight and y ts a vector of odd weight then z + y s
a vector of odd wetght. |

Proof: Let weights of z and y be p and ¢ respectively and suppose r many 1’s are cancelled
in £ +y. Then weight of z + y is (p — r) + (g — r) which is odd since p is even and ¢ is odd.

Now we return to the proof of Theorem 3.3.1.(2),

Case ! odd : Let 7 be the minimal polynomial of C;. Then degr > [31] is clear by an
argument similar to the one provided for the minimal polynomial for 5;. We will show that
x./m s an annihilating polynomial for C;, and hence is the minimal polynomial for C;, since
degree of z \/m is l'-;-] This is achieved by showing that z,/m; is an annihilating polynomial
for all basis vectors of the standard basis. Since C; is circulant it is sufficient to consider
any particular basis vector. We choose the vector having the one in the last position and
denote it by e; (we will denote the bagis vector with the 1 in the ith position by e;). Now
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Cie; = €1 + e and then the result 1s achieved by showing that ./ is an annihilating
polynomial for e, 4 e;—, under rule ¢ on path F_;. This is 80, since in any further evolution
the I** cell is always in state 0. In fact, we prove a much stronger result that /71 18 the
minimal polynomial for the subspace of symmetric patterns of g-automaton on F_;, whose

global map is given by S; 1.
Let 7 = \/‘ then 7* = m; and since { is odd . fm. Also from Lemma 3.2.3,,

COT’G(T(S;_l)) - d&g(?‘) = -l-—-é-':-l-

Putting F' = 7(S5;_1) we get,
F2 = TQ(S:_..l) = ?F:(S;..1) = {)

since 7r; is the minimal polynomial for S;_.;.

Let y € rg(F), the range of F. Then there is an z such that Fz = y and hence
Fy = F%3 = 0. Therefore, y is in Ker F, and hence rg{F) C Ker F. Moreover, since
dim(rg(F)) + dim(Ker F) = | ~1 and dim(Ker F') = corkF = 2}, it follows that
rg(F) = KerF.

Since F' is symmetric, it is self adjoint a.nd hence for any ¥y = F'z in the range of # and

z in Ker F', we have
<Yro=<Fr,z2>=<z,Fz2>=10

where <, > denotes the inner product. Hence rg(F) C (Ker F)*. Putting all this together

it follows,
- KerF = rg(F) C (Ker F)*.

S0, any kernel vector of F' has even weight, since it is orthogonal to itself. Now the
subspace Ker F' is invariant under S;_;, since S;_; commutes with itself and so any ¥ in the
orbit of z under S;_; muist have even weight.

Claim 1 : 7(z) is the minimal polynomial for Ker F' = Ker 7(5,_;) under rule o on F_;.

Proof : Let 6(z) be the minimal polynomial for Ker F. Then 6|7 since 7 is an anni-
hilating polynomial for Ker . Also for any £ € Ker F, §(S;-))x = 0 which implies
t € Kerd(S;-1). Therefore Kerr(S-1) C Keré(5i-1) which implies cork(7(5-1)) <
cork(6(S;—1)). Since both 7 and § divide my, it follows from Lemma 3.2.3. that corkr = deg T
and corkd = degd which implies deg7 < degd. This combined with & |7 gives the claim.

Claim 2 : Ker F' is the subspace of all symmetric patterns of rule ¢ on B;_;.

Proof : Let t € Ker F. Then z has even weight and any y in the orbit of z is also in
Ker F' and hence also has even weight. This we claim forces z to be symmetric. Suppose
not and assume that the two extreme ones of z are not equidistant from the two ends. Hence
after a finite number of steps z will evolve to a configuration y where one extreme end is
in state 0 and the other is in state 1 and the weight of y is even (if the weight is odd we
already have a contradiction). By Lemma 3.3.1. it follows that the configuration obtained
in the next step will have odd weight, which is a contradiction since all patterns in the orbit
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of z must have even weight. So the two extreme ones in & must be equidistant from the two
ends. Let z; be the configuration obtained from x by removing the two extreme ones. Now
if the orbit of z; contains an odd weight pattern then so must the orbit of z (this follows
from linearity and Lemma 3.3.2.). Again repeating the argument for z, and by induction it
follows that z must be symmetric, |

This completes the proof for the case { odd.
Case [ even : In this case, as above we show that zw i Is the minimal polynomial for e;.
Again as above Cie; = e; + €1 = 2z (say) and in this case we can write 2z as z = y0y"0
where y is a configuration of length 51‘23- with the first cell 1 and all others 0 and " denotes

the reverse of y. Note that the {** and %th positions of z is 0 and by the form of z it is easy
 to see that any configuration in the orbit of z will also have these positions as 0. Thus the
minimal polynomial for z is the minimal polynomial for ¥ under rule ¢ with null boundary
condition. Since y is of length 5-%3, i is an annihilating polynomial for y. Hence = { iS
an annihilating polynomial for z and z« L 18 an annihilating polynomial for ¢; and so also
for C;. But again by an argument similar to the one given for null boundary condition, no
polynomial of lesser degree can annihilate C;.

3.4 Exponent

We introduce the notion of exponent of a matrix. This is analogous to the idea of order of
an irreducible polynomial.

DEFINITION 3.4.1. The exponent of an invertible n X n malriz A is defined to be the least

posttive integer € such that,

AS = I,

Since we are considering matrices over finite fields, the existence of such an ¢ is guaranteed.
The exponent is the [cm of the cycie lengths in the STD of the corresponding CA. Thus the
cycle lengths are going to occur as divisors of the exponent. This underlines the importance
of the exponent. Here we study the exponent of 5; for even . To do so we need the following
result from [115], where it is proved using the algebra of dipolynomials. Here we provide a
proof using matrix algebra, which essentially mirrors the proof in [115].

LEMMA 3.4.1. (c¢f. [1185]) For odd l, there exists an integer p > 0, such that for any
z € GF(2'),
Of+1$ = C;H}

and the least such integer p divides 2°"%) — 1. Consequently, CF*' = (.
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Proof : Let C; = Ry + L;, where,

000 ..0°1 ‘0010 ...00°"
1 0 0 0 0 001 ...00
01 0 0 0 00 0 0 0
=149 1 0 o| ad Le=1} o
000 ..0°1
000 ..10| 100 ...0 0,

Now K, is the right circular shift operator and L, is the left circular operator. So the following
immediately tollows.

1. By L; = LiR = I
9. Rt = LI' = L forall 4,7 > 0.
Then,

nsord;(2)

Cfgaard;(ﬂ) _ (R‘ + Li)zaard!(fl] _ R?anrdi{ﬂ} A+ LI
The last equality follows by 1 and the fact that all operations are over GF(2). Therefore,

sord;(2) -
012 = Ry + I

since if 250742 = 1 mod !, then we use 2, else if 2°¢"%(® = —1 mod !, then we use 2
alongwith the fact that Rf"l = I; and Lf_l = R,.

The least p such that the above Lemma holds is the length of the longest cycle of C; and
- by the above Lemma it must divide 22942

We now present some new results on the inverse and exponent of the S-matrix operator.
The next result gives an O(n®) algorithm for finding the inverse of S; and also an O(n?)
algorithm for finding the predecessor of a given configuration. The naive method of obtaining
the predecessor is to solve a system of n linear equations in n variables and requires O(n?)
steps.

THEOREM 3.4.1. For even n, the inverse of Sy, satisfies the recurrence

-

601 0101 ...01
10 0000 0 0
00
1 0
S;to=
~1
n—2
0 O
0
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—1
I P
Proof : By induction one can show that,
01 o011 ...0173p 01 0O0...007
1 0 00 ... 00 1 0 10 0 0
0 0 | 0 1
1 0 0 0
S-S, =
;—-1-2 Sﬂ_,g
0 0 0 0
1 0 ] 0 O -
L o
B _O In-2

= I
Next we obtain a similar result for generalised inverse of S-matrix when n is odd.

THEOREM 3.4.2. For odd n, the malrices obtained by the following recurrence are gener-
alised inverses of the corresponding S-matrices.

01 0101..10
1 0 ‘000 ...00
0 0O
1 0
Sy =
Sp-2
0 O
1 0O
1 0
01 0]
Sy = |10 0
(101
Proof : By induction one can verify that,
Sn S, Sn = S,
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THEOREM 3.4.3. For even n, S, satisfies,

ttaord, 1(2) _
gRter @y _
Thus, the ezponent of S, divides 21 t0rdn+1(2) _ 9
Proof : The minimal polynomial for S,, is,
M1 = Hdln pﬁ
= p’ say
The minimal polynomial for C,y, is m(z) = =z p, by Theorem 3.3.1.. Also we know
from Lemma 3.4.1.,
aordg.t.1(2)
Cier " = Cnpn (+).

Let e = 2%07n+1(2) Then (x) yields,

m(z) | 2* — =

zp|z(ztt - 1)

p|(z¢=t — 1)

p2 I (ﬂ:e-—l _ 1)2 — 3:2&—2 — 1
M1 (2) | (2272 — 1)

S22 = [,

S2l+iardn+1 (2) _o
n

L4444y

:In ]

COROLLARY 3.4.1. For even n, S} satisfies
+ 21+aﬂrdn+1 (2) _ +- 0
(Sn ) v (Sn )

If alson £ 2mod3, then, .
(S:)Ql+'ﬂrd"+1(2)—2 __ In

In fact, we can prove a stronger result.

THEOREM 3.4.4. For even n, the exponent ¢ of S, equails 2e — 2, where ¢ 15 the smallest
tnteger such that C;, = Cyy1. Consequently, the lem of the cycle leﬂgths of S, i3 twice the
length of the longest cycle in Cy.;.

To prove the theorem we require the following lemma, which can be easily proved by |
induction.
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LEMMA 3.4.2. Let 'r‘ . j = 1,...,n be the row vectors for S, where S} 18 the i power of
Se. Then if 1 1s odd we have,

1 :
ri o= cirl + cprl + ..ot Gl for odd 3
~j 1 3 n—1I1
= cjr’ + cjdr T for even j
~2 ~n
and if 1 18 even,

'o= T dd j
rt o= :tzj,z'r2 + 03.41‘4 + oo T for oda j
~4 ~n

= cjl*rl + cjaré + ...+ cipar! | for even j
n-—-

where ¢;; € {0,1}, 1 < j<nandl <k <n

Proof : {of Theorem 3.4.4.) From the proof of the above theorem it is clear that €]2e — 2

This implies = +1 < e.
Using the above lemma, we can say that for even 7, St # S,. This is s0 since for even

¢, the first row is a linear combination of r; for even k. But for all even k, the second entry

of r is 0 and hence the second entry in the first row of Si cannot be 1.

Thus it follows that the exponent ¢ of S, must be even. For if ¢ is odd, then §¢ = I,
implies S¢t! = S, and €+ 1 is even which is a contradiction to the above.

Now we can complete the proof.

s¢ = I,

ﬂn_[_],(i') I zt — 1 )
o |zt -1 = (27 — 1)*, where p is as in the proof of Theorem 3.4.3.

TR
©
8,
|

Then it follows that e = £+ 1 and s0 € = 2¢ — 2.

A gimilar result can be proved for odd n, using the fact that Cﬁi"f C¢ n+1) Where 0 is
the height of a tree and 7 is the length of the longest cycle in the STD, However there are no
simple description of § and 7 for Cp4; with n odd. In fact these parameters can be described
in terms of the orders of the irreducible factors of the minimal polynomial for C,,,, and
their multiplicities (see Elspas [59)).

The fact that € is even can also be proved using a nice trick introduced in [115]. Let
(ay,...,an) be any configuration of an N cell null boundary CA A,. Then the evolution from
this configuration will be equivalent to the evolution from a 2N 4 2 cell periodic boundary
CA A, which starts from the initial configuration (0, ai,...,an,0,an,an_1,...,a1) (we are
assuming o-automaton evolution which is rule 90). Let L'y be the length of the largest cycle
in an N cell null boundary CA and let Ly be the length of the largest cycle in a N cell
periodic boundary CA. Then by the above embedding we have L)y, = Lyyis. Again from
~ [115] we have Lyy,o = 2Ly, and this implies that L', and hence € must be even. However,
the lemma that we have used is interesting in its own nght.
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Let Kpy1 = 2%mn+1(2) 1 In [115] it is noted that for almost all even n (n -+ 1 is

]

odd), e = Kp41 + 1. By the above theorem, the exponent of 5, is gltsordnt1(2) _ 9 =
2K, 11, exceptions occurring exactly at values for which exceptions occur for Ky4;. The first
exception occurs for n+1 = 37, where, e = 1+ -’-{131‘:'— A list of subsequent exceptions are

n-+1 99 101 141 197 199 203
e |1+ i+Mp 1+ Huli+om 1+ 14 i

The technique of embedding a null boundary CA in a periodic boundary CA have further
applications. It can be used to get an efficient algorithm for computing the configuration to
which a null boundary CA will evolve after a finite number of time steps. In [27], such an
algorithm 1s provided and though the description of the algorithm is different, the essential
idea is similar to the above embedding. A second application of this technique is to use
polynomials to study null boundary CA. For any configuration of an n-cell null boundary
CA one can get a (2n+-1)-degree polynomial which encodes the configuration. The transition
function is the one chosen for periodic boundary CA. This approach has been used in [99]
where it has also been extended to two dimensional CA.
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Chapter 4

Hybrid One-Dimensional 90/150 CA

4.1 Introduction

A hybrid CA is one where each cell has its own local rule which may be different from the
local rule of any other cell. The CA is linear if all the local rules are linear. Note that this
notion of CA is different from the more standard notion of CA considered in Chapter 3,
where all cells have the same local rule. In fact linear hybrid CA have been proposed as
a basic structure in several areas of VLSI design (85, 129, 151]. The most useful structure
from the VLSI point of view is a 90/150 structure where the local rule R; for the it* cell is

~ given by,

t t-1 g1 _d~1\ -1 t—1 t~1 .
Ty = R‘i(mi-—l:mi :$£+1) = Ti *t Gz + Ty (1 ST*S.”) |

where a; € {0,1} and addition is modulo 2 i.e, over F5. If a; = 0, R; is rule 90, else R;
is rule 150, Henceforth in this chapter by CA we will mean hybrid 90/150 CA, which is a
linear hybrid CA since both rules 90 and 150 are linear rules. In Chapter 7 we propose a
private key cryptosystem based on hybrid 90/150 CA.

As in the case of uniform CA the one-dimensional array may be circular, giving rise to
the periodic boundary condition, or it may be placed within two cells which are always in
state zero, giving rise to the null boundary condition. A configuration is considered to be a

vector over G'F'(2), and the global rule of an n-cell CA is represented by the following matrix

I-ar]_ 1 O 0 0 ... 0 0 h |
1l ao 1 0 0 ... 0 0 0O
My = (1)
(000 000 ... 1 gy 1
b 0 0 00 0 1 a,




where a; is 0 or 1 according as the i** cell has local rule 90 or 150 and the b in M, is 0
or 1 according as the boundary condition is null or periodic. The next configuration y is
obtained as y = Mz, where x is the present configuration. The CA. is reversibie iff the
corresponding matrix is non-singular. Several properties of 90/150 CA have been studied
(129, 52, 155, 152, 141, 12]. Here we study the reversibility problem for 90/150 CA with
both null and periodic boundary condition. Let us first state the problem for null boundary
condition, since this is the easier of the two cases.

For null boundary condition the global rule is given by Mp. The matrix M is uniquely
specified by the string @, ...a, over the alphabet {0,1}. Then the characterisation of the
reversibility of null boundary 90/150 CA reduces to the following two problems.

1. Obtain a characterisation of the set of strings a, ... a, which encode non-singular ma-
trices of the form M,.

2. Find the number of non-singular matrices My of order n.

We show that the set of strings which encode non-singular matrices is a regular set with a
very simple structure. This solves the first problem. Using the "canonical” regular expression
for this set, we completely solve the second problem. It turns out that approximately two-
thirds of the strings encode non-singular matrices of the form My,. For periodic boundary
condition we have b = 1, and the situation is more complicated. However, using the results
for null boundary CA, we are able to satisfactorily solve the corresponding problems for
periodic boundary CA. The novel features of our proof are the use of continuants for tackling
the first problem and the use of regular expression for counting. The determinant of My can
be elegantly expressed in terms of multivariate polynomials called continuants, which were
first introduced and studied by Euler [68]. A continuant in n variables K,(z,...,2,) is
defined by the following recurrence.

Ko() = 1, Ki(zy) =

Kn(-Trl, - :.J":n) = I Kn-—l(-TQ: ‘oo 1:’311) + Kﬂ-2($3: e ::Bn) (II)
In fact the continuants satisfy a more general recurrence (68, pp 289))
Krn+ﬂ($1:-- -:ﬂ:m:wm+1:---:$m+ﬂ) |

= Kn(Z1)- 1 Zm) Kn(Tmats« - Tman) + Kne1(T15 00y S 1) K1 (T2, - ) Tonn )LL)
and using the relation in [68, pp 304], we have,

Kn(ﬂl,... ,-an} = dﬁt My

Also the characteristic polynomial of My is Kp(z + a1,...,Z +an) (note that over Fp, —1 =
+1). Hence My is non-singular iff K,,(a;,...,a,) = 1. Expanding M, by the first and the
last row it is easy to see that

Kn(as,..,0) = Kn(an,...,a1) (IV)

Thus it is most natural to consider continuants in the analysis of 90/150 null boundary CA
and we know of no other place where this has been done.
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Finally we point out the implications of our results to the theory of linear finite state ma-
chines. The counting results show that certain kinds of linear machines cannot be synthesised
using 90/150 CA. -

In what follows all arithmetic is over Fy (or GF(2)) and € uill denote the empty siring.
Also |z| denotes the length of a string z, and the cardinality of a set S is denoted by |S|.

4.2 Null Boundary CA

As stated in the introduction, the characteristic polynomial of the transition matrix of a null
boundary 90/150 CA is a continvant K,(z + ay,...,Z + a,). The CA is reversible iff the
constant term of K,,(z+a,,...,Z+ay,) is 1. The constant term is obtained by puttingz = 0
and is equal to K,(a1,...,a,). Since the CA is uniquely identified by the string a;...ap
over {0,1}, we will say that the string a,...a, is reversible to mean that the corresponding
CA is reversible. First note that the empty string ¢ is reversible. Next we have the following

LEMMA 4.2.1. Lety € {0,1}* andi € {0,1}. Then
a) Oty 1s reversible iff y is reversible.
b) 10y is reverstble iff 1y is reversible.

¢) 11y is reversible iff Oy is reversible.

Proof : a) Using (III), we can write,
Kp(0,1,a3,ay4,...,a,) = K5(0,1) K, _o(as, a4, ...,a,) + K1 (0)Kp_3(aq,as, ..., 0,)
Now, K3(0,7) = 0i+1 =1
~ Therefore, K4(0,1,as,a4,...,0,) = Ky_2(as,a4,...,a,). This proves (a).
(b) Kn(l,O, ﬂa,...,ﬂn) | ‘ .
- Kg(l, O)Kﬂmg({l;;, ‘e ,an) -+ Kl(l)Kn_g(ﬂ4, e vy ﬂ»n), b}' (III)
= Kn-?(ﬂ*& vy an) + K“._3(£14, o ) aﬂ)
— Kﬂ-—-l(]-: azy ..., a'ﬂ) by (II)
This proves (b).
~ (c) is similar to (b). T
The above lemma shows that a string y can be repeatedly "reduced” from the left to
obtain shorter strings which are reversible iff the original string is reversible. This suggests
a linear time algorithm to test reversibility of a given 90/150 CA. To formalise this, for any
;wi}dstrings u,v we write © <> v and say u reduces to v if one of the following conditions
old.

1. u = 0w, i€ {0,1}.

2. 4 = 10z and v = 1z.

J. 4 = 11z and v = 0z.
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In particular, 07 — ¢, 10 —

l and 11 — 0

Note that if u < v then |v| < |u|. By abuse of notation, we will write # < v (and also
say u reduces to v) if there exists strings ug,...,u, such that '

U = Uy < U T ... T Uy

= .

REMARK 4.2.1. Similar reduction from the right is also possible.

PROPOSITION 4.2.1. Lety € {0,1}*. Then y reduces in zero or more steps to ezactly one
of the strings in {€,0,1}. Moreover, y is reversible iff y can be reduced to either € or 1.

Proof : By the reduction rules, any string of length > 2 can be reduced. Hence the only
irreducible strings are {¢,0,1}. That the reduction is unique follows from the fact that at
any stage at most one of the rules apply. The last statement holds since by Lemma 4.2.1.,

any reduction preserves reversibility.
llowing linear time algorithm for determining reversible null

From this we get the fol

boundary 90/150 CA. (See |
of CA).

Algorithm A

input : A string z = a; ..

160] for algorithms to determine reversibility of other kinds

.a, over {0,1}

output : "yes” if ¢ is reversible, else "no”

while (z not in {¢,0,1}) d

0O

if ((z = 00y)or(z = Oly) then z = y

else if (z = 10y) then
else if (z = 1ly) then
od |
if (x = eorz

r = ly
z = (y

1) then output "yes” else output "no”

Using the idea of reversibility preserving reduction, one can obtain a Deterministic Finite
Automata (DFA) to recognize all reversible strings. Since any initial prefix of the string can
be reduced, all that the DFA has to do is to remember the effective (from the point of
reversibility) amount of input seen so far. More formally, let M = ({0,1},Q, s, 4, F) be a

DFA where,

1. @ = {s.,Sg,5:} is the set of states.

2. The transition function

(a') 6(551 ) = 8§

(b) 6(30,1) = §,

( ) &(81, )"— 8 |
(d) d(s1,1) =39

3 F = {3,8}is the set

§ is defined as follows. Let i € {0,1}. Then,

of final states.
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Figure 4.1: DFA to recognise reversible null boundary 90/150 CA.

The state s, correspond to the empty string, and any state ¢ € @ remembers the effective
amount of input seen so far. The transition function d specifies the reduction rules (see Figure

4.1). So we get the following

THEOREM 4.2.1. Let L(M) be the language accepted by the DFA M. Theny € L(M) iff
 y correspond to a reversible null boundary 90/150 CA.

Next we obtain the corresponding regular expression. Let R, Ry, R; respectively corre-
spond to the regular expressions for s, 8, 3;. Then we get,

R = Ry(140) + ¢
RU — RU+R11
Rl = R10+R1

We can solve this set of equations using Arden’s Lemma [82, pp 54], which states that
for regular expressions P,Q, Rif R = P + RQ, then R = PQ*. So by a sequence of
simple manipulations, we get,

R = ((0+10*1)(1 + 0))*, R, = R10*, Ry = R(0 + 10*1)
and the regular expression for £L(M) is R + Ry. This leads us to the following

THEOREM 4.2.2. The regular expression for the set of all reversible strings which correspond
to null boundary CA is given by o + «10*, where o = ({0 + 10*1)(1 + 0))*.
Given this regular expression, it is possible to enumerate the number of reversible strings
of length n. Let S denote the set of reversible strings. Then, § = L, U Ly, where L,
(resp. L,) is the set of all strings which reduces to ¢ (resp. 1). From Proposition 4.2.1. ,
L.NL = ¢. Let S™, LM, Lg") denote the sets of strings of length n belonging to S, L., L,
respectively. Then, |S(| = |L{M™| + |L{™|. Next we prove,
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PROPOSITION 4.2.2. Forn > 0, |S(")| = Y. \Lf)\

Proof : The regular expression for L, is a10* where « is the regular expressiqn for L.. Let
z € L™ besuch that z = y10° where 0 < 7 < n—1times. Theny € L{"'~Y. Conversely

for any y € L{" 'Y we get an unique z € Li"). This establishes a 1-1 correspondence
between the set of all such z's and L{"~1~%), Therefore,

O] = L0+ (B2 4 IO

Hence,

Tl
1SM| = |L™| + LY = 3 L@
1=()

So the problem of computing |S™]| reduces to computing |L{|, for each i. It turns out
that |L{™| satisfies a nice recurrence relation.

LEMMA 4.2.2. [L9] =1, [LM]| = 0
LM = L] + 2|L 2, forn 2 2

Proof : Let z € LM™. If |z| < 2, then it is easy to see that [L{¥| = 1 and |L{Y| = 0. So
for |z| > 2, z can be written as z = aby where |y| = n — 2.
Case1l: ab = 00 or ab = 01l. Then we have £ — y. So z reduces to ¢ iff y¥ reduces to e.
Hence, for each reversible string y € L{"?), we get two strings in L™,
Case 2: ab = 10 or ab = 11.

If ab = 10, then 2 reduces to ¢ iff 1y reduces to e,

If ab == 11, then z reduces to € iff 0y reduces to e.

So for each string in L("' L there ex;lsts exactly one string in L(") and all strings in L(”}
arise as Case 1 or Case 2. Hence

L] = |L{-Y] + 2|2 0
COROLLARY 4.2.1. Forn > 2,
1. | L(“)l — 9 Zﬂ-—ﬂ | Lh),
2. S| = 3|L®] + |L-),

Proof : | o

1. Follows from the above lemma by induction.

2. Follows from 1 and Proposition 4.2.2.. O
The next step is to obtain an expression for |L{™| via its generating function.
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LEMMA 4.2.3. Forn 2 0, \LE_")| is the coefficient of " n

l—x
Cle) = T 5o
and hence 15 given by, )
L@ = {270 + (=1)"]

Proof ;: The generating function is obtained by standard manipulations and hence we shall
omit it. To see the second statemeni, note

1 - 1, 2 1
5 = 30t 1o
l-z—222 3'14z 1-2¢

G(z) =

- Hence, the coefficient of z" in G/(z) is

We finally obtain,
THEOREM 4.2.3. Forn > (,
S0 = {2 + (1))
Consequently, |S™|satisfies the following recurrence.

1S = 1 and |S®™)| = 218 4 (=1 forn > 1 °

Proof : Forn = 0,1 it is easy to check that IS(")I = 1. From Corollary 4.2.1., for n 2> 2,

@] = ZILO + L)

By the above lemma, |[L(™| = 2[27-! 4 (—=1)"). Hence,
0] = 4301+ (1)) + 320 + (1)
= e+ oy

REMARK 4.2.2. Approzimately two thirds of all sirings of length n are reversible.
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4.3 Periodic Boundary CA

We now characterise reversibility of 90/150 CA with periodic boundary condition. The
transition matrix for such a CA is of the following form.

-Gl 1 0 0 ... 0 1 |
1 ) 1 0 ... 0 O
1
M] _ 0 (I3 1 0 0O
|_1 0 ‘ R | On |

In analogy with continuants, let us denote the determinant of My by Py(ay,...,a,). We will
only consider nn > 2. Then we have the following

PROPOSITION 4.3.1. Py(ay,...,an) = Kyp(ai,...,an) + Kn-2(ag,...,an-1). Consequently,
ai ... Gy 18 reversible under periodic boundary condition iff exactly one ofa, ...a, andas ... 05—

is reversible under null boundary condition.

Proof : Expanding the determinant by the first row, we get (note that all operations are
over GF(2)),

P.(ai,...,an)

== ﬂ-lanl(@,---,an)
1 1 ... 0 0O 1 o 1 0 0
0 az ... 0 O 0 1 a3 1 0
0 1 0 O

4 0 0 0 O +

0 0 ... . 1 . . ‘ T # . |
1 0 ... 1 am 1 0 . . 1

= a1 Kp-1(az,...,an) + Ku-2(a3,...,a5) + 1 .
+ Kn-z2(az,...,0q-1) + 1
(by expanding each of the two determinants by the first column)
- Kn(a'lj ' :a'ﬂ) + Kﬂ-—ﬂ(a‘h.‘ ' :an—l): b}’ (II)
Consequently, under periodic boundary condition, a, ..., a, is reversible iff P,(a,,...,a;) =
1, i.e, iff exactly one of K,(ai,...,an) and K,_2(a,...,0n-1) is 1, i.e, iff exactly one of
ai...0, and ay...a,-1 is reversible under null boundary condition.

REMARK 4.3.1. 1. The continuant K,(a1,...,a,) can be obtained by the following sim-
ple rule [68]. Start with the term aja,...a, and then cancel out pairs GrGryy 1 all
possible ways. From the above proposition a similar rule holds for P,(ay,...,a,) with
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the following modification. When considering pairs apar1, constder apa; to be one
such pair, 1.e, consider the terms ay,...,a, to be arranged in a circle.

9. The ezpression Py(ay,...,ay,) s tnvariant under a circular shift of its arguments.

Based on the above proposition we can construct a DFA G to recognize all possible
strings which correspond to reversible periodic boundary CA. The idea is to run two DFAs
M, and M, in parallel, where M, and M, are copies of the DFA for recognizing reversible
null boundary CA. The DFA M; will run on the entire string g, ...a, while DFA M; will
effectively run only on a;...a,-;. Then we accept iff exactly one of M, and M, accepts. It
is easy to design G such that M, skips the first symbol, i.e, a;. When G reads a;, > 1,
it makes a transition from g, to g2 in M; and from p, to p2 in M, following the rules of
Lemma 4.2.1.. Skipping the last symbol is a bit more tricky since G cannot know that a,
is the last symbol until it has read it. To tackle this we allow the control of G to have one
more bit of memory (say b), which is used in the following way. When G makes a transition
from p; to ps in My, it puts a value of 1 in b if p;, was an accepting state for M, else it puts
a value of 0 in b. So at the end of the input b indicates whether ay ... a,-; was an accepting
string for M,. Then & accepts iff either bis 1 and M, is in a rejecting state or bis 0 and M,
is In an accepting state.

So from this description we get

THEOREM 4.3.1. The set of all strings which correspond to reversible periodic boundary CA,

~ form a regular set.

- Consequently, there exists a linear time algorithm to determine reversibility of periodic
boundary 90/150 CA.

Proof :*We provide a formalization of the above description:
Let M = ({8¢, 50,51}, Se; 0, { e, S1}) be the DFA for the null boundary CA. Let,

r: {6,0,1} < {0,1}, where r(€) = (1) = 1, and r(0) = 0

Define G = (Qy, 3, dg, F}), to be a DFA, where
1. Qp — {3: 30:31} U {SE:SUISI.},X {35130131} X {0.: 1}.
2. Let 1,5 € {0, 1} and z,y € {0, 1, ¢}.

(a“) 6}3(3:7:) = 8

(b) 5p(30:3') — (SE: 3:‘:1)

(C) 5?(31': 0) = (31:301 1)

(d) dp(s1,1) = (s0,51,1)

(€) Op((8zs 8y,%),3) = (S6(,3), S5(y5), T(¥))
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3. F' = {(Smsy:i) : 'I‘(.'l?) 75 3}

It is easy to see that G formalizes the DFA described above and G accepts a string z. iff

z correspond to a reversible periodic boundary 90/150 CA.
We now enumerate the number of strings which correspond to reversible periodic bound-
ary 90/150 CA. In this case the regular expression is more complicated, so we use the results

for null boundary CA.
Let 7™ be the set of all strings of length n which correspond to reversible periodic

boundary CA. From Proposition 4.3.1., 7{™ can be written as,

T — A0y W) oWy pin)

where,
A" = {3 € T g =azb, a,b € {0,1} and z <= ¢, 2z = 0}

B™ = {z € T™: z=azb a,b € {0,1}andz < 1, z «» 0}
C™ = {2 € T™: g =azb,a,b € {0,1}andz < 0, 2 — €}
D™ = {z € T : g =azb, a,b € {0,1} and z — 0, z <« 1}
and A, B 0™ D) are pairwise disjoint. Hence

T = [A®)] + B + [0 + | D) (v)

Next we prove two results which are crucial for enumerating |7")].

PROPOSITION 4.3.2. Let v € {0,1,€}. Then there does not exist sirings y (ly| > 2) such
that y = az, a € {0,1} and bothy — v and z — v. -

Proof : We will only prove the result for v = 0. The other two cases are similar. We prove
by induction (on the length of strings) that there does not exist strings z such that, z <+ 0
and az < 0.
Base Step : For |z| = 0,z = ¢ and the result i easy.
Inductive Step : Suppose that the result holds for all strings of length less than n.

Let |z| = n. Suppose if possible 2 < 0 and az < 0. Recall that the regular expressmn

for the strings reducing to 0 is a(0 + 10*1), where « is the regular expressmn for strings
reducing to €. Since z < 0, either |

l. z = y0 and az = ay0 or,

2. z = y10*1 and az = ayl-O‘"l
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with [y| < [z]. |
Now in both cases ¥y «+ € and ay < ¢. In Case 1 this is clear. In Case 2, if ay — 0,

then az < € or az > 1 according as 7 is odd or 7 is even. If on the other hand ay —. 1,
then az < € or az < 1 according as i is even or odd. Since by assumption az < 0 it
follows that ey must reduce to e.

If |y| = 0 then we immediately have a contradiction. So suppose |y| > 0. Now y < ¢
implies y = we (¢ € {0,1}) withw <> 0 and ay < € implies aw < 0, where 0 < |w| <

yt < |2].
By the induction hypothesis, such w does not exist. Hence the proof.

PrROPOSITION 4.3.3. Forn 2 2, let
X(") = {y € LW : y = az andz — 0}
X" {y e LW : y = az andz < 1}
Then, |X{"] = |X{™] = § L™

Proof : Let ¥y € L(”) with ¥y = az.

Let £ = 2b so that y = azb < ¢. Now az0 <« € iff az1 <« €. So the strings in L{m)
can be paired as az0 and azl1. Then it is easy to check that exactly one of the strings 20 and
z1 reduces to 1 and the other reduces to 0. (By Proposition 4.3.2. none can reduce to ).

Hence, | X{M| = |X{™| = L |LW| O

" Now we can find the cardinalities of A(™, B(?), C("), D(“) Following [68], we will let [¢)]

denote the value of a Boolean predicate qS

LEMMA 4.3.1. Forelln 2> 2,
1 |A®)] = 0
2. (B = [2 fu] + } S350 |19
8. 10| = [2jn] + & TE? |L9)]
4 |DW] = L)

Proof : 1. This is proved by proving that A = ¢. To see this first note that z € Al iff
T = azb <« ¢ and z — 0. But azb — ¢ implies az — 0, hence z € A(") iff there exists

wf——

string z such that az < 0 and z < 0, But by Proposition 4.3.2., such strings do not exist.

2. In this case z € B™ iff z = azb < 1 and z < 0.
Ifb =1, az < € and z — 0. There are 3 |L(’”l 1| such strings (by Proposition 4.3.3.).

If b = 0, then two cases arise
a) z = 0" 2, g = 1 where 10" < 1 and 02 < 0. But then n— 2 and hence n must

be odd. This contributes the term [2 fn] to \B(" .

03



b) z = y10' where 0 < i < n — 3 and both ayl0 ~ 1 and y10 < 0. Therefore
ay <+ € and y <> ¢ for some ¢ € {0,1}. By Proposition 4.3.3. there are §|L{"*=9)| such
strings. -
So, |B™| = [2 fn] + 4 IS |209].

3 and 4 are similar to above

So finally we get the followmg

THEOREM 4.3.2. Foralln > 2,
T = S = oo 4 (<1

Proof : Using the above lemma and (V),
[T = |A®)| + |BO)| + CW] 4+ Do)
=TI 110] = [50-0] = 4z + (1)

REMARK 4.3.2. |T"®)| is approzimately half of |S™| and one third of the total number of
binary strings of length n.

4.4 Linear Finite State Machines

In this section we point out the consequences of our results to the synthesis problem for CA.
Cellular Automata belong to the class of Linear Finite State Machines (LFSM). The most
popular examples of LFSMs are the Linear Feedback Shift Registers (LFSR), which have
been quite extensively studied [66]. A LFSM is completely characterized by its characteristic
polynomial, which defines the linear recurrence satisfied by the output bits of the machine.
A CA being an autonomous machine, there is no concept of output. However the successive
states of any particular cell (usually one of the end cells) can be considered to be its output.
Next we point out the relationship between the characteristic polynomial of the transition
matrix of a CA and the linear recurrence satisfied by the output bits of any particular cell,

To do that we need the following from [151].

LEMMA 4.4.1. Let M be the transition matriz for a 90/150 null boundary CA. Then M is
nonderogatory, i.e, the minimal polynomial for M is the same as the characteristic polyno-

mial for M.

However the proof given in [151] is involved. In fact it is easy to see that the proof of

 Theorem 3.3.1.(1) applies in this case also.

An n-cell CA is of mazimal length if the characteristic polynomial of its transition matrix
is primitive, which is true iff in the STD for the CA there are two cycles, with the null
configuration on a cycle of length one and all other configurations on a cycle of length 2" ~1.
The following result about maximal length CA is presented in [151], where it is proved using
matrix algebra. Here we present a short combinatorial proof of the same.
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LEMMA 4.4.2. If a linear null boundary n-cell nearest neighbourhood CA is of mazimal
length, then 1t must use only rules 90 and 150 as the local rules.

Proof : Suppose not and let 7 be the number of the first cell from the left end where the
local rule R, is neither 90 nor 150. If R, does not depend on any of its neighbours then
we can divide the CA into three parts of r — 1 cells, 1 cell and n — r cells each, with no
interaction between the parts. The maximum cycle length possible in such a structure is

2rt =12~ 1)(2¥ " 1)

which is less than 2" — 1. (See Section?7.3.1 for the length of cycles of such "product” CA).

So R, must depend on exactly one of its neighbours. Let R, depend on the left neighbour
(the other case is similar). Then the CA can be divided into two parts of r cells and n — 7
cells each, where the first part does not depend on the second part, but the second part

depends on the first part. Thus overall the maximum cycle length possible is

2" -1)(2"") < 2" -1,

Hence the result holds. |
‘The temporal sequence of a cell of a CA is the sequence of successive states that the cell

passes through in the evolution of the CA. Now we prove the following

PROPOSITION 4.4.1. Let M be the transition matriz of a 90/150 null boundary CA and let
p(z) = 2" + 12" + ..+ o

be its characteristic polynomial. Then there ezists a vector x, such that the temporal sequence
of any cell of the corresponding CA loaded with initial configuration &, satisfies the linear

recurrence defined by p(z), i.¢,

af = cn._laf"l +...+cuaﬁ"" forit>n

Proof: Let x be any non null vector and g(z) be its minimal polynomial, i.e, the polynomial

of the least degree such that ¢(M)a = 0.
Then ¢(z) | p(z) and the output of any cell of the CA loaded with mltlal configuration «

- will satisfy the linear recurrence defined by ¢(z).

By the above lemma, p(z) is the minimal polynomial for M and hence there exists a
vector &, whose minimal polynomial is p(z). Therefore the result follows. O

Gwen this result it is easy to see that any two CA having the same characteristic poly--

nomial will essentially generate the same bit sequence (modulo a shift).

Given any bit sequence it 18 possible to synthesize a minimum length LFSR whose output
is the given sequence. This is done by the famous Berlekamp-Massey Shift Register Synthesis
Algorithm [18, 118]. The algorithm essentially finds the least degree polynomial which
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defines a linear recurrence satisfied by the given bit sequence. Designing a LFSR from this

polynomial is trivial. So the natural question to ask in the context of CA is the following.
Given any bit sequence can we design a 90/150 CA whose output is the given bit sequence

and the number of cells in the CA is equal to the number of cells in the minimum length

LFSKE which generates the same bit sequence ¢
Unfortunately, the answer to this question is no and this follows from the fact that the

answer to the following related question is also no.
Given any polynomial p(x) of degree n, can we get an n-cell 90/150 CA whose transition

matriz has characteristic polynomial p(z) ¢ |
For the following let us decide to call a polynomial (and the corresponding LFSM) re-

versible iff its constant term is 1. So there are exactly 2"~! reversible polynomials of degree n.
A CA will be said to realize an LFSM characterized by a polynomial p(z) iff the characteristic
polynomial of its transition matrix is p(z). Then we get the following

PROPOSITION 4.4.2. Using 90/150 null boundary CA, it is not possible to realize all irre-
versible LFSMs.

Proof : The number of reversible strings of length n is |S{™|and hence the number of
irreversible strings is 2® — |SUM| = 1(2" + (~1)**!) = |S(-1),
The total number of irreversible machines is 2"~! and the result follows from the fact
that for n > 2, |S(*-1)| < 2n-1
Using a similar argument it is possible to prove,

PROPOSITION 4.4.3. Using 90/150 periodic boundary CA, it is not possible to realize all
reversible LFSMs.

Since approximately two-thirds of all strings of length n correspond to reversible null
boundary 90/150 CA and there are only 2"~! reversible polynomials, one might expect that
using null boundary 90/150 CA it is possible to realize all reversible LFSMs. However this is
not true and to prove it requires a more delicate argument. First note that it is possible for
two CA to have the same characteristic polynomial. If g, ... a, encodes a CA, then K,(z -+
ai, ..., T + ay) is its characteristic polynomial and since K, (z + ay,...,2 + ay) = Kp(z +
Qn,...,T 4+ a1) (from (IV)), the CA encoded by a,...a; also has the same characteristic
polynomial. Of courseif a;...qa, is a palindrome, i.e, a; = a,_; for all 7, then this is trivially
true. Otherwise we have two distinct CA with the same characteristic polynomial. It is
Interesting to note that if the diagonal is a palindrome, then the characteristic polynomial

18 factorizable.

PROPOSITION 4.4.4. If the diagonal of the transition matriz for an n-cell null boundary CA
18 a palindrome, then its characteristic polynomial can be factored.
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Proof : Let ay,...,a, be the diagonal. Then the characteristic polynomial p(x) is given by,

p(&:) = Kn(ﬂl Lyioeyln $)

Now two cases arise.
n is even and equal to 2r
p(z) Ko(lay+,...,0. + 2,041 +2,...,a0 + T)
K.(ay +3z,...,6r +2) Kp(0ry1 + 7, ..., 030 + )
+Kr—l(al T Xy, 0poy :5) Kr-l(ar+2 + Z,...,02 T 3-'7)
= (Kelay+z,...,0.+2) + Keey(ay +z,...,00-1 + 1))
In fact in this case p(z) is a perfect square.
n is odd and equal to 2r + 1
P($) K2r+1(ﬂl + Lyovnylr T Ly Qi1 + Ly Gpy2 L. Ar+1 + :B)
Kr+1(al + Lyoooylpyl + $) Kr(flr_|.2 Ly ooy Q2pgl 11:)
+ K, (a +$:---:ar+$)K—1(ﬂr+3+$:---:ﬂ2r+1 “3?)
Kr(al +Ty...,0r t m)(Kr+l(ﬂ1 T Ty Opy1 T :'5)
'Kr-l(a*l T Ly ey Q-1 T $))

1

Let E") be the set of all reversible palindromes of length n. Define,
A, = 271 — |EM)]
By = 3(IS™] ~ [E™))

Then there are at least A, reversible polynomials which are not realised by reversible
palindromic strings and there are at most B, reversible polynomials which are realised by
reversible non-palindromic strings. So if we can prove that B, < A, then we are done. We

proceed by first finding |E™)).

LEMMA 4.4.3. Forn > 2, |[E®| = 281 4 |L{#7Y where L§ is the set of all strings
of length n which reduce to 0. . |

Proof : We will prove the result for odd n. The result for even n is similar.
Let n = 2k + 1. Since n is odd any palindromic string z will have the following form,

r = a1...0054+1C%.,..0

Now let us find the conditions under which z is reversible. We use (III) to get,
Kﬂ-(ala"':ak:a‘k+1:ﬂk:'“:ai) - . |
Ki(ay,. .., ﬂk) Kk+1(ﬂk+1: iy .- 01) + Ki_1(ay,. .., Gk-—l) Ky(ag,...,a1)
= Ki(ay,...,08)[Ket1(0ks1, 05y .. - 01) + Kpo1(@ry. .., 05-1)
= Kk(ﬂla---:ak):Kk+1(alr---:ak+1) + Kg-1(a,. .., Gg-1)
So the condition for reversibility of z is the following
a ...a is reversible and exactly one of a;...ax4; and a; ... a1 is reversible.
Three cases are to be considered. |
a)a,...a5.; < € Thenay = 1and axy; = 1. There are |L¥*~1)] reversible palindromes

of this type.

|
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b)a,...a,-1 < 0. Then azy; = 1 and ay can be either 0 or 1. So there are 2 |L,E,k"”]

reversible palindromes of this type.
¢)ay...ag—; = 1. Then ay = 0 and axy; = 1. In this case we get ILi‘E_l)I reversible

palindromes.
So the total number of reversible palindromes of length n is

LED] + 2{L60] + L)
= k-1 4 |L§EY).
Now we can prove

THEOREM 4.4.1. For n > 3, using n-cell null boundary 90/150 CA it is not possible to
realize all reversible LESMs.

Proof : This is proved by showing that forn > 3, A, > B,. The above lemma gives the
expression for |E™)| in terms of \LU")I. Now, ]LTU—"}[ = 2" — |S(™| and the value for |S{™|is
already known from Theorem 2.3. Since A, and B, is expressed in terms of |[E(™|, it is easy
to find the expressions for A,, and B, and check that indeed A, > B,.
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Chapter 5

Two-Dimensional CA on Square Grids

5.1 Introduction

A two-dimensional CA is defined to be a CA on a two-dimensional grid of cells. The grid may
be considered to be folded in one or both directions. If it is folded in exactly one direction it
is called a cylinder and if it is folded in both directions the structure is called a torus. The
neighbours of a cell are the two vertically orthogonal and the two horizontally orthogonal
cells. The local rule changes the state of a cell to the sum (modulo 2} of the states of the
- four orthogonal neighbours. We will consider uniform CA, where each cell evolves under
the same local rule. As in the case of one-dimensional CA, one may consider a cell to be a
neighbour of itself. In terms of o-automata, a two-dimensional CA. would be a g-automaton
on a product graph A x B, where A and B are suitably chosen to be paths or cycles giving
rise to grids, cylinders and tori. The evolution is as before defined by each vertex changing
its state to the sum (modulo 2) of the states of its adjacent neighbours. A o*-automaton
is defined as before by considering a vertex to be a neighbour of itself. The notions of
configuration, global map, State Transition Diagram (STD) are simple generalizations of the
corresponding concepts for one-dimensional CA (see Chapter 3). Note that the global map
of the CA is a linear transformation from the set of all configurations into itself. We will
defer to Chapter 6, the task of obtaining a representation of the global linear map. Here we
will analyse the revers1b1hty of the global map in terms of the roots of the m-polynomials
introduced in Chapter 3. | |
A o(ot)-automata is reversible iff the corresponding linear transformation is 1mrert1ble

Reversibility is an important phenomena for this class of automata (see also [161]). It means
that the State Transition Diagram consists entirely of cycles, and as a result it is possible
to start from one configuration and come back to it after a finité number of steps. The
o-automata on an m X n grid is reversible iff m,4,(z) and 7,41 (z) are relatively prime iff
m + 1 and n + 1 are relatively prime. This result has been derived using different methods
[15, 166, 161, 168]. The coprimeness of m + 1 and n + 1 present a nice characterization of
reversibility. Unfortunately, for the o¥-automata obtaining such a simple characterization
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seems to be difficult, though it is known [15, 168] that ot-automata on an m X n grid is
reversible iff 5., (z) and m,.+1(2) are coprime. The problem has, however, been solved for
certain special cases [15, 168).

In this chapter, we study o*-automata on square m x m grids. Our work is motivated
by two open problems posed by Sutner in [168|. Before we state them we need to introduce
the concept of total irreversibility. In what follows we will denote by p¥(z) the polynomial
obtained from p(z) by the map z — 1+ z over GF(2).

The concept of total irreversibility was introduced in [168| for o*-automata on product
graphs G = H X FB,, where H is an arbitrary graph and P, is the path graph on n
vertices. We however describe the concept only for graphs of the form P,, X Py, i.e, m X n
grids. The corank (dimension of kernel) of the o*-automata on m x n grid is given by
cork(m} 1(Sn)) = cork(mt,  (Sm)) (see [15, 168]). If the corank is zero then the automaton
is reversible and if the corank is positive then it is irreversible. Thus the maximum value
of the corank in some sense captures the notion of maximum irreversibility and leads to
the following definition of total irreversibility. The ot-automata on m x n grid is totally
irreversible if it has the maximum corank, i.e if cork(ny ,(Sy)) = niff 71, ;(Sm) = 0. But
Tm+1(Z) is the minimal polynomial for S,, (by Theorem 3.3.1.) and hence divides 7, ,(z).
The least value of n for which this occurs is defined to be the weak period of F,,, the path
graph on m vertices. For some interesting results on weak periods see [168). For the case of
square grids, . = n and 7,41 (z) |7t (z) implies wm+1(3:) =7}, 1 (z) . So a square grid is
totally irreversible under o*-automata iff 7,1 (z) = mt,, (z) . Now we can state two open
problems posed by Sutner in [168]. (Refer to Chapter 3 for meaning of the terms p. and
dp(T). Also certain basic properties of m-polynomials from Chapter 3 will be used.)

1. "For the m x m grid to be reversible under rule ot we must have 6 [m+ 1 and for all
odd e > 3 such that e[ m+ 1 and 7| p, irreducible : dp(r*) Jin + 1. Is there a simple

algorithm to test the second property 7"

2. 7 Are there any totally irreversible squares other than 4 x 4 7 Equivalently, 1s there any
m > 4 such that n,.1(z) = 7. (z) 7

It is conjectured in [168] that the answer to the second question is no and here we prove
that indeed it is no. So this also proves that the corank of the ot -automata on square m xm
grid is strictly less than m for m # 4. o

As for the first question we derive an alternative equivalent condition for reversibility
and use it to obtain several sufficient conditions for both reversibility and irreversibility. The
analysis leads us to obtain a complete characterization of irreducible polynomials 7(z) over
GF(2) with 7{z) = 7%(z). It turns out that characterizing the depths of such polynomials
is essential for obtaining a simple characterization of reversibility. Our results indicate that

this in general is difficult.
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5.2 Total Irreversibility

In this section we prove that totally irreversible grids do not exist for m # 4. We essentially
prove that mn.1(z) # w7t i(z) for m # 4. Then the result follows from what has been

discussed in the introduction. We start by proving some preliminary results.
The following can easily be proved by induction.

LEMMA 5.2.1. If m is even, then

1. mmt1({z) contains only even powers of z, i.e, for odd r the coefficient of " in w41 (T) 18
0.

2. The coefficient of ™2 in w1 (z) 45 1.

Next we require the following crucial result. In what follows, the roots of the polynomials
concerned are taken in a suitable extension field.

LEMMA 5.2.2. If . (2) = 7pmaa(2), then m = 4 mod 186.

Proof : We prove this in four steps.
Step 1 If w1 (2) = Tme1(z), then m must be even.

If y,..., 0, are the roots of mp,q (z) then 1 + o, ..., 1+ @, are the roots of 7}, (x )
The coeﬂiment of 2™ in mpyy(z) is 307, oy and the coeﬂiment of ™! in n}. (=) is
1-1 (1 + {}f;)

So if n;h 1 (z) = Tmy1(x), then

i m

Z o = Z (1 +G’,‘)
i=1 =]
which gives that m mod 2 = (. Hence m must be even.
Step 2: If my ) (%) = Tpes(x) then m = 0 mod 4.
By Step 1, we have that m is even (= 2r say). Hence 41 (z) contain only even powers
of z (by Lemma 5.2.1.(1)). Let oy,...,an be the roots of my1(z). Then .7, o; = 0.
So if m;* H () = Tmy1(2), equating the coefficient of z™~2, we get,
E:._.l J._.|+1 a‘laj - l--l Em'-l-}'l (1 + al)(]‘ + a.?)

T; mod 2 + (m—1) 7, o

+ i Ej-—-Hl Qg
( m) mod 2 + 37, jeitl OO

2

=3 (’;‘) mod 2 = 0
= 2Q@r-1) 0d 2 = 0

2
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= r must be even

= m = 0 mod 4.
Step 8 If mpya(z) = mhy1(z) , thenm = 4 mod 8.
By Step 2, we have m = 4k. Since by assumption 7} () = 741 () equating coefh-
cient of ™4 on both sides we get, |

S oo = ), (T4 aa)(l + 0y ) (1 + i )(1 + 0,

i1,12,i3,54 $1,80,i3,14

Again using the fact that m is even, we know that m,,,,(z) contain only the even powers

of z, hence
Z o = Z O, O, Qi = 0
t il:iﬂriﬂ
Therefore,
m m— 2
Z g, O O g, = (4 ) mod 2 + ( ) ) mod 2 Z g, i
$1,i2,83,14 11,12
+ Z Ocf, g, Oy ¥4,
i1,f2,83,14
Now,
(mz—-Z) mod 2 = (4k;2) mod 2
— (4;‘3-—2)2(4k-—3) mOd 9
=1
and by Lemma, 5.2.1.(2), 33, i, @i, i, = coefficient of 272 = 1.

Sowegét(T) mod 2 =1

ak(4k—1)(Ak—2)(4k—3 .
= 13:(2:-<3x=)1( ) mod 2 =1

i 5(4#-1)(21;-1)(41:—3) mod 2 = 1
=> k must be odd.
= m = 4 mod 8.
Lastly we prove,
Step 4: If it () = wmya(z) , then m = 4 mod 16
By Step 3, we have that m = 8k + 4.
So assuming ;% .1 (z) = 7m41(2) , we equate the coefficient of z™~° on both sides to get,

Ef[,...,ia Cgil “a. alla - Zil,...,iﬂ (1 + ail) e (1 + aiﬂ)
-2

o

| ; mod 2 37 i O ... Q
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2

+ Zi],...,fg &y« .. Qg
Now for m = 8k + 4, we have,

myY _ [ 8+4) _
(8)--( q )....km(}d2
m—2\ [ 8k+2 — 0 mod 2
6 = 6 = Vo
(m;4)=(84k)20m0d2

(8’“;2) = 1 mod 2

— 6
+ ( m ) mod 2 Zil‘_”jfﬂ Oy ... Oy

3
&
o
~—
[

k mod 2 + Z Qg ooy = 0
 dlgeis
But ¢ = 3.4 Qi .- Qi is the coefficient of z™~° in 74 (z) and is determined as
follows (see Chapter 3, Equation 3.2),

. m+l+m-6\ ([ 2m—-5 \ (2m-—35
N 2m—6)+1 /  \2m-11 ) 6
_ 16&4—68—5 _ (16k6+3) — 0 mod 2

Hence 1t follows that k¥ must be even and so m = 4 mod 16.
Let ¢(m, ) be the coefficient of z* in 7, (z). Then using Chapter 3, Equation 3.2 we can

~ prove the following.

LEMMA 5.2.3. Form = 4 mod 16,
1. c(m-}-l,,'m) = 1 mlod.2
2. cm+1,m—2) =1 mod 2 .
g em+1,m—-4) =1 inod 2
4 c(m+1,m—6) = 0 mod 2
5 ¢(m+1,m—8) = 0 mod 2

6. c(m+1,m~—10) = 1 mod 2
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7. e(m+1,m—12) = 1 mod 2

Proof : The proofs of 1 — 7 are similar, We will only prove 7. .
Since m = 4 mod 16 we can write m = 16k + 4. So from Chapter 3, Equation 3.2 we

get, |
m+1+4+m-—12

2m —12) + 1 )mc’“
2m — 11
o — 93 mod 2

9m — 11
19 mod 2

321;-3) od 9

i

c(m+ 1,m — 12)

i}

|

12

32k —4 32&- 6 32k —8 32k—10 32— 12 32k—14
y; 8 16 13 =Y mod 2

lmod2

_ 32k—3 3%2k~5 32k—7 32k~9 32k—11 32k—13
where ¥ = === 79 11 i3

1[I

LEMMA 5.2.4. Form = 4 mod 16 the coefficient of x™ ' in w7, () is 0.
Proof : By Chapter 3, Equation 3.2
m+ 1+ -
Tme1(Z) = Z( . )m‘modZ
I S
| fm+1+42 |
= ?T,';,E_l(m)_ = Z( 9% 4 1 )(1-{-5’:)i IIIOdz
' '

If C be the coefficient of £™1? in 7}, (z) then

- m+1+m—12+£)(m-12+£)
c =3 | ")
= 2(m —1241) + 1 m— 12

Using the above Lemma and the fact that 7,1, (z) contain only even powers of z we can
conclude that the first term is non zero only for ¢« = 0, 2, 4, 10, 12. Hence,

o= (m2)+ (n28)+ (m28)+ (228) + (w7
s ()2 (75 (3)- (8)

Since m = 4 mod 16 we can wnte m = 16k + 4 and 50,

(m210) = (16k2f6)51m0d2
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m—-4\ _ (m-2\_ (m) _

Hence, C = 1+ 1 = 0 mod 2

THEOREM 5.2.1. i (z) =7t (2) iff m = 4

Proof : For m = 1,2,3 it 1s easy to verify that m,1(z) # 7}, (z) and for m = 4 it is
also easy to verify that 41 (2) = 75, (2) .
If m > 4 then assume that @, (%) = mpyi(z) . Then by Lemma 5.2.2. it follows
that m = 4 mod 16. But by Lemma 5.2.4. it then follows that the coefficient of ™12 in
r+1(z) is 0 and by Lemma-~5.2.3. the coefficient of £™'% in #p,y1(z) is 1. So this means

T+
that #}.(z) # mmy(z) which is a contradiction to our assumption. Hence the result

follows.
So this proves that totally irreversible grids do not exist for m # 4.

5.3 Reversibility

In this section we address the problem of characterizing reversible ot-automata on square
m x m grids. A necessary and sufficient condition for reversibility is that m,.:(z) and
mhe1(z) are relatively prime (15, 168]. For the case of s-automata on m x n grid, the
analogous condition for reversibility is that 7,1 () and 7, (z) are relatively prime (15, 168].
‘Thus on a square m X m grid, o-automata is always irreversible. For the ot-automata on a
square grid an equivalent condition for reversibility is stated by Sutner in [168].

"6 . /m+1 and for allodd e > 3, such that e [m-+1 and 7| p, irreducible : dp(rt) fm+1"

‘The author asks for a simple algorithm to test for the second property. |

Here we view the problem from a different angle. We translate the condition for re-
versibility into a condition on the roots of 7,41 (z) . From this we are able to derive certain
simple suflicient conditions for both reversibility and irreversibility. We also indicate why a
simple characterization of reversibility is difficult. Note that reversibility may be determined
in O(N?) steps (where N is the number of cells) by forming the adjacency matrix and reduc-
ing it to Hermite Canonical Form (HCF). The HCF will also provide the corank (dimension
of the kernel) of the o+ operator.

The following result characterizes reversibility of o*-automata on a square m x m grid.

THEOREM 5.3.1. The ot -automata on m x m grid is irreversible iff there ezists roots o and
B of my1(z) , such that a + § = 1. Here o and 8 belong to a suitable extension field over

GF(2).

Proof : First note that the roots of 7t (z) are 1 + v where 7;'s are roots of ?r.m+1r(:n) .
Then the result follows simply from the fact that o+-automata is irreversible iff 7,11 () and
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7. ((z) are not relatively prime (15}, iff 74 (2) and 7], (z) share a common root. Since
we are working over a field of characteristic 2, this is the case iff &« + 8 = 1.
From the above result we can see that irreversibility can occur in two ways.

1. There exists an irreducible factor 7(z) of 7,4, (z) , such that 7(z) has two roots o and f3
with & + f = 1. Later, we show that such 7(z) satisfies 7(z) = 77 (z).

2. There exists two distinct irreducible factors 7 (z) and m2(z) of mpr4i(z) having roots
o and [ respectively with « + 8 = 1. We will prove that under this condition

Tg(ﬂ?) = Tl(]. +$)
PROPOSITION 5.3.1. If 7 is an irreducible polynomial of depth d, then 7 |my, iff d|n

Proof : If : d|n implies 74 | 7, (by Lemma 3.2.1.). Since 7 is of depth d, 7|74 and so 7| 7.

Only if : This case follows from Claim 1 in the proof of Theorem 2.1 of [168]. Here we
reproduce the proof for the sake of completeness. Now 7|, and depth of 7 being d, 7 | 74
and so 7| ged(my, 7). But by Lemma 3.2.1. ged(my, 7n) = Tged(d.n). Hence 7| Mgeqan). From
the definition of depth it follows d < ged(d,n), which implies d = ged(d,n) and so d |n. O

Now it is easy to see why Sutner’s condition holds. It essentially says that for any
irreducible polynomial 7(z), both 7(z) and 7%(z) should not divide #p,41(x) , and so by
the above proposition the depths of both 7(z) and 7+(z) should not divide m + 1. (Note
that 6 | m -+ 1 means that my(z) | 71 (z) and m3(z) | 7p41(z) , and my(z) = z and m3(z) =
(1 + z)?, see Proposition 5.3.2..) C

REMARK 5.3.1. One can generate mp41{z) and m} . (z) and run the ged algorithm on them
to check if they are relatively prime. This procedure unll in general be more time efficient than
determining the Hermite Canonical Form and will require.less storage space. An interesting
related problem is to compute p*(z) where p(x) is an arbitrary polynomial over GF(2).

Let c(m, i) and c*(m, 1) denote the coefficient of z* in p(z) and p*(z) respectively. Then,

cr{mm—r) = >, (14 e)(1 + @) .. (1 + o)
| 1<i1 <2 <o <ip <

= (T) + (T:ll) mod 2c¢(m,m — 1)

— 92 |
+ (m mod 2¢(m,m—-2) + ...

r—2
-+ (m—r) mod 2¢(m,m —r)
ey AT _

= Y=o D(m —i,r — i) c(m,m — i) o
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where D(m — 4,7 — 1) = (m__g) mod 2

r—1
So,
pHz) = Th,ctmm—r)jz™ "
= Zr=o(Xizo D(m —t,r —d)e(m,m — 1)) 2™

Therefore if Pascal’s triangle (modulo 2) is available upto integer m, then it is easy to

compute p(z).

ProOPOSITION 5.3.2. If any one of the following conditions hold then o -automata on mxm

grid is irreversible.

1. 6|m+1
2.5|m+1

3. 17|m+1

Proof :

1. 6im+1 & 2/m+1and 3|m+1 & mz)|rua(z) and 73(z) | Tmer (o)

& z|mpei(z) and (1 + ) |Tmyi(z) & (1 4+z)|7t,(2) and z|rh,(z) & z(1 +
z) | ged(mmsr(z) , 71 (z) ). Therefore my,41(z) and ﬂm+1( ) are not relatively prime and
hence the result follows [15] | | |

2. ms(z) =z + 22 + 1 = (2% + = + 1)°. Let a and B be the roots of 22 + z + 1.
Then o + B = 1 and so if w5(z) | 7ma1(z) then o and § are also roots of 1,4 (z) and so
irreversibility occurs. But 15(2) | Tmyr(z) fF 5| m+ 1. -

3. Consider 7(z) = z* + z + 1. Then 7 is an irreducible (in fact. primitive) polynomial
over GF(2) with roots a,a?,a%,0? (see Theorem 5.3.2.). But o + o = —1 = 1, since
o is a root of 7. So if for some m, 7(z) | Tme1(2) , then o*-automata on m X m grid is
irreversible. Since the depth of 7 is 17 (from Appendlx A) this can happen iff 17|m + 1 (by
Proposition 5.3.1.).

To extend this idea (of 2 and 3 above) one should be able to

e characterise all irreducible polynomials 7(z) having two roots @ and S witha + 8 = 1.
e compute the depths of all such 7(z).

Next we obtain a complete characterisation of all irreducible polynomials 7(z), having
two roots o and B with « + 8 = 1. It turns out that these are the irreducible polynomials
which are fixed under the map z — 1+ z, i.e, 7(2) = 7(z). In what follows we will use
some standard results on trreducible polynomials over finite fields which are all available in
[110]. In particular, we will frequently use the following
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THEOREM 5.3.2. Let 7{z) be an irreducible polynomial of degree n over GF(2) and let « be
a root of 7(z) in its splitting field GF(2"). Then a,0? o*,...,a®" " are all the n roots of
r(z) in GF(2").

LEMMA 5.3.1. Let 11(z) and 75(z) be two irreducible polynomials over GF(2). Let o be a
root of Ti(z) and 3 be a root of 7a(x), where both o and B are in the same suitadle extension

field over GF'(2), with f = 1 + . Then n(z) = n(1 + z).

Proof : Since 7 is irreducible, by Theorem 5.3.2. the roots of 71(z) are o, 02,0%,...,0%"",

where 7, is the degree of 7,(z). Similarly, the roots of m(z) are 3, 52, 62 ﬁ”ri" where
ro is the degree of 75(z). Now,

B =(1+a)? =1+

since we are working over a field of characteristic two.

Also (1 + &®) (0 < 7 £ r; — 1) are the roots of 7y (1 + z) (which is also irreducible)
and (1 + o?) (0 € i € r; —1) are all distinct. So ro > r1. Now if 7 > 7y, then (1 + 2)
properly divides 7o(z) which is a contradiction since 73(x) is irreducible. So ro = 7, and all
the roots of 7 (1 + z) are the roots of (z). Hence 73(z) = 71(1 + z).

LEMMA 5.3.2. Let 7(x) be an irreducible polynomial such that it has two roots o and fF in
its splitting field, with o + B = 1. Then the degree of ™ must be even.

Proof : As stated above 8 = o2 for some ¢ € {0,... ,i‘ — 1}, where 7 is the degree of .

So @ + 8 = 1 means |
FE+&2‘#1

= (@a+a®)? =1 0<j<r-1

This gives r equations,
o+ a? =1

' |
o’ + o’ =1

'2'1""'1 + Q2‘+r"1 — 1
Summing up the left and right hand sides we get,

3=0

E o + Eaﬂm = r mod 2

r-1 27 -1 2I+J
But 37550 o = }iT; @
= r mod 2 = ( and so r 1s even.
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LEMMA 5.3.3. Let 7(z) be an irreducible polynomial over GF(2). Then (z) = 1% (z)
iff T(x) has two roots o and [ taken in a suitable estension field over GF(2), such that

o+ f = 1.

Proof : If 7(z) = 7% (x), then the result is easy, so we only prove the other direction. Since,
o + f = 1 we have § = a + 1, and so 7(z) has two roots o and a + 1. But then 7+ ()

also has the roots @ and a4 1. This means that ged(r(x), 7% (z)) is non trivial. But then it

must be whole of both 7(z) and 7+ (z). C

From the above two Lemmata we see that the irreducible polynomials which are fixed
under the map £ — 1+ z must have even degree. From the proof of Step 1 of Lemma 5.2.2.,
it follows that for any polynomial p(z), if p(z) = p*(z), then degree of p(z) must be even.
Combined with Lemma 5.3.3., this provides an alternative proof of Lemma 5.3.2.. Next we

have the following important result.

THEOREM 5.3.3. Let 7(z) be an irreducible polynomial over GF(2). Then 7(z) = v+ (z) iff
7(z) | (¥ + = + 1) for some i. In particular, if T(x) is an irreducible factor of z* + z + 1,
for some i, then 1(z) = 7%(z) and 7(z) is of even degree.

Proof : If 7(z) = 7% (z) then if  is a root of 7(z), @ + 1 is a root of 7+(z), which must
also be a root of 7(z). But the roots of 7(z) are of the form «*. Thus it follows that
a® + o + 1 = 0 for some 4. Since 7(z) is the minimal polynomial for a, it follows that
T(z) | (z* + z + 1).

Again if 7(z) | (z¥ + = + 1), then 0® + @ + 1 = 0 for any root « of 7(z). Then
] + @ = a® and hence both & and @ + 1 are roots of 7(z) in a suitable extension field.
Therefore by the above lemma it follows that 7(z) = 7% ().

LEMMA 5.3.4. Let 7(x) be an irreducible polynomial over GF(2) of degree 2d > 0, such
that T(z) = 7t(z). ThenT(z)|2* + = + 1 and 7(z) fz¥ + 3 + 1 fori < d. ’

Proof : Let a be a root of 7(z) in a suitable extension field. Since 7(z) = 7%(z), we must
have 1 + @ = o®" for some 0 < k¥ < 2d. Hence

1+ = (1+a) = a

22&
= o =

= 2k = 0 mod 2d

This along with 0 < &k < 2d implies k = d and hence « satisfies 22° + z + 1. So 7(z)
being the minimal polynomial for e, divides ¥ 4+ z + 1.
If possible, let 7(z) |2* + z + 1 for some ¢ < d. Clearly, i > 0.
Then since « is a root of 2 + z + 1,14 a = o |
= 1 + &2:' azm‘
= o2 = o
= 27 = 0 mod 2d
= d |1, which is a contradiction.

22#

1
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COROLLARY 6.3.1.

1. The highest degree of all irreducible factors of z*" + z + 1 is 2n.
2. If 7(x) of degree k is an irreducible factor of ¥ + z + 1, then k| 2n.

The second point of the above corollary is also in {110, pp 146].

THEOREM 5.3.4. Let 7(z) be an irreducible polynomial over GF(2) of degree 2d > 0, such
that 7(z) = 7(z). Then r(z)|3*" + z +1 iff n = d mod 2d.

Proof : Since degree of r(z) is 2d, 7(z)|2z® + z + 1, so any root a of 7(z) satisfies
2 + 1z + 1, 1ie,
| o +a+1 =0

If n = d mod 2d then n = 2dk -+ d. So,.

o +a+l = o a4+
= o +ta+1 =0

Hence 7(z) |2*" + z + 1.

If 7(z)|2*" + z + 1 then &®" + o + 1 = 0, where « is a root of 7(z) in a suitable
extension field. Also 7(z) |z* + z + 1 and so &® + o + 1 = 0. Hence o®" = o¥ which
implies n = d mod 2d.

DEFINITION 5.3.1. Let,
1. Eyq = Product of all irreducible polynomials T7(z) of degree 2d, such that r(z) = ¥ (z).
2. Cog = Number of all irreducible polynomials T(z) of degree 2d, with r(z) = 7*(z).

Thus we can obtain the factorisation of 22" + z + 1 as

LEMMA 5.3.5.

$2n + T+ 1 = H Egd
n=d mod 2d

In fact we can state the result in a more convenient form.

THEOREM 5.3.5. o
. : mﬂn + T + 1 — H Ezd
d|n,2d}n

The proof of the theorem follows from the following result.

70



RESULT 5.3.1. For somed > 0, n = d mod 2d iff d|n and 2d [n.

proof : d|n and 2d [n implies n = kd with k odd. Then,
n = (k—1)d +d
= 519 + d
Hence n = d mod 2d
Ifn=dmod2dthenn = c2d + d = (2c+1)d. So d|n and 2d [n.
Having obtained this we can now determine when a trinomial of the form 2" + z + 1

will divide another trinomial of the same form.

THEOREM 5.3.6. 27" + x4+ 1| z¥ + z + 1 iff
1. Dy(m) = Dy(n) and,

2. m|n
where Do(m) 38 the greatest tnteger of the form 27 that divides m.

Proof : Note that the conditions 1 and 2 are satisfied iff for each d such that d|m and
2d Jfm, it follows that d | n and 2d }/n. Hence by the above theorem it follows that conditions
1 and 2 are satisfied iff 2°" + 2z + 1| 2% + z + 1.

Next we count the number of irreducible polynomials 7(z) of degree 2n which satisfy

r(z) = 7V (2).

THEOREM 5.3.7. Let n = 2%m withm odd andm > 1 and k > 0. Then,

1 n
an = a Z p‘,(e)Q'g—l'—"k

e|m

where u(n) is the Mobius function (see [110]).

Proof : Using Theorem 5.3.5. we have,

d|n,2dn

Now the d's which satisfy d |n and 2d Jn are of the form d = 2%e where e|m. Therefore,

Kot 1 —
22 m—l~-k __ Z 602(2,‘&)

elm
Using Mobius inversion we get,
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mCygemy = 3, ple) 2% (B)-1-k

elm

1 krmy_1—
= Cyoem) = — D ple) 20071

e|lm

1l

] .
—_— 2?"1_k
—~ > ule)

e|m

:’ Oﬂn

This completes the characterization of the irreducible polynomials over GF(2) which are
fixed under the map £ — 1+ z. The computation of the depths of irreducible polynomials
is in general difficult [168). In Appendix A we present a complete factorisation of the first
ten trinomials of the form 2 + z + 1. From what has been discussed above, it follows that
this in effect lists all irreducible polynomials 7(z) of degree less than or equal to twenty such
that 7(z) = 7%(z). The numbers in the first column gives the depth of the corresponding
polynomial. So for any m, if any one of these numbers divide m + 1, then o*-antomata,
on m X m grid is irreversible. There does not seem to be any simple formula for the depth
function even for this special class of irreducible polynomials. However, it is interesting to
note from the values of depths in Appendix A that if either 2% — 1 or 2% +1 (4 < i < 10)
divides m + 1, then irreversibility occurs. |

The coefficient of z* for this class of irreducible polynomials show certain interesting
regularities. In fact, some of these can also be proved.

PROPOSITION 5.3.3. For any irreducible polynomial 7(z) over GF(2), with v(z) = 7% (z),
the follounng hold.

1. cogn—-1 = n mod 2

2. Can-2 = 1 + (:) (mod 2)
3. Cop—3 = (:) + (n—1) (mod 2)

where deg(1) = 2n and ¢; is the coefficient of z* in 7(x).

Proof : Since 7(z) = 7% (x), the roots of 7(z) can be written as o, a;+1 (0 < i <n—1)
accounting for 2n roots. Then,
1 Om-t = 2?;01 a; + 2?.—?1 (1+ o)

- = 1 mod 2
2. Since deg(t) = 2n, 7(z)|z®" + z + 1. So for any root & of 7(z), ¥ + @+1 = 0 which
implies 0*" = a + 1.
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Then it follows that o', 14+ o (0 < < a <n-—1) are all the distinct roots of 7(z). Let
o = o f0r0<z<n-—l Then, 205 a? = 1 4+ Y0 o (using @' = a + 1) and so

T (a, + o) = 0 Now,

Con-2 = Z ﬁiﬁj
1<i<j<2n
where ;s are the 2n distinct roots of 7(z). Therefore,
Can-2 = Yo<icj<n~1 0% + Locicjen—1(0 + 1) (a; + 1) +
Zﬂgign—l Eogjgn.--l 05:'(1 + ij) /
n n-—1
= E{Hi{j{n—-laia_}" + ( 2) mod 2 + \ 1 ) mod QEDSiSn-—Iai"'
Locicicn-1 240G + 255 (1 + o) + Logijan—1,izg @il + o)
—1
= g mod 2 <4 " 1 mod 2 E{}ﬁiﬂn-—l oy —+ ?;01 (]fi(l -+ ﬂ.’f) +-
n-1 d 2 2
1 mao Eog:’gn—l i + Eﬂﬁi{jﬂﬂ—-l X5
n

I

2
= 1"‘(2) (mod 2)

3. The coefficient co,—35 can be written as

Con—3 = Y BiBibk

1€i<i<k<2n

) mod 2 + Y15 (o + af)

where f3;s are the 2n distinct roots of 'r(:.c) Then the result follows using a similar, though

a bit more tedious, argument as in 2 above, C
Note that 1rrever81blhty can also occur in another way, i.e if r(z ) and 77(z) both divide
Tme1(z) , with 7(z) # 7%(z). But this means that the depths of both 7(z) and 7F(x)
divides m + 1. It is also difficult to determine this.
Now we provide sufficient conditions for reversibility. A very easy condition is the fol-

lowing

PROPOSITION 5.3.4. (cf. [15]) Ifm+1 = 2F for some k, then o -automata on m x m grid

18 reversible.

Proof : In this case mp,11(z) = 2™ (see [15, 168]) and nf. () = (1 + )™, Therefore .
the two are relatively prime.

LEMMA 5.3.6. If the following conditions hold then the a"’-automata on am X m grzd i
reversible.

I. m+1is a prime with ¢(m + 1) = 2 sordm,1(2).
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9 m+1 = 3 mod 4,

Proof : Condition 1 implies that my,11(z) = 7°(z) with 7 irreducible (see Chapter 3) and
condition 2 implies that the degree of 7 is odd. Therefore 7 and as a result 7y,41{z) cannot
have roots ¢ and § with o + f# = 1 (by Lemma 5.3.2.). Hence the result follows by

Lemma 95.3.1..
The first ten primes which satisfy the conditions of the above lemma, and the corre-

sponding 7-polynomials are given in Table 1.

m+1 | Tmyi(z)

3 1 + 2

7 1+t + 2¢

11 1+ 22+ 2% + 28 + 210

19 1422 4 28 + 210 4 212 4 216 4 18

23 | 1+a? + 28+ 2% 4 218 4 270 4 272

47 1428 + 212 4 211 4 219 4 232 4 10 - g 4 16

59 1422 4 2t + 232 4 239 4 290 4 298 4 280 452 4 500 4 508

67 1 9:2 -|-..":32 3:34 +mdﬂ+mﬁﬂ+mﬁﬂ+mﬁa+$ﬁn+m34+mﬂﬁ

ol Lozt o o %2 4 98 4 598 o 4B | 082 4 B4 L 066 4 084 | 188 4 470
79 1428 + 212 4 ' 4+ 292 4 210 4 oM 4 210 4 298 4 20 972 4 70 4 T8

Table 1: The first ten primes which satisfy Lemma 5.3.6.

Thus we see that reversibility of ot-automata on square m x m grid shows an extremely
rich behaviour. It would indeed be very interesting to obtain a full characterisation of

reversibility in terms of number theoretic properties of m.
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Chapter 6

Multidimensional CA

6.1 Introduction

In this chapter we will study multidimensional CA. The underlying geometry is a multidi-
mensional grid and the local rule is the sum (modulo 2) of the states of all the orthogonal
neighbours. One may also consider a cell to be a neighbour of itself. The multidimensional
grid may be folded in some or all dimensions. Following the correspondence between CA
and o-automata introduced in the previous chapters, here also we will consider a multidi-
mensional CA fo be equivalent to o-automata on a graph which is suitably defined to be
a product of path and cycle graphs. For a o*-automaton we will consider self loops to
be present at each node in the underlying graph. Later, we make all this precise. In this
~ chapter, we will use terminology and results from Chapter 3.

The class of o-automata have been studied over arbitrary graphs and were first studied
by Lindenmayer [111]. Study of o-automata is related to the study of o-game, which is a
combinatorial game first introduced by Sutner in [166] and is based on the battery operated
toy MERLIN [136]. In [166], Sutner reduces the study of o-game to that of a suitably
constructed o-automaton. Combinatorial techniques are then used to obtain expressions for
the dimension of the kernel of o-automata on product graphs of the form G; X G, (see also
[161]) For the special case of product graphs of the form P, x P,, where P, is a path graph
on 1 vertices, it was shown that the automaton is invertible iff m+1 and n+1 are rela.twely
prime.

Barua and Ramakrishnan in [15] consider the product graph P, X P, as a two dimen-
sional grid and reduce the o-game to the study of invertibility of cellular automata on two
dimensional array. The global CA rule is considered to be a linear transformation of the
form A X 4+ X B, where X is a two dimensional CA configuration, regarded as a 0-1 matrix,
and A and B are S-matrices. Analysis of this equation provides an algebraic proof for the
dimension of the kernel of the linear map. |

A natural consequence is to consider o-games (and hence g-automata) on multidimen-
sional grids. Sutner in [166; 161] introduced combinatorial techniques to tackle the multidi-
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mensional case. For product graphs of the form G = H X P,, there is an expression relating
the coranks (dimension of kernel) of G and H, viz

corko(G) = corkme1(a(H))

where o(G) denotes the global rule for o-automaton on graph G and m,41(x) is the char-
acteristic polynomial for the global ruie of the o-automaton on F,. However analysis of
mar1(0(H)) seems to be difficult. Though this is a general result, for the special case where
G is a multidimensional grid, we use a suitable transformation to obtain a much more elegant.
representation of the global rule in terms of Kronecker products. Using this representation
we attack the question of invertibility of g-automata.

Finite linear cellular automata on multidimensional grids have been considered before
(115]. Martin et al [115], used polynomials of several variables to tackle multidimensional
configuration. It is a difficult technique and known results on finite multidimensional cellular
automata are few. However, our approach yields interesting results on the invertibility of
finite multidimensional linear cellular automata. Using the Kronecker product representation
of the global rule we obtain the characteristic roots of the global rule in terms of the roots
of m-polynomials. In special cases, this is then related to the number theoretic properties of
the number of dimensions and the lengths in each dimension.

6.2 Preliminaries

DEFINITION 6.2.1.

1. A k-dimensional grid is a multidimensional array G[0..l; — 1]{0..12 — 1)...[0..f; — 1], with
length I; in the i** dimension. It will be denoted by G(l,...,1;). Any cell of the array
is uniquely tdentified by a tuple (41,..,%), with 0 < i; < l; and 1 < 7 < k and has
a finite sel of neighbours as defined below.

2. The neighbours of any cell (4, ...,z‘k) are givén by (i1, .0yt £1,.,0) withl < § < k.
If the 7** component has a periodic boundary condition, then t; £ 1 ts evaluated modulo
l;. If the j* component has a null boundary condition, then there are no neighbours

corresponding to —1 and l; in the §* component.

3. If all dimensions have null boundary condition then the grid is a null boundary grid. If
all dimensions have periodic boundary condition then the grid is a folded grid. If some
dimensions have null boundary condition and some have periodic boundary condition

then we will call the grid a mized grid.
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4. The grid 15 symmelric if the lengths of all dimensions are equal. Else, it s an asym-
metric grid. A k-dimensional symmetric grid of length | will be denoted by Gi(l).

A k-dimensional grid G(li,...,&) has JIiZF I; cells. It is also possible to define a k-
dimensional grid (folded, null or mixed) as a finite product of path or cycle graphs (see

[161)).

DEFINITION 6.2.2.

1. A g-autoamaton on a multidimensional grid is a cellular automaton where

a) The state of each cell belongs to GF(2).

b) The next state for any cell is the sum (modulo 2) of the current states of its
neighbours. (This specifies the local rule for the o-automaton).

9. A ot-automaton is defined similarly, the only difference being the fact that in this case
the cell itself is also considered to be its netghbour.

To keep this chapter self-contained we restate some terminology from Chapter 3 for a
o-automata on a multidimensional grid. An assignment of values 0 or 1 to the cells of a.
k-dimensional grid is called a configuration. We define C to be the set of all configurations.
The global transition rule for a g-automaton is a map T : C — C, where T'(c) is the
configuration obtained from configuration ¢ by applying the local rule to each cell. The
global dynamics of a o-automaton is determined by T" and is best expressed in terms of the
State Transition Diagram (STD), which is a directed graph D = (V, A) where V = € and
(c1yc2) € A Iff T(¢y) = co. It is easy to see that the STD for a o-automaton consists of
disjoint components, where each component has a cycle with trees of height > 0 rooted on
each cycle vertex [115]. The o-sutomaton is said to be invertible iff T' is a bijection. Also
we can consider C to be a vector space over GF(2) and then T is a linear transformation
from C to C. So T is invertible iff dim ker T" = 0. With respect to the standard basis, T
15 uniquely determined by a matrix M, Then T is invertible iff M is invertible. This M is
called the transition matriz for the o-automaton. In this chapter, we will be concerned with
the representation and invertibility of M. |

6.3 Generalised S-Matrix

In this section, we obtain a representation for the linear transformation defined by the global
rule of a g-automaton on a null boundary multidimensional grid. For the one dimensional
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case this is given by an S-matrix of order n. For the two dimensional case, a representation
was obtained in [158) as AX + X B, where A and B are S-matrices of proper order. We will
show that for a k& dimensional grid, the global rule can be represented as a sum of Kronecker
product of matrices. We will use this representation in later sections to perform an algebraic
analysis of the linear map. .

In the following discussion we will consider a multidimensional configuration as a vector
in a suitable vector space. 'To do this, we will need to map a multi dimensional configura-
tion to a one dimensional vector. For this we use the standard one-to-one correspondence
used by compilers {10]. Consider a k-dimensional grid G({;,...,%). Then the coordinate
(31,...1%), 0 < i < I, — 1, becomes the j** component of a vector where,

jo= (. (@Grly + )l +45). . )l + ix 1
= G laly. .l iglgei iy Ao Figy b + i )

In other words, j is the position of (7;,...,7) in the lexicographic ordering of the k-
tuples. Thus each such k dimensional configuration is identified with a vector in a vector

space of dimension L = [[{=} l;, Hence we can consider the global rule of a o-automaton
to be represented by a square binary matrix of order L. This matrix we characterise as a
sum of Kronecker products and refer to as a generalised S-matriz. The name is justified as
it turns out that the matrix is block tridiagonal. We obtain the matrix as follows. For each
cell (41,...4) of the array, we consider the j** row in the matrix, where j is given by (I).
‘The L entries in the row correspond to the L cells in the array and the ¢** column in the
7** row is 1 iff the c** cell is a neighbour of the 7 cell. It is easy to see that a generalised
o-matrix is sparse, symmetric and has all entries on the main diagonal to be zero.

Next we prove a technical lemma, which will be used in this and later sections to express
- a generalised S-matrix as a sum of Kronecker products. We denote the entry in the rt* row

and ¢* column of a matrix A by A(r, c).

LEMMA 6.3.1. Consider a k-dimensional grid G{l,...,l;) and let d be the map from k
dimension to one dimension, i.e

d:{(il,...,ih): OSij'([j,lSjSk}*——} {J:OﬁJ{L}

given by,
d(ty, .oy t) = (o (o +io)ls +43) .o )k + 4k (IT)

Consider the matriz T = A, ®...Q Ai, where A; is a square matriz of order ;.
Let {(zi, 1) : 1 < i<k, 0 <m0 <} be a set of ordered pairs and let
X = d(m,...,z)

Y= d(y, ..., )
Then T(X,Y) = 1 iff Az, 1) = 1, for alli.

Proof : The proof is by induction on r, with 1 < 7 < k. For r = 1, the result is trivial.
Assume that the result holds for r — 1. Then we have to show that the result holds for
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T. = Al®..Q%A, = Al®'--®Ar-—1®Ar
= Jr_y ®Ar
where T, is a square matrix oforder L,_; =, ... l_;. Given r pairs (zi,%1),. .., (ZTr, Ur )
with 0 < z;,4; < I;, let,
X,_1 = d{zy,...,2r—1) a0d Yoy = d(y1,...,¥r—1) . Then,
X, = d(ﬁ?l,---,ﬂ?r) = pX;y + 2, and ¥; = d(ylz-- -:yr) = l.Y.1 + % . So,

i1 Ay t12A, oo by Ap cor bin_ Ar
tn A, fog Ay .o tav_,Ar oo tor _ Ar
T, = T,_1® A, =
T tXr-—-llAf tXr—12Ar‘ tXr—lP?--lAf txr-—lLr-—lAr
[t Ar 24 o tvl A o L Ar
where t; = T,_i(¢,7). From this we get that T.(X,Y) = 1 iff tx,_,y.., = 1 and
A (zr,yr) = 1. This is so iff T,_;(X,_1,Ye—1) = 1 and A, (z,,y,) = 1 iff A4 (w,,yi) =

1, V1 < i < r —1 (by induction hypothesm) and A, (z,,y.) = 1iff Ai{z;, ;)
1< T.
Now we can present the main result of this section.

THEOREM 6.3.1. For the g-automaton on G(ly,..., ) with null boundary condition, the
transition matriz is a generalised S-matriz T, defined by, |

T = Igl®Ij,®...®S¢k+I;1®ng®...®81k1®I;k+ +Sf1®fh® @I;k (III)

Proof : Let I = (7),...,4%) be any cell of the underlymg k-dimensional grid. Then its
neighbours are given by (zl, ikl pdg) 1< 5 <k

Let T; be the global transformatlon corresponding to the local rule where we consider
neighbours in the 7** dimension only. Then, by linearity, we can write

T =T =T+...+Ti
If we can show that T; = I, ®...® S, ® ... ® I), then we are done.
Let X = d(’il,...,ij,‘..,ik) where d is as in (II) above. Let,
X1 =d(i1,...,‘ij-1,...,'ik)

Xog = d(‘il, ij +1,. ,’Ek)

Here we assume that both ¢; — 1 and #; + 1 lie between 0 and /; —~ 1. The other cases are
_sumla.r Hence we have,

TiX,Y)=1if ¥ = XjorY = X,
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Let the entry (X,C)inF; = [, ®...@ S, ®...® 1, be 1. Then C = d(z,,...,zx) for
some Ty, ..., Tk With 0 < z; < I;. By the above lemma Pi(X,C) = 1iff
I;t(?»t,ilit) = ] fDT‘ 5-75], 1 <t < k and S; (’LJ,.'I}J) = ].
But this happens iff z, = 4;for t# 35, 1< t <kandz; =4; £+ 1.

Thus P;(X,C) = 1iff C = X, or C = X,. But this means that each row of P; and Tj
are equal. Therefore i =10,8...05,®...®I), and hence the result follows. O

The proof actually provides a recurrence for the generalised S-matrix. This recurrence
become particularly interesting when the lengths are equal (a symmetric grid). In this case,

TF) = 1 QL®..8 8 +..+ S ®...® I

From now on we will follow the convention of dropping the subscript { when the lengths
are equal. Also we will denote by I*) the identity matrix ; ® ...® I; = Ix. Then we can
neatly write the recurrence as, -

T® = 1@ T¢:-Y 4 g k-1 (IV)

Thus our investigation of the invertibility of a symmetric o-automaton is reduced to the
study of non-singularity of T*) as given by (IV). |

In [15], the global transformation of a two dimensional CA is represented in the following
way. For an m X n grid, the global map T is given by T(X) = S, X + X S, where X
is an m X n matrix representing a particular configuration of the CA. This matrix equation
is completely equivalent to the map T'z = (S ® I, + I, ® Sy)z, where z is a vector
formed from X using the map given in (I). This result can be found in any standard book
on matrix algebra [13]. Thus our representation for the multidimensional case is a natural
generalisation of the two dimensional case as used in [15]. In what follows we will require
some basic results on Kronecker products and resultants. The Appendix contains some
preliminary results. The reader is referred to [13] for Kronecker products and to {120] for

resultants.
Next, we note several basic properties of generalised S-matrix on symmetric grids.

PROPOSITION 6.3.1. (a) (T®)? = I @ (T®-1)? 4 5% @ [*-1)
(b) T(2) = J®) @ Tk 1+ k) & [k

(c) T(2k+1) I(k) ® T{k+1) 4 T(k). ® I(k.H)'

Proof : (a) For square matrices A, B,C,D we have (A @ B)(C ® D) = (AC ® BD)
(see Proposition B.0.1.(8)). Also since we are working over a field of characteristic 2, and
multiplication with identity commutes, using (IV), we get
(T®)? = (I ® T¢*-1) + §@ I¢-D)
- = (IQ® (ke 1))21T + (S ® I(k-—n)z"
I® (T®-9) 4+ % @ [*-1)
(b) and (c) follow from (IV) by induction on k.
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PROPOSITION 6.3.2. Let p(x) be an annihilating polynomial for S;, such that the powers of
g are of the form 2t. Then p(z) annihilates T®) as given by (I V), unless k is even and p( )
has a constant term, in which case p(z) — 1 annihilates T,

Proof : Expanding (IV) we can write,
TE) = I1®@I®..85+101®..85®I +..+501®...01
which is a sum of £ terms. Then using Proposition 6.3.1., we can write,
(T = I®I®..8% +I®I®.. 8@ +..+ 5 0I10..®I

Since the powers of 2 in p(z) are of the form 2, and p(z) annlhllates Sy, it follows p(z) also
annihilates T}, To see the special case, just note that when k is odd, I®) added & times in
just ™), This however is not possible when k is even. C

REMARK 6.3.1. Using the above proposition it can be shown that for [ = 2,4,6 a o-
automaton on a k-dimensional null boundary grid ts snvertible iff k is odd. For the case
| = 2, there 15 a nice geametric argument. In this case, any cell is identified by a k-tuple
(ay,...,a;) where each a; is 0 or 1. Since we are considering null boundary condition any
cell has ezactly k neighbours. Moreover two cells vi = (zy,...,%x) and v2 = (¥1,...,Yk)
can either share two neighbours or no neighbours. To see this note that if the Hamming
distance between v, and v; 18 greater then two, then they share no neighbours and if it ts one
then they are adjacent cells and hence also do not share any neighbour. Thus v, and v, share
neighbours iff their Hamming distance is two and in this case they share ezactly two neigh-
bours. Now if T be the mairiz representing the global transformation of the o-automaton,
then T? 1s I or 0 according as k is odd or even. This is because to find T we have to consider
the inner product of the i** row r and the 7** column c and by the above discussion and
- symmeiry, this product is k mod 9 if i = j else it 13 0. .S'o if k is odd the STD consisis of
digjoint cycles each of length one or two and if k is even then the STD consists of a single
tree rooted on the null conﬁgumtioﬁ having height 1. Also the structure of the STD in this

case is mdependent of the number of dimensions.
The above can also be proved using the following result from {161]. For product graphs

G = H x P,, the coranks of rule ¢ on G and H are related by,

| .cork_ o(G) = cork Tat1(0(H))

Then by induction it can be 3hown that forak dtmenssonal structure the corank is 0 or

k according as k is odd or even.
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Let T*) be invertible. Then, as we will prove in the next section, it necessarily follows
that [ is even and & is odd. Since [ is even we know from Theorem 3.4.3. that the exponent
of S divides 2'12or4i+1(2) _ 9 and S satisfies -

21 +mrdt+ 1{2) -9

p(x) = z° +1

Thus z° p(x) is a polynomial where the powers of z are of the form 2 (such polynomials are
called linearised polynomials [110]). Hence T} satisfy z°p(z) and since it is invertible it
also satisfies p(z). Thus in this case the exponent of T*) also divide 21+%ord4+1(2) _ 2 Note
that if [ is even, then T*) satisfies 22 p(x) whether k is odd or even.

REMARK 6.3.2. The matrices T™®) have another interesting feature. The above discussion
implies that if | is fized then for infinitely many k, T®) will have the same minimal polyno-

mial.

6.4 Symmetric Grids

In this section we consider o(c*)-automata on symmetric null boundary grids.

6.4.1 Invertibility of o-Automata

We obtain necessary and sufficient condition for the invertibility of s-automata on symmetric,
~ null boundary grids and relate this condition to the number theoretic properties of k, the
number of dimensions and [, the length in any dimension.

THEOREM 6.4.1. For the o-automaton on Gi(l), the following hold
(a) If | is odd, then the automaton is non-invertible.
(b) If k is even, then the automaton is non-invertible. .

Proof : (a) By induction on k. When k = 1, [ is odd implies T®) = S is singular. So
assume k > 1. By (V) we have,

T® = I, @ T¢:-Y 4 § @ 1*-1)

By induction hypothesis, T~ is singular and so = divides the characteristic polynomial
p(z) for T*-1)_ Also, since [ is odd z | w41, Therefore, p(z) and w1 share a common root

and hence T'*) is non-invertible (see Lemma B.0.2.).
(b) Suppose k = 2r. Then,

7® — G0 _ [0 g0 4 TO) g [0
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" Hence, by Lemma B.0.2. T is non-invertible.
The case when [ is even and & is odd, shows more interesting behaviour. Jt is the only case
under which T'® can be invertible. To analyse the behaviour of 7*) we need the following

result.
THEOREM 6.4.2. Let
TW = 151 ®.85+1®.850h+...+50L®..0 ],
Then o 18 a root of its characteristic polynomial p(z) iff o 15 of the form
@ + ... + oy

where o ’s are the roots of my1 over the splitting field of 4.

- Proof : By induction on k.
For k = 2 this follows from Lemma B.0.3.. |
Assume it to be true for £ — 1 dimensions. Then,

T = [ @ T¢-D 1 g @ J*1)

So « is a root of p(z) iff it is of the form B + a4, where 8 is any root of the characteristic
polynomial for T*~1 and ¢4 is any root of my, (see Lemma. B.0.3.). But by induction
hypothesis 3 is of the form a; + ... + ag-1. Hence « is a root of p(z) iff it is of the form

o + ... + .

COROLLARY 6.4.1. T®) given by (IV) is non-invertible iff for some choice of ay,. ..,y of

the roots of mpyy, we havea; + ... + a = 0

. Proof : T®*) ig non-invertible iff 0 is a root of the characteristic polynomial for T iff

@ + ... + ar = 0 for some choice of ¢;’s.
This corollary provides a necessary and sufficient condition for T*) to be invertible in

terms of the roots of m;. We know that invertibility can occur only when [ is even and &

is odd. Note that the other cases can also be derived by examining the sum o + ... + .

This constitutes an alternative proof to the approach in Theorem 6.4.1..

Before proceeding we restate Lemma 5.2.1.(2) as

LEMMA 6.4.1. Whenl is even, m41 contains both the terms z' and z'~2.

- REMARK 6.4.1. Hence for | = 2r, p(z) = \/ﬂz,..;,;(a:) is of degree r and contains the term
- 2™ and s0 the sum of the roots of p(z) is 1, since this is the coefficient of 2™,

- Next we derive sufficient conditions for invertibility in terms of number theoretic prop-
erties of k and . | | |
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THEOREM 6.4.3. Consider the o-automaton on Gy(1). If the following three conditions hold,
then the o-automaton is invertible.

1. k 1s odd,
2. L +1 is an odd prime,
§. 2s0rd1(2) = ¢(l+1) = [. In this case, w11 = p* with p irreducible.

Proof : The fact my; = p* follows from Lemma 3.2.2.(b) The roots of the characteristic
polynomial p(z) for T are of the form o; + ... + i, where @;'s are roots of m4y. To
show that T{¥) js invertible we have to show that the sum @; + ... + o4 cannot be 0 for
any choice of a; and for any odd k. Now,

M1 = p° , where p is an irreducible polynomial

Suppose { = 2r. Then by the above Lemma, p has both the terms z" and z"~!. Also all the
distinct roots of m,; are given by all the distinct roots of p. Since degree of pis r, and p is
irreducible, it has r distinct roots a; ... oy (by Theorem 5.3.2.) and the sum

@ + ... + a = 1, since p has the term z"*

- When analysing the sum o; + ... + o, we can consider all of them to be distinct. Since,
in a field of characteristic 2 equal roots cancel in pairs, without disturbing the parity of k.
Thus we have to show that oy -+ ... + a; cannot be 0 for odd ¢ € r and for distinct

CE,*’S. -
Since p is irreducible all its roots are of the form 8,4%,8%,..., 8% , where § is any
root of p. Then it follows that p is the minimal pnlynomlal for ﬁ

If possible, let for some odd ¢ < T,

a + ...+ o = 0
Then, A" + o+ B =0

Hence, 3 satisfies g(z) = z®' + ... + z* and therefore p| ¢(z). So all roots of p are

roots of g(z) and we get the following r relations. |

ﬂzf;—f-r—l N .'- | +-‘62;t+r-l _—
* Summing up left and right hand side we get,

1+1+...+41 =20
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Here we use 827 + 8277 .. + T =
But there are ¢ (odd) 1's on the left hand side and so the sum is 1. This gives us the

required contradiction.
- Note that there exist prm:les n, such that ¢(n} > 2sord,(2). In fact this will hold for
any prime of the form 2!+ 1, ¢ > 3. The first ten primes for which conditions 2 and 3 hold

are given in Chapter 5, Table 1.

LEMMA 6.4.2. If for some even length length I, odd dimension k, a o-automaton is non-
invertible, then it 1s non-invertible for all odd dimensions > k.

Proof : It is non-invertible for k¥ implies that there exists roots a,... og of .1, such that
a + ... + o =0,

But then for any odd dimension d greater than &, we know that d — & is even and we can
form the sum o 4+ ... 4+ o + a1 + ... + oy = 0 where o, is repeated d — k£ times. But
this shows that the o-automaton on d dimensions is also non-invertible.

THEOREM 6.4.4. If for some even length l, [ 41 has two factors congruent to 1 mod 4 and
3 mod 4, then there exists an odd integer k, such that the o-automaton on k dimensions is

non-invertible,
Proof : Let [ 4+ 1 have at least two factors p; and py, with

1 mod 4andp; = 3 mod 4

il

f4!

Then corresponding to these factors p; and po, m4 () has two factors mp, () and mp, (z)
with m,, = p? and m,, = p2 for some polynomials p;(z) and pe(x). Since p; = 1 mod 4,
degree of p,(z) is even (say 2r,) and since p, = 3 mod 4, degree of ps(z) is odd (say 2r5+1).
Also since p; and p, are both odd, by Remark 6.4.1., we get

 + ...+ e =1

By + ...+ Barg4r =1

where a;'s are roots of O and [;'s are roots of 02
Let £ = 21"1 +2T2 ~+ 1. Th&ﬂ

A At O+ Bt et Bosr =0

and hence by Corollary 6.4.1., the o-automaton on k dimensions is non-invertible. C

- THEOREM 6.4.5. If for some even length I, [ + 1 has two relatively prime factors both con-
gruent to 3 mod 4, then there erisis an add integer k, such that the J-automaton on k

dzmenszom 18 non- mvert:ble
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Proof : Let p; |l +1 and py |l + 1, with p, and po both congruent to 3 mod 4.
Let n = pyp2 = 1 mod 4. Slﬂﬂe ECd(Pth) = 1, we can write,
Tn(z) = T, (2) Tp, (z) (p(z))? for some polynomlal (). -
Now degrees of both /T, & /T, are odd, so p(z) must be an even degree polynomial.
(Since /7, is of even degree)

Let the degrees of /Ty , \/Tp, & p(z) be 71,72, 13 respectively with 7 = 2=L ry =

-’%"—1— and 11 4 7o + Ty = 1‘—;’—1- By Lemma 6.4.1. /@, , /T, and /7, contain the terms

gt g~ 1, T respectively. But this implies that p(z) has the term 2!,
Let ay, ..., ar, be the roots of /@, and By,..., B, be the roots of p(z).
Then for & = 1y + r3,

Ya+ Y Bf=1+1=0
and & is odd.

REMARK 6.4.2. By Lemma 6.4.2. it follows that such o-automata are also non-invertible
for all odd dimension > k and hence for all dimension > k (since if k is even it is in
any case non-invertible). This however does not preclude the fact that it may be invertible
for some lower odd dimenstion. Thus in these cases, invertibility has to be checked only for
finitely many dimensions. From the proofs of the theorems it follows that k can be chosen
< [.

This method of obtaining invertibility does not work if all prime factors of [ + 1 are
congruent to 1 mod 4. |

EXAMPLE 6.4.1. We present ezamples of the cases considered in this section.

1. { odd, k even. | =3 k = 4, g-automaia non-invertible.
2.l odd, k odd. | =3 k = 5, o-automata non-invertible.

S. | even, k even. | = 4 k = 8, o-automata non-invertible.

4. 1l even, k odd.

(a) l =10, 1+1 = 11, ¢(11) = 10 = 2 x5 = 2s0rd; (2). Hence o-automata
muert:ble for all odd dimensions. | |
(6)l = 34,1+1 =35 =5x7 5= 1mod4and?
k = 2+ 3 =5 dimensions o-automata is non-invertible.

()l =176,1+1 =7 ="7x11. 7= 3 mod 4 and 11
k = 34 30 = 33 dimensions o-automata is non-invertible.

3 mdd 4, Then for

3 mod 4, Then for
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6.4.2 Invertibility of c"-Automata

In this subsection we will consider ot-automaton on a k-dimensional symmetric orthogonal
grid Gg(l). The analysis is similar to that in the case of o-automaton. We start with the

following

THEOREM 6.4.6. The global transformation of a o™ -automaton on G(ly,...,l), is given by
a generalised S*-matric written as

T =T+ L, L ... I,

where T' is the matriz representing the global transformation of a o-automaton on G(ly, . . ., l).

For the special case of symmetric o*-automaton, this reduces to,
T — Tk 4 (k)
= ] ® T*1 4 5+ @ ¢+~ V)
From this we get a result similar to that in Theorem 6.4.2.. However, in this case the
recurrence itself is difficult to analyze because of the asymmetry in the expression.

THEOREM 6.4.7. The ot-automaton on Gi(l) is non-invertible 1ff
o+ ...+ o =1

for some choice of a,...qy , where o;’s are roots of my, over its splitting field.

Proof : The proof is similar to that of Theorem 6.4.2.. The right hand side is 1 because of
S* in equation (V). Since the characteristic polynomial for S+ is my1(z + 1), its roots are
of the form a + 1 where o is any root of m.1(z). '

' REMARK 6.4.3. Analogous to Lernma 6.4.2. we can deduce for the o™ -automaton that if it is
" non-invertible for k dimensions, it is also non-invertible for k + 21 dimensions. (i = 1,2,...)

LEMMA 6.4.3. Ifl+1 has a divisor congruent to 3 mod 4,, then there exisis an odd k < %
such that the ot -automaton on k dimensions is non-invertible.

_Proof : Let a|l+ 1 and ¢ = 3 mod 4. Then 7, | mi41 and so the roots of 7, are the roots
of m41. Also m, = p?(z), where p(z) has odd degree d = 23* and sum of roots of p(z) is
- 1 (by Remark 6.4.1.). Then the o*-automaton on d dimensions is non-invertible.

Arguing similarly, we have

LEMMA 6.4.4. Ifl+1 has a divisor congruent to 1 mod 4, then there ezists an even k < %
such that ot-automaton on k dimensions is non-invertible.
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The above two lemmata and the remark yield

LEMMA 6.4.5. Ifl+1 has two divisorsa and b witha = 1 mod 4 and b = 3 mod 4, then
there exists an integer k < % such that ot -automaton on i dimensions is non-invertible for

alli 2 k.

REMARK 6.4.4. Thus in these cases invertibility has to be checked only for finitely many

dimensions.

LEMMA 6.4.6. Ifl 1s of the form 2™ — 1 for some n, then the o™ -automaton is invertible for

all ditnensions.

Proof : In this case, my; = z* ! and hence the only root of my is 0, so it is impossible

to have a subset sum of roots to be 1.
The following is an analogue of Theorem 6.4.3..

THEOREM 6.4.8. Let l+1 be a prime such that m41(z) has only one irreducible factor (i.e,

d(l+1) = 2sord.1(2)).
If l+1 = 3 mod 4, then ot-aulomaton is invertible for all even dimensions.

If (41 1 mod 4, then o%-automaton is invertible for all odd dimensions.

It

Proof : Let my, = p? with p irreducible and of degree r = %.
Then there are r distinct roots ¢, ..., @, of m41, and by Remark 6.4.1.,

(]:'1+...+O‘,'r = 1

Since p is irreducible (by Theorem 5.3.2.) its roots are of the form 8, 6%..., B2 and so
B+ +...+87 =1
Let if possible for some k < r such that k¥ mod 2 # r mod 2,
¢+ ... o =1
Then for some %,, ...,

TR L - (VI)

and by an argument similar to the one in the proof of Theorem 6.4.3., (VI) will be
satisfied by all roots of p and hence we will get the r equations.



oip+r—1 PRy
BT+ L+ YT =1

Summing up we get £k mod 2 = r mod 2 which is a contradiction. Hence for dimension
k such that, £k mod 2 # r mod 2, it is not possible to obtain oy, ..., (which are roots of
p and hence of my;) such that ety + ... + o4 = 1. But this means that the o*-automaton
on Gi(l) is invertible. Now & mod 2 # r mod 2 means that if {4+ 1 = 3 mod 4, then r is
odd and k& must be even. And if [+ 1 = 1 mod 4, then r is even and k must be odd. Hence

the result.

ExXAMPLE 6.4.2. We present examples of the conditions covered in this section.

LIl=6,l+1=7=3mod 4
Then for k = 3+ 2i dimenstons o* -automata s non invertible.

2 Il =8,1l+1=9=1 maod 4.
Then for k = 4 4 21 dimensions o -automata is non invertible.

3 Ifl =134, [+1 =135 = 9x 15 with 9 = 1 mod 4 15 = 3 mod 4.
Then for k > 7 dimensions ot -automala is non invertible.

4.1l =7 =22<1, 75 = 27 and ot -automata is invertible for all dimensions k.

5 (a)l =6,1+1 =7 = 3 mod 4 ¢(£+1) = 28ordi.1(2). So ot -automata is
invertible for all even dimensions.

(b))l =4,14+1 =5 =1 mod 4, $(l + 1)
invertible for all odd dimensions.

2sordi1(2). So oT-automata s

Some more results on g*-automata are obtained in the next subsection.

6.4.3 Characteristic Polynomial of Generalised S-Matrix _

We now derive an expression for the characteristic polynomial of a generalised S-matrix in
terms of resultant of two polynomials. First we need the following which can easily be proved
using the identity 3.6(v) of (120] for the resultant of two polynomials (see also Appendix Cj}.

LEMMA 6.4.7. If P(z) and Q(z) are two nonconstant polynomials with me_ﬂicients in a field
K and with roots oy, ..., 0, and B, ..., Bn respectively, then the roots of the polynomial

R(y) = Resz(P(z+y),Q(-2))
are the elements o; + B;, 1 <i<m,1<j <n.
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THEOREM 6.4.9. For o fized length [, define o sequence of polynomials by the following

recurrence,
Qi(z) = m4(z)
Qi(z) = Resy(Qi(z+y),Qe1(y), k> 1
Then Qx(zx) is the characteristic polynomial for the transition matriz T of the o-

automaton on Gi(l).

Proof : By induction on k we prove that « is a root of Qx(z) iff @ is of the form ¢ + . .. + a,
where a;’s are roots of m4(z). Then using Theorem 6.4.2. we are done.

For k = 1 the result is easy.

So assume the result to be true for k — 1,

Then Qr(z) = Resy(Qi(z +y),Qx—1(z)) , and « is a root of Qx(z) iff it is of the form
B + ax, where f is any root of Qr-1(x) and o4 is any root of Q;(z). But, by induction
hypothesis, 3 is of the form oy + ...+ cx_1. Hence the result follows.

COROLLARY 6.4.2. Qx(1+z) is the characteristic polynomial for T"®) + I%)| the matriz for
ot -automaton on Gi(l). | |

We will write T®)+ for T®) 4+ 1%) and Q;f (z) for @) (1+z). The characteristic polynemial
can be used to settle a few more cases for the non-invertibility of o*-automata.

THEOREM 6.4.10. Ifl = 2 mod 3 and o-automaton on (k—1) dimensions is non-tnvertible
- then so is o -qutomaton on k dimensions.

Proof: Sincel = 2 mod 3,[+1 = 0 mod 3 and so 3|{+1. Hence noting that m3(z) = 1+
z? we get, (x+1)? | m41(z) (by Lemma 3.2.1.) and so we can write w41 (z) = (z+1)*ay,,(z).
So, noting that all operations are over GF(2), we have, |
Qly) = Res((w+y+1Vm(@+1),Qua(s)
= Q?_,(1+y) Resy(n}, (2 +¥),Qi-1(z)) (by Lemma C.0.5.(a)))
But this shows Qe-1(y) | @x(1 + ). Thus if T¥*-1 js non-invertible then y|Qx-1(y).

Hence y| Qk(1 + y) and so T is non-invertible. O

COROLLARY 6.4.3. If | = 2 mod 3, then ot-automaton is nan—inven‘,ible for all odd di-

mensions k.

Proof : Follows from the above theorem and thé fact that o-automaton is non-invertible
~ for k —1 (since k — 1 is even). O

. THEOREM 6.4.11. Jfl = 1 mod 2 and if o*-automaton on k dimensions is non-invertible

then so is gt-automaton on k + 1 dimensions.
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Proof : Since ! = 1 mod 2 we have my(z}) = zn,,(zr). Hence, since all operations are

over GF'(2),
Q1Y) Resz (7 + y) 714, (2 + ), Qi (2))
= Qu(y) Resz(m, (z +v), Qr(z)) (by Lemma C.0.5.)
But then @Qx(1 +¥) | Qx+1(1 + v). Hence if 7)* is non invertible then so is T*+D+.

|

COROLLARY 6.4.4. Ifi+1 = 0 mod 6, then o*-automaton is non-invertible for all dimen-
S10NS.

Proof : Since [+ 1 = 0 mod 6, it follows that | is odd and hence by the above theorem it
is sufficient to prove that z |74, (14 z). But this happens iff (1 + )| #41(z). Again, since
[+1 = 0 mod 6 we have 3| +1 , s0 (1 + )? |m41(z). This proves the result. C

EXAMPLE 6.4.3. We provide ezamples of the results settled in this section.

1. I = 83 = 2 mod 3, and so o* -automata is non-tnvertible for all odd dimensions.

9 | =11,1+1 = 0 mod 6, and so ot-automata is non-invertible for all dimensions.

6.5 (GGeneralisations

6.5.1 Asymmetric Grids

In this subsection, we extend the results of previous sections to cover g-automata on null
boundary asymmetric grids. Most of the proofs are plain generalisations and will be omitted.

THEOREM 6.5.1. A o-automaton (resp. o%-automgion) on G(l,...,[lx) is non-invertible
Wf
a + ... +a =0 (résp. ].)

for some choice of oy ’s, where oy is any root of m,41 over a field in which all w4 ’s spli.

In [15), this result is obtained for two dimensions by showing that c-automaton is in-
vertible iff 7r;, 1 (z) and my,41(z) are relatively prime and for the o*-automaton m, 4 (z) and
T+1(1 + =) must be relatively prime. It turns out that m,41(z) and 7,41 () are relatively
prime iff [, 4+ 1 and I, + 1 are so (see also [166, 168]). For the o*-automaton, such complete
result could not be obtained. For certain special cases, sufficiency conditions for invertibility
based on number theoretic properties of {; and l; can be derived. But a general character-
isation of this nature seems to be difficult. The above theorem indicates the cause for this
difficulty. To obtain a characterisation of invertibility in terms of number theoretic proper-
ties we have to charactetize in terms of number theoretic properties when a subset sum of
roots will lie in the base field. Since the roots in general lie in an extension field, answering

- this question in general will be difficult.
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LEMMA 6.5.1.

(a) If 1y, ..., lx are all odd, then o-automaton of k dimensions is non-invertible.

(b) If for even k , ged(ly +1,...,0 + 1) > 1, then o-automaton on such a grid is non-
invertible.

(c) If the l;’s are of the form 2™ — 1 for some n;s, then the ot -automaton on such o grid

18 tnvertible.

6.5.2 Folded and Mixed Grids

Here we will allow some or all dimensions to have periodic boundary condition. The following
is similar to Theorem 6.3.1..

THEOREM 6.5.2. Consider a k-dimensional grid G(l,, .. .,[) with periodic boundary condi-
tion in some 1 (0 < r < k) dimensions. Then the transition matriz of the o-automaton on

this grid 1s given by,
T=0I,®0,®..8A4, +,0L,®..0A, L +. ..+ A4,01,®..081,

where,
A, = Sy, if there is null boundary condition in the i** dimension;

= (), if there is periodic boundary condition in i*" dimension.
The matriz for the o*-automaton is given by,

T = T+ [, ®1,®..01,

THEOREM 6.5.3. Consider a mized grid as in the above theorem. The J-autamatan_(resp.
- gt-automaton) on such a grid is non-invertible iff for some oy, ..., 0

) + + o = 0 (resp.- 1)

where a; 18 any root of p;(z), the characteristic polynomial for A, and so,
pi(z) = m41(z), if thei*® dimension has null boundary condition,
= gm,(z), if the i dimension has periodic boundary condition.

~ Note that in the above theorem, we can replace the characteristic polynomial for A, by
the minimal polynomial for A;,. This is because the minimal and characteristic polynomials

have the same set of distinct roots. Thus p;(z) can be written as,
pi(z) = ma(z), if the i** dimension has null boundary condition;
= gy (z), if the i** dimension has periodic boundary condition and ; is even;
2

= /7 (z), if the i** dimension has periodic boundary condition and /; is odd. -
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LEMMA 6.6.2. In the underlying grid, if a dimension has length 27 — L with null boundary
condition or length 2™ with periodic boundary condition, then we can ignore the effect of thzs
dimension on the invertibility of o or ot -aqutomaton. -

LEMMA 6.5.3. For a mized asymmetric grid, if all dimensions with null boundary condition
have lengths of the form 2™ — 1 and all dimensions with periodic boundary condition have
lengths of the form 272, then o-automaion on such a grid is non-invertible and o+ -automaton

is tnveriible.

Similar to Theorem 6.4.9., one gets

THEOREM 6.5.4. Consider a k dimensional mized grid on G(ly,...,lt). Then the charac-
teristic polynomial Qx(x) for the transition matriz of o-automaton on such o grid is gqiven

by,
Qi(z) = pi(z)
Qi(z) = Resy(pi(z+y),Qi1(y)), 1 <i <&,
where p;(x) 15 as tn Theorem 6.5.8..

6.5.3 Other Neighbourhoods

We generalise the concept of nearest neighbourhood to higher dimensions. For the two di-
mensional case there are two kinds of nearest neighbourhood condition - the orthogonal
neighbourhood and the diagonal neighbourhood. Our generalisation is based upon the fol-
lowing observation. The orthogonal neighbourhood correspond to taking one step in one
dimension. The diagonal neighbourhood correspond to taking one step each in two di-
mensions. (Generalizing, for a cell in a k-dimensional grid, we let its r-dimensional set of
neighbours be the cells which are reachable by taking one step each in exactly r-dimensions.
Since in any dimension we do not allow more than one step the notion of nearest neighbour-
hood is preserved. Any neighbour of a cell J can also be visnalized to be lying on some
hyperplane unit distance away from J. We formally express this idea in the following

DEFINITION 6.5.1. For a cell (iy,...,%) in & k-dimensional grid, the set of r-dimensional
(r-D) nearest neighbours is given by,

N (i1, .. m;) {(n, i L i L) LS <L < e S B

where ;£ 1 is taken modulo {; if the 7t dimension has a per‘:’odfc_baundary condition. If the
i*™ dimension has a null boundary condition, then the values' -1 and l; are ignored for the

7 dimension.
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It is easy to see that the definition exactly correspond to the idea described above. Also it
is clear that [Ny (71,...,%)| < 27(F) where equality holds for all cells iff all ; > 2 and all di-
mensions have periodic boundary condition. Such neighbourhoods for multidimensional CA
have not been considered before. Martin et al [115} introduced Type I and Type II neighbour-
hoods for multidimensional CA. Type I neighbourhood correspond to our 1-D neighbour-
hood. Type Il neighbours of a cell J = (4y,...,%,) are given by the set {J} U Ur<r<k Vre(J).
Thus our definition captures a finer sense of multidimensional neighbourhood.

We now obtain a characterisation of the global rule of an r-D neighbourhood o-automaton

in terms of Kronecker product.

- THEOREM 6.5.5. Constder an r-d neighbourhood o-automaton on a k dimensional mized
grid G(ly,...,lx). Then the global rule is given by the following matriz.

T,.(k) = Z R ®...® Ry
151 <0 LFr L lk

where,
Rl' = II; I'f?* Q' {Jl:Jr}

= S, ifi € {4,...5:} and the i*® dimension has null boundary condition.
= C, ifi € {j1,...5+} and the i*" dimension has periodic boundary condition.
For the ot -automaton the corresponding global rule is T®+ = TW) 4+ 1 .

L

Proof : Let T}(ﬁ ) 4. be the matrix which correspond to the local rule which consider neigh-

bours only in the dimensions 4y, ...,7,. Then by linearity it follows that,

T® = ¥ TV

1<f1 < LFr Sk

Using Lemma 6.3.1., we can construct a proof similar to that of Theorem 6.3.1. to show that

TV . =R ®.0R

where R; is as defined in the theorem. Hence the result follows.
Analogous to Theorem 6.4.2., we have

THEOREM 6.5.6. Consider an r-D neighbourhood o-automaton on a k-dimensional mized
grid G(l;,..., ;). Then o is a root of the characteristic polynomial of the transition matriz

of the o-automaton iff a is of the form

> o, ..., for some choice of ay,..., Q.
ISjl <!il<jr<#-15k

. Here o; is a root of pi(x), where pi(z) is as in Theorem 6.5.5..
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Proof : Let € be an arbitrary scalar and consider the product
(Ii:+EAII)®(IIE"I'EAIE)@---@(II,, +€A;h) | |
= [, ®...00, +e(I,,8..QA, +...+ 4,01, ®. LBL) +.. +eF A ®.. QA
where A;; is S); or C;, according as the i** dimension has mull or periodic boundary
condition. The characteristic roots of the left hand side are, |

(L+ean)(l +ean)... (1 +eoy)

= 1+elor +...+m)+...+ a...q

where ¢; is a root of p;(z).
Let u be an eigen vector corresponding to a root. Then,

(u— (I, ®...® I )u) + e((c}:l_+ oot agu— (I @Ih@n-@fh,, +...+ 4,0,
--'®IIJ:)E)+"'+ ek((al'“aﬁc)g_‘(Al1_®---_®AI;,)E) = {J | |
Since € is arbitrary, all coefficients of €' are 0 (0 < i < k). From this the result follows.

G

COROLLARY 6.5.1. Anr-D neighbourhood o (resp. ot J)-automaton on a k-dimensional mived
grid 1s non-invertible iff for some choice of oy, ..., we have,

) ;... a5 = 0(resp. 1)
1<51 <ok Gr<oae LK |

where a;’s are as described in the above theorem.

In particular, we have

PROPOSITION 6.5.1. For Gi(l) with null boundary condition, an r-D neighbourhood o (resp.
o™ )-automaton is non-invertible if the coefficient of z'~" in m41(z) is O(resp. 1)

Proof : Here we have to consider only my(z) = o'+ a2t +... +ao with Y o4 = ar_;
y 2, 00y == Qg , ..., 01...04 = @ , where o;'s are roots of m41(z). From this using

Corollary 6.5.1., the result follows. C

REMARK 6.5.1. If in the above proposition all dimensions have periodic boundary condition,
then we will have to consider the characteristic polynomial for C; instead of mi41(z)-
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6.6 Conclusion

In this chapter we have developed necessary and sufficient conditions for the invertibility. of
o (o1)-automata on multidimensional orthogonal grids with different boundary conditions.
These conditions have been obtained in terms of the roots of m-polynomials. Also we have
tried to relate this to the number theoretic properties of the number of dimensions and
lengths of the dimensions. |

For symmetric (all dimensions having equal lengths [) o-automata, we have to consider
only one m-polynomial (m41). In this case, the invertibility is directly related to a sum of
subset of the roots of 7. In trying to relate this to number theoretic properties, we are
able to settle for & (dimension) even or [ odd. The case for k odd, ! even could not be settled
completely. See Example 6.4.1. for the cases which could be settled. This is intimately
related to the subset sum of roots of w4 and settling the invertibility question will also
settle the question of when such an arbitrary subset surn will take values in the base field.

For symmetric ot-automata, we could obtain similar results, though a few cases remain
“unsettled. See Example 6.4.2. and Example 6.4.3. for the cases which could be settled. We
were able to extend the subset sum necessary and sufficient condition to asymmetric as well
as folded and mixed grids. Also for these grids we have been able to point out special cases
where the invertibility can be settled in terms of number theoretic properties. Other cases
which remain unsettled can form the subject of further research. Table 1 lists the cases
which have been settled for symmetric grids.

The concept of non-orthogonal nearest neighbourhood have been generalised. Invertibil-
ity of o-automata with such neighbourhood have been characterised in terms of the roots
of m-polynomials. However, in this case number theoretic characterisation of invertibility

remains open,
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Chapter 7

A CA Based Private Key
Cryptosystem

In the previous chapters we had concentrated more on theoretical aspects of CA. We have
developed algebraic techniques to analyse several kinds of finite linear CA. However a large
amount of work has been done in finding applications of CA, since CA based architectures
are easy to implement in VLSI. In this chapter, we present a private key cryptosystem based
upon composite (or products of) linear hybrid 90/150 CA. While providing adequate security,

- the system is easy to implement in VLSL

7.1 Introduction

In the basic model of a private (or secret) key cryptosystem the sender and the receiver
both share a secret key. The sender uses the key to encrypt the message he wants to
send. The actual message is called the clear text or the message text, whereas the text
obtained after encipherment is called the cipher text. The sender transmits the cipher text
over a public channel. The receiver deciphers the message text from the cipher text using
the common key. The attacker has access to the public channel and can obtain copies of
the cipher text. His task is to recover the message text without knowing the secret key (see
Figure 7.1). The strength of a cryptosystem lies in its invulnerability against different classes
of attacks. Private key cryptosystems are widely used in defence data communications. The
most popular private key encryption scheme is the Data Encryption Standard (DES) [135).
There are two classes of cryptosystems. In block cipher cxyptography, the message text is
divided into blocks of fixed length, and each block is encrypted separately. In stream cipher
cryptography, the cipher text is obtained through bitwise exclusive OR, of the message text
with a cryptographically strong pseudo random bit sequence. Decryption is done by another

bitwise exclusive OR. operation. Here, we will present a block cipher scheme.
- There are two notions about proving the strength or security of a cryptosystem. A
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Figure 7.1: Basic mode] of a private key cryptosystem

system is sald to possess perfect secrecy if the entropy of the message is equal to the entropy
of the message given the cipher. This is an information theoretic notion of secrecy and
was introduced by Shanmon in [153]. The one-time pad is a system, where a string of true
random bits is generated and used to encrypt the message only once. The one-time pad
can be proved to possess perfect secrecy but is not suitable for practical implementation.
A different notion of secrecy is to show that any cryptanalytic attack on the system is

computationally infeasible. This is usually achieved by showing that cryptanalysing the

system would amount to providing an algorithm for some computationally hard problem.
The system is then secure modulo the intractibility assumption of the hard problem. One
such system based upon the intractibility of the quadratic residuacity problem is presented
in [20).

The use of CA in cryptography was suggested by Wolfram in [188]. Based on the study
of random sequence generation by uniform periodic boundary CA with rule 30 {192], Wol-
fram proposed a stream cipher using the temporal sequence of a particular cell of the CA
as 8 pseudorandom sequence. Damgard [51] later proposed a secure hash function based
on Wolfram’s generator. However, cryptanalytic attacks have been reported on Wolfram’s

. original scheme [119] and Damgard’s construction [50). In [50] itself a CA based method

s proposed for the secure design of computationally collision free hash function. A public
key cryptosystem based on CA has also been proposed in [70]. A cellular automata based
cryptosystem has been patented by Gutowitz [73, 74]. More, recently CA based block and
stream ciphers have been reported [128]. In [128], additive CA rules are used to generate
a set of fundamental transformations. These fundamental transformations are used as the
block ciphering functions. The fundamental transformations are self inverses so that the
deciphering process is the same as the enciphering process. The scheme suffers from the

- disadvantage of having a complicated key management procedure, which increases the hard-

ware complexity, and also require synchronization between the sender and the receiver. The
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stream cipher in [128] uses two coupled CA to generate the pseudo-random sequence. Since
the block cipher in [128] is based on affine transformation, it is open to cryptanalytic attacks
based on algebraic techniques. This is highlighted in [19] where an attack on the stream
cipher is also outlined.

Any CA. based scheme will have the advantage of providing an efficient VISI hardware
for implementation of enciphering and deciphering functions. The use of CA in private key
cryptosystem springs from the fact that the State Transition Diagram for a reversible n-cell
CA is a permutation of the integers 0 to 2" — 1, By constructing special purpose CA it
is possible to create desirable permutations which can be used as the secret key in data
enciphering. We first introduce the concept of composite CA and provide complete charac-
terisation of such composite CA in terms of cycle lengths. Given an irreducible polynomial
p(x) over GF(2) it is possible to design a hybrid 90/150 CA such that the transition matrix
T for the CA has p(x) as its characteristic polynomial (see [152]). We use this technique to
design maximal length CA. (A CA is maximal length CA if p(z) is a primitive polynomia}).
Cascading such maximal length CA leads to a composite CA which has one cycle of length
one and all other cycles of equal length L, To encrypt, the message text is divided into blocks
of bits. Each such block is loaded as initial state into a composite CA with cycle length L as
described above. Here L = 2% — 1, where for practical implementation & should be between
10 and 20. A random integer 4 is chosen in the range 1 to L — 1 and the CA is evolved
for i steps. The output of the CA is used as input to a non-linear bijective transformation
whose output is passed through a transformation which rearranges the order of the bits.
Finally this bit string along with the integer i is sent to the receiver. The bits of the integer
1 is placed in-between the bits of the enciphered message. At the receiver’s end a sequence
of inverse transformations are applied to get back the original message. We prove that the

cipher satisfies the perfect secrecy condition of {153].

7.2 Preliminaries

Here we will consider only one dimensional null boundary condition 90/150 CA, where each
cell can assume values from GF(2). Figure 7.2 shows a 4-cell CA with global rule vector

< 9015090150 > (see Section 7.2.1). _ |
Suppose we have a n-cell linear CA. The global transition of the CA over one time period

is given by, _
B y =Tz
where 2 and y are n-bit CA configuration vectors, and T is an n X n transition matrix

which correspond to the CA evolution over one time step.
Consider the 4-cell CA of Figure 7.2. Then,

:.0_' _
1
0

_T:’ 0

O o= O
— - OO

0 =t

]

-
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Figure 7.2: A < 90,150,90, 150 > CA

Note that any such T will be a trlchagonal matrix (see Chapter 4). The STD for the CA

in Figure 7.2 is given in Figure 7.3.
The following proposition relates reversible CA to the permutation it genera.tes.

PROPOSITION 7.2.1. The transition mairiz T defines o map G from the set of n bit 0/1
vectors to itself. If the CA is reversible then T is invertible and G is a bijection which
defines a permutation P of the set of integers {1:0 <1< 2%~ 1}. The STD for such a CA

represent the cycles of P.

Note that if the constant term in the characteristic polynomial p(z) is one, then G is a
bijection. This is so since the constant term is the determinant of the madtrix.

We call a CA mazimal length, if its STD consists of two cycles, with the null configuration
on a cycle of length one and all other configurations on the other cycle. A CA is maximal
length iff the characteristic polynomial of its global transition matrix is primitive. If the CA
is maximal length then it is easy to see that the characteristic polynomial must be primitive.
The other way is also well known (see for example [110]), but for the sake of completeness

we provide a proof.

THEOREM 7.2.1. If the characteristic polynomial p(z) for the matriz T con*espanding_to an
n-cell CA i3 a primitive polynomial, then the CA is an mazimal length CA. |

Proof : The proof follows from the following observations,

1. For any non-null vector y, if ¢(z) be the polynomial of least degree such that, $(T )
- 0, then for any polynomial (z) such that, ¥(T)y = 0, é(z)[(z) "

2. By Cayley Hamilton theorem p(T) = 0, hence, p(T)y = 0 and so ¢(z)|p(z) "’f’hiCh
- implies p(z) = ¢(z). - |
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Figure 7.3: STD for the CA in Figure 2

3. If k¥ be the least positive integer, such that, T’“y_ = y, then p(z)|z* — 1.

4. By primitiveness of p(z) , it follows that k = 2" — 1.

There is also an algorithm to construct a 90/150 CA from an irreducible or primitive
polynomial [152]. The following lemma gives an idea of the number of distinct ma.mmal

length CA over n cells.

LEMMA 7.2.1. Ifpi(z) and po(x) are two distinct n-degree primitive polynomials over GF(2),
then there are two distinct 90/150 CA corresponding to these two polynomials.

For each 90/150 matrix constructed, reversal of the diagonal will lead to another 90/150
matrix with the same characteristic polynomial provided the diagonal is not a palindrome.
If the diagonal is a palindrome then the charactenstlc polynomial can' be factored (by
Lemma 4.4.4.) and hence cannot be primitive.

Thus there are at least twice as many n-cell maximal length CA as there are n—degree
primitive polynomials over GF(2). This lower bound will be important in assessing the
complexity of cryptanalytic attack. The number of n-degree primitive polynomials over
GF(2) is equal to -—(2—":11 [110], where ¢(n) = |{m : 1 < m < n,ged(m,n) = 1}| is the
Euler’s totient. Ta.ble 1 lists the number of primitive polynomials for some values of N.
Tables for primitive polynomials are to be found in [138]. Moreover complete tables of

| maxlmal length 90/150 CA upto degree 32 are avallable in [155].
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P{27 ~
N (Nl)_

10 60

I 11 176
144

13| 630
14 756
15 | 1800
16 | 2048
17 | 7710
18 | 7776
19 | 27564
20 | 24000

Table 1

LEMMA 7.2.2. Let Ty and T3 be two 90/150 matrices corresponding to two mazimal length
CA onn cells. Then Iz € GF(2"), such that, Tz # Tyz.

Proof : (T} —T3) is a diagonal matrix # Opx,. Therefore 37 such that, ¢,, = 1. Then any
z € GF(2") having its rth bit 1 will satisfy Tz # Tjz.

- LEMMA 7.2.3. Let Ty and T3 be two 90/150 matrices corresponding to two mazimal length
CA onn cells. Let Ty — Ty = (t;;) and S350ty = k. Then there are 2 — 1 vectors z such

that Tz #£ T,z.

These two lemmata prove that the STDs of two distinct maxlmal length CA are different
(though isomorphic).

7.2.1 Programmable CA

‘Here we introduce the notion of Programmable Cellular Automata (PCA) (see [128]). By
a global rule vector we will mean the specification of a local rule for each cell of a CA. The
global rule vector of a CA completely defines the evolution of the CA over successive time
steps. This can be changed at successive time steps, that is the CA is evolved at time step
0 using rule vector ay, is evolved at time step 1 using rule vector «; and so on. Such a CA
is called a Programmable CA. If the local rules are restricted to be only 90/150, then a rule
vector for an n-cell CA can be uniquely specified by an n-bit vector, with a 0 representing
rule 90 and 1 representing rule 150. Hence the global rule vectors that are to be applied on
successive time step can be stored as ROM words. In each time step the local rule for each
~ cell is configured according to the instruction in the ROM word for that time step. PCA are

used as the basic bulldlng block in {128]
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7.3 Composite CA

By a composite CA we will mean a set of non-interacting CA evolving under o common
clock. The notion of composite CA is quite general though here we only use composite
CA constructed out of 90/150 CA. The idea is to place the elementary CA side by side
and consider them as one composite CA. We say that the elementary CA are cascaded to
form a composite CA. A simple characterisation of the cycle lengths of composite CA is the

following

LEMMA 7.3.1. If we cascade two mazimal length linear CA on m and n cells, then the
composite CA will have an STD consisting of

1. One isolated point cycle.
9. One cycle of length 2™ — 1,

8. One cycle of length 2™ — 1
4. 28cd(mm) _ 1 cycles of length lem(2" — 1,2™ — 1) each.

Proof : First note that the point cycle will be the null configuration of the composite CA.
Let T; be the transition matrix for CA C;, 1 €4 <2, and let T be the transition matrix

for the composite CA.
Let ¢ be any n-cell CA configuration. Then ¢ is represented by an n-bit binary number

a. If in one time step the CA evolves to a configuration d represented by a binary number
b, then we can say that integer @ in one time step evolves to the integer b.

Let by and b; be two integers representing any two configurations of the first (m-cell} and
second (ni-cell) CA respectively. Then the integer & = 2™ X by + by represent the configuration
¢ = (cp ¢1) of the composite CA. We will use the pair (by,b;) to represent b. Then,

T*(bo,b1) = (T5 (bo),TF(br))
For any integer k > 0.
1. If bg = by =0, ¢ is the null conﬁguratiqnl and lies on a point cycle.

2. If by = 0 and b, # 0, then the minimum & for whic’:h Tke = ¢ is k = 2™ —'1, and |
configurations of the form (0,b,) lie on this cycle. |

3. If by # 0 and b = 0, then the minimum k for which T¥c = cisk =2"-1, and
configurations of the form (by,0) lie on this cycle. | |

4. If by 7 0 and b, # 0, then the minimum k for which T*¢ = ¢ is lem(2" —1,2™ ~1). The
number of such configurations ¢ is 2"*+" —1—(2™—1) — (2" —1) and the number of such

cycles is ﬂ’;;;(;if“_‘; ;2,:(12)""1) = ﬁ?&%ﬁ;ﬂ) = ged(2™ —1,2" —1) = 28cd(mm) _ 1,
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Figure 7.4: STD for < 90,150 > CA.

Similarly, we can prove the following

THEOREM 7.3.1. If we cascade b linear and mazimal length CA having n cells each, then
the STD of the composite CA consists of

1. The null configuration on a point cycle.

2. ((2;:11)) cycles of length (2™ — 1) each.

- We give an example to illustrate the theorem. Consider two maximal length CA on 2
cells. .

‘CAl = < 90150 >, CA2 = < 90150 >

- The cycle structure for any of these CA is shown in Figure 7.4. The cycle structure for the

composite CA is shown in Figure 7.5.
- This gives us a method to construct a permutation of the integers 0 to 2 — 1, such that

~ the permutation can be decomposed into a cycle of length one having the configuration 0,
and all other cycles of equal length 2" — 1. The cyclic property of the type of pennuta.tlon
described above is summarized in the following |

_-LEMMA 7.3.2. Let P be the permutation generated by the composite CA. as described in
Theorem 7.8.1.. Then {I,P, P?, ..., P22} {3 4 cyclic subgroup of Sem of order 2" — 1. Here
Sym 18 the symmetric group of all permutations of the integers { 0,...,2™~1}, wherem = bxn.

Using Lemma 7.2.2. and Lemma 7.2.3. we can state the following
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Figure 7.5: STD for composite (< 80, 150 >, < 90, 150 >) CA.

LEMMA 7.3.3. Each arrangement of the composite CA creates a permutation distinct from
the permutation created by any other arrangement.

In the next subsection we present a complete characterisatjon of the STD of composite .
CA in a more formal setup.

7.3.1 STD of Composite CA

Here we present a complete characterisation of the STD of a composite CA in terms of the
STDs’ of the elementary CA. In fact we take a more abstract approach and consider products
of autonomous automata, that is, automata which do not take any input. Since a CA is an
autonomous automata and the product that we define corresponds to the informal notion of
compositeness introduced in the text, all our resulls also hold for composite CA.

An autonomous or "self-generating” automata is a dynamical system (@, T'), where @ is
a finite set of states (or configurations) and T is a function from ¢ to Q. In effect the system
evolves from an initial state in discrete time steps in a completely deterministic manner.
The change of state depends totally on the present state and does not involve any "input”.
The dynamical behaviour of a such a system is completely described by its_State Transition
Diagram (STD) which is a directed graph G = (V, E) where V = Q and (q1,¢2) € E iff
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T(q1) = ¢2- It is easy to see that the STD for an autonomous automata will consist of
components where each component consists of a cycle with trees of height > 0 rooted on
each cycle vertex. The trees represent the initial ”transient” behaviour of the system while
the cycles represent the "steady state” behaviour of the system and are sometimes called
attractors. A number of important dynamical parameters like the number of cycles, the
heights of the trees can be obtained from the STD.

Next we define product of autonomous automata. Let A4; = (Q;,T}), 1 < i < n,
be a set of autonomous automata. We define the product in the most obvious way as
an automaton A = (Q,T), where @ = Q; x...x @, and T : Q — Q is given by
T(qr,---1qn) = (T1(q1); .., Tn(gn)). This is symbolically written as A = 4, X ... x A,,.

The justification behind this definition is to study the behaviour of the ”composite”
system, where each automata is evolved individually. We obtain results that describe the
STD of a product automata in terms of the STDs’ of the elementary automata. The proofs
are purely combinatorial in nature and we provide only the main ideas.

We describe the STD for a product automaton in terms of the STDs of the elementary
. automaton. This description consists of two parts. The description of the cycles and the
description of the trees. In what follows we will use A with or without subscript to denote
an autonomous automaton. |

The description of how cycles of the elementary automata give rise to cycles in the
product automaton is given in the following

THEOREM 7.3.2. Let A = A, X Ay. Let C; be a cycle of A; of lengthm; (1 <i<2). Then
A contains ged(my, na) cycles of length lem(my, m2). Moreover, all cycles in A are oblained

in this manner.

Proof : Let A; = (Q;,Ti), 1 < i < 2and A = (@1 X Q2,T). Then, T*(q1,q2) =
(TF(q), T¥(q2)). Let c; be any state on cycle C; (i = 1,2). Then, (¢;,c;) is on a‘cycle
of length lem(m,, 7;) in A. Since there are m 7, configurations of the form (cy,cy) and any
configuration of this form is on a cycle of length lem(m, m2), there are ;i = ged(my, o)

such cycles,
This theorem should be compared to Lemma 7.3.1..

. COROLLARY 7.3.1. Let A = A; X...x An. Let 7 56 the length of cycle C; in A; (1 <1 <

N). Then there are m’a;'ffw) cycles of length lem(my, ..., mw) each in A, accounting for
T ... TN configurations of the form (cy,... cx ), where ¢ are configurations on cycles C;.

COROLLARY 7.3.2. In the above corollary, there is exactly one cycle of length my... TN in
Aiffged(m, ;) =1, fori # j, 1 <4,5 < N, that is, iff the m;s are pairwise relatively prime.

- THEOREM 7.3.3. LetA = A; X..Ag.' Let C; be a cycle of length m; in A,, ﬁ' = 1,2). Fiz
a configuration a of A, on cycle Cy and a configuration b of A on cycle Ca. Then,
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1. Configurations (a, T5(b)) and (a,_ng (b)) are on the same cycle iff i = j mod ged(m, my).
9. Configurations (T%(a), b) and (Tf (a),b) are on the same cycle iff i = § mod ged(my, 7a ).

Proof : We will prove 1. Proof of 2 is.simila.r.'

Let ¢ = gecd(my,m2). First we assume that g is distinct from 7, and my, since if g is equal
to either m or my then the proof is easy.

If: This is proved if we can prove that for ¢ = T§(b), (a, ) is reachable from {a,b} or
vice versa, which is proved if we can show that there exists positive integers k; and ks, such

that,
kim = kome + g = k (1)

or k1ﬂ'1 = kz'n‘z - g = k (2)

since then T%(a,b) = (TF(a),T¥(®)) = (a,c) or TF(a,c) = (TF(a),TF(c)) = (a,b).
To see this note that since g = ged(my, ms), 3 integers ki, ky, such that, m k; + moks = g. Now
k1, kz both cannot be positive or both cannot be negative. Ifk, ; 0, then, mk; — mp(~ka) = g
and 1 holds else if k2 > 0, then 2 holds.

Only If : This is proved by showing that if i # j mod g then (a, TJ(b)) and (a, T3(5))
are on different cycles. We prove this by showing that no configuration of the form (a, T5(b))

is reachable from (a,b) if 0 <7 < g.
Suppose not. Then there exists positive integers ki, kg, such that, kym = kemy + 7.
Since g|m, and g|m,, it follows glr. But this contradicts 0 <r <g. D

THEOREM 7.3.4. Let A = A, x Az. Let a1 be reachable from z in Ay in p; steps and
as be reachable from y in Ay in pa steps. Then (a1, az) is reachable from (z,y) in A iff
non;negatiue integers ky, k, such that, p + miky = py + moky, where m; 18 0 if a; is not a _
cycle vertez, else m; is the length of the cycle on which a; ts present (i = 1,2). Consequently,
if (a1,a2) is a cycle vertes, then (a1,az) is reachable from (z,y) iff ged(m,m2) | (M — P2).

Proof: Letp = p + ?rlk‘l. = Do -I— Toks.. Then
TP(z,y) = (T0(@), T2w)) = (T 9 @), 77 (w)) = (or,09).

The last statement follows from the fact that if g = ged(my, m2), then for any integer z, glz

iff £ = mk, + moks for some integers Ky, k2. T
We next present results on trees in the STD for the product automaton

- THEOREM 7.3.5. Let A = Al)'(Az If B; is a branch ofleﬂ_qthb in A;, (i = 1,2 ,assume
- by 2 by), having u; and ¢c; as the ‘unreachable and cycle configurations, then corresponding

" to these two branches there are a total of (b +bg + 1) branches in A. Let c; be on a cycle of
length ©r;. Then in A,
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1. There are (b — b2 +1) branches starting with configurations of the form (z,u2), where,
z € {c: c=T{(uw), 0 £ i < b — b}, having length (b1 — 1), wherez = TH(uy)
and is rooted on the cycle configuration (¢, T3'"***(c,)), which is on the same cycle
as (c1,¢2), iff (b1 — by — 1) mod m, is a multiple of ged(my, 7).

9 There are by branches starting with configurations of the form (z,u,), where z €
{cic = TH{w), h~b < i < b} having length by and is rooted on the eycle
configuration (TV'"%7*(c,),¢;), wherez = Ti(u,) and i is on the same cycle as (c;, ¢;)
iff (b1 — be — i)mod m, is & multiple of ged(m, m).

9, There are by branches starting with configurations of the form (u,z), where z €
{c:c = Ti(w), 1 < i < by}, having length by, and is rooted on the cycle
configuration (cl,Tg"bz"i(cz)), where z = Ti(us), which is on the same cycle as (cy, )
iff (b — by — 1) mod 75 13 a multiple of ged(m, my).

Proof : Only configurations of the form (z,us) and (u),z) are unreachable, and there are
(by + 1) + (b2 + 1) — 1 such configurations, since for a branch of length b, there are b+ 1

configurations on it.
The rest is routine verification. C

REMARK 7.3.1. The case forb, < by is similar.

The proof of the following is similar to the above.

THEOREM 7.3.6. Let A = A, x As. Let By be a branch of length by in Ay, with u, as the
unreachable configuration and ¢; as thé cycle configuration on a cycle of length my. Let Gy’
be a cycle of length my in Ao. Then there are m branches of length b, rooted on cycles of

length lem(m, m2), unth the unreachable canﬁguratwns as (uy,z) with z on Cy.

REMARK 7.3.2. This completes the cycle-cycle, branch-branch and cgcie-bmnch combing-

tions. Thus we can conclude

o Any cycle in.the product automaton arises only from cycles of the elementary automa-
ton, whereas branches in the product automaton arise from both cycles and branches of

the elementary automatan

o Forming the product does not increase the hetght of the trees beyond the mtmmum of
all the elementary trees. i - S
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o The lengths of the cycles on the other hand gets multiplied If the cyclﬁ lengths are

pairwise relatively prime, then there is o "large” cycle of length equal to the product of
the lengths of the cycles. -

o The branching degree (or the indegree) of the configurations increase as indicated by
the next theorem. |

THEOREM 7.3.7. Let A = A; X Ay. Let c; be any configuration of A; (E = 1,2), having
indegree d;. Then indegree of (c1,¢,) is dydy. Consequently if either ¢, or ¢z 15 unreachable,
then indegree of (c1,c) = 0, that is (¢), ¢z} 15 unreachable . |

The next result describes the balance condition for a tree in a product automaton.

THEOREM 7.3.8. Let A = Ay X Ay, Let (¢1,¢2) be any configuration of A. Then the tree
T of A rooted at (c1, cp) is balanced iff the trees T; of A; rooted at ¢; are balanced (i = 1,2)
and have the same height.

Proof : If the heights of 7; and 7 are different or they are not balanced then quite clearly
T cannot be balanced. | -

So suppose that the heights are the same and the trees 7; are both balanced. Then all
unreachable vertices in T} are at the same height ii. Let (¢;, ¢;) be reachable from unreachable
configuration (z,y) in 7. Then the following cases may arise. -

1. The path p, from z to ¢, in 7; and the path p; from y to c; in 7; contain no cycle
vertices. Then the length of p must be A. SR | |

9. If at least one of the paths p, or p, contain a cycle vertex, then either c; is the first
cycle vertex in p; (in 7;) or ¢, is the first cycle vertex in po (in T2). If this does not
hold, then the path p from (z,y) to (c1,¢2) in T does not belong to the tree rooted at
(¢1, ¢2). In either case the length of p is A. - |

By 1 and 2 it follows that 7 must be I_:_)ala,nced.

7.4 The Basic Cryptosystem

In this section we describe the cryptosystem' and in the next section we will discuss imp_l?-
mentation using composite CA. We describe a block cipher scheme, where each message 18
divided into blocks of a fixed size (possibly padding the last block with additional _bits) and
each block is encrypted separately. Let m be the number of bits in each message block and
let. M be the set of all possible message blocks, i.e, the set of all possible bit strings of length
m. Let C be the set of all possible cipher blocks where C € C consists of m -I-'n‘ bits. Let ‘
k be an n-bit number and M € M be a message (henceforth by a message we.mll mean a

message block). We use M and k to obtain a cipher C € C as follows. |
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Step 1: (Qo NLo P(k))M = B.
Step 2: Miz(B,k) = C.

where

(a) @ is a secret bit permutation of a m-bit string, i.e. given an m-bit string as input it will
output an m-bit string which is a bit permutation of the input string,

(b) P(k) is a secret linear bijective map from M into itself. For each k, we have a different
linear transformation. This component will be constructed out of coriposite CA, The
composite CA will provide a linear transformation from M to itself, and P(k) is the
application of this linear transformation to the message k times.

(c} NL is a secret non-linear bijective map from M to itself.
(d) The integer k is a random integer in the range 1 to 2" — 2.

(e) Mix is a secret function which places the n bits of k at fixed positions between the bits
of B.

First note that @ and P(k) are linear maps and NL is a non-lirear map. Hence the
composition of the three maps is a non-linear map. The reason for adopting such a scheme
is twofold. Linear or affine transformations are not suitable for cryptographic use, since they
~ are susceptible to attacks using algebraic techniques. Non-linear maps are more resistant
to such attacks. On the other hand it is difficult to design non-linear maps having "nice”
properties. However one can design linear maps having desired properties. So using a
composition of linear and non-linear maps we hope to get both advantages. Next we briefly

outline the intuitive reasons for each of the functions.

1. The function P(k) introduces a randomisation element in the entire scheme and forms
the core of the encryption system. It is generally felt that randomisation increases the
security of a system, since it increases the equivocation of a message. This function
has nice properties and is easily realised using a composite CA. |

2. The function NL is introduced to make the whole transformation non-linear and pre- |
‘vent attacks based on algebraic techniques. This function ensures that the system
satisfies the perfect secrecy condition of Shannon [153]. o

3. The function Q destroys local properties. In our realisation of P(k) and NL, the value
of each bit will depend only on a local neighbourhood. Hence ¢ wjll thwart attempts
by a cryptanalyst to attack the system by choosing messages having loca.l._struptural
properties. [ S

4. The function M i::: makes it difficult to obtain the integer k.

The sécrét key of the systém'cdnsists.'of the following
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1. The set of functions {P(k): 1 < k< 9o» -2},

2. The function NL, ¢} and Miz.

Given a cipher C' € C decryption is done as follows.

Step 1! Exztract(C) = (B, k).
Step 2: (P~ (k)o NL™'oQ"')}(B) = M.

Here Bxtract recovers the bits of & from C and constructs the pair (B, k). Since all the
original functions are bijective, one applies their inverses in the reverse order to B to get
back M. We will construct P(k) so that P=1(k) = P(2" ~1 - k).

Next we discuss the implementation of the scheme and in the last two sections we discuss

security and flexibility of the system.

7.5 CA Implementation

Using the idea of composite CA, it is easy to set up the scheme., The steps are.

1,
2,

Choose m = b X n, where 10 < n <20 and 50 < b < 100.

From tables of 90/150 maximal length n-cell CA. [155], select b CA. Altemativel'y one
may construct the b many n-cell CA using the algorithm in [152). o o

Create an arbitrary arrangement of the b CA selected in step 2.

Cascade the individual CA to form a composite CA. Then from Theorem 7.3.1., we
know that the composite CA has the all zero configuration on a cycle.of length one and
%Mf% cycles of length 2¥ — 1 each. Evolving the CA k times (1 < k < 2" —2) gives
rise to the function P(k). Since evolving the CA 2" —1 times is the identity operation,
we have P~'(k) = P(2" — 1 ~ k). The composite CA thus constructed is required at

both the sender’s and the receiver’s end.

Choose the bit permutation Q. To do this one has to randomly choose & permutation
of the integers {1,...,m}. At the sender's end we require Q and at the receiver's end
we require !, which is easily constructed from Q. The functions @ and Q™ can
be very easily implemented using no additional hardware. Alternatively, they ca.n‘be
implemented using microprogram. This will allow the functions to be changed, leading

to a possibility of changing the key.
The function NL is constructed in the following way. Divide the m-bit i:llput into
contiguous bits of ! bits each (with possible adjustment at the end). Here{ is a small

! .
integer not greater than 10, Create an arbitrary arrangement of the numlbem 0 1o 2 --]1f
on the nodes of a directed cycle. Let f be the function from {0,. :2 — 1} to itse
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whose graph is the created cycle. Then it is easy to design a synchronous circuit which
realizes f. Alternatively f may also be implemented using table look-up. Later we
discuss why the table look-up implementation may be preferable. Clearly f is & non-
linear bijective map. For each block of { bits we choose a (possibly) different function.
The function NL 1s the application of the corresponding f to each of the substrings of
[ bits that the message block has been divided into. Once NI is constructed, one can
construct NL~! similarly. The function NI is required at the sender’s end and the
function VL' is required at the receiver's end.

7 The functions Miz and Eztract are éasy_ to design. Let,
C = cpywyCm-1 and k= ky, ..., ky_y,
Choose integers 7y, ...1q, such that, r; > 1 and i, r; < m. Then form the string,

S = Cg...Cry -—lkﬂcrl *~-cr1+rzmiklcf1+rg eCm-1s

Then Miz(C,k) = S and Eztract(S) = (C, k). Asin the case of Q, the function Miz
can be easily implemented using little additional hardware, or it can be implemented
using microprogram, leading to a possibility of key change.

The following additional step is required only at the sender’s end.

8. Set up a random number generator, which will produce random integers between 1 and
2" — 2 inclusive. This can be a true random number generator, since the integers will
not be required to be regenerated. Thus for example one may use radioactive decay

process to generate random numbers.

Next we present the encoding and decoding algorithms.

Encoding Algorithm E

1. Divide the message M into blocks M; of m bits each. Pad hgroes or ones at the end if
required. -

2. For each 1 do

(a) Generate a random number k; in the range 1'to 2" — 2 inclusive.
(b) Load the composite CA with M;.

(c) Evolve the CA for k; steps.
(d) Apply NL to the output of the CA.

(e) Apply Q to the output of NL to get Bi.

(f) Apply Miz to (Bi, k) toget Ci.

(g) Transmit C;. ' i
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3. od.

Decoding Algorithm D

1. For each C; received do

(a) Extract(C;) = (Byki).

(b) Apply Q" to B:.

(c) Apply NL™' to the output of @~

(d) Load the composite CA with the oﬁtput of NL~! and evolve for 2" — 1 — k; steps.
(e) The output of the CA is M;.

2. od

Note that 2" — 1 — k; is the one’s complement of k; and can be simply obtained by comple-
menting (or inverting) the bits of ;. |

REMARK 7.5.1. The total number of steps to encode and decode each message block is (2" —
1). This is same for each block, and is independent of the number of bils in a message block
but depends on the number of cells of any one CA. Thus the total time to process a message
varies linearly with the number of message blobks, that 1s, the size of the message.

The size of the message block is m bits and Each.message block expands by n bits, hence
the data expansion factor Dy 1s |
n 1
D, = - = —,
I n+m 140

The value of Dy should be small for the scheme to be practicable. However, it has been
observed that any randomisation scheme leads to some data expansion. The parameters n

and b are chosen with the following constraints in mind.

1. The total time for encoding and dﬁ_codjng' each message block is 2" — 1, that is, it grows
exponentially with n. | | |

2. Since the total time for encoding and decoding is independent of the length of the
message block, b is to be as large as possible. Choosing a large b also ensures that

Dy is small. This is however limited by hardware constraints. Since the length. of a

message block is m = n x b, this will require & register of size m. 'Hardware cost will

limit the size of this register and hence limit the value of 4.
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With b = 50 and n = 16, 800 bits will be processed in 0.3 msecs (with a clock of 200
MHz) with a data expansion factor of g% = 0.02. (We consider only the time required for
CA evolution). Thus in one second a.bout 2.7 % 10° bits =~ 333 kbytes will be processed, |
which is good enough for on line processing to be possible on most communication channels.
with n = 20 and b = 30, 125 bytes can be processed in 5 msecs (data expansion factor
D; = 0.02), leading to rate of 25 kbytes/sec. The complexity of cryptanalytic attack on
the resulting set up will however be much higher. Note that from Table 1, there are more
primitive polynomials for n = 19 than for n = 20. Since for a fixed length the number
of maximal length CA is at least twice the number of primitive polynomials, the security of
the system is higher for n = 19 than for n = 20. Also the time required for encryption
and decryption for n = 19 is approximately half that for n = 20. Thus we gain on both
time and security by choosing n = 19 rather than n = 20. This anamolous situation arises
because of the irregular behaviour of the number of primitive polynomials of degree n. Table
2 provides a comparative study of cryptosystems with different values of n and b.

b =50 b = 100
) T, m Df_- R m | Dy "R,
(bits) | (msecs) | (bits) (Mbytes/sec) | (bits) (Mbytes/sec)
10 0.006| 500 |0.02 12.75 | 1000 | 0.01 25.00
11| 0.010| 550 | 0.02] 7.01| 1100 | 0.01 13.80
127 0.020 [ 600 | 0.02 "~ 3.80 | 1200]0.01 7.50
i3 [ 0.040 | 650 | 0.02 | 3,10 | 1300 | 0.01 110
14 | 0.080 | 700 | 0.02 1.10 140_0_{ 001] 210
15| 0.160 | 750 [0.02] 053] 1500|001  1.20
16| 0.330 | 800002 031 | 1600|001 0.61
17 | 0.660 | 850 [0.02] 0.20 [ 1700 | 0.01 0.32 |
18 | 1.300 | 900.] 0.02 "~ 0.09| 1800 0.01| 0.17
19| 2.600 | 950 [0.02] 0.05 | 1900 ] 0.01 | 0.09
20 | 5.200 | 1000 [0.02]  0.03 001] — 0.05]

able 2

Note:
1. Ty, = (2"”1) « 10~8 is the total time for encryption and decryptmn at 200 MHz clock.

2. m = n X b is the size of the message block.
d. Df = - i§ the data expansion factor.

min = T4
4. Ry = T4n ig the transmission rate. Note that the rate of encryption of message is
R,

and is almost equal to R,
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7.6 Security

Let us first calculate the size of the keyspace. Fix the value of parameters n, b, m = n X b
and [ and let

K = set of all possible keys. _

K, = set of all possible composite CA with parameters n and .
Ko = set of all possible functions NL with parameters { and m.
Ks = set of all possible bit permutations ¢ of mn bit strings.

K4 = set of all possible functions Mix with parameters n and m.

Any key K € K is a composition of functions k; € K;, (1 < i < 3) along with a
function Miz chosen from K4. In any specific implementation, for each message block there
are a choice of 2" — 2 possible keys. It is*easy to see that

K] = K] x Kl X Kal x [l

Let us now find the individual cardinalities.

PROPOSITION 7.6.1. |K;| > (281

Proof: There are a total of “”@;TI) primitive polynomials of degree n and hence at least twice
as many maximal length CA. Out of these we create an arrangement of b (not necessarily
distinet) CA.

PROPOSITION 7.6.2. |K;| = ((2Y))7T.

Proof : Each individual function f of NL has a graph where all [-bit strings are on a single
directed cycle. Thus each f can be constructed in (2')! ways and we choose a (not necessarily
distinct) f for each l-bit block of the m-bit input. Thus we choose a total of % such f's and

hence the result follows. O

PROPOSITION 7.6.3. |K3| = m!

Proof : One has to choose a permutation of the integers 1 to m.

PROPOSITION 7.6.4. |K4] = (m+1)
mn

Proof : Out of a total of m + 1 positions inbetween and at the end of the m-bit message
block, one has to choose n positions, [
Thus we get
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THEOREM 7.6.1.

K > eHZZNp o (@))F x mi x ("'””” )

n T

It is easy to see that K is very large for the proposed ranges of n, b and {, i.e,, 10 < n £ 20,
50 < b < 100and 4 < I < 10. Of course if n, b and { are not known then one has to sum

over the proper ranges. It is clear that exhaustive search will fail.
Next we prove that given a cipher, a cryptanalyst will not gain any information about
the actual message or the key used. This is proved by showing that H( M ) = H(M ]g)

and H(K) = H(K|C), where H(.) is the entropy function and M, K and C are random

variables ranging over the set of messages, the set of keys and the set of ciphers respectively.
Here H(M|C) and H(K|C) represent the message and key equivocation respectively. These

parameters were introduced by Shannon in his seminal paper [153].
Assume a uniform probability distribution over the set of messages and the set of keys.

Let Pr{X = X) or Pr(X) be the probability that the random variable X takes the value

X. Then by our assumption

1 1

for each M € M.

THEOREM 7.6.2.
' H(M|C) = H(M)

Proof : This is proved by showing that Pr(M = M|C = C) = Pr(M = M) for all

M € Mand C € C. We prove this by showmg that given a cipher C, the set of possible
messages which could have led to this cipher is the entire set of messages. This can be proved
by showing that given any C' € C and M € M, there exists K € K such that applying
the encoding algorithm E to the message M with K as the key will give the cipher C. We
proceed as follows. Choose any function Miz from K4 and let Exiract(C) = (B, k), where
B is an m-bit string and & is the integer by which the composite CA has been evolved. Let,
the Hamming weight of B be wy. Choose any composite CA, load it with the message M
and evolve for k steps to get an output A of Hamming weight w4. Now we have to choose
the functions NL and @ properly to map A to B. Note that the function Q being a bit
permutation preserves the Hamming weight of its input. So if we can construct a function
NL which maps A of weight w4 to a string T' of weight wp, then we can get a function @
in K3, which maps T' to B, and we are done. We proceed to construct NI as follows. Let,

Aﬂﬂ{)...ﬂ'm_l B.l’ld T=t{]-|-tm_1-
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Assume that both A and T are partitioned into blocks of { bits each,i.e,,

AﬁA{)-q;Ag“] ﬂ.nd T:Tniltrq—l

where g = 7 and
Ai = w0 . Qi1
Ti = tigo - bipi-1.

For each i (0 < i € g — 1) we construct a function f; as follows. The 2* many [-bit
configurations are arbitrarily arranged on a directed cycle (which represents the graph of
fi), with the only restriction that f;(A;) = T;. The function NI is the application of the
individual functions f; to A;. Clearly NL maps A to I" and hence the result follows.

COROLLARY 7.6.1. Given any M € M and C € C, the number of keys which map M to
C' 8 given by

Anbl 2 (2~d)(2“m1))" x (2" =27 x (2*#) x (wpl(m —wp)l) x (m+1 )

2 - .
where wy 18 the Hamming weight of B, and Extract(C) = (B, k).

Proof : Note that one is free to choose the composite CA and the function M:z. There
are a total of 2%? conligurations of Hamming weight equal to that of B. One can choose
any of these to play the role of T' in the abave theorem. The function NL can be chosen in
(28 —~ DN)'T) ways and for each T and B there are wp!(m — wp)! bit permutations @ whicls
maps T of Hamming weight wp to B also of weight wp.

Co&oﬂmm '?.6.2.

Pr(ﬁ’::K]MmM and C = C) = Xllx
~ ™ mno,

if K maps M lo C, else it is 0,

One can similarly prove that given any cipher C and key K one gets & message M such
that K maps M to C. Hence we get

THEOREM 7.6.3.
' H(KIC) = H(K)
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REMARK 7.6.1. The above two theorems show that the message and the key equivocation 13
the mazimum possible. This proves that the system is secure against a ciphertext only attack.
In fact, Theorem 7.6.2. shows that the system salisfies Shannon’s perfect secrecy condition
[158] (see also [183, Page 118]). A necessary condition for this to hold is that the number
of keys 18 at least as large as the number of messages (183, Page 114f, which is true for
our system. However, one should point out that Theorem 7.6.2. and Theorem 7.6.5. actually
proves a himited form of security. They show that one cipher block will not provide the
altacker with any additional information regarding the message sent or the key used. This
i3 also true for one-time pads. Moreover, in one-time pads since the key is changed for each
block, the result is true for each message block. In our system, successive message blocks are
encrypted with different but related keys. Thus one has lo argue that given a sequence of
cipher blocks, the attacker gains no knowledge of the set of keys used, or the messages sent.
Proving this or its converse, thalt one gains information about the key or message given &
sequence of cipher blocks seems to be difficult. The main disadvaniage of one-time pads is
that they require the generation of a completely random key string for each message. For our
system, stccessive message blocks are encrypled with o different but related key. The keys
are different since the number of steps for which the composite CA is evolved ig different
for each message block. Thus a practical compromise between implementation difficully and

provable securily 1s achicved.

From the proof of Theorem 7.6.2. it is clear that the perfect secrecy condition arises due to
the function N L. Hence one might feel that the other constituents are really not necessary.
However, it 1s important to note that perfect secrecy proves security against ciphertext only
attack. A system with only the function NL can easily be broken if 2' pairs of message and
cipher are known. This is feasible only if { is small. Increasing ! will certainly provide more
security, but the hitch is that this will increase the implementation difliculty of the functien
NL by the same extent that it increases the security. This is clearly an undesirable situation.
In our case, resistance against known plaintext attack is provided by the other constituents
of the secret key.

To prove security against any known plaintext attack, one has to show that for an ar-
bitrary subset A C M x C, with [A| < A(n,b!), where A(n,b,!) is an integer valued
function of n, & and [, the following holds

H(K) = H(K|A).

Then the system is A(n, b, !)-secure. Such notion of security is difficult to prove. However
Corollary 7.6.2. indicates that for a single message cipher pair, the key equivocation does
not substantially decrease. It is difficult to prove such results for arbitrary A. Hence this
leaves open the possibility of attacking the system with properly chosen pairs of plaintext
and ciphertext. However, we believe it will not be easy to design such attacks.
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7.7 Flexibility

Since the secret key consists of the secret functions ¢), NL, Miz and the sol of functions
{(Pk): 1 £k & 9% — 2}, to allow for change of key we must have a reconfligurable systent,
This can be achieved in the {ollowing way.

1. The CA is to be implemented as 8. PCA (see Section 7.2.1). This will allow the GA. to
be changed as required. See [128] for details of implementing PCA.

2. The function NL consists of a set of functions fi, 1 < ¢ £ %, where cach f; takes an
l-bit input and produces an I-bit output. For a reconfigurable system the fi’s are to
implemented using table look-up and the lock-up table to be realised by a EPROM.
To change the f;'s all one would need to do is to change the values in the look-up table.

3. The functions () and Miz and their inverses are to be implemented using micropro-
grams. This will allow these functions to be changed as and when required.

7.8 Conclusion

In this chapter we have introduced the notion of composite CA and have presented a char-
acterisation of the S'T'D of such CA in a more absiract setting of products of antonomous
automatae. A block cipher private key cryptosystem have been proposed based on composite
CA. The system is easy to implement in VLSI and satisfies the perfect secrecy condition of
Shannon. This proves that the system is gecure against ciphertext only attack. Though we
have not being able to prove the system secure against plaintext only attack, we believe that
it will be difficult to design such attacks on the system.
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Appendix A

Factorisation tables

Here we present complete factorisation of the first ten trinomials of the form Tj(z) =

22 + z + 1. Note that such trinomials are square free. The value in the first column
is the depth of the corresponding irreducible factor r(z) in the second column.

i=1,Tiz) =2® + 2 + 1
Depth | 7(x)
5 | L+z+ a2

i =2, Tiz)=a* + 2+ 1
Depth | T(z)
17 | 142+ g4

i=3,Tiz) =z% + 2 + 1
Depth | 7(x)

5 [ 142+ 27

63 | 1+ 2?23 4 38 4 20

i=4,Ti(z) s % 4+ 241
Depth | r(z)
266 | 1+ 2% 4 28 + 2% + o8
257 | 14+ x4 23 424 + 25 4 2% 4 o°

1 =6, Ti(z) = 2% 4+ z 1
Depth | 7(z)
6 { L+ z+a?
205 | 142+ a?+ 23 28 42 4 210
1023 [+m2+m3+wl+mﬂ+mﬂ+mlﬂ
1025 | 14 2+ 28+ 28 + 22 +2° + 210
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{ =6, Ti(z) = % + o + 1, 2% = 4006
Depth | T(x)
17 | 142+
1365 | 14 2? +«® + 2%+ 28 4 2% 4 27
4096 | 14 o2 4z + 2 2!
4005 | 1+ 25 + 28 4 2 4 xt?
1097 | 142 +x* + ¥ + 28 +2% 4 21
4007 | 1+ + 2% + 24 4 28 + 2% 4 212
= 7, Ti(x) = @78 + x + 1, 217 = 16384
Depth | 7(x)
5 [ 14 x4 52 —
5461 TP R i, R B LR R L L
b6l | 14 22 + 2% +ab 27 4+ 210 4 gl 213 4 214
16383 | 1+ «® + 27 +a¥ + 2!t 4213 4 24 |
16383 | 1+ 2% + 2% + 2" +ab+ 2% + 2! + 213 21
16383 | 1423+ 23 42t +2%+ 27 + a8 4 2104 ! 4 213 4 214
16385 | 1+ x4+ a8 + 27 4 28 + 210 4 gl 213 4 g1
16385 | 1+ z+a®+a%+a” +2'0 4! 4218 42N
163856 1+:‘-':+n:2+m3+m“+mﬁ+m’i’+mﬂ+mll+mls+$14
16385 | 14z +a? +a4 + 8 + a7+ 28 +a° + 't 458 +ald.

i = 8, Ti(x) = «%%% 4 o + 1, 2!% = 65536

Depth | 7(z)

3107 | 1408 + 2o+l + a0 4500 +2° 4z 4 21°

21845 | 1424 4 38 + 28 427 + 28 421! 4212 401 4214 4 2t

21845 1+m2+m3+m4 +m7+mﬂ+mll+mlﬂ+m13+ml4+mlﬁ

21845 1+m5+m4+m7+m“+m”+m13 +$M+mlﬂ

655356 1+m=+m5+m'l’+mlﬂ 4+l 423 LAl

65635 | 1+ 23 +2% +2b + a8+ 2 429+ 20 4 o' 4 212 4 !d ot 4+ 210

66535 | 1+2%+a8 4ot +ad a2 2%+ 2!l 45342 42

65537 | 1+ +at +28 +27 428 +20+ 2 423 42!+

65537 | 1+ z + a8 +a7 +2° +a!! 43t 4ot 28

65537 1+=ﬂ+mg+Iﬁ+m7+mﬂ+m“+m”+:.-:13+:1:“+:1:”

65537 ° 1+=ﬂ+m"+m7+m“+m'“+m”+mm+m13+m“+zlﬁ s
65537 l+m+mi+ma+m4 +:I:ﬁ+Iﬂ+$T+$ﬂ+$lu+$”+I1=+$13+IH +£1ﬁ
65b37 1+m+m3+m”+m?+mﬂ+:“+:”+::13+m"‘+::15

65537 | 1 +z + 23 + x4 +m5+mﬂ+mT+mﬂ+m°+m1“+m“+a:”+::”+m“ 1 16
65537 | 14 2+ 2% 4 a® 428+ +2!l 422+ 4ol 210

65537 1+m+m5+m4+m5+m?+m‘“+m“+:1:13+:_!:_“+n:”____
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i= 9, Ti(z) = o2 4 ¢+ 1, 2!% = 262144

Depth | 7(x)

) 1~-}-:1:+:1:§
63 | 1422 2% 4 2b 4 20
7085 | 1tz ta+ad ot ab ol + o84 2l04all 4 gl 4 4y p18 4 17 4 18

12483 | 1422+ a4+ ab 4 27+ 28 4210 !l 4 313 fplh 4 518 4 217 4 18

13797 | V4 a? + a3+ 2% 4 510 4 12 4 16 L 517 o 418

20165 | 14+ o +ab +a0+ a7 +all el 42134 gl p18 4 17 4 18

20165 | 1+ @+ 23 4 26 4+ 2% 4 o2 4 216 4 17 4 518

20127 | 1+ 2% + 2% + 30 4 218 4 17 4 £18

37449 | 1 42+ a7 4+ 2P + 2P+ 210 4 211 L 213 513 L 14 g 18 ) 17 L 218

37449 1+m‘+m5+m +mlﬁ+m”+mlﬂ

52429 | 1 4@+ 2?4 2B 4 ab 4 28 4 210 4 217 4. g8

52420 | 14+ o+ o + 2P + a7 + 28 + 5% 4 gl 4 213 4 g4 +315+11?+Im

87381 | 1+ 28 + 2% 4 210 4 2!6 4 517 | 518

87381 | 1 423 4 24 +z8 4 2F +..-:‘“+u:1“+::”+z:”

87381 | 1422+ ot 27 + o' 4 212 13 4 14 16 4 £1T 4 18

262143 | 1+ 2%tz + 2% 2" + 2% 4 28 oM 4V L 2 M {310 4 217 4 218
262143 | L4+ 22 4+ 20+ 27 + 2!0 4 o1 4 £13 f gl 4 516 4 217 4 518

262143 { 12?4+ 2P 420+ o +28 429+ 210 4 21 12 4 218 4 14 4 516 4 517 4 518
262143 | L+ 23 + 28+ 27 4 210 4 ! $ 218 4 oM 4 510 4 g1T 4 18

262143 | 1+ 28 + 26+ 27 +z“+m‘°+m“+a:12+m”+m“+mm+m”'+:n‘ﬂ
262143 | 1+42b 4 a1 4 212 210 2T 4 218

262145 | 1 4+ @ + 2% 4 5% + 27 + 28 +=r.:“:'—|—:'::“-]-:t:“’-ﬂ:.”+:t:”~"-i-:1:”'-1-:1:‘B
262145 | 1+ z-+xt 2%+ 28+ 27 + 20+ 2 4ot oM 4210 4 17 4 210
262145 | 1+ o422 423+ al® 4217 4218 |
262145 | L+ o 422 + 24 + 2® + 210 + 518 + 217 + '8

262145 1+m+m3+m4+mﬁ+m“ +mlﬂ+m12 +mlﬁ+$17+m15

262145 | 1+ x4zt +a2% + 28+ 22 +2% + 212 4 2194 21T 210

262145 | 1z 423+ 2+ 25+ 28 +3° 4 210 4 21¢ + 27 4 218

262145 1+$+$:+m +mﬂ+mﬂ +$10+mlﬂ+mlﬂ+m17+mlﬂ

262145 | 14+ o4+ a2 4+ad +at + 28 + 294+ 212 $310 4 217 + 278 _
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{ = 10, Ty(z) = ='9% 4 = 4+ 1, 2%% = 1048676

Depth | 7{x)
17 | 14+ 2 |
13980 | 1422 + 28 4+ 2% 4 2% 4 2% 4 210 4 217 4 220
a8575 | 1+ 22 4 x84 2f -+ 210 4 11?2 18 4 517 4 20
61681 | 1+ a4+ 23 +ab+zb+2® +2% 4212 4 2108 4 517 4 290
61681 | 1+ a+ 2 +af + 't 4517 4220 .
68905 1+.’1:2+1:3+m4+mﬁ+:g?+mﬂ_!;mﬂ+mlﬂ+mll+$12+113+$|4+£1?+Im
05325 | 1422 + 2+ 2t + o’ el 212 4 2134 214 4 g1 4 20
209715 | 1+ a®+ a3+ + 2% + 2% + 2% + 22 210 4 217 4 220
209715 | L+ 2% + 28 + 28 + 2® + 210 4 516 4 217 4. 520
000715 | 1428+ 27 +a!! 422+ 50 + g 4 517 4 220
200715 1+m2+m4+m5+m5+m1“+mlﬂ +m1?+mﬂﬂ
349525 | 1+ 23 + 28 4 27 + 2% + 210 4 gl - g12 4 713 4 g4 4 510 4 717 20
349526 | L4+ x? + z3 + 2% + 2% + o0 4 218 4 217 4 520
340525 | L+ 22 + 28+ 28 + 27 + 2% + 2! +21% oM 4217 4200
949525 | 14+ 22 + 2% + 27 + a8 + 210 4 1 4 218 4 14 4 317 4 220
349625 1+mg+mﬂ+mg+m|2 4+ 27 4 220
349525 | 1+ 2% + 28+ 28 + 28 + 219 4 213 4 517 4 270
340525 | 14 24 + 28 + 2 + 210 4 z17 4 230 |
10485676 | L+ 2® +2%+ a8 +2° + 210 +5'0 4+ 217 2%
1048576 | 1+ 2* + 2% +2'? + ' + 27 4 2%
1048676 | 1+t +ab+ab+aT+28+a¥+ 2 +a'3 et al® 42T 550
1048575 | 1+ a? + 2%+ 2® 428 + 2T 210 2! 42l 42 4210 4217 4270
1048676 | 14 22 + 210 42! 4218 4 217 4 2%
1048576 | 1+ 28 + 20 + 28 + 20 + 212 4218 + 217 4 2%
1048575 | 14 22 +at 4+ a8 + 27 + 28 + 2!l + 217 423+ 4210 4217 27
1048575 | 1 4 23 + x® +2!7 + %0
1048575 1+:1:T+:1:m+:n“ _H:l.'l +m“+m”+m” +I2n
1048675 | 14 23 2 + 27 +2° +zM 4213 + 2+ 2104 217 + 270
1048575 | 14 22 + 20+ 27 428+ 29 + 2t 428 4442l 4320
1048576 1+mﬁ+m‘+mﬁ+$ﬂ+57+mﬂ+mlﬂ 4zt +513+m14+m11’+£20
1048677 1+m+:c“+m3+m5+m"’+m“+m”+m”+:a“+::lﬂ+m”+m’“
1048577 | 1+ x + = + gt 4 a8+ 2% + 512 2! + 2% -
1048577 | 14 &+ 2?2 + 2% + 28 +2° + !0 + 27 + 2%
1048577 | 1+ x4 23 + 24 4 28 +2'7 + 270
1048577 1+m+m4+m"+z‘”+m“+m13+m“+;”+x”+m2”
1048577 | 1+ =+ =* +m3+54+$5+mm+zm+miﬁ+mn+mm
1048577 1+m+m*+m3+mﬁ+;¢ﬂ+mlﬁ+ml7+¢,2°
1048577 | 14 24 2% + 28 + 2% +2° + 2104217 427
1048577 1+m+¢_2+mﬁ+mu+$m+mm 4 27 4 230
1048577 | 14 o +2° + &i? + 20 + 2!7 427
1048577 | 1 + o+ 22 +m4+mﬁ+m7+ia+mlu+mu+m1n+m13 + 2t 4218 + 217 4270
1048577 1+m+m3+m4+z“+m7+m3+m”+s"+m‘3+z“+m”+z’“ |
1048577 | 1+ z+ 22 + 23 + 2t + 2° +m?+£a+mﬂ'+mlu+mu+m‘1=+x13+ml4+$1u+31.1+,20
1048577 1+m+:::3+m‘+:c“+m'f+m“+¢1° +111+512+113+I14+3m+m17 4z
1048577 1+m+m‘+m“+:ﬁ“+m‘°+m‘“+m”+m’“ .
1048577 | 1+ 2+ 25 + 28 + 28 + 210 + 212 +2!7 +3%° |
1048577 | 1+ z+4+ 22 + 2% + 27 + 28 +mm+mu+m:a+m14+mm+mw+mm
1048577 | 14 3420 + 24 427 +2° +atl +ald 4t 4217+
1048577 | 14 24+ 2t +25 + 28 + 27 4 28 +2° + 2! 2P +:u+:;7_+¢=n
1048577 | 1+ xz+ 23 +24 + 20+ 77 +ma+511_+xu+mu+mu+zw_|_m:m
1048577 1+m+m“+m7+mﬂ+m“+m_'°+x1_‘+m”+m‘3+m“+m‘7+=ﬁ’°
1048677 1+m+m’+m"+m“+m“+:t:"°+m”+=t='"° o
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Appendix B
Kronecker Product

In this section we present basic results on Kronecker product of two matrices. These will be
required for the analysis of generalized S-matrix, which is shown to be a sum of Kronecker
products. More elaborate discussion on Kronecker product can be found in [13].

DEFINITION B.0.1. The Kronecker (or direct) pfaduct of an m X n matriz A and an pXq
matriz B 15 defined to be the mp X ng matric

A® B = ({((ayB))

ProrosiTION B.0.1. 1. ® isin general nof commutative.

2. A® (aB) = aAQB'= af(A.@B)
s AQ (B®C) = (A® B)®C

4 A® (B+C) = (A® B)+(A® C)

5. B+C)®A = B@A+CQ®A

6. 1 @ A = diag(4,A,...,A)and I, @I, = Iy

700A=AQ0=0

8. (AB ® CD) = (A® C)(B® D)

9. (A® B)T = AT®@BT

LEMMA B.0.1. If A and B are two square matrices, then c is an eigen value of A® B iff it
is of the form a; b;, where a; and b; are eigen values of A and B respectively.
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LEMMA B.0.2. Let A be an m X m malriz and B be an n x n matriz. Then the mairiz
equation AX + X B = Y where X,Y are m X n matrices, is completely equivalent to the
system of linear equations (A® I, + I, ® B)vec(X) = vec(Y). Here vec(X) is the matriz
X written out in row major form. The equalion has an unique solution iff the characterisiic
polynomials of A and B are relatively prime. In this case the transformation T(X ) =

(A® I + I, ® B)vec(X) is invertible.

LEMMA B.0.3. Let A be an mxm matriz having characteristic polynomial p(x). Let B be an
n X n matriz having characteristic polynomial ¢(z). Let oy, 1 < i < mandf;, 1 <3< n
be the roots of p(z) and q(z) respectively. Then 1y is a root of the characteristic polynomial

for the matriz

iff v is of the form o; + B; for some i, j.

The matrix T is also called the Kronecker sum of A and B.
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Appendix C

Resultant

We introduce the concept of resultant of two polynomials and state some of its elementary
properties. A more detailed discussion can be found in [120].

DEFRINITION C.0.2. The resultant of two pﬁlynomz'als
m | n _
flz) = Y, aiz' g(z) = ) bjo"
_ & =
where a; and b; are elements of a ring R, is given by the determinant of the following
(m +n) x (m + n) matriz (colled the matriz of Sylvester). |

Hﬂm-t-lm_.-.l ._._.Ial' | ﬂo 0 .0 -

10 am ... a g ... O

gl L
Ress(f,g) = detley] = det} b 0 ... 0
T = e '

where c;; 18 precisely given by,
Cij = Om-j+i for 1 <t <,
Cntig = bp—jti for 1Si1<m

where
a; = 0 for i ¢ {0,...,m} and

by = 0 for j ¢ {0,...,n}
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Thus Res;(f, g) is an element of R.

PROPOSITION C.0.2. 1. Res(f,0) =

2. Res(g,f) = (~1)™"Res(f,g)

3. If deg(f)

4. Res(f,g) = 0 iff f and g have a common nontrivial factor.

m < n = deg(g) andifg = fq+ h, then Res(f,g) = ap: ™! Res(f, h)

5. Let R be an integral domain. Thenifo;,i=1,...,marerootsof f and B;,5 =1,...,n

are roots of g,
Res(f,g) = ap I 9()

= (=1)™ 87 [13-1 9(B;)
A | il H? (@i — f;)

When the coefficients are taken over GF(2), the sign does not matter and all a;'s and
b;’s are either 0 or 1.

i

LeMMA C.0.4. If P(z) and Q(z) are two nonconstant polynamtals with coefﬁc:ents in a field
K and with roots o, ..., am and B, ..., Bn respectively. Then the roots of the polynomial

Ry) = Rﬂ&:(f’(ﬂ?"’y),_@(f-x)) -
are the EIemeﬂt._s .in. + B, 1 < 5-.'m, 1<73<n

Proof : Let P\(z) = P(z +y). Then the.coefficients of Pi(z) belong to K{y]. Since Q(z)
is a polynomial over K, it is certainly a polynomial over K{y}.
| Now the coefficient of ™ in P;(z) is equal to the coeflicient of z™ in P{z +y). Alsoifer
is a root of P(xz), @ —y is a root of Py (z). Similarly if 8 is a root of Q(z), —p is a root of
Q(—z). Hence by proposition 2.6(5),
R(y) = Res (P(z+ y) Q(— ))
= ap, by (—1)™ j=1 (i + B —¥)
Hence the result fo]lows 0

LEMMA C.0.5. Let A, B and C be polynomials with coefficients in a ring R and let o € R.
Then,

(o) Res((z ~ 0)A(s), B(@)) = Be).Res(A(z), B(z))
(b) Res(A(z), B(x)C(z)) = Res(A(), B(z)).Res(A(3),C(s))
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