New Topologies and Parallel Algorithms

for Static Intercdnnecti'oh_ Networks

Doctoral Dissertation
by
Srabani Sen Gupta

under the supervision of

Professor Bhabani P. Sinha

Indian Statistical Institute
203, B.T, Road, Calcutta - 700 035, India
1996 |

Dedication

1o my mother

Acknowledgement

I never thought of writing a thesis in Computer Science. It was my supervisor
Professor Bhabani P. Sinha who has initiated me to this subject. He taught me the
bulk of whatever little I learnt in Computer Science. 1 express my deep gratitude

for his invaluable guidance and supervision,

It was my privilege to have numerous interesting and fruitful discussions with

IProfessc-r Bhargab B. Bhattacharya. Whenever I needed help, he always obliged.

I must also mention the encouragement, advice and moral support I received from

Professor Jayasree Dattagupta, Dr, Nabanita Das, Dr. Susmita Sur-Kolay and
Professor Mihir K. Chakrabarti. My heartfelt thanks to all of them.

I express my gratitude to all my colleagues in the Institute, with whom I have
the opportunity to work closely during the period of my research. I am specially

indebted to the coauthors of my research papers,

I enjoyed the delightful company of my friends Rajib Das, Debasish Das, Mallika
De, Sandeep Das and Sudeshna Basu who always cheered me up during the frustra-

tions of research, I acknowledge their assistance and help on countless occasions,

I would like to thank the Indian Statistical Institute for providing me the financial
support during this period and giving me the opportunity to get acquainted with

distinguished researchers and many nice people, named and unnamed.

The love, affebti_on and support of my family members has always given me the
strength and inspiration, Special mention goes to Krishnendu, my friend, coau-

thor, critic, assistant and advisor who has always been with me in the best and

worst of times during these days.

S reah o g {Lv\q Lu,é 5{”

December, 1996 | ' | Srabani Sen Gupta

Indian Statistical Institute

Calcutta

Contents

1 Introduction

2.2,7

1.1 Introduction v v v v vt e e e e e e e e e
1.2 Scopeofthe Thesis v v v v v v i i e e e e
1.2.1 Static Network Topologies . . . R
1.2.2 Design of Efficient Parallel Algorithms, I -
2 A Brief Review

2;1 Introduction« v v v v i i v e e e e e e
2.2 Static Network Topologies e e e
2.2.1 Interdependence between Degree and Diameter -
2.22 Hypercube i 0 i i i e e e e e
2.2.3 GQGeneralized Hypercube
224 dBCube e e

- 2.2.5 StarGraph........T........-...
2.2.6 Radix-r de Bruijn Graph e e e e e e

Cube-Connected Cycles . v v v v v v v v v v v e v, L

10

13

228 LoopNetworks v v v v v v vt i v e 23

2.3 Design of Parallel Algorithms ,, .« v v v v v v v v v v v 26
2.3.1 Isomorphism of Maximal QOuterplanar Graphs . ., 20
2.3.2 Numerical Interpolation,29
2.3.3 Matrix Multiplication and Inversion, 30

Topologies with Multiple Loops 33

3.1 Imbfroduction. .. . « . v v v v i v v ot v ot v e e e e e .33

3.2 Description of the Topology .+« v v v v v v v v vt e e 34

3.3 Diameterof the Network ., v v v v v, ..., 38
3.3.1 Restricted Redunciant Binary Representation 37
3.3.2 Upper Bound on the Diameter 40

3.4 . Routing Algorithm e L AT

3.5 Fault .Diameter C e e e e e e e e !

3.6 Implementation of Algorithms e . 56

3.7 Comparison With Other Topologies 63

3.8 Conclusion . . . v . i v i e e e e e e e e e 64

Generalized Hypercube-~-Connected-Cycles 65

4,1 Introduction. G e e e e e e e e 65

4,2 The Topology of GHCC o o e 68

4.3 Diamefer o e e e Tl

4.4 Comparison With Other Topologies 73

4.5 Roubing . v v v v i o e vt e e e e e e e e e e e e 74
4.6.1 Poiﬁt-to-Point Communication, 74
4,5.2 One-to-all Broadcast 82

4.6 Connectivity . v v« v v v i i e e e e e e 91

4.7 Applications . . o e e e e e e e e e 103
.4.7*1 Sum / Average / Maximum / Mim’mum 103 ¢
4.7.2 ASCEND / DESCEND Classes of Algorithms 105

4.8 Conclusion, o oL .. 108

Isomorphism of Maximal Outerplanar Graphs 109

5.1 1Intr0 duction. , I I I A A AP AP 109

5.2 Preliminaries oo oo oo oo 110

5.3 Classification of Polygon Triangulations . . . e 112
5.3.1 Classification , e e e e e 113
5.3.2 Reflectional Symmetry of Triangulations 118

5.4 Counting Non-Isomorphic Triangulations of Each Class 122
5.4.1 Properties of Isomorphic Triangulations 123
54,2 Counting 125

5.5 Identification of the Class and the Central Triangle 134 |

5.6 Isomorphism Problem for MOPS . . . v v v v v v v v v v v e 187

5.7 Conclusion e e e e 144

3

6 Lagrange Interpolation

6.1 Introduction e e e e e e e e e e e
6.2 Computational Model, o o oo
6.3 DParallel Algorithm L 0 e
6.4 Scalabiiity of the Algorithm , o
6.5 Conclusion . ., . . . i i i i e e e e e e e e

7 Recursive Matrix Algorithms

7.1 Introduction v v v i v v i i e et e e e
7.2 Strassen’s Algorithm« v i it e e e
7.3 DParallel Implementation of Strassen’s Algorithm o
7.3.I1 Framework . o v v v v v v o e e e e e -
7.3.2 Overview of the Algorithm e
7,3.3 Detailed Steps for 2 x 2 Matriceé e e e e e e e e
7.3.4 Formal Description of the Algorithm .,
7.3.5 Time Complexity of the Algorithm
7.4 Conclusion L e e e e e e e e PR

8 Conclusion
References

List of Publications of the Author

149
149
150
153
157

162

163
163
164
166
166
167
174
180
185

186

187

190

Chapter 1

Introduction

1.1 Introduction

Many real-life applications in the ﬁréas of signal processing, {mage Iprocessing,
etc., require a large amount of fast computations to be performed. 'Alithough high
speed powerful processors are currently available due to the phenomenal advances
in VLSI technology, the increasing demand for massive real-time computations can
not be met just by a uniprocessor system. One way of achieving the goal of fast
computation is through parallel pr&aessz’ng. In parallel processing, a problem is
broken into several subproblems, which are distributed among different processors
so that each of the processors can perform its task simultaneously. Main areas of
recent research in paralle] processing include parallel architectures and algorithms,
parallel models and complexity classes, programming languages, operating systems

and compilers for parallel computers, ete.

Interprocessor communication in a parallel processing system is effected through
either a shared mémory or an intercqnnéction network., Interconnection networks
~ may be of two types : (i) static and (ii) dynamic. In static interconnection net-
works, there are fixed links among the nodes for which the connection pattern
can not be changed. On the other hand, in dynamic interconnection networks,

the interconnections among the nodes are made through links and switches and

as a result, different input-output connections can be established by changing the

switch settings.

A static interconnection network is usually represented by means of a network
graph. The nodes of this graph represent the processors and the edges stand
for the interprocessor links, A good network topology should have the following
desirable fealtures : |

i) small number of links to reduce the cost of interconnection, ii) low node degree
to limit the number of I/O ports per processor, iii) low diameter to reduce the inter
processor communication delay, iv) high degree of fault toler'ance, v) regularity, vi) '
symmetry, vii) incremental extensibility, viii} high bisection width, ix) easy routing
scheme in fault free as well as faulty situations, x) ease of mapping algorithms,

efc,

The problem of designing a network topology, simultaneously satisfying all the
above requirements, is very difficult as some of them are mutually conflicting. For
example, the objectives of achieving low diameter as well as low node degree are in
conflict wiat.h each other, Diameter can be reduced by intr'oducing more links in the
: topology which, in turn, increases the node degree. Fault tolerance of the network
is another issue which is also increased with increase in node degree. The usual
approach tq deal with all these problems is to design a near-optimal topology that
offers a fair compromise among the above requirements, depending on the needs
of the specific application, Designing such a network topology constitutes one of

the interesting areas of research in parallel processing.

Ring, mesh, tree, hypercube, [A89], (L92], etc., are some examples of popular static
networks. Ring topc;logy is widely used mainly due to its structural symmetry and
simplicity. Although the routing algorithm in this network is very simple, it suffers
from a large communication delay, This communication delay can be reduced if
additional links are introduced within a ring in a uniform way, One possible
topology resulting from such modifications is the distributed loop_network. [BT91).

Variations of such modifications leave ample scope for further research,

Hypercubes [HG69], [L92], star graphs [AK84], etc., offer a good compromise be-
tween the degree and the diameter, In a hypercuije, both these parameters are
reduced to the logarithmic order on the number of nodes N, while in a star graph,
both degree and diameter are of sublogarithmic order on N. Moreover, there are -
some topologies in which the node degree is constant (independent of the number
of nodes in the graph), but the diameter is still of logarithmic order. Moebius
graphs [LS82], de Bruijn graphs [B46], cube-connected cycles (CCC) [PV81] are

examples of such fixed degree graphs. The gaps between the successive values

of N for which these graphs are defined, are however, quite large. Hence, these
topologies are not incrementally extensible, Design of suitable topologies having
logarithmic diameter and constant /logarithinic degree with lesser gaps between

the successive values of N constitutes an interesting problem for investigation.

Different practical situations often impose restrictions on the size N (the num-
ber of nodes) of the network. The diameter (D) and the node degree (8) are

often influenced by the number of nodes and vice versa. The inter-dependence

among these three design parameters N, §, and D is well studied in the literature.
In mc}.st c:;f the existing topologies except a very few, like generalized hypercube
(GHC) [BA84], radix-r de Bruijn graph [PR82], etc., only one out of these three
parameters can be chosen indépendently. GHC, radix-r de Bruijn graph, however,
offer more design flexibility in the sense that two of the three parameters can be

chosen independently, Further investigations in this area are still called for.

Design of efficient parallel algorithms for various applications, e.g., numerical com-
putations, signal processing, robotics, graph problems, etc. [A89], [J92], [R93], is
another thrust area of research in parallel processing. In designing parallel al-
gorithms, usually two different approaches are being followed. One approach is

to start from a given network topology and then design a suitable algorithm for

the problem in question that can be efficiently mapped on that architecture, The
other approach is to start from a sequential algorithm for the givén problem, to
identify all the concurrent steps therein and finally to devise a suitable processor

interconnection scheme so as to best exploit the inherent parallelism in the algo-

¥

7

rithmic steps. The second approach is mainly followed in designing a dedicated

system for a specific problem.

1.2 Scope of the Thesis

This thesis addresses some issues involving (i) the design of efficient static inter-

connection networks, and (ii) the design of parallel algorithms for some real-life

problems implemented on different architectures.

1.2.1 Static Network Topologies

1.2.1.1 Topologies with Multiple Loops

We propose a new class of network topologies with multiple loops, which have some
attractive properties such as low diameter and low degree, incremeﬁtal extensibil-
ity, easy routing, etc. In the proposed interconnection netwbrk, N processors are
interconnected to form a graph G(m, N), where m is a parameter of the graph
such that (m— 1) X 2lmflj+1 < N <mx 2341, Nis an even multiple of m. For a
given m, we can construct the graph for different values of N, satisfying the above

constraints.

The graph G(m, N) can be constructed by suitably adding extra edges over a ring.
G(m, N) is thus hamiltonian, It has an average node degree of 3 when m is odd
and (3+ 1) when m is even, and the maximum node degree of 4. The diameter of
G(m, N) is bounded above by |4] + 1. Another interesting feature of this graph

is its incremental extensibility. The gaps between the successive values of N for

which the network can be deﬁﬁed,.is only 2m.,

For the proposed topology, there exists a si.mple routing algorithm for point-to-
point communication in a path of length less than or equal to the diameter. The

underlying graph is biconnected and in the presence of a single node failure, it

can be shown that the diameter may increase by at most 6. The implementation

details of an important class of Ascend/Degcend algorithms on this topology have

also been discussed.

1.2.1.2. Generalized Hypercube-Connected-Cycles

A new family of interconnection networks, Generalized Hypercube-Connected-
Cycles (GHCC), has been proposed. This topology is represented by a regular
graph G(Il, m), where [and m are two integer parameters influencing the diameter
and the degree respectively. The total number of nodes in G(I,m) is Im’. The
degree of each nodeism—~1forl=1 miforl =2 and (m+1) for | > 3. The
diameter of the graph is |51/2] —2 for | #1,2,8, m 5 1 and [52/2_] —~1 for | < 3,
m # 1. As special cases, this network reduces to a ring for m = 1, while it reduces
to a complete graph for | = 1, For m = 2 the topology reduces to a CCC [PV81].
This family of network topologies offers a specific design flexibility in that any
two out of the three design parameters N, 6 and D can be chosen independently.
For example, suppose the diameter D and the size of the network N are given
a priori In th.a.t case, the value of { can be chosen appmpria,tely so that the
diameter of the tﬁpolagy will be in the range D — 2 < diameter < D and
the total number of nodes In' will be very close to (greater than or equal to) the
given value NN, This will fix the value of ' m which, in turn, fixes the node degree
at [4(3?; +2ﬁ]ﬁal"tb'ﬁﬂ, In case of Generalized Hypercubes (GHC) [BA84], the node
degree will be bounded below by D[N% — 1] i a similar situation, For example, in
the neighborhood of 150 nodes, GHCs \i_.rith diameters 3, 4 and 5 should have node
degrees at least 13, 10 and 9 respectively; whereas in GHCC, the node degrees for
the required diameter should be9, 6 and 5 fespectiveiy, which are lesser than those
of GHC. On the other hand, with the degree—diametér pair (13, 3) and (9, 5), the

proposed topology permits the coﬁstruﬁtion of a ﬁetwork with 288 and 1563 nodes

respéctively compared to just 150 nodes in case of a GHC,

The connectivity of the graph is (m + 1) for [> 3. In the presence of m faulty

nodes, the diameter of the network increases by at most 6. Algorithms for point to
point routing and single node broadcast have been designed. Implementations of

different algorithms including the Ascend/Descend class of algorithms have also

been discussed.

1.2.2 Design of Efficient Parallel Algorithms
1.2.2.1 Isomorphism of M&iximal Outerplanar Graphs

Maximal outerplanar graphs [H69] constitute an important class of graphs, often
encountered in various applications, e.g., computational geometry, robotics, etc.
Testing isomorphism of maximal outerplanar graphs is an interesting problem of
research. The best known sequential algorithm for testing isomorphism of maxi-
mal outerplanar graphs (with N vertices) requires linear time (BJMT79], whereas,
the best known parallel algorithm requires O(log® N) time on an EREW shared

memory model with];;W processors {LLP*90],

We know that there exists a one-to-one correspondence between the maximal out-
erplanar graphs and the planar embedding of triangulated convex polygons. In
this thesis‘, we consider the isomorphism testing of maximal outerplanar graphs in
terms of triangulated convex polygons. We unfold different interesting fegtures of
triangulated convex polygons and then with the help of these characteristics, we
introduce a new scheme for classification of triangulated convex polygons, namely,
bisector, 'scalene, isosceles and equilateral triangulations. Next, we propose a par-
allel algorithm for identifying the class to which a given triangulation belongs. This
algorithm is then utilized to design a parallel algorithm for testing isvmorphism
of triangulated convex polygons, which is equivalent to testing isomorphism of
maximal outerplanar graphs. Given the ordered adjacency lists of the two graphs,
- the proposed algorithm tests their isomorphism in O(log N) time using N proces-
sors, for graphs with N nodes on an exclusive-read exclusive-write (EREW) shared

“memory model, as well as on a hypercube architecture, If, however, the graphs are

10

represented in terms of their adjacency matrices, this algorithm can be remodeled

on N? processors to run in O(log N) time.

1.2.2.2 Lagrange Interpolation

In many real-time applications, we may need to evaluate a function, say F(z), at
a given value of z, whose analytical form is unknown, but only a set of values of

the function F(z) at some discrete values of & are given. Such problems can be

tackled by different numerical interpolation techniques.

In this thesis, we propose a parallel algorithm, based on Lagrange interpolation
method. For N-point Lagrange interpolation, our algorithm has been implemented
using N(2 loggN ~ 1) processors with O(N/ log N) time complexity, Further, we
have shown that this algorithm can also be implemented on p(2log,p — 1) pro-
cessors where N = kp, k being an integer greater than 1. In that case, the time
complexity is O(k’p/logp). This shows that the algorithm can also be imple-
mented when processors fewer than N(2 log, N -—.1) are available. It is found that

in both the cases, the AT cost is O{N%).

1,2.2.3 Recursive Matrix Algorithms

Parallel implementation of recursive algorithms on systolic architectures are not
always straight-forward. Such parallelization requires a prior knowledge and plan-
ning of the intermediate compﬁtations and communications (e.g., broadcast of data
items) involved in the recursive calls, As these communications and computations
entirely depend on the nature of the recursive calls, devising a general technique

for parallel implementation of such recursive algorithms on systolic architectures

appears to be a difficult problem.

In this thesis, we would like to address the problem for parallelization of a specific
class of recursive matrix algorithms where, in each recursive call, the matrices

are partitioned into smaller submatrices of equal size. Strassen’s algorithm for

11

matrix multiplication [S69], Pease’s algorithm. for matrix inversion [P69], etc.,
are examples of this class of algorithms. We have taken up the recursive matrix

multiplication algorithm as a representative case, for implementing its parallel

version on a systolic architecture,

It comes out that it is possible to implement the Strassen’s recursive algorithm for

multiplying two n x n matrices on a hypercube in O(logn) time using n® proces-
sors, keeping the essence of each recursive step in tact. The basic philosophy of
intermediate computations and data communications adopted in this implemen-

tation can as well be extended to the recursive matrix inversion algorithm due to

Pease.

12

Chapter 2

A Brief Review

2.1 Introduction

In this chapter, we briefly review some of the existing works on the topics which
fall under the scope of this present thesis, Accordingly, we first discuss some
important aspects which have been studied in designing interconnection networks
and some popular static network topologies. Next, we would review the earlier
works relatéd to the three problems, namely, matrix multiplication, polynomial

interpolation and testing isomorphism of maximal outerplanar graphs.

2.2 Static Network Topologies

2.2.1 Interdependence between Degree and Diameter

Among the different measures for the performance of an interconnection network,

two key parameters are the maximum node-degree and the diameter of the net-

WOrk.,

There are several related problems invdlving"degree,.tfiameter and the number of
nodes-in the network. The one which is discussed most in the literature is the
(d, k) graph problem [HS60], [E64], [A65], [F66], [S70], [W72], [MR82]. The (d,k)

graph problem consists in finding the maximum number of vertices N(d, k) of a

. graph with given maximum degree d and the diameter k.

A theoretical bound on N(d, k) was given by Moore [B74], [B78]. It has been

shown that '
N(2,k) £ 2k+1

and for d > 2

N(d,k} < (d(d—1)*-2)/(d - 2)

The above bounds are known as Moore bounds and the 'gralehs satisfying the
Moore bounds are called the Moore graphs. However, it has been proved by
different authors [HS60], {L70],[F71], {BI73], [B74] that Moore graphs exist only
for a few combinations of d and k. Hoffman and Singleton [HS60] have proved
that Moore graphs of diameter 2 exist only for d = 2, 3, 7 and possibly for §7; for
d = 3 and 7 the graphs being a Petersen’s graph with 10 vertices and Hoffman-
Singleton’s graph on 50 vertices respectively, Sachs [S64| proved that for & = 3

the Moore graphs exist only if d — 1 is a power of some prime number,

The determination of exact value of N(d, k) appears to be a very difficult problem.
A lot of constructions have been given in the literature [F66], [K67], [S70], [TS79],
[MR82], [D84], [SB93] which exhibit large graphs with given deg1ee and diameter,
The results on (d, k) graphs are summarized in [BDQ82).

From the point of view of the degree and diameter, the existing topologies can

broadly be classified into two categories as discussed below.

‘The first category includes the hypercubes [H69], [L92], generalized hypercubes
[BA84], folded hypercubes [LA89), star graphs [AK84], pancake graphs [AK89],
radix-r de Bruijn graphs [PR82], et For these topdlngies, there exist functional
relationships (explicit or implicit) among the number of nodes N, degree é and

the diameter D, For example, in a hypercube with N nodes, both the degree and |
the diameter are log, N, an order n star graph has node-degree n — 1, d1ameter

]_3(“"1)J and total number of nodes (n — 1)!.

14

The second class consists of topologies with Constant degree. The ring [FL72),
chordal ring [AL81], distributed loop [BT91], mesh [AK83], Icube-connected—-cycles
[PV81], Moebius graph [LS82], radix-2 de Bruijn graph [B46] etc. are well known
members of this class. In case of these constant degree graphs the maximum node-
degree does not depend on the network size, it is fixed for all. For example, cube-
connected-cycles, Moebius graph etc. are regular graphs with degree 3. However,

the diameters of these networks vary with the sizes of the networks.

We present here a brief review on a few popular members of both these two classes

of networks.

2.2.2 Hypercube

Hypercube is one of the most popular network topologies in the area of parallel
and distributed processing. An n-cube or an n-dimensional hypercube, @,, is
recursively defined as @, = Qn-1 X K3 (n > 0), where K, is a complete graph

of 2 vertices, Q) consists of a single node and ‘X’ represent cartesian product on

graphs [H69]). A 3-cube is shown in Fig. 2.1.

110 ui
100 - '{T
fu — ! dou
000 ool

Figure 2.1: The Q; with 8 nodes

15

Different attractive features of a hypercube @), are :
1) the total number of nodes in), is N = 27,
2) it is a regular network topology with node degree n.
3) it is node symmetric as well as edge symmetric.
4) it has a diameter D = n = log, N,

)
)
5) an easy routing scheme exists for this topology.
6) it is strongly connected.

)

7) it can be constructed recursively.

Each node in (0. can be labeled by a n-bit binary string a,—1a,—2 *+ * @y stch that

the labels of two adjacent vertices differ in exactly one bit position.

A tremendous amount of research has been done on this topology due to its ver-
satile applications in the field of parallel processing. Several interesting properties
of a hypercube architecture has been investigated in the literature [H76], [F77],
[M82], [AG81], [ES83], [HHW88], [S588], [AP89), [BOST91], [L92]. Algorithms for
various problems have been designed and implemented [L92] on this architecture
as well. A lot of work has allso been done on reliability and fault tolerance of hy-

percﬁbe [L.89], [TRSQO], [YTR94)]. Different fault-tolerant communication scheme
has been reported in [F92], [LH92].

In spite of several good features, the hypercube topolegy has inadequacies as well.

1) An n-cube is defined on 2" nodes, which shows that this architecture is defined on
a very restricted class of points. Moreover, the gap between consecutive allowable

sizes of hypercubes is O(N), which is very large for practical applications.

2) The degree of the nodes in the hypercube increases with the increase in size of

the network.

To overcome these drawbacks, several variations of hypercubes have been reported
in the literature, Incomplete hypercube [K88|, generalized hypercube [BAS84],
cube-connected-cycle [PV81] etc, are examples of such atternpts. Another ap-

proach, which we often find in the literature, is to reduce the diameter through

16

some modifications over the original hypercube architecture. These include the
folded hypercube [LA89], bridged hypercube [AL90], twisted cube [ENS91], crossed
cube architecture [E92), varietal hypercube [CC94), bridged and twisted hypercube
[DMS94], dBcube [CAB94a] etc. This chapter includes reviews on some of these

architectures also,

2.2.3 Generalized Hypercube

A general class of hypercube structure, the generalized hypercube (GHC), was
presented by Bhuyan and Agrawal in [BA84]. The interconnection is based on

mixed radix number system and the technique results in a variety of hypercube

structures for a given number of processors N, depending on the desired diameter

of the network. The generalized hypercube structure is defined as follows :

Let N be the total number of processors and let it be represented as a product of
r integers m; (m; > 1), 1 <1<,

| | N=m.em._1% - xmg
Each processor X (0 £ X € N ~—1) is expressed as an r-tuple (z,,@,..1, <+ 21),
where, 0 € z; < (m; — 1). Processor X = (£,Zp-1 ¢+ Tip1%i%i-1+ - @1) in GHC is
connected to the processors (z,&y—1 +* -« Lig1®iTi—1-21), Vi, 1 < 1 < 7, where

takes all integer values between 0 and (m; — 1) except x; itself.
Fig. 2.2 shows a 4 * 3 ¥ 2 GHC structure.

The diameter of the GHC structure defined above is 7 and the degree of each node

is Z (my; — 1) When N+ is an integer, a cost optimal GHC with diameter r is
1=] |
obtained if m; = Nr_,\?’ i, 1 5 i <1

The GHC structure possesses the following characteristics :

1) the interconnection supports any number of nodes N,

2) the design is based on the allowable diaingter of the network, If the diameter

is increased, a structure with lower degree can be obtained.

17

021 -

321

311

301

Figure 2.2: ‘A 4 ¥ 3 * 2 GHC structure

3) the structure is very general in nature. Single loop, boolean n-cube, nearest;
neighbor mesh hypercube and complete graph can be considered as a part

of this general structure,

4) the structure is highly fault-tolerant.

2.2.4 dBCube

A dBCube, presented by Chen et al. [CAB94a], employs the hypercube topt:.ilogy
as a basic cluster. It connects many such clusters using a de Bruijn graph. This
class of networks have comparatively low node-degree while they retain many of
the properties and the advantageé of the hypercube topology by using it as a basic
structure. The size of this class of regular networks can be easily extended by
increment of a cluster size. Moreover, the local communications (to be satisfied by
the hypercube topology) allow easy embedding of the existing parallel algqrithms
while the de Bruijn graph .ﬁrwides the shortest distance between clusters running
different parts of an application. This is an example of two-level hierarchical

network [DEJ1].

Chen et al. have also presented partially connected dBCube subclass (PdBCube)

[CAB94Db)] in which the use of fewer nodes as gateways makes the network scalable

in terms of both the hypercube and de Bruijn in size,

2.2.5 Star Graph

In recent years a special class of symmetric graphs, called Cayley graphs, is draw-
ing a lot of attentions from the researchers, This class of graphs uses a group
theoretic approach as a basis of defining graphs. Here, we consider a group to be

the set of permutations generated by a set of generators.

Definition 2.1 Given a set of generators for a finite group G, we can con-

struct a graph, called Cayley graphs, in which the nodes correspond to the
elements of the group G and the edges correspond to the action of the gen-

erators.

A special class of Cayley graphs constitutes the Star graphs.

Definition 2.2 An n-star graph is the Cayley graph on the group G consist-
ing of all permutations on n symbols, and the set of generators g defined as
follows. The set g consists of n—1 generators {gs, g3+ *, gn} where g; switches
the ith symbol with the first (from the left) and leaves the remaining symbols

tn their original positions. So g consists of the following generators :

92 = (2134 - n)
gz = (3214'-'1’1)
gs = (4231 ... n)
 gn=(n234...1)

19

(Generators;

{2 = 3214
{3 = 4231

Figure 2.3: The 4-star network

A 4-star graphs is shown in Fig. 2.3.

'An n-star graph is defined on n! nodes. Different important features of an n-star

graph as follows.

1) It is regular, with node-degree (n — 1),

I 2) The diameter of this topology is |3{n — 1) /2].

3) The graph is node symmetric as well as edge syn:un-etric [AK89].

4) An n-star graph can be viewed as n copies of (n — 1) star graphs which are in-

terconnected by the edges corresponding to g.. This decomposition can be carried

out recursively.

5) It is maximally fault-tolerant. [AK84). Fault diameter of an n-star graph in the

presence of upto (n—2) faults, is only one more than the original diameter [RS93].

6) The._ gap between two consecutive allowable sizes of star graphs is very large' and
the topology is not at all incrementally extensible, To overcome this drawback, a

variation of star graph, incomplete star, has been proposed [LB94].

20

In terms of degree and diameter, the star graphs are clearly superior to the hyper-
cubes. Because of this and other interesting features of star graphs, this topology

has been considered to be a good alternative to the popular hypercube structure

for parallel processing.

2.2.6 Radix-r de Bruijn Graph

Pradhan and Reddy presented [PR82] a communication architecture for distributed

processors which may be viewed as a generalization of the well known de Bruijn
graph [B46] in radix-r number system, r is a parameter of the graph. The total

number of nodes, N, is assumed to be r". This architecture interconnects N nodes
by 7N links, where the maximum internode distance is log, N and each node has

at most 2r I/0 ports. The connection pattern is as follows :

Let (4n_1,8p—2,*,%) and (Jo-1, jﬂ_.g, +++, J) be the radix-r representations of the
nodes ¢ and §; 0 € 4,5 < N—1. Node { is gonnected to the node j'if at least one

of the following two conditions holds :
'ituzjtu-—la 1 Swssn—1

ory by = Jurly, 0SWEN—2

Given N, one can use different values of r to construct different interconnections.

The value of r may be selected on the baéis of the number of I/O ports available

Ll

per processors (i.e., the maximum node degree in the topology) and/or maximum

allowable transmission delays for meSsages (i.e., the diameter of the toPUIbgy).

This network is fault-tolerant and can tolerate upto (r—1) node failures. Moreover,
the authors developed a procedure using vf.rhich each fault free node can diagnose

the faulty nodes independently without use of any central observer.

21

2.2.7 Cube-Connected Cycles

An interconnection pattern of processing elements, the cube-connected cycles
(CCQ), was proposed by Preparata and Vuillemin [PV81]. This topology is a well

known member of the class of constant degree graphs.

A cube-connected cycle is a network of N identical processors, where N usually
takes the form n.2", for any positive integer n. These N processors are grouped
into 2" cycles, each consisting of n processors. The cycles are then interconnected

in the form of an n-cube. Fig. 2.4 shows a CCC with N = 3.2° nodes.

Figure 2.4: The cube-connected cycle with 3.2° nodes

CCC is a regular network with constant node-degree 3 and diameter |%£| —1, when

the total number of nodes is N = n.2".

‘By combining the principles of parallelism and pipelining, the CCC can emulate
the cube-connected machine with no significant degradation of performance. In
that sense, this structure is a feasible substitute for the cube-connected structure,
as it has bounded number of communications per processaf. The authors have
also described how to utilize OCO for efficiently solving a large class of problems,
called ASCEND and DESCEND class of pmblems which include FFT, sorting,

permutations and other derived algorithms,

22

2.2.8 Loop Networks

The ring network [FL72] is widely used in design and implementation of local area
networks and other configurations. This network topology is popular not only due
to its structural symmetry and simplicity but it can also be easily extended by
adding additional nodes. Moreover, the routing schemes for ring network is very
simple. At the same time, this topology has some serious disadvantages also : (i}
the ring topology has a low degree of reliability and hence low fault tolerance (ii)
the high value of the diameter of a ring (in a ring with N nodes, the maximum

distance between any pair of nodes is |¥]) may in turn cause a large transmission

delay.

Both of these problems can be overcome if additional liilks are introduced within a
ring topology. For cost-effectiveness, it is desirable to add as few links as possible.
Moreover, by adding links in a uniform manner, the other significant features of
the ring topology like symmetry, expandability, uniform token passing, etc. can be
presérved. The networks obtained by introducing chords over a ring are called [oop

networks. The Goal is to design loop networks with low degree and diameters.

Chordal Ring, proposed by Arden and Lee [AL81], is an example of such an
extension. A chordal ring is a ring structured network where there is only one
additional chord from every node in the ring, More formally, if the nodes in a
chordal ring are numbered as 0, 1, --:, N—1 (N is assumed to be even) along
the ring, then every odd numbered node i is connected to the node (¢ + w)modN.
Here, w is called the chord Iength. and assumed to be odd positive. Fig. 2.5
shows a chordal ring with 16 nodes and chord length 3. Thus chordal ring is a

regular degree-3 network. In thls topology the 1ncrement in node-degree results in

reducmg the diameter to O(v/N) from I_N X| in ring.

Another approach is to introduce two cho_rds from every node in the ring, This
results in regular graphs of degree 4. These structures are known as distributed

loop networks or double loop networks. The underlylng network graph G(N; h)
[T91] has the vertex set -

23

Figure 2.5: The chordal ring with N =16 and w = 5

ViG) =4{0,1,-.«,N—1}
and the edge set I
B(G)={(,5})]j=({{ £ 1)modN or j = (i & h)modN}
Here, h is referred to as the hop-size or simply hop. The graph G(16,6) has been
shown in Fig. 2.6. The term “double loop” signifies that these structures contain
two hamiltonian cycles [BFM89], These networks can be depicted as ILLIAC

interconnection networks as well. The double loop networks are well studied in

the literature and these are considered to be one of the popular networks, Several

works have been done on the bound on the diameter and many other properties

of G(N;h).

Let DY = miny{DiamG(N;h)|2 < h < N—2}. Dj denotes the.minirnal di-

ameter of such a network with N nodes. Wong and Copersmith [WC74] found |
a lower bound Ib(N) = /2N —3/2 for Dj. This bound has been madelltighter
to [(v2N ~1-1)/2] by [DHL*90], [BW85], [BIP85]. However, the lower bound

Ib(N) may not be achievable for all values of N. Bermond and Tzviele [BT91]
proved that Ib(N} = k if N € R[k], where R[k] ==.{2k2 —2k+2,--+,2k*+ 2k + 1}.

For network size N, a hop._h. and the graph G(N;h) are called optimal if.the.
diameter of G(N;h) equals to D} and they are tight optim_al if the diameter |
equals to Ib(N). Thus,- a double loop network G{N;h) can be optimal for some

24

Figure 2.6: The distributed loop network G(16,5)

hop A but may not be tight optimal if D} > lb(.N).

In [BT91], authors determined dense families of values of N that are optimal and
such that the computatioﬂ of the optimal hop is easy. Infinite families of optimal
networks along with the optimal hops are also identified in [T91] and [DHL90].

Several features regarding routing in double loop networks have been well studied

in [MS95] and [DS95].

The generalization of double loop networks can be found in the literature. These
double loop networks are actually special cases of an important class of graphs,
called circulants. Circulants have been known in the graph theory for a. long time.
They were first introduced by Catalan in 1846 [D79]. A circulant Cy(s1, 82, - . , Sk)
is a graph with N nodes, numbered from 0 to N—1 and node 1 is connected to the

nodes (i £ s;)modN, V4,1 < j < k. Several works have been done on these graphs
'D79], [BT84], [BWSS5]. '

Re‘céntly, a new topology called recursive circulant has been proposed by Park
and Chwa in [PC94]. Recursive circulant G(N; d) is defined to be a circulant graph
with N nodes andl jumps of powers of d, d > 2. That is, G(N, d) is a circulant
graph Cy(d°, d*,d?,d3, - - ., dloss M-1), This topology can be recursively constructed
when N = cd™, 1 < ¢ < d. In that case the diameter will be [(3m — 1) /4]. As an

example, a recursive circulant has been shown in Fig, 2.7.

20

Figure 2.7: The recursive circulant G (1‘6, 2)

2.3 Design of Parallel Algorithms

Design of efficient parallel algorithms is an area of extreme importance. In this

section we discuss some of the earlier works for a few selected problems.

2.3.1 Iscimofphism of Maximal Outerplanar Graphs

Two graphs G; = (Vl, 2 1) and Gq = (Vﬁ, E:g) are isomorphic to each other iff there
exist a one-to-one function f from V; onto V; such that v; and vp are adjacent in V;
iff f(v1) and f(vz) are adjacent in V5. The problem of testing whether two graphs
GGy and G, are isomorphic or not is known as the graph isomorphism problem.

This problem has been much studied in the literature [RC77].

It is still not known that whether the geﬁeral graph isomorphism problem is solv-
able in polynomial time or it is an NP complete problem [GJ79]. But the related
subgraph isomorphism problem is proved to be NP coniplete. Good heuristics -
exist in the literature for the genéral prcﬁblem,' but in the worst cas:e'thes_e algo-
i‘ithms have expd.nential.l time complexity. One such algorithm is due to Oorneﬂ
and Gotlieb {CG70]. However, the isomorphisin prﬂblem for some special .clas-ses of
- graphs can be solved in polyﬁomia_l time. Trees [CBBI_la]',' [AHU74], intervall gfaphs_

26

(CB81], [LB79], series-parallel graphs [W66], planar graphs [HW?74], hamiltonian
2-sep chordal graphs [VKV91], partial k-trees [B90], etc. are examples of such

special graphs.

Regarding planar graphs, Weinburg [W66] developed a sequential algorithm for
testing isomorphism of triply connected planar graphs in O(N*) time, where, N
stands for the number of vertices in the graphs, An improved algorithm for triply
connected planar graphs and an O(N?) isomorphism algorithm for general planar
graphs was given by Hopcroft and Tarjan [HT71]. In [HT72], the same authors
again reduced the time complexity to O(NlogN) time. Finally, Hopcroft and
~ Wong were able to obtain a linear time algorithm [HW74] for this problem.

In the hierarchy, iltext comes the outerplanar graphs, which is a subclass of planar
graphs. A planar graph is outerplanar if it can be embedded in a plane so that all
its vertices lie on the same face. We call this face as exterior face [(H69]. Capital-
izing the fact that every biconnected outeri)lanar graph has a unique hamiltonian
cycle [H69]; Colbourn and Booth developed an interesting method for testing
isomorphism of outerplanar graphs [CB81]. They noticed that the hamiltonian
adjacency sequence (defined in [CB81]) can characterize a graph uniquely (upto
isomorphism) instead of a hamiltonian degree sequence. A hamiltonian degree
sequence may generate more than one non-isomorphic outerplané,r graphs., These
hamiltonian adjacency sequences for two graphs (G; and &3 can be constructed
in linear time and then using a linear time pattern matching algorithm [OLRQO]

those sequences can be tested for isomorphism of) and Gj.

A graph is maximal outerplanar (MOP) if no edge can be added to'the graph with-
out violating the outerplanarity [H69]. Unlike outerplanar graphs, the hamiltonian
degree éequence can uniquely (upto isomorphism) characterize a MOP. Using this
fact Beyer, Jones and Mitchel [BIM79] obtained a simpler linear time algorithm for
MOPs than that in [CB81] as applied to MOPs, Also the algorithm in [BIJM79)] is
more efficient than that in [HW74] when applied to MOPs. In [BJMT79], the hamil-
 tonian degree sequenceé D1 and D, for the two graphs G; and G» were computed

which were used with the fact that G, and G, are isomorphic iff D, is substring

27

of D1D1$D{DF, where D is the inversion of D, and ‘$’ represents the ‘end of
string’ character. In their first approach of comparing these two strings, they used
Morris and Pratt’s pattern matching algorithm [MP70]. In the second approach,
they found a set of either two or three vertices (termed as central vertices) which
can be uniquely identified in a MOP and for comparison of the degree sequences,
they sﬁart the hamiltonian cycle only at these vertices. An approach, based on
number theory, for testing isomorphism of two maximal outerplanar graphs also
exists in the literature [C82]. It is known that there is a one to One Correspon-
dence between maxin;lal outerplanar graphs and Farey graphs. With this idea, an

O(N?) algorithm for testing isomorphism of maximal outerplanar graphs has been

described in [C82].

Regarding parallel algorithms, in [JK88), Ja Ja and Kosaraju parallelized the idea
given in [HT73] for isomorphism testing of planar graphs with time complexity of
O(log® N) when implemented on a CREW PRAM model with O(N?) processors
and with O(\/]_\T) time when implemented on a VN x VN array of processors,
Gazit and Reif [GRI0] alsol parallelized the same approach with a randomized
algorithm of time complexity O{log N) using NI‘E\/l'og(I\O processors, assuming
that the families of separators for both the graphs are given. A deterministic
algorithm for planar graphs was also presented in [G91] which requires O(log® N)

time using Eﬁ% processors when implemented on a CRCW PRAM model.

Parallel algorithms for testing jsomorphism of out‘.efplanar graphs also exist in
the literature. In ILP89], it is shown that isomorphism problem restricted to
2-connected outerplanar graphs is in the class NC? (they can be solved by an al-
gorithm running in O(log3 (&N)) time using polynomial number of processors). In
[LLP*90], Levcopoulos et al. have shown that isomorphism of trees and outer-
planar graphs can be tested in O(log N) time with]-‘%,—-g processors on a CRCW
PRAM model and in O(log® N) time with 1'65'1" processors on an EREW PRAM

model.

28

2.3.2 Numerical Interpolation

Several real time situation may demand fast evaluation of a function at a given
value. However, in many cases only the values of the function at some discrete
points are known, instead of the analytical form of the function. In such cases,
the function can be evaluated at a given point by using different numerical inter-
polation techniques. Polynomial interpolation is widely used for curve and surface
fitting to scattered data. In many applications of the surface fitting technique,
the goal is to construct a contour map of the unknown function [S76] using the

given data. This contour map construction has applications to the oil industries,

geological maps, cardiology, etc.

The best known sequential algorithm for polynomial interpolation requires

O(Nlog® N) time [AHUT4]

In recent years, a number of parallel algorithms for polynomial interpolation have
been proposed in the literature, McKeown {M86] presented a systolic implementa-
tion of Aitken’s method of iterative interpolation to compute the Lagrange inter-
polation polynomial. Capello, Gallopoulos and Koc presented several spacetime-
optimal systolic arrays for computing process dependence graph corresponding to
the Aitken algorithm [CGKQO]. By studying these process dependence graphs in
- detail, the authors derived a method related to that of McKecwn f01: a systolic
version of Newton and Hermite interpolation using the algﬁrithm of Aitken and
Neville [CB81b}. This method requires 2N — 1 steps on I_’-;J processors (when N is
- the number of interpolating points}. Each step mnsisting"of two subtractions and
one division. When reprogranimed to compute iterated interpolation, each step of '

this method requires two additional multiplications along with that subtractions

and division.

In the papef_ ISMK91], Schroder et al. described a 'systolic 'pafalleI/distribluted
algorithm for interpolation and evaluation of polynomials over any field using a
linear array of processors. The time complexity of this algorithm was O(N) when

| implemehted onanl x (N+ '1) processing array. This algorithm was based on

29

Newton'’s divided difference scheme. An extension of this idea was presented in
IMKC92| for rational interpolation based on Thiele's reciprocal differences and
continued fraction approximation. The paper also described a. systolic algorithm,

whose period is O(N) to produce M/M Pade approximation (M = [£]) using N

Processors.

A parallel algorithm has been described in [G94] by Goertzel which computes
the Lagrange polynomial interpolating N points in | 2| + O(log N) steps. Each
step consists of two subtractions and four multiplications, Unlike the systolic
algorithms mentioned above, this method makes use of a processor tree with ring
connections. The architecture exploits the inherent redundancy of the Lagrange
coeflicient in a novel way. Without the tree connection, the method requires N+ 1
steps on NN processors which, with respect to the spac.e-time cost, is similar to that

obtained in [CGK90]. The additional tree connection reduces the time complexity

by approximately half.

2.3.3 Matrix Multiplication and Inversion

Matrix multiplication has tremendous applications in numerous fields, It is useful
for numerical problems (e.g., solution of linear system of equations) as well as non-
numeric applications (e.g., graph problems), Development of faster algorithms to
multiply two matrices has been well studied in the literature. As opposed to the
conventional O(n®) serial algorithm for multiplying two n X n matrices, Strassen
first gave a new serial algorithm which required only O(n?#!) time [$69]. Following
Strassen’s method, other faster serial algorithms also appeared due to Coppersmith
and Winograd [CW80], [CW87) and Strassen (S86]. In [CW87], the authors ﬁﬁally
reduced the time complexity to O(n?%76). A discussion on the development of
f&stér serial algorithms to multiply mz-itrices and their varied applications can be

found in [P84].

Quite a few array processors exist which have been designed for hardware imple-

mentation of matrix multiplication algorit'hms. For example, the design of linear

30

arrays [PT89), [PT91), [RV84] [VR86], the mesh arrays [K88c], [MC87], [TC95),
the hexagonal arrays [LW85], the cylindrical array [PA88] and the two-layered
(or the multi-layered) mesh array [K88a]. Besides, Benaini-Robert [BR89] and
Jagdish-Kailath [JK89] used Winograd algorithm for matrix multiplication and

implemented them on their systolic arrays.

Several mesh algorithms have been proposed in the literature, whose running time
is (n). Such algorithms appear in [FK76], [PV80], [U84] and [V76]. The mesh
matrix multiplication proposed in [A89] is the fastest achievable on a mesh of

processors. Algorithms on multidimensional meshes are described in [NMB83]

and [L83].

Numerous algorithms have been proposed in the literature for performing matrix

multiplication on the hypercube structure, each having its own characteristic of

speed-up factor and memory usage.

A number of other matrix multiplication algorithms for the cube and perfect shuf- |
fle interconnection networks are described in [DNS81). The idea of cube matrix
multiplication described in [A89] originated in [DNS81] and its running time is
O(log n). This running time is the fastest achievable by any parallel algorithm for
mﬁltiplying two n X n matrices on the cube. Matrix mulfiplication algorithms for
the cube and other interconnection networks and their applications are proposed
in [CS87], [FOHS87], [HZ83], [HHC82], [HB84], [K80], [MC80], [RV84] and [VRS6).

A new parallel computation model, called a permutation network processor was

introduced in [LLO94] for inner product and other matrix computations. It shows
that the matrix multiplication can be computed on this model in O(1) time at the
cost of O(n?) processors for n x n matrices. The result compares well with the -
time and cost complexities of other high level parallél computer models such as
PRAM and CRCW PRAM. _AIgorithms which run on a CRCW Sha.red—memory
computers can be found in [CT76], [HZ83], [S78| and [S80].. A discussion of vari-

ous implementation' issues regarding parallel matrix multiplication algorithms is

provided in [CPH*83].

31

Matrix inversion is one of the important problems in numerical linear algebra. The
best known parallel algorithm for ct:m’iputing matrix inversion is due to Csanky
[C76a). The algorithm requires O(log?n) computational steps using O(n*) pro-
cessaors for inverting a matrix of size n >< n. Though this is the fastest known
method, its implementation is questionable due to its unstable nature. Another
matrix inversion algorithm based on matrix partitioning is due to Pease [P69].
Several systolic algorithms for matrix inversion implementable on VLSI architec-
tures can be found in the literature [R85], ([GHV88|, [AD8&9], {E89], [ED&9], (L.90],
[IMMS92], [KLY92]. A parallel algorithm based on Givens plane rotations is de-

scribed in [E89], [ED89]. The algorithm inverts a dense matrix of order n x n

on a systolic array consisting of n? + n processors, in 5n units of time. Parallel
Gauss-Jordan algorithm suitable for implementation on a pyramidal architecture
has been analyzed by Geus et al. [GHV*88]. A parallel algorithm based uﬁ
Gauss-Jordan elimination method for dense matrix inversion has been presented

in [MM892].' A Strassen-type matrix inversion algorithm is discussed in [BH94].

32

Chapter 3

Topologiés with Multiple Loops

3.1 Introduction

In this chapter, we propose a new family of network topologies, by adding a few
extra links over the ring. A topology in this fanﬁly has nodes with degrees only 2,
3, and 4 (average node degree is less than or equal to 3.25) and has the diameter
bounded above by | 42|41, where m is a parameter of the graph such that m > 83,
N is an even multiple of m and (m — 1) x 211+ < N < m x 213]%1, This shows
that the diameter of the topology is O(log N). With respect to the diameter, this
topology is thus superior to both the chordal ﬂng and the distributed loop network.
The total number of links used in this network is less than that in a distributed
loop network and is no more than 1/12%2 of that in a chordal ring. An algorithm for
point fo point routing has also been Iﬁresented. The Ascend and Descend types of
algorithms [PV81] can be efficiently implemented on this topology. Moreover, the
successive values of N, for which the proposed topology can be defined, are at an
interval of 2m, which is less than 4log, N. That is, if N and V', are two successive
values of_lthe total number of nodes with N' > N, then N — N < 4log, N. This
may be contrasted with other fixed degree tdpologies having O(log N) diameter,
e.g., Moebius graph [LS82], de Bruijn graph [B46], cube-connected cycles [PVBi],
etc., for which the successive values of N are at much larger intérvals, For all such

graphs, NV is at least 2N. The proposed netwdrk graph is hamiltonian and in case

of a single node failure, the diameter may increase by at most 6.

3.2 Description of the Topology

We describe the topology in terms of a graph G(m, N), having the following char-

acteristics:

a) N is the total number of nodes in the graph, Let the nodes be numbered as

0,1, .- N-1,
b) m is a parameter of the graph such that m > 3.

c) N is an even multiple of m such that N = 2k x m, for some positive integer k.
d) (m—1) x 2l <« N<m x oL+, *

e) The nodes are connected by the following three types of edges (all operations

below are treated under modulo N, unless otherwise mentioned)

1) The node 7 is connected to the nodes ({+1) and (¢ — 1), Thus the nodes are

connected in the form of a cycle. We call these edges as c-edges (cyclic édges).

2) For 0 £ ¢ < 2k — 1, the node i.m is connected to the diametrically opposite
node (i.m + N/2). We call these edges as d-edges (diagonal edges).

After introducing d-edges, there are 2k number of nodes in the network, which are
of degree 3. These degree 3 nodes divide the cycle, formed in (1), into 2k parts.

We call each of these parts as a sector of length m. The sector j consists of the

nodes, {j.m, jm+1, jm+2, -, (j+1)m},0 < j < (2k—1).

3) Nodes in different sectors are interconnected by a third type of edges, called as

- hops or h-edges, as described below. |
Starting from the node jm+ 1, in sector g, 0 < _7 <2k-—1, h—edges are mtroduced

at every alternate node of degree__ 2 (there are _%J such nodes in every sector),

These connectioﬁs-a_re done by the following ways depending on the value of m.

a4

Let |m/2] —1=nr
Case 1: r is even.

i) The node j.m+1 is connected to the nodes [(§.m+4)£m x 271, These h-edges

are termed as hops and are denoted by h, ;) respectively, i == 1, 3, 5, -+, r+1.

ii) The node j.m + 1+ is connected to the nodes [(j.m+i+7) £ m x 2*7%]. These
edges are likewise termed as *h;_» hops, i = 3,5,--+,r+ 1.

Case 2 : r is odd.

i} The node jm+1iis connected to the nodes [(.m +1) £m x 2761, by the hops
hr-—-(i-——l): i=1,3,9, -,

ii) By the hops *h;_y, the node jm + i + r is connected to the nodes [(jm + i+ .
r)kmx27?,i=24,.-., 7+ 1.

- An example of the hop distribution in sector 0 of the proposed topc}logy when
m = 8 and m = 11 is given in Fig. 3.1. Fig. 3.2 shows the complete connection
pattern in G(5,40). 1t is to be noted here that the Iargest hop originated from a
sector, is Aym/aj-1. A hop h; will be referred EG as even (odd) if ¢ is even (odd).
The connection pattern shows that even and odd hops originate from different

halves of a sector. The two. hops connecting a vertex v to v + m.2' and v — m.2]

will be referred to as +h; and —A; respectively.

Average node degree of this graph is 3 + 1/m, when m is even and exactly 3 when
m is odd. It shows that the average node degree approaches to 3 for large N. The
total number of edges in the graph is thus asymptotically ~ 1.6N. -

Remark : If all the ﬁodes in each sector (that is, the nodes jm, ym + 1, .-,
4+ 1)m — 1 in sector 4, V 7, 0 < j < %) of G(m,N) are coalesced to form -
a single node representing the whole sector then the resultant graph will be a
supergraph of the circulant G(%, +1, +2, +22, +28, .. , gllog 7 J-1) IBW84], [D79]
(or recursive circulant G(N, d) for d = 2 [PC94]). O.nly in a special case, when N
= m.zl%‘J-l-l'the graph obtained by ﬁo_alg.scing the nodes in each sector of G(m, N)

I

d +hs hq +hg tho cd
() For m = 8
11
- thy +h, +h; "ha d
(b} For m = 11
Figure 3.1: Hop distribution in sector 0
will be identical to G(%, +1, £2, +£2% 2% . 2]"5“1). However, because

of the typical degree distribution of the nodes in a sector, the extension of the
results regarding diameter, routing, etc, of circulant graphs [BW84)] or recursive
circulant graphs [PCY4] can not be directly extended to G(-m, N) and then need a
separate treatment as given in the following sections, Moreover, the node degree
(appmxifmately equal to log, N) in the rec.ursive circulant graph increases with the -
total number of nodes N. In the proposed topology the average node degree is

approximately equal to 3 and the maximum node degree is 4. In this regard the

proposed topology is more cost effective.

3.3 Diameter of the Network
In this section, we find an upper bound on the diameter D of the graph G(m, N).

To start with, we discuss about a restrlcted redundant binary number system to

represent a node of the graph.

36

Figure 3.2; The proposed graph G(5, 40)

3.3.1 Restricted Redundant Binary Representation

Definition 3.1 A Redundant Binary representation ke ke_o -+« ky of a

number K is one in which each digit k;, 0 < 1 < r—1, is an element of

r—-1
{0, 1, 1} and K =) 2'k;.
=0
Naturally, K does not have a unique representation in redundant binary.

Example 3.1 The binary number 0111011 has the equivalent representa-
tions 1001101 and 1000101 in redundant binary. '

Definition 3.2 A redundant binary representation, in which there is at least

one zero bit tn between two non-zero bits, will be termed as a Restricted

Redundant. Binary (RRB) representation,

37

Example 3.2 In 3.1, 1000101 is the RRB representation of the binary siring
0111011, |

Remark : This RRB representation is similar to the canonical signed digit
(CSD) representation [AW93] of a positive integer for the radix-2. It follows from
the results in [R60] that the CSD (as well as RRE) representation of a number can
pbe computed sequentially by scanning the binary representation of the number
from right to left. Thus, the RRB representation of a number N can be computed
sequentially in O(.logN) time. How this conversion can be done by scanning the

binary string from right to left is shown in the following example.

Example 3.3 The string 1111011101011 can be converted into the equiva-

lent RRB representation by the following steps :
1111011101011 — 1111011101101 — 1111011110101 — 1111100010101 —

1000010010101.

We state the following results.

Lemma 3.1 In the RRB representation of a number K, the number of non-

zero bits can be at most [[lﬂgﬁq“].

Proof : case I: When K is not a power of 2.

Binary representation of K requires {log K] number of bits., In RRB representa-

tion, the number of bits require to represent X may be one more than that, i.e.,
[log K| + 1. Since in between two consecutive non-zero bits there should be at

least one zero bit in RRB 'representation, the maximum number of non-zero bits
['ﬂﬂ;sjﬂﬂ]

in this representatmn of K will be

case - 2. When K is a power of 2, RRB representation of K contains exactly one

non-zero bit. | | |

Thus in RRB representation of any number K, the number of non-zero bits can

rf]n&fﬂ-i-l" | - - R 0
7 | |

be at most

- 38

- Lemma 3.2 The RRB representation of a number is unique.

Proof : It is clear that (00.--0) is the unique representation of 0.

Now, if possible let a = {apag_1+--a1a9) and b = (bpbr—1 -+ - bibg) be two distinct
RRB representation of a number, say x. Then a — b must be O.

Since a and b are distinct representations, they must differ by at least one bit
position. Let a; # b;. '

If one of them is zero, then the i** bit of a-b will be non zero and since in RRE

representation every non-zero bit is padded by at least one zero bit from both the
sides, no carry bit can make this i* bit zero in the final representation of (a — b).

When both of them are non-zero, without loss of generality, let us suppose a; =1

and b; == —1. In that case, the i** bit of a — b will be 0 and the carry 1 will be

propagated to the next bit. Now, as we are considering RRB representation, both

a;r1 and b1 will be 0. Thus the carry of the i** bit will make this (i + 1)** bit of

(a — b) non-zero.

Thus we have seen that a — b can not be equal to 0, which contradicts our assump-

tion., Therefore RRB representation of a number is unique, ~ mj

Lemma 3.3 In the RRB representation, the largest number M that can be
obtatned using b number of bits is given by :
2(2°—1), if b is eveny
M=

2(2° 1) + 3, otherwise.

Proof : It is clear that for the largest number, every alternate bit starting from
the most signiﬁcé,nt_ bit will be 1. |

If b is even, then

M=2b-—1_|_2b-3_|_“'+2m%(2!,__1) |
Otherwise, ' | _ . |

39

Let w, be the total number non-zero bits in the RRB representation of a number
z. Further suppose that w¢ and w? be the number of non-zero bits correspond-
ing to the even and odd powers (‘0’ is excluded) of 2 respectively, in the RRB

representation of .

t

Example 3.4 For z = 10010101, w, = 4, w® = 2 and w? = 1; for =z =
10010100, w, = 8, wt = 2 and w2 = 1.

It is clear that when x is odd, w, = wt + w? + 1, otherwise w, = w¢ + w?.

3.3.2 Upper Bound on the Diameter

To find the diameter it is enough to consider the paths from a node s in sector 0,

to a node d < %" , since all sectors look alike.

Suppose, d belongs to the sector §, 0 < § < I_-,_;%J Starting from s, we use hops
to move across different sectors. But to avail a hop, we may need to traverse some
cyclic edges as well. With a view of minimizing the total walk along the outer cycle
(i.e., along the c-edges) we would take either odd hops or even hops (depending on
the value of s and d) which emanate from only one half of every sector. hy may be
included in both the cases. Since accessing hy is equivalent to accessing h;.; twice,

[2] —1 > 121, it is always possible to get such a collection of hops. The method

‘how we select the hops to reach sector é starting from sector O is discussed first

and then the specific order in which these hops are to be accessed to reduce the

.total walk along the cychc edges is found.

First we find the RRB répreseutaticinlof the sector difference 6 (since the source is

0 here). The set of hops corresponding to the non-zero bits of this representation

will be sufficient to cover these § sectors. The selection process is thus if the 7
bit of the RRB representation is 1 or 1 then the path includes a hop h; or —h;
respectively, 1 < j £ |2| — 1. For example, if we assume that the value of § to

be 13, the RRB representation of § will be 10101 and accordingly the set of hops

4()

that can be used to reach the destination sector will be {hy,—hs, hg}. It can be

verified that the hops present in the network would support this selection process.

Without loss of generality, let us assume that w§ > wj As we have already
mentioned that for minimizing the total path length we should restrict ourselves
to use either even or odd hops only (hy may be included in both the cases), it
is wise to convert odd hops into even hops when w§ > wj. In that casge, instead
of using w§ + w; number of hops we shall use w§ 4+ 2w§ number of hops along .

with some *hg. Now, let us try to estimate a bound on the total number of hops

required after conversion.

Case1:05d£%,i.e.,0565[~‘5’—_|.

4im

As0<6< LE%.J: the number of bits reqiured for RRB representation of 6 is | %].

Let us consider the following two subcases separately.

subcase 1a. When § is odd,

For odd &, the least significant bit (Isb) in RRB representation of é is non-zero and
hence the second lsb is 0. Among the remaining || -2 bits the number of non-zero

bits can be at most [-[—%%:——2-] = | 22| (by lemma 3.1. Therefore, w§ + w§ = [2:2].

Now, according to the RRB representation of 6, w;s is the total number of hops
required to reach sector 6, Since the lsb of the RRB representation is 1, ws; =

- w§ +wj 4 1. Thus, after conversion we need at most 2w + w; + 1 number of hops.:

Now, 2w§ +wg +1 < [3(wf+wf)] +1 < |3 2=2] + 1.

Thus the maximum number of hops required to reach sector § (using either even

or odd hops along with some -=hq hops) is at most ™3] 1.

Subcase 1 b ;: When 6 is even,

For even §, the Isb in the RRB representation of § will be 0. In the remaining

|3 ~ 1 bits, the number of non-zero bits can be at most [L?] = | %],

Here, we have 'wf + w§ = ws; and wy < |], Thus after conversion of the odd hops

4]

into even hops, the total number of hops can be at most [3(|2])].

Hence, the maximum number of hops required to reach sector 8, under the restric-

tion that either even or odd hops (hy may be included in both the cases) can be

used, is

__ I-%([“?J)J when m mod 8 is 0 or 1;
1 [%l_mfgﬂ + 1, otherwise

Case 2 : ;L] <6< L)

To reach this part of our network, we may utilize diagonal edges. But if we include

a diagonal edge in our path, we would not use any th|z .

From sector 0, if we use a d-edge we will reach the boundary of the sectors 3% |

and |£-] — 1. From there we have to cover a distance of § sectors to reach sector

5, where j = |#-] — 6. To traverse this distance we would not use any th)m)g
hop. Here, by Lemma 3.3 we have, 0 < j < 2(21%]! — 1) + 1, which implies,
[zﬁ;J %(QL%J -1) <6< _5‘7—;’1—] For such a 8, the maximum Ilumber of h0ps_

required to reach the destination sector can be enumerated as follows

In this range, j can be represented in RRB using a maximum of (|Z] - 1) bits. As

discussed in subcase la, the value of w§ + w§ can be at most [Lln‘!-é:—aw = |Z] —1,
when 7 is odd. Hence; after conversion of the hops info either odd or even type,
‘at most [3(| 2] — 1)] + 1 number of hops can be required to reach the destination
sector. .HIncluding the diagonal edge, the number of hops will be one more than
that.

When 4 is even, following the same arguments given in subcase 1b, the number of
hops (including the diagonal edge) can be at most |$(|Z2])] + 1.

If B, represents the upper bound on the number of hops required' to reach the

destination sector §, when [£-] — 1(2!8) - 1) -1 <6 < | £, then

12(_"""2J)J +1 when m mod 8is 2 or 3;
Bz
[5(1%) —1)] +2 Otherwise

Now, we are left with the case when L4—-J < 6 < |_ = | -~ -(QLTJ - 1) — 1 Using
- the upper bound on |z}, the above range is redefined as |5 J <6< (Zl’?'J — 2)

42

By Lemma 3.3, the farthest sector (from sector 0), whose RRB representation
contains [%] bits is #(213) — 1). This shows that in the range when 0 < § <
2(2L%) — 1), we need not use d-edges. Only hops are sufficient here, as in case 1.
The range || < 6§ < [£] — 3(21%) — 1) — 1 is totally contained in the range
0€6< -g—(2l”}J —1). Thus in this case, the number of hops required to reach the

destination sector ¢ is same as the bound obtained in case 1.

Hence for 0 < 6 < I_%J, the number of hops required to reach sector 4, is at most

max (Bi, By). It can be easily verified that max(B;, B,) is always By V m.

So far we have identified the appropriate hops required to reach the destination
sector and have also enumerated a bound on the number of hops. Now, we would

find a specific order in which these hops are to be availed so that the walk along
the cycle will be small enough to minimize the total path length. Let us introduce |

the following notations first,

1) z; denotes the node in the sector j, from which hops of type O are originated.

Thus «; divides the sector j into two halves. Even and odd hops are emanated

from these two halves.
2) By [a, b] we mean the set of the nodesa, a+1,a+2, -+, b.

3) Let Hj be the set of hops of either even or odd types, required to reach sector 4,
Suppose |Hs| = p. Let u}, ’u,_?, vy bf—.\; the nodes in sector j such that the hops
in H; originate from these nodes and u} < ’uf < +++ < ui, Again, we call [u_}, uf]
as the range of Hy in sector j.

With this notation, it is clear that w§+wg < |'uf-—12d+11_ Thus, the number of hops

required to reach sector § would be at most |3 [“E_;‘:H]J < 3uf - Sud + &,

 4) Let the projection of d onto sector 4 be a node d; in sector 3, which is related

to d by the equation d = (6 — 7) x m + Jj'

It is clear that to use the hops in Hj '(sdme of which may be repeated in the
actual path), ¥r,1 < r < p, we must. traverse through uj at least once for some

sector 4, 0 < § € 2k~ 1. Now, counting the number of c-edges involved in this

43

traversal can be equivalently mapped to the problem of counting the number of
c-edges required to reach d, starting from s, with the restriction that any one of
{ul, ug, .} is traversed at least once. We will now show that by appropriately
choosing the order of the hops, this number can always be made less than or equal

to m, by using at most one additional hop hy.

Without loss of generality let us assume that s < dj.

Case 1 : s and dj are in the different halves of the sector 0. Let us consider the

following two subcases separately :

Subcase 1a ; [s,dy] N [ui, uf] = ¢.
In this case either [u},u}) C [do +1,m] or [ud,u}] C [0,s - 1].
Suppose, [u§,u)] C [dp +1,m]. Consider the situation in Fig. 3.3(a).

|~ _ Sector - 0 -I

T 2l uf 0 S 7 dy ul 74 m
2%—1 2k~1 2k-1 =0 0 0

L & L s & i % e e & &

(a) Traversal 1

|< ' Sector - 0 -I
- 7 1 P
Tok—1 Uppy Ugkoy 0 S To do Up Uy m
PR ' — . ® 'l * > ' » T .
|
|

(b) Traversal 2

Figure 3.3: Traversal 1 and Traversal 2

For s + dy < m, use of the hops in Hj requires the traversal from 8 60 Ty using

44

c-edges, from w9y to @y using an additianal hop hy and then from zg to dy using
c-edges. Hence, the number of edges other than those in Hj is s+ | 3] +1 +dy— 1 5]
= 8+ dg + 1 < m. We call this traversal as Traversal-1.

For s + dy > m, the required traversal is from s to uf and from u} to dj, using

c-edges only, as shown in Fig. 3.3(b). Thus the number of edges other than those
in Hg, is

ul —s+uf —dy < 2m— (s+dy) <m
We ca,ll- this traversal as Traversal-2.

For [ug,uh] € [0,s—1], it can similarly be shown that the number of c-edges can

be at most m.

Subcase 1b : [s,dy | N [ud,uf] # ¢. If [ud,ud] is totally contained in [s, dp],
then the required path is direct from s to dy, using c-edges and the path length is
dy — s. Otherwise, as shown in Fig. 3.4, it can be tackled in a similar way as we

have done in subcase la. In both the situations the number of edges other than

those in Hjp, will be at most m.

l- Sector - O 4
2 ul uP . . cfg 4 m -
2k—1 ok—1 2&- to
Vr ——— 4 *

Fig_ure 3.4: Traversal 1 for Case 2

- Case 2 : s and dp are in the same half of the sector.

Let us consider the situation when [u},uf] is also in the same half and [s, dg | C
- [ﬁ%, uﬁ], as shown in Fig. 3.5. Here, the traversal along the c-edges is from s to u},

from u} to u} and finally from u} to dy. The total number of c-edges is thus equal

45

to (s — ug) + (uf — uf) + (uf — do) = 2uf — 2u} ~ (dy — s) < m— (dp — s) < m.
Whenever, [ug, u5) and [s,dy] are in the same half of the sector, the traversal will

be same as above.

_ - T j

Figure 3.5: Traversal for Case 2

All other cases can be treated in a similar way as discussed in the above two cases.

Combining all the above results, the length I, of the longest path between any

two nodes is given by

3(1=52)) + 14+ m, when mmod,8=2,3
=

[%([.&".‘&_[—- 1) +2+m, otherwise,

A little algebraic manipulation yields the following result.

Theorem 3.1 The diameter D of the graph G(m,N) is given by D < L <
[113""] F1 ifm mod 8 is 2, 4 or 5. Otherwise, D < I_HB-”—"-J |

'Remark : When s and dy are in the same half of a sector, a path of smaller length,

other than that we have established above, can be found between s and.d. In this

case we will use both even and odd hops corresponding to the RRB reptesentation
of §, except those whose origins correspond to the points in [s + 1,dp — 1], We
1v;;'v.rill. r_éplace eﬁch of these hops in [s 4+ 1,dy ~ 1} by Lexactly two hops of smaller
lengti'l. The total number of hops réquired is thus at most [L?J] + Li';—’J The

46

corresponding traversal from s to dp is from s to zgp_; using c-edges, from or_y
to @y using hy and finally from x4 to dy using c-edges. Therefore the total path
length will be

II'—L?]—I-L-;”J Fm—(dy—s)+1

< [Wyem-des g

< TH1+m+1

< || +2
< |ER], whenm > 13

We call this traversal as Traversal-3. Thus we have seen that when s and d, are
in the same half of the sector, the path length is upper bounded by | 22| +2, when
m > 13. Otherwise (when m < 13), the length of these paths may exceed the

diameter of the topology by at most 1.

3.4 Routing Algorithm

Input : 1) the source node s and the destination node d

2) the two parameters m and N of the topology

Output : A path from s to d

Procedure RRB(sector — diff, F, O)

/* B and O are two linear arrays of maximum size | % |. These arrays are used

to store even and odd bits of the RRB representation separately. ‘séctor-diff’ is

the difference between the sector numbers of d and s %/

Step 1 : Obtain the RRB representation of sector-diff.
Let it be (b}_r, bL-l $o bg bl bn)

47

- Step 2 ¢

fori=1to [%] do

begin |
Bli] = by;
Ofi] = bg;-1;

end; |

b «by;

Example 3.5 For the source-destination pair (2, 42), the sector-diff is § and

~ the values of E and O as computed by the procedure RRB are as follows.
Efl] =1, Ef2] = 0, Of1] =0, O8] = 0 and b = 1.

Procedure Hops (s, d, E, O, b, diag — edge)

/* Obtain hops in a specific order, in which they will be used to reach d, starting

from s and store that order (along with the cyclic edges) in a final array. ‘diag —

edge’ is a boolean variable which indicates whether a diagonal edge is to be included

in the path or not. The final array will be constructed on the basis of E, O, b and

diag — edge. */

Step 1 :

Step 2 :

Step 3 :

Obtaln wsmm, —diff and wser:tm‘ diff

if (WSetordify > Woeatar—aiss) then
convert all the odd hops to even hops and modify the elements

of F and O in the way as described in Section 3.3.2

else convert all the even hops to odd hops and modify the elements

~ of E and O accordingly.

/% To find the order in which the hops are to be used #*/
if (s + dy < m) then use the traversal-1

else ' use the traversal-2 (as discussed in Section 3.3.2)

Example 3.6 For the problem a.ddressed mn Emample 3.5, the values com-

puted by the pmcedure Hops are wi = 1, w5 = 0.

The order in which the edges will be accessed are as follows :

48

-c, —C, —C(C, h2: -y, —0C, hU: hU: —C, —¢, —C

Here, —c denotes a cyclic edge in counter-clockwise direction.

Procedure Find-Path (s, d, sector — diff)

/+ This procedure finds the hops; which are to be included in the path and the

order H in which they are to be used to reach d starting from s. */

Sfep 1: range + [2(2l7] -~ 1)]';.
if (0 < sector — diff < range) tlhen
begin |
diag — edge « ‘false’s
RRB(sector — diff, B, O);
end;
else
begin
diag — edge <« ‘true’;
/% to indicate whether a diagonal edge is to.'be included */
sector —diff « (2‘:; 1 — sector — diff);
RRB(sector — diff, E, 0);

end;

Step 2 ¢ § ¢« s—|Z]xm;

dy + d~ %] xm;

Step 8 : / assume that § < dy %/ -'
Hops (s, d, B, O, b, diag — edge);

. /+ Main Program #*/

begin _
distance (d — s+ N) mod N,
sector ~ diff « (|2} —[&]+) mod. &
if distance £ m then

walk along the c-edges from s to d;

49

else , |
if sector —diff < X —1 then

am
Find-Path (s, d, sector — diff)
else
begin

distance +- N - distance;
if distance £ m then
walk along the c-edges from s to d;
else '
begin
Find-Path (s, d, ;- — sector — dif); .
Keeping the order same, change the sign of all the hops obtained;
end; | .
end;

end.

Example 3.7 According to the above algorithm, the following two paths are
computed for the source destination pair (2, 42) and (13, 81) in G(8,256).
Path from 2t0 42 : 2 — 1~ 0 — 256 — 81 — 80 — 29 — 37 = 45 — 44
— 48 — 42, I

Path from 18 to 81 : 13 —21 —20 —19 —18 —17 —81.

Analysis : It .can be verified that execution of the above algorithm requires
I'O(log N) steps. The path is computed once for all at the source node in terms of
the hops taken_rin order and attached to the transmitted message. As there are
m different tybes of hops (including both positive and negative), logm bits are

needed to designate each hop. Hence, the total number of bits required to specify

a path is O(mlogm) =~ O(log Nloglog N).

n()

3.5 Fault Diameter

It is clear that the graph is biconnected. To find the diameter in presence of a
siﬁgle, faulty node, we proceed as follows.

Let P be the path between two nodes s and d, obtained by the method discussed in
Section 3.3.2 with the path length L(P) < || + 1. In'presence of a single faulty
node, if the faulty node f lies on the path P, then there may be two possible cases

: (A) the faulty node lies on a sector other than the sector 0 and the destination
~ sector, (B) the faulty node is in the destination sector, The case for the faulty

node lying in sector 0 can be treated in the same way as the case (B).

Case A :
Let h, and h, (g < r) be two consecutive hops to be accessed in the path P and
suppose while traversing along P, we enter the sector 7 by using the hop A, and

leave that sector by using the hop h,. Let v, and v, be the respective nodes in

sector 7 from where h, and h, originate.
The fault would affect the path if any one of the following occurs :
Case 1 : The node v, itself is faulty.

Case 2 : The node v, is a live node but the hop b, would take us to such a node

which is faulty.

Case 3 : An intermediate node within the range [vg,v,] is faulty.

We do not consider the case when the node v, is faulty. Because in that case, the

situation will be identical to the case (2) above for the sector from which we enter

sector . We consider below each of these cases separately.

Case 1 : Instead of using a hop h,, we can use four hops of type (r —2) Thus, in

this case the path length would be increased by three. Therefore, the path length
. would be at most L(P)+ 8 < L+3.

Case 2 : In this situation, the only restriction is on the hop A, Griginated_ﬁ‘nm

v, in sector §. There is no difficulty in using the hop —h, from v,. Now, 27 =

—8 x 27 + 22, Instead of using a hop A, from sector 7, we can use —h, three

times consecutively, starting from sector j, and then h..o once. Thus in P, the
~hop i, is actually replaced by a sequence of four hops, namely, {~h,, ~h,, --h,-,.
h.y2}. Moreover, if h, is to be used twice in P, then it will be replaced by six

—h, hops followed by two h,45 hops. Thus, the path length would be at most
L(P)+6<L+8.

Case 3 : We consider two subcases.

Subcase 3a : The faulty node is of degree 2.

Let v; and v;45 be the two neighbors of the faulty node f, and +h; and +hi o be
the hops originated from these two nodes respectively. To bypass f, a sequence of
five bops, namely, {—h;, —h;, —~h;, —hy, hi;5} will be accessed in between h, and
h.. Thus the path length would be at most L(P) +5 < L + 5.

Vi-2 Uy
/\ N /\ SN /\
"h,L.. =ei¥ ihf+2

~ Figure 3.6: Faulty node is of degree 4

Subcase §b : The faulty node is of degree 4. |
This situation is illustrated in Fig. 3.6. Let the hops that are originated from £

be of type l. Also let ¢ ?é ! ~2and r 142 .Hence to bypass f, a sequence of
hops {~hi-2, —hi—2, —hi-2, -—-h:_g, —hy, —hy, —h;, hize} can be used in between h

and h,. Thus, we are inserting 8 more hops in the ﬂrlgmal sequence of hops in P.
A point should be noted here that the upper bound L, on the length of the path

Pis a conservative estimate. While computing the value of L, we assumed that

the path P contains all the even or odd types of hops at least once, But in this
particular case, we see that there are at least three.ty'pes.of hops, namely, A2, Ay
and A9 which were not included in P, This réduces the_upper bound on L(P) to
L — 3. Therefore, in presence of such a faulty node, the path length would be at

most L(P)+8‘~'_Cf} - 5.

592

If ¢ = {2, then the sequence {A,, h,} in Pwill be replaced by the sequence {~h,,

gy —Hgy —hy, h;, —hiy hygo, h 4 Ifr=1+2, then the sequence {h; h.} in P
- will be replaced by the sequence {he, ki, hi.*g, hI_g, hi-z, hy, hy, Ry}. Thus, the
path length will be increased by 6. |

Case B :

Let us now consider the case when the faulty node lies in the destination eeeter.
Of course, we assume that f # d, Actually, the fault would affect the path P

only if it lies in that part of the destination sector which is included in P. Let us - |

call that part as the restricted portion of the destination sector. These restricted
portions will be different for different traversals from s to dy as discussed in the

last part ef Sectien_ 3.3.2, We shall consider those cases separately.
Case 1 : When s and dy are in the different halves of the sector 0.
Subceee la: [s,dy] N [ug, uf} = ¢.

ys+d<m

Here, in the destination sector (that is, in sector é) the restricted portion is from

xs to d.

Ifdis a degree—e node, then let us assume that the hops that originating from d
be of type g. To bypeee the fault in the restricted portion, along with the hops
in P, we shall use two additional hops +A, and —#,. The resulting traversal will
be as follows, Start traversing along P, as discussed in Section 3.3.2. During this
traversal, we would have passed through a node Jr, the projection of d on some
sector r, r # 8. As soon as we reach such a node for the first time, we use the hop
+hg, which is not originally in P, Then, again we shall follow the same order of
using hops and c-edges as it was in the path P. Because of using an additional hop
in the new traversal, after using all the other hops in P we shall reach the sector
(64 2‘3) Finally, frem the node dsio in that sector, we would take the hop —h, to
- come back to the deetmetlen sector & directly through the node d. Thus, in this

case, we cen bypess the feult at the expense of bwe eddiblenel edges

03

If d is not a degree-4 node, then let us assume that the hops originating from the
node d+ 1 be of type g. Here also we shall use two additional hops +hg and —h, in
the new traversal so that as soon as we reach the projection of d+ 1 on some sector
r for the first time, » # §, we take +hy and finally ﬁre would enter the destination
sector through the node d + 1 by using a —h, hop. From there, we have to come
back to the node d using _a' c-edge. Thus the path length will be increased by 4.

i) s+d=2m

Here the restricted portion is from u} to d. This situation can be tackled in a way

similar to the case (i) aﬁove, by taking two additional hops of tfpe same as that

originating from either d or d — 1. Thus, here we bypass the fault at the expense

of at most 4 additional edges.
Subcase 1b : [ud, ub] C [s, d)

Here, corresponding to the path P, the restricted portion in the destination sector

is from uf to d. Let us consider the following two cases.

0 8 uy ub me do m
‘ >~

'_—n—u‘-...—nqiq—-l—-.-—i.l - Ili_"—l—rll-t—m—l—n—" ']]

Figure 3.7: The restricted portion corresponds to [uf, do]

Case (a) : If dy and [u], uf] are in the different halves of the sector, as shown

in Fig.3.7, then to avoid the restricted portion in the destination sector, we will

choose any one of the following two options :

Option 1 : Without loss of generality, let us assume that the path P contains only

even type of hops. Thus, the total number of hops included in P will be at most
2w? + w§ + 1, The new traversal can be done as follows. Starting from s, use only

| c-edges to reach =, From there use hg to reach #; in sector 1. From sector 1, start

n4

using hops in increasing order .of magnitude. After using all the hops in Hj, use
only c-edges to reach d in sector §, Thus, in this case, the total path length will
be |)

m -
- s+ 1 o — dy + 2w 4w+ 1

m
Lh)=3 2

Option 2 : In this alternative path, we will use only odd type of hops. As a result,

the range of Hj will now be in the other half of the sector. That is, [u},u}] and
d, are now in the same half of the sector. But at this point [uf, u§] may not be a
subset of [s,dp]. The number of hops in.this case will be 2u® + wg + 1. Here, we
shall bypass the fault by the same technique (at the expense of at most 4 edges)
as we have taken in the first part of the subcase 1a. The total péth length will be

M. —
L(Py) = s+ = + 1+ do — o +2uf + uf + 1 +4

Now, min(Z(Py), L(P)) < HALHB < 1m 4 5, This shows that the path length

may increase by at most 4, in presence of such a fault,

Case (b) : If Jg'and [ﬁg;,ug] are in the same half of the sector then if we

interchange s and d, the situation will be identical to the case {a) above.

Subcase 1c : [ud,ub] — [8,dy]# ¢
This situation can be treated in a similar way as we have done in subcase 1la.

Case 2 : s and dp are in the same half of the sector.

With respect to the path P, discussed in the remark made in section 3, the re-

stricted region in the destination sector will be included in the portion from zs to
i

Let the hops that orlgmate from either dy or dg — 1 be of type g according to the
situation whether d is a node of degree 4 or not, respectively. The fault in the
destination sector can be bypassed by using three additional hops, namely, hg—1,
he-1 and h,. If we traverse aloﬁg P, we would have passed lthrough a node from

which k., originates. As soon as we enter such a node we will take hy.y twice

so that after usitig all the hops in P we will reach the sector § -+ 2¢, From there

it

we will take a —h, hop to reach the destination d. Considering two additional
c-edges at most, the fault can be bypassed at the expense of a maximum of five

edges.

From the above discussion, we can conclude that in presence of a single fault, the

diameter of the topology can be increased at most by 6.

3.6 Implementation of Algorithms

When N is a power of 2, a class of parallel algorithms, known as ASCEND and
DESCEND types of algorithms [PV81], can easily be implemented on the proposed
network topology.

Suppose, N = 27 and the input data ag, @y, *++, ay-1 are stored in the processors

P0}, A1], -+, PIN — 1], respectively. An algorithm is in the ASCEND class if a

sequence of operations is carried out between a pair of data that are successively

20, 21 ..., 29-1 processor locations apart, In DESCEND class of algorithms, the
operations are carried out just in reverse order. These classes of algorithms have
applications in the problems like cyclic shift, bitonic merge, odd-even-merye,
Fast Fourier Transform, shuffle, matriz transposition, bitonic sort etc. Now,
we shall discuss the implementation of such algorithms in our cagse. For brevity, we

shall discuss here only the ASCEND type of algorithms, For the ease of discussion,
let us first renumber the nodes of G(m, N).

Renumbering of nodes : Let N =27 and m = 2", Therefore, g=2"14+r+1,
Since there are N/m = 297 Sectofs, G(m, N) contains 297" cycles each of length
m + 1, containing m c-edges and a single hop hg. Let us number these cycles
as 0, 1, +-+, 2¢°" — 1, 'so that the cycles i and (¢ + 1) mod 277" have one node
in common. The node in cycle 0 from which the hop kg is originated, is now

renumbered as 0. The remaining nodes are numbered from 1 to-N — 1 along the

largest cycle of length N, so that the cycle i now consists of the renumbered nodes

{im, im + 1, <+, (i + 1)m}. We would also represent any such renumbered

56

node by an ordered pair (I,p), 0 K1 < 20" ~1,0<p<m—1 =2 — 1, where
[represents the cycle number which this node belongs to and p represents its
distance from the node /m. Note that, since p < m, every node will have a unique
representation by such an ordered pair, Thus, to address any of the N 'nodes, we
require g bits in which the most significant g — r bits would represent the cycle
number and the least significant r bits would represent the position of the node
in the corresponding cylcle. Also, if a node is renumbered as n, then, n = .2" + p.

An example of this renumbering scheme for G(5,40) is shown in Fig. 3.8.

Figure 3.8: The nodes are renumbered in G(5,40)

In our later discussions, we refer to a node by this renumbered value.

Before going to discuss the implementation, we now describe an ASCEND type
of algorithm in the following two steps, where a basic operation between the two
processors Pli] and Fr] has been indicated by OPER(i, 4, Pii), Pir]), when r =

.*i+ 27, bity(i) denotes the jth least significant bit of the binary representation of i,

57

Proc ASCEND

- Step 1: /* Process data elements within each cycle of length m + 1 */
- begin .
foreach [,0 <1< 29" -1, do in parallel
begin
for j=0tor—-1 . do
 begin

foreachp, 0 < p <2"—-1 do in parallel
if bit; (p) = 0 then
OPER(p, j, PI(l, p)}, Al + 2, p))
end; |
-end;

end;

Step 2 : E Pracesses data elements across the cycles */
begin
for; = rtoq—1 do
begin
foreach {, 0 <{< N—1 do in parallel
if bit; (i) = Othen
OPER(i, j, Pli], Pi+ 2)

F

end;

end;

Step 1 can be implemented in a similar way as it was discussed in [PV81]. This
step can be executed on G(m, N} in time linear in cycle length, that is, in O(m)
time. We shall now discuss the implementation of step 2 on G(m, N). As an
example, we choose G(2*,2°), .Fig. 3.9 illustrates the hop distribution in cycle 0
of G(23, 28). . | |

Initially, let us start with the assumption that the data element a; is st'o_red in

the processor Fi], V i,0 < i < N =1, We shall now concentrate only on those

H8

- - 8

/\ * /\ T
...h4 +hs

+h, /

- =

A

e

Figure 3.9: Hop distribution

operations which involve ag, the data element initially stored in the processor P[0
Step 2 of ASCEND algorithm demands that the operations between the pairs
of data elements stored in the processors (0], F8]), (0], F{16]), (HO],P[SQ]),
(P{0], F{64]), (F{0], P{128]) should be carried out successively. At first, using the
hop ho, the processor P{0} and P[8} can communicate with each other so that anjf
operation can be carried out between ay and ag. To perform the later operations,
the data elements are to be shifted to some other nodes where the suitable hops are
available. This can be made possible by successive shifting of each data element
through all the nodes in the cycle, which it belangs to. From this point it is clear
that the correspmﬁding positions within a cycle must be same for the data elements
among which operations are to be carried out. Now, by three successive shifts,
the data element which is actually stored in Pi0] can be brought to the processor
P6] from where the hop h; (which is actually a direct connection between cycle

0 and cycle 2) can be used to perform an 0perati0n with the element which was

supposed to be stored in the processor P[IG] initially. Then to avail the next hop
originating from the node 4, again two successive shifts are needed. The next
available hbp is Ay which connects cycle 0 and cycle 8. With the help of this hop,
. an operation qaﬁ be carried out between the elements which were initially stored in
the processors P[0} and P{64]. But, to fulfill the requirement of ASCEND algorithm
the third operation must be between the data which were initially stored in the
processors F{0] and P[32]. Therefore, initially a3y must be stored in the processor
P64}, Similarly, ae; should be placed initially in P[128] and a8 in P{32]. Thus,

we see that some appropriate permutation must be specified for initial distribution

o9

of data elements among the processors. In general, the required .pefniutation is

described below in the inputting scheme.

Inputting of data elements + Let the sequence.of hops originated from the
npdes of the cycle I, 0 < I < 29" — 1, in the order (1,1),-(4,2), +-+ ({,m — 1),
(I + 1,0) be designated as < k;, hy, -+, b >, where a = 2!, Clearly,
h;, = hg. For example, the sequence of hops in-any cycle of G(2°,2%) is <
ho, hay ha, ki, Rg > (hefe, hy is the diagonal edge of length 27). The sequence
of hops < h;,, hi, -+, h;, > can be alternatively designated by a sequence of
numbers < 41, @2, *+, t, >. Thus, for G(2*,2%), the sequence of hops is _denotéd
by <2, 4, 3, 1, 0>,

We now define a permutation =,,, associated with G(m, N) as follows:

(qwr g—r—1 - 0)
Mm = .
AN i3 e g
4 3 210
For G(23,23), g3 = ()
2 4 310

If we scan the top row of r,, from the right end, we get the figures correspond to

the types of the hops to be successively taken for executing step 2 of the ASCEND
algorithm. The bottom row of @y, on the other hand indicates the order of the

hop types actually existing in the network G{m, N), when scanned from one end

of a cycle of length m.

Let the processor Pli| be placed at the node <. The N data elements a5, a4, -+,
ay.-1 will be distributed among the processors P0], A1), -+, P[N— 1], in such

a way that the element a; will be stored in the processor Flj], where, i = (I,p),

7= (I', p) and the binary representation of I’ is obtained by taking the permutation

7, on the binary representation of [.
Let us now discuss the implementation of step 2 on G(m, N) :

For a fixed § the computation corresponding to the for loop in step 2 can not

be executed in one parallel step, because within a cycle only one node is actually

connected to a node at 2/ distance apart, V4, ¢ < § < ¢ — 1. Therefore, by means

60

of successive circular shifts all the data elements in the cycle should be brought to
that node, so that OPER(,, 4, ., .) can be executed. For each 4, this step requires
1 (=m + 1) units of time. However, this computatio'n can be pipelined and

the total time required to execute step 2 can be reduced to only O(m).
Step 2 can be explained in the following way.
Code section for the processor (I, p) in Step 2 :

/4 Assume that I = 771(1), where 77} denotes the inverse permutation of 7,,. That
is, the binary representation of ! is obtained by taking the permutation 77! on the

binary representation of I, Moreover, if (I, p) is a degree-4 node then assume that

-h;. originate from that point. Let b represent the & bit of [. The value of b can

be either 0 or 1. */
- for i =1to 2(m+1) do
begin

Step (2a) :

if ((1, p) is a degree 4 node) then
i m—p+2 < i< 2m-p+1 then
if (b = 0) then
use +h; to communicate with the processor (I + 2%, p) to perform any -
operation on the data elements stored in these two processors;
/# if (p=0) then perform this operation on the data which the
processor (I, 0) has obtained from ({, 1). */

else |
use -hg to communicate with the processor (I — 2%, p) to perform any

operation on the data elements stored in these two processors;

/# if (p = 0) then perform this operation on the data which the
processor (I, 0) has obtained from (I, 1). */

61

Step (2b) :

if (p 5 0) then
send the data to (I, p— 1)

else |
send the data which was obtained from (I, 1) to ({-+1, 0) and that which

was obtained from (I — 1, 0) to the processor (I —1, m — 1);
end

Since the nodes i.m (0 < i € 297" — 1) are at the joint of two successive cycles,
cycle ¢ and (i — 1) mod 297" — 1, care should be taken for proper pipeline of data

elements within a cycle, by keeping two separate registers for the two cycles.

The sequence of events corresponding to the for loop in step 2 is illustrated in
Table 3.1, for G(2%,2%). In any cycle { of G(23,2%), 0 <! £ 31, there are 8 nodes,
namely, (I,p), 0 < p £ 7. ¥or each of these processors, the time units during which

they execute step 2a are marked "Y".

The for loop in 'st.ep 2 is executed 2m+2 times, Moreover, for each i, (1 < i £ 2m),
it takes two units of time, one for step 2a and another for step 2b. Therefore, the
time required to execute step 2 is 4m + 2 units, that is O(log N) time. So, we can
" conclude that the ASCEND class of algorithms can be implemented on G(m, NN)
in O(log N) units of time, when N is a power of 2. |

62

Table 3.1: Comparison of G(m, N} with different topologies

Node Time units

() |1]2(8|4]5]|6[7|8]olw]u]12]1s]14]15]16
GO Y| Y|Y|Y|Y|Y|Y|Y| ' |

(',7) ' - ;

(., 6) Y Y]|Y|Y|Y|Y|Y]Y

('!5)

(., 4) Y|Y|YIY|Y|YIY|Y

(., 3) YIYIY|Y[Y|[Y[|[Y[Y

(s 2) YIY|Y|{Y|Y|Y]|Y]Y
(-, 1)

3.7 Comparison With Other Topologies

Table 3.2 compares the number of links and diameter of G(m, N) with those of

the chordal ring and the distributed loop network, for different values of V.

~Table 3.2: Comparison of G(m, N) with different topologies

Chordal Ring Distributed Loop Proposed Network
Network Proposed Network
Total number of | Number of | Diameter | Number of | Diameter | Number of | Diameter
nodes (V) Jinks , links | links |
9% 144 > 9 192 > 7 152 | <8
256 | 384 > 16 512 > 1l 400 <11
640 960 > 25 1280 > 18 992 <14
1536 2304 > 38 3072 > 28 2368 <17
3584 5376 | 259 T 7ies > 42 5504 <19

63

3.8 Conclusion

A néw family of graphs with constant node degree and low diameter has been
introduced. With a slight modification in the definition, this family of graphs can
be constructed for all most all possible values of N. Given N, if V' is the nearest
number to N, N < NN, on which the graph is defined, then construct a graph
with N' nodes. Delete N' — N number of degree 2 nodes, evenly from each sector.
The diameter, D(N), would be upper bounded by D(N) and the maximum node

degree would remain same as in the original graph.

64

Chaplter y/

(zeneralized

Hypercub e-Connected-Cycles

4.1 Introduction

Let us consider the following problems which one may have to face in many prac-
. tical situations in designing a family of regular network ﬁopologLes

(i) Given the size of the network N, and the diameter D (or the node degree
§), design a network with node degree (diameter) as small as possible.

(%) Given two positive integers 6 and D, design a network topology with a
suitable number of nodes having node degree 6 and diameter D,

In the latter case, the value of NV is not fixed a priori but is determined by the

given values of .0 and 4.

Thus, in these design problems, we basically aim at finding a suitable family of

regular topologies in which any two parameters out of N, § and D can be fixed

according to our choice.

Regarding the first design probiem, we note that usually, a given family of network
topologies can not be defined for all values of N, ie.,, N assumes a value. from a
deﬁnlte set of (usually sparse) integers defined by that family of network There
are very few topologies, e.g., ring [L92] chordal ring {AL91], etc which can be

constructed for all values of N; but a major drawback of these topologies is that
their diameters are very large. In view of this observation, we modify the first
design problem as follows : |

Given a value for N and the diameter D (or the node 'degree 6), desigﬁ a
network having node degree (diametér) as small as possible with total number

of nodes sufficiently close to (greater than or equal to) N.

For the solution of the problems mentioned above, we can first try with the existing

families of network topologies as follows.

From the point of view of degree and diameter, the existing topologies can be
Bmadly classified into two categories. Constant degree network toi)ologies form one
category. Ring [L92}, chordal ring [AL91j, distributed loop network [BT91}, mesh
AKB83], cube-connected cycles [PV81], Moebius graph [L882), de Bruijn graph

B46], etc., are well known members of this class. In case of these constant degree

graphs the network size (N) can be suitably chosen by taking the constraint on the
diameter (D) into consideration. Alternatively, if N is given, D will accordingly
assume a fixed value. Hence, for every family of such graphs, only one out of the

three parameters &N, é§ and D can be freely chosen.

On the other hand, the second category of the existing topologies includes the
hypercubes [1.92), [H69], generalized hypercubes (GHC) [BA84], folded hypercubes
- [ALQi], star graphs, pancake graphs [AK89], radix-r de Bruijn graphs [PR82] etc.
For these topologies, there exists a functional relationship (explicit or implicit)
among the number of nodes N, degree 6 and diameter D for each of these families
of networks. For example, a hypercube with diameter D can only have node degree
D and total number of nodes 2°. In all these topologies except a few, e.g., GHC,

radix-r de Bruijn graph, etc., if we choose a value for one of the three parameters

N, 6 and D, the other two parameters are automatically fixed. In other words, -

there is again only one parameter out of N, § and D which can be freely controlled

in these structures.

The generalized hypercube and the radix-r de Bruijn graphs, however, provide a

- 66

better option. Here, one can freely handle two of the'three paraﬁleters N, § and
D in a certain restricted way. That is, for a fixed diameter (degree) one can have
multiple choices for the node degree (diameter) and the network size, subject to

some restrictions.

In this chapter, we propose a new family of interconnection networks which we
refer to as the Generalized Hypercube-Connected-Cycles (GHCO). We use this
terminology because a generalized hypercube structure can be obtained from it by
coalescing certain groups of nodes forming cycles in the structure. This family of

toﬁologiés provides a way for freely choosing'any two of the three parameters N,
§ and D.

The proposed topology is a regular graph GHCC(l,m), where |l and m are two
free parameters of the graph influencing the diameter and the degree of the graph
independently. The total number of nodes N in GHCC(l,m) is Im!, Forl =1
and 2, the degree of each node is m — 1 and m respectively, while for I > 3, the
network is (m + 1)-regular, The diameter of the graph is |51/2] — 2, for | > 3,
m ¥ 1 and (58{/2] — 1, for] = 1,2,3, m # 1. In terms of the total number of
nodes N, the diameter is ~ %log,, N. We would show that given the f.?‘i;b"{) design
specifications é and D, it is possible to find out the appropriate values of m and
! to get a network with N = Im' nodes, node degree § and diameter in the
~range D — 2 £ diameter < D. Thus, degree and diameter can be freely and
independently chosen for such families of networks. Conversely, given the values
of N and § (or D), we can properly choose I and m so that Im! > N with the
desired § {or D). We will show that GHCC competes favorably with GHC, star

graphs, etc. in regard to the dégree and the diameter for a given number of nodes.

As special cases, GHCC reduces to a ring for m = 1, while it reduces to a complete

graph for [= 1. If m takes the value of 2, then'GHCC reduces to cube-connected

cycles as well,

The proposed topology is regLﬂar,'node'symmeﬁric, maximally connected and also

provides an easy routing scheme. For [> 3, in presence of m faulty nodes, the

67

diameter of the GHCC increases only by a constant amount. We will also show

that many useful algorithms can be efficiently implemented on this topology.

4.2 The Topology of GHCC

We describe the topology in terms of the graph G(!,m), having thé following

characteristics :
a) N.is the total number of nodes in the graph.
b) I and m are two parameters of the graph.

¢) N = Im!. We may consider that the total number of N nodes are clustered

into [l levels, referred to as level 0, level 1, ..., level [— 1, each of which contains

m! nodes.

d) Node specification :

(1) To identify a node uniquely inside one level, we number each of the m' nodes
in a particular level by an integer ranging from 0 to m' — 1, We call this number
as the index of a node in a particular level. This index can be represented by a

string of { literals, each literal can take a value from 0 to m — 1 (both inclusive).

(ii) To distinguish among the nodes at different levels, we use another literal to

identify the level number, which ranges from 0 to { — 1 (both inclusive).

Thus, a node in G(I,m) can uniquely be represented using an I{:il:'t:iered set of literals
(p; U U-g * + U Ug), Where p signifies the level number, 0. < p € I~ 1, and the
literal st'ring U U—g * * U Up i used to identify the index of a specific node within

the level p.' Note that, p is an l-valued literal while u;’s, 0 < ¢ < {—1, are m-valued

literals each.

Another equivalent way of representing a node is by a two tuple (p,n), where p

I-1
represents the level number and n represents the index such that n = > wEm’,
| i=0

68

We will use these two notations interchangeably.
e) There are two types of links among the nodes, interlevel and intralevel links.

(i) Interlevel links : There are ! nodes in the network which have same index
but they are distributed in ! different levels, That is, they differ only in their
p-values. These ! nodes are connected in the form of a ring (cycle) through in-

terlevel links, Thus, a node (p; 1% »++ uyly) is connected to two nodes

((p £1); wqui_g « -+ ut), in two adjacent levels through a cyclic edge, all ad-
ditions and subtractions are done in modulo {. These interlevel links will form m/

node-disjoint cycles in the t‘.'tjpology.

Any such cycle consisting of the nodes of the form (#;ui_ju—2-- - U ug), where *

indicates all possible values from 0 to I ~ 1, will be denoted by Clu,_,uyeui)-

(ii) Intralevel links : Inside one level, a node (D Wi_jUpp "+ * UppiUplip~y *** UyUp),
is connected to m — 1 nodes (p; Ui 1t~z <<« Upp1 * Up-p - Uslg) through clique
~edges, where #* signifies all possible values of the corresponding literal from 0 to

m — 1 excluding the value u,. These connections form m'! disjoint cliques of size

m within each level.

f) There are m — 1 intralevel links and-two interlevel links emanating from each

node when [2 3. Thus, the graph is .rfegular with node degree m -+ 1, when
I > 3. For | = 1 and I = 2, the graph is regular with degrees m — 1 and m

respectively.

g) From the connection pattern it can be easily verified that the graph is not only

regular, but it is node symmetric as well.

An example of this graph is shown in Fig, 4.1 for m = 3 and { = 3. In Fig. 4.1,

the nodes at each level are shown in separate columns. The nodes shown within a

dotted box form a complete' graph.

If the nodes with the same index (i.e., the nodes lying in the same cycle) are coa-

lesced to form a single node, without violating the adjacency relationship among

69

Level - 0 Level - 1 Level - 2 Level -0

fd? oﬁHlTﬂﬁﬁ }—“5556601—— — ———Fé;_ 066]
Io; 001 15010 1 , 2: 100 0; 001
0; 002 1; 020 2: 200 0: 002

|
— s o] Lo e e o | SR | A
0; 010+ ' +1; 001+ A f+2: 001 L0 010 |
0; 011 ‘ 1; 011 v 2; 101 0; 011
'0; 012 ‘ L1; 021 - L2; 201 ‘ L0, 012 |
e - /A ‘ 10; 020 |
* ; ‘ 0; 021

' : 202- " 0; 022
——t e ' | I
' 0: 100 Hl?155 i ‘ "‘ ‘,‘ £2: 010 “)"I‘ £0; 100 |
0; 101 1; 110 - 'd".v 2; 110 ‘ I 0: 101
0; 102+ (1 120+ \‘\;"(% 2107 V%Y I (0 102
e—— = =] \ F— , r— T
|0, 110 ' L 101 (" 2; 011 A“ of 110 |
U, 111 - 1; 111 -+ " ~2: 111 " 0, 111 ‘
| 0; 112 ‘ t1; 121~ / "/ \ -2; 211+ "IA L0; 112
[0: 120 < \—{1: 102 N\ —+2: 0121 " \ '-h?ﬁﬁ”i
| Vs , ANANA T .
L()i.l..z_% -l L.l.;_.l.z_% - ' ‘ ’ L%LZ_EZ J ”“ ’\ Lﬂi_lz% _|
I"d}_ 200 "-I——-——-—-Fﬂ“ 200 - { / \ I2: 020 (‘ ” L0; 200 'i
0; 201 1; 210 ‘ “ 2: 120 ‘ 70,201
!_93_292 J c1i 2207 - v - - %3._229 J ,‘ 0 292 e
e - r=— "9 | I"'__"_""I
0; 210 + ' 1; 201 2; 021 0; 210 |
: 0; 211 —1: 211 2: 121 \\—0; 211 |
1,_(23__2'_:_"_2 J ‘ L}.;_Z?.'.:.I.' - g’i.z.%}] L _;_2}_% ol
i" 0; 220 - 1202/ [2: 0221 L0: 220'1
IO; 221 -1; 212 | 2; 122 IO; 221 |
LQE_ZEE L]-.E_Z?E - | k- ?i.z.g.z - | | Lq;_z.z_.% -

Figure 4.1; The GHCC for 1 =3, m = 3

- 70

the nodes, then the proposed topology will reduce to a generalized hypercube with
m! nodes in total {(m nodes in each of | directions). This is the reason why we call
this topology as Generalized Hypercube-Cnnnected-Gycles (GHCC). Moreover, if
we take m = 2, then the topology G(l,m) reduces to the cube-connected cycles

with {, 2' nodes in all. In our later discussion, we would refer to a GHCC by both
G(l,m) and GHCC(l,m) interchangeably.

4.3 Diameter

When m = 1 the topology reduces to a ring of length [whose diameter is [-é—] We

now consider the cases for which m # 1,

First, let us find a path between any two nodes s = (p;, u) and d = (pq, v}, where,
0<p,p2s<!—1and |

u=1y + u.m + upm® + o ym?

v =1 + th.m + Ug.m2;+ vee V1M
where, forall 1,0 <i <1—-1,0 € u;, v; <m — 1.

To find the diameter of the top@logy,'we first show that there is an upper bound

on the shortest path length from any source node s to a destination node d. For

this, we consider the following 'traversa_l from s to d in two steps :

In the first step, after starting from s = (p1; Ui1U—3 -~ Up, p1Up, Up, —1 * * * Uy Up), if |
Up, = Up, then traverse a cyclic edge to move to the node (p1 415 w1+ < Uy 1Yy,

uy) in the next level py+1, Otherwise (ifu, # vﬂ) , using a clique edge,

Upy -1
.+ uytg) in the level p; and then

first move to the node (P15 W12 * * * Upy 4+1Up Up -1
from this node move to the node (p; + 1; W1uig " *Up 41Vp, Up,—1 * * * Ustép) in the
level p; + 1. Follow the same sequence of operations also in the subsequeﬁt levels
m+lL,p+2,-0,m—1 until-the node (p; — L vz s 'l't}pl-l-lvplvpl—;l REEVL) Bt

reached. The traversal is thus made through the nodes with non-decreasing level

71

numbers following the sequence p;, pi. +1,p1+2, - upto py — 1 (% operations

- are done in modulo ¢}, We call this as clockwise traversal

- If the traversal of the levels are done in the reverse order, that is, in the direction
of non-increasing level numbers, then we will ultimately reach the node
(p1 + 15 vp—1V1_2 + + + Vp 41V, Uy 1+ + - U17g) after this step and this will be termed as

axntz- clockwise traversal

In both these cases, the number of cyclic edges used is [— 1 and the number of
clique edges is at most I. Thus, starting from s, at most 2! — 1 edges are required

to reach either (py — 1;9) or (p; + 1;v).

We are then left with the job of changing the level number from either p; — 1 or
p1++1 to po which is done in the second step of the traverSaL Since the nodes with
the same node index v are connected in the form of a cycle of length I, this part
of the traversal can be done using cyclic edges oﬁly, It can be easily verified that
the number of cyclic edges -require_d in this part is at most [£] — 1 (when [> 3), if

in the first paft we suitably choose the direction of the traversal, If { = 1,2 or 3,

then the number of required cyclic edges is at most |3].
"Hence, we get the following result,
Lemma 4.1 Between any two nodes (p1,) and (ps,v), 0 £ p1, pp<l—1 and

0 <u,v<m —1, there a;lways. exists a path of length at most [%.-’_I — 2, for
I>3, m#1, and [¥] -1, whenl=1,2, or3 and m# 1.

Theorem 4.1 The diameter of the GHCC G(l,m) is L%j ~ 2, when | > 3,
maél and["’ — 1, when i=1,2, or 3, m#1l, | |

Proof : From Lemma 4.1, it follows that the dlamel:er is less than or equal to

5‘] ~ 2, for I > 3 and |_5‘J ~ 1, for I < 3. ‘We will now show that there exists at

least a pair of nodes which are exactly at a d1stanc:e of [“J 2(>3)and [¥]-1
(I < 3). Consider the two nodes s = (0; 000---00) and d = (11/2]; 111 .. +11).

Note that the indexes of these two nodes differ in all the ! literals. As a result,

72

the path joining s and d must pass through all the levels and in each level the |
corresponding literal values should be set accordingly by -traversing through a
clique edge. Because of the ring connections among the nodes in different levels,
we need at least 21 — 1 edges (I — 1 cyclic and ! clique edges) to achieve this. If
we traverse the levels in the anti-clockwise direction, then these 2! — 1 edges will
take us to the node (1; 111...11). From this node, we need another |{/2] — 1
edges (for I > 3) or |1/2] edges (for | £ 3) along the ring connecting the nodes
(%; 111+.-11) (where * indicates all possible values for the level number) to reach
the final destination. Thus, the shortest distance between s and d is [5-21] — 2, for

!>3and |3] -1, for <3,

For | = 2r, 2r+ 1, 2r + 2 and 2r 4 3, the values of the diameter according to the
Theorem 4.1 are 5r — 2, §r, 5r + 3 and 5r + 5 respectively. Hence given a value
D for the diameter, we can alwa}rs choose the value of I appropriately so that the -

actual diameter is in the range D — 2 through D,

4.4 Comparison With Other Topdlogies

As a special case, if we take | = m (I > 2), then the total number of nodes in
G(l, m) would be N = m™! with degree as m + 1 and diameter as EI R
(1> 8) or [22] ~1 (1 =3). A hypercube with the same number of nodes would
have degree and diameter both equal to (m + 1)logym. This shows that our
proposed topology outperforms the hypercube in regard to the degree and the

diameter, Also, it may be noted that with a'pmper choice of I and m, the degree
and the diameter of the graph will be comparable with those of a star graph having
number of nodes less than or equal to Im'!. Table 4.1 shows the comparative figures
for the degree and the diameter of di.ffererit' topologies with number of nodes N

not exceeding Im/!, the number of nodes of the proposed graph with a given choice

" of 1 and m. Some of the entries in the column GHC of Table 4.1 show two values

of the tuple < N, 6, D > for two different configurations of the GHC with the same

value of NN, (i) one with the minimum possible value 6y, for the degree § and (ii)

73

the other (if possible) with the value of the diameter same as that of Ehe GHCC
with the same number of nodes, For the cases when N = 1029, 1215 and 2500,
- the diameters of the GHC are less than those of the GHCC, but the corresponding
values of 6,,;, are much larger than the § values of the GHCC. Another important
-point to be noted (which is not apparent from the data in Table 4.1) is that, in
between two consecutive values of N for which a hypercube or a star graph can be
defined, we can construct G(I, m)’s with many possible values of N, by suitably

choosing the values of [and m.

4.5 Routing

4.5.1 Point-to-Point Communication

To understand how node-to-node routing can be implemented, let us first introduce

some terminologies.

Definition 4.1 A binary operation O on the set of nodes in the graph G(l, m])

9 defined as follows:

b = @1?“) (po;v) = {wi_g oV, Wa®Vig, +**, UL ® U, U ® vg }
where, (py;u) = (P13Ui-1 U2 ** > U 'Uu);,ﬂfﬂd (pyiv) = (Pgivi1 V=2 *** V4

vo) are two nodes in the graph and b is an ordered binary sequence of length

!, such that

{11 ifui%vi
'U.,'..‘Ui'= |

0, -otherwise

Example 4.1 In G(8,3), (0, 2596) D (4;2302) = (0;10120011) O (4;10011021)

— {1+1,000,100,2¢1,001,000,1 2,101} = {00111010}

It may be noted that ‘e’ operates on two m-ary digits only. Since the binary

string b does not depend on the level numbers of the two nodes, for brevity, we

~ shall denote b by just uClv instead of (pi;u) (p2;v) in our later discussions.

74

Table 4.1: Comparison of IG’HCO(Z, m) with different topologies

GHCC(l,m) Hypercube Star graph GHC
N = Im/ N=2"<Ilm! | N=nl <Im' =fixfox o ix fr
¢5=m5-l 1, (with I > 2) §=n §=n-~1 5= fi~k
-2, 1>4
Dz{l[-:'j-—-lz ot-;ledi’wise D=n _ D=L%§—IZJ D=k
<lm> < N,5D > <N8D> | <Nb&D> < N, bmins D >
| | | <N &§D>
<3,4> < 192,56 > <128,7,7> | <120,4,6 > <192,8,7 >
| < 192,9,6 >
<3,6> < 648,7,6 > < 812,9,9> < 120,4,6 > < 648,11,7 >
< 648,12,6 >
< 4,4 > <219 58> < 21910,10> | < 720,5,7 > < 21%.10,10 >
| | < 210128 >
<3,7> < 1029,8,6 > | < 1024,10,10> | < 720,5,7 > < 1029,20,4 >
<538> | <12154,10> | <1024,10,10> { <720,5,7 > < 1215,14,6 >
< 3,8> < 1536,9,6 > < 1024,10,10 > | < 720,5,7 > < 1536,11,10 >
_ | < 1536,15,6 >
<3,9> | <2187,10,6 > | <2048,11,11> | <720,5,7 > < 2187,14,7 >
| | < 2187,18,8 >
< 4,5> < 2500,6,8 > | <2048,11,11> | <720,5,7 > < 2500,18,6 >
<4,6> | <5184,7,8> | <2%,12,12> | <5040,6,9> | < 5184,14,10>
| | | < 5184,16,8 >
<B10> | <5%105,11,10> | <28,18,18> | <91,8,12> | < 25%56,29,11 >
o ' | < 23%4%5% 30,10 >

75

Definition 4.2 Index difference of two nodes (p;,u) and (p;, v) s defined as

“the number of non-zero bits in uDv and will be denoted by I,(u,v).

Observation : From the connection pattern, it follows that if the 7 bit of u0v
is 1, then all paths between (p;;u) and (py;v) must pass through some nodes in
the level 3,0 < 7 < ! - 1. Moreover, the number of such levels that must be
visited while traversing from (p,;u) to (ps;v) is equal to Iy(u,v). Let us call these
" levels along with the source and the destination levels as the necessafy-vz’sz’t-levels

(NVL) for two nodes having index values u and v.

Since the graph is node symmetric, without loss of generality, let us take the
source node § = (0;u)} = (0; 4-yt_a - - 4g) and the destination node d = (p;v) =
(D} Vi 1Vi-2 " '?.PI'UU).-'. We establish a path from s to d by performing the following

sequence of operations successively :

S1. Traverse through an appropriate set of nodes so that the node index is modified
from u to v (by changing the value of each literal from u; to v Vi, 0 <i <1—-1).

During this traversal, we positively need to visit the level 1 if v; # u;. As a result

of these operations, we will ultimately reach some node (p';v), 0 < p < I -1,

This would need traversal through some interlevel (cyclic) links and also intralevel

(clique) links.

S2. Move through some more nodes to change the level number from ' to p, if

required, so as to reach the node (p,v)., To effect this, we need to traverse only

through some interlevel (cycliﬁ) links.

If L denotes the length of a path from (0;u) to (p;v), then L can be expressed
as L, + L. where, L, is the number of intralevel links to be traversed and L.

is that of interlevel links. Given the source and the destination nodes, L, is fixed
and it is equal to J;(u;v). Thus the problem of minimizing L is now reduced to

minimization of L., We now formulate the problem of finding the shortest path

between (0;u) and (p;v) as follows :

76

(A) Let po, p1, **+, Pr-1 be the NVLs (not necessarily consecutive levels) including
" the source and the-destination levels, with the ordering py < p1 < +++ < pr_1.
Construct a ring of r nodes Vg, V3, +++, V,_1, where,

(i) the node V;, 0 <4 < r— 1, corresponds to the NVL p;.
(ii} two nodes V; and Vi1, 0 € i < r—1, are connected by a weighted edge of

weight w; = (piy1 — pi). Vi-y and Vg are connected by an edge of weight ¢ — p,;.

Since we have assumed that the source node is at level 0, V; corresponds to the
source level. Let V; be the node corresponding to the destination level p, ie.,

p; = p. Note that, V; may also be equal to V. The-structure of the ring so
constructed is shown in Fig. 4.2. -

Figure 4.2: The ring constructed with the nodes corresponding to NVLs

(B) Starting from Vj, visit all the nodes in the ring at least once so as to finally

reach V; in the minimum possible distance.

For example, let us consider the ring shown in Fig. 4.3, where, V3 is the destination
level. Here, Vo V1 V2 Vi Vg V4 V3 is the sequence for traversal in a minimum distance.

The corresponding minimum distance is 7.

77

5
‘Figure 4.3: Shortest route ¥, V; V; V4 Vo Vi Va

For the traversal from V; to V; in the minimum distance, we note the following

points ;
a) Some of the edges may be visited twice.

b) As we have to visit all the nodes in the ring, at most one edge may remain

unvisited.

¢) For V # V}, we must not traverse all the edges for the shortest distance. Hence,
in this case, exactly one edge will be excluded while traversing through the shortest

route. However, for V; = V,, the shortest distance may correspond to the traversal

through all the edges.

Let W; denote the sum of the edge weights in a route, which excludes the edge
(Vi, Vi), Let us first consider that 0 < 7 £ t—1. In this case, the possible route
excluding the edge (V;, V;H) is to traverse in the clockwise direction starting from
Vo upto the node V;. Then from V; start traversing in the anti-clockwise direction

until we reach Vj;; and from Vj.; go back to the node V. The route is shown in

Fig. 4.4. The distance traversed in this route would be

| 78

Figure 4.4: The path which does not contain the edge (V}, Vi)

t—1 r-1 -1

Wi=2) wi+ 2 wi=1—w+ 3 w (4.1)
(=0 $==| 1=,
i#] ij

Among t such W; values (0 < j < t— 1), the smallest one will be W, if w, =

max{wp, Wy, *, Wy }+

Whent < 5 £ r-—1, in a similar way it can be shown that the length of the

shortest route will correspond to 7 = 8, where, w; = max{w,, w41,+++,w,_1} and

is given by
t—1 r-1 | r-1
Wj =:Zw,-+22w;=-—-ﬂ-l-w§-l—zwi (42)
=0 i=t, f=1,
iw i3

LE‘JJ, Wmin == TN (Ws: WE)'

Hence, the minimum value of L, is given by, _
' iV #V

mins

mn (L':) - i miﬂ(Wmim l): ifVo="W.

79

Finally, let us formally describe the algorithm for finding the shortest path.

Algorithm ShortestPath

Input : Source s = (0;u) = (03 w1ty - + + ugt up) and the destination d = (p;v) =

(p; v1-1Vi—2 « + * V2V V)

Output : The shortest path between s and d.

Step 1 : By computing uOv, identify the necessary-visit-levels and also find the

value of L,
Step 2 : Construct the ring (V;, V4, -+, Vi—1) as stated above.

Step 3 : Find w, = max{wg, wy, -+, w,-1} and ws = max{w,, wyy1, -+ -, w;}. Com-
pute Wy, W; and Wi = min(W,, W;) as well as min(L,).

Step 4 : Identify the path P, in terms of ¥, V4, +++, V._; corresponding to

min(L.) found in step 3.

Step 5 : Corresponding to the path P,;,, find the path between s and d in terms

of the nodes in the original topology.

If the source level is different from level 0, then we can suitably renumber the
levels and then execute the same algorithm. The r_enumberitig scheme is as follows.

Suppose p; (> 0) is the source level. Then any level p, 0 < p < ! — 1, should be

renumbered as (p — p;) mod !.

Complexity : Step 1 requires bit operations over a string of length I. In step 2,
while constructing the ring, the weights of the edgés can also be computed from
the string wOv of length I, Thus, these two steps require O(I) time. Step 3 takes
at most O(I) time, Each of the steps 4 and 5 require at most O(l) time. Hence,

the time complexity of this algorith.m is O(1).

~ Let us illustrate the algorithm with an example.

Example 4.2 Suppose, we want to find the shortest path between the source
node s = (0;2596) and the destmatidn node d = (4;2302) in G(8,3). The

80

index 2596 of the source node can be equivalently represented in radiz-3

system (correspandmg to m = 3) as 1012001 1' and that of the destination
node can be represented as 1’001 1021,

1) 2596 O 2302 = 00111010 (refer to example 4.1).

The necessary-visit-levels are level 0 (source level), level 4 (destination level)

and also the levels 1, 8 and 5§ corresponding to the positions of ‘1’ in
2596 O 2302. L, = 4.

2} A ring with 5 nodes Vg, Vi, Vo, Vi, and V is constructed as shown in the
Fig. 4.6. The nodes Vy, Wi, Vg, Vs, and Vy correspond to the levels 0, 1, 3, 4
and & respectively, The weights assigned to the edges are as follows :

wg = 1, wy = 2 (for two cyclic edges from level 1 1o level 3), wy = 1, wy =

1 and wy = 8 (for three cyclic edges from level § to level 0).

Figui‘e 4.5; The ring constructed for the example 4.2

3) W, = mam{wg,wl,wg} = maz {1,2, 1} #-2 = Wy,

W = mam{wg,w4} = maz {1,3} = = ws.

W, =8 - w1+(wg+w2)--8(from equatwn,41) and W; = 8 - wy+wy = 6

(from equation 4.2).
" Hence W,mm = W;. Thus mm(L) = mm(S 6‘)

8

-

4) The path Ppiy, in the ring corresponding to W; is yViVuVaVuVa (excluding
the edge (Vi, Vo) of weight w; = wy).

5) The corresponding shortest path between (0;10120011) and (4;10011021)
in GHCC(8,3) is o |

s = (0;10120011) ~(1;10120011) —(1;10120021) —(2; 10120021) —(3; 10120021)
—(3;10121021) —(4;10121021) —(4;10111021) —(5;10111021) —(5; 10011021)
—(4;10011021) = d. The shortest distance between these two nodes is given
by min (L.) + Ly = 6 + 4 = 10.

4.5.2 QOne-to-all Broadcast

The connection pattern of G(I,m) shows that it contains m' node-disjoint cycles,
each of length [, so that every node in the topology belongs to one such cycle.
These m‘ cycles thus cover all the nodes in the topoldgy. If the source node (p; v)
could somehow manage to send the message to at least one node in each of these
cycles, then the remaining task of transmitting the message to all other nodes in
that cycle can be performed in a straight-forward way. During transmission, if at
some stage we find that all the nodes in a particular level have got the message, .

then it is sufficient to say that there exists at least one node in each of these cycles

which has already received the message.

The broadcast algorithm which we are going to present consists of two phases.
The phase 1 is designed in such a way that by the end of this phase the message
would reach all the nodes in the level (p + 1). This guarantees that by the end
of this Iﬁhase each of the m' cycles would contain at least one node having the
message. In each cycle, the nodes which have already received the message in
phase 1, would act as source nodes in phaSe 2. These sources would transmit the.
message through cyclic edges only, so that all the nodes in that particular cycle
can receive the message. Throughout the algorithm, we assume that none of the
processors would transmit the message more than once in a particular_ direction.

Moreover, here we assume a single port model, 1.e., at a time a processor can send

82

the message only thrﬂuéh one of its Iinks.

The basi:; step for phase 1 can be described by the following two actions :

[A 1] Transmit the message through the eyclic edge in the-direcbion of dem:easing_
level numbers only (anti-clockwise direction). We represent this action by
A.. -

[A2]. Broadcast the message over the clique which the node belongs to, We rep-

resent this action by A,

Phase 1 can now be completely described as follows,
Phase 1

Step 1 : The source (p,v) broadcasts the message in parallel to all nodes in the

clique which it belongs to.

for i =2 toldo
/* Steps i(a) and i(b) constitute the basic step of phase 1 as mentioned above. */

Step i(a) : if i = 2 then the source node and all other nodes which have received

the message in step 1, perform A, in parallel.

else all nodes which have received the message in step (i~ 1), perform

A, in parallel.

Step i(b) : all nodes which have received the message in step i(a), perform A,

in parallel.

Step 1 requires [log, m] parallel steps. Step i(a) takes Qrie unit of time, whereas
step i(b) requires [log,m] parallel steps. Hence, {[log;m] +!— 1 time units are

required to complete phase 1.

It follows that after the ¢* step, Vi,1 < ¢ <1, in phase 1, all the members of mi1

cliques in level (p — i + 1) mod ! would receive the message. Thus, by the end

of phase 1, all the members of m'! cliques in the level p + 1 would receive the

83

message. That is, at the end of this pﬁase all the nodes in the level p + 1 would
receive the message which, in turn, guarantees that for each cycle there will be at
least one node which would receive the message at the end of phase 1. Since the
transmission through cyclic edges are done only in a particular direction, none of
the processors would receive the message more thé.n once in phase 1. We illustrate

this phase by the following example.

Example 4.3 Let us assume that the source node is '(0;000~ - 00). In step
1, the source node (O;OOO-'--DO) will broadcast the message to the modes
(0;00- - 0*) where * can take any value from {0,1,2,+-,m — 1}. After this
step, one node in each of the cyclr_&as. Croo00) would get the message. In step
2(a), these nodes in Cip..q) will transmit the message to their neighbors in
the level | — 1. Hencel after step 2, exactly one node in each of the cycles
Cuo-0v) excepting Cgo..0n would get this message, while in each of the cycles

Croo..0¢) there will be two nodes who would receive the message.

The node which receives the message first among all the nodes in any particular

cycle will be termed as the entry-paafnt corresponding to that cycle.

* Referring to the example 4.3, consider two particular cycles say Clpo..01) and
Croo.-02). In Cloo.01), the node (0;00--01) will get the message first and after
step 2(a) there will be one more node, namely (I ~1;00..-01) in the same cycle,
which will also get the message. On the other hand the node (1~1;100-- - 02) will
be the first node in the cycle Cigo.02), receiving the message after step 2(b). Thus,
the nodes (0;000-.-01) and (I —1;100:--02) are the entry-points of Ciooo..01) 8nd
Clio-02) Tespectively. The corresponding level of the entry-point will be termed

as the entry-level. That is, the levels 0 and [— 1 will be the entry-levels for the

cycles Ciopg..01) and Cl100.-02) Tespectively, The following lemma follows from the

descriﬁtion'of phase 1.

Lemma 4.2 If (p;v) 1 the source node and the entry-level corresponding to

a particular cycle Cuy,_ v g uu) 18 x, then all the nodes in G(u,_lu,_i...um) having

84

level numbers e ~1, £ —2, ... p+1 would Teceive the message after phase 1.

Proof : The entry-point of the cycle (3'(1‘1,_][,'“_,_2 wyug) 18 (@) gz - ugug). Let
us assume that this entry-point receives the message at the i step of phase 1.
It follows from the above discussion that ¢ = (p — i + 1) mod ! and after the it
step, the message will propagate along the cycle Cpu,_yupau) till the end of phase
1. There will be [— ¢ remaining steps in this phase and during these steps, the
level numbers of the nodes in this cycle receiving the message, will be decreasing.
Therefore, the level number of the node which will recejve the message at the last
step of phase 1, i.e., at the step !, will be {z ~ (I - i)} modl = (p+1—1) mod !
= p+ 1. Hence the proof. .

level (x+1)

level (x) level p

level (p+1
fevel (x-1) vel (pt1)

level (x-2)

Figure 4.6: Nodes in Cy, ..., receiving the message (solid circles) in phase 1

Fig. 4.6 shows the situation after phasé 1 corresponding to the cycle o pugur gy

where solid circles fepresent those nodes which receive the message in the first

. phase,

In phase 2, transmission will be done Ithrough cyclic edges only and the message
should be sent to the nodes in this cycle wh.ich lie in the levels x4+ 1,242, -+, p.
For this, the nodes (z; g1 ° Uy ty) and (p-l— L;up (w2 - usiy) start sending
the message in clockw1se and anl:l—clockmse directions respectively along the cycle

Cupyui_g e Lhe number of nodes in this cycle which are going to receive the

85

message in phase 2 is.i — 1, if the entry-point of the cycle receives the message
in the ©** step. Thus, after [‘ =] steps all the nodes in Cy,_u_,..u 4 Will get the
message. In the worst case, i takes the value L. In that case, the entry-level of the
cycle will be p+1 and (I - 1) nodes in the cycle are going to receive the message
in phase 2. Thus, the required number of steps is [=] + 1. Hence, phase 2 takes |
at most [51] + 1 steps.

During transmission, the message will be tagged with four extra fields : (1)
SOURCE LEVEL (p) field (2) WEIGHT (w) fleld (3) PHASE (t) field and (4)
ENTRY (en) field. -

PHASE field (t) : It is a one-bit tag which can assume only two values 0 and 1.
- The value of t is 0 if the message is currently passing through the phase 1, and 1

otherwise,

ENTRY field (en) : This field of the message at any node indicates the entry-level

of the cycle containing that node. Thus en ranges from 0 to [— 1, both inclusive.

If a processor receives the messa.gé through a clique edge, then this processor will
be the first one receiving the message in the cycle where it belongs to, i.e., this
receiving proce-ssbr will be the entry point of the corresponding cycle. In such a
case, the ENTRY field of the received message will be changed to the level number

of the receiving processor. Otherwise, the ENTRY field would remain unchanged.

WEIGHT field (w) : w keeps track of the number of remaining cyclic edges through
which the messagé is to be transmitted during a particular phase. When the
message is t.ransmitted through a cyclic edge, the value of w is always reduced b}y .
1. On the other hand, in case of transmission through the clique edges, the value
of this field is kept as it is. Before starting phase 1, the value of w is initialized to
I 1. As a consequence, w will take the value 0 at the end of the phase 1. At the
beginning of Ithe second phase, w will again be set to the value [E57], if p > en

or [&=e=8)] if p < en, 5o that at the end of this phase as well, w would reduce to

0. Thus the value of w may be used for terminating the algorithm.,

86

We now formally describe the algorithm as follows :

Algorithm Broadcast
/* Initial Steps by the source processor */

1} The source (p;v) broadcasts the message to all of its neighbors in the level p

withw =1—1,t= 0, and en = p;

2) (p;v) also transmits the message through the cyclic edge to its neighbor in the
level p~ 1 withw =1-2, t =0, and en = p;

/* Job for the processor (g;u) */

3) if (g;u) receives the message with four extra fields containing the values p, w,

t and en then

{

if t=0 then

!
if w+#0 then
if (g;u) receives the message through a clique edge then
{
en=g; _
send the message to (¢ — 1;u) with weight w ~ 1, through a cyclic edge in
anti-clockwise direction;
/¥ initialize w and ¢ for starting phase 2 */

if p<en then

| 2 == |'I--e;1.+g“
else w=[&5"];
-t =1

seud the message to (g + 1;u) with weight w — 1 through the cyclic edge in
clockwise direction; |

}

87

if (q;u) receives the message through a cyclic edge then
{ . |
send the message with the same weight to all its neighbors connected through
clique edges;
send the message to the node (g~ 1;u) with weight w — 1:
h
b

if w=0then /*The node receiving the message is at level p+1 */

{

if (g;u) receives the message through a cyclic edge then

{
send the message to all of its neighbors connected through clique edges;
/* initialize w and t for starting phase 2 */

if p<en then

w= =52
else w= 22|
t=1;

if w > 0 then send the message to (g — 1;u) through the cyclic edge in

anti-clockwise direction with weight w — 1;

/* This node at level p+1 transmits the message in anti-clockwise direction

in phase 2 */ . . I
y

if (q; fu,) receives the message through a clique edge then
{
en=gq, [*Here,q=p+1 ¥
t=1;
w = [tz .
send the message to (g 1;u) through the cyclic edge in clockwise
direction with weight- w—1; |
w= |52y
if w > 0 then send the message to (g —1; u) through the cyclic edge il;

88

anti-clockwise direction with weight w — 1.

}
}
}
if ¢t=1 then
{
if w=0 then
terminate;
else "
{ _
forward the message with weight w — 1 along a cyclic edge in the same

direction (clockwise or anti-clockwise);

}
}
}

Time Complexity : The time taken to complete phase 1 is I{log, m| +1—1 and
phase 2 requires at most [%] steps. 5o, in total, the time required to broadcast a

message in the GHCC(I,m) is {[logym] + [§] - 1.

Example 4.4 Let us illusirate phase 1 of the above algorithm for the struc-
ture G(8;3), Suppose we want to broadcast a message from the processor |
(2; 000) to all other processors in the network. In this network the cliques

are of size 8. Thus, two steps are required to broadcast the message over a

clique.

Step 1 : (transmission over a clique)
(i) (2; 000) — (2 100) with (w = 2, en=21=10)
(i1) (2; 000) — (2 200) with (w = 2 en = 2,t = 0)

Step 2(a) : (tmnsmsssmn thmugh cyclic edges)
(2; 000) — (1 000) with (w = 1, en = 2, t-O)
(2; 100) — (1 100) with (w =1en=2t=0)

89

(9; 200) — (1; 200) with (w = 1, en = 2, t = 0)

Step 2(b) : (two parallel steps of transmission over cliques)
(i) (1; 000) = (1; 010) with (w = 1, en = 2, t = 0)

(1; 100) — (1; 110) with (w = 1, en = 2, t = ()

(1; 200) — (1; 210) with (w = 1, en = 2, t = 0)

(ii) (1; 000) — (1; 020) with (w = 1, en = 2,1 = 0)
(1; 100) — (1; 120) with (w = 1, en = 3, t = 0)
(1; 200) — (1; 220) with (w = 1, en = 2, t = 0)

Step 3(a) : (transmission through cyclic edges)

(1; 000) — (0; 010) with (w = 0, en = 2, t = 0)
(1; 100) — (0; 100) with (w = 0, en = 2, t = 0)
(1; 200) — (0; 200) with (w = 0, en = 2, t = 0)
(1; 010) — (0; 010) with (w = 0, en = 1, t =0}
(1; 110) — (0; 110) with (w = 0, en = 1, t = 0)
(1; 210) — (0; 210) with (w = 0, en = 1, t = 0)
(1; 020) — (0; 020) with (w = 0, en = 1, t =0)
(1; 120) — (0; 120) with (w = 0, en = 1, t = 0)
(1; 220) — (0; 220) with (w = 0, en = 1, t =

l
=

Step 3(b) : (two parallel steps of transmission over cliques)
(i) (1; 000) — (0; 001) with (w = 0, en = 2, t = 0)

(1; 100) — (0; 101) with (w = 0, en = 2, t = 0)

(1; 200) — (0; 201) with (w = 0, en = 2, t = 0)

(1; 010) — (0; 011) with (w = 0, en = 1, t = 0)

(1; 110) — (0; 111) with (w = 0, en = 1, t = 0)

(1; 210) — (0; 211) with (w = 0, en = 1, t = 0)

(1; 020) — (0; 021) with (w = 0, En =1,t=10)

(1; 120) — (0; 121) with (w = 0, en = 1, + = 0)

(1; 220) — (0; 221) with (w = 0, en = 1, t=20)

(i3) (1; 000) — (0; 008) with (w = 0, en =2, t = 0)

90

(1; 100) — (0; 102) with (w=0en=21t=0)
(1; 200) — (0; 208) with (w = 0, en = 2, ¢ = 0)
(1; 010) — (0; 012) with (w = 0, en = 1, t = ()
(1; 110) — (0; 112) with (w = 0, en = 1, t = ()
(1; 210) — (0; 218) with (w = 0, en = 1, t = ()
- (1; 020) — (0; 022) with (w = 0, en = 1, t = 0)
(1; 120) — (0; 122) with (w = 0, en = 1, t = ()
(1; 220) — (0; 222) with (w = 0,.en = 1,t = ()

4.6 Connectivity

If [= 1, the GHC'C(I,ﬂ'L) is nothing but a clique of size m. A clique is m — 1
connected, We will discuss about the connectivity of the GHCC(I,m) for | = 2

afterwards. Before that, we consider below the case for I > 3.

For l > 3, since the 'degre.e of each-node in the GHCC is m+1, its node-connectivity
is at most m+1. When m = 1, the GHCC is nothing but a ring with connectivity
2. When m = 2, the GHCC reduces to a CCC which is triconnected [PVSI]. Thus

we have the following result,
Lemma 4.8 The GHCC is {m +1)-connected form < 2,1 > 3.

For m > 2, we show below that between any two nodes of the GHCC, there exist

m + 1 node-disjoint paths.

Because of the node symmetry of the GHCC, we can assume, without loss of

generality, that the source node is s = (0; 000---00) and the destination node is

d = (p; v_1V13+vty), where 0 < p <l—1landv;, 0 £ j < [-1, can take

any value between 0 and m — 1 (both inclusive), .

We shall first give' B genéral construction rule for m+1 paths between s and d and

| then we shall explain why these paths are node-disjcint;.

91 -

Since our goal is to construct m 4 1 nﬁde-disjoint j)aths from s to d, the only
option is to start from s and visit all the m + 1 distinct neighbors of s, one along
each ::Jf these m 41 paths which we are gaing to construct. We refer to these m+4-1
paths as Py, Py, +++, Py such that the path P;, 1 < ¢ < m — 1, visits the node
(0; 000--.0i) inunediately after starting from the source s, and the paths P,
visit the remaining two neighbors (I—1; 000 .- 00) and (1; 000-- - 00) respectively

after starting from s. This scheme is illustrated in Fig. 4.7 for G(4,5).

| |
o :' "y

PRanaRRe R e ﬁ'ﬁﬁrx’ﬁf‘@ :
o ol e

i 5
=, "'-;:-:::: g £

+-
&] =" .ﬁl'-. won ol ¥ x . .l- o - . - .
+ " U T . . g i Y e
rl:l..' ‘-E s] : . m . " . e .. wta's '--.-‘:'
1'-‘1- » . .. ey . [uliwt oy il' .a e,)
:-E.é. e . T e . 2 -
" x o 5 g !
. +* A n] 4 n . iy
ll.) = w FRK r‘ w
R

Figure 4.7: Initial portions of node-disjoint paths from (O; 0000) in G(4,5)

In our later discussion we shall often use a notation 0%, while specifying a node

index. This notation actually represents a string of i consecutive 0’s.

Construction rule for m + 1 node-disjoint paths :

In what follows, we use the symbols z;, @, R, Y and Z in constituting the paths
which are defined as follows. |

1) The symbol z;s (0 € i £ m—1, £ vy) can take any value from 0 to m — 1,
excluding v, and ; # z; whenever i # 4. To be more specific, let us define z; as

follows satisfying the above requirements :
' 41, ifi# v—1

B Vw1, fi=v—1

92

2)0 # Y # v,
3)0 # Z # vy
4) 0 # Q # v-1.
5)0% R # v,

Case I ;: 2 | -2,

AN
(/A

p
Path P; (0 < i € m~1,1 # v :

s — {0; 0-4) —
(1; 0F18) — (15 07 24d) —

(2; 01—2‘1}1?:) —3 (2; 0"#31}21}1‘?:) ~

(p—1; 0Py, g oo vgtnd) = (p—1; 0"PYo, 5 + o0 vy08) —
(7 0" FYu,_g -+ vauid) — (p; O P 12V, g + v wawyi) —

(p+1; 0P 1Yo, g « v vpuid) = (p+ 1 0722, @Y, + -+ vggt) —

(0 —=1; Owpmg <o vy Y,y oo yd) = (L= 15 vmy v+ Vpp1Ti¥Upy « o - vyvp) —
(0; v R Vpp1ZiXYVp—g **+ V1E) = (0} V=1 Vpp1Z:YUpy *+ - V10g) —
(1; Vi—1Ul-p * ﬁp+1$iYUp-2 1»'21’1'00) -

(2; vi—jvi—g ** ¢ Up1 T YV g 0 VpUiYg)

(p—1; U1 < VB Ytpp o+ vith) = (P— 15 Upu1 ** 0 Upg1Bilp-iVpz * ++ Vi)

— (p’ V-1 *** Up41TiUp-1 **° 'Ul‘Uq) — (P, Ul-1V1-2 '+ VUpy1Up¥pq * U]'U;]) = d

93

Path P, :

g — (0; 0"1yg) — |

(1; 0" o) — (15 0"2Ruyqg) —

(2; 07*Rup) — (2; 0"*vyRup) —

ARERR N —

(p—1; 0"-‘P+1vp_gvp_3 e UaRug) - (p -1 Of;PYﬁp_gvp_g » o U Rug) —

(p, OI_PY'UP_.Q ERR ‘UQR‘U[}) —} (p, OI“P_IUPYUP..Q "o 'UQR’U{]) -—}

N N

(Z - 1; O‘Ui_.gﬂl._.g v ﬂpY’Efp_2 ‘o UERﬂU) — U — 1;'1;[_11;[_2 ‘o pryp_z t s ?JZRU(_])'
= (0; vi—ve o v Yo, - veRy) —

(11 V-1Vp—g + - Upyvp-—ﬂ P vQRUﬂ) - (1, Vi qUpg + ‘IJPY‘UP_.g Ve 'Ug'Ul'Uﬂ) —3
T R N R Y

(P"" L vi_qvig <+ UpXUpg ** ﬂlva) —3 (p-l; Vi-1¥-2 '~ ¢ UplUp_1Up_g *+* V1lp) —

(p; vic1v1g -+ Vo) = d
Path B, :

s— (1-1; 0" = (I—1; v_,01) —
(l — 2, U;_;iOH) — (Z-"* 2,. EJ;_IE},'__QOI-'E) —3
LI P Y o1 ko3 -s_..}

(P+1; vy y o 420P12) — {p+1; vy +- Upya Z0PHE) —

(05 vy o UppZy <o 010) = (0 Vet - ps2 By -+ yB1Y) —
(1; Vj1Ulg ﬁp+2Zﬁpi’p—1 o 'UWU)-"'* |
(2; V1112 "'1ﬂp+2vaU§-1 cer Uityg)

(Piu Vi-1Vi—g Up+2ZUpUp—-1 'Un) —+

(P+1; vy - U2 Zuplpy o0 1) = (BT} VUi 't UptoUptitp * ,”ﬂ)_ -
(PE Vi-iVjg **° ‘UQUM}) = d

From the above construction rule, we see that following the path 7, 0 <ic<

94

m — 1, © # vy, when we visit the destination level p for the first time, the p'* literal
is intentionally set to some incorrect value (i.e., other than v,) =; so that finally
when this literal is set to vy, we would reach the destination d through a clique
edge. On the other hand, in both Py and P, the p'* literal is set to v, but the
(p—1)*® literal in P, and the (p+1)* literal in P, are set incorrectly, while passing
through the corresponding levels for the first time, As a result, after setting these
literals to their correct values during the second visit to these levels, these paths
can enter the destination d directly from the level p—1 or p+1 through the cyclic
edges. We refer to all the paths which enter d through clique edges as of type L
whereas the paths entering d through cyclic edges from levels p —1 and p+ 1 are
termed as of type II(a) and type II(b) resf)ectivély.

Lemma 4.4 The paths spectfied by the above construction rules are node-

di1sjoint.

Proof : The different nodes traversed by each of these paths in the levels 0, &
(1<k<p—-2,p-L,p,p+landr(p+2<r < [— 1) are listed in the table 4.2.

From this table it follows that these paths are node-disjoint due to the restrictions

imposed on the values of R, Y, Z and a;'s.
The length of the paths constructed above are computed as follows.

(o +p+2, ifi=0, v

L(P;) <«
S 2+p+38, f1 £ < miFEw

Thus, the maximum path length is at most 21 +p+3. If p < L%J, the maximum
~ path length will be bounded by |2'] + 3 which is greater than the diameter by

at most 5. If p > [-;—J, we will construct these node-disjdiut paths just in the
reverse direction keeping the basic idea unchanged. In that case, the maximum
path length will be at most 2! + (l—p)+3 which is bounded by L%’-J + 3 since

p > |L]. Hence, we get the following lemma.

95

Lemma 4.5 The mazimum length of the paths specified by the above rules
is | 3] +3.

Case II ;: When the source and the destination levels are same, i.e,, p = 0.

In this case s = (0; 000---00) and d = (0; vj=yv1—2 - - - 11%0). The construction rules

are as follows :
Path P, (0 < i € m=1,i # v):

s — (0; 0"1) —

(1; 01) — (1; 0%Zi) —

(2; 02Zi) — (2; 00 Zt) —

(3; 03, Z8) — (3; O"‘*Ua'ugZi') —

(Z _ 1; 0'”1-—2'”!-—3 « o UZZ*I:) -} (l """1; 'Ui--l tee 'UQZ’E)"'"}
(0; vy > v22Zi) -
(1 w1 e 02Z8) = (1 0y oo vp0rd) =

(0; vvpp « - votn1) — (05 w12 - 1Y) = d
These paths are of type 1.

Path P, :

s — (0; 0" yg) —

(1; 0'wp) — (1; 0% Zvp) —

(0; 0'*Zvp) —

(1 —1; 022u) = (I — 1; v10"Zvg) —

. (l — 2; 'F;);_.1OI"3ZUU) -} (l - 2; U;_1_ﬂ;-_2-01"4ZUu) -

(2; vy -+ v30Z00) = (2; V-1 V3v2Z00)
(3 v . vg0pZv) = (1} Vimatpp oo v v) — |

(0; U;..Tl‘vi_.g ' oo ‘Ul‘vu) = d
This is a path of type II(b),

96

Table 4.2: Nodes traversed along different paths for 2 < p <1 —2

(Entries at any leve

show only the node-indexes)

F B Prn
0£ism~-1,i#y
vp-1 #Y#0 ooy FY# 0 tpst FZ A0
Ty F Vy -
level 0 (6)-13) (0" 1) (V-1 7~ Vps2Zup - 14 0)
(V11 * * Vpp 1T Yiipg + - 1) (vi-1 o+ vpYupn - vy0p) (vie1 o vpe2 205+ - vy 10)
(Vpoy o Vpga i Pp g o upryg) |
level 1 (0™14) (0" 1) (viey -« » Vpya Zvp <+ - 12507)
(020} (i Ru) (Vi1 Upy2Z¥p - - 01 0)
(V1 "'“p+lzi}£l’p—'2) (V11 "'UpY”p—E +++va Ry (Vgmy VUpy2 ZVp " - - Up)
(i1 -~ gz -)
level k (0 *ugy - - vyi) (0" Fugy - v Rug) (V-1 <= vpr2Zup - - wgy 0FF)
l<k<p—2 (0"*=typve_1 oo 1yd) (07*=1yy .. sg Rug) (Vjy ++ * Upra By - - - v 0%)
(Vi1 - Vo1 B Y0p_g v -) (Ve * - Vp Yy 1) (Vi—y " UpgaZup .- vg)
level p — 1 (0P g <o uyi) (07 yy_g . g Ruy) (o) v 0,42 Z0,0P)
(0"PYp_g -+ - uyi) (0"PY,—2+ - veRuy) ()1 +* - Vpi2 ZVVp- FF)
(Vg1 * V417 Y¥p—g - - vp) (Vjy * = vpYUp2 - 1) (Vteg =" V2 21 o2 1)
(V11 ® " Vpt1 TiVpm1Vp—3 * * * Vg) (V=1 v " VpVp-1Vp—2 " 1)
level p (UI'-"PYIJF..Q ‘oo myi) (UI“FYUF_E oo Ruyg) (Vi1 = Vpy2 Z0PH)
(D"‘P'“‘m;".l’vp_g «oopyi) (ﬂ'“"* lup}’u,,“g v« 9 Rug) (V11 * " Vp3 Z0p07)
[CTRE *Up+1TiVp-1 *° +tp) (Vg - Uprglup - 1)
level p+1 (U'_P_I:Ei}’iip_g i) (D'"P“IUFYUP_Q -+ vz R1g) (Vg1 - 15+2 07*2)
(0P 20g 12 ¥opg - vpi) | (0P 20y yvupVipa -+ 0o Ry) (V-1 * - vp42207F)
(vioy - vpr2Zvp- - 1)
(v vivg)
level r (00 "0y «+ + Upp 2 Yipoz o d) | (05 Ty v o0 Yopog o - w2 Rve) (Vjy * 7 Upn 071

r+2grgi-1

(Ol—f“l.ur . *ﬂp-l-lmt'yvp—-ﬂ " *1’11:) .

(nl'-r—-l 1_,,;_ ' ..upl‘irp_-z v UERUU)

(Vg1 o0 07)

Path P, :

s— (I—1; 0 — (I-1; Yoi-1) —
(0; YDI_I) — (0; YDI_?U&) —

(1; YO 20y) — (1; YO™3vy0p) —

(2; YO'30100) = (2; YO *upu109) —

(l — 15 Yui_qup-3 “"Ul’vﬂ) — (l -1, v1vpg o ’UlUn) —?

(05 Vj_1Vp—g rt5'1'130) = d

This is a path of type II(a).

Lemma 4.6 When the destination level and the source level are same, the

m + 1 path.é constructed by the above rules are node-disjoint.

Proof : The table 4.3 shows various nodes traversed by the paths, constructéd by

- the above rules. It can be checked from the table that all these nodes are distinct

which implies that these paths are node-disjoint.

The length of the paths P; can be at most 2/ + 4 and that of P, and P, can be

at most 2{ + 3. Thus, the paths constructed in this case are always smaller than

those in case I.

Case TIT : When level 1 is the destination level, i.e,,- p = 1 or level I — 1 is the

destination level, ie., p = [— 1. These two cases can be treated in a similar way.
Here we shall discuss'only the case when p = 1. That is, s = (0; 000 .. 00) and

d = (1; v_1j_g+ - 1), The paths are constructed as follows.
Path P, (0 < ¢ £ m—1):

s — (0; 0"1) —

(1—-1; 071) — (1= 1; QO%4) —

(0; QO™%) — '

(1; QO%) — (1; QO zi) —

(2‘; QO’“am,-i) — (2; QOI_4U2$1"I'-) —+

98

(1—1; Qui—qvi—g - voxii) = (L= 1 w0 o+ vpmyi) —
(0; vi1 -+ vomid) = (05 viv1p o+ vamvg) -

(1; vj—1 +++ Vezivp) — d
These paths are of type I and the maximum length of these paths is at most 27+ 6.

Path 5

s — (1; 0 — (2; 0) —

(2; 0'8200) —

(1; 0'-3200) — (1; 0"*Zv,0) —

(0; 0'2Zv;0) — (05 0' Zvyvg) —

(i = 1; 073 Zviwg) = (1= 1; 01104 Zviwg) =

(2; Vy—yVp—g 0 Do) — (2 VI U1y UpUUp) —

(1; Vp—1U-2 '+ Vg Up) = d
Path P, :

s— (1—1; 0') = (1—1; QOFY) —

(0; QO'1) —
(1; QO*1) — (1; Q0F*v,0) —
(2; Q0™%010) — (25 Q0 v 0)

(l - 13 Q‘UI-z”"Ulo) ~ (l— 1; v_1 -~-fu10) —

(05 vy ++ 010) — (05 vp—1++-vg) —

(1 vavieg o Vi) = d

Here,L Py is -of type II(b) and P, is of type II(a). The length of these two paths
can be at most 21 + 4.

99

Table 4.3: Nodes traversed along different paths for p = 0

(Entries at any level show only the node indexes)

F; Py, P,
0 <1< m-fl,*i#vn
v ¥ Z2#0 v F#ELFD U-1 #Y#0
level O (014) (0}1q) (Y0!-1)
B CTINRREE YA Y (02 Zvg) (YO %)
(i1 » vav17)
level 1 (07=14) (0 Lyg) (YO!24p)
(0'~2Z4) (0'=2 Zup) SIRTY
(vi-1+ - v Zi) CTRRERL Y YAT)
(vi-1 - - vau1d) (Vi *+ * VoV p)
level k (Ul"kwk_l o ug Zi) (vj—y + gy 10871 Zg) (YDI‘k"lfuk._l V1)
2<k<l-2 (Oi“k'lvk o up Zi) REXE v 0F Zup) (YO"’"’" Zyp o v110)
level | -1 (Ovjg + + + V3 Zi) (082 Zp) (0"
(V)—1Vi—n V2 Zi) (v1-10'2 Zup) (Yoi-1)
(Vg3 + * * U1V0)
(V112 * * V10)

100

As we have seen earlier, in this case also it can be verified that these paths are

node-disjoint except in the following two cases ;

(1) The node (1, 0’) in the path F and the node (1; v_, - UV) in the path P,
will be identical when V-1 = Ug = +++ = th = 1 = (} and N .-,éol Le” say, v =
b, b £ 0. | |

"In this case, let us construct m + 1 n'ode-disjoint paths in a different manner.
Here the source node s = (0; 0') and the destination node d = (0; 0'=2b0), where
1 <b < m-—1,

Path P, (a # 0, a can be any integer between 1 and m — 1) :

s — (0; 0"1a) = (1; 01a) = (1; 0"2ba) — (0; 0"2ba) — (0; 0'-2b0) — d

Path P, (0 < i < m—1,i # a) :

Here we restrict the value of z; so that =; # b as well as #; # 0 s — (0; 0'7})
— (1; 0F14) — (1; 0"2m;6) (25 # b and o; # 0) — (0; 0'2w;3) — (0; 0"2z;0) —
- (1; 0F7%x;0) — d

Path Py : s — (1; 0') — d

Path. P, :

s— (I=1; 00 = (1=20) > (-3 0)— - — (2; 0" — (2; 0'~2200) —

These paths are node-disjoint,

(2) The node (0; 0'~'4) in the path P; and the node (0; vj—1 -+ v2v1%) in the path

P will be identical when vy = g =+ = V2 = U = 0. Let us construct the

paths in the following way when d = (1;0'v).
Path P, (0 < i S m—1,% # w):
s (0; 0'-14) — (1; 0 14) — (1; 0" 22;4) — (0; 0'=2;i) — (0; 0'~2a;w0) — (1; 0" 2svp)

— d

101

Note that Ti # vy, e, @; $# 0 here.
| Path P,

. s — (0; 0"yg) — d

Path P,

s = (I—1 01) = (=1, Q07" - = {05 Q0™Y) = (05 Q0*%ug) — (I - 1; Q0 2up)
— (I~ 1;0"wg) — (I ~2;0"lgg) = vov e — (2; 0 lyg) — d

It should be noted here that if vy = 0 then some portion of these paths will form
a loop. In that case we shall discard that portion. These paths are clearly node-
disjoint. Since the case for p = ! — 1 can similarly be dealt with, we have the

fﬁllowing lemma.

Lemma 4.7 For [> 3, there exist m + 1 node-disjoint paths between the

source and the destination nodes, whenp = 1 orp=1—1.

Regarding the path length, the longest path in this case can be greater than the
diameter of the tﬂpolegy by at most 6 when 2 < | £ 5. Otherwise, the length

of the longest path is greater than the diameter by at most 5.

Because of lemmas 4.3, 4.4, 4.5, 4.6 and 4.7 and the discussions made on the path

lengths, we now have the following theorem.

' Theorem 4.2 Forl> 3, the node-connectivity of the GHCC is m+1 and in
_présence of m faulty nodes the diameter of the GHCC can exceed that for

the fault free case by at most 6.

We now consider the GHCC for | = 2. _In: this case the path Py, _Will not exist,
while the other node-disjoint paths can be easily derived from the general rule
discussed above. The above results on the lengths of the corresponding paths will

also remain valid for [= 2. Thus the node connectivity of the GHCC(2,m) is m

~and the diameter in presence of (m — 1) faulty nodes may be more than that for

the fault-free case by at most 6.

102

4.7 Applications

In this section we shall show how some usefyl algorithms can be implemented on

this network topology.

4.7.1 Sum / Average / Maximum / Minimum

Here we shall discuss the problem of summing up im' data points stored in Im’
processors, The problem of finding the maximum and minimum of these data can

be done in a similar way. Let us first give an outline of this algorithm.

In section 4.2, we have mentioned that the topology has m' disjoint cycles of
length [. These I nodes in a cycle lie in { different levels. In step 1, the values are
 summed up along the m' disjoint cycles and these partial sums are then stored
in the processors lying in level 0. After this step, the remaining job is to sum m'
values which are now stored in a single level, that is, in level 0. We know that
the nodes in a single level are grouped into m'~! node-disjoint cliques of size m.
In [logy, m] parallel steps the valués stored in the processors forming a particular
clique are added and then stored in the prﬂtessor of that clique having the least

significant literal (lsl) of the processor ID as 0. Now, only the nodes at the level 0

with the sl of their ID as 0 contains the values to be added. There are m'~! such

nodes in level 0. These values are now sent to the level 1, In this level, m'™! nodes

of the form (1; */~10) are grouped into m'~? cliques. Values stored in these cliques

are again added in [log, m] parallel steps and stored in m'~? nodes of the form

(1; ¥*-200). These values are then sent to the level 2. This process is continued

until the values reach the level I — 1, In ﬁhe level | — 1 the values are distributed

over the nodes of the form (I—1; ¥0*~!) which are gathered in only one clique. The

final result is thus computed by 'simply adding these m values in [log, m| parallel

- steps and finally stored in the node (I - 1; 0').

" Each processor will have tw.:}.t'emporarj registers, one of which will be referred_

" to as the SUJ'\/I register and the other as R register, The SUM registers initially

103

contain the data values to be added and all R registers are initially reset to 0.

Algorithm SUM

Step 1

do Steps 1.1 and 1.2 in parallel for all nodes having node index (vj- v+« v1)

Step 1.1
For i = 1to [I/2] -~ 1do
o _
Step 1.1.1 The content of SUM (|1/2] — i+ 1; v_1v12 -+ - v1%p) is sent to
R([1/2] - i; w1912+ - vy20)
Step 1.1.2 SUM([1/2]—i; vj1vi_g - -+ v10) = SUM (|1/2] —4; v1-yti_g -+ V1)
+ R(|1/2] =4 v+ - v10p)

}

Step 1.2
For i = 1to {l/2] —1do
{

Step 1.2.1 The content of SUM([}/2] + 4; vi_i¥-2 - - - v1Vp) is sent to
R(l{/2] +i+1; vz Uy
Step 1.2.2 SUM([l/2. -}-i-}-ll;"u;-lvi_g ey} = SUM (/2] +i+1; vy« - - %)
+ R(|1/2] +i+1; vp-1vi2 * - - V1¥0)

¥

Step 1.3 | _
Step 1.3.1 (i) R(0; vi-1v1-2 - .vyv) +— SUM (1, Vi-10i-2° SRR
(ii) SUM (0; vivr-2* Ulﬂo) «— SUM(0; vji_1vj—2 ‘Y1)
| | + R{0; vp-1vy—2 U Up)
Step 1.3.2 if (lis odd) then - o .
(i) R(0; vi1via+ - v1v0) ¢ SUM(I -1, Vi Via -+ V1)
(i) SUM(0; vi—1vi-2 . vyvp) +— SUM (0; vi-1vi-2 ** 1%
| + R(0; v-1vi-2+ 1)

104

Step 2
For i=0tol~1do
S
(i) Add the contents of m registers SUM (% vic1i-g + - - viyy * 0F) and store

the final result in SUM (3; v;_ v, - - V3 O0FF1),

(ii) Send the content of SUM (i; vj_yv_s - 010'1) to
SUM(’I:'-I- 1; Vi-1Vg oo U-;.|_10i+l).

}

Time Complexity : Step 2 requiresll[logg m| time units. Step 1.1 and step 1.2
are executed in parallel and each of them requires l2] — 1 time units. Hence the
algorithm SUM requires (3] —1) +1 + lflogy,m] = O(llogm} time for Im! data

points.

4.7.2 ASCEND / DESCEND Classes of Algorithms

Ascend / Descend classes of algorithms are highly parallel algorithms. These
classes of algorithms have applications in the problems like cyclic shift, bitonic
merge, bitonic sort, odd-even merge, fast Fourier transform, shuffle, matrix trans-
po:sition, etc. Implementation and application of these classes of algorithms are

~ discussed in [PV81] in detail. In this section we shall show how the Ascend class of

algorithms can efficiently be implemented on the pmpc-sed' topology GHCC(l, m).

The Descend class of algorithms can also be implemented on a GHCC in a similar

fashion.

Let us assume that all the three parameters N, m and [are powers of 2 and N = 27,

With this restriction, a node (p;n) = (p; wu—2 - w1%), 0 < p < I-1 and
0 Suy <m-—10 £k < | —1, can also be equivalently represented by a
binary string of length ¢ = log; N = logy ! + llogom as (bg-1bg-2 *+* bibp). Let
* us assume that among these ¢ bits, log, ! most significant bits represent the level

number p and the bit striug-(b(m) logm—10(i+1)logm—2 * " * bilogm) Tepresents the literal

104

u, 0 < 1 £ {1 (from now on all logarithms in this section wili be taken #vith

| logm-—1 log |
base 2). In other words, vy = Y b s % 2, andp = Y Brog s # 20847,
* 7=0 =1
Moreover, in general we call a processor P{b,_1b,_s -+ - biby) as the r*® processor
. q—1 v _
(node) or Ar]if r = Zb;#?", 0 <r< N-~1
j=1

Let us assume that the input data %o, £, &5, -+, ty.; are stored in the processars
F0], A1}, P2), -, AN~1] respectively. At the i** step of the Ascend algorithm,
the operands involved reside in the processors whose identifications differ only in
the i** least significant bit, 0 < ¢ < g - 1. While implementing the Ascend
algorithm on the GHCC(l,m), we notice that any two pro(;essms in level (0 whose
binary string identifiers differ only iI; the bits by, by, +«, biogm—1 are connecte'd by
an edge. Thus, the first logm steps of the Ascend algorithm can be executed only
on the data stored in the. processors in level 0. Similarly, the next logm stepsl
can be carried out only on the data stored in the processors in level 1 and so on.
Hence, the initial log m steps are carried out among the processors in level 0 and
then a cyclic shift is given to the data so that the data stored in the processor
P(p;n) will move to the processor P(p + 1;n). As a result, the data which have
already gone through the first logm steps of the Ascend algorithm are now in
level 1 and are ready to go throﬁgh the next logm steps of the algorithm. At this
stage, the second logm steps are carried out on the data in the processors in level
1 and simultaneously the first logm steps of the algorithm are carried out on the
new data elements moved to the processors in level 0. After another cyclic shift,
.ﬁrst, second and third log m steps of the Ascend algorithm will be carried out in
" parallel on the data in the processors in level 0, 1 and 2 respectively. This process
will be continued until all the data go through the first [log m steps of the Ascend
" algorithm. This would require 2! cyclic shifts and in total 2llogm time steps. As
" the processors whose binary string identifier differ anly in log! most significant

bits are connected in a cycle, the last log ! steps of the ascend algorithm will be
e of length !, This

carried out among the processors which are connected in a cycl
can be done in O(l) steps [PV81]. Formal description of the algorithm is given

below.

106

In this algorithm, OPER(r, i, Fr], Pfr + 27)) represents a basic operation that
is carried out on the data stored in the processors Pr] and Pr + 2] which may
depend on the values of r and i. Moreover, by bit;(r) we mean the /** bit of the

binary string representing 7.
Algorithm ASCEND
Step 1:

/+ Job for the processor Pr] = Plp;n) = P(b1b,—a -+ bibp), in level p, where
logl

p = Z by * olel~J executes the following statements at this step. */
' jml .

for i=0to (2l-2) do

{

Step 1.1 :

if p<i<(l+p=1) then
¢
for §=0to (logm—1) do
{

if bityigme;(r) =0 then
OPER(r, j, P[r), P[r + 22%¢m+))

-}
}
Step 1.2

Send the data stored in the processor P (p;n) to the processor P(p+1;n).

107

Step 2 : /* Last log! steps of the Ascend algorithm */

for j =10 to (log/—1) do
{ for each7: 0 < r < N~1doin parallel

{
if bitnﬂgm_;_j('r‘) =1{ then

OPER(r, 4, Plr], P[r + 2'em+))

/% Here? OFER involves the data stored in two processors which are

in the same cycle */

}

‘Time Complexity : Step 1 requires 2! logm time. Step 2 can behperformeci in
O(l) time [PV81). Thus, in total, the Ascend class of algorithms can be imple-
mented on the proposed topology in O(l + 2llog m) time.

4.8 Conclusion

In this chapter, we have presented a new family of interconnection networks
GHCC(l, m), in which any two quantities out of the network size, node degree
and diameter can be independently chosen with certain restrictions by controlling
the two parameters ! and m. The GHCC reduces to a ring for m =1 and a CCC
for m = 2. For [= 1, it reduces to a complete graph. The GHCC competes
favorably with GHC, star graphs, etc. in regard to the degree and the diameter
~ for a given number of nodes. For ! > 3, the graph is (m + 1) connected and in

| . pr'esence of m faulty nodes the diameter of the network increases only by 6, The

topology has a simple routing scheme to imple'ment. Different useful classes of

algorithms can be efficiently implemented on this topology.

108

Chapter 5

Isomorphism of Maximal Outérplanar

Graphs

5.1 Introduction

The general technicues for testing isomorphism for planar (HT73], [HW74] and
outerplanar graphs [CB81] are definitely applicable for testing isomorphism of
maximal outerplanar graphs (MOP) as well. However, there are some specific
properties of moaximal outerplanar graphs which can be exploited to design more
efficient and simpler algorithms for testing isomorphism of MOPs, Beyer, Jones
and Mitchel proposed such an algorithm [BJM79] using the fact that the hamilto-

nian degree sequence can uniquely characterize a MOP upto isomorphism.

In [JK88], Ja Ja and Kosaraju parallelized the approach due to Hopcroft and
- Tarjan [HT73] for planar graphs, with a time complexity of O(log® N) when im- .
plemented on a CREW PRAM model with O(N?) processors, and O(v/N) time
when implemented on an \/(N) X \/EN) array of processors, In [LLP¥90], Lev-
copoulos et al, have shown that isomorphism of trees and outerplanar graphs can
be tested in O(log* N) time with féfv‘ﬁ proce-ssors. on an EREW PRAM model.
These results also hold for MOPs. Moreover, in case of MOPs, if the hamilto-
nian degree sequences are compared (as discussed in [BJM79]) by using efficient

parallel string matching algorithms, then the time complexity can be -'redq.c_ed to

O(log N) by using an O(log N) 0ptimal_string matching algorithm presented in
(CCG93|, which works on an EREW PRAM model, But, in this case, the number

of processors used is quite large.

In this chapter, we are going to present a new parallel algorithm for testing iso-
morphism of maximal outerplanar graphs (MOPs). Here, we have viewed the
isomorphism problem of MOPs in terms of the isomorphism of triangulations f:-f a
convex polygon. Some interesting properties of triangulation of convex polygons
have been unveiled and using these properties, a simple and efficient parallel al-
gorithm has been developed for the MOP isomorphism problem. This algorithm
 requires O(log NN) time using N processors when implémented on an EREW PRAM
model as well as on a hypercube. We assume that the graphs with N vertices will
be given in the form of ordered adjacency lists. If, however, the graphs are given

in terms of the adjacency matrices, then our algorithm will take same amount of

time on N* processors.

As a by-product of this work we have been able to introduce a new classification
scheme and find various interesting properties regarding triangulation of convex
polygons which may be useful for a better understanding of the triangulation

problem and in finding efficient solutions to several problems in the area of com-

putational geometry, robotics, etc.

5.2 Preliminaries

Our goal is to demgn a simple parallel algorithm for testing isomorphism of MOPs.

Since there is & one-to-one correspondence between the maximal outerplanar graphs
~and the planar embedding of triangulated convex polygons, we would view this
problem in terms of the isomorphism of trlangulated convex polygons For that

we would like to reveal some basm concepts regardmg the tr1angulat10n problem

Triangulation of a simple polygon is a classical ;._problem of interest in the field

of computational geometry [PSBB]. Triangulating a polygon is to partitior_l it into

110

non-intersecting triangles (they can share common edges and vertices) by inserting
internal diagonals [PS88]. To triangulate a polygon of size N, N-3 internal diag-
onals are required. This will generate N — 2 compdnent triangles in the polygon.
‘These internal diagonals can be chosen in many possible ways and as a resul,

triangulation of a simple polygon is non-unique. Fig. 5.1 shows two different.

triangulations of an octagon.

Figure 5.1; Two triangulations of an octagon

In a convex polygon, all of its diagonals are internal diagonals. Thus, the number
of triangulations of a convex N-gon is independent of the shape, and therefore, it
can be uniquely characterized by the number of vertices N. Let (N} be the total

number of triangulations of a convex N-gon, In (GKP88}, Knuth et al. have shown

that

1 (2N-4
where, Cy is the N** Catalan number.

Figures 5.1(a) and (b) show that the triangulated polygons are nothing but max-
imal outerplanar graphs of size 8, In general, each maximal dulﬁerplanar graph
corresponds to a triangulated convex polygon and vice versa. The MOP corre-
sponding to a triangulation T will be represented by Gr (Vie), where v; € Vis Ei'_

vertex of the polygon, and (v;,v;) € € if v; and v; are joined by either a polygon

111

edge or a diagonal.

Two triangulations are said to be isomorphic to each other if the corresponding

maximal outerplanar graphs are isomorphic. Two isomorphic triangulations of an

octagon are shown in Fig. 5.2.

@ ®)

Figure 5.2: Two isomorphic triangulations

5.3 Classification of Polygon Triangulations

In this section we will introduce a new classification scheme for triangulation of

convex polygons which will also apply to the characterization of MOPs. .

Throughout the chapter, we will consider a convex polygon with N vertices (N
is any positive integer, N > 3), The vertices are numbered from 0 to N —1 in
the clockwise direction. The polygon will be denoted by 70, 1,2,..., N—1). The
notation 7'(0, 1,2, ..., N— 1) or just Tin short, will be used to denote a particular
triangulation of the polygon P(_O, 1,...,N—1), The corresponding maximal out-
erplanar graph will be denoted by Gr. An édg'ei'joiliing two ver‘tice_s i and 4, will
be denoted by the pair (i,7). Nodes of.the graph Gr are al_sd labeled in the same

fashion as in P.

112

Definition 5.1 In Gr, the length d(i,5) of an edge (i,5) 1s defined as the
minimum path length between i and j along the outermost cyele. In other

words, |
d(i,j) = d(G,1) = min {|i - j|, N~ |i - j|}

Example 5.1 In Fig. 5.2(a), d(1,6) = 8, d(1,3) = 2.

For any triangulation T| the length of the longest edge in Gr will be denoted by
L, It is easy to verify that L < |N/2|. ‘ :

5.3.1 Classification

Definition 5.2 A triangulation T 1s said to be a bisector triangulation, if
L = |N/2] = [N/2]. Otherwise T will be a non-bisector triangulation.

Thus, for odd values of N, we can not have any bisector triangulation, whereas for

even IN, we may have both the types.

Definition 5.3 Since each internal face in Gr ts enclosed by three veritices,

any two vertices corresponding to an internal face, are said to be the con-

secutive neighbors of the third vertet,
Theorem 5.1 For any triangulation T, [N/3] £ L < |N/2].

Proof : For a bisector triangﬁlatic}n, L = [N/2] = |N/2]. So we need Ito consider
nnly the non- bisector triangulations. Let T" be a non-bisector triangulation and
without any loss of generality, let us assui:ns that Gy contains the edge (0,), such
that d(0,x) = o =1 < [N/2]. Let i and 2 be two consecutive neighbors ;jf vertex
0, where 4 > =, as shown in Fig. 5.3. o -

Now, d(z,1) < L. Thereforé,

i—x < L . (5.1)

113

~Also, d(0,7) < L. Asi> x and d(0,4) = N—1,
N-i<L ' (5.2)

Adding (5.1) and (5.2) we get, 2L > N — =,
As z = L, we have, 3L > N,
i.e., [N/3] £ L. Hence the proof.)

Figure 5.3: Illustration of theorem 5.1

Lemma 5.1 In any non-bisector triangulation T, if there are more than one

longest edge, then every two of them must have one end-point in common.

Proof : W.log. let us assume that (0,z) be one such edge, where d(0,z) = =
= L < [N/2]. Let there be another longest edge (4,7 +) such that ¢ > = and _
i +x # 0 (mod N). The situation is shown in Fig, 5.4, For proper triangulation
of the original polygon (0, 1, ..., IN—1), we now have to triangulate the polygonal
structure (0,2, ¢ + 1,2 + 2,...,4,i +x,i + ¢ + 1,..., N — 1) which is also convex.
Thus we have to join at least one vertex from the set (i +z,i+=z+1,...,N—1,0)
to one of (w,xz+ 1,z + 2-, ..y 1) by an edge other than (0,z) and (i, % +). But the
length of that edge will be at least L + 1. This contradicts our hypothesis.

114

| Figure 5.4: Illustration of lemma 5.1

Theorem 5.2 For any triengulation T, Gr will satisfy the following proper-
ties: .

(1) If L = |N/2] = [N/2], there will be ezactly one longest edge in T

(2) If L = [N/3] = [N/3], there will be exactly three longest edges in T.

(3) If |N/3] < L < [Nf2], there will be at most two longest edges in T.

Proof : Follows from Theorem 5.1 and lemma 5.1,

‘Theorem 5.3 For any non-bisector triangulation T, there is @ unigue trian-

gle (face) tn Gt whose perimeter is equal to N.

Proof : W.l.o.g. let us assume that G'r contains the edge (0, z}, such that d(0, z)
=z = L < [N/2]. Let i and 2 be two consecutive neighbors of the vertex 0, where
r+1Li< N-1,

Now, d(0,z) = L. As L is the maximum length, d(x,i{) = i~z =1 — L and d(i, 0)
= N~ 1,

Therefore, the perimeter of the ﬁriangle (0,2,1) is N.

To prove un.iquexiess, let us assume that there exists another triangle in G, whose
perimeter is also N, From planarity, the second triangle must be contained in

either of the three shaded portions of the original polygon (Fig. 5.5). These three_

portions (regions_) are named as ¢, f, and .

 1 15

Now, the perimeter of any triangle, contained in the portion ¢, will be at most
2L, which can not be equal to N, a5 L < [N/2]. Similarly, the perimei:er of any
- triangle contained in the portion £ and 4 will be at most 2(¢ ~ L) and 2(N ~ 1),

respectively, But none of these can be equal to N, as [< [N/2]. Hence the

theorem., . -

Corollary 5 1 The longest edge(s) of the triangulated palygon must be the
edge(3) of the unigque trmngle with perimeter N,

Figure 5.5: A unique face with perimeter N

Definition 5.4 In any non-bisector triangulation, the unique triangle with

perimeter N will be called the central triangle of that triangulation.

Example 5.2 The tﬁéngulatz’on of the polygon, as shown in Fig. 5.6, has
the central triangle (0, 3, 6).

Note that the concept of central triangle applles only to non-bisector triangulation.

The central trlangie may be eql.ula,teral 1sosceles or scalene.

Remark : If N = 3, the polygon itself is the central triangle. Yor N = 4, all
triangulﬁtions are bisector triangulations and hence the:e is no central triangle,
For N > 4, the Ce.ntral triangle may involve at most one polygonal edge; otherwise,
if the central triangle would have two polygonal edges, then the length of the third
edge of this triangle would be N — 2. This, in turn, implies that N — 2 < 14,

116

Figure 5.6: The central triangle (0, 3, 6)

which is impossible for N > 4.

If N (> 4) is even, then the central triangle (corresponding to a non-bisector
triangulation) can not involve any plo'lygunal edge. If N (> 4) is odd, the central
triangle may involve a polyQonal edge and in that case the length of the other two
edges will be (N —1)/2.

Remark : Incidentally, the notion of the unique central triangle corresponds to the
three central vertices introduced in [BJM79], which were obtained by stccessively
deleting the ears from the triangulated convex polygon. Moreover, when L =

N1 = [4] the end points of the longest edge of the bisector triangulation also
2 2 5

correspond to the two central vertices defined in [BIMT79].

Definition 5.5 A triangulation will be called scalene or isosceles or equtlat-

eral, if the central triangle is scalene or isosceles or equilateral respectively.

The notions of bisector triangulation and the central triangle allow us to classify

the various triangulé,tions of a convex polygon into the following cases, as shown
in Fig. 5.7
Remark : For N = 6r+1 or 6r+5, (r 2 0), bisector and equilateral triangulations

are not possible.
For N = 6r + 2 or 67 + 4, (r > 0), equilateral triangulations are not possible,

117

Triangulation

|
L |

Bisector Non-bisector

| |

Scalene Isosceles Equilateral

Figure 5.7: Classification of Triangulations

For N = 6r + 3, (r 2 0), bisector triangulations are not possible.

5.3.2 Reflectional Symmetry of Triangulations

In this section we are going to define reflectional symmetry (a) about a vertex,

and (b) about the perpendicular bisector of an edge.

Definition 5.6 The reflection of a triangulation T(0,1,--+, N—1) about the
vertex 0 denoted by T'(0,1,.--, N —1), s defined as,

(0,1, -, N=1)=T(O,N=1,N~2,--+,1)

Fig. 5.8 shows a triangulation of a convex hexagon and also its reflection about

the vertex 0.

Remark : (T")' =T

Definition 5.7 A triangulation T (0,1,..,N—1) is called V-symmetric tri-
angulation about the vertez 0, if T(0,1,..,N—1) = T'(0,1,..,N—1).

Flg 5.9 shows an example of a V-symmetric triangulatinn'abnut the vertex 0.

118

T(0, 1, 2, 3, 4, 5) T'0,1,2,3,4,5)

Figure 5.8: Reflection of a triangulation about the vertex 0

Definition 5.8 Reflection of the vertices of a convex polygon F0, 1, o N=1)
about the perpendicular bisector of the edge (0,N — 1) will be defined by the
mapping B V=V, where Bp)=N-v-1,veV,

Definition 5.9 Reflection of a triangulation T'(0,1, <, N~1) about the edge
(0, N — 1) will be denoted by T#(0,1,-++,N—1) and defined as

TE(011: ey N—1) ==T(E(O),E(].),E(Q),--*,E(N—l)) =T(N_11N"2!" +,1,0)

Figure 5.9: V-symmetric triangulation about the vertex 0

119

Fig. 5.10 shows an example of a triangulation and its reflection about the perpen-

dicular bisector of an edge.

Figure 5.10: Reflection about the perpendicular bisector of the edge (0, 5)

Remark : (TB)° =T

Definition 5.10 4 triangulation T'(0,1, .., N —1) i.é called an E-symmetric
triangulation if T'(0,1,. .- N - 1) = TE(0,1,...,N-1).

| Fig, v.11 displays an example of an E-symmetric triangulation.

Lemma 5.2 Let §g(N) denote the total number of E—symmém'c triangula-
tions of a polygon A0,1,..,N—1). Then, 65(2) = 1, and for N> 2,

5N) { , -_lith’seven;
£ a 6((N+1)/2), -otherwise.

Proof : We prove the result by indlit_:tian on N. It is easy to verify the result for N
= 3, 4 and 5, Let the result be true for N=1,2, .., N—1. Let T(0, 1, 2,,NJ- 1) o
be any E-symmetric triangulation. Because of E-symmetry, for every edge (i,7)

in T, the edge (N—§ - 1,N—1i~— 1) should also be present in 7. But, due to '
| planafity, fori < (N — 1)/2 < 3, it is not possible for any triangulat_ion T to have

120

3

Figure 5,11: E-symmetric triangulation about the perpendicular bisector of (0, 6)

" both these edges, unless j=N—i-1(ie, when (i,f)and (N—j~ 1, N— i~ 1)

represent the same edge). When j = N—1—1, an edge of the form (i, N—i— 1),
1 £1 < N- 2, divides a polygon into two polygons of smaller size and both of
them have to be triangulated in an E-symmetric fashion tc get an E-symmetric
triangulation of the Qriginal polygon. The polygon containing the edge (0, N ~ 1)

and (¢, N—i —1) will have even number of vertices. But, by induction hypothesis,

it is not possible to triangulate it in an E-symmetric way. So, T cannot have an

internal edge of the form (i, N —1i - 1).

From the above discussion it follows that if N is even, the polygon (0, N/2 —

1, N/2, N — 1) will remain intact in T Thus no E-symmetric triangulation exists,

for even values of N.

For odd values of N, there must be a central triangle (0,(N—-1)/2,N-1)inT, as
edges (i,7) fori < (N ~1)/2 < § cannot exist in T, This divides the polygon into two
smaller polygons (0, 1, ..., (N—1)/2} and ((N~1)/2,..N—2,N—1). Referring
to Fig. 5.12, for T to be E-symmetric, we must have, T'2(0,1, ..., (N — 1}/2) =
T((N-1)/2,..,N-1). Thus the total number of E-symmetric triangulations will

be §g(N) = 8((N+1)/2).

121 .

(N-1)/2 -

Figure 5,12: Illustration of lemma 5.2

Remark : If we redefine §(N) as, -
Cn—g, N >2

0, for fractional and /or negative values of (N — 2)

S(N) = Dy_s = {

Then the above result can be restated as :
bp(2) = 1, and for N > 2, §g(N) = Dy.y)p.

5.4 Counting Non-Isomorphic Triangulations of

Each Class

Having classified the triangulations of a convex polygon as above, we now show
that two triangulations belonging to two different classes cannot be isomorphic.
Then we proceed to count the number of non-isomorphic triangulations in each of
the above classes. Summing them up, we could also find the overall expression for

the total number of non-isomorphic triangulations of a convex polygon.

- 122

5.4.1 Properties of Isomorphic Triangulations

For the sake of completeness we wpuld like to reiterate some existing results found
in the literature [BIMT9]. |

Result 1 : The maximal outerplanar graph Gy, corresponding to ar:ly triangula-
tion T'(0, 1, ..., N—1), has a unique hamiltonian cycle, (0,1,..., N—1, 0), along the

outermost cycle.

This result can be proved in the following way.

The sequence of vertices (0,1,2, ..., N —1,0) along the outermost face of G gives
us one hamiltonian cycle. If possible, let there be another hamiltonian cycle which
includes an internal edge (i,), as in Fig, 5.13. Let us try to traverse this hamil-
tonian cycle starting from the vertex i and moving towards § along the edge (1, 9).
The edge divides the polygon into two halves and from vertex j we must go to a
vertex in one of the halves. But once we enter one of the halves due to planarity,
there is no internal edge, which can take us to the other half. The other two
edges into the other half also cannot be used, as i and j both have already been

traversed, Thus, we cannot traverse all the vertices. Hence the contradiction.

Figure 5.13: Uniqueness of the hamiltonian cycle

Result 2 : Two triangulations T1(0, 1, .., N—1) and T5(0,1, ..., N— 1) are isomor-

phic iff one can be obtained from the other by reflection and /or rotation.

To just'ify this result we can argue in the following way.

123

If one of the triangulations can be obtained from the other by reflection and/or
rotation, it is easy to see that they are isomorphic.

To prove the necessity, let T3 = f(T}). Now, (0,1,...,N ~ 1,0) is a hamiltonian
cycle in 3. As fis an isomorphism, (f(0), f(1),..., f(N — 1), f(0)) will also be
a hamiltonian cycle in T). But, by result 1 given above, the only hamiltonian
~cycle in T3 is (0,1, ..., N~ 1,0). So {§(0), f(1),..., F(N— 1), f(0)} is nothing but a
reflection and/or‘ rotation of (0,1,..., N—1,0). Thus, Tg can be obtained from T}

by reflection and/or rotation.

From these two results we derive the following two corollaries.

Corollary 5.2 : If T} and T; are two isomorphic triangulations, then the

unique central triangle of T\ 4s identical to that of Ts.

Proof : If 7} and T3 are isomorphic to each other, then 7} can be obtained from
T3 by rotation and /or reflection, Such an operation can only affect the orientation

of the central triangle of a triangulation, but not its shape and size. Hence the

result.

Corollary 5.3 : Two triangulations belonging to two different classes cannot

be isomorphic. to each other.

Proof : Immediate from corollary 5.2. .

Corollary 5.3 allows us to calculate the number of non-isomorphic triangulations

for each class separately.

124

5.4.2 Counting

We will now derive expressions for edumerating non-isomorphic triangulations in

each of. the classes.

5.4.2.1 Counting Scalene Triangulations

Theorem 5.4 The total number of non-tsomorphic scalene triangulations of

a conver N-gon 1s

Nst= Y [6(a+1)8(b+ 1)é(c+1)]

atiena N
a<<ez [N/

 Proof : Assume that the three sides of the central triangle are of length a, b, ¢
(a, b, c are distinct), where a + b+ ¢ = N. Let us first fix the position of the
central triangle in the polygon as (0,a,a + b) as shown in Fig. 5.14. With this
fixed position of the central triangle, the total number of possible triangulations
is 6(a +1)8(b+ 1)8(c + 1).
We claim that the triangulations which are included in the above count are non-
isomorphic to each other. To prove this we assume the converse. Let 77 and T%
be two isomorphic triangulations preseﬁt in the above count. Then by the second
* result mentioned in the subsection 5.4.1, T} can be obtained from T3 by reflection
‘and or rotation, As the central triangle is scalene, reflection or rotation will change
the orientation of the central triangle. But this contradicts our hypothesis that

the position of the central triangle is fixed at (0, a,a + b).

For a given set of values {a,b,c}, a +b+c = N (a, b, c are all distinct), it is
enough to consider any one of the 6 possible central triangles, viz., (0,a,a + b},
(0,a,a+c), (0,b,a+b), (0,b,b+¢), (0,c,a+c), (0,¢,b+c). All triangulations for .
the remaining position of the central triangle will be isomorphic to some member
~of the set already considered. So let us assum a < b < ¢, and consider the
central triangle (0,a,06 + b). Thus, the total number of non-isomorphic scalene

125

Figure 5.14: Counting scalene triangulations
triangulations of a convex N-gon will be :

Y [8(a+1)8(b+1)8(c+1)]

dt+ite=N
a<h<e<[NfE]

- Remark : With our notation defined above, the above result can further be

simplified as :

Nspr = (1/3)Dy-2 — (1/12)Dy-1 — (1/4) Diypo-1* — (1/6) Dpyjz—1° —
| (1/2) (D *Dy_y] |

Dop b=
a#b <[N/2]

(For derivation, see appendix at the end of chapter 5)

5.4.2.2 - Counting Isosceles ’I‘riangulationé

Theorem 5.5 The total number of non-isomorphic isosceles triangulations

of a convex N-gon 18

Np= S (1/2){(6a+ P60 +1) + 8-+ 1656+ 1))

. 2atb=N
agbab<[N2

Proof : Let the two equal sides of the central triangle be of length a, and the other
side be of length b. Thus %+b=N,a 7é band a,b < [Nf2]. Let us first fix the

126

position of the central triangle as (0, a, a-+ b). With this fixed position of the central
triangle, the total number of possible triangulations will be [{6(a + 1)}?8(b+ 1)].

Since an isosceles triangle has a twofold symmetry, the above triangulations ai*e
non-isomorphic upto rotation only. In other words, the above set contains both
T and 7" (if they are not identical). Let us consider an isosceles triangulation
T(0,1,...,]N — 1), with central triangle (0,a,a + b). Central triangle divides the
original polygon into three smaller polygons, (0,1,::+,a), {a,a+1,:-+,a+b}, and
(a +b,a+b+1,-+,N—1,0), as shown in Fig. 5.15.

Figure 5.15: Counting isosceles triangulations

In any triangulation these three smaller polygons are also triangulated in some

fashion. This is symbolically represented as : |
7(0,1,..,N—1) = (4(0,1,...,a)B(a,a+1,. La+bCla+b,at+db+1,..,N-1,0)),
where A and C are any two tnangula.tlons of a polygon of size (a+ 1) and B is

- that of a polygon of size (b+ 1). In short, we also denote this by T'= (ABC).

NOW;u T’(Oj 1, "‘,N—*l)=T(O,N""'1,N‘—'2;"': 1)
=A(0, N-——- 1! ---,ﬂ.-l—b)B(ﬂr“i"biﬂ'l"b""]-,."’j a)c(ﬂv',ﬂ*-]-,"',o)
— G'E(O: 11 YTy G)BE('{L;-&'*']-} T &+b:AE(a'+b’ﬂ+b+1}.”’N_IOJ

If T is a V-symmetric triangulation, then _
- 7(0,1,...,N—1) = T'(0,1,.. N=1) =T(O,N-1,N=2,-])
Therefore, C = AF and B=BE. | |

Thus, for T to be a V-symmetric tnangulalsmn B should be E-symmetric and C

127

should be A”.
Therefore, the total number of V-symmetric triangulations will be &(a+1)6g{b-+1)

which can be computed using Lemma 5.2,

Thus for the fixed position of the central triangle, the number of non-isomorphic
trlaugulatlons willbe 1 12{[6(a + 1)]*6(b + 1) + §(a + 1)5 b+ 1)}.

Any change in the position of the central triangle, will generate a triangulation
isomorphic to one that has already been considered in the above count.

Therefore, the total number of non-isomorphic isosceles triangulations will be

Nr= Y 1/2{[6(a+1)P8(b+1)+6(c+1)8(b+1)}

Zetd=n
aFbad<[Nf2]

Remark : The above result can be simplified as :

= (1/2) . A{[Da- 1] Dy 1} + (1/2)9(1*:—-1)/2 1 +(1/4)Dwja-1

Tat+b=J¥
azb,ab<[N/2]

(1/4)DN/4 7 - (1/2)DN/3 IDN/E 1

(For proof, see appendix at the end of chapter 5)

5.4.2.3 Counting Equilateral Triangulations

Theorem 5.6 -The total number of non-isomorphic equilateral triangulations

of a conver N-gon 15

Ngr = 1./6{[6(N/.3 £ 1)+ 26(N/3+ 1) + 36(N/3 + 1)85(N/3 + 1)}

Proof : Let N be a multiple of 3. Without loss of generality, we fix the central
triangle at (0, N/3,2n/ 3) With this central triangle, the total number of passnble
triangulations will be [6(N/3+ 1)] . Among these, let us consider a particular

triangulation T such that

128

T(0,1,... N~1) = (A(0,1,..., N/3)B(N/3, N/3 +1, .., 2/3)

C(2n/3,2n/8 +1,..., N~ 1,0}),
i.e.,, T'= (ABC), where A, B, C are any three triangulations of a convex polygon
of size (N/3 4 1), as shown in Fig. 5.186.

Figure 5.16: Counting equilateral triangulations

As the position of the central triangle is fixed, there are atmost five triangula-

~ tions, namely, T} = (BCA), T; = (CAB), Ty = (CEBPAR), Ty = (BPARCP),

Ty = (AEGEBE), all of which are isomorphic to T. But the triangulation T}
(1 <€ i < 5) may be identical to T.. If sd, T: has no contribution in the above

count., Otherwise, it has been considered separately in the count.

If Ty (or T3) =T, then A = B = C. The number of such triangulations, for which

T (or Tb) is identical to T} is 6(N/3 +.1).

If T3 = T, then A = C%, B = BE, ¢ = A" The number of such triangulations will

be §(N/3 + 1}6p(N/3 + 1). |

Similarly, the number of triangulations for which T is identical to T, or Ts will be

S(N/3 + 1)6g(N/3+1). |

- Thus, the total number of non-isomorphic équilaﬁéral triangulations, with the cen-

tral triangle (0, N/3,2n/3) will be 1/6{[6(N/3 + 1) + Qﬁ(ff/3 + 1) + 36(N/3 +

1)65(N/3 4 1)}
For any triangulation generated by changing the position of the central triangle,

has already been included in the above count.

Thus, the total Sumber of non-isomorphic equilateral triangulations of FP0,1,.., N-

129

1) will be

Nep = . [6US(N/3 + 1)1 +26(NJ3 + 1) + 36(N/3 + 1)d(N/3 + 1)}

When N is not a multiple of 3, Nop = 0, Therefore for any N- gon,

Ner = (1/6)Dyjs—* + (1/3) Dyjs_y + (1/ 2)Dys1 Dayssy

5.4.2.4 Counting' Bisector Triangulations

Theorem 5.7 The total number of nm-isﬁmarphz'c' bisector triangulations

of a convexr N-gon is

Npr = 1/4{{8(N/2 + 1)}* + 26(N/2 + 1) + {65(N/2 + 1}

Proof : In this case, the length of the longest edge is (N/2] = [N/ 2|, that is N

must be even., |
Let us first fix the position of this edge as (0, N/2).
With this fixed position of the longest edge the total number of possible triangu-

lations is [6(N/2 +1)]2. _

Let us consider a triangulation 7'such that

T(0,1,..., N—1) = (A(0,1,..., N/2)B(N/2, N2 + 1, ..., N — 1,0))

i.e., T'= (AB), where A and B are any two triangulations of a convex polygon of

size (N/2 4+ 1), as shown in Fig. 5.17.

With the fixed pns1t1on of the longest edge tha tnangulatmn T has at most three "
isomers, namely T} = (BA), Ty = (AEBE) and Ty = (B%A%). But these triangula-

tions may be identical to 7% If they are not, then they must have been considered

separately in the above count.
If T'=T, then A B. The number of such tr:angulatlons, (AA) is 6{N/2 +1).

130

N/2

Figure 5.17: Counting bisector triangulations

If T'= T3, then A = A® and B = B®, The number of such triangulations, is
[62(N/2 + 1)) ' _

If T'=1T3, then A = BF and B = AF, The number of such triangulations, (A% A),
is §(N/2 4 1).

Thus, the total number of non-isomorphic bisector triangulations, with the fixed
position of the longest edge, will be 1/4[{8(N/2+ 1)} +26(N/2+ 1) +85(N/2 + 1)3].
Triangulations obtained by changing the position of the longest edge will be iso-
morphic to one which has already been included in the abeve count.

Therefore, the total number of non-ijsomorphic bisector triangulations of a convex

N-gon will be

Nar = 1/4[{8(N/2 + 1)}2 + 26(N/2 + 1) + {65(N/2 + 1)}?)

- For odd values of N, Npr = 0. Therefore, for all values of N

Nar = (1/4) Dypir® + (1/2)Dyja-1 + (1/4) Djar’

131

- 5.4.2.5 Counting Total Number of Non-Isomorphic Triangulations

Theorem 5.8 The total number of non-isomorphic iﬁangulations of a con-

ver polygon F(0,1,..., N —1) is given by

5M(_N) = (1/12)[4Dy-z + 9DN}2-1 +4Dy;n 1+ GD(N_‘I)’Q_I — Dy

Proof : See appendix at the end of chapter 5.)

It may be noted here that the problem of counting the total number of triangu-
lations, non-isomorphic upto reflection and rotation, has already been solved in

(MM63] and [HPR75| for convex polygons. The followmg counting formula is due
to Moon and Moser [MM63]

FAINY/2N+ F(N/3+1)/3 + 3f(N/2+ 1)/4, if N'is even
f(N)/2N + f(N/3+1)/3+ f((N+1)/2)/2, otherwise

S(N) = {

where, f(N) = §(N), if N > 2

=0, for fractional and/or negative values of (N — 2).

It can be verified that this result agrees with that given in the above theorem 5.8.
But the approach used in [MM63] is different from that of ours which is based on

counting the non-isomorphic trlangulatmus of each class separately

The number of non-isomorphic triangulations in each class as well as the total

number of triangulations upto N = 20 are given in Table 5.1.

132

Table 5.1: Number of triangulations of different type for various values of N

N Ngp Nmr| Ngp Nr SNI(N)
3 0 0 1 0 1!
4 0 0 0 1 1
5 0 1| o0 0 1
6 0 0 1 2 3
7 0 4 0 0 4
8) 3 0 9 19
0 10 15 2 0] 27
10 0 26 0 56 82
11 70 158 0 0 298
12 140 105| 25 463 733
13| 1008 | 1274 0 0 2982
14| 1176 | 1930 0| 4422 7528
151 12180 | 12192 | 462 o| 24834
16| 20328 | 17339 0| 46231| 83898
17 | 150414 | 134943 0 0| 285357
18| 280962 | 177938 | 12404 | 511940 | 983244
19 | 1826682 | 1585738 0 01 3412420
| 20 | 3804372 | 2228001 0 | 5912241 | 11944614

133

5.5 Identification of the Class and the Central
Triangle o '

In this section we look at the problem of identifying the class which a given triangu-

lation belongs to along with the central triangle (for a non-bisector triangulation).
For this we first find the longest edge(s) in the triangulated polygon. If the longest
edge is of length % (which can occur only when N is even), then the given triangu-
lation is a bisector one. Oﬁherwise, we find the unique central triangle in the given
non-bisector triangulation by using the fact that the longest edge in G'7 must be

one of the sides of the central triangle of T (from corollary 5.1).

The complete process can be described by the three steps given below,

(I) Find the longest edge emanated from the vertices i of Gy,
Vi, 0 £i < N-1. |
(II) Among N edges obtained in (I), find again the longest one. Let it be

(P, q).

(III) If d(p,q) = -2-{ , then the triangulation T is a bisector triangulation;
otherwise, for each vertex &, other than p and g, find d(k, p) 4+ d{k, q)+
d(p,q). If the sum is N then (k,p,q) is the central triangle.

We assume that the planar straight line embedding of Gr is given in the form of
ordered adjacency lists. By ordered adjacency list we mean that the nodes in the
list will appear in a specific direction, either in the direction of iﬁcreasing node
number or decreasing node number and for a node i, the list will start either from

i+ 1ori-—1 (& are taken under modulo). An example is shown in Fig.5.18.

Let us now formally describe the algorithm JCCT for identification of the class

and the central triangle of the triangulation_when implemented with N processors.

These processors will be referred to as By, Py, ..., Py-1 50 that the processor F;

will take care of the vertex i.

134

Ordered adjacency lists for the nodes :
| 0:1,4,5,7 9
1:2,3,4,0
2:3,1
3:4,1,2
4:96,0,1,3
5:6,7,0, 4
6:7 5
7:8,9,0,5,6
8:0,7
9:0,7,8

Figure 5.18: An example of representing a graph by ordered adjacency lists

Algorithm ICCT
Input : The maximal outerplanar graph Gr (1{6) corresponding to the given
triangulation T\ Gy is given in the form of ordered adj&céncy lists.
Output : The class which T belongs to and also the central triangle in case of
non-bisector triangulation.
Step 1 : fori = 0to N—1do in paralle] _
from the adjacency list of the node 7, the processor P, finds the largest chord (i, k)

of length I; emanating from the vertex i, where k& € Vis some vertex in Gr. If there
are more than one such edge with the same length Z;, then only that corresponding

to the minimum k value will be chosen. F; generates the triplet <4kl >,

Step 2 : P’s find the lexicographic minimum of the triplets < N— 1,1,k >. Let
this minimum be <IN-"-1;, s, t>. The processor' Py will store the triplet < s,¢,1, >.

- Step 8 : If I, = % then output T'as a bisector triangulation and stop.

135

Step 4 : The triplet < s,¢,1, > is broadcast to all the N — 1 processors P,

Step 5 : fori = 0to N-1do in paralle]

if the processor F; finds that both the vertices s and ¢ are neighbors of i, that is,
if both the chords (4, s) and (1, ¢} exist in T'then it will compute the perimeter
of the triangle (i,s,t) as m = d(i, s) + d(i,r) + ,.

If 7, = N then P; will output the corresponding triangle (i, s,t) as the central
triangle of the triangulation. Let the central triangle be (7,9,7),0 € p,gr <
N -1,

Step 6 : The processor Py will compute the chord lengths I, = dip,g), I, =
d(g,v) and [= d(r,p). Comparing l1, & and &3, Py decides the class which T

belongs to.
Timing Analysis
(1) When implemented on EREW PRAM model with N processors :

Since the neighbors of the node i, 0 < i < N-1, are given in the form of
an ordered list, as described above, the corresponding sequence of distances will
be bitonic in nature. That is, if the given adjacency list for a node 1 is {v,, v,
.++, ys} and the corresponding distances are { dy, dy, +++, ds } where, d(i Uj) = d;,
then we must have dy < d;j £ dy < -+- <dy 2 dpyy 200 2 dg, for some p. This
characteristic is true for all nodes in G. Due to this characteristic of {d;}, the

largest among these distances can be found by a single prusesSor_in (log,(6)] time
steps through a binary search. Thus, in step 1, the processor F; can find the largest
chord emanated from the node 7 in at most [log,(N—1)] time steps. Clearly steps
2 and 4 require [log, N] time Steps. In step 5, each of the N processors would

take at most 2{log,(N ~ 1)] time steps in parallel. Step 6 requires constant time.

~ Hence, in total the algorithm requires O(log IV} time..

(2) When implemented on a hypercube with N processors :

In this case, the required time will be the same as above assuming that the adja-

136

cency list of the node 1 will be given as input to the pruéessar P;.

5.6 Isomorphism Problem.for MOPs

- 'We know that there exist a one-to-one correspondence between the MOPs and the
planar embeddmg of triangulated convex polygons. If the nodes in & MOP are
numbered in such a way that the sequence of nodes {0,1,..+, N — 1, G} describes
the unique hamiltonian c_ycle_ of the MOP, then a MOP G can be equivalently
represented by the triangulated convex polygon 7°(0,1,.--, N — 1). We now recall

the notion of hamiltonian degree sequence [BIM79] in a MOP as follows.

Definition 5.11 Fora MOPT(0,1,2,--+,N-1), the sequence {dp, dy, - ,dy_}
of positive integers will be called the hamiltonian degree sequence of T iff d;
15 the degree of the node 1, Vi, 0 <1 < N~ 1.

From the properties of triangulation of a polygon [PS88], it may be noted that
)2<d <N-1

and ii) there exist at least two elements of the sequence whose values are 2.

For the MOP isomorphism problem we start from the point that two MOPs Gy and

(2, having N nodes each, are given in terms of two triangulations Ty (0,1,+++, N —
1) and 75 (0,1,-~,N —~ 1), Hence, deciding whether &, and (53 are isomor-
phic to each other amounts to testing the isomorphism of the two triangulations
Ty (0,1,--- ,N—1) and T3 (0,1,-‘-*,N— 1},

We now state the following result which is also mentioned in [BJMT79] in some
~ other form.

Result 3 : Two MOPs TI(O, 1,+.+,N—1) and T3{0,1,: " ,N—- 1) are isomorphic
to each other iff their hamiltonian degree sequences are identical under_ reflection

and /or rotation.

137

For completeness of our discussion, an outline of the proof in terms of the proposed

notion of the central triangle is, however, given as follows.

Result 2 given in the subsection 5.4.1 proves the necessity.
For the sufficiency part, we need to prove that given two hamiltonian degree se- .
quences which are identical under reflection and/or rotation, the corresponding
triangulations are isomorphic to each other, Since we are dealing with hamil-
tonian degree sequences which are identical under reflection and/or rotation, it

i il

~ suffices to show that given a hamiltonian degree sequence {do,dy,- -, dy.1}, the

way of triangulating a polygon F(0,1,.:+, N~ 1), satisfying the sequence {d;} is
unique. For this, we proceed as follows,

In the degree sequence, the elements whose values are 2 represent nodes in the ears
[PS88) of the triangulation. Considei'ing the sequence {d;}, one can easily place
those ears in the polygon and these positions are uniquely identified from the de-
gree sequence. Once these ears are idenfiﬁed, the dégree-2 nodes can be deleted
from the polygon to get a new polygon of size at most N—2. The degree sequence
of this new polygon can be obtained from {d;} by removing all 2’s and reducing
the preceding and the following elements of each of these 2’s in the sequence by 1.
- Let the modified degree sequence be {dy, d;, -+, d;}, where k < N—2. Now, our
problem reduces to triangulating a polygon_of size af most IV — 2 satisfying the
degree sequence {d;}. Applying the same construction rule for the new polygon,
the problem size can again be reduced by at loast 2. If wo go on rcpeating the same
process, we shall end up either at a single line (for bisector triangulation) or at
the unique central triangle. Every step of this process actually fixes up the edges
of the triangulated polygon, Thus, the uniqueness of the triangulation satisfying

{d;} is established.
- The algorithm which we are going to preserit to test whether two MOPs are iso-

morphic or not is mainly based on the above result 3. Let the given degree se-

quences 0f T1 and T, along their hamiltonian cycles be {c:ifJ di,dj,-+-,dy.} and
{d?,d%,d2,- - d}_,} respectively. We need to find out whether there exists any

reflection and / or rotation under which these degree sequences will be 1denl:1cal If

138

there exists one such transformation, for non-bisector triangulations, we can say
by the Ctarolla.ry 5.2, that the central triangle of 7) and 75 will be identical under
the same transformation, Let (i',7', k') and (1%, #*, k?) be the central triangles of
Ty and T respectively. If the central triangles (i, 5%, ') and (1%, %, #*) are not
congruent to each other, then we can at once conclude that the triangulations are
non-isomorphic. But, in case they are congruent to each other, different possible
transformations (at most 6 in number) can easily be found out under one of which
the degree sequences will be identical when T} and T are isomorphic. Let us

discuss the latter case in detail,

Without loss of generality (w.l.0.g.), let us assume that I} = {i* — 5![, I} = |5* ~ k',
= [kt = %] and f = i = 71,1 = |7 - B, B = 2 = 1

The triplets < &, 4,51 >, < 3,4, k! > and < I}, k!, ¢! > are sorted (say, in non-
decreasing order) over the values of 1}, I} and I}, Let the sorted sequence of the

triplets be < 1,11, 51 >, < b, 51, k1 > and < B, kg iy >

Similarly, for T, starting with the triplets < 222> < B4k > and <

12, k2,4 > and sorting these over the values of 12, 12 and I, suppose we get the

sorted triplets as < l,43,52 >, < b, 4o, ko > and < I3, k3, iz >.

Depending on the valueslof ?1, lg and I, there may be three different cases :

Case 1 : When l; # lg #* I3 # 1.

. In this case, the only possible mapping on the set of nodes V3 of T, under which
the degree sequences may be identical to each other is, M, : V3 — V3 such that for
v € Vy, M,(v) = v+ (i1 — i2).

This M, actually represents a rotation through (4, --12) nodes. Note that i; can be

 found from the intersection of the sets of vertices {i1,7:} and {kyiy } corresponding

to the triplets < 11,11, 41> and < la, Ky, 41 > of Ty, Slmllarly i, can be obtained

~ from the triplets < lj,2,72 > and < ls, kg, 2 > of T?'

The degree sequence {df} will then be modified to {J}} under M, such that cI;’ =

dQM:I (j) .

139

If the modiﬁed.degree sequence {d?} becomes identical to {d}}, that is, if d} =
d?,V5,0 £ J < N—1, then T} and T} are isomorphic to each other. Otherwise they

are non-isomorphic.

Case 2 : Whenl; = l3 # I,

In this case, there will be two poss-_,ible mappings on the vertex set V; under one of

which the degree sequences may be identical.

(i) Mii: Va2 — V), such that for v € V3, Miy(v) = v+ (i1 — is)
This mapping represents a rotation through (4; — i,) nodes which will map i, to

‘51, jg to jl and kg to kl‘

(i) My : Vo — V4, such that for v € Va, Mig(6) = iy +ig — v.
M, represents a rotation through (4; —is) nodes followed by a reflection about the

vertex 41. This will map i to ¢, 7; to ky and k; to 7},

If the modified degree sequence {dzth} or {dy...,} becomes identical to {d;},

k7
then T3 is isomorphic to T3, Otherwise they are non-isomorphic.

Case 8 : When ly = |, = [;,

Here, the number of possible mappings on V; is six under any one of which the

“degree sequences will be identical if 7} is isomorphic to 73. These mappings are

as follows.

(i) My (v) = v + (is ~ o)
This will map i, to 15, §; to 7; and k; to k.

(il) Mﬂg(‘U) == ‘51 + 1'2 ~— v
Mz will map ig to ‘il, jg to kl and kg to jl*

(iii) Mes(v) = v+ (i1 — 52)
This will map 7, to i,, k2 to j; and iy to kl |

(iv) Moa(v) =4+ —v

M, will map j, to iy, 45 to ji and k; to k.

14()

(v) Mes(v) = v+ (iy—ky)
Th.iS will map kg' to 1'1, 1.2 to j1 and jz to k}.

(vi) Mes(v) =d1+ky — v |
M, will map ks, to iy, 4o to 4; and %5 to &,

Here also, the modification rule for the degree sequence of T3 is same as in the
above two cases. If the degree sequences of 7y and T3 are identical under any one
of the above mappings then 7 and T, are isomorphic to each other. Otherwise

they are non-isomorphic. 0

In case both T} and T, are bisector triangulations, there will be four possible

mappings on V.

Suppose, (i1,71) and (iz, j2) are the longest edges of the triangulations T} and T

respectively. Then, the mappings can be defined as :

(i) My (v) = v+ (i1 — i)

This mapping represents a rotation through (i) — ;) nodes.

(11) Mbg(‘v) — ‘!'r]_ + 1'2 -V
This represents a rotation through (i; — iz) nodes followed by a reflection about

the vertex 1y.
'Both the above mappings map s to % .and 72 to g1.-

(iii) Mis(v) = v+ (i — o) _
This mapping represents a rotation through (§; — 1) nodes.

(11)') MM(v) = jl -+ 1:2 —

‘This represents a rotation through (§; — 2) nodes fnllowed by a reflection about

the vertex 3.
These two mappings map 4, to ji and jz to gt

Let us now present the algorithm in a formal way.

14]

A]gorithm ISO.MOP

Input : Two triangulations T (0,1,..., N- 1) and 73 (0,1, .+, N—1) correspond-
ing to two maximal outerplanar graphs @, and G, along with the respective hﬁnﬂl—
tonian degree sequences {dj,d},d},---,d}_,} and {d2, &}, d2, .. d%_,} are given.
The Mops are given in the form of the ordered adjacency lists.

‘Output : Decide whether G and G, are isomorphic or not.

Step 1 : Using the algorithm ICCT, identify the classes which these two triangula-
tions belong to. If these two triangulations belong .tn two different classes then the
triangulations are non-isomorphie, Otherwise, in .ca_se‘ﬂf bisector triangulations,
find the longest edges of both Ty and T;. In case of non-bisector triangulations;

find the central triangles {i1, 1,51} and {4, 45, k3} of T} and T5 respectively.

Step 2 : If the triangulat.ions are bisector triangulations, then check whether the
modified hamiltonian degree sequence of T is identical to that of 7} under any
one of the four possible mappings M, discussed above. If one such mapping is

found then the triangulations are isomorphic. Otherwise, these triangulations are

non-isomorphic triangulations.

Step 3 : If the triangulations. are scalene triangulations, then modify the hamil-
tonian degree sequence {d_?} using the rule given above, under the corresponding
mapping M, (case ll-above).' If the modified degree' sequence {cff} is identical to

{d}} then the triangulations are isomorphic. Otherwise, they are non-isomorphic.

Step 4 : If the triahgulations are isosceles 'triang'ulations then modify {d?} using
the same rule, under the two possible mappings M; (case 2) and check whether
any one of these modified degree sequences is identical to {d}} If these two are
identical with respect to .any one of the two mappings then the triangulations are

isomorphic. Otherwise, théy are non-_iSOmOYPhiﬂ-_- __

Step 5 : If the triangulations are equilateral triangulatioqs, then there are six
possible mappings M, as discussed above (case 3). Following the same procedure

as in step 4, if the modified degree sequence is fquﬁd identical to {d}} with respect

142

to any one of the mappings then the triangulations are isomorphic. Otherwise,

they are non-isomorphic.
Implementation of the algorithm

(1) On EREW PRAM model with N processors :

Step 1 requires O(ilog'N) time steps as discussed in the previous section. Steps 2,
3, 4, 5 can be implemented on this model in O(log N) time. In each of the steps
2, 3, 4 and 5, the processor F; will compute the inverse of the respective mappings
(as discussed above) for i. For example, M;*(i) will be computed as i ~ (i; — i,)
(discussed in case 1). Let it be j. P; will then read the value of d? from the PRAM
and compare it with d}. All the processors will do the same work in parallel. It
will take constant amount of time to implement. Finally, the results obtained by
comparison will be gathered by the processor Fy in OQ(log N) time and P, will take

the decision whether the triangulations are isomorphic or not.

Hence, the total time taken to implement this algorithm on EREW PRAM model
with N processors is O(log N).

(2) On a hypercube with N processors :

We assume that the prdcessc:r P; will take care of the node ¢, 0 < ¢ < N~ 1.
Initially, the ordered adjacency list for the node i and the i*® elements d} and d?

of the hanﬁltonjan'degree, sequences of T} and T; will be given to the processor £.

Step 1 can be implemented on the hypercube in O(log V) time. To implement
steps 2, 3, 4, and 5, here also the processor F; will first compute the respective

" inverse mapping of 4 to get the value of j. It will then request the processor P; ito
send the value of d. The value of d} will be compared with d} at the processor F.
These results are gathered by the processor Fy to take the final decision. These
steps can be implemented on a hypercube in O(log N} time steps [JH89], [NS81].

Hence the required time is O(log N).

143

Remark : If instead of ordered adjacency lists, the graphs are given in the form
of adjacency matrices along with the hamiltonian degree sequences, then also the
algorithm JCCT can be implemented with the same time complexity. But, m this
case we would need N? processors. This is because, we know that the maximum of
N numbers can be found in [log; N} time using N processors. Therefore, in step 1
of the algorithm ICCT, to find the longest edge emanated from a vertex in [log, N]
time steps, N processors will be required for each of the vertices. As a result, we
would need N° processors Ialtogether. ‘Hence, to keep the time complexity of the
algorithm ISO_MOP at O(log N), N? processors are required when the graphs are

given in the form of adjacency matrices.

5.7 Conclusion

In this chapter, we have presented an algorithm for testihg isomorphism of max-
imal outerplanar graphs (MOPs), If the MOPs are given in the form of ordered
adjacency lists, the é;lgorithm will take O(log N) time steps, when implemented on
an EREW PRAM model as well as on a hypercube with N processors. We have
solved this problem in the light of triangulal;ion of convex polygons, since there
exist a one-to-one correspondence between the MOPs and the planar embedding of
triangulated convex polygons. As a by-product, we have studied some interesting
properties of triangulated convex polygons which, in turn, hold for MOPs as well.

These results may be of use in the field of computatidnal geometry, robotics, etc.

- 144

Appendix
From Theorem 5.4,5.5, 5.6 and 5.7, we get,
§M(N) = Nsr+ Nip+ Ngp+ Ngp -+ . (A)

From the recurrence relation [G68] of Catalan numbers we have,
N-1 -

Dy =) Dy_r1Dy
k=0

[Nf2-1]

One can easily verify that, 3 Dy_¢1Dx = 1/2(Dy + Dy-1yp’) (5.3)
k=0 - | |

For any three positive integers a, b, ¢ and a function f(a, b, c), we can write

Y f= X 43X f

atbtc=N z-i;b:;?g ﬂt?ﬁ”
e, > f= Y. f+3 Y f+ Y f+3) f
atbte=N e Ui aspeeun e
a.be<Nf2 ab.ciNf2 |
Therefore, » f=86 > f+3 > f+ Y f+3 Y f
crbreN sz el ommn od

abesNT

Therefore, 3. (6(a+1)6(b+1)6(c+1)]=1/6 3 [6la+1)8(b+ 1)é(c+ 1))

atbto=N | atbte=N
o <172 3 [8(a+1)"8(b+1)]
e
- 1/6{8(N/3 + 1))
212 5 [B(a +1)8(b+1)8(c + 1)) (5.4)
ut?ﬁ?ﬂﬂ
. o
Now, S [6(a+1)8(b+1)é(c+1)]=23 atl) Y §(b+1)8(c+ 1)
at+b+c=N ' ;;:0 bte=N-e
=) 6(a+ 1)f(N - a),
a=0 |

145

where, f(k)= Y &(b+1)8(c+1), for k> 1

bi-c==k
= U, - fork=1
= Y Dy1D.y, for k > 1
btk '
= (), | for k = 1

Therefore, we get

Dei, fork> 1;

- 5.0
0, for k = 1, (5.5)

19 = {

N-2
Hence, 3 [fa+1)8(b+1)8(c+ D=L lola+ DAN-a)] + S(NA(2)

at-btc=N ;{mg
= Z Du—-lDN—n--l. [as f(]‘)= 0]
a={) -
N—-1

= Y [Do-1DNea-1] — Dy

a==(} |

= Dy_3 ~ Dy-2] (5.6)

NGW, Z [6((1 + 1)5(b + 1)6(0 -+ 1)]"—"' Ei:[ﬁrﬁ] [6(0' + 1)f(N“ ﬂ)]
atbte=N
a2 Nf2 " N-1 |

_. E [Do-1DNeo-1] = Do [using (5.5)]

a=[Nf2] | | | |
¥id

= Y [DiDy-k-2]~ Dy-2

k=[(N-1)/2]

= 1/2(Dn-1 + Dyyps-1) — Dy-2 [using (5.3)]

e (B.T)

146

Using (5.4), (5.6) and (5.7) we get

Nsp= 3, [6(a+1)6(b+ 1)8(c+1))= 1/6(Dy. - Dy_y)

otk e=N
a<b<ad N/2

~1/2 Y [8a+1)%(b+1)

Zat+b=N
apb< Nf2

~ 1/6[6(N/8 + 1)
~1/2(1/%Dy-y + D}y_,) ~ Dy

Now, Y &(a+)§Eb+1 Zcﬁ (N/2 - b/2+1)§g(b+1)

Zatb=N b}f}
= Z Dyyz-spp-18g(b+1)
b=0 - Nf2-1
== D(N_l)/g_155 2) + z -DN[JE‘-*H?"ID#/? 1
| b]?ml
= D(N_.n/g_; +'DN/2-1 T (5'8)

Again, 3O 6(a+1)ds(b+1)= 3 oo+ Dbslb+ 1)t T 6(a+1)6a(b+1)

a4+ a+bf3=N/? | a+bj2=Nj2
| bj2<NJ4 82> N4
or, > Sla+1)bpb+1) = Y Sa+1)épb+1)+ 3 Sa+1)6(b/24 1)
2at-b=N o+bf2= N/t a+8/2= N2 |
b/2< N/ ' ‘ b2 Nf4
|N/4)~1
=) a +'1)§E(b + 1)+ Y. DiDypgr-a
o+b/2=N/f2 - k=0
b2 <N/A
= Y (6(a+1)8s(b+H/2Drjas + D)
a+8/2==/f2 '
bla«< NI
(using(5.3))

(5.9)

Using (5.8) and (5.9), we get

Z 6(“ + 1)5E(b + 1) == D(N...Wg_;r +DN,’2-1 - I/Q(DN[E—-I + DN/4—1) |

fﬂ‘{- ﬁ:j\\'
b<Nj2

147

Therefore, > 8(a+ 1)65(b+ 1)=D(n-1)j2-1 + Dnpy — 1/2(Diypay + Diyig-1)

204b=N
b < N/ 2 b

—Dy3-165(N/3 + 1)

>, 1/2[6(a+1)PP8(b+1) +é(a+1)65(b + 1)

2at+b=N
agb,ab<[N/2]

Y, [Blat 1)%6(b + 1) I+ (1/2) D1y /21 — 1/4(DNf2-; + Diyjg-1")

2a4-d=}N
aF#ba,b<[NfZ]

~(1/2)Dny3-168(N/3 + 1)

Now, Npp

Using simplified expressions obtained for NgrandNrr, expression (A} can further

be simplified as
5N(N) = 1/3DyN_g — 1/12Dy_; + 3/4DN/2_1 + I/SDN/31 + 1/2Dy-1y/2-1

= (1/12)(4Dp-2 + 9Dyp-1 + 3Dpyj3-1 + 6D(y-1)72-1 — Dy-1)

148

Chapter 6

Lagrange Interpolation

6.1 Introduction

 Let y1, vz, +++, yny be the given values of a function F(z) at =z, z,, - -+, Ty respec-

tively. Suppose, it is required to evaluate the value of F{z) at the point z = 7.

The N-point Lagrange interpolation formula for this problem is as follows [H56) :

o) =@ SfE-aw@l, (6

Wﬁere, y; = Fla),
. ﬂ'(ﬁ) = (ﬁ,‘_ — ﬂf‘l)('ﬁ— mg)(*ﬁ - :Ba)_ o (-ﬂ'f"' mN):
and 7 (m;) = (a5 — 21)(mi — B2) (@ ~ @) (T — Big1) o+ (B — 2w)s
ﬁ“fﬂ,‘ €T; — & if’l?éj
Let us define f,'? = {()/(’ ,) ip o ,
| ¥ if 1 =79

With this definition, the formula 6.1 can be rewritten as :

| . |
F(T) = Eﬂ: | | (6.2)

j=1 :
where, T} = tlj X tgj Xoaer X th

A sequential algorithm with O(IV?) time complexity for evaluating F(&) according

to the formula 6.2 is described as follows.

Sequential Algorithm

Input : 7, i, T2, * % TN, Y1, Yo, -1, Yn

Output : F{%)
1. F(Z) « 0;
2. for 3 =0 to N-1do
begin
prod « 1;
for i = 0 to N-1 do
begin | -
if i7#j them
prod « prod x (% - a;) / (2; - z;);
end; -
F(z) = F(z) + prod x y;
end |

Goertzel [G94| has given a parallél algorithm for Lagrange interpolation with N

points in |3] 4+ O(log N) steps using N processors with an AT-value of O(N?).
In this chapter, we propose a new parallel algorithm for Lagrange iuterpalation
with O(N/ loQN}_ time using a mesh of tree architecture having N(2log, N — 1)
processors with the same AT-value of O(N?%) as that in [G94]. It will also be

shown that the basic idea of this algorithm can be extended to the case when only
p(2logy p — 1) processors are available, where p = 'ﬁr{f . k being any integer greater

than 1, yet keeping the AT-value at O(N?).

6.2 Computational Model

In this section, we describe the model for the proposed parallel algorithm .

- We assume that N = 2". We would use N x (2n - 1) processors which are inter-

connected in the following way : .

150

(1) The processors are arranged in a two-dimensjonal array having (2n — 1) rows
and N columns. P(i, j) denotes the processor placed at the intersection of the 't
row and the j* column, 1 < i < (2n - 1), 1<j< N.

(2) The processors in each column are interconnected in the fﬂrm of a cc:mplete
binary tree, rooted at the processor placed in the last row, i.e., in the (2n — 1)
row, Thus, the processor P{2n— -m, 7) is connected to the processors P(2n-2m, j)
and P(2n —2m — 1, 7), when: 1<m<(n=~1)

The tree formed by the processors in the 7" column is referred to as the 7 column
tree. The processors in the rows 1, 2, -+, n are referred to asg the leaf processors
and those in the next (n— 2) rows will be termed as the internal processors of the
corresponding column tree,

(3) The processors in the (2n — 1)* row are also interconnected in the form of a
binary tree, rooted at P(2n ~ 1, 1). The processor P(2n — 1, 7) is connected to
the processors P(2n — 1, 24) and P(2n — 1, 27+ 1), if they exist.

(4) Data inputting is done only through all the processors placed in the rows 1
through n and also in the (2n — 1)* ro

(5) The final result will be outputted by the processor P(2n — 1, 1).

(6) All the processors have three local registers A, L and R. Referring to any column
tree of processors, the registers L and R of an internal (non - leaf) processor,
are used to store the data received .from its left and right children respectively.

Moreover, each of the processors in the rows 1, 2, -+, n has one extra register X,

which is used to store the value of 7.

~ An example of the above model is shown in Fig. 6.1 for N'=2°, The interconnected

network is, in fact, a subgraph of mesh of trees with N(2n — 1) processors.

Let h,, denote the height of the processof P(2n — m, j), with respect to the

column tree. Therefore, | _
vml<m<(n—1), hn=|log@~1)]~ llogm|

151

Figure 6.1 Computational model for N = 2 processors

152

6.3 Parallel Algorithm

The basic idea of the algorithm is as follows :

o The input data =, z, -+, xn are grouped in {[N/n])} sets, denoted by S,
Say ++ vy Sy, The set S, 1 < p < [N/n], contains n data points, namely,
T(p—1jn+ly Tlp—L)n+2y ***y Tpn. Lhe last set may contain fewer elements. The

elements of the last set (SW,,]) 8L T(INnl-Untly TYN/a)-Dntdr ** 1 TN

¢ There are [N/n| number of data inputting stages. In the p** stage, the set
SiN/u}-p+1 18 chosen and each of its data elements are fed in parallel to the leaf
processors of each column tree, one input value along one row. That is, in the p**

data inputting stage, 1 < p < [N/n], the processor P(i, j) receives @(a/n]-pn+is
Vi, 7 1<i<n,1<7<N, whenever ([N/n] —p)n+i < N.

o The processors of the 7" column tree are used to compute the term T; and the

final value of T} is stored in the root processor P(2n — 1, 5) of that column tree.

These T values are computed in parallel, V5,1 < < N.
Let us explain this step in a little more detail :

By definition, ~ Tj=1t;; X tp; X =+ X ty;.

Thus, T} is a product of N terms. These N terms are computed by the leaf
processors. After receiving the data m(wﬁ]._p)w in the p** inputting stage, the leaf
processor P(i, §), 1 <i<n, 1< 7 < N, computes ty;, where k= ([N/n]—p)n+i,
and sends this value to its parent. The final product is computed with the help

of the remaining processors of the 7 column tree and eventually stored in the

corresponding root processor.

/

e By using the tree connection among the root processors placed in the last row,

these T} values are summed up to get the final value of F{%). The final result can

be obtained from the processor P(2n —1, 1). - ,

153

Algorithm A :

Stepl: Vi, j 1<i<2n—landli<j<N,
initialize (in parallel} the contents of all the registers of
P(i, §) to 1. |
Step 2 : Do steps 2.1 and 2.2 in paralle!
2.1 Vi,1<i<n, and Vj, 1 <j< N, P(i, j) receives (in parallel)
and stores it in X(i, 7).
2.2 V 4, 1 £ j < N, the root processor P(2n — 1, 7) of the 5** column
tree receives y; (in parallel) and stores it in A(2n — 1, 5).
Step 3 : V 4, 1 £ 5 < N, the root processor P(2n — 1, 5), of the " column
tree receives «; (in parallel} and broadcasts this value to
all the leaf processors in that tree.
The leaf processors store this value in the respective L registers.
Step 4 : /*.to compute Tj in the j* column tree */
41 p+«1;
4.2 repeat

Do steps 4.2.1 and 4.2.2 in parallel

4,2.1

/* for leaf processors of each column tree */

if 1<p< [N/n| then

begin .
Vi, 1<i<nandVj, 1<j<N, P(i, j) executes the
following in parallel

begin |
B /* inputting the set Serrtl“PTI to the rows 1,2, - - */

if * (([N/n] —p)n+i) <N then

1h4

begin
P(*i, j) I'éCEiVES m(fN/n]—p)n-i-i;
If %(Nn)-pei = x; then

send 1 to the appropriate register of the parent
else

begin
compute (& ~ &((Njn]—pinti)/ (%5 — T(npm)-p)nsi);

1f P(, . 7) is the left (right) child of its parent then
send this value to the L (R) register of the parent

end; |

end;
else send 1 to the apprﬁpriate register of the parent
end;

end;

4.2.2 /* for internal processors of each column tree */
Vm, 1<m <n—-1and¥3,1< <N, theprocessor P(2n—m, j)
executes the following in parallel
begin
if hn < p<[N/a]+h, then
/* h., is the height of P(2n —m, j) */
begin |
if P(2n—m, 7) receives some data from its right child then
A(2n—m, j) « L(2n—~m, 7) * R(2n —m, j)
else A(2n-m, j) « L(2n~m, j);
if m#1 them |
I .send the value contained in A(2n-m, j) to the L (R)
processor of the parent if it is a left (right) child

end;
423 ' p+ ptl

until (p > [N/n] + llog (2n —1)])

155

Step 5 ¢

/* To sum up all Ty's [stored in A2n- 1 j)

aﬂd Co store the final result
in A on - 1, 1) */

begin |
for k =log Ndownto1 do
begin
for j=21t02"-1 do in parallel
begin
if 2) <N then
begin
L(2n—1, 5) « A(2n—1, 2j):
A2n~1, §) « A(2n - i, J) + L(en -1, 5);
end;
if (2j + 1) < N then
I begin
R(2n -1, j) «~ A(2n~1, 25+ 1);
A(2n~1,5) ~A@2n~-1, 5) + R(2n~1,),
end |
end
end

end.,
Complexity of Algorithm A :

Step 3 in algorithm A requires [log (2n — 1)] time and step 5 requires [log N}
time, Time required to execute step 4 is {[N/log N| + |log (2n—1)]] time. Hence
the total time required to execute algorithm A is [(N/log N)] +2 log (2 log N~

1) + O(1) = O(N/log N).

Example 6,1 The above algorithm has been illustrated with an example for
N = 93 tnputs, The armngemem of the 40 processors along with their re-

spective registers is shown in Fig. 6.1. The contents of X, L, R and A

156

registers of the processors in column 1, aﬁer emecutmg the step 4.2.2 have

been shown in Fig, 6.2 for different values af p. The dan"‘t care values are

represented by dashes (-),

6.4 Scalability of the Algorithm

i

We would now modify the algorithm A for the case when only {p x (2 log p — 1)]
number of processors are available, where p < N, For simplicity, let us assume

that NV = kp, where % is an integer, The basic idea of this algorithm is as follows.

o The same model as described in section IIT is used, with [p x (2 log p — 1)]

number of processors.

o The N(= kp) iﬁput values are grouped in [kp/log p)} sets, namely,
St = {(a-1)1og pr1s Tls-1)log p+2s "+ Tslgp}y V5,1 <5< [kp/log p] and

S(kp/ log] = {m(fkpllﬂg p]—l)lﬁg pt1y T([kp/ log p1¥l)lns P21 * 7T TN e

e Asin algorithm A, each of the T} terms is computed by the processors of a single
column tree. But to compute &k x p such terms, only p trees are available. So, each
of these column trees is assigned to compute' fc'such_terms. Heuce, the whole job

is done in k stages, and in the »** stage, the / column tree computes Tjy(r—1)p, .

Vr, 1 <r <Lk

The algorithm is formally described below. Only one more local register, named

as SUM , is used by the processors in the (2 log p ~ 1)* row and the final value

can be obtained from the SUM register of P(2 log p—1, 1).

157

81 51 21
b by .
(4, 1) (4, 1) (4, 1) (4,1) (4, 1)

ALY B LR AT

(5, 1) (5, 1) (5,1) (5, 1) ' _ (5, 1)

171 h20 b0 Y U1 Goa by g

Figure 6.2: Contents of the f'egisters of the processors in column 1 after step 4.2.2

158

Algorithm B ;
Step 1 :
Vi 1 <7< p, initialize SUM(21log p — 1, 4) +- 0,

Step 2
Vi, 1 <i<LlogpandVj 1< J £ p, P(i, J) receives % (in parallel) and stores
it in X(4, 7). |
Step 3 :
for r =1 to k do
begin

8.1 Vi,1<i<2logp—1andVj,1<4<p,initialize L(i,) ~ L R{i, §) «
1; A(t, §) + 1. '

3.2 The input values Yo_ipr1, Yo-1)pe2, s Yr-1)ptp are fed (in parallel) to the
root processors of the column trees 1, 2, .+, p respectively and the values are

stored in the A register of the corresponding processors,

3.3 The inputs G- 1)ps1, Le-1)p+2 * m(,..,ljpﬁ, are given to the columns 1, 2, - <+,
p respectively, through the corresponding root processors. Broadcast these values

to the leaf processors in the respective column tree. The leaf processors store these

values in their I registers.

3.4 /* to compute T} (r—1)p in the #* column tree */
3.41 s 1; | o

3.4.2 repeat | |
do steps 3.4.2.1 and 3.4.2.2 in parallel
3.4.2.1 /* for leaf processdrs. of each column tree ¥/ _
if 1<s< [kp/log p] then
begin ' ' .
Vi, 1<i<logp V5 1<i<p P 7) executes the following

in parailel

- 169

begin

i ((kp/log 5] -)log p+1) <N then
begin |
receive T [kp/log pl—s}log pii and store it iﬂ R I'E’.giStEI';
i %([kp/ 1og 5)-s)log p4i = %; then

send 1 tolthe appropriat'e register of the parent
else

begin
- compute (T~(ip/1og 5)-slog i)/ (2= (jhp10g 11—sog pti);
if P(4, 5) is the left (right) child of its parent then
send this value to the L (R) register of the parent
end

end

else send 1 to the appropriate register of the parent

end;
3.4.2.2 /* for internal and root processors of each column tree */

Vm,l<m<log p—1,V4,1<£5< N, processor P(2 log p—m, 7)
executes the following in parallel, if it is not a leaf processor
begin | -
if hm <s < [kp/log p| + hm then |
/¥ By, i the'height of P_(2 log p—m, g) and is stored in
P(2log p—~m, j) */
begin |
if P(2 log p—m, j) receives some data from its
right child then __ . _
A2 log p - m; _9) — 1{2 log p—m, J) X R(2 log p—m, J)
else A(2 log p~m, 5) « L(2 log p—m, j);
if m#1 then '
send the valﬁe contained in A(2 log p~ m, §) to

the L (R) register of the parent if it is a left (right)

160

child of its parent

end

3.42.3 s« s+l

until (s > [kp/log p] + |log (2 log p—1)))
r -
3.5 /* to store) Ty in SUM(2 log p—1, 5) ¥/
i=1
Vil1< <P the processor P(2 log p — 1, J) executes the following

in parallel
SUM(2 log p—1, §) « SUM(2 log p~1,) + A(2 log p—1, J)

end;
Step 4 :
/* to sum up all Ty’s, V4,1 <5< kp ¥/
begin
for m = log p downto 1 do
begin i
for j =2™'toc2"-1doin parallel
begin
if 2j <p then
begin
L(2 log p~1,) « SUM(2 log p—1, 2j);
SUM(2 log p—1, §) + SUM(2 log p—1, j) + L(2 log p—1,);
end; .
if (2j+1) <p then
begin
R(2 log p—1,) & SUM(2 log p=1, 2/ + 1)
SUM(@ log p—1, 4) « SUM(2 log p=1,) +R(2 log p=1, 7}
end -
end
end
end.

- 161

Complexity of Algorithm B :)

Step 3.3 requires [log (2 log p — 1)] time and the step 3.4 requires [kp/log p
+ {log (2 log p ~ 1)} time, Hence, the total time required to execute the step 3
is k[[kp/ log pl+2 log (2 log p - 1), Finally, the step 4 requires |log p| time.
Hence, the total execution time for algorithm B is

k{[kp/ log p] +2 log (2 log p—~ 1)} + |log p] + O(1) = O(k%p/log p)

The number of processors required, to implement this algorithm, is O(plog p).
Hence, the AT-cost of this algorithm is O(k* p*) = O(N?).

6.5 Conclusion

A parallel algorithm for polynomial interpolation using Lagrange interpolation for-
mula has been developed with N(2 log, N~1) number of processors and O(NY/ log N)
time complexity, where N is the number of input data points. It has also been
shown how the underlying idea can be extended to the situation when fewer num-

ber of processors are available. It is found that in both the cases the AT cost is

O(N?),

162

Cha.ptér 7

Recursive Matrix Algorithms

7 .1 Introduction

In this chapter, we would like to investigate the problem of parallel implemen-
tation of a specific class of recursive matrix algorithms on systolic architectures.
This particular class consists of those algorithms which are based on partition-
" ing the original matrix into submatrices of equal size and 'the_n performing the
recursive calls on those smaller submatrices, Strassen’s algorithm [S69] for matrix
multiplication belongs to this class of recursive algorithms, In this algorithm, for
mulﬁiplying two n X n matrices A and B, each of these matrices is first partitioned
into four submatrices of size 7 x ¥. The product is then obtained by recursively
'mul'tiplying some derived submatrices of siie % x % each and combining the results
of these multiplications in a certain way, Another recursive algorithm for matrix

inversion, due to Pease [P69], also uses a similar matrix partitioning approach.

The specific details of parallel implementation of such recursive algorithms defi-

nitely depends on the particular nature of the algorithm in question. However, as

¥ . I | L) |] L)
a representative case, we have considered here the Qtrassen’s matrix multiplication

algorithm for its parallel implementation on a hypercube 'architeptu_re.

We will show that the parallel version of the Strassen’s algorithm for multiplying
time on a hypercube architecture having n’

two n X n matrices works in O(log ”)

processors. It may be noted that the parallel versic;n of ti:e conventional matrix
multiplication algorithm on a hypercube with n® processors also needs O(logn)
time [ASS)]. Thus, although the sequential version of Strassen’s algorithm 'is better
than the conventional matrix multiplication algorithm (because of reducing the
aumber of multiplications from- 8 to 7 in case of mtiltiplying two 2 x 2 matrices),
the parallel version of both the algorithms have the same order of execution time.
‘However, the main objective of this chapter is not tﬁ devise a more efficient matrix
multiplication algorithm by parallelizing the Strassen’s method; rather to inves-
tigate various issues related to the parallelization of such recursive algorithms on

systolic architectures, through this example of Strassen’s algorithm.

In what follows, we first describe the essential features of the Strassen's recur-

sive method for matrix multiplication and then its parallel implementation on a

hypercube architecture,

7.2 Strassen’s Algorithm

Let A = (ai;] and B = bij] be two n Xn matrices to be multiplied to get the

product matrix C = [c;;]. To describe the Strassen’s recursive method [S69] for

matrix multiplication, we first partition the matrices A, B and C as

|

F “ By Cro Conl
e Ag Aoy | B- Bw B o= 0 o)
Am Au H Bio Bi) Cio Ci1

where A;;'s, Bij’s and Cj;'s (0 < i,7 <1)are 5 X 2 matrices each. To compute C,

seven intermediate quantities are computed as follows:

164

= (Aqg + A)(By + Bn)
M2 (A10 + A1) By
My = Ago{By — By)
M4 A11(Bio — By)
== (Ago + Ag1) By

My = (A19 — Aw){Bw + Bu)

My = (Aoy — An) (B +By)

Then, Cu = M+ My— Ms+ My

Co = My

My

010=M2+M4 |
Chy = M+ My — My + My

Let, X, = Agp + Ay,

Xa = Ao + A,

X5 = Ao,
Xr = An,
Xy = Ag + Ao,
Xu —~ Aln ““ Aﬂﬂj

Xla == A{]l - J“'1-113 .

In terms of these X;'s, we can write,

X, = By + By
Xy = B
X = Bo ~ Bu
Xg = Bio - By
Xm = By

X9 = By + Bor

X4 = B+ Bn

My = X, X Xz |
M, = X3 X X4
My = X5 X Xﬁ
My=Xr XXE
M; = Xy X X0
M= Xn x X2
M; = Xia x X

165

- (7.1)

(1)

1 (7.3)

e (14)

Thus, in all, there are seven matrix multiplications of the form Xokyy Xogrn, kb =
.- Ty Fe ==

0,1,:++,6 involving reduced size. jo. & « n ' ' '

1, g reduced size, i.e,, g X 3 matrices and eighteen matrix addi-
n
2,

tions/subtractions of reduced size 5 X

To multiply two n x n matrices, this technique can be recursively employed by

d1v1d1{1g the Ol‘fglf.‘lal N X N matrix into 4 submatrices of size 5 X 7. The second

recursive call will involve 7 multiplications of 7 X ¥ matrices. At the third recursive
2) " 4 "

call, 7 multiplications of 2 X 7 matrices need to be performed and in general, at

k v — ’ T . '
the I* level of recursion, 7! different sets of multiplication of 5 % a1 Matrices

7.3 Parallel Implementation of Strassen’s

Algorithm

7.3.1 Framework

Let us first estimate the total space required by the Strassen’s algorithm, In each
recursive call of this algorithm, the required storage space is increased to . times
of that needed in the previous recursive call, In effect, the storage requirement
is finally increased to (1) of the initial O(n?) storage space for storing all the
elements of the matrices A4 and B Thus, we estimate that the total space require-
ment for parallel implementation is O(()®7n%), i.e., o(n’). Due to this estimate,
we think of implementing the parallel version of Strassen’s algorithm on an archi-
tecbure having n® processors. Moreover, we see that after each recursive call, the
storage space is almost getting doubled, This nature of the algorithm motivates

us to select the hypercube as a possible architecture for its parallelization. -

With this implementation idea in mind, we first give an overview of the pmpq;ed
parallel algorithm on a hypercube followed by the detailed steps in case of 8 2 x 2

matrix mﬁltiplicatioﬁ and also'the formal description of the algorithm forn xn

166

matrices.

7.3.2 Overview of the Algorithm '

We note that once X;'s 1 <1< 14 are computed, all the seven multiplications to
compute M;’s can be carried out in parallel, However, instead of seven multiplica-
tions we compute eight matrix multiplications (M1 is computed twice), although
only 14 different X;’s are still used. It will not increase the time as the multiplica-
tions are all done in parallel. On the other hand, it will help tn:J reduce the number
of data communication steps in the final stage of matrix additions/subtractions.
It must be mentioned that by doing so, we would in no way deviate from the
essential idea of seven distinct multiplications in the Strassen’s algorithm for 2 x 2
matrix multiplications. The final result is then obtained by performing addi-

tions /subtractions on these matrices.

Let us assume that n = 29. We implement the proposed parallel algorithm on a 3g-
dimensional hypercube having N = 2°¢ = n° processors Fy, Py, - », Fa—g. All links
are assumed to be two-way, However, at any instant of time, data will flow in only
one direction along any link. Each processor will be designated by a three tuple
(d,r, c), where, d, r and c are three integers such that, 0 < d,r,¢ € 2¢9—1. That
is, we can visualize that the processors are arranged in the form of an nxn Xn array,
where the processor P,, occupies the position (d,r, c), such that m = dn® +rn+c.
P, will thus be represented by P{d,r,¢). A '+’ in one or more of these d,r and ¢
components will mean all possible values from 0 through 29—1 of the corresponding
component(s) and this will signify some subcube of the hypercube. The processor

P, can also be equivalently represented by a bit string of length 3¢, obtained by

concatenating the ¢-bit binary representations of each of d,r and ¢ respectively

separating these bit r'epfesentaticns)_. Howeﬁer, a #' in any
. mean both the values O and 1 for this bit, We
- the

(with no comma (,)

bit position in this notation will
will use both such notational schemes interchangeably in our later discussions;

specific scheme that has been used will be clear from the context.

167

We assume that each processor has two registers R) and R,; R, (1,5, k) and R, (1, 4, k)
denote the contents of the registers R, and R, respectively of the processor P (1,4, k).
Initially, the elements of the matrices are stored in the processors in such a way
that R1{0, 7, ¢) contains the element arc and Ry(1,7 c) contams the element b,

In other words, the n? elements of the matrix A are 1mt1ally stored in the 2¢-

Cg—1—11

g~1n.2q ~1
dimensional subcube 0?-10%%, where 0 represants a string of consecutive g—1 0’s,

#? denotes a string of ¢ #’s. Similarly, the n? elements of the matrix B are initially

stored in the 2¢-dimensional subcube 0?“11*2?, as'shown in Fig, 7.1

Figure 7.1: Initial distribution of the matrices over the subcubes

In what follows, we describe the parallel algorithm also in a recursive fashion, The
overall idea of the algorithm goes in the following way. Every recursive call will
consist of two different phases of action. In the first phase, the data elements

are to be properly distributed along with some additions/subtractions among the

processors to generate the X;'s as mentioned in equation (7.3). In the second

phase, these X;'s are to be multiplied in the required manner as in equation (7.4).
For this, first the X,'s are further suitably broadcast to some more processors

and then the next level of recursive call 1s giade. ‘This is fu_rther explained in the
following discussion. . '

Before starting the first level of recursion, the respective m'atrix elements are stored

in the Ry registers of the subcube 091 x*e+!, During the first phase of this first level

of recursmn, the X; values (14 differer.lt X,'s) wﬂl be cumputed in three parallel

168

-steps and will be stored in the registers R; and Ry of differeﬁt
following manner :

Processors in the

Xi: (09710 Qxe-?
Xy Ri(09710 14271

0=l Oxe-1)

1x971 pya-1)

Xs: Rp(07710 0sg-1
-1 1 Oy~ 0x7~1)
X?’ ‘ R]_ (O‘I 0 1*1?"'" I*Q“I 1,;...1)
Xo: 91 g~1 |
o (00 0« 0wl faa)

Xy Rp(00710 14071
Xz o RBp(09710 pxe-l
X By (0710 149!

1421 0x2-1)
D91 15271)

Subcube
| } | I
I | |
I | |
sy
| 1 -
} i I
| | I
| R)
) - I _ I
Subcube I - Subcube i | Subcube | Subcube
010 1l o netd oy 11 . n-1 TSP e WON R n-1 _ _ n-l
X
|

Figure 7.2: Distribution of X;'s over different subcubes
(After the first phase of the first level of recursion)

The scheme s illustrated in Fig. 7.2. Note that e_ach of Xj and X; is stored at two

different processors. To perform the multiplications Xogy1 Xokse, & =0,1,:-,6,
the contents of the registers Ry (i.e., submatrices Xy, X2, X1, X12, X1, and Xy4)

in the subcube 09-20+%+! will be sent to the R, registers of those processors in

169

the subcube 097 1 %***1 whose bit representations differ aﬁly in the (2¢+ 1)** bit
(the rightmost bit is assumed to be the 0% bit); while the contents of the regis-
ters Ry (i.e., the submatrices X3, Xy, X5, X5, Xy, X3, Xy and Xy) of the subcube
ni-2 0 *%2t1 are retained in their original positions as shown in Fig. 7.3. Note
that, in Fig. 7.3, the subcubes have been designated by following the (d,r, ¢} no-
tation. Also note that X1 Xopte, & = 0,1,++,6 now reside in the subcubes
differing only in the 2¢'" bit position. After t.his, the second recursive call is made

to multiply Xog+1 by Xowys, £=0,1,-++,6. In this second level of recursion eight

s
e P S
%
ni
| Sy
=
=
i
e
—
*

| S
. é-JL

S I O N O Y O N O O O N G N O O S e I o€ S N U N Y A B

—
-y
==
-
5

e |
]
e
e
-
?
[

|

-IIH-.-H".--I-H-H

|
0*200 O ™ 0% -1 | gr200 0) 1x 0+

07201 04 ™1 gy ™1 { 07201 0471 34 ™

| .
] R1:X9 = X
| L
r |
| .
I - RI:X.# | i R1xa
I i - _' , I | .
IQ“‘IUU 1al 1 % w1 o~t01 14%! O ol) 0r201 1 et 1% ol
| - 1
[|

Figure 7.3: Contents of Ry in different subcubgs_befoge second recursive cal
-.are to be pérformed in parallel. In

n X 12& .
e multiplied will

matrix multiplications of dimension 3
L ‘all the elements to b

general, before the ith pecursion (I > 1),

170

in the 1 registers o g1y 241
reside | reg f the processors 09 e and in the ith recursive call

g-1 matrix multiplications of dimension -2 =1 X gy are to be performed in paralle

More spec:ﬁlcally, thg contents of the registers Rl(oq“‘ﬁgw_l v+ Pogia0 Pogey e
Bog-i a0 B e B 07DY are to be multiplied with the contents of the
registers Ry (09 Bagpic1 +++ Pogr1l Bogey - Bog-tz¥-00 g ... [FRTSE el

" for all possible combinations of Bi's where, fi; = 0 or 1 for all 4; a particular

combination of the values of these 3(I - 1) 8's correspond to one of these 8
matrix multiplications, The overall scheme for distribution of data elements at
the various recursive calls is schematically shown in Fig. 7.4 where the subcubes
are denoted by (d,r, c) notation. Before the last, i, g" recursive call, all the
elements to be multiplied will reside in the Ry registers of the processors % and
now 8‘?"‘1.matrix mutltiplications of dimension 2 x 2 each are to be performed. At
this stage, since each X, is a single element, 891 sets of XQHIX%H, k=0,1-,6
can be computed in parallel without fur'ther data distribution. Thus, we get 8!
sets of M;'s, ¢ =1, ..+, 7 according to equation (7.4). From this 8! sets of M;'s,
87! gets of Cy’s (0 < 4,5 < 1) will be formed (as in equation (7.2)) and will be
stored in the processors *9710%%, which can also be equivalently represented by
(2k, *, *) (in terms of the (d,r, c) notation) where, k =0, 1,29 —1. These Ci;'s
are again the M; values for bigger matrices of dimension 4 x 4 in the immediate
previous recursive call, From these M;’s, C;j’scorresponding to the recursive call
for 4 x 4 matrix multiplications will be computed and they will be stored in the K
registers of the subcube 0 %72 04%, In general, the M; values corresponding to I**
recursion (1 < [< ¢), residing in the subcube (2k,*,%) k=0,1,.++,2' =1, will be
used to compute the Cy;'s and these Ci;'s will be stored in the subcubes (2K, ¥, ¥),

where ' = 0,1,+++,2-1—~1, These Cij's will, in tur:i, become the M,; values for the

(I = 1)t recursion. This scheme of storing C;; values corresponding to a specific

level of recursive call, is shown in Fig. 7.5. Finally, the product matrix C of order

n X n will be stored in the R1 registers of the processors (0 ¥, %).

171

o "'"E’."' LA
h “I';"i:‘."':{&:i 1.

r

"-17.? H *1.5 :
;
.ﬂ::"': -.!:; ---.H:";j

:": : --'..-. Ny ."q":" by o e
'"E«E ::::;51 E?ﬁ'ﬁ %
P -% o e g
"i il u et Wk, o LR s,
h.‘lm 1k_l$ ‘.:ﬁ." .::) e

S SR ay ey
i B 51 4

8
R T B A
£35S0 B g
g5 300 000 o

1Y AR
BN BB 4 fua
e R

Y SR
S SR Ry
SR B3 553 B

R SRS I MY

Subcubes containing data Elcments

Figure 7.4 : Data elements in the subcubﬂs at dlﬁcrent levals of recursion
(a) before the first recursive call
(b) before the second recursive call
(c) before the third recursive call

172

'
St

e

11 Fperg

rid

2

-

T

'(1?.?*.). .

B Contains G 8

Figure 7.5 : Successive computation of C s from Ms
a)C, '8 corresponding to n” recursive call
)C,,'s corresponding to (n-1)* recursive call
¢)C,,'s corresponding to (n-2)" recursive call
d)C,,'s corresponding to 1% recursive call

173

7.3.3 Detailed Steps for_ 2 X 2 Matrices

From the above discussions, it follows that at the ¢ recursive call, the 2 x 2 matrix
clements in F(Oag-1°++ Pog410 Bogy Bert* Bpa-- fir) are to be multiplied
by the 2 X 2 matrix elements in Rl(ﬁ;,;_l o Pagrl Bager v Bk Booger Bix).
Let us denote the bit string Bg1 -+ foes1 by 1;1'; ﬁgqﬁ_lmﬁm by vy and B,_; « -
f1 by va. That is, the elements of the 2 x 2 matrix, say A’ = |0y}, residing in
RBi{v10 vg* wgk) are to be multiplied by those of say, B = 0], in By(v11 vpx vgx),
The correspondence between the elements of 2 x 2 matrices A’ and B with these
R; registers are as follows: ay, agy,a), and aj, are stored in Ry(v10 w0 v30),
Ri(v10 v30 wal), Ri(v10 wel v30) and Ry(v10 w1 vl respectively. by, by, blg
and b}, are stored in Ry(v;1 vl w0), Ry{vil w0 v0), Ri(nl vl vsl) and
Ri(v;1 v30 wv3l) respectively. This correspondence is shown diagrammatically in

Fig, 7.0.

P(v,1v,0v,0)
. W
R, b,

P(v,0 v.1 v,0)

e anf
Ri'“m

Figure 7.6: Initial contents okf r_egisters Ry

The detailed steps to be follciwed at this recursive call are_shown below.

174

Step 1 : Do the following steps in pafallel

'U:ao ‘U;;O) +-R1(‘U10 ‘Ugl 'Uaﬂ) - Rl(’U{]_ fug() Ua());

-

2(’U10
Ri(110 v0 wvsl) «=Ry(v10 v0 v30) + Ry(v,0 w,0 val);
Ri(v10 vl v30) = Ry(v10 vl v30) + Ry(110 w1 w31);
Ry(v10 vl v31) & Ry(vi0 030 v3l) - By(140 vyl v31);
Ri(nl v0 030) «~Fi(vl 00 v30) - By(11 w0 251);
Ry(ni1 v30 w3l) &=Ry(vi1 3l val) + Ryl 00 wsl);
Ro(vil vyl 1g0) «Ry(vi1 v0 v30) + Ry(nyl vyl v30);
Ri(onl vrl vg1) «—Ri(wyl vl vsl) - Ry(nyl vl w0

/* The situation after this step is shown in Fig. 7.7. Arrows indicate the direction

of data movements */

Step 2 ¢ Do the following steps i.n, parallél

Ro(v10 120 w31) «Ra(v,0 w1 w3l);
Ry(v10 w1 w30) «~Ry(v,0 250 v40);
Ry(vil 120 v30) —Ra(vil 1l v30) - Ry(vil wel #30);
Ro(v11 ol w3l) +Ra{wnyl 1,0 v3l) -IRl(vll vl w3l);

/* Fig. 7.8 shows the situation after this step */

_ — — | - Pvv,1v,1
P(v,0v,1v,0) P(v,0v,1v,1) B 1v1v0) . N _’_)

Figure 7.7: Contents of registers i and R, after Step 1

- 175

P(Vllvzﬂvaﬂ) | | P(V];h’zovsl)

. |
P(v 0v,1v,0) P(v,1v,1v,0) P(v 1v,1v,1)

1772773

Figure 7.8: Contents of registers Ry and R, after Step 2

Step 3 ¢+ Do the following steps in parallel

Ra(v:0 920 950) +Ry(0,0 21 00) - Rpfty0 0 v50):
Ro{10 wal wyl) «Ry(v,0 10 wl) ~ Ry(v,0 vyl w3):

/* Fig. 7.9 shows the situation after this step */

P(v,0v.0 v,0) PvOvovl) Privov0) = PHlv0v)

| ;:1 by b= X R b= X,

RZ : bl{ﬂ t b'“=:'{2 RZ : bF]D+b’ll= xld

b g ! -
bt by =

R, %

P(v,1v,1 v,0) P(v1v,iv]1)

P{v,0v,1 v,0) I’(vl{i vivd)

Figure 7.9: Contents of registers Ry and &, after Step 3

Note the correspondence between the X; values produced after this step and the
after the first phase of the

X;’S stored in different subcubes as shown_in Fig. 7.3

first level of recursion.

176

Step 4 : Do steps 4.1 and 4.2
Step 4.1 ¥or all v;, v, v; do in paralle]

Ri(010 va* vyk) Ry vyx vgs) x Ri(v10 vy x wp)

!
/* For a given combination of the values of vy, vy and u3, all the four multiplications

are also done in parallel.

This step actually computes M, Ms, My and M, wﬁich‘ are stored in the B
registers of the processors P (v,0 w0 v,0), P (010 w0 v31), P (10 w1 ;1) and
P (v10 vyl v30) respectively, */

Step 4.2 For all v, u, v; do in parallel
Ri(nil wax wyx) —Ro(v;0 vp# vpk) x Rap(uyl vy % wyk);

/* My and M are stored in the R, registers of the processors P(unl u0 vyl),
P{u;1 val w30) respectively and M; is stored in the R registers of both
the processors P (1 1l vy1) and P (w1 90 v30) after this step. */

/* Contents of different R, registers after this step are shown in Fig. 7.10. ¥/

[* The elements of the 2 x 2 product matrix ¢’ are computed in steps 5 and 6 */

Step 6 ¢+ Do the following steps in parallel

Rz('UlO vy () ‘U:;U) +~*~R1('U10 vg() *U;;O) -I-Rl(’UlD' Uy ‘U;;l);_ /* ¢ for the q""

recursive call */

Rﬂ(‘ulo 1)20 'U:]].) #*R1(1.110 'Ug]. "Ug].) “Rl('Ulo 1-'20 1-’31);.

Ra(vi0 v1 v3l) «~Ry(v,0 vel 40) + Re(vid 2ol v3l);

recursive call */

- /¥ &, for the ¢*

Fo(v10 vyl 130) Ry (1,0 10 v30) ~ Ry(110 vl .930)3)
Ry(111 150 w31) «R)(v;1 10 va1) + Ry{v1l wl 1),

-Rz(t’ll vyl 1)30) {-—-Rl(vl]. 'Ug].. UgO)'f‘Rl(vll.v?O U;;O);

177

P(¥,0 v,0 v,0) P(y,0 v,0 v,1)

Pyl v.0v,0) P(vll vov1)
R

R M,

v, 0v,1v.0) Piv,0v,1v1) Pyivivh Piivlvl)

Figure 7.10; Contents of registers Ri aﬁ:efotép 4

P(v,0v,0 v,0) P(v.0v,0v,1) Pir1vov0) — P1v,0vi]

P{v.0 v,1 v,0) P(y,0v,1v,1) P lvdv® Plvl v,1}

Figure 7.11: Contents of registers fty after Step 5.

178

Step 6 : Do the following steps in parallel

Rl(‘UlO 30 'U:io) “"“RE(’-’IO U0 1’30);

}

Rl('Ulo V90 ‘U.'.ll) f"‘*Rz(‘UlO v50) 1j3]_-) +.R2(*U11 vﬂ'ﬁ_‘b"al)
/* chy for the gt* recursive call */ -

By(v10 1l 630) «By(vi0 vyl v50) + Byfonl vyl w0);
/* ¢ for the ¢** recursive call ¥ /

. RI(HIO U;}l ‘Ugl) P“RQ(UID 1.’21 ‘Ugl); L o | [

/* Figs. 7.11 and 7.12 show the contents of the R, registers after steps 5 and

6 respectively. */

The product matrix is thus stored in the subcube (v;0 v; % .113*) in'such a way
that the R, registers of the processors P(v0 vy 35) 0< 4,5 < 1, contain the

product matrix element ¢, ;| corresponding to the ¢" recursive call.

P(v,0v,0v,0) P(v0v,0y,D)

P(v,0 v,1 v,0) Py 0 v._‘il v)

Figure 7.12: Contents of registers Ry after Step 6

179

7.3.4 Formal Description of the Algﬁrﬂ - -

Algorithm Par.Strass

Input ¢ Two matrices A = [a;;] and B = {b;], each of size n x n, distributed over
the processors of a hypercube (Ja, such that initially the Ry register of 70,1, 7)

contains the element a;; and the R; register of P(1,1, §) contains the element b; .
3 - | hg—i— 1t

Output : The matrix C = [cyy] = A X B stored in the hypercube such that the

element ¢;q-j-1 Will be obtained from the By register of the processor HO,.{, 7).

Main program

{

gize n = 29

I+1; /* Istands for level of recursi#e call */
d +—0; I

r +— 0

¢ +— 0

Par.mat.mult (size, [, d,rc);

}

/* size = Number of rows /columns of the ma'trices_ to be multiplied */

/* (d,r, c) indicates the starting address of the subcube containing A */
Procedure Par.mat. mult (size I,d,r, c) -)
/* first phase */ o
Step 1:
for i = 1 to (r+ 21 1) do in parallel
for § = ¢ to (¢ + 91-{ — 1) do in p#rallel - I
(Ry (dyiy) B (doi+ 3 d) — Raldrisd) '

Ry (dyi,§ + &) + Ra (di,9) + B @dijtah

180

Ry (dyi+g00) & Ry (dyi+ 5,5) + Ry (d,i + hi+)

1

R2 (d‘li +%jj+'2%) \ Rl (d,'i,j-*—%})—Rl (d!i'l'%,j‘l' _%)

b

Ry (d+1,4,5) « By (d+1,4,5) ~ By (d 41,4, 5+ 2);

Ry (d+ 14,5+ 3) — Ri(d+1,i+ 5,5+ 2) T Rad+ 14,5+ 3);

Ry (d+ 1,4+ 3,5) & By (d+ 1,4, 5) + Ry (d+ 1, 4 B,),
Ry (@+1,i+5n 7+) & R (d+ 1,1+ 8,5+ &)~ Ry (d+1,i+ % i)
Step 2:
for i =7 to (r+2%' - 1) do in paralle]
for j = ¢ to (c+ 277~ 1) do in parallel
{ By (dyir g+ 31) & Ba (dyi+ g+ §)i
Ry (d,i+ 31,9) & Ra (d,1,);
Ry (d+1,4,4) « Ry (d+1,i+ &,5) ~ R (d+1,4,9);
Ry (d+1,i+ 35+ 8) ~ Ry (d+ 145+ 5) - Ri(d+ 10+ 5.5+)
\ |
Step 3
for i = r to (r+ 291 - 1) do in parallél
for j =cto {c+2¢7~1)do in par.allel
{ Ry (d,i,5) «— Ry (d,i+ §,5) 4_Rz (d;i,a'); | .
Ba (dyit 2+ 8) B (doi g+)= Ba(di+ 3o+ R

}

181

Step 4:
if size > 2
/* phase 2 starts here */
{
/* X; values are broadcast */
gize +—sizve/2
for i = r to (r-+ 2=~ 1) do in parallel
for j = c to (c+ 2'1”‘0""1) ~1) do in pﬁrallel
{ By(d+2%4,5) & Ro(d,4,5);
Ry(d + 27+ 1,4,5) + Ro(d+1,4,5);
\ |
Step 5 :
/* recursive call */
for i =0 to 1 do in parallel
for j =0 to 1 do in parallel

for k=0 to 1 do in parallel

4—1)

Par matriz.mult(size, I+ 1,d+ £*21,'“T + 327, e+ k.2
Step 6 : . -
/* Steps 6 and 7 compute ¢;'s for ['= q-. l,q- 2: :1 */_ |
for i = r to (r+ 201 — 1) dQ in parallel .

for j=cto (c+29'~1)doin parallél -

{ R, (d,i,.j) — R (d,.f.-:, 7) +R1_ (d,z',.j +,24-1); -_

182

Ry (dy8,5 +2") « R, (d,i + 207 5 +27') —Ry (d,d,§ 4 2¢-0);
Ry (dyi 4291, 5 +2°0) ~ R, (d, 1 + 00- L3} +R (4, t—+25"‘fg+2'?"*’)
Ry (dyi+27,9) — By (d,i,4) - R, (d, 1.+2?"",J)
Ry (d+2,4,5 427y « By (d4 24,54+ 201y + R, (@+27i+ 207 5.4 29Dy,
Ry (d+ 27,1+ 27 §) = By{d+ 250 +207,9) + Ry(d + 27,4, 5);

Step T: R -
for i =r to (r+2¢7~1) do in parallél
for j.w ¢ to (c+ 291~ 1) do in parallel
{ Ry (d,i,5+2") e Ry (d,7,5+27)) + R, (.d+ 214, + 207y,
Ry (d,i+277,5) « Ry (d,i +2777,5) + By (d+ 27,1+ 207, 5);

Ry (d,i,) « Ry (.d,i,j); | | |
Ry (dyi+207, 5+ 2070 = Ry (dyi + 207 4207y

+/* ending of if */
return,
Step 8 :
/* Compute M;'s for 2 x 2 matrices */
f‘or i =0 to 1 do in parallel .
for § =0 to 1 do in parallel
Rl(d, r+i,c+g) —Ri(dr+ i,:c+j') x Bid+1,rt i"f‘“!_'j) ;
fori=0to1doin parallel_. o

for j=0to 1do in parallel

Rid+1,r+ic+1) ~Rald, *r'+1,c+g) < By(d+1 r+i,c+3)

183

/* Steps 9 and 10 compute ¢;/s for 1 =¥

Step 9 : do in parallel

{ Rafd,rc) L (d,r,c+1) + Ri(d,r c);
Ro(d,r,c 1) =Ry (dr 41,0+ 1) - By(d,r ¢+ 1);
Ra(d,» + 1, ¢+ 1) —~Ry(d,r + Let1) + Rl(d,r-l-l,c); |
Ra(d, » - 1,c) I (d,r, c) - R (dr+1, c); B
By(d+1,myc4 1) e Ry(d+ 1,41 + Rifd+1,r+1,0 + 1)
Bold+1,74+1,¢) ~Ri(d+1,r+ Ley+ Ri(d+1,r,¢)

Step 10 : do in paralle]

{ fldiret1) =By(dmet 1) + Byfd+1,me+1)
Ri(dyv o+ 1) «Ry(dyr+1,¢) + Byfd+ 1,7+ 1,0)
Iy (dyryc) Ry (dyr,c); | - |
Ry (dyr41e+1) «Ry (d,r + et 1);

} .

return;

Observation: Steps 8, 9 and 10 of the procedure Parmatrix_mult are _executﬂd
when J = n, i.e., when only 2 x 2 matrix multiplications are involved. These three

steps, in fact, do the same computations as the steps 4, 5 an-d_ﬁ of se;:tion 7.3.2,

Theorem 7.1 Algorithm Par_Strass computes the product C' of the two ma-

trices A and B correctly,

Proof : It follows from the foregoing disgquio_hs__i:i 7.3.1 ﬁnd_ 7.9.2 and the .abﬂ‘»'ﬁ. |
observation that the algorithm Par.ﬁlatrii_mult works correctly for 2 x 2 matrix

multiplication, That is, the base case of rec_ﬁ:s'_ion is correct, Fornxn _ngatr-:i-x #:tula
tiplications, n > 2, we note that at the'}“"_ recursive call 1 <I<q, the dis:tf‘lbutlﬂn

184

of the X; submatrices over the subcubes will be exactly similar to that in Fig. 7.3,
with each square block in the figure as an 51 X 77 submatrix instead of just one
single matrix element. The next recursive call in step 5 of Par_matrix_mult should
compute the products of the elements of the form Xop Xoess, & = 0,1, -+, 6.
Assuming that these products are computed correctly, the corresponding M; val-
ues should be computed and stored in different subcubes as shown in Fig. 7.10
with the only difference that each block is now an 51 X zr submatrix, Steps 7
and 8 of Par_rnatrix_mult manipulates these M;'s over different subcubes in the
same manner as in Figs, 7.11 and 7.12 with each block now considered as of size
B X e Hence, it follows that each of the required submétrices Con, Coi, €10 and ¢y
of the product matrix corresponding to the Jth recursive call is now cmﬁputed in
’;;;,;-the original subcubes containing the submatrices Xy, Xs, Xy and X3 of Fig. 7.3

respectively.

Hence, it follo_ws that the algorithm Par Strass computes the product C = AB

correctly where elements are stored in the initial position of the A matrix with a

lateral inversion (column 4 of C takes the position of column n — i of A).

7.3.6 Time Complexity of the Algorithm

For the Ith recursive call (1 < ! < g— 1), each of the steps 1, 2 and 3 of the
algorithm Par_Strass requires one unit of time(including both data communication
and addition/subtraction time). Step 4 of the algorithm also requires a single unit
of time. Computations of ci; s in each recursion have been done in steps 6 and 7
of the algorithm which requ.tre two more units of time. Therefore, (q— 1) recursive
calls require 6(q— 1) = 6(log n— 1) parallel steps. g recursive call requires 7 time

units (as indicated in section 7.3.2), assuming that multiplication of two numbers

can also be done in one unit of time. Therefore, the overall time complexity of the

algorithm comes out to be (6 loga n + 2) time units,

Theorem 7.2 The algorithm Par.Strass computes the product of two n X7

matrices ¢n Oflogn) parallel steps.

185

The execution time, including both commumcatlon and computatlon steps, of
the above algorithm is of the same order as that of the parallel version of the
conventional algmlthm on a hypercube with n® processors. At the end of the
initial data broadcasting (along with the required additions/subtractions of the
submatrices) over the n® processors, all processors do the scalar multiplications
(multiplications of two numbers) in a single parallel step and finally these products
are gathered after the required additions to generaté the proeduct C. Since all scalar
multiplications are done in one parallel step, the reduction in the total number
of scalar multiplications in Strassen’s algori:thm over the conventional algorithm

does not really result in any timing advantage due to this parallelization.

7.4 Conclusion

With a view of investigating different aspects of parallel implementation of a class
of recursive matrix algorithms on systolic archil:ecturesl, we have considered here
the parallelization of Strassen’s algorithm on a hypercube. Other recursive matrix
algorithms of similar nature, e.g., matrix inversion algorithm due to Pease [P69),

may also be tackled in a similar way. However, a general framework for tackling

such recursive algorithms is a topic for future research.

186

Chapter 8

Conclusion

The problems addressed in this thesis are all related to the static interconnection
networks. In the first part of the thesis, we concentrated on the i)roblem of de-
signing network topologies, We have introduced two new'topnlogies and analyzed
their properties which may be useful in measuring effectiveness of these topolo-
gies. In the second part, we have designed parallel algorithms for three well known

problems and analyzed how these algorithms work when implemented on suitable

stablc interconnection networks.

The first structure we have proposed in chapter 3 is an extension of the ring
network. The network graph with N nodes is denoted by G (m, N), where m is a
parameter of the graph such that m > 3 and N is an even multiple of m. While
designing this structure, we added extra edges over the ring topology to reduce the
 diameter to O(log N) at the cost of increased node-degree. The maximum node-
degree of the proposed topology is 4 and the average node-degree is J when m is
odd, and (3 + ;f;) when m is even. An O(log N} time algoritM' for point-to-point
routing on this topology' has been discussed. When N is a power of 2, Ascend and

Descend classes of algorithms can be implememed on this topolegy in Olog N)
time.

In most Of- the existing hetwork topologies, out of the three design parameters, -

number of nodes (/V), node-degree (6) and diameter (D), only one can be t‘fhosen

independently. There are very few topologies, for example, generalized hypercube,
radix-r de Bruijn graphs, ec., in designing of which two of these three parameters
can be varied independently. In chapter 4, we have proposed a new family of
network topologies which also provides this design ﬂexibiliﬁy, i.e., any two of the
three parameters N, § and D, can be chosen independently. We call this topology
as Generalized Hypercube-Connected-Cycles (GHCC). This topology is presented
by a graph G{l,m), where I and m are two integer parameters influencing the
diameter and the degree respectively. G({,m) is a regular graph with node-degree
m + 1, when [> 3 and the total number of nndeé N =Il.m!. The diameter of the
topology is [_%ij —2fori+#1,2,3, m 1 and [%-[J —1lforl <3, m#1 Thegraph
is maximally connected and in the presence of m faulty nodes, the diameter of the
network increases by at most 6, Algorithms for point-to-point routing and single
node broadcast on this network have been developed. The Ascend and Descend

classes of algorithms can be implemented on this topology in O{log N) time.

To measure the efficiency of the proposed topologies, comparative studies of these

two structures with the existing popula.f topologies are also included in the respec-

tive chapters.

Future work on these structures includes embedding of existing popular topolo-
gies on these structures and developing algorithms for communication problems
likke,_ scattering, total exchange, multinode broadcast, etc. Implementation of use-

ful existing algorithms on these structures is also an interesting area for further

research.

The problems that we have taken up for designing parallel algorithms are (i) test-
ing isomorphism of maximal outerplanar grapbs, (ii) numerical interpolation using

Lagrange interpolation technique, and finally (iii) the Strassen’s matrix multipli-

cation algorithm, as a representative example of a specific class of recursive matrix

algorithms.

a .‘_very special class of graphs (MOPs) called

The graph isomorphism pfablem for
5. ‘The algorithm we have

maximal outerplanar graphs, has been solved in chapter

188

designed for testing isomorphism of MOPs requires O(log N) time, where N is

the total number of nodes in the graphs to be tested. We have implemented the

algorithm on EREW PRAM model with N processors as well as on a hypercube
architecture with the same number of processors. We have assumed that the
graphs are given in the form of ordered adjacency lists. If the graphs are given in

terms of adjacency matrices instead of adjacency liSts, O(N?) processors will be

required to keep the time complexity at O(logN).

In chapter 6, we ha,vrg generated a parallel algorithm for Lagrange interpolation.
This algorithm, when implemented on a suitable architecture, requires O(N/ log N)
time using O(N log N) processors for N-point interpolation.

In order to investigate different issues related to parallel implementation of a class
of recursive matrix algorithms on systolic architectures, in chapter 7, we have
implemented the Strassen’s matrix multiplication algorithm on hypercube archi-
tecture. The basic philosophy of our technique may be é.dopted in parallelizing
other recursive matrix algorithms of similar nature, although, the specific details
of parallel implementation entirely depends on the particular nature of the algo-

rithm in question. However, devising a general framework for recursive matrix

algorithms of such nature may be a potential topic for future research.

189

Bibliography

A65]
(A89]

[AD8Y)]

[AG81]

[AHU74)

AKS3]

[AKS84]

' [AK89)

5. B. Akers, “On the construction'of (d, k) graphs,” IEEE Trans.
Electron. Comput., pp. 448, June 1965.

- Selim G. Akl, The Design and Analysis of Parallel Algorithms.

NJ : Prentice-Hall, 1989,

L. G. Aleksandrov and H. N. Djidjev, “Solving systems of linear equa-
tions on a systolic processor,” Technical Report, Center of Informatics

And Computer Technology, BAN-Soﬁa, no. 1-8, 1989.

R. Armstrong and F, G. Gray, “Fault diagnosis in a boolean cube of

microprocessors,” IEEE Trans. Compui., vol. C-30, no. 8, pp. 587 -
590, Aug, 1981,

A. V. Aho, J. E, Hopcroft and J. D, Ullman, The Design and Analysz’s_
of Computer Algorithms. Reading, MA : Addison-Wesley, 1974.

M. Atallah and R. Kosaraju, “Graph problems on a mesh connected
processor array,” J. Assoc. Comp. Mach., vol. 31, pp. 649 - 667, 1083.

Q B. Akers and B. Krishnamurti, “Group graphs as interconnection.

networks,” in Proc. Int. Conf. Fault Tolerant Comput., 1984, pp.
422 - 427, o '

S. B. Akers and B, Krishnamurti, “A group-theoretic model for sym-

metric interconnection networks,” IEEE Trans. Comput., vol. 38, no.

"4, pp. 555 - 566, Apr. 1989.

190

ALS81]

(AL90}

(AL91]

[AP89)]

(AW93]

(B46)

B74]

[B78]

[B9O)

(BAS4]

B. W. Arden and H. Lee, “Analysis of chordal ring network,” IEEE
Trans. Comput., vol, C-30, Pp. 291 - 295, Apr. 1981.

A. El-Amawy and 8. Latifi, “Bridged hypercube networks,” J. Parallel
Distributed Comput. , PP. 90 - 95, Sept, 1990.

A. El-Amawy, and S. Latifi, “Properties and performance of folded
hypercube,” IEEE Trans, Parallel Distributed .S'y.ét., vol. 2, no. 1,
pp. 31 - 42, 1991,

S. Abraham and K. Padmanabhan, “Twisted cube : A study in asym-
metry,” J. PamltelhDistributed Comput., vol. 13, pp. 104 - 110, Nov.

1991,

S. Arno and F. S, Wheeler, “Signed digit representation of minimal
hamming weight,” IEEE Trans. Comput., vol. C-42, no. 8, pp. 1007
- 1010, Aug. 1993,

N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlande
Academie Van Waten Schapen Proc., no. A49, pp. 7568 - 764, 1946.

N. Biggs, Algebraic Graph Theory. London : Cambridge University
Press, 1974.

B. Bollobas, Eztremal Graph Theory. London Math. Soc. Monograph
no. 11, London : Academic Press, 1978.

H. L. Bodlaender, “Polynomial algorithms for graph isomorphism and
chromatic index on partial K-trees,” J. Algorithm.s, vol. 11, pp. 631 -

643, 1990,

L. N. Bhuyan and D. P, Agr.awal, “Generalized hyper'cube and hyperbus

structures for a computer network,” IEEE Trans. Comput., vol. C-33.

no. 4, pp. 323 - 333, Apr. 1984,

191

[BDQsz}
'BFM89]
(BHO4]

BI73]

[BIPS5]

BIMT9]

[BOS+91]

(BR&Y]

BS78]

[BT84]

J. C. Bermond, C. Delorme and J, J. Quisquater, “Tables of large

.graphs with given degree and diameter,” Info. Proc. Lett., vol. 15

1:10 1, pp 10 - 13, 1982,

J. -C. Bermond O. Favaron and M. Maheo, “Hamiltonian decomposi-

tion of cayley graphs of degree four,” J. Combinatorial Theory, Ser.
B 46, pp. 142 - 153, 1989.

S. M. Balle and P, C. Han_sen, “A Strassen-type matrix inversion algo-
rithm,” Advances in Parallel Algorithms, Amsterdam : 10S Press,
1994, pp. 22 - 30. |

" E. Bannai and T, Ito, “On finite Moore graphs,” J, Fae. Sci., Tokyo

Univ., pp. 191 - 208, 1973.

J. -C. Bermond, G. Illiades and C. Peyrat, “An optimization prob-

lem in distributed loop computer networks,” in Proc. 3™ Int. Conf.

Combinatorial Maths., 1985,

T, Béyer, W, Jones and S. Mitchel, “ Linear algorithms for isomorphism

of maximal outerplanar graph',” J. Assoc, Comp. Mach., vol. 26, no.

4, pp. 603 - 610, Oct. 1979.

D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, alnd J. N, Tsit-

siklis, “Optimal communication algorithm for hypercubes_,” J. Parallel

Distributed Comput., vol. 11, pp. 263 - 275, 1991.

A. Benaini and Y. Robert, “An even faster systolic array for matrix

multiplication,” Parallel Computer, vol. 12, pp. 249 - 254, 1989.

G. Baudet and D. Stevehson, “Optimal snrtiﬁg algorithms for parallel
computers,” IEEE Trans. Comput., vol, C-27, no. 1, pp. 84 - 87, Jan.

1987,

F. T Boescﬁ anf R. Tindell, “Circulants and their mnuec;ivities,” J.

Graph Theory, vol. 8, pp. 487 - '499,‘1984.

192

(BT91]

[BW85]

[C76]

[0-765,]

(C82)

[CAB94a]

[CABY4b)

|CB81a]

[CB81b)

J. C. Bermond and D. Tzvieli, *Minimal- diameter douBle-Ioop net-

works : dense optimal families” Networks vol. 21, no. 1, pp. 1 - 10,
Jan, 1991. |

F. T. Boesch and J. -F. Wang, “Reliable circulant networks with mini-

mum transmission delay,” IEEE Trans. Circuits Syst., vol. CAS-32,
pp. 1286-1291, 1985. '

A. K. Chandra, “Maximal parallelism in matrix multiplication, IBM
Technical Report RC6193, Thomas J. Watson Research centre, York-
town Heights, N. Y., Sept. 1976

" L. Csanky, “Fast parallel matrix inversion algorithms,” STAM J. Com-

put., vol. b, pp. 618 - 623, 19786,

C. J. Colbourn, “Farey series and maximum outerplanar graphs,”
SIAM J. Algebraic Discrete Methods, vol. 3, no. 2, pp. 187 - 189,
June 1982.

C. Chen, D. P. Agrawal and J,IR. Bruke, «“iBCube : A new class of

hierarchical multiprocessor interconnection networks with area efficient

layout,” IEEE Trans. Parallel Dz’str;‘buted Syst., vol. 4, no. 12, pp.
1332 - 1344, 1994.

—, “Design and analysis of a class of highly scalable hierarchical net-

works : PdBCube,” J. Paralle Dz’stﬁb@ted Comput., vol. 22, pp. 555
- 564, 1994,

C. J. Colbourn and K. S. Booth, “Linear time automorphism" algo-
rithms for trees, interval graphs and planar graphs,” SIAM J. Com-
put., vol. 10, no. 1,.pp. 203 - 225, Feb. 1981.

S. D. Conte and C. de Boor, Elementary Numertcal Analysts, Tokyo
: McGraw-Hill, 1981. | |

193

(CC94]

(CCG93]

(CG70]

5. Y, Cheng and J. H, Chuang, “Varietal hypércube - A new intercon-

nection network topology for large scale multicomputer,” in Proc. Int.
Conf. Parallel Distributed Syst., 1994, pp. 703 - 708.

R. Cole, M. Crochemore, Z. Galil, L. Gasieniec, R. Hariharan, S.
Muthukrishnan, X, Park and W. Rytter, “Optimally fast parallel al-
gorithms for preprocessing and pattern matching in one and two di-

mensions,” in Proc, 34* Annu. Symp. Found. Comp. Se. (FOCS),
1993, pp. 248 - 258,

D. G. Corneil and C. C. Gotlieb, “An efficient algorithm for graph

~ 1somorphism,” J. Assoc.. Comput. Mach., vol. 17, no. 1,-pp. 51 - 64,

[CGK90]

Jan. 1970,

P. R. Cappelo, E. Gallopoulous and C. K, Koc, “Systolic computation
of interpolating polynomials,” Computing, vol. 45, no. 2, pp. 95 - 117,

- 1990,

[CLRO]

[CPH*83]

(CS87]

[CW80]

[CW817]

T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Al-
gorithms. London : MIT Press, 1990.

M. Clint, R, H. Perrot, C. M. Holt and A. Stewart, “The influence
of hardware and software considerarions on the design of synchronous

parallel algorithms,” Software Practice and Ezperience, vol. 13, no.

10, pp. 961 - 974, 1983,

K, H. Cheng and S. Sahni, “VLSI systems for band matrix multiplica-
tion,” Parallel Comput,, vol. 4, pp. 239 - 258, 1087.

D. Coppersmith and S Wiﬁograc'l_, “On the asymptotic complexity of
matrix multiplication,” .SIAM J. Comput., vol. 11, pp. 472 - 492,
1980. | - |

D. Coppersmith and S. Winég:ad, “Matrix multiplication via arith-

" metic progressions,” in Proc. 19 Annu. ACM Symp. Theory Com-

put., 1987, pp. 1 - 6.

194

[D79]

[D84]

(DE91]

[DHL*90)

[DMS94]

'DNS81]

IDS95)

(E64]
[E87]
[E89)

(E92]

P. J. Davis, Circulant Matrices. New York : John Wiley, 1979.

K. W. Doty, “New designs for dense processor interconnection net-

works,” IEEE Trans. Comput., vol. C-33, pp. 447 - 450, May 1984,

S. P. Dandamudi and D. L, Eager, “Hierarchical interconnection net-

‘works for multicomputer systems,” IEEE Trans. Comput., vol. C-39,

pp. 786 - 797, 1990.

D. Du, D. Hsu, Q. Li and J, Xu, “A Combinatorial problem related to
distributed loop networks,” Networks, vol, 20, pp. 173 - 180, 1990.

R. K. Das, K. Mukhopadhyaya and B. P. Sinha, “A new family of
bridged and twisted hypercubes,” IEEE Trans. Comput., vol. 43, no.
10, pp. 1240 - 1247, Oct. 1994, |

E. Dekel, D, Nassimi and S. Sahni, “Parallel matrix and graph algo-
rithms,” SIAM J. Comput., vol. 10, no. 4, pp. 657 - 675, Nov. 1081.

R. K. Das and B. P. Sinha, “Optimal communication algorithms in

distributed loop networks,” J. Parallel Distributed Comput., vol. 30,
pp. 85 - 90, 1995,

" B. Elspas, “Topological constraints on interconnection-limited logics,”

Switching Circuit Theory Logical Design, pp. 133 - 147, Oct. 1964,

H. Edelsbrunner, Algorithms in Combinatorial Geometry. Heidel-
berg : Springer-Verlag, 1967,

A. El-Amawy, A systolic architecture for fast dense matrix inversion,”

IEEFE Trans. Gom)., vol. 38, pp. 449 - 455, 1989.

K. Efe, “The crossed cubé architecture for parallel computation,”

IEEE Trans, Parallel Distributed Syst., vol. 3, no. 3, pp. 913 - 524
Sept. 1992. |

195

EDS)

[ENSO1]

[ES83]
[F66]
[F71)
[F77)

[F92)

[FK76]

[FL72]

(FOHS87|

A. El-amawy and K. R. Dharmarajan “Parallel VLSI algorithm for

stable inversion of dense matrices, IEE Proc., Pt E. 136, pp. 575 -
580 1989,

A. Esfahanian, I, M. Ni and B. E. Sagan, “The twisted N-cube with

application to microprocessing,” IEEE Tmns Comput., vol. 40 no.
1, pp. 88 - 93, Jan, 1991,

P. Erdos and J. Spe:icer, “Evolution of the n-cube,” J, Comput, Math.
Appl., vol. 5, pp. 307 - 312, Mar. 1983.

H. Friedman, “A design for (d, k) graphs,” IEEE Trans. Electron.
Comput., pp. 253 - 254, Apr. 1966.

—, “On the impossibility of certain Moore graphs,” J. Combinatorial
Theory (B), pp. 245 - 252, Apr. 1966. |

S. Foldes, “A characterization of hypercubes;" J. Discrete Maths.,
vol, 17, pp. 155 - 159, 1977.

P. Fraigniaud, “Asymptotically optimal broadcasting and gossiping in
faulty hypercube microprocessor,” IEEE Trans. Comput., vol. 41, no.
11, pp. 1410 ~ 1419, Nov, 1992,

M. J. Flynn and S. R. Kosaraju, “Process and their interactions,”

Kibernatics, vol. 5, pp. 159 - 163, 1976.

D. J. Farber and K, C. Larson, “The system architecture of the dis-
tributed cr.::mputer system - the communication systems,” in Proc.

Symp. Computer Comm. Networks and Teletraffic, Apr. 1972,
Brooklyn Polytechnic Press, pp. 21 - 27. | |

G. C. Fox, 5. W. Otto and A. J. G, Hey, “Matrix algorithms on a
hypercube I : Matrix multiplication,” Parallel Comput., vol. 4, pp.

17-31, 1987.

196

(G91)

1G94]

(GHV™*88]

(GJ79]

(GKPSS)

(GRS0]

[H56)

[H69)

[H76]
HB84)

(HC82]

H. Gazit, “ A deterministic parallel algorithm for planar graph isomor-

phism,” in Proc. 32" Annu, Symp. Found. C’omp Se. (FOCS),
1991, pp. 723 - 732. *

B_' Goertzel, “Lagrange interpolation on a processor tree with ring con-
nections,” J. Parallel Distributed Comput,, vol. 22, no. 2, pp. 321 -
323, 1994. '

L. Geus, W. Henning, M. Vajteri and J. Volkert, “Matrix inversion

algorithms for a pyramidal multiprocessor system,” Computers and
Artificial Intelligence, vol. 7, pp. 65 - 79, 1988,

- M. R. Garey and D. S, Johnson, Computers and Intractability - A

Guide to the Theory of NP-Completeness. San Francisco : W. H.
Freeman & Co., 1979,

R. L. Graham, D. E. Knuth and O. Potashnik, Concrete Mathemat-
tcs. Reading MA : Addison - Wesley, 1988.

H. Gazit and J. H. Reif, “A randomized parallel algorithm for planar
graph isomorphism,” in Proc. 24 Annu. ACM Symp. Parallel Algo.

Arch., July 1990, pp. 210 - 219.

F. B. Hildebrand, Introduction to Numerical Analysis. New York :
McGraw-Hill, 1956.

F. Harary, Graph Theory. New York : Addison-Wesley, 1969.

S, Hart, “A note on the edges of the n-cube,” J. Discrete Maths., vol.
14, pp. 157 - 163, 1976.

K. Hwang and F. A. Briggs, Computer Architecture and Parallel
Processing, New York : McGraw-Hill, 1984,

K. Hwang and Y. H. Cheng, “Partitioned matrix algorithms for VLSI |

arithmetic systems,” IEEE Trans. Comput., vol. C-31, no. 12, pp.
1215-1224, Dec. 1982. - |

197

[HHW88] F, Harary, J. P, Hayes and H. Wu, “A survey of the theory of hypercube

[HPR5]
(HS60]

HT7Y

(HT72)

(HT73]

HW74]

[HZ83

392]

[JH89)

graphs,” Comp. Math. Applic., vol. 15, no. 4, pp. 277 - 289, 1988,

F. Har&ry,l M. Palmer and R. C, Read, “On the cell-growth problem
for arbitrary polygons” Discrete Maths., vol. 11, pp. 371 - 389, 1975.

A. J. Hoffman and R. R. Singleton, “On Moore graphs with diameter
2 and 3,” IBM J. Res. Devolop., pp. 497 - 504, 1960.

J. E. Hopcroft and R. E. Tarjan, “A V? algorithm for determining
isomorphism of planar graphs,” Info. Proc, Lett., vol. 1, pp. 32 - 34,
1971, |

——, “Isomorphism of planar graphs,” in Complezity of Computer
Computations. R. E, Miller and J. W, Thatcher, Eds., New York :
Plenum Press, pp. 172 - 184, 1974,

——, “Dividing'a graph into triconnected components,” SIAM J.

Comput,, vol, 2, pp. 135 ~ 158, 1973.

J. E, prcroft and J. K. Wong, “Linear time algorithm for isomor-
phism of planar graphs,” in Proc. 6% Annual ACM Symp. Theory
Comput., 1974, pp. 172 - 184,

E. Horowitz and A. Zorat, “Divide-and-conquer for parallel process-

ing,” IEEE Trans. Comput., vol. C-32, no. 6, pp. 582 - 585, June
1983, ' -

J. Ja Ja, An Introduction to Parallel Algorithm. Reading, Mas-
sachusetts : Addison Wesley, 1992. | |

S, L. Johnson and C. -T. Ho, “Optimmn broadcasting and personalized

communication in hypercubes,” IEEE Trans. C'amput.., vol, 38, no.

9, pp. 1249 - 1268, Sept. 1989.

198

JK88]

JK89]

(7595]

K67)

K80]

[K88al]

(K88h)

[K88c]

(KLY92)

[L70]

[L83]

J. Ja Ja. and_S. R. Kosaraju, “Parallel algorithm for planar gfaph i50-
morphism and related problems,” IEEE Trans. on Circuits Syst.,
vol. 35, no. 3, pp. 304 - 311, Mar, 1988.

H. V. Jagadish and T. Kailath, “A family of new efficient arrays for
matrix multiplication,” IJEEE Trans. Campﬂt., vol. C-38, no, 1, pp.
149 - 155, Jan, 1989.

P. K. Jana and B. P. Sinha, “Fast parallel algorithm for polynomial
interpolation,” Comput. and Maths. Applic., vol. 29, no. 4, pp. 85 -
92, 1995,

1. Korn, “On (d, K) Graphs,” IEEE Trans. Electron. Comput., pp.

90, Feb. 1967,

H.T. Kung, “The structure of parallel algorithms,” Advances in Com-
puters, vol. 19, M, C, Yovits, Eds., New York : Academic Press, 1980,

5. C. Kak, “A two-layered mesh array for matrix multiplication,” Par-
allel Comput., vol. 6, pp. 383-385, 1988.

H. P. Katseff, “Incomplete erpercubes,” IEEE Trans. Comput,, vol,
C-37, pp. 604 - 608, May 1988. |

S. Y. Kung, VLSI array processor, Englewood Cliffs, NJ: Prentice-
Hall, 1988, |

J. I, Khan, W, Lin and D. Y. Y. Yun, “A parallel matrix inversion algo-
rithm on torus with adaptive pivoting,” in Proc. Int, Conf. Parallel
Processing, vol. 3, 8t. Charles, IL, 1992, pp. III-69 - HI-72.

J. Q. Longyear, “Regular d-valent graphs of girth 6 and 2(d® ~d+1)
vertices,” J. Combinatorial Theory, vol. 9, pp. 420 - 422, 1970.

F. T. Leighton, Complemity ismes in VLSI. Cambridge, Mass..: MIT |

Press, 1983.

199

[L89]

[L90]

[L92]

1.A8Y]

LB79]

LBO4]

LHY2]

[LLP*90)

ILOY4]

[LP8Y]

5. Latifi, “Identification of operational subcubes in faulty hypercube,”
Research report, Univ. Nevada, Las Vegas, 1989.

B. Louka, “Triangular matrix inversion on systolic arrays,” Parallel
Comput., vol. 14, no. 2, pp. 223 - 228,‘ 1990,

F. T, Leighton, Introduction To Parallel Algorithms and Architec- .

tures : Arrays, Trees, Hypercubes. California Morgan Kaufmann,
1992. '

5. Latifi and A. El-Amawy, “On folded hypercubes,” in Proc. Int.
Conf. Parallel Processing, 1989, pp. 180 - 187.

G. 5. Leuker and K. S. Booth, “A linear time algorithm for deciding
interval graph isomorphism,” J. Assoc. Comp. Mach., vol. 26, pp.
183 - 195, 1979,

S. Latifi and N. Bagherzadeh, “Incomplete Star : An alternative scal-
able network based on the star graph,” IFEE Trans. Parallel Dis-
tributed Syst., vol. b, no. 1, pp. 97 - 102, Jan, 1994,

T. -C. Lee and J. P. Hayes, ““A fault-tolerant communication scheme

for hypercube computers,” IEEE Trans. Comput., vol. 41, no. 10, pp.
1242 - 1256, Oct. 1992,

C. Levcopoulos, A. Lingas, O. Peterson and W. Rytter, “Optimal paral-

lel algorithms for testing isomorphism of trees and outerplanar graphs,”

in Proc. Found, Software Tech. Theoretical Comp. Sc., 1990, pp.
204 - 214.

M. B. Lin and A. Y. Oruc, “Constant-time iu_ner-prnduct /matrix com-

putations on permutation network processors,” IEEE Trans. Com-

put., pp. 1429 - 1434, Dec. 1994,

A. Lingas and A. Proskurowski, “On parallel complexity of the sub-

graph homeomorphism and the subgraph isomorphism problem for

200

1S82]

[LW85]
M8z
[M86]
[MC80]

IMC87)

IMKC92]

(MM63]

[MMS92]

IMP70)

classes of planar graphs,” Theoretical Comp. SC-; vol. 68, pp. 155
- 173, 1989,

W. E. Leland and M. H, Solomon, “Dense trivalent graphs for processor

interconnection,” IEEE Trans. Comput., vol. C-31, no. 3, pp. 219 -
222, Mar. 1982.

G. J. Li and B, W. Wah, “The design of optimal systolic arrays,” IEEE
Trans. Comput., vol. C-34, no. 1, pp. 66 - 77, Jan. 1985,

M. Mulder, “n-cube and median graphs” J. Graph Theory, vol. 4,
pp. 107 - 110, 1982 '

G. P. McKeown, “Iterated interpolation using a systolic array,” ACM

Lrans., Math, Software, vol. 12, pp. 162 - 170, 19886.

C. A. Mead and L. A.-'Conway, Introduction to VLSI Systems. Mas-
sachusetts : Addition-Wesley, 1980,

L. Melkemi and. M. T. Chuente, “Complex of matrix product on a class

of orthogonally connected systolic arrays,” IEEE Trans, Comput.,
vol, C-36, no. b, pp. 615 - 619, May 1987.

V. K. Murthy, E. V. Krfshnamurthy and P. Chen, “Systolic algorithm

for rational interpolation and pade approximation,” Parallel Comput-

ing, pp- 75 - 83, Jan. 1992.

J. W. Moon and L. Moser, “Triangular dissection of n-gons,” Canad.

Math. Bull., vol. 6, pp. 175 - 178, 1963.

E. I Milovanovic; I Z. Milovanovic and M. K. Stojcev, “Matrix inver-

sion algorithm for linear array processor,” Lecture Notes in Comp.

Sec, 654, Berlin : Springer-Verlag, 1992, pp. 367 - 372.

J. H. Morris (JR.) and V. R. Pratt, “A linear pattern matching al-
gorithm,” Tech. Rep. no. 40, Computing Center, Univ. California,

Berkley, California, 1970.

901

(MR82]

IMR85] -

(MS95]

INMB83)

(NS81]
P69
P84]

[PASS]

[PCY4]

[PR82)

(. Memmi and Y, Railard, “Some new results about the (d,;k) graph

problem,” IEEE Trans, Comput., vol. C-31, no. 8, pp. 748 - 791, Aug.
1982, | |

G. Miller and J. Reif, “Paralle! tree contraction and its application,”

in Proc, 26 IEEE Symp. on FOCS, pp. 478 - 489, 1985.

K. Mukhopadhyaya and B, P. Sinha, “Fé,ult tolerant routing in dis-
tributed loop networks,” IEEE Trans. Computers., vol. 44, no. 12,
pp. 1452 - 1456, Dec, 1995,

D. Nath, S. N. Maheshwari and P, C. P. Bhatt, “Efficient VLSI net-

works for parallel processing based on orthogonal trees”, IEEE Trans.
Comput., vol, C-32, no. 6, pp. 569 - 581, June 1983.

D. Nassimi and 5. Sahni, “Data Broadcasting in SIMD computers,”
IEEE Trans. Comput., vol. 30, no. 2, pp. 101 - 106, Feb. 1981,

M. C. Pease, “Inversion of matrices by partitioning,” J. Assoc. Comp.

Mach., vol, 16, no. 2, pp. 302 - 314, Apr., 1969,

V. Y. Pan, “How to multiply matrices faster,” Lecture notes in Com-

puter Science, vol. 179, New York: Springer-Veriag, 1984.

W. A, Porter and J. L. Aravena, “Cylindrical arrays for matrix mul-

tiplication,” in Proc. 24'* Annu. Allerton Conf. Commun. Control

Comput., Mar, 1988, pp. 595 - 602.

J. -H, Park and K. -Y. Chwa, “Recursive Circulant : A new topology

for.multicomputer networks,” in Proe, Int. Symp. Paraliel Arch.,

Algo, Networks, 1994, pp. 73 - 80.

D. K. Pradhan and S. M. Reddy, “A fault-tolerant_communication
architecture for distributed systems,”IEEE Tr::ms. C._Omp“‘t'r vol. C-

31. no. 9, pp. 863 - 870, Sept. 1982

202

[PS88]
(PT89)

[PT91]

(PVS0]

(PV81]

[R60]

(R85

(R93]
[RC77)
[RS93)

[RV84]

F. P. Preparata and M. I. Shamos, Computational Geometry - An
Introduction. Berlin : Springer-Verlag, 1988. .

V. K. Prasanna Kumar and Y. C. Tsai, “Designing linear systolic ar-

rays,” J. Parallel Distributed Comput., vol. 7, pp. 441 - 463, 1989,

V. K. Prasanna Kumar and Y. C. Tsai, “Synthesizing optimal fam-
ily of linear systolic arrays for matrix computations,” IEEE Trans.

Comput., vol. 40, no, 6, pp. 770 - 774, June 1991,

I. P. Preparata and J. Vuillemin, “Area-time optimal VLSI networks
for multiplying matrices,” Info. Proc. Lett., vol, 11, no. 2, pp. 77 - 80,

- Qct, 1980,

F, P. Preparata and J. Vuillemin, “The Cube-Connected Cycles : A
versatile network for parallel computation,” Comm. Assoc. Comp.
Maceh., pp. 300 - 309, May 1981,

G. W. Reitweisner, “Binary Arithmetic,” Advances in Computers,

vol. 1, pp. 231 - 308, 1960.

G. Rote, “A systolic array algorithm for the aigebraic path problem

(shortest path; matrix inversion),” Computing, vol. 34, no. 3, pp. 191

- 219, 1985.

J. H. Reif, Ed., Synthesis of Parallel Algorithms. California: Morgan
Kaufmann, 1993.

R. Read and D. Corneil, “The graph isomorphism disease,” J. Graph
Theory, 1 pp. 239 - 363, 1977.

Yordon Rouskov and Pradip K. Srimani, “Fault diameter of 'statr_

graphs,” Info. Proc. Lett., vol. 48, pp. 243 - .251, .1993.

LYV, Ramakrishﬁan and P. J. Varman, “Modular matrix multiplications

" on a linear array,” IEEE Trans. Comput., vol. 33, pp. 952-958, 1984.

203

1564]
1969]
[S70)

[S76)

78]
[S80]
S85]

S86]

SB93]

[SMK91)

3588

‘H. Sachs, “On regular graphs with given girth,” Theory of Gmpﬁs

and tts Appliqa,tions. New York : Academic, pp. 91 - 97, 1964.

V.. Strassen, “Gaussliali elimination is not optimal,” Numerische
Mathematik, vol. 13, pp. 354-356, 1969.

R. M. Storwick, “Improved construction technique for (d, k) Graphs,”
IEEE Trans. Electron. Comput., pp. 1214 - 1218, Dec. 1970.

L. L. Schumaker, “Fitting surface to scattered data,” in Approzima-
tton Theory. vol, 11, Lorentz, Chui and Schumaker, Eds., pp. 203 -
268, Academic Press, 1976. |

R. Sibson, “Locally equiangular triangulations,” Comput., vol. J. 21,
pp. 243 - 245, 1978,

H. 5. Stone, Ed., Introduction to Computer Architecture, Science

Research Associates, Chicago, 1980.

(3. Stout, “Iree-based graph algorithms for some parallel computers,”
in Proc, Int. Conf. Parallel Processing, 1985, pp. 727 - 733.

V. Strassen, “The asymptotic spectrum of tensors and the exponent of

matrix multiplication,” in Proc. Conf. Found. Comp. Se. (FOCS),
1986, pp. 49 - 54.

H. Shen and R. J. Back, “Construction of large- size interconnection

networks with high performance,” Networks, vol. 23, pp. 399 - 414,
1993.

H. Schroeder, V. K. Murthy and E. V. Krishnamurthy, “Systolic al-

gorithm for polynomial interpolaticin and related problems,” Parallel

Computing, pp. 493 - 503, July 1991,

Y. Saad and M. H. Shultz, “Topological properties of hypercubes,”
IEEE Trans. Comput., vol. 37, no. 7, pp. 867 - 872, July 1988.

204

IT91]

[TC95)

ITRS9(]

T879)

[U84]
V78]
[VKV91]
[VRS6]

(W66)

| [sz] |

D. Tzvieli, “Minimal diameter double-loop networks 1. Large infinite
families,” Networks, vol. 21, pp. 387 - 415, Jul. 1991.

J. C. Tsay and P. Y. Chang, “Some new designs of oD array for ma-
trix multiplication and transitive closure,” JEEE Trans. Parallel Dis-
tributed Syst., vol. 6, no. 4, pp. 351 - 362, Apr. 1995.

Si.B; Tien, C. 5. Raghavendra and M. A. Sridhar, “Reconfiguring em-
bedded task graphs in faulty hypercubes by antomorphism,” in Proc.
Hawait Int, Conf. Syst. Sci., Jan. 1990, pp. 91 - 100,

S. Touge and K. Steiglitz, “The design of small diameter networks by

" local search,” IBEE Trans. Comput., vol. C-28, pp. 537 - 542, Jul.

1979,

J. D. Ullman, Computational Aspects of VLSI, Rockville, Md. :

Computer Scienice Press, 1984.

F. L. Van Scoy, “Parallel algorithﬁls in cellular spaces,” Ph. D. thesis,

‘University of Virginia, Charlotteville, Va., 1976,

N. C. Veeraraghavulu, P. Srenivasa Kumar and C. E. Veni Madha-
van, “A linear time algorithm for isomorphism of a subclass of chordal

graphs,” Proc. 1* National Seminar Theoretical Comp. Sec., 1991,

pp. 159 - 168.

P. J. Varman and I. V. Ramakrishnan, “Synthesis of an optimal family

of matrix multiplication algorithms on linear arrays,” IEEE Trans.

Comput., vol, 35, pp. 989 - 996, 1986.

L. Weinberg, “On the maximum order of the automorphism group of

a planar triply-connected graph,” SIAM J. Appl. Math., vol. 14, pp.
729 - 738, 1966. |

R. S. Wilkov,. “Analysis and design on reliable computer networks,”

IEEE Trans. Commmun., 0-20, pp,_660 - 678, 1972.

2006

[WC74] C. K. Wong and D. Coppersmith,. “A combinator.ia.l problem related

to multimodule memory organization,” J. Assoc. Comp. Mach., vol.
21, no. 3, pp. 392 - 401, 1974. |

[YTR94] P. -J. Yang, S. -B. Tien and C. S. Raghavendra, “Reconfiguration of

rings and meshes in faulty hypercubes,’i J. Parallel Distributed Com-

put., vol. 22, no. 1, pp. 96 -~ 106, Jul, 1994.

206

List of Publications of the Author

[1] S. Sen Gupta, R. K. Das, K. Mukhopadhyaya and B. P. Sinha, “A Family

13)

of Network Topologies with Multiple Loops and Logarithmic Diameter,” to

appear in Parallel Computing.

S,-Seﬁ 'Gupt‘.a, D. Das and B. P. Sinha, “The Generalized Hypercube - Con-
nected - Cycle : An Efficient Network Topology,” to appear in Proc. Inter-
national Conference on High Performance Computing (HiPC), to be

held in December 1996, Trivandrum.

S. Sen Gupta, D, Das and B. P. Sinha, “A Fast Parallel Algorithm for Poly-
nomial Interpolation Using Lagrange’s Formula,” in Proc. International

Conference on High Performance Computing (HiPC), December 1995,
New Delhi, pp. 701 - 706.

S. Sen. Gupta, K. Mukhopadhyaya, B, B. Bhattacharya and B. P. Sinha,
“Geometric classification of triangulations and their enumerations in a con-

vex polygon,” Computers and Mathematics with Applications, vol. 27,

no. 7, pp. 99 - 115, 1994.

S. Sen Gupta, R. K. Das, K. Mukhopadhyaya and B. P. Sinha, "A new
famﬂy of low-diameter network topologies with multiple loops," in Proc.

First International Workshop on Parallel Processing, December 1994,

Bangalore, pp. 41 - 46,

