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- Chapter 1
Introduction

| 1_.1 Intrdd'uctionz

‘The model of continuum percolation can be described as follows, We
- start with a homogeneous Poisson point process X At each point of X
we centre a ball with a random radius such that the radii corresponding
to different points are independent of each other and also independent of
~ the Poisson process X. In this way, the space is divided into two regions,
- the covered region or the occupied region consisting of the region which
1s covered by at least one ball, and the uncovered region or the vacant
region which is complement of the covered region. In this dissertation
we study various properties of this covered region. R
Percolation theory first found its application in solid-state physics,
but in the later years it has been applied in many more diverse fields
like geophysics, astrophysics, chemistry of polymers etc. In physics,
the phenomenon of phase transition as observed in stirred mixtures
of immiscible liquids is modelled by the continuum percolation model.
Consider the following experiment of adding oil slowly in water and
stirring it constantly. If the amount of oil added, i.e. fraction of ol
to water, is very small, droplets of random size of oil are formed in
the background of water. If we keep on adding more oil, the system
' goes into phase change to reach a situation where water droplets are
- dispersed in oil. The physical literature on this subject is primarily a
~ study based on Monte Carlo simulations although heuristic arguments

J
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are provided in some of the works (see, for example, Scher and Zallen
[1970], Pike and Seager [1974], Kertesz and Vicsek {1982], Gawlinski
and Redner [1983], Phani and Dhar [1984]).

The mathematical study of continuum percolation was initiated by
Hall {1985, 1986]. This model which is known as the Boolean model in
stochastic geometry, has been studied extensively by geometers, albeit
with a view of solving problems of a geometric nature. Hall {1988) is
an excellent book devoted to the study of the geometric and statistical
aspects of the Boolean model. The model of continuum percolation was
first introduced in a study of communication networks by Gilbert [1961]
as a model for the growth and structure of random networks. Men-

shikov, Molchanov and Sidorenko {1985}, Zuev and Sidorenko [1985],

Menshikov [1986], Roy {1990}, Alexander [1993), Meester and Roy [1994]

studied the model to obtain various results. | o
The other model of continuous percolation that we study is the

‘random connection model. Given a homogeneous Poisson point process
-+ Xy another way of constructing random objects is to connect the pair of

- points according to.a given rule. In the random connection model, we
- connect a pair of points z1, 2, with the probability g(jz: — #2|) where
g is-a given function known as the connection function and | - | is the

Euclidean distance. ‘The components here are defined in the usual way.

- .'The transmission -of. disease among frees in a forest can be modelled
.. by.such a process.. Penrose [1991], Burton and Meester [1993] Meester

IdIStI‘lbllthIl as that Df p1 F he randam va.rlab]e p IS called the mdaua

[1994] studied this moclel t0; tham various results.
.. In; the next sectmn we mtroduce the models a,nd gwe the necessary

: deﬁmtmns and results

e L.
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1 2 The Pmsson llean Model
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ff;__{Mat,hematlca ly, the madel nf contmuum percolat;on Q&nﬁ.be dESGI'IbEd N

follows..__ Cnnsncler a homogeneaua Pmssaq pmnt prgceasﬁ,%_ Az,

3:2 | At ﬁﬂ.-(:h';_
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random variable. We call this a Poisson Boolean model driven by X
and denote this model by the triplet (X, A, p).

Often to study the model we include the origin as a point in the
process. Let the process X U {0} be denoted by X’ and we construct
a percolation model driven by X', From the theory of Palm measures
this process X" is equivalent to a Poisson process except the {act that
there is a point at origin. In other words, we may say that X' is Poisson
point process with an arbitrary point Df the process declared to be the
origin (see Hall [1988]). |

The mathematically precise construction of the Poisson Boolean
mode] is not always needed to describe the problems of this model.
However for completeness we present the mathematical description of
the model. Let 2, be the collection of all sets of countable points in JR*
which have a finite number of points inside every bounded subset of JR?.
For any point w; € {1y, let N(A)(w;) be the number of points of w; in
the set A C IR*. Define a o-algebra F; = o(N(A) : A € B(JR%)), where
B(IR%)) is the Borel o-algebra on R?. Now assign a probability measure
P, on (4, F;) as follows: for disjoint A;, As, ..., Am with A; € B(JR")
for every 1 <1 < mym 2 1, N(A;) are independent. random variables
‘with N(A;) having a Poisson distribution given by

(A(A))"

n

PI(N( i) =n)= exp(—~A(A;));

for:=1,2,. ,m and n=0,1,... and A > 0. Here, and subsequently
in this d1sserta,t10n, { denotes the Lebesgue measure. So w; € £y will
represent the pbints of the process X. Consider a second probability
space ({2, 4y, Pp) := ((ER"‘)Rd BEY 4BY) where 1 is the probability
measure on Y induced by the random variable p. Then we take the
product space  := ; x ; and equip Q) with product o-algebra F :=
F1 %X F, and the product measure P = P X B. An element of {)
is denoted by w = (w;,wq), where w; € Q; and wy € ;. In the
realization corresponding to w = (wl,wg) € {}, the positions of the
points are precisely the points in w; i.e., X(w1) = {21,22,...} and the
radii of the balls centred at those pomts are (wg)z;, (Wa)gys. ... The
product measure P ensures that the radii are independent of the - point
process. The product measure on §2; implies that different points have
balls with independent radii but they are 11d a5 all of them have
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the common distribution g, Thus the random variable p governs the
radii of the balls. To emphasize the dependence of P on A and the

distribution of p we shall often write F ) for P.

Definition 1.1 The covered région or the occupied region is the set of
all points in IR® which are covered by at least one of the balls. Thus the
covered regian C = Ujs15(x;) is a random set. The complement of the

-~ covered region is V = IR\C which is called the uncavered regwn or the

vacant region.

For a,b € IR? we say that a and b are conneﬁted (denoted by a ~ b)

if there is a continuous curve v such that a,b € v and v € €. For sets
A, B C IR? we say that there is an occupied connection from A to B

if there exist a € A and b € B such that a ~ b. With a slight abuse
of notation we denote this also by A~+ B. For A C IR? we denote by
W(A) the set of all points in R which are connected to some point

“in A, ie, W(A) = {z € R?: there exists a € A such that a ~ z}
| When A = {0}, we write W(0) := W({0}). We call W(0) the occupied

cluster of the origin. The occupied cluster of origin 0 1s thus
w(0) = {:I: € R : 0~ 3:.}

Percolation theory is concerned with unbounded objects. Hence, the

‘basic question one asks is: given a Poisson Boolean model (X, A, p), is

there a positive :pmba‘bilit,y'tha,t the occupied cluster of the origin is
unbounded? To study that various notions of the size of the cluster

" have been defined. The definition that we use is the dla,meter of the_

- randﬂm set W(O) Thus we define the size of W(O) by

d(W) = sup{d(m,y) € JR‘I . x,y € W( )}

called the diameter of the cluster. We denote by ..... ()u) = ﬂ( \) l;h"
probability that the origin is an Ezlement of an’ unbﬂunded ocq .su] mm\
com ponent In nther words, . . R R

00) = P {d (W(n))
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The function 8 is called the percolalion function, Note thal 0 is non-
decreasing in A (a nigorous prool of this facl can be given by using
coupling methods, described in the next section), Hence, we can define
the eritical inlensily Ay = Ay(p) as [ollows:

Mi(p) = inf{,\ >0:6,(2) > 0}. (1.2)

In addition we define another critical intensity, Consider the quan-
tity By )d(W) where I, ,) is the expectation operator. Ep, yd(W) is
also non-decreasing in A, Thus we may define,

)\T = '_/\T(P) = ]Ilf{)\ 2 ( :'E(}L'F,)C_J(M") e DO} o (13]

o

It can easily be seen that, Ag(p) = Ar(p).
~_ Another critical intensity can be defined through the crossing pmh
| abilities of a box. Let B be the d-dimensional box defined by B :

[0 11] _ | X[O [d] and [et B{]( ) [0 11] [0 ll 1] {O} X[U JH_{]X
X [U{ld] and By(z) = [0, 5] x- - x [0, [i- 1] X {1} %[0, liga] %+ - x [0, 1y}
be two faces of the box B. For 1 5 : < d, we define the occumed CTOSS-
ing probability in the 1-th direction as |

J(Ulr' . oy ld);i, )\) =

Py{there is a cbntinuous curve <y in B such that
()yCCnB . |
(22) ¥ N BD(‘L) 7é § and 7N B, (z) % @} 0 (1.4)

Note here we have not included the r&ndom va,rlable o in the notation
as there is no chance of confusion. But, whenever, we work with more
than one radius random variable we shall mention the I‘ELdlLlS random
variable in the notation to avoid any confusion. |

Coupling methods can be applied to prove that lim sup,,_, ., o{{r, 3x,
.,3n); 1, A) is a non-decreasing function of A, This enables us to define

the CI‘]t.!CEL] intensity mrrespondmg to the cmsamg probablhtms

=+ 00

Ag = /\s(p) = mf{)\ 2> 0 lim 511[)5((71.,3?1 3n); 1, A) > U} (1.9) :
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Hall [1985] has shown that if E'(\ )(p(gd‘”)' < oo and E(\p)(pM)

m, then Ay > 0 and A =0, i.e., the critical denmtles do not cmuclde

However, if we assume that,
0 <p < R a.s. for some R > 0, (1.6)

Menshikov [1986] has shown that the above two critical intensities
agree, i.e., |

- Theorem 1. 1 In a Poisson Boolean model (X, A, p) where p satisfies
. (1.6), we have

Julp) =2 =Aslp). (7

In this dissertation we assume that the radius random variable obeys
the condition (1.6) and we denote the value Anlp ) /\T(p) = As(p) by

Aclp):

By a simple use of the Kolmogorav s 0—1 law we may show that

| lf A > Ac(p) there is an infinite occupied cluster with probability 1.

Lo

So the natural question that arises is: how many unbounded occupied

~ clusters are there? Meester and Roy [1994] have shown that there is
~ exactly one unbounded occup1ed cluster in the supercrltlcal reglme

Theorem 1.2 In a Poisson Boolean model (X A, p) where p satisfies

the condition (1. 6') and /\ > A thﬂ'r*e is exactly one unbounded occupied
clustei | |

A slmili-i:r study. can be carried out for the vacant region. For a,b &

IR%.we say that « and b are connected by: a vacant path (denoted by
a ~> b)if there is-a continuous curveiy:suchithat ¢,b € v and ~ € V.

“ﬁ%@

Y

'Tile vaca,nt ﬂluqter W“"(D) Gf urlgm 0 1S deﬁned as

=+ . .
. T L e, - l_ --'| LI . '.JI- T LR T e e
1. h .'__ J"I: - H It I "'."-'1 Vo ',\_-. LS Llal u"

'1Iw same questmn as lll Lhc occupmcl case may ba a,‘ikecl for tha vac;mt.-
_(:quwr gwen a anon Baolean II]U(IE‘.] (X /\,?(g),ﬂlaftherg a, poml.we

donote by 0 (A) 0"‘(,\) the pl’ﬂbdl}lllty thd,t, le;o}tgm 15 ¢n fa}lemenb_- |
of an unlmumlmi mumt mmponmt 1(;,, " 5 S R

. . T oA AR ?::: 1% - W .:. -:._.l::.-!;__.. -.:':"ui"‘“f"-',_. fep :,n , A
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Here the function *(A) is non-increasing in A. Hence, vacent ﬂriizm[
intensity Ay = Ay {p) is defined as follows:

Aer(p) = sup{,\ > 0:0°(A) > o}. (1.9)

The critical intensity corresponding to the expected size of W=*(0) is
defined similarly. Here again, Ey, »hd(W* (0)) is non-increasing in ).
Hence,

= M(p) = sup{/\ > 0: By d(W*H0)) = m}. (1.10)

The vacant crossing of the box B is defined by considering the con-
tinuous curves connecting two faces of the box which lie entirely in
the vacant region V. Thus, for ¢ > 1, we define the vacant crossing

probability in the i-th direction as

o™ ((ly, ..., la);2,A) = | |
- Py{ there is a continuous curve 4* in B such that
Gy evng
(1) 7* ﬂBg(l)%ﬂandfr nBl();é@} o (1.1)

~ Note that lim SUPp 0 0 a*((n,3n,...,3n);1, A) is a non-increasing
function of A, As in the Uccupled case we deﬁne a critical infensity

correspandmg to the vacant crossings.

%(p) --. sup{,\ > 0 : imsup ¢*((r, 3n,. 3?3_);1,)&) > 0}. . (1.12)

) S g

In two diménsmn&, all the ﬁrltlcal intensities (1 9), (1.10) and (1. I?)
coincides with the critical intensities defined through the ocsupancy-

structure (see Roy [1990]). In other words,

| Theurem 13 Ina P&a.sson Boolean model in 2-dimensions ﬂlhﬂf‘ﬂ p
| _sat:sﬁes the condttwn (1.6), we have o | .

=N =0, |
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Again by Kolomogorov’s 0 — 1 law for A < A} (p) there exist at least
one unbounded vacant cluster. In this case too Meester and Roy [1994]
shows that there is exactly one unbounded vacant cluster in the region

A < A(p)-

Theorem 1.4 In a Poisson Boolean model (X, A, p) where p satisfies
the condilion (1.6) and A < Mj;(p) there is exactly one unbounded va-

cant clusier.

"1.3 Coupling and scaling

‘In this section we describe briefly two important techniques in the the-
“ory of continuum percolation. Both the methods are very useful and
we will be using them several times in this dissertation..
N ~ First we discuss some properties of Poisson process. The superpo-
“ sition of two independent Poisson processes X; and X, of intensities
| A, and X, respectively, forms again a Poisson process with intensity
A1 + A, Also a Poisson process X with intensity A may be thinned
with probability p of retaining a point and the residual points form
once again a Poisson point process with intensity Ap, i.e., each point of
‘the Poisson process X of intensity A is either retained with probability
p or removed with probability 1 — p independent of other point of X,
Secondly, if we have a Poisson point process X = {1, zz,...} with
intensity A and we make a change of scale, then also we get a Poisson
p‘oint process. More precisely, for any a > 0, we consider the process

Xo = {am,azy,...}. The resulting process X, is a Poisson point
process w1th mtenswy a: 4\ where d is the dimension of the under lnmlg |
. Space. -

g - Byl couplmg we mean tha,t on a single prﬁba,lblhty space WE‘* cal 1-:_-ff_

#%# construct various models of percola,twn 10 shat we can ¢ ‘ortipafe: It|1f=||1_;_’

| w1th0ut much thfﬁculty Suppose we tru. o e lndf*ﬁ)eﬂdent ]1‘-*@[ ,5““-1;‘_-.-.

......

e, i we lnok at the union of the twa ][:ri ce! :sv':; we Ghtcun th ﬁ‘l f«'“‘éf

_superposed model will once.- agaun bhe a: Pull:. or E-aﬂlean med -=.l__ wu [y
intensity (A + Az) and radlus rmndom v.auh bl i Thus we are’ clen tu.-;f'%.;; ;j‘*:fi |
‘compare the models which have a comman vadius random variable bul
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have different intensities. This will readily prove that the percolation
function is non-decreasing.

The coupling technigue wil} allow us t() compa,re models with dlf[or
ent radius random variables. Let us look at a simple example. Suppose
that we have two random variables p1 and py, where each p;,1 = 1,2
assume two values a and b,a < b (say). Suppose p; assumes the value
a with probability p, whereas p; assumes the value a with probabil-
ity pa, p1 < py (say). Here we take three independent Poisson processes
X1, X9 and X3 with intensities pyA, (1 —p2)A and (p2 —p;) A respectively.
- We centre balls of radius @ and & around each point of the processes X,
and X, respectively. For the process X3, we make two cases: 1) at each
point of X5 we centre balls of radius ¢ and i) at each point of X5 we cen-
tre balls of radius 5. Now we superpose the three processes. In case (i),
~we obtain a Poisson Boolean model (X U XU X3 = X, A, p3), while in
the case (ii) we have a Poisson Boolean model (X{UX,UX5 = X, A, ;).
Thus we are now in a position to compare the two Boolean models with
- different radius random variables. We will return to this later.

As is obvious from the name, scaling is to change the length of the
unit, This is often used in combination with coupling. it is basically
the property of the Poisson process. In order to compare between two
Poisson Boolean models, we effect a change of scale to get to the re-
quired model. Clearly, if (X, A, p) is a Poisson Boolean model, then
(X, %), ap) is scaled version of the previous model. Thus the prop-
erties like having unbounded clusters will carry over from one model
to the other and vice versa. This will be used crucially to prove the

contlnmty of § in Chapter 3.

1.4 The Random Connectlon Model

leen a hom{)geneous Pmsson pomt Process X we construct a diﬁerent
model of percolation by connecting a pair of points according to a given
rule and thereby obtaining random connected sefs. As in the Boolean
model, we study unbounded connected sets of the origin.

~ In a Boolean model, with each point, we associate a random radms -

“which governs the model. . Here we shall take a pair of points and
~connect them in a given manner. In a Random Connection Model
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(RCM), we are giver_l a fulilctinn, called the connection function, from
the positive reals into [0, 1]. Thus starting with a homogeneous Poisson

" ~process X = {£1,2g,...} ol intensity ) in the d-dimensional Euclidean

space and a given connection function g, we connect a pair ot points
z; and z;, for 1 > 7, of the process X with probability g(jz; ~ w;}), .
independently of all other pairs of points and the process itself. In

other words, for every pair of points (z;,;),t > 7, we define a random

variable b(z;, z;) taking values in {0,1} with P(b(z;,z;) = 1) = g(|z; —

‘%;]) and in such a case call the pair (2;,z;) bonded. For ; > 1, the

pair (z;,z;) will be called bonded if the pair (z;, ;) is bonded. The

~ random variable b(z;;z;) is independent of the process X and also of

the random variables corresponding to other such pair of points.
- Two points = and y of the process are said to be connacted (denoted

by 2 ~+ y) if there exists a sequence (:1: = xl, T3, . v, &y 1= Y), such that

- the pair (24, zi4) is ‘bonded for all i = 1 T — 1 Now we define the -
- connected cluster of theorigin in the usuaJ way, W = {z € X : 0~ z},

& We say that the RCM s drwe:n bv X, a,nd the model 1s denoted by

We note here that the Boolean model W1th fixed radlus p = r-can

G ;eamly be seen to be the random cennectmn m()clel with connection

| ‘functmn y( ) I{mqgr}

Mathematm&l canst.mctlon nf the random connection madel (X )

s qmte .sumlar 0 that of a Boolean model, First we construct the
- ~Poisson: pr:acess X on & probahtllty space (y,Fi, ;). On a second
S probabll]ty Space (Qg,}}, Py); werconstruct a set of uniform [0, 1]-valued

~ random ‘-’ﬂl‘l&blﬂs {U(z,y) (z,3) € C} where C is the indexing set of

unordered pairs of. distinct elemants from z,y € IR? and the random
variables {U(a: y) (z,y) € C} are independent of each other. Such a
construction s 15 pmmbla by thie Kolmogorov consistency theorem. Next

| we define a set, of BE‘I’I]OI[“] (hU }-valued) random variables {b(x,y) : |
: (::: y) € C) such that By y) = 1 sind only if Uz, y) < g(|lz —y]) and
T b(zyy) =0 ai,he:wme for: all (af yr€ C Hence’ Pz(b(l y)=1) =g(lz -

g and Lhe randm‘n varldbln [b|z ( ,J) & C] are independent of

~ each other. Thed we Haks thf:‘ pru ulmt sp ace, §¥ =8 % 1y, and equip

| 1 with proclurt, mms:.utt* P N , oy An t‘lLiﬂ(‘ﬂt of ") is denoted
hy w = (m.,w;)' th‘!i‘ ‘-'Jr l |L .nhl J-; 6 -Q-z ovthes l’f‘&liﬁﬂt‘ﬂ“
o .;.:;.“w,pgmhng L{E} w (w| ,u ;r) E 'l J' Ihv ]nwtwrns nf th-* pomts are thlt‘
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occurrences of X(w;}) = {21, xs,...} and the bonds between the points
are given by the random variables {b(z;,z;) : z;,z; € X'}. The product
structure of the probability measure ensures the independence of the
random variables and the given process. To emphasize the dependence

of P on X and g we occasionally denote it by Pirg)-

Here also the basic question that is addressed is: given a random
connection model, when is the origin a part of the unbounded clus-
ter? As before, we define the percolation function 0,(A) = () as the
probability that the origin has an unbounded cluster, i.e.,

0()) = P(A,g){#(W) _ m}, _ (1.14)

~ where #(') is the cardinality of the set. Clearly g is non-decreasing in
~ A. Thus the eritical intensity Ay = Ay(g) is defined as

/\H(g)-:'inf{k >0:6,(0)> o}. (1.15)

The other critical intensity can be defined likewise :

AT = /\T(g) = 1nf{)& >0 E(A.g)#(W) .= DO},_ (116)

where E{)q) is the t;qrrespdnding expectation operator. Clearly, Ay(g)

2> Ar(g). | | -
In the random connection model, it can be easily seen that, i

/ﬁ+ r* ' g(z)dz = =

~ then both the critical intensities are trivially 0. Penrose [1991] has
shown that if | |

0< R'+ :z:d“lg_(:z:)dm <oo | (1.17)
then both the critical intensities are nontrivial, i.e., '
0 < A7r(g) < Arlg) < . (1.18)

We show that under certain conditions on the function g the two
critical intensities coincide. Subsequent to this work Meester [1994] has
 shown that, |

'.Theﬂremll.5_”For every g which satisfies (1.17), wé have -
 u(g) = Arlg).
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1.5 Structure of chapters

o 'Tﬁls dlssextatmn congigts of five cha,pters [n the second chapter, we

develop a correlation inequality which is similar in spirit to the BK in-
equality for the discirete percolation model. We apply this inequality to
obtain some results regarding the growth of the occupied cluster of the
origin in the subcritical region. In addition, we use the BK mequahty
to answer some questions of Hartigan 1981] in- cluster analysis.

In Chapter 3, we study the covered volume fraction of a Poisson

# .Boolean model. First we disprove a conjecture by Kersetz and Vicsek
s [1982] about the universality of the critical covered volume fraction.

‘Then we prove that the critical covered volume fraction is a contin-
uous function of the radius random variable.  Further we show that
the percolation function is a continuous function of the intensity of the

- underlying Poisson process except perhaps at the critical intensity. Fur-
+ " thermore, we show that the percalatlon functions converge when the
@ radins random variables converge weakly except at the critical intensity
of the hmltmg Boolean model.- |

~ Chapter 4 is devoted to the study Uf rare events Alex&nder [1993] .

_.__-7;%-5.-.(;.bt,a,med compression results.in.a high density Poisson Boolean model

“ with balls. of fixed- size for the occurrence of finite cluster. We show .
~ that; when tbe ba,lls are of varying sizes, rarefaction is observed instead
of compressmn This and the previous chapter about cuvered volume
fraction underline the diff erences between the continuum percolation
| mode]s with a fixed ball size and that with varying ball sizes,

. Finally, in ‘Chapter 5. we :tudy the random connection model We
show that the critical mtenm ties defined for this model are same when
the connection functmn g *aa,tl sﬁes certain conditions. Further we study.

the mosaic random connection rnmlel and: obtam some. asymptntlc re-
| Su[ts abﬂut ﬁmte chlsters o |



Chapter 2

The BK Inequality

2.1 Introduction

In the mathematical literature of percolation theory on lattices two cor-
relation inequalities play a very useful role and may be said to be the
only tools available for the subject. These are the FKG inequality ob-
tained by Fortuin, Kasteleyn and Ginibre (1971], and the BK inequality
obtained by van den Berg and Kesten [1985], |
While the FKG inequality has been generallsed conmderably (see
for instance Kemperman [1977]) not much has been done in the BK
~inequality, In this section, we develop a version of the BK inequality
for continuum percolation on IRY. The inequality we obtain is quite
unsatisfactory in the sense that it cannot handle arbitrary increasing
events, however it suffices for the purposes of continuum percolation
models. |
- This inequality, together with the version of the FKG inequality for
continuum percolation (Roy [1990]) is expected to yield results on the
power laws and scaling relations as have been obtained in the discrete
percolation set-up. As an example of this we have an application of
the BK inequality in Section 2.7 which shows that the probability that
the size of the cluster is larger than n decreases exponentially in n.
| This exponential decay yields that at criticality the expected size of
| ':__!-':the cluster is infinite. |

Fmally, we study a problem of cluster aualyms CGI]SIdEI a unil a’~
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16 ' CHAPTER 2. THE BK INEQUALITY

dimensional cube and place n cubes each of which have sides ol length
an~? where o > 0 is used to parametrize the model. Hartigan [1981),
in an article on cluster analysis, raised sorne questions concerning the
clustering property of these cubes. We answer those questions for the
two dimensional case and obtain some results in the higher dimensional
case.

“'We remark here that BK inequality we obtain is also valid in the ran-
dom connection models. Furthermore, our results are valid in the PIA-
sin model, i.e. the percolation model which consists of 1-dimensional
sticks placed at points of a Poisson process on IR? (see Ambartzumian

.- [1990] and Roy [1991] for details of the model). Since the FKG inequal-

ity is also available for this model, our results of Sections 2.7 about the

size of the cluster would go through for this model.

In the next two sections we briefly state the related results that we

- need from the discrete percolation case and introduce a lattice approx-

. .
T BRI

imation of the model. Then we obtain the BK inequality for “lattice
| _-_eppremma.ble events and present an 1mpertent example ef a lattice
| 'epprexlmeble event.

2.2 The discrete BK inequality

- Here we briefly describe the BK inequality 1n the case of discrete per-
. colation. Let I be a regular lattice with a given adjacency relation:

. adj

% &2 v; between vertices v;,v; €'V, where the set of all vertices is

~ denoted by V. Fach vertex of this Iettlce IL is called a site. Every site
15 elther open or e}esed A pathis a sequence (z1,22,...) of SItes T

ud

Iauch thet T; {-——-—r Tiyy, for all i > 1. An open path is a path whose sites
ere a.l] open. Two sites are said to be connected (denoted by zly) if
__'_:';-__lthere is a finite open path from one to the other. T'wo subsets 'V, and
Vg of V are connected if there is an open path starting from a point in

A and ende in a pomt in B Le., there exists & € A and y € B such
ﬁ;_ﬁ_fi‘hat sy, _

Next we lntre(luce a prebabtllty structure on the lattice. For 0 <

;I <f 1, we equip the space ' = 10,1}Y with the pmcluet o-algebra. On
1,hle we assign probability in such a way that the site z is open with
I mhﬁb‘ht}’ fe(?l) mf-lﬂpﬂlldent]y of d.l] other sites where fm( ) is a given



non-decreasing function taking values in {0,1], for each ¢ € V. The
natural way to do this is to equip the space with the product measure
P, = Tlzey Pr where P; is defined as Po(w(z) = 1) = f.(p) for all
r € V. Tor any realisation w € §, the site & is said to be open if
w(z) = 1 and closed if w(z) = 0. Thus we have set up an independent
site percolation problem on the lattice with a parameter p.

Now, for any w € §, the set {x € V : w(z) = 1} is the set of all
vertices which are open. This map which takes a point in £ to the
set of all open vertices 1s a one to one and onto mapping. Thus any
configuration C of open vertices corresponds to the configuration w € 2
given by C = {z :w(z) = 1}. Let us denote this inverse map by ®(-).

Now we define a partial ordering on = {0,1}¥. We say that

Vo | |
w < ' if and only if w(z) < w(z) for all z € V. An event A is called

increasing, if for all w ;} o', w' € A whenever w € A.

Let A and B be increasing events which depend only on finitely
many vertices of the lattice .. We define ADB to be the set of all
" configurations w for which there exist two disjoint sets of open vertices
with the property that the one such set guarantees the occurrence of A
and the other guarantees the occurrence of B. More precisely, AORB is
the set of all configurations w for which there exist finite and disjoint
sets of vertices K4 and K g such that if w’ is such that w'(2) = 1, for all
x € K4, then ' € A and if w” is such that w”(z) = 1 for all z € Kp,
then w” € B (see Grimmett [1988], page 29). It has been ShOWIl by
van-den Berg and Kesten [1985] that |

" Theorem 2.1 BK inequality For two increasing events A and B
whzch depend anlJ on finttely many vertices,

P,(ADB) < P,(A)Py(B).

2. 3 Prellmlnary results

Let (Q F,P) be deﬁned as in Sectlon 1.2 of Chapter 1. Recall that
D=0 xQ, whem £; is the collection of all sets of countable pouitsin

IR* which have a finite number of points inside every bounded subset
of Rd and {2 (Rﬂﬁd On {1 =8 x 2, we deﬁue a parfial urdermg
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as follows: w = (wi,wy) < W' = (W, wy) if and only if wy C w] and
wa(z) < wh(z) for all z € IR®. An event is said to be mcrﬂaszng if its
indicator function satisfies Ix{w) < I4{(w') whenever w < w'. An event
A is said to be a decreasing event if A° is an increasing event

Roy [1990] has shown that

Theorem 2.2 FKG Inequality: If Ay and A,y are both increasing or
both decreasing events in F, then P(A; N Ag) > P(A1)P(A,).

~ Roy [1990]} has also shown that in a Booleaﬁ model if the cross-
ing probabilities are very small, the cluster size of the origin decays

exponentlally More premsely,

Lemma 2.1 Consider a Boolean model where condition (1.6) holds.
(a) If for some T = (nl,ng, nd) wzth n; 2 R for all g = 1,...,d
where R is as in (I 6}, we have,

0’((3?11, 3”1 1}”113”’1—}-11 3?‘1&) z ’\) < K‘ (2 ]‘)

fﬂr some K < (1/2d)(e5d) -1 ﬁnd for all 1 <1< d then we have
'P{d(W(O)) > a} < CreOe, (2.2)

~ for all a > 0, where C, and C, ‘are positive constants independent of a,
R is as in (1.6) and W(0) is the occupied cluster of the origin in the
Poisson Boolean model (X, A, p). -

(b) If for some T = (ny,ny, .. ,nd) wath n; 2> K for all j - 1,...,d
where R is as in (1.6), we have, o ' |

| g ((371], 3n1_1,n,,3n1+1, 3”&),3,A) <K | | (23)

-.-?-f'ﬂ-w ~for some K < (I/Qd)(efyd) ”_d and for a.ll 1 <1<, then we have
 Hawonzasoee,
fﬂ‘:" ull a > {] wherﬂ Oy and C'4 are.pasztw.e constaﬁts mde;:endﬂnt of a,

R s as’ n’ (I 6) and W"‘( ) is the occup;ed cluster of thﬂ amgm in the'
Pmsson Boolean model (X )\,p) CoETE L T |
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Before we end the section we give an application of the FKG in-
equality. This will be used in later chapters. Let A C IRY be a
bounded region containing thie origin. For m > 0 consider the events

Iy = {d(M/’(A)) > m} and [7 = {for every a € A, there exists a

Poisson point & € X with ¢ & S(a:)}, in the Poisson Boolean model

(X,p,A). It can be easily verified that both & and F are increasing
events. By the FKG inequality we have P,(ENF) > P (EYP ().
Thus

(F occurs and d(W(A)) > m)
ENF)

() PA\(F)

C(), APy {d(W(A) > m},

IV
s

Py{d(W(0)) = m} _

[
e

\Y
O

{

where C(A, A) = Py(F) > 0 because A is a bounded region. Thus we
have the inequality - | .

PA{d(W(A)) > m} < K(/\,A)PA{ d(W(0)) 2 m} - {2.9)

for any bounded region A containing the origin and a positive constant
K (A, A). Similar calculations can be done for the vacant clusters to

yield - _
PLawe(a) 2 m} < K0, AR{dW(0) 2m}  (26)

where W*(A) is the vacant cluster of the set A.

2.4 Disjoint occurrence of events

In this section we define the disjoint occurrence of two increasing events
and prove an important proposition about increasing events. In the
- discrete case, in the definition of disjoint occurrence of events A and
B we required that the set of all open vertices, that is used for the

occurrence of event A, must be disjoint from the set of open vertices |
- required for the occurrence of event B. In the continuum case, we want
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the set of Poisson points that is used by one eirent A to be disjoint from
the set of Poisson points that is used by the event B. More precisely,

Definition 2.1 Let A and B be two increasing events, The disjoint
occurrence AOB of the events A and B is defined as follows :

AOB = {w = (wy,wy) : there exist disjoint subsets H, (w)

and Hy(w;) of wy such that
(a) (W', wy) € A for all (W' w2) 2 (Hl(w),wg)

and (b) (W' ,wg) E B for all (W'’ ,wg) > (Hg(td),wﬂ)}

Now we define a class of events for which we shall prove the BK
inequality. |

Definition 2.2 An increasing event A in the Poisson system (X,A, p)
where p satisfies the condition (1.6) in Chapler 1, is said to be finitely
approzimable if for each n 2 1, there exists random variables p,, taking

only finitely many values and increasing events A, in the Poisson sys-
tem (X, A, pn) such that p, > p and A C A, and Py ,)(A) = lim,_ o
.P(%PHJ(A ) : .

As an example of a finite appmmm&b]e event let A, B and K be
: bounded regions with A, B C K. Define the event E;{(A B) by

{A~Bin K} o
{there exist a € A, b E B and a continuous curve
-~ Sﬂﬁh- 5_}1.....3..-5...,?‘ EnbEqand 7:5 Kncy  (27)

1

-EK(A,B)_

H

where (' is the nccupled region, W_e want to show that the event
ER’(A B]r is ﬁnll'.ely a,pprmuma,ble To ‘do this we sha.ll define a se-
______quence ol ra.ndnm va.rlables wh:ch ta.ke nnly ﬁnltely many values i |

:mablﬁ
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Proof: Let I be the distribution funtionof p. For: = 1,2,..., 2" ~1,
where R 1s as in (1.6), define random variables U,, and V,, as follows:

: 7 1+ 1
Un — "%’;T]‘ If’i‘: <J0-— 21‘1 y
C .l t+ 1
Vn = on lfgl’.; < p 2‘.-‘1
Clearly, for every z > 0,
? 4 1 | ?
P(l. = = T e
. ( 4] 2“ ) P(Vn 21,1) |
| 2 41 )
= PU, ="V =
( AL 2“)
_t4 1, Z
—~ F{—
= P (sa,y),

Un is the “upper” approximation of p while V,, is the “lower” ap-
proximation of p. Thus, for each n > 1, we have two Poisson Boolean
model, (X, A\, U,) and (X, A, V). We construct them on the same prob-
ability space (£, F, P). Then, for any increasing event £, it is easily
seen that whenever the event occurs with radius random variable p, i
will continue to occur with radius random variable U,. This motivates
the definition of the approximation events. |

For any point w = (w;,wy) € ) and every fixed n > 1, we define,

for all z € IR?,

) Lot
wy(z) = £ty 1f§;<w2($)f{ on

' w2ﬂ($)= E% | 1f§;<w2($)£

- This way for every w we define w® = (w;,w}) where wj is defined by
- wl = {wi(z) : z € R?} and w, = (w;,ws,) where wp, is defined by
wy, = {wa,(z) : z € IR?}. Note these two mappings will define two
Poisson Boolean models, namely (X, A,U,) and (X, A, V,). So define
now, - S

BR(A,B) = {A~ Bin K in the model (X, U,)}
weQ:iw"cAd~ B in i}

il
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Similarly, we define the corresponding event for the other percolation
model, i.e., |

(A, B) {A~ Bin K in the model (X, M V)}

{we:iw, € A~ Bin K}.

Clearly, from the very construction of the events, we have for all n 2> 1
FE(A,BYC AC Ex(A,B).

Hence, we obtain P(AV ](FE-(A, B)) < P(A,p)(E;{(A, B)) < P(A,VHJ(E}"{. -
(A, B)) for all n > 1.

‘Note that I/, > Upyr and ¥, < Viyq, forall n , > 1. Hence by the

- previous argument, we have Py, Uﬂ)(EK(A B)) > Puu,...)(Ex (A, B))

and Py v\ (FR(4,B)) < P, Vn+1)( +1(A, B)) for all n. So, this mono-
tonicity implies that,

_ JLH{}QP(A Vn)(FK(A B)) < P(}; (Ex(A,B))
' < lim Pou.)(Eg(A, B)).  (2.8)

 We shall prové that the limits in the equation (2.8) are actually
equal to Py ,)(Ex (A, B)). Consider the difference Py u,)(ER (A, B)) —
Pov) (FR(A, B)) and note that this is the probability of the event that

. theevent A~+ Bin K occurs in the Poisson Boolean model (X, A UL),

but the event does not occur in the Poisson Boolean model (X, /\ Vi)
Using the notation N(K), as defined in Section 1.2 of Chapter 1, the
number of Pmsson pmnts in the set K, we have

P{ER (A B))) PFg(A, B))

= P{A_«&_ B in K with radius random variable Uy, but A is
noli conne‘cted' to B in K with radius random variable Vn} |

Z P{N(K) == m}P{A occurs “in K with radius random

m’—{l

va.rla,b]e U but A does not occur in h wnth radlus

mndom vanablﬁ Vi | N(f{) } -
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= > GXI}(:???(K))(AE(!&’))'“P{A ~ B in K with

m=—u .
radius random variable {/,, but A is not connected to

B in K with radius random variable V, | N(K) = m}.

Given that there are m Poisson points in J(, the positions &,..., %m
of these points are uniformly distributed in K. Hence we must have
a pair of points in the set K such that the points are connected with

radius U, but not with V,,. Thus we have,

P{A ~ B in K with radius random variable U/,, but A

1s not connected to B in [ with radius random

variable V, | N(K) = m}

IA

P{there exist at least two Poisson points zi,z;, 1 <1,

1 <min K such .that QVH < d(z;, z5) S ?'U“ | N(K): m}

™m | - {
( ) /;{. / P{QVH <Z.d(3:1,$2) _S QUH}(E(K))m"dm]__' ..._dmm

( )/ﬂ fﬂglp{; <dfﬂ1,£g)_<_2(121_1)}

IA

I

§=0

d - dZ o,

T o _
R2z"-1
( ) / _/ Z 1-{12-(n-—1]<d(r1 ﬂ:z){(t-{-j[]? {n—l}}

| 1 =0
% - doe oo
<@ -
m\ R g
—_ (2) E (f I{ /-/1{12 (“"'“-c:'_d('_r‘:] Ig]{(t-{-l]?“(”'_”}dm}dm?
m"-1 |
T
- - - deqd
(2) ; (¢ 11’) f f{mz=2-<“-ﬂ<:d(=u,m:)<(n+1)2-<"-1)} L
1 -

1/

MS

( )(e(ﬁ))g Rlzi;lpl/ (( (2—: 1)) | (;2;) )d:t:



24 | CHAPTER 2. THE BK INEQUALITY

Aoy
————

(2)ay & - G

|

(5 )iy o = v

Here and in the subsequent inequality cq4, k4, K4 are positive constants
dependmg only on d Thus, - |

P(Ex(A, B)) - P(E}(A, BY)

< 3 22D ey ) gt B - Vi)

UK
)

E(;.,ﬂ}(U Vd)

(l

Now, | Un(w) — Vo (w) [< a,nd | Up(w} + Y, (w) I€ 2(R + 1) for all
. wE L Hence by Lebesgue s dominated ‘convergence theorem,

E(Utf Vd)——}(]a,sn——}m

This completes the prmf Gf the lemma. | |
[t should be noted here that this choice of pg is not universal. Con-

sider the Poisson system (X, A, p) where p 1s the random variable which
- has- the followmg distribution function:. |

0' 1f:c<1

Plz)y=¢ £ ifl1<2<2
1 ﬁm>2 |

Consider the event A that the unit box has at least k points which have
- radii > 1. It is clear that if we take the above approximation, then

Ak
(k? (-

Hence tlnf; choice of U, will not wark HOWPVBI a ch{ferent choice can
he taken. DEﬁHﬁ the ra.ndﬂm va.rmblr* O by, |

Pouay(A) = P, (A) 2 > exp(=A) 2 (1~ 97%) > 0,

fn = 1+E-,; if e <p<::nl- fori=1,..,2"
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Ilasy calculations will now prove that the event A is finitely approx-
imable. |

suppose that w € AQB for some w = (w(,w;) € £, then we must
have disjoint subsets ffy(wq) and H(wy) of wy (remember that w; is
set of points) such that (Hy(w),w;) € A and (Hy(w;),ws) € B. Since
ACA, and BC B, (H{w),ws) € A, and (Ho(w)),ws) € B,. Thus
w € A08, for every n. So, we have AQB C A,08,. Hence, il we
have a BK inequality for the events A, which come from Poisson system
where the radius takes finitely many values, we can get BK inequality
for the events A and B as follows:

P(,\_p)(A B)) P()LP)(hmIan n5,)

n-—oQ

liminf Py »(A,0B,)

n—aoa

q.ll'IllIlfP(;\ ) AH)P{A,;J)(BHJ

. R

Pon)(A)Pia ) (B),

So now, we shall be concerned with Buolea,n model where p assumes
- only finitely many V&Iues

IA A

VA

1

2.5 Lattice approximable events

We describe now a lattice percolation model which we use in the next
section to prove the continuum BK inequality. Consider a continuum
percolation model with the radius random variable p taking only finitely |
many values, ry,72,...,rs with probabilities py, ps,. .., ps respectively.
As we have noted in the first chapter, a continuum percolation
model (X, ), p) where p is as above can be constructed by superposing
k independent continuum percolation models each with a degenerate
radius random variable. We take independent continuum percolation
models ( X;, Ap;, p;} where p; = r; a.s. fori =1,2,. ..,k and then super-
pose them to obtain the model (X, A, p). The idea is to take k different
lattices, connected in a suitable way so that on the ith lattice we can
approximate the uth continuum model for ¢ = 1,2,... k.
Consider k copies of IR, say (G, G, .., Gy, Let H“" UL, G2, On
G¢ we place a Poisson point process X; W1th intensity Ap; and Gentre
at each Poisson point of Gf,.a, d-dimensional sphere of radius r; for
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; = 1,2,...,k So instead of looking at them together, we are viewing

tl}em as k dlffereni; slices of JR".
" For each m > 1, let Gf(m),i=1,2...,k, bek copies of the lattice

(5w Z)4. The ith la.ttlce G¢(m) should be thought of as the lattice

corresponding to the space G’d for each 1 = 1,2,..., k. Let
k |
H,, = J Gi(m)
i==1

~ and for a = (a1,as,.. L ag) € G?(m), consider the box

.{I i, , .I .
'Bm(a):l—[<a’5 gm+1° %9 T G |

i=1

o B’ (a) will be called the cell containing the vertex a € Gf(m). Clearly

= UL, Usect(m) B: (a). On the vertex set of H3 we define the -
adj

% ;ad]a.cency relation 2 between vertices s, and sy as follows:

a) 'for 81,8 € Gi(m), s; S8, o if d(B:;t(.sl),Bf;l(sg)) < 2r, for i =
1,2,...,k,

ady

b) for $ e Gd( ), 82 € G’d(m) for 1 <4, <k w1th ) 753,31 —
sp it d(B: (s1), B! (32 ) <ri+75,

' Here d(A, B) := inf{d(a,b) : a € A,b € B} for A, B bouhded sets in

| "SO,' '.

R, Note tllat in deﬁnlng d(B: (s1), B! (s2)) as in (b) we view both

Bl .(s;) and BJ,(s;) as bounded subsets of R?. With this adjacency

re]atlon we turn the set H? into a la.t.tlce iL,, |
On H¢ we construct an mdependent 31te percolatlon model, given
by the fﬁllawmg occupancy rule;

_for any 1 = 1, 2, o k a vertex s € G¥(m) is occupied
‘il and only if there is at least one Poisson point
from the process (X;, Ap;, p;) inside the cell B; (s).

" P( a vertex s is occupied ) =1 — exp(—Ap:l(Bi,(s)) if s € G¥(m)
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where £(-) is the Lebesgue measure on R4,

For each ¢ > 1 and for each Poisson point z € G¢ from the prmr:*sa
(X, )\p”p,) there is a unique ceil 3¢ (a) of the ]attwe G4(m) in which
the Poisson point z lies. Deline a mapping 7} on the sel ﬂf Lthe Poisson
points by ! () = a. This is 2 many to one mapping, as all Poisson
points inside the cube B! (a) will correspond to the same point

So given a realization w, the mappings an,'f‘fﬁu ., will define
all the sites which are open in the lattice H¢. Denol,e the set of all
such sites of the lattice HY which are open by Il,,(w). Since If;(w)
is a collection of sites of the lattice HY, ®(IT,(w)) € {0,1}" where

Y = UL,G%m) and where ® is as defined in Section 2.2, Clearly, if
| V
w < W' then I, (w) C I, (w') and hence ®(I1, (w)) < (I, (w}).

This way we construct a site percolation model on the lattice H2.
Now we define a class of events, which we call the fattice approz-

imable events.

Definition 2.3 An increasing event A is called lattice approzimable if
there exist increasing events Ay, in the lattice L, for every m > 1,
such that whenever w € A,w € A, and limy, oo P(An) = P(A).

- We have not been able to give any general description of the events
that are lattice approximable. This will depend on the specific prob-
lems. But before we go about proving the theorem, we give an example
of a lattice approximable event. This example will be used lafer to
obtain results about the size of the occupied cluster.

We show that the events Ex(A, B) are lattice a,ppromma,ble where
A, B and K are as earlier. For ease of notation, we take the case where
p assumes only two values ry and r; with pmbabllltles p and ¢. The
space corresponding to radius r, is denoted by R, and correspondlng |
lattice by R while the space coiresponding to the radius r; is denoted
by G4 and the corresponding latiice by G2 . |
FDI'AEZ_Kandr>U let

__{:,_;Effgd d(t a)<rforsomeaEA} (29)

| be the ‘r- -fattening’ of the reglon A. Let C denote the class of a,Il Borel, -

setsACIRd such that | S . |
eoA"y =0, (2*10)
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for all 7 > 0, where 9A" is the boundary of A" and ¢ the Lebesgue
neasure on IRY. Clearly spheres, hall-planes, cubes and boxes are in

" this class C.

- Observe that if there is an occupied H

Proposition 2.1 In a Poisson system (X, A, p) where p assumes lwo
values with probabilities p and q respectively, the event Ex (A, B) where

K is a bounded set in R® and A, B C K and A B K E C is lattice

approzimable.

Proof : Let A, B and K € C. We approximate Ex (A, B) in the lattice
L, = RS UGY,. For aregion AC R*,let AC H* be defined by

| ﬁ:{r.e R‘f:rgA}u'{geGd :,,gEA},

j.e., A is the union of the space corresponding to A in the space R
“and the space corresponging to A in the space G¢. Given two points

a,b € JR? we say that there is an occupied H? path between a and b
inside K if there exist occupied vertices sy,82,...,8, € K such that

Csi€ HYE and s; % sip, foralli=1,2,...,n - 1, (2.11)

| .. T lf 81 € Rd :
disi,e) < { ro  if 8y € G, (2.12)
and
| | T-; if Sn E Rd
g {C _ i ‘
| .d(gmb)_._' { re il 5, € G, (2:13) |

:fl path between a and 6 then for

every k > n there is an occupied HY path between « and b. We also

note that if there is an occupied H?% path between a and b which ‘goes

d

. through’ the oceupied HE vertices sy, 84,..., 8, {asin (2.11), (2.12) and
(2.13)) it does nol necessarily imply that ¢ ~ bin the original Boolean
- model (X,p,A). Indeed it is possible that s and ¢ are two adjacent

el

~occupied vertices in 7, but no Poisson point in the cell containing s

is: connected to any Poisson point in Lhe cell containing ¢. However,



2.5. LATTICE APPROXIMABLE EVENTS 29

if @ ~ b in the original Boolean model, there must be a sequence of

Poisson points z;,,..., z;, for some n = n{w) such that
S(xz;, )N S(xi,,,) # 8 for all j=1,...n—1, (2.14)
a E.S(ﬂ:,:l) and b € S(x;, ). (2.15)

Thus if s;,...,5, are the vertices of H? corresponding to the cells
containing z;,, ..., r;, respectively, ie., (7} = s; fory = 1,2,...,m,
with ) S |
| | 5 € < R if S(zi;) has radius r,
TS GEif S(a:,i) has radius r,,

then sy, ..., s, satisfy '2 11}, (2. 12) and (2. 13) i.e., there is an occupied
~ H¢ path between a and b. .
For a bounded region K define

- EPR(A,B) = {thereis an occupied H? path between
@ and b for some a € A,b€ Bin K},

The preceding discussion makes it is clear that if w € Ex(A, B), then
‘w€ EBR(A,B) for allm > 1,i.e., w € 51 EF(A, B). This proves our
first condition of the lattice approximable events.

Now, we want to show that lim,_,., P(EZ(A, B)) = P(Ex(A, B)).
From our observation immediately after (2.13), |

Thus | |
| (E}{(A B)) < mh_g;ﬂ P(Eg(A, B). | (2..17)_

We now show that P(ER(A, B)) —+ P(Ex(A,B)) as m — co.

o this end we observe that if there is an occupied H? path between
a and b and no occupied path in the Boolean model between a and b,

then there must exist two cells in H? corresponding to two occupied

~ vertices s and ¢t such that s 24, and no Poisson point in the cell

- contamning s is connected to any Poisson point in the cell containing
t. However, the distance between the Poisson points in these cells can
differ from the distance between the two vertices s and { by at most =
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2v/d/2™. Thus if, for every m 2 n, there is an occupied HE path

" between a and b and no occupied path in the Boolean model between

< g and b, then there must be two Poisson points in the Boolean model

" which are separated from each other by a distance equalling exactly the

W
nigka |

sum of the radii of the balls assocmted with these pmnts

Now let

Ny = { tht-:re are an infinite number of Poisson points in K},

Ny = {there is either a Poisson point at a distance exactly r1 from
 9A in R? or a Poisson point at a distance exactly re from 0A in

G"},

N = {there is either a Poisson point at a distance exactly ry from

B in R or a Poisson point at a distance exactly r2 from 05 in

G},

| N4:: {there EXiSt two PQiSSGn pDthS inXK guch that |

() both these points are in R* and they are at a distance exactly
27 from ea.ch other

(11) both these points are 111 G4 and they are . at a dlsta,nce exactly
21y from each other |

(iii) one of_these points is in R*, the other is in G¢ and they are
~ata distance exactly ry + ry from each other}.

Clearly P(NV}) = P(Nz} = P(N;) = P(Nq) = 0 and, for N := Ny U

Ny U N3 U Ny, P(N) = 0. Here we have used that A, B € C and hence

satisfy (2.10).
The preceding discussion shows that if w ¢ N U EK(A B) then
w ¢ ER(A, B) for all m Sufﬁmently large Slnce E""(A B) D Fr(A, B)

'__._ﬁwe have from (2.17),

P(BK(A B)) — P(EK(A B)) asm — co. (2..18)

| ?Thus the proposwlom is prﬂved R n

-~ Note the particular choice.of the Iattlce is Hﬂt mandatory. One may

=":-':r”.%§r:nme up with a different choice for a different problem.. In Chapter
- 8, for the the: Random Cannectlon Model a mmlla,r choice. of a lattice
. _:-appmxlmal;lﬂn wnll be u.sed ety |
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2.6 BK inequality

In this section we develop a correlation inequality which 1s, in spirit,
the same as the BK inequality for discrete percolation in Section 2.2.
Unlike in the discrete case, the inequality we obtain is more restricted
and holds only for a special class of increasing events.

We first concentrate on a continuum percolation model where the
radius random variable p assumes only finitely many values. We shall
prove the inequality for two events which are lattice approximable.

Proposition 2.2 In a Poisson Boolean model (X, A, p) where p as-
sumes only finitely many values, for any two lattice approzimable in-
creasing events A and B which depend only on a bounded subsel K of

IR?, we have

Pos(ADB) < Pup(APup(B).  (219)

Proof: The proof is rather simple. First we note that, if w = (wy,wy) €
ADOB, then there exist two disjoint sets H(w,) and Hy(w) such that
w' = (Hy(wy),ws) € A and 0" = (Hy(w),wy) € B. By definition of
 the lattice approximable events we have increasing sets A, B, n the
lattice IL,,, for every m > 1, such that o' € A, and w”" € By,. Since
the mapping I, is a many to one mapping, we may have II,{w’) N
I, (w") # 0. But if we choose m large so that the Poisson points belong
- to different cells, then for each Poisson point we can associate an unique
site in the lattice IL,,. So, for m > M(w), the sets I1,,(w') and II,, (w")
are disjoint. Hence by the definition of disjoint occurrence of events, we
have, w € A,0B,,, for all m > M(w), ie, w € liminfy00 AnOFn,.
In other words, AGB C liminf,, . AnB 8. Also, note that K is a
bounded region, hence the events A,, and B,, depend only on the states
of finitely many sites of the lattice IL,,,. |

Thus _'

P(A’p)(lim inf A, B..)

m—+G3

Yiminf Py (AnOBnm)

M=+ 00

]im iﬂf P(A,p)(Am)P{A,p}(Bm) | __

=+ 00

_P(AijI(A).P(A'ﬁ)(B),. o

" Pp,)(A0B))

A IAIA

&l
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‘where the second inequality follows from Fatou’s lemma, the third in-
equality follows from the BK inequality Theorem 2.1 and the last equal-
ity follows _from the fact that both A and B are lattice approximable.

N
Now we define a class of events, c&ll&d approximable events, for

which we prove the BK inequality.

~ Definition 2.4 In a Poisson Boolean model (X, A, p) where p satis-
fies the condition (1.6), en increasing event A is called an approzx-
imable event if for each n > 1, there exists random variables p, taking
finitely meany values and increasing events A, in the Poisson Pois-
son Boolean model (X, p,) bduch that p, > p and A C A, and
P p(A) = limy 0 Py ) (An) and for each n the events A, are lattice
approa:zmablﬂ | '-

The BK inequality can now be stated a,i:ld proved for the Poisson
Boolean model (X, A, p) where p satisfies the condition (1.6) in Chapter

Theorem 2.3 BK Inequality /n a Poisson Boolean model (X, A,p)
- where p satisfies the boundedness condition (1.6) of Chapter I, for any
lwo increasing approxzmable events A and B we have |

P (ADB) < Pan(4 )P, p)(B) (2 20)

- Proof of BK Inequallty The proof fol[ows from the deﬁmtmn of the
approximable events, Proposition 2.2 a.nd Lemma 2.2, | B

2.7 - AppliCaticin of BKTineqiiality '

As an example of the appllcatlnn of the BK mequa.hty, we establish
‘the continuum version of a result well-known in the discrete lattice
‘models (see, e.g., Kesten [1982], Menshikov [1986]). We use this result
in the next chapter. We obtain that if the expected size of the occupied
componenl containing the origin, W(0), is finite, then the probability
that W(0) extends a distance at least m away from the origin decays
(xpanentlally in m.- To this end we first introduce some notation. For

Cany. rt*gmn AC R ifL d(/l) = *iup{ff(:ﬂ y) 2,y € A} and let Lm(U)
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denote the event Ey, ({0},0B,) = {0 ~ 8B, in Bm} as defined in
(2.7) and B,, = [—m, m]% . |

Theorem 2.4 Consider a Poisson Boolean model (X, p,A) where p
satisfies (1.6). There exist constants Cy,Cy > 0 and M > 1, depending
on A and the dimension d, such that if E{d(W(0)) < oo, then

P(A ) (Em(0))) < Ciexp(—Cym)
forallm=>M
Proof: Consider the lattice
g = (2RZ)* = {(2Rzq,2Rz,,...,2Rz4) : ; € 2},
where R is as in (1.6) of Chapter 1. Let the cell§ _éf Ly be

d | S

Bé&(z) = T[] (2Rz; —~ R,2Rz; + R),
for all z = (2Rz;,2R«xs,...,2Rz,) € Lr. We partition JR* with such
cubes. Since E(d(W(0))) < co we can choose M, large so that F(
#Wir, (0)) < 271.37%, where #W)y, (0) is the number of cubes Bj(«), z
€ ILg such that B&(z)NW(0) # @ and BE lies outside the box (—2RM;,

2RM1]d. For any r — (2R$1,2R.T2, 2R$d) E —E’Ra define I( ) e be o

the set {y = (2Rwy,...,2Ryq) € Ly ] yi — z; |< 1, for all 1 < 1< d
and z # y}. For any k > Mi + 2 define

L};(.‘Iﬁ) = {y = (QRyl,ZRyg, . ,2Ryd) - ER : _k S y, '"it,: S_ k,
1=1,2,...,d and at lea,st one y; is such that | y; — z; |= k}.

Li(z) is the set of vertmes whlch lie on the perlmeter of the box of size

2Rk around z.
Now fix any M > M1 + 2, For &ny m > Mlet

Em(m) -. {B (m)m} aB IHB } _
= Ep,(BR(x),0Bn) _

Observe that any. path from B%(0) to OBy must ha.ve two disjoint
-segments; one connecting B%(0) to some cell on the boundary of the

rl"l
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box [-2RM,2RM]? and the other connecting that cell on the bnundary
to dB,,. We have, from this observa,tl{}n, |

P(?\ ﬂ}(E (0))
= P(A,p){BR( )“*-'} BBm in 5 }
< P(,;,p]{there are two disjoint connections in B,,,one

connects B%(0) to Uyer(z) Be(y), for some

T € Lp(0), ‘and the other connecting Bg(z) to 8Bm}

IN

| P@'} o) (U._.,,E;M(g) {ﬁhere are two disjﬁin.t connections
“in B, one connecting B%(0) to Uyef(m)'Bf{(y)}
‘and the other cnnnectmg BR(::;) to 8B })

FA

Z }’-"3‘(;h { there are _twc: d1330111t connections
~ z€Lp{0) |

~ in By, one cunuectmg BR(U) to Uyer(z) BR(y)
and the other connectmg BR(m) to 0B }

The BK inequality. ylelds

Fap) (B (0)) | : - -
< T FoolEen (B0, Ui BHONO Es, (B4(2), 0B,

~ z€Lpm(0)
< 2. Pon (B (BR(0), yEI(I}BR(y) P(Eﬂm(sz(m) 0B,,))
- z€Lpm(9) |
S pex Foun(En(e ))ﬁ%@ F(A,;)(Eam(Bi(O) yEI(m)BR(J)))
= il e (e g:( Fo(Userie) (B (BR(0 (0), BA(1)
| . . - TELp (0 | - |
S o Posy(Enlz) Y D P(A,p)(EBm(B (0), BL())
- , IELM(U)HEHT) - .
3 o - |
S 3 max P(np;(E () )2 P(Eﬂm(:BR(O):Bfa(y-)))_

::ELM(D)
| | . B yELJ'l_ 1£’M-—-|(0) :
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< 3% max 1 p}(Em(r)) Z F(A,pjuﬂh'[Bg{m): B?ﬂfﬂ)))

zelpap (O
} YEUTZ ary Li(0)

39 max Pono) (Ln(z)) By, oy (# Wh-1{0))

:I:‘Ebm(ﬂ}

I '
< Py (En(z)). . 2.21
S g omax P (En(2) (2.21)

|

Now to estimate Py ,(5(x)) we observe that if m > 2M then, for
a fixed z, a path from & to 8.8, must intersect the boundary of the box
Lag(z) centred at z. Since the Poisson Boolean model is stationary, we

have from (2.21),

Poapy (Em(z)) <

This argument can be repeated to yield -

P(E,{(0)) <2"Lm/MJ max ... max P(Em(l’-[m/Mj));

21 €L (0) M ELM(E m a1
where [a| denotes largest integer smaller than a. Thus we obtain,
Ponoy(Em(0)) < 9~bm/M]

This completes the pmof of the theorem. | n
~ As a corollary we get the following result. |

Corollary 2.1 Suppose Ey 5[d(W(0))] < co. Then there exists posi-
tive constants Cz,Cy and M > 1 such that

P(A,p)(d(W(U))Em)S Cyexp(~Cam)  (222)

" Proof of the corollary : We note that {d(W((})) >m} C Fl;"ﬁ;J(U)!
hence from the previous theorem, our result follows. o =
As anather apphca,tlon of the BK mequahty we Dbt&lll

Theorem 2.5 In a Poisson Boolean model (X, p,A) with p baundfzd as
i (1.6) it is the case that {A>0: E[( (W(0))] < oo} is an open

mierval.
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" REMARK: Theorem 2.5 is a version of Corollary 5.1 of Kesten [1982]
obtained for discrete site percolation. | | |
Proof:: We prove this for the 2-dimensional case. Ior higher dimen-
sions the proof is similar.

~ Suppose the conclision of the theorem is false. Then Theorem 2.4

yields m
PouslBa(0)) < 277,

where Em(O).is as in Theorem 2.4 and m > M. Consider the rectangle
S, = [0,2RN] x [0,6RN]. Let Ay = {(0,2Bn) : 0 = n < N}, and
Br(z) = =z + [~ R, R]*. Then |

J((ﬁRN,?RN},l,)\c) |
= P(Ac_p){there exists a L-R crossing of {0, 6RN} x [0, ZRN]}

< P U {Bator~ (16RM) x 0,200}

TEAN T

< . )3 P(Ag,p){BR(x) ~ ({GRN.} X 10, QRN])}

TEAN

| 5 E P(,\mp){BR(:B)M5([-—2RN,2RN]2)} |
- zE€AN | - | R
< Z 9—IN/M]
| TEAN
= (N4 1) VM

Nowas N — m,a((ﬁRN,?RN); 1,Ac) — 0. So, choose N large
~ enough such that o{(6 RN,2RN),1,).) < &/2, where &k is as in the -
Lemma 2.1 of Section 2.3. - | o
. Inthe proof of the Proposition 2.1, we have seen that P,  Ex (A, B)
" is a decreasing limit of upper semi continuous functions of A, hence itself
. aupper semi continuous function. Now we note that Py ) Ex(A, B) is
" %an increasing function of A. Hence it a right continuous function of A.

“ So choose, A > A, such that | - |
o((6RN,2RN),1,)) < o((6RN,2RN), 1, Ac) + -g- <K
. So by Lemma 2.1, we gel, . . | o |

.
-

P{.ﬁ.p)(d(w(jﬂ)) > b) < Crexp(—Chb) o
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which implies, for some A > A, By »{d{W(0))) < oo, contradicling
Theorem 1.1 of Chapter 1. | "

2.8 Hartigan Conjecture

In a study of single linkage clusters Hartigan proposed a model which
consists of n d-dimensional cubes each of which have sides of length
(c/n)"? placed according to a uniform distribution in a d-dimensional
unit cube. He posed some problems about the connectivity of these
 cubes and its asymptotics in n. In this study, we place n spheres. of
radius (a/n)'/?, instead of n cubes, in the unit cube.

All our results in this section and the subsequent sections are vahd
only for 2-dimensions. Penrose [1992] has studied this model for higher

dlmensions.

- The Haftigan model and the statement of results :

For simplicity of notation, we describe the 2-dimensional model
higher dimensional analogue can be easily understood from this de—
scription. Let z be a random vector on some probability space (2, A,
P) such that P(z € A) = £{A) for any Borel A C [0,1] % [0,1], where

£(-) denotes the Lebesgue measure in the two dimensional Euclidean

space,

Let 21,24, -+ be a sequence of 1.i.d. copies of the random vector z.
The n—th stage (n > 1) of the Hartigan model consists of the points
Zn = (€1,22, ++, ) in {0,1] X {0,1] and at each point zi,1 <& < m

we centre a disc Sy (z;), of radius y/a/n, where o > 0 is some quantity
which will be used to parametrize the model. Thus, for any sample
- point w € {1, the n-th stage Hartigan mc:del (n > 1) consists of discs

each of radius /a/n centred at the n points z;(w), za(w),+, zp(w).
Note the (n + 1)-th stage of the Hartigan model has the extra point
zn41(w) along with the points z; {w), - - -, z, (w) of the n-th stage model,

- but the discs centred at these points each have radius \/cr/(n. +1).

" The occupied region can be defined as earlier, i.e., the n-th-stage
occupied region C,, is Gy = UL, Sn(x;). The complement of the set
Cy in'[0,1] x [0,1] is defined as the n-th stage vacant region, denoted
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by V..

Definition 2.5 An n-th stage L-R (respectively T-B) occupied crossing
of [0, 1] x {0,1] 45 a continuous curve ¥ in [0,1] x [0,1] such that

(i)y € C, and (ii) yn{0}x[0,1] # B,yN{1}x[0,1] # @ (respectively
yN[0,1] x {0} #0,yn{0,1] x {1} #0.)

Let L, = {there exists an n-th stage L-R occupied crossing of {0, 1] X
[0,1]} and A = limsup,_, Ly. Define | |

= inf{er: P(4) > 0}  (2.23)

The questions asked by Hartigan are
1) For a < ¢, is it true that the maximum diameter of clusters

“approaches zero asymptotically ?

2) For a > a,, is it true that the maximum diameter of all clusters
except the “big" cluster, appro&ches zero asymptotically 7 Does the
distance of any point in the cube from the “big’ cluster a,pproa.ﬂhes
Z€ero as n-— co?. |
 3) Asymptotically, is the “blg" &Jccupled cluster ccnnected 7

~ Before we interpret these questlons fnrmally, we mtroduce SOme
more natat:ons ' '

Definition 2.6 An n- th smge L-R (rﬂspectz'uelJ T—-B) vacant Crossing
~ of[0,1] x[0,1] in a continuous curve ¥ such that

(i) v € Vo and (i) y0{0} x [0, 1] # 8,yn{1} x[0, 1] 75@ (rﬂspectwely
AN0,1]x {0} # 8,7 N[0, 1] x {}%9) ' -

- Let L = {there exists an n-th stage L R vacant crossmg of o, 1]
- [U l]} and A = llmsup L. Deﬁne __ | o

a, "*SUp{a* F )>U} I (224)

- Note that in Q-thmensmns using the rotation invariance of ‘the
coimodel P(Ly)+ PL )- : ['hus if for some a > 0, P(A) = 0 then

G’E'S a: Lo | : (225)
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Now, we consider the cluster of all points in [0,1] x [0,1] which arc
~connected to the left edge of the box and as well as the right edge of
the box. IFormally speaking,

R, = {:1: € [0,1] x [0,1] : there exist two conlinuous curves «j,

and yg in {0, 1] % [0, 1], not necessarily disjoint such that
1) x €y, and vy, N {0} x [0,1]# B and v, € C,

it) £ €y and yp N {1} x [0,1} # ® and and vg € C’,,_}.

and

R* = {:1: € [0,1] x [0,1]: there exist two .cr:)nti_nuous curves vy

and ~% in [0,1] x [0,1] not necessarily disjoint such that
1) z €4 and vy N {0} x [0,1] # 0 and ~; € V,

1) £ € vp and 7 N {1} x [0,1] £ @ and and v} € Un}.

Thus R, is the set of all points which are connected to both the left
and the right edges of the box. We show that in two dimensions, -

Theorem 2.6

o

o, = " (2.26)
and | |

Theorem 2.7 (i) For a > «,

=00

P( lim {supd(z,R,) :x € [U,l].x [0,1]} = 0) =1;
(ii) for a < a, H -
'P(Tgi‘ngq{supd(:g,ﬁ;) 2 e[0,1] % [0,1]} = 0) =1
. Let 7. be the total number of connect_ed.i cor-ﬁponen_ts. of R, and
dy, = sup{d(z,y) : z,y € C and C a connected component of [0,1] x

[0,1]) \R,.} where the supremum is taken over all connected components

C of [0, 1] X [0, IJ\RH
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Note d,, measures the size of the largest connected component out-
side R, and so the size of the largest occupied cluster outmde R, can
be at most d,. Similarly we define 5, and d |

Theorem 2.8 [fa> ac

P[hmqn—l and tim d, -——0] =1

L b OO0 100
and if a < o,

Py [llmqn-land hmd*—-[)]—-l

n-—00 00

These theorems along with some corollaries will answer the questions
asked by Hartxgan |

2. 9 The modlﬁed Hartlgan model

In this section we mtraduce a slightly modified model, called the mod-
ified Hartigan model and prove the theorems for the modified Hartigan
model. Later we connect the Hartigan model and the modified model
and show that Theorems 2.6, 2.7 and 2.8 follow from the results of the

modified Hartigan model.

Let N, Nz,... be a sequence of 11.d. Poisson random variables
‘with E(Ny)=10n (,A,7P). Let Yo, = Ny + Ny + . ..+ N,,: the n—th
stage (n > 1) of the modified Hartigan model consmts of the points

ety

=, = (z1,%2, -, 2y, ) in [0,1]'x [0,1] and at each point zi, | <3 <Y,
we centre a disc of radius .\/cm where o > 0 is as in the Hartigan
model. In other words, here at the n-th stage we are considering a
Poisson process of intensity n, and the (n+ 1)—th stage is obtained by
~ superposing the realisation of a Poisson point process of unit mtensrtv
“on an existing realisation of a Posson point process of intensity n.

Note the same notation =, has been used in the definition of the

" . Hartigan model in Section 2.8. We do this intentionally so as to define

L VAL AT crc,crc,"ﬁ’,i,ﬁ‘ and 0, dn,nn, d7 for our modified Hartigan
'mdel exactly as we had defined in Section 2.8 for the Ha,ntuga,n mndti
f‘ar this model we show | -
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Theorem 2.9 -_ |
=a) = A (1) | - (2.27)

where /\ (1) is the cmzcalzty for ('ontmuum percolation model where Lhe
associaled discs are of radius 1.

This theorem yields the following corollary which can be proved easily.

Corollary 2.2 For o > o, P(liminf, L,) = | and for o < a,
P{liminf, ... L) = 1.

Theorem 2.10 (a) If & > «, then
P[hm sup d(x,R,) = 0] =1
LT refoa)x (0] | -
and (b) if o < a, then
P[lim sup  d(z, R)) = 0] = ].
M0 zg[0,1]%[0,1)

Theorem 2.11 ff a > o, then

—+ 50 n—O0

P[ﬂllm M = 1 and lim d, -O} -—1
and if o < o, then

P[hm qn-—-l and lim d"‘—-[]] 1.

n—+00 n—co It

We first prove a lemma which is used to prove these theorems. Fix
~any 6 > 0. Consider the rectangle R = [0,46] x [0, 1]. Let

A.(8) = {there exists a L-R occupied crossing of the rectangle R
at the n-th stage} ' |
{there exists a L-R vacant crossing of the rectangle R

Az(8)
o at the n-th stage}.
Note A, (4) (respectwely A*(ﬁ)) is the event that there is a.occupied |

(respectively vacant) crossing in the langer dlI‘ECtlDIl ra.ther than in the
shorter direction. |
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Lemma 2.3 {a) For o < A, there exist constants C1,Cz > 0 and
My > 1| such that if n > M,

( 2(6)) < Gl [m exp( —026\/‘

and (b) for « > A, there exist canstants 03,04 > 0 and M, > 1such
thﬂt Ifﬂ. > Mg

P(AZ(5)) < Cs [\ﬂ exp(~Cad/). -

Proof : (a,) From the scaling property of the Pmsscm point process (see
Chapter 1, Section 1,3) we know that the cluster shapes in the Poisson
Boolean model (X, A, p) have the same distribution as that of a Poisson

Boolean model (8.X, 872\, B~2p) except for a change in the length scale
as 3 varies over (0,00). Here we take the radius random variable p = 1
.5, So, if we make a. transforma.tlﬂn

3311372 \/ fﬁh\/ $2

we get a Pmsson point process of intensity « and a,mund ea,ch Poisson
point we have a disc of radius 1. Thus we get,

=a(5\/ﬁ—‘\/§w)-
= (6faf )

Let, K, {(0 k) 0<k<t\/E/EJ+1} and for(DE)EK let
B(k) ( 1/2, 1/2])((_-—1/2 k+l/2] Forcrci)l we have

\/-?1_/-&6\/—/—{11& e
R @” {wa(wmxmm})
s i

k=D '
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y/n/al4t
) P(d(W(B(k)))?_ﬁ/*Z n./af) .
k=0

| [ﬂ .Hft:r]-I*'l ;
< ) Crexp(—Ch6y/n)

k=0

< ¢ [\/;] exp(~Ca8y/i)

where the fﬂurth mequa,llty is obtained by an applacatlon of the FKG
inequality (see (2.5)) and Theorem 2.1 of Section 2.7.
To show (b) we first note from Lemma 2.1 of Section 2.3 aund (1.12}

and Themfem 1.3"‘?’-Qf Chapter 1 that for a > A,

(A

P(d(W*(0)) > b) < C5 exp(~Cib) - (2.28)

for b>0.
Now replacing “occupied” by “vacant” in the proof of part (a) ancl
using (2.6), we obtain (b). »

REMARK: In higher dimensions we get (i) for o < A, there exist con-
stants ¢, Cy > 0 and M1 > 1 such that if n > M1 | |

PUAL(®)) < G [\f2] exp(-Casv

and (i) for a > A} there e}ﬂst constants C‘;;,C‘., > 0 and Mg > 1 such
th&t lf 1 :3" Mg |

(A*(a))<cg[ﬂ exp(—Ca/7) |

where A,(6) (A%(6)) is the event that there is an occupied (vacant)
crossing in the cube [0,1] x {0,1]... x [0,1] X [0, §] along the shortest
direction at the n-th stage and /\“‘ is the critical intensity corresponding
~ to crossing probabilities (see (2.5) in Chapter 1).

Proof of Theorem 2.9: By (2.25) we have o, < «}. To complete
- the theorem we prove o < A (1) £ «a,, where A:(1) is as defined_criti--
cal intensity for the continuum percolation model with radius random
variable taking value 1 a.s., More precisely, we show F(A) = 0 for
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a < A(1) and P(A%) = 0 for a > A(1). From part a) of Lemma (2.3)
with § = 1, we have for a < A1),

P{L,) < C [\/] EXP( —Cyv/n).

VAN

A
3
g

0o [a(41)?) o = o
H-exp(m(:'g\/ﬁ) -
oo [a(i41)7]

iP(Ln) CIZ:\/:] exp(—Cav/n)
DIND
1=0 n=foi?)+1
C,y > lexp(— —Cy/el)
fﬂn__[ﬂﬁHl " |

AN

< G }: [(2a] + & + 1) exp(—Cy/axl)
| -0 . | | |
- and hence P(A) = 0 by Borel Cantelli lemma.,

To show P(A*) =0 for a > A (1) we apply Lemma 2. 3(b). N
REMARK: In higher dimensions (d > 3), we get

A.r:(l) S. ttr:: < ﬁ': < /\:(1) .

Proof of Theorem 2.10: (a) Fix m > 1 and divide the unit square

inte m rectangles each with length 1 and breadth 1/m. The idea is to

place an occupied crossing along the length in each of this squares.
Let B, = {there is a L-R occupied crossing in the k-th rectangle }

- for £ =1,2,...,m. Note by translation and rotation invariance of the
model, P(B,g) P(B)=1~- P(A*(l/m))
- tlence,

._ ﬂBﬂ

"o

B .__-2 HPtBL
. ( —-P(A*( /m))

P( sup - d(z,R,)<1/m)

zef0l]xfo,1}

'w

TH,

H
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where the second inequality is obtained by using the FKG ineguality.
‘Hence, |

P sup d(z,R) 2 1/m) <1~ (1= P(4;1/m))

x€[0,1)x{0,1]

For ¢ > Ac(1), we obtain from Lemma 2.3 with § = L, 50, P(A7(--))

< oo and hence, 3272, 1 — (1 — P(A; ()™ < o0. SD by Borel-Cantell;
lemma the result follows.

(b) follows similarly. l
REMARK: In higher dimensions (d > 3), we get (a) if o > A}

Pllim sup d(e,Ra)=0] =1

T peln,1)%[0,1)

and (b) if a < A (1)

| P[Iim sup  d(z, R ):.-—o] = 1.
0 2ef0,1)x[0,1)
Proof of Theorem 2.11: (a) The idea of the proof of this theorem
is similar to that of the proof of Theorem 2.10. Here we consider the
rectangles [0,1] x (¢/m, (¢ + 1)/m] and (j/m,(j + 1)/m] x [0,1] for
all 1 < < m,]1 <7 < m. As before we place occupied crossings
in the longer direction of each of these rectangles. Then, using the
FKG inequality and the invariance of the mﬂdel under translatlon and

rotation we obtain, |
| | N\ 2m
P(ra=1and d, < (2v2)/m) 2 (1= P(Az(1/m))

“Again using the Borel- C.a,ntel_ﬁ'lemma, we conclude the result,
(b) follows similarly.
REMARK: In higher dimensions (d > 3), we ha.ve,'

P[hmq =1 and lim d, -—0]—*11"(:11'1::::»)\

n— 0o 00

PLlnn 7. = 1 and lim d;, = 0]: 1 for a < Ag(1).

[Raga g0 8 : ﬂ-—*ﬂﬂ
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Now, we connect the Hartigan model with the modified Hartigan
model we have defined and show that all the results which are true for
the modified Harigan model can be lifted to the Ha,rtlga,n model, We

start with the proof of Theorem 2. 6. |
Proof of Theorem 2.6 We simply note that if the event L, occurs in
the Hartigan model and Y;, > n then the event L, occurs in the modified

Hartigan model. So using the independence of Y, and z;,z > 1, we
obtain,

P(L,, occurs in Hartigan model } |
< P(L, occurs in the modified Hartigan model )/ P(Y, > n).

Now using the fact that P(Y; > n) 2 1 — (1) (Johnson and Kotz
[1969]) where |

1 |
exp(—z*/2)dz

(1) = :/'12'—;[@

| P(L occurs in the Hartigan model ) - |
< P(L occurs in the modlﬁed Hartigan m{:)clel)/ (1 —®(1)).

. Hence we get ac(Ha.rtlgan) < ac(modlﬁed Ha.rtlga,n) where the notation

1S self-exPlalla.tory
For the converse we note I;hat

' P(L; occurs in Hartigan model ) | |
< P(L; occurs in the modified Hartigan model )/ P(Yn < n).

_N.ow using P(Y, <n)>1/2 (Johnson and Ko_tz.[l._969]),- we ob.ta,in,

- P(L} occurs in the H;Lrtigan mode! )
< 2P(L; ocCurs in the modified Hartigan 'mnd'el'),l

and this proves the theorem. - - . | . -
~ This technique of connecting the Hartzgan and the modified Harti-
gan mﬂdel can be used to obtain all the remamlng theorems



Chapter 3

The Covered Volume
Fractlon

3.1 Introduction

In the literature on confinuum percolation, two related parameters have
been studied. The first is the covered volume fraction (CVF ) which has
been studied primarily by physicists (Scher and Zallen {1970], Pike and
Seager [1974], Gawlinski and Redner [1983], Phani and Dhar [1984]),
while the other is the intensity of the underlying point process, studied
primarily by mathematicians (Hall {1985,1986], Menshikov (1986}, Roy
(1990]). The results obtained in the first set of work is limited in that
the results are primarily based on Monte Carlo simulations, while the
latter set of work is limited in that the results primarily pertain to
the existence of the percolating regime in a setting where the balls are
random but of a given fixed distribution. In this chapter we settle a
~ question.raised in. the first set of work regarding the universality of

“the critical CVF by methods established in the second set of work.
secondly, we obtain a continuity result concerning the critical CVF
when the radii converge weakly, Finally, we prove that, the percolation
- function as defined by (1.1) in Chapter 1, is a continuous function
except perhaps at the critical point. This has been used to ebtain
a stronger result of continuity. We show that when the radii converge
weakly the percolation functions converge except perhaps at the critical

47



48 CHAPTER 3. THE COVERED VOLUME FRACTION

point,

3.-2 Covered Volume Fraction

In a realisation of the model let xy,...,z, be all the points in the unit
box [0,1]¢ and ry,...,r, the associated radii of these balls at these
points. Consider the quantity 3, i<, ma1¢, where 7y denotes the d-
dimensional volume of a ball of unit radius. This corresponds to the
~ sum of the volumes of each of the balls centred in the box [0,1]¢. It
can be easily seen that the expected sum of the volumes of each of
the balls centred in the unit box [0, 1] is /\mE‘(A p)p This quantity is
called the volume density of (X, A, p). By the invariance properties of
the model it is obvious that the volume density is unaffected, if instead
of [0, 1}*, we chose a different unit box in JR?. The CVF is the quantity
- Ap(A) = 1 — exp(—Amg £y g)0° 1), which corresponds to the expected
._ volume in a unit box covered by balls (see Hall [1988] page 128). A
- simple argument using ergodic theorem yields that if B, = [—n,n]¢,
then 1m0 WE(B N C) exists and equals to Ay{)), where £(A)

denotes the d- dimensional volume of a region A C /RY. Note here
that as a function of A, A,(A) is a continuous non-decrea,smg function.
. Moreover a simple calculatmn (see Hall [1985]) shows that |

o P(.\_'ﬂ)(o 15 covered by a ba,ll) =1 - e_xp(*AﬂdE(ﬁfﬂ)p ')_’

thus,

CVF of (X,A,p) = Py, p,(u is coveled by a ball).  (3.)

‘Note that if the radius random’ variable’ pis such that Eanp® = oo
| -t.llen for every A > 0, the CVF e-qual% I. To rule out such instances
and to be able to apply the known mathematical results of this model
_We restrict ourselves to the case where g hcm bDunded sup])ort l.e., p

......

i
mt:af’m (‘ondltlon (1.6) i in ¢ [].:Lpl,u [

& Jeariy, for a fixed p, muplmg methods, a& prlame{l m Segtton 1.3
ﬂf ( ]lﬂ])ll‘l‘ l Wl” ;tllow us t,ﬂ bllUW t.lm!, lf /\1 < }hg tlmn |

. (;}, F,)(W( ) s unhmlmlml) < lm p)(W(O) 1s unhoumlecl) .

fa . _ N ; gf‘”. A R
- where Hf"(O) 8 le uccupu - rlushe': uf LIIE’ Gl‘lgllh
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The cmttcal volume density and the critical CVF are defined as
Acm‘ﬁgE(A 20" and A.(p) :=1 ~ exp(- Acma iy ) p°) respectively.
It is obvious that if p; and pg are such that p; =7 and py = 1, for

some fixed reals 0 < ry < ry < 00, then

Ac(r1) 1= Ac(p2) Z__Ac(ﬂl) =1 A(73). . (3.2)

Now if we have a Boolean model (X, A, py) and we effect a change-of
scale 2 — (ry/r{)z, we obtain a Boolean model {(ra/r1) X, (r1/13)% A,
(r9/7r1)p1). This clea,rly tells us that (X, A, py) is equivalent in law to
((re/m0) X, (r1/r2)? A, pg). Thus, their critical intensities are related by
the obvious relation (see Zuev and Sidorenko {1985])

. Ao(ro)rf = Aolra)ry. (3.3)
Clea.ﬂy, (3.3) implies that

A} i= Adpn) = Adpn) =5 Adra) =i A, (). (34)

The equality in (3. 4) suggested the conjecture (Kersetz and Vicsek
[1982]) that, for all random variables p with bounded support, A{p)
Is a cons_ta.nt_mdependent; of p. Phani and Dhar [1984] gave a heuris-
t1¢c argument which showed that the conjecture is false, and supported
their argument with Monte Carlo simulations,

In this chapter, we prove the following: |

Theorem 8.1 There exists a random variable p taking values a and b
with probability p and 1 — p respectively, where a #b,a>0,0 > 0 and
0<p<13ﬁckthat N

Adp) > Aey (3.5)

where, as in (3.4), Ac denotes the critical CVF of a model with balls of
fized radius. |

Our second result is concerned with the continuity of A (pk) when
the sequence { pk} converges wea.kly

-Theﬂrem 3.2 Let p; and p be mndam uamables such that far SOme
R>0 wehaue(}<p<Rand0<pk < Ras. forallk> 1. prkr:#p_
| thﬂ"’ Ac(Pk) — A (P) where =’ denotes weak convergence. |
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In combination with Theorem 3.1, this result shows that fr.)r_a, whole
class of distributions of p, inequality (3.5) is valid. Also, it states that
simulation methods cannot distinguish between two models very ‘close’
to each other. In Section 3.3 we obtain further results on bounds on
the rate of convergence of the critical intensities. |

Finally, we use the uniqueness of the occupied unbounded cluster
- of the origin in the supercritical region to prove that the percolation
function is continuous except perhaps at the critical point. We show

Theorem 3.3 In « Pb_isson Boolean model (X, A, p), where p satisfies
"% condition (1.6) of Chapter 1, the percolation function is a continuous

function of A for all A # A(p).

Viewing the percolation function as a function of the radius random
variable for a fixed intensity, we have |

. Theorem 3.4 Let p; and p be random variables such that for some
S R>0Quwehwed <p< Rand0<py < Ras. forallk>1. If p = p

 then 8,,(X) = 0,(A) for all A # Ai(p).

. Our proof of Theorem 3.1 in Section 3.3 strongly suggests that when-
ever p is not a constant a.s., then A.(p) > A,. However, we do not have

a proof of this inequality, - o
Finally, denote the critical volume density of a model with fixed size
_balls by VD.. Our proof of Theorem 3.1 also shows that for any € > 0,
it is possible to construct a model such that the critical volume density
of this model is between 2VD, — ¢ and 2V D,. This justifies a claim

- made by Phani and Dhar [1984). - | |

33 Proof of Theorems 3.1 and 3.2

~vFor ease of description we present the proofs in the two-dimensional

- case; all our arguments, however, are valid for higher dimensions,

- Proof of Theorem 3.1 Let (X1, A1, m) and (X5, Mg, p2) be two in-
dependent Poisson Boolean models with their respective CVF’s being

- Ai(A1) and Aj()X;). The CVF of the process obtained by the super-

'_pt}sitiﬂﬂ'“o’f these two Poisson Boolean models is just AM + X)) =
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Ai(Ai) ~+ Ag(/\g) — A;(A])Ag(«\g). To ohserve th51 we 8¢ (3,]) and the
standard inclusion-exclusion formula.

Let 0 < ry € 7y < o0 be arbitrary positive numbers. Fix ¢, 4 > 0
such that

(2 = c—=8)Ac — (1 — &)(1 - 6)A% > A, (3.6)

where A. is given hy (3.4).

Now, as noted earlier, the CVI®is a continuous non-decreasing func-
tion of A, so we may choose A, < A(ry) and Ay < A () such that the
CVFs of the Poisson Boolean models (X, Ay, 7)) and (X}, Aa, 1p) are
equal to (1~ €)A, and (1 — 6)A, respectively, where A (ry) and A.(r)
are as defined in (3.2).. By our choice of Ay and A2, (X4, A;,p1) and
(X3, Ag, p2) are subcritical. We fiz this choice of Ay and Ay throughoul
this proof. o

Next we consider the superposition of the processes. We note that
the CVF of this superposition is given by the left hand side of the
expression {3.6) and hence is strictly larger than A.. We intend to
show that the superposed process is in its subcritical regime. Since the
CVF A,()) is a non-decreasing function of A, we can thereby conclude
that the CVF of the superposed model is strictly larger than A..

First note that scaling does not change the CVF. Consider the pro-
cess (X1, A1,71) and scale it by a factor & < 1 to obtain a process which
is equivalent in law to (aX;, @~ %Ay, ary). In other words, if a realisation
of (Xy, A1,71) are the points {z;, z3,...} with associated balls of radius
r1,T2,..., respectively then the realisation of the scaled model consists
- of the points {az,, az,,...} with associated balls of radius ary, ary, ...
respectively. (Note that in this way, we couple all processes together
for & < 1.} The CVF, as it is the probability of the origin being covered

by at least one ball, remains the same, i.e.,

GVF of (X1, A1,r1) = CVF of (aXy, (@) Ayyar)  (37)

50 now our idea is to scale down one process, keeping the other fixed.
Superpose the scaled process (aXi,(a)2X, ar1) with (X,, Az, m2).
It follows from (3.6) and (3.7) that the CVF of the superposition of
(Xg, A2, 72) and (aXy, a™?Ay,ary ) is strictly larger than A, Our goal
now is to show that the superposed model is subcritical for o small
ennough, | o |
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For this we are going to employ Lemma 2.1 of Chapter 2, We note
from the definition in (1.5) in Chapter 1, that for A < As(p) = A (p).

lim sup a((n 3’”)1 [, A, p) = 0. o (3.8)

i R

Fix £ > 0 as in Lemma 2.1 of Cha.pter 2. 51nce Ay < A(ra), (3.8)
implies that for Ay < Ag(ra), we can find a number N so large that

1

((N 3N),],A2,?'2) < 3h, -

where ¢(N,3N), 1 Mg, 72) is the occupled crossing probabﬂlty as deﬁned
in (1.4) of Chapter 1 for the Poisson Boolean model (X3, Az, p2).

[f there is no occupied left-right (L-R) crossing of [0, N} x[0, 3], i.e.,
there is no occupied crossing in the first direction, then there must be
vacant top-bottom (T-B) crossing, i.e., a vacant, crossing in the second
direction. In other words, there is at least one component in ({0, N] x

= [0,3N])NV intersecting the top and bottom side of the rectangle, where
“-V is the uncovered region as introduced Chapter 1. We can order these
components from left to right, say, and the leftmost component is called
U. Only finitely many balls intersect. [0, N] x [0,3N] a.s. and hence
the boundary OU of I/ has only finitely many components a.s. Hence,
for n large enough, the event E, := {U exists and all components of
U N (0, N) x (0.3N) are at a distance at least n=! from each other}
has probability at least | — ;5. We fix ng such that
PralBr) > =s (39)
- Next:we turn again to (Xy, A, r). Since X, < A (r1), it follows
from (2.4) of Section 2.7 in Chapter 2, and an application of the FKG-
~inequality that for B, = [~1, 1]?, for all b > 0 a,ncl pmltwe constants

i -

-l Gy and (O m{lvpmclvnt of b;

“1 T]](d“V(B[) > b) < C' —bq

where W;(H;) is th mrn;nul rlmivr 0[ tlu box ) in tllf‘ model
Y ‘\’1,,\“1. (Ht‘{ (2. r) -:Jf Stctlun 2 3 i (;lld])til 2) . Scaling down by a
.:::f_f:u bor cx <0 I ylt ltla . o | .

[[n Jl"q r”l}(d“/V”(b, )J >n'b) S.(;‘H'ﬂff}‘ib’ .- | .. .
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where B, = [—a, al]* and W,(B,) is the occupied cluster of the box
B, in the model (aXj,(a) 2\ ,ar;) . Taking @ = m™" for some large
integer m, and b= (2ang)™" (with ng as in (3.9)), we obtain

~-Cym

P(mgkl,mﬁl,l,(d(wm_l (B-i)) > (2nﬂ)—1) <G, (3.10)

Now we combine the conclusions obtained in (3.9) and (3.10). Di-
vide [0, N] x [0, 3N] into 3N?m? boxes with side length m~?, and denote
these boxes by BY, B?,..., B3N*™" Then, from (3.10), the probability
that in the model (m~1Xy,m?A;,m~1r;) the event

3N?m? -
Fii= | {d(Wy- (Bi.)) > (2n4)7 "}

=1

—~ g m , - |
occurs has probability at most 3N? 20’ e 2m0 , which tends to zem as

m — 0o, We now fix an mg such that this proba.blhty is at most 2. If
the event ., occurs in (X3, Ag,72) and the event Fi'° does not DCCHI"
in (m~1Xy,m2X, mg'ry), then it follows that there is no occupied L-R
crossing in [0, N] x [0,3/V] in the superposition of the two processes.
This superposition is in fact the model (X A + miAy, p), where pis a
ra,ndom variable ta.kmg values r; and mg'ry with probability Ay (miA,+
A2)"1 and miA(mEAL 4+ Ag)T respectively and X = X; U X,. Hence,
the probability of an occupled L-R crossing of {0, N]x{0, 3N] in (X, )\2+
mgA,p) is at most k + ik < &. By Lemma 2.1 of Chapter 2, thlS
1mphes |

.P(Az-f-mﬁzll,ﬁ){d(.w(o)) 2 {I} < C'se"" E“,

for all @ > 0 where W(0) is the occupied cluster of the origin 0 in
(X 4\2 -+ mﬁz\l,p) Hence E(}.z-i—mill,p) [d(W(O))] < o0. Thus the model

1s subcritical a.nd this pmves the theorem. n

Proof of Theorem 3.2: If pk = p, then the boundedness of the
radii implies that Ey ,,)0% — E(p)p% It is therefore enr.}ugh to prove

- that A.(pr) — Alp) when & — co.
Qur strategy will be to approximate the radii by radii whlch take

only finitely many values, Thus we first investigate the case in which
both pk and p take only ﬁmtely many values B
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Lemma 3.1 Let 0 < 7 <7 < +++ < 1y < 00 and letp and p' be
random variables taking values r; wzth prababzhty p; and pl respectively
- fort = 1,2,...,n. Suppose there exist 1 < 7 < 1 < n such that for

all 1 # j arl and i=1,...,n,p; = p} and p; and p; are both positive.
Then, ) |
e\ !
I\c - AC ! 5 — y T Ml
[Aele) = Al < Ses oy s Pj

Proof: Suppose first that p; > pl. We shall use a coupling argument
to prove that

W) 2 ) (31

To see this, consider n independent Poisson processes X1, Xo,..., X, of
intensities p1A, pad, ..., Pjc1 A PiA, Pig1 A, . s PnA respectively. At each
point of the process X; we centre a ball of radius r;. Now consider an-
* other independent Poisson process X' of intensity A(p; —p}). Note that
= if at each point of this process X' we centre a ball of radius r; then the
o superposition of the models (Xl,pl,\,ﬁ), (Xq, p2A,r2), 00y (Xj-1, 051
'\ Fj— I) (XJIPJA TJ) (XJ+1=pJ+1"\ T.?-I-l) (Xnapn’\ Tﬂ) and (X’ (pi
—p};)A, ;) is a Poisson Boolean model (X, A p) where X = UL X;UX".
If, instead, at the points of the process X’ we centre a ball of radius r
and then superpose all the models, we obtain a Poisson Boolean model
(X, A, p7). Since r; < ry, the occupied region in (X, A, p) will be con-
tained in the occupied region in (X, ), p'). Hence the existence of an
unbounded cluster in the model (X, A, p) will imply the existence of an
unbounded cluster in the model (X, A, p'). Thus we obtain the inequal-
ity (3.11). We have explained this in detail because we shall be using
this kind of coupling results vary often later w;thout going through the

~details of the proof.

Lt Now choose A > A (p ) First consider a Boolean model (X, A p)
"™ Klso consider the models (X;, M;,r; ) for:=1,....0-1,1+1,...,n,
where the I;’s are chosen such that | | | |

._':'Pi,?*:1,...;1-—1,1:-_{—11.__;11,. . (.3*12)

for L= Ay + i;__; 4 ZH.; + o4 1,. The qystem of linear equatmns
(3. 12) can be solved (‘:X[}lll’:ltly} to yield l, = (p1)"(pipt—pept) > 0. Next,
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consider the superposition of (X,z\,_p') and (Xp, Miyri), i=1,...,01—
I,{+1,...,n to obtain a model equivalent in law to (X, A(1 + L), p)
where X = X, U---U X UX U UX, uX. (To see that the
radius random variable in this superposition is p, just use (3.12).) Since
A > Apf), the model (X, A, p') is supercritical, the superposition is
certainly supercritical and hence

A1+ L) > Ap).
The above inequality holds for all A > A (p’), so we have
\(A)(1+L) > Adlp).

From (3.12) and some elementary calculations one shows that L =

(py~'(p; ~ P}) and the result follows, using that A (p) < Ac(ry). For
the case p; < p:, we just reverse the roles of pand p'. | [
REMARK: Note that this lemma says that the rate of growth of the

critical 1nten51tles 1s no more than linear.

Lemma 3.2 Let 0 < ry < <+ < 1y, and let p bc a random variable
taking values r; with pmbabdzty pi for i =1,2,...,n. Suppose p, > 0.
Forallk = 1,2,..., define the random varmb[es pi taking values r; with
probability py ;, for allr=1,...,n. If pp; — p; for all © when k — o0,
then Ac(pi) — Ae(p)- .

Proof: We have assumed that p, > 0 so we can pick 0 < § < p,. Take
ko so large that 370 |p: — pi| < 26 for all k > k. Then, of course,
we have ppn, > 36 forall k > &y, For I =1,...,n—1 and k > ko let

{,{:) be the random variable defined by .

| Pkis - for1=1,. ,I, |
P(E(” =7} =< P, for 1 = l—]— 1 -1,
O Eia](])i — Pk.i), for + = n. |

Clearly, {f:""l) has the same distribution as py and we define 6}:0)-'_:= p.
According to Lemma 3.1, for [ = 1,...,n — 1, we have |

AE”) = Al < 287 Al = Pl



56 CHAPTER 3. THE COVERED VOLUME FRACTION

Adding the previous inequalities over 1, and using the triangle inequal-
ity, we obtain |

n-1

Aelpr) = Aelp)] € 267" Xe(r1) D 1ot — pails

(=1

for all & > kp. This proves the lemma.
Next we drop the assumption that pn should be positive:

Lemma 3.3 Let p take values 0 < vy < -+ < 1 with probabilities
DL, ... Pn respectively. Suppose py takes values ry, ..., Tn With probabil-
iLies Priy: - s Phn: If pri = Pi fﬂ”-" alll <1 <n then ) (Pk) — A(p).

Proof:  In mew of Lemm_a 3.2, we n_e_ed to prove this lerrun_ a for the
~ case when there exists 1 <m < n --_1 such that

pm-}Oﬂ,-ﬂd Pm+1 = v T pn: 0 (3.13)

- First we show that it suffices to prove the lemma for the case
m = n — l Indeed, if the random variables ;. and i assume val-

Ues Tps. ., r, -with proba,blhtles DitsPh2y -+ -y Phay 0o s 03 200 0y P
and py. 12 Pki2s o+ o2 Pl E?_m-}-l Pki 0y, .., 0 fESPECtWElY: then We clearly
have = -

A(€R) < Aclpr) € X (6 )

~So it sufﬁces tct show tha.t A (pk) converges to A (p) when the py’s take
at most one value larger than r,, with positive pro,ba.bllity Thus we
~ henceforth assume that m =n — 1, i.e. p,1 > 0 and p, = 0.

 Next let p{ be a random variable taking values ry, . ..,r,,_ with
probabilities pi,p2,..., Pn-2,P% =11 Phin respectwely, whelo Py ey =
© Pret = P, . For & largc enough, since pﬂ_i >0 ancl Prn — 0 as. A — 00,
we have pi,_ 2 0. -

We shall now prove

A=A
From our choice u['.pk, we Ubaowo' that . Ae(p]

| k) < .-(p) S0 to prove
{3.14) we Ilﬁ‘d to show LhrLL Ilmmf;c._,m/\ (pk) 2 A |

(p)-
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Suppose there exists a A such that liminfi_. Ac(p}) < A < Afp).
Since A < A(p), for & as in Lemma 2.1 in Chapter 1, we can find an N

such that ,

o((N,3N),),0) < 55 (3.15)

Now we construct independent Poisson Boolean models (X, Ali;, i),
for:=1,2,...n—2,n, and another independent Poisson Boolean model
(X7, A, p) so as to yield the model (X, M1+ L), p) when all the models
are superposed, where X = X'UUL XU X, and Ly = li; + -+ +
lkn—2 + Ik n. For this, we choose ly1,..., {2, ln to salisfy

| I;':?: = D¢, fﬂrisl,.“,n—-?;,__ | (3.16)
1 jlk = Dpm. (3.17)

The system of linear equations (3.16) and ('3.1'6). can be solved explicitly
to yield

i

ot - S |
‘Tk,t‘ = (Pﬂ_l pk,n-—l) Di 2 0, for ¢ .=‘1,...-,ﬂ*-2,

pk,u—l_
and p
| ~1 ,
Zk‘ﬂ. - rn pk.ﬂ 2 0*
x,n—1

Clearly, for every ¢+ = 1,...,n ~ 2 and ¢ = n, l;; ~ 0 when & — o0.
Thus, we can choose k large enough such that forall i = 1,...,n — 2
- and 2= n, we have

Py, . (X; has at least one point in [~R,N + R] x [-R,3N + Rj)
< 3K, _ (3.18)

where « 18 as chosen before..

- The superposition of the Poisson Boolean models {X;, A, ;) for
alli = 1,,..,n—2,n and (X', ), p) is equivalent in law to the Pois-
son Boolean model (X, A1 + Lg), pt.). For k large enough, (3.15) and
(3.18) imply that o({N,3N),1, (1 + L), p) < &, and thus it follows
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from Lemma 2.1 of Chapter 2, that the superposed model is subcriti-
cal. However, by the choice of A, (X, A, p}.) is supercritical, hence so is
(X, M1+ Ly), pi.) which is the desired contradiction.

Finally, to complete the prc:-nf of the lemma, we construct § as in

the prevmus lemma, where 5;_. - ') has the same distribution as p; and

(ﬂ) = pL. This method shows that
IAc(Pk) ”\ (Pk)l < 2(3011--1)_1)‘ TI z ‘Pk,i Pil:
=1 .
and the lemma follows. | | | | .

‘Now are in a position to prove Theorem 3.2, First we suppose
that the supports of both p and pr, k = 1,2,... are concentrated in an
interval [a, K], where a > 0. The distribution function of p is denoted by
F, and the distribution function of p; by F;. We can assume that both

 aand R are continuity points of F'. Take a. sequence {m,} of partitions

- of [a, B], which we write as m, = {a =3 < <--- <4} = R}. The

~ partitions are chosen in such a way that 7,41 reﬂnes Tn, all points 4" are
continuity points of F' and such that |7, := max;¢icp, {¥* ~ 4%, } = 0
- when n — co. Now define, for all n > 1, the random variables (")
“and p(y) by the requirement that if p € (y7,,9F], then p(®) = A7
and p(n) = 7., . It follows from a simple coupling argument that
A (,a () < Afp) < < A (p(n)) < Ac(a). Also, it is easy to see tha,t Ac(p'™)
1S mcreasmg and A.(p(y)) 1 is decrea.smg in n. Now write

; | ‘ﬂ'
@, = max i <1+| a3
l{t(k 7-—-1 o a

‘which tends to 1 when n — oo. Hence p(“) < aﬂpm which implies that
_ )L (p(“)) > A (afnp(n)) = 2/\ (p(ﬂ_)) Hence

A (p‘“’) <A % ) < afX(p™),

We Can now write

(p)

1 A(p™)

ﬁn, (say) . | (319)
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The previous calculation can also be dene for pp instead of p and we
obtain, in the obvious notation

elpe) = Aelpl?) < B (3.20)

Now given any ¢ > 0, take n so large that B, < ¢. Observe that
p'®) takes the value 47 with probability F(*f}‘) — Fr(ym ) and o takes
the value 4 with probability #u(4") — I (" ). Hence by the choice
of the partifions, the fact that py = p a.nd Lemma 3.3, we see thal
(A (pt™) — A (p[") }| < € for & sufficiently large. Together with {3.19)
and (3.20} this proves the theorem in this case.

Next we drop the assumption that the supports are bounded from
below by some positive number., Let § > 0 be a continuity point of
F and let 7 > 0 be such that P, ,(p > d} > n. Since pr = p, we
have Py, (pr > 8) > 5 for £ sufficiently large. Certainly, if (X' 74, §)
8 supercrltlcal so is (X, A, px) and it follows that if 1;/\ > A.(6) then
A > Adpr), 0

Ac(ﬁﬁ:) S %Afl(é) . ‘ | - . (321)

Now let ¢ > 0 and choose a to be a continuity point of F' such that
F(a) < €, and choose kg so large that Fr(a) < e for all k£ > kg. Let p®
be a random variahle with distribution equal to the conditional distri-
bution of p, given that p > a. Similarly, let p, be a random variable
with distribution equal to the conditional distribution of p given p < a.
Then we have A(p®} < A(p). | |

Consider the model (X4, A, p*) and (Xg, A, pa), where [ is chosen
such that {(1 + )7! = Py ,(p < a). This means that

F(a) -
1 — F(a)

1= (3.22)

The superposition of the two models is equivalent in law to a process
| (X AL+ @}, p). Thus if A > A.(p*), then certainly this superposition
- 1s supercritical and hence )\(1 + ) > A (p) e A(p” )(1 + D> A(p)

. €

o) = Ao NSO S ), 029

]-—-.€_-
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where we have used (3.22). In the same way we find, In the obvious

notation and using (3.21),

Aelpk) = Al < T Melph) < sy Ael6) (3.24)

When p, = p, then pk = p® and from the case already proved we
- conclude that

M) - M <e (3.25)
for k Jarge enough. The result now follows by combining (3.23), (3.24)

and (3.25). - - : o

3.4 Convergence of pe'rcolation functi'on

* In this section we deal with the percola.tlon functions 6()). We prove
that the percolation function is a continuous function of A except at
the point A.(p). This is a version of the Theorem (6.35) of Grlmmett
(1988), page 117.
Proof of Thearem 3.3: Fi:rst. note that the f is a right-continuous
function. This proof is similar to that in the discrete case. The event
{d(W) = oo} is the decreasmg limit of the events £, = {0~ §(5,)}
where B, = [-n,n]*. By a lattice approximation as in Chapter 2, it
is easy to see that P(E,) is 2 decreasing limit of continuous functions
of A, hence it is an upper semi continuous function. Thus we obtain
that @ is a decreasing limit of upper semi continuous functions. So it is
also an upper semi continuous function. Since 8()) is a non-decreasing
function of A, it is right continuous. o

~ Now we prove the left continuity of (A}, If A < A (p) the function

S Qs identically zero, hence trivially left continuous. Fix Ag > A (p). We

“have to prove that 0(\¢) = limyy, 0(A).
Fix A € (Ad{p), do). By Kolmogorov's 0—1 law the Poisson Boolean
‘model (X, ), p) admits an unbounded occupied cluster with probability
1. Now we couple the two processes (X, ), p) and (Xo, Apyp) 1.c., we
_mnstruct (X4, p) from (Xg, Ag, p) by I:hmnmg the process as explamecl
- inSection 1.3:in Chapter 1. The uniqueness of the unbounded occupied
clu'eter (Thmrﬁm 1.2 of Chapter 1) ylel(lq that the lll]bf}UIl(IEd occupied
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cluster C of (X, A,p) is contamed in the unbounded occupied cluster

Cﬂ of (Xﬂ,:)i[] ﬂ)
We scale the model (X, A, p) suitably to yield a model of intensity
Ao, albeit with a different radius random vanable. Consider the scale

change:
)y 1/d
T (-—-—-) r = oz (say).
| Ao

If we apply this change of scale to the process (X, A, p) we ohtain a
Poisson Boolean model {(aX, Mo, ap). Tt is clear that whenever the pro-
cess (X, A, p) has an unbounded cluster the process (aX, Aq, ap) will
admit an unbounded cluster and vice versa. So we have

¥(a) 1= 0ap(do) = 0,(A). (3.26)

Thus the left contmu:ty of § at /\ﬂ IS equwa,lent to the left continuity of
¥ at 1. |

Suppose a realisation of the process { Xp, Ao, p} consists of the Pois-
‘son points {z;,2,..., } with associated radii ry,7,. .. respectively. To
get a realisation of the process (Xp, Ao, @p);0 < a < 1 we centre a
ball of radii ar; at the point z;, Thus we have constructed all the
Poisson Boolean models {(Xj, Ag, @p);0 < & < 1} with a fixed set of
Poisson points Xo = {z1,z2,...}. For the restiof the proof we fiz this
construction of the models.

By the construction of the Poisson process in Sectlon 1.2 of Chapter
" 1, we have only finitely many points inside every bounded set in [R%.
Hence the event {d(W(0)) = oo} occurs if and only if {#(W(0)) = oo},
where #(W(0)) denotes the number of Poisson points in the cluster

| W(O) Thus - . _ | |
\I-’(ﬂ') = 'ﬁlmnp)(#(m& .ﬂ'ﬂ)(o)) — m): | . (3'27)

- where Wi, 4,)(0) is the occupied cluster of the origin in the model
(X{'J: )‘01 C'JP) |
For 0 < a £ 1, denote the occupied cluster of origin in the model
(X0, Ao, ap) by Wy i.e., Wy = Wiy ap){0). Clearly we have Wy, ___C; W,
for 0 < < a2 < 1. Thus we are required to prove that

F o

( 4(W3) = oo, but #H Wa) < oo for all a < 1) =0.  (328)



62 CHAPTER 3. THE COVERED VOLUME FRACTION

Fix A1 > Ae(p) and let ag = (Ar/Ao)V/%. Let

Nr = {there are more than one unbounded cluster in the model

(XDV)‘HIP)}

N, = {there exist two Poisson points in the model (X, Ao, p) whose
associated balls just touch each other}.

Ns = {there is a Poisson point 2 in the model (Xo, Ao, p) with associ-
ated ball of radius r such that d(z,0) =r}. |

N.i = {the Pmsson Boolean model (Xo,)\u,agp) does not admit any
unbounded cluster).

Let N=NUNUNUN, We claim that
' P(N) =0. . o (3.29)
First we prove the theorem assummg the claim. - |
Let us denote by A the event {#(W;) = oo, but #( Wa) < o0
for all @ < 1}. Fix w € AN N° Since w € A #(Wl)(w)
- Thus, for the configuration w, there is an infinite sequence of Pmsson
- points ¥,¥,... with associated radii 75, 74,, . .. respectively such that
Sri(yi)NSy,,, (y541) #bfor y =1,2,..., where S, () is the ball of radius
r centred at the point 2. Since w € A f‘l N¢, we have #(W,,(w) < oo.
However the conﬁguratwn w admits an unbounded cluster Um.u (w) in the
model (Xg, Ao, @¥p), 50 we have Uy, (w}NW,, (w) = 0. The uniqueness of
the unbounded occupied cluster in the supercrltlcal regime (Theorem

1.2 in Section 1.2 of Chapter 1) yields that U,,(w) C Wl(w) Hence
there must exist Poisson points {¥ksYhas -} € {¥1,92,...} with asso-

- -ciated radii agry,, aory,, ... such that Snmn (yk ) N Sagry, 41 (yk’“) 70

But Uy, (w) N W (w) = @ implies that there must exist a point Y =
" y(w) S {"kys Ytgy- - .} such that for every sequence of Poisson points
Az  y Tiy = y} with a.ssocmted radii QOTiyy vy AT,y it must be that,
 either for same J = 1 ,n ~ 1 o .

- -d(iﬁ;&miﬁ:') > Qﬂ(rfj T r"ﬂ.‘ )

| d(mtﬂo);’ Kol
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But the point ¥ € {y,y2,-..} © Wi{w). Thus there must exist a
sequence of Poisson points {zg,, ..., %, = y} wilth associated radii
Ty .. T, tespectively such {hat

d(mkja-’ﬂk”.) < Ty, + ki forall y=1,...,m—1, (3.30)

and

d{xy,,0) £ 1y, (3.31)
Further w € N€ implies, from (3.30) and (3.31),

d(:r:kj,mkj.ﬂ] <7+, forall j=1,...,m—1 (3.32)

and

d(-’l:,t;,, U)_ < Tryr . ; (3,33)

So we may choose f = f(w) € (ap, 1) such that
dzi;, @y, ) S Bl + gy, ) forallj=1,...,m—1,  (3.34)

and : | - -
d(mh ) 0) < ﬂrkl ' | (335)

i.e., the point y is connected to the origin in the model {Xo, Ao, Ap).
Since B > ag, we have U, (w) C Uz(w) and hence y € Ug(w). Thus
Upo(w) € Wi(w) and unboundedness of U, (w) implies that # (Wp(w))
= oo contradicting the fact that W,(w) < oo for all « < 1. Thus
P(A) = (. |
Now we prove (3.29). By the uniqueness of the infinite cluster we
obtain, P(N;) = 0 and by the uniqueness of the unbounded cluster in
the supercritical regime we have P(Ny) = 0. - |
To show P(N,) = 0, it is enough to show that for every M >
1, P(NZ(M)) = 0 for Ny(M) = {there exist two Poisson points in
[—M, M]? in the model (X, Aﬂ, p) whose associated balls just touch
each other} So fix an M > 1. For every n > 1 define the events
D, = {there exists a pair of Poisson points x;, z; inside [—M, M
hawng balls of radius r; and r; respectively such that 0 < d :1:1,:::3) —
(i +7;5) < 27"} and E, = {there exists a pair of Poisson points z;,z;
inside [~ M, M]" having balls of radius r; and r; respectively such that
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0 < (ri+r)—d{zi,z;) < 27"}, Clearly, F5y = Dy U Ey decreases to

No(m). N::::w we show that Py, »(Dn) — 0 as n — o0 |
Let F be the distribution function of p. For n = 1,2,..., define

random variables U/,:

Up= — il — ;l, i=12... R —1

where R is as in (1.6}, Clearly, for every : 2> 0,

Pl = ) = FEEL) - U = pi ().

This will define a Poisson Boolean model ( Xy, Ag, Uy,). Define, D!, =
{there exists a pair of points (z;,z;) in the model (Xo,Ao,Us) with
associated radii U} and U} respectively inside [-M, M]* such that 0 <
(U} + UJ) d(:x:,,a:_,) < 327"}, Clealy, D C D!. Now, - |

= E Poro.Un) {N([ M, M] ) = m}P(,yn,.f;n){_there exists a pair of

m=0 |
Poisson points ;r.,a:_, In the model (X, Ao, U,), with associated

ra.dn U} and UJ respectwely inside [—M, M]¢ such that
0< (u’ +U) = d(@iyza) <327 | N([-M, M] ) = }
| E exp( —A (2M) )( of m’) ) P{ADU ){there exists a pair

m=()

lj

of Pmsson pomts :.:,, :::_, in thﬁ model (Xu,)m, U, ) w1th
associated radii U/} and U7 respectively inside [—M, M) such .

Ithdt 0 < (UI + UJ) — d(m”m") < 3 2"“ I N [ M A/fld) | }

. an gwf:n that Lhcre are m Pmsaon pomts in [-—M M]""E the pomtmn
nf these pomtq are umfﬂrm!y dtstrlbuted in [— M, M]d thua |

P(,\u u"]{therﬂ P)natb a palr 0!' Pmssnn pomta J,; J:'J in t,he.

nwdel (Xn,Ag,U") wnh dSS{}CmtEd I‘d.(lll Ut dnd UJ B
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respectively inside [—M, M]* such that 0 < (U} + U?)
d(zi,m;) < 327" | N([~M, MJ¥) = m}

m |
< / / PO < (U +UN —dlzy,24) <

—1 1 L
3 v 2 }((2M)d)ﬂ{dm] d:ﬂﬂl

Let Ef: . denote the set {(zy,z) : 0 < ((¢/2") + (5/27)) — d(z1, 22)
< 327"}, Then
P(AD,UHI{there exists a pair of Poisson points z;,2; in the

model (Xg, Mo, U,), with a,ssocia,t'ed_ radii U,i and U;‘
respectively, inside [—~M, M)? such that 0 < (U; + U?)

~d(zi,2;) <327 | N([-M, M]%) = m}

R2"—1 R2" -1

™ Pili . |
Ign dxy---dan
2)f[—MMI“' /[— M, M4 tZ; ;D ((2M)4)™ Bip @t o®

2" 1R2“ L pp |
L Ipn dﬂ: dre -
)'/MM]“/[ -M,M)? 0 _;r.-n ((QM) ) B2

AN

i
B N
0o 3

- R2" -1 R2"-1 DiDs
_ | L . dzodamy
Q)fl"m,w = E M o tmper 2%
m\ R2™~1 R2"~1 D P47 43 d
<% e & = mamme] (C) -
\2/ Ji-MM]¢ i3 j= ((2M1)%)? A
A
R2"~1 R2"~1
m PipP; [ {ﬁf“l)]
< d d:
— (Q)V/[ﬂ—M,M]‘*; z ((2M)d) R - 2y
{n)\ R2"-1R2"-1 pp
< i dﬁ(d—l]
_ ) S % T e ® -
- (2)0“'2'5 _ B T
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Here, and in the subsequent inequality, ¢4, Cy, K, are positive constants
depending only on d. Thus, we have

P(f\u.Un)(DI o
exp(=A(2M)°) dym Ca 3
< m;n m! ( ’\(QM) ) (2M)d 2n
o A22M) 3
= Ki~—F—.

Hence,
P(AQU,.)(D )—-i' 0 as n — 0.

It can similarly be shown that that Py y(F,) — 0 as n — oo, Thus
P(N;) = 0. Similar ca.[cul&twns can be done to show that P(N;) = 0.

This proves our claim. - | "

Proof of Theorem 3 4: We first note that if A < A(p), then for n
large A < A.(pn) by Theorem 3.2. So §,()) = 0, (A) = 0 for n large.

Thus we may consider A > A.(p).
As in the proof of Theorem 3.2, we shall approximate the radius

random variable by random variables which take only finitely many
values.. The approximation techniques used to prove this theorem are
similar to those used to prove Theorem 3.2. |

Lemma 3.4 Let 0 < r; < 1y < <+ < r, < 00 and lf:tp and p' be
random var'zab!es taking values r; wzth probability p; and p! respectively

for 1 = y 0. Suppose that there exist 1 < j7 < | <-n such that
pi = pf fﬂr aH i # 7,0 and where py and p| are both positive. Then,
- ,\' o
2 ) S0a(A) S0 ( (1+(p) ‘Ip; — Pi1))-

Proof: Suppose ﬁrst that p; > p. Sobya couplmg argument as before
we obtain

C0,(N) < 0(0) - - (3.37)

As in the proof of Lemma 3.1, we consider the models (X, Al;,r;), for

t=1,...,0=1,{+1,... n, where the {;'s are chosen as in (3 12) Next,

B conmder the superposrttlon of (X,A, ) and (X Xiyri), 1 = -
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[.{ 4+ 1,...n to obtain a model equivalent in law to (X, /\{1 L), p)

whe reL“lri- A+ g+l and X = XUX{U...UX;, U
X1 U... U X,. Hence by a coupling argument we ohtam
0,(M(1 4 L)) > 04(A) | (3.38)

Now L = (p)~'(p; — p}) and thus we have
09()&('1 + L)) 2 0,(A) 2 0,(A) 2 0,(A/(1 + L)),

where L' = (p})~'|p; — p’| and the last inequality follows by the non-
 decreasing nature of the percolation function, |

In case, p; < p}, we can repeat the whﬂle a.rgurnent starting with
~an intensity A’ = A/( + L'} with the roles of p and p' interchanged.

Lemma 3.5 Let 0 < vy < --- < 1r,, and let p be a random variable
taking values r; with probability p; fori =1,...,n. Suppose thatp, > 0.
Forallk =1,2,..., define the random variables py taking values r; with
probability pii, for all ¢ = 1,...,n. If pp; — pi as k — oo for all 1,
then 8, (A) — 6,()) as k — oo for all XA > A (p).

Proof: The proof of this lemma is again similar to that of Lemma 3.2.

We first choose 0 < § < p,, and take kq so large that S [pri—pil < 36,
for all k > ko. Then, of course, we have p;, > 6, for all & > ky. So,

by using Lenuna, 3.4, we obtain,

Aﬂj . 2|Pk1 P:|))_ P#(A)qg Aﬁ 2|Pk:§ P:‘l))‘
Thus,_ ) | -
16,(A) = B,(N)[ <
gp(,\ﬁ(l_}_glpkﬂ'& , ,\ﬂl_f(l 2,“’55"13;'))'(3'39)

Now, _by'co'ntinuity of GP(/\) for A > A(p) (Theorem 3.3), we have

' (AH(I | 2|Pkt

1....] -
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Lemma 3.6 Lel p take values 0 < 1 < 0 < T with probabililies
Diy. . Pn Tespectively. Suppose p takes values rq,...,rn with proba-
bilifics Prysss s Phm- I Dri — Pi a8k — 00 forall 1 < i < n then

Ae(pi) — Ac(p) as bk — oo,

Proof: We need to prove this lemma for the case when there exists
| < m < n-—1such that

Din > 0 and Pl =+ = p, = 0.

The same argument as in the proof of Lemma 3.3 will show that we
may assume that m = n — 1, L.e. ppy > 0 and p, =0 and that it 1s

sufficient to prove the lemma when pg; = p; for all ¢ = 1,2, . — 2 for
each k > 1. Also we may assume that py,, decreases to zero as. k — 00,

 Now, let By =[—M, M]d and 3(BM) be the boundary of the BM
Then for every k 2> 1, we have |

Po. o) (0~ (Bu)) | 9,%( ) as M — oo,
Similarly, ' S
- P(xﬂ)(ﬂma(BM))lﬂ ( ) as M..-—} 00,
Fu( an M > 1 We c]mm that | o

hm P“m((] ~ f)(BM)) = P(A p)(O ~ ()(BM)) . (3.40)

Clea.rly, fm each k> l we have
P[,x 20~ C’(BM)) > Pn oks1) (0“** 3(Bﬁr)) > Py, pJ(U ~ 3(BM))

Hence,

im Pf,x,;,k;(_ﬂwﬂ(ﬂm,))z.___Pu,p)(owJ(Bm) O (3.41)

Given € > 0 we choose k large such that 1 —exp(— /\(QM) Den) < e
Now we consider n independent [’m%uu pm-: esses N1, Xq,. .., X, with
intensitios /\p;,/\ph . Ap,,_.,z,,\pk i1y APk rf"leu Llw,ly At each p(Jlnl.'
of X;l <i<u-—~1, we centre a ball of radius.r;. For thf nth process
X, we make two cases: (’_) at each pmnt Qf fhe ptme% )\u we cenbre
a hall of lfuhna ' an (ll) al eacl ]miht of t.ll( process X, we C(‘l’]tl(‘.
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a ball of radius r,—;. In case (i) we obtain the Poisson Boolean model
(X, A, pr) where X = Ui Xy, while in case (i} we obtain the Poisson
Boo]ean model (X, A, pr.). Thus by this cauphng, we oblain,

Pirou) (0~ (Byr)) ~ Py (0~ 8 Big))

< P(X, has at least one point inside the box[—M, M]%)
I —exp(—A(2M)"pi. )
< E.

i

This proves (3.40).
| Now consider the double sequence { P, F,,k}((} ~+ 3(Bp))} in &k and
M. Also, note that the sequence is decreasing in both M and k. Hence

both the iterated limits exist and are equal. Hence,

lim 6, (A) = lim hm Piap) (0~ 0(Buy))

k—+00 S ko0 M—oo

= lim lim P, (0~ 0(By))
= 6, (3.42)

|
Now we are in a position to prove Theorem 3.4. First we assume

that

o there exists a > such tha,t a < p,pk <Rforallk>1 (3.43)

where R is as in (1. 6) of Chapter 1. Our strategy is to approximate
the random variables p and p, by random variables which take only
ﬁmtely many values. Let the distribution functions of p and px be
denoted by F and F} respectively. We can assume that both a and -
R are continuity points of F. Take a sequence {?rn} of partitions of
(@, R], which we write as 7, = {a = 7} < 1 - < e = R},
- We choose the partitions in such a way that m,41 is a refinement of
7. Also assume that all points 4* are mntmmty points of /' and
I, = ‘max;<ick, (1P — YL} — 0, as n'— oo. Now define, for all
‘n > 1, the random variables p{™ and P(n) by the requirement that

i p € (7}‘__1,7?], then o™ = 4* and ppn) ="yF,. It follows from a
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simple coupling argument that 8, (1) < 6,(}) < 8°™()). Now for
each k > 1, define the random variables pg () and p}:") as follows: if
pr € (YR, "), then py n) = 7L and p},,.") = 4P, Clearly, for each n 2 1

{n)
and k > 1, we have 0, (A) < 0,,(}) <67 7(A).
Now, given € > 0, choose

A > A > he > Ae(p)  (3.44)

such that
0p(M1) ~ 0,(As) < e (3.45)

For each n > 1, let .

n
| : T
oy = INAX % <1+ | nl:

1<i<ka YL a

which tends to 1 as n — oo, Hence p\™ < apnp(,). Now we start with
a model (X, Ag, piny), and by a change of scale we obtain the model
(0 X, (0tn) ™% A0y A () ). Since ot < Qnfin), We have for any Ap > 0

Dy (M) = Ornsgy ()" D0) = Oyem((@n)*ho).  (3.46)

Choose n large such that (o)A > A; and (@,)%A < A;. For this n
we have, 8, (A) —0,(A) < 9ﬂin]()\) — 8,(A). Now, by the choice of the

partitions and the fact that p, = p, we note that the random variables

| p}?l and p{® satisfy the conditions of the Lemma 3.6. Thus applying

the lemma, we obtain that there exists Ky such that for & > K
wpin;(A) - 0P(n;(,\)[ < €

Also, applying (3.46) with Ay = Aﬁ:g, we get

0 () A0
Gp(n}(z\) -
0,{)).

GP{")(}'&‘:)

IVl iV
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Thus, for & > K4,

0u (X))~ 0,(A) Dymy(A) + € — 0,(A)
Oy (@A) + € = 0,(0)
op(ﬁ’:i’\) +e—0,(A)
Op(A1)+ € — Op(A)

2€,

INCIA I A A

where the last inequality follows from (3.44) and (3.45).
Similarly, for fixed n choose K3 large so that, |0, (A)—08, (A} <e
for k :3_ ]{2

gﬂ()‘) o ﬂﬂk,[nj(’\)

Gﬂ(/\) - 0;1{71)()\) + ¢
0,(A) = 0 m(az?A) 4+ €
B,()) - ﬁp(ﬂ;d’\) + e
0,(A) = 6,(X2) + ¢

2¢,

0,(A) — 0,,(7)

IA A A A A IA

where the last inequality again follows from (3.44) and (3.45). This
proves the theorem for the case when (3.43) holds.

Now let p have support (0, R]. Here again, given ¢ > 0 choose
Az < A < A such that (3.45) holds. Let a be a continuity point
of F, the distribution function of p. Let p® be a random variable with
distribution equal to the conditional distribution of p, given that p > a.
Similarly, let p, be a random variable with distribution equal to the
conditional distribution of p given p < a. Then we have 8,(A} < 8,.(A).
Also define p{ as the random variable having the distribution function
equal to the conditional distribution of pg, given that pp > a and pp,
as the random variable having the distribution function equal to the
conditional distribution of gy, given that pr < @. Thus 8,,(A) < 8,a(A).

For any Ag > 0, consider the models (X, Ag, p°} and (Xq, Agl, po)
where [ is such that I(1 + )~ = F(a), i.e., |

(3.47)
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The superposition of these two models is equivalent to the model (X

X1 U Xy, Aol + 1), p). Thus, we obtain,
0,(Ao(l 4+ 1)) 2 0,a( o). (3.48)

Similar calculations may be carried out for pp with l = Fi(a)/(1 ~

Ii(a)) to yield |
| Op (Ao{1 + {k)) 2 O,e(Ao). (3.49)

Now, as a — 0, F(a) — 0. Thus we may choose a small enough
so that A(1 +{) < Ay and A/(1 +1) > A;. Now, for this a, we have
Fi(a) - F(a) as k — o0. Choose K3 large so that A(1 4 ;) < A; and
A1+ 1) > Ay for k2 K.

Now, the random variables p§ and p* are bounded below by a. Also,
pi = p° as pr = p and a is a continuity point of . Hence by the ﬁrst
part of the argument, we choose Ky large so that for all k > I,

10,2(0) — O,0(N)] < € (3.50)
and | | .
. ,9&{)&;) — (/\2), <€ (3;51)
Thus, we have from (3.45), (3. 51) and (3 49) with Mg = ,\/ + 1),
Bp(A) — 9;:,;(/\) < 0,(A) - (,\/(1 + )

< 8,(0) = Oya(ho)

S 0 (’\) 9;&“(’\2)

f:__ 0 ) gp(/\g) -+ €

< 2,

_ and using (3.45), {3.50) and (3.48) with Ay = A,

Op (A) = 0,(X) < 0,0(A) — 0,(N))
| < A)-—-op(,\)+f
< (z\(1+z)) 0,(\) + ¢
< O,(A ) 0,(A) + ¢
< e

"This proves the theorem. - »



Chapter 4

Rarefaction phenomenon

4.1 Introduction

In this chapter we study finite clusters in a high density Boolean model.
Alexander [1993] studied the geometric structures of the events Fy =
{#(W(0)) = k} in a high density Boolean model with fixed sized balls
where #(W(0)) denotes the number of Poisson points in the cluster
W (0) of the origin. Clearly, for any fixed k£ > I, Px\(#(W(0)) = k) is
very small for large A and Py(#(W(0)) = k) — 0 as A — co. Alexander
showed that as A — o0, it 1s most likely that such an event occurs when
all & Poisson points comprising the cluster W(0) are packed tightly
inside a small sphere of radius O(k/}) centred at the origin and there
1s an annular region surrounding the cluster which is free of any Poisson
‘points. This gives rise to the phenomenon of compression as the number
%k of Poisson points in this small sphere of radius O(k/A) is very large
compared to the expected number of points AO((k/A)¢) (as A — oo)
given by the ambient density A of the underlying Poisson process.

We consider a Boolean model (X, A, p) where X is a homogeneous
Poisson point process with intensity A and is ‘conditioned to have a
point at the origin’ and p assumes two values r; and r3 (r; > r3) with
probabilities p; and p; (p; + p2 = 1) respectively, Let Py , denote'the
probability measure of this process conditional to have a point at the
origin. We call the balls of radius ry as big balls and the balls of radius
2 as small balls. We consider the event £ = {W(0) consists of k, big

73
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balls and k, small balls}. Clearly, Py )(E) — 0 as A — oo wheneve.:r
either of %, or ky is non-zero. In this chapter, we study the geometric

structure of the event £, |

In the case when the origin is the centre of a big ball, a possible
structure of the event F, is that the centres of all big balls are com-
pressed in a small sphere centred at the origin and the small balls are
distributed uniformly inside the region formed by the big balls in such
a way that the small balls are totally contained inside the big ba,_lls.
This requires that an annular region of width ry surrounding the region
created by the big balls to be free of Poisson points which are centres
of big balls and another annular region of width r; surrounding the
region created by big balls to be free of Poisson points which are cen-
tres of small balls. It is clear that the volume of these two regions will
determine the probability of E. We show that the probability of the

structure described above will be much higher than the probability of

other possible structures as the given structure will minimise the vol-
ume of the two annular regions just described. Thus, it is most likely
that the event F occurs with such a geometric structure.

In the case when the origin is the centre of a small ball, the structure
of the event F will be very similar. The possible structure of the event

'E here, is that the centres of the big balls in W(0) are clustered in

a small sphere (which is not necessarily centred at the origin: in fact
the centre will be uniformly distributed inside a ball of radius (ry — )
around the origin) and all the small balls are distributed uniformly
inside the region formed by the big balls in such a way that the small
balls are totally contained inside the big balls. As before there will be
two annular regions one of which will contain no Poisson points which
are centres of big balls and the other will be free of Poisson points which

~ are centres of small balls. Once again, we show that the structure has

the maximum probability and hence, it is this structure we observe in
case the origin is the centre of a small ball. It is clear that this structure
is obtained from the previous case (when the origin is the centre of a
big ball) by just a change of the position of origin to' a random point
which is uniformly distributed inside the sphere of radius (r; — 7a),

It W(0) consists only of big balls or only of small balls, the scenario

._observed_ ts similar to the case_'when we have fixed sized balls, In these
bwo cases, it is most likely that the centres of the balls are tightly packed
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in a small sphere near the origin and two annular regions are creatod
one of which does not contain any Poisson points which are centres of
big balls and the other region is free of Poisson points which are centres
of small balls. |

In the case when the cluster W(0} admits at least one big ball, it is
most likely that the centres of the small balls are distributed uniformly
over a shpere of radius (r; —1ry). Typically such a region stiould contain
Amg(ry — rp ) Poisson points whereas the cluster W(0) consists of only
(&1 + &y) Poisson points. This gives rise to the rarefaction phenomenon
as the cluster containg too few points than the expected number of
points it should contain. This is the case in Theorems 4.1 to 4.4 below,

However, in the case when W(0) comprises only of small balls, the
volume of the annular regions described above is much smaller than the
volume of the corresponding regions in the cases when W{(0) admits at
least one big hall. Hence, the probability that W(0) comprises only
of small balls will dominate all other terms in P ) {#(W(0)}) = k}
and thus it is most likely that in a high density Boolean model a finite
cluster comprises only of small balls. This is the case in Theorem 4.5
helow, |

Our results hold for more general varying radius distribution; how-
ever for the sake of simplicity we restrict ourselves to the case when
there are only two distinct sizes of balls.

4.2 Statement of results

The driving process of the continuum percolation model we consider
1s a homogeneous Poisson point process with intensity A and ‘condi-
tioned to have a point at the origin’. The independence of the radius
random variable and the driving Poisson point process guarantees that
the process, consisting of points other than the origin which are centres
of big balls, is a homogeneous Poisson point process with intensity Ap;.
We denote this process by Y. Similarly, the point process consisting
of points other than the origin which are centres of small balls is a
homogeneous Poisson point process with intensity Ap,. We. denote this
process by Z. Moreover, Y and 7 are independent point processes.
Clearly, the union of the processes Y and Z comprise the original Pois-
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son process of intensity A without the point at the origin. "'hus, t(}- a,'rrive
al the continuum percolation model, we add one point at the origin to
the union of the processes ¥ and Z and place either a big ball or a
small ball at the origin, independently of the processes Y and Z, with
probabilities p; and p, respectively. Our model can be viewed as the

Y and Z and the point at the origin with a ball as described

union o
above. Henceforth we consider the processes Y and Z with the points

Y1,Y2,... of ¥ being centres of big balls and the points 21,2,,...-0f Z

being centres of small balls.
. Now we encounter two possibilities : a) the origin is the centre of a
big ball and b) the origin is the centre of a small ball. The conditional
probability measure given that the origin is the centre of a big ball is
denoted by Pg while the conditional probability measure given that
the origin is the centre of a small ball is denoted by Ps. The original
probability measure F(x,p) can be recovered from these two measures by

setting:

Piawy () = p1 () + paPs(+).

Now, we define two events E(ky, k) and E'(ky, k), as follows:
(1) given that the origin is the centre of a big ball, we define,

Lk, k) = {W(0) consists of (k; -+ 1) big balls
(including the origin) and &, small balls},

(n) given that the origin is the centre of a small ball, we define,

E'(ky, ko) = {W(0) consists of & big balls and
k2 + 1 small balls (including the origin} }.

Using a simple marked point process argument, we can derive a re-
. lation between Pg(E(k,, Ay )) and Ps(E'(k1,ky)). Wesay that a clusier
o s a findde (ky,ky)-cluster i it consists only of &, many Poisson points
which are centres of big balls and k2 many Poisson points which are
centres of small balls, | |

Let us fix A > 0 and &y > 1 and ky > 1. Let By = [—n,n]" and
:luﬁ_ne_ 1_\3!"(15)'&; be the number of Poisson points inside B,, each of
T.'t;lli[tjll s the centre of a big hall and is a constituent of a finite (&1, kg )-
cluster, *



4.2. STATEMENT OF RESULTS 77

We are going to calculate the expectation of M,(B) using marked
point process argument. Let M be the space of marks, which in our
case is just the set {0,1} as we shall see shortly. Let M; be the mark
at the point z;. Campbell’s theorem for marked point processes (see
Hall [1988), page 200) guarantees that if the marked point process
{ziy M;}i>1 is stationary then for any non-negative, measurable func-
tion f on IR* x M we have

{

E(S f(an M) = AB([ [(2,M)da)

I

A /Rk Ef(z, M)ds, (4.1)

where M 1s a random mark-having the so-called “mark distribution”.
In our context, to apply Campbell’s theorem we take the mark

{ 1 if z; is a centre of a big ball and

M; = z; is.a part of finite (kq, k;)-cluster..
0 otherwise .
and |
M; 1if 2 = z; for some z; € B,
fz, M) = { 0 otherwise.
Thus,

M(B) =3 (i Mi).

1=1

Hence, from (4:1) we obtain,

E(i f(:n;,M;)) |

=1

E(M,(B))

AE ( [ 1. M)dm)

A E(S (e, M))da

A /}; P Po(E(k —1, ko))da )
AM2n)p Pg(E(k; = 1, k2)). - (4.2)

|
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Now let M,(5) be the number of Poisson points inside B, each of
. which is the centre of 2 small ball and is a constituent of a finite (&1, &2 )-
cluster, Using a similar marked point process argument we obtain,

E(M,(8)) = M2n)ps Ps(E' (k1 k; —1)). (4.3)

Let R, be the number of finite (ky, kp)-clusters inside B, such that
all the (k; + k;) points in each of these finite (k,, k;)-cluster are con-
tained in B,. In our definition of M, (B) and M,(S) the finite (ki, k;)
" . cluster need not be completely contained in B, so it i3 clear that

ky Ry < Mo(B) and ks R, < M,,(S).

Thus we have,

BUM(B) o hE(R)

plPB(E(kI o 1:k2)) - A(Zn)“ - A(Zn)d }

and |
k- = I B

Further, any finite (k;, k2)-clusters, at least one point of which is inside
B, must be totally contained inside B, (k3 +kq)2r, - Hence, we also have,

by Rt (ky +hoyory 2 Mi(B) and ko Ry ik, 4hp02r, = M, (S). (4.6)

Thus, from (4.4) and the second Inequality above, we have

)\PIPB(E(kl — 1, kﬁ))/k]
~ /
~ llﬂ3£p (2n)¢

. E( Ryt (k1 4ka)2r )
> 1 2 1
oL (2(n + (ky + k3)2r )
B(M(S)) (2n)°
l
nooo ka(2n)  @(nt (ks + Fa)2r )V
X lim (2n)d
K=o (2n)e 0 nme (An + (ks + ko)2ry))?
)\PQFS(EI(ICI, kg = 1))/k2

IV

1
|
5

i
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Similarly, using (4.5) and the first inequality in (4.6) we obtain
Apa Ps( I (kyy kg — 1)) ko 2 Apy Pe(E(ky — 1, k) K.
Combining the above two inequalities we obtain
p1Pe(E(ky ~ 1 k2)) by = paPs(L'(ky, kg — 1))/ ka. (4.7)

From the above relation, it follows that the results in the case when
the origin is the centre of a small ball can be obtained [rom the results in
the case when the origin is the centre of a big ball. So, unless specified,
from now on we will assume that the origin is the centre of a big hall.

Finally, as the measure of the size of the cluster W{0) of the origin,

we use
d(W(0)) := max{d(0, 2) : 2 is a Poisson point in W(0)}.

Alexander [1993] used diam(W(0)) as the measure of the size of the
cluster where

diam(W(0)) := max{d(z;, z;) : z;,2; are Poisson points in W(0)}.
Clearly these two measures are equivalent as
d(W(0)) < diam(W(0)) < 24(W(0)).
Define the relative density of the occupied cluster W(0) of the origin

#(W(0))
N d(W(0))% (48)

Alexander [1993) showed that in the case when balls are of fixed size,
for k 2> 1 fixed or k£ — oo but k/A = 0,

d.8

5(X) =

Plé(A) — oo | #(W(0)) = k} ~—+ 1 as A — 00. (4.9)

This phenomenon was termed compression by Alexander.
In the case of varying sized balls, the results are best understood
when we divide them into several cases. We first consider the case when

both k; and k, are fixed.



80 CHAPTER 4. RAREFACTION PHENOMENON

Theorem 4.1 Suppose that both ky and &y are fivred. Then we have,
as A — oo,

Po( Bl ka))
exp (—-,\ma(p 4 )+ (kg — ky(d—1)) log A + 0(1))

1l

ilnd

By PeldW(0) > ai(\) | E(kl,kg)) 1
i) Pe{5(0) -—}U‘E(kl,kg)) 1

where ay(A) 1s function of A such that a;(A) — 0 but A(a1(A))¢ — oo
as A — 00,

Next we consider the case when &, is fixed and k; — oo but kl//\ -+ ()
as A — 00.

Theorem 4.2 Suppose that kg is fired and k;, — oo but kl//\ — 0 as
A — oo, Then, we have, as A — 0o,

Ps (E(kl,kz)) = exp (—-/\?rdE(p )

—(d = Uky log(A/ k) + k2 log A + O(kl))

anf

i) Psl{d(W(0)) > ay()) | E(!’c],.’cg)) -
i) Po(8(3) = 01 Blki,kn) ) — 1
where as(A) s a function of N such that az(\) — 0 and Mag(A)) d//c;

00 As A — 00,
Now we suppose that &, is fixed and &, — oo but kafA — O as A — oo,

Theorem 4.3 Suppose that ky is fized and ky — oo but kofA — 0 as
A — oc. Then, we have, as A — oo,

FH(E(kh k‘?)) = €xXp (—’\“;dE(p T ?;l)d

(= 1)k Tog A-+ ks log{Aps/bs) + Olf))
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and

) Pe(d(W(0)) > a| E(kl,kg)) 1
ii) Pg(6()) = 0] E(kl,kg)) 1
for every fired 0 < a <11 — 7.

Now supose that both k, k; — oo but ky/A — 0,k/A — 0 as A — co.

Theorem 4.4 Suppose that both ki, ky — oo but ki/A — 0,k /A — 0

as A — oo. Then, we have, as A — 00,

P (E(k1 ks ))
= exp (——AﬁrdE(p{ ?j)d —{(d — 1Yk log(A/ky) -
+ha log(Apa/ka) + O(kr) + O(ks) )
and
5y Pe(dW(0)) > a| E(kl,'kg)) o1,
it} Pg(60)) — 0| E(k;, kg)) .

for every fired 0 < a < 1y — 74,

Next we consider the case when cluster of the origin W(0) consists
only of small balls or only of big balls. Let E(k,() be the event that the

cluster of the origin consists only of £ + 1 (kK > 0) big balls. Similarly,
let E'(0, k) be the event that the cluster of the {Jl‘lglll cons.lsts ﬂnly of -
k+1 (k> 0) small balls. |

Theorem 4.5 Let k be ﬁxed or k — oo but k//\ — 0 as A — . Thﬁn;

we have as A — oo,

i) Pg (E(k:o)) | | |
_ e;cpa(f*-)i‘ﬂ'dE(p 1) = (d = 1)klog(A/k) + o)
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and
" i) P:g(E'(ﬂ,k)) _
= exp (-,mE(p +ra)t — (d — 1)k log(M/k) + O(k))

and

Py i (E’(O,k) | #(W(0)) = k + 1) S (4.10)

REMARK: Theorem 4.5 justifies the discussion at the end of Section
4,1. The important quantity to note is that the leading term in the
exponential in the expression in (ii) is ~AmzE(p + ry)® which makes
the exponential significantly larger (for large A) than —An;E(p 4 r1)*
obtained in the exponential of similar quantities in the other theorems.

4.3 Lower bounds

In this section, we obtain the lower bounds of the probabilities of the
events we have considered.

Let Ny(A} and Nz(A) be the number of Poisson points inside A of
the point processes Y and Z respectively. Let rU/ be the ball of radius
r centred at the origin and @ 4 rU/ be the ball of radius r centred at
‘the point z. We will be using Stirling’s formula quite often. So, we
state the version of Stirling’s formula, which we use (Feller [1978] page
52-54). |
Stirling’s formula:

I di
1

- Also, for every n > 1,' |

, /Qﬂ.ﬁn-!-],’ﬂe-n

= 1,

!
| \/2_?1_'13““/2&““ exp(1/(12n)).

VAR 7AN

Lemma 4.1 Let either k;, ko be bdth‘ fized or k, be ﬁied, ko, — oo but
kafA — O or ky be fized and ky — 00 but ki/ A — 0 or both ky, ky — 0o
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but kyJA — 0 and kyfA — 0 (as A — o0). Then, we have, for all A

large
Py (E(z'.:l,kg))
> exp (—-).‘ﬂ'dE(,a F1a) = (d = 1)k log(A/ky)
+hy log(Apa/ks) + ik + caks + gk, Ky, ,\)), (4.11)
where ¢; and ¢y are constants and g(ky, k2, A) is a function of by, by and

A.

Proof: Since the origin is the centre of a big ball, if k) points of Y
in W(0) are placed in a ball of radius «(k/A), they will belong to the
cluster W(0) for all large XA where o = py(74(2r1)%"?1)~}. Note that if
we assume that there are only big balls available for the cluster W{0),
then the optimal radius inside which all the Poisson points are packed
is a(ky /A) (see Alexander (1993)). Now the small balls can be placed
inside & sphere of radius {r; —r2) centred at the origin without affecting
the region covered by the balls. This creates two annular regions, one
free of points of Y and the other free of points of Z. Thus we obtain,

Py (E(kl, kg))
> Po(Ny((aki/)U) = by, Npl(rs = 12)0) = b,
Ny ((2rs + alks /AU \ (ks [A)U) = 0,
Na(((rs +72) + (aks VU \ (= ra)U) = )

Qo (OB (A = 1)

eXP(—f\?Tépl(ﬂkI//\)d)

fiy !
i R - A Y O
S22 T3S T pAmapa (21 + (ks ) — (b [0

exp(—Amapa(((ry 4 72) + (aky /A))* = (11 — 72)")).

We now use Stirling’s approximation for k;! and k! to obtain

Pu(E(k, )

f

-
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> ex]:)(-—-/\ﬂ‘dE( o4 = (d — D)k log(Mkr) + by log(emapr o)

Fhalog(Apa/ ko) + kg log(ema(ry — 12)7) + g1 ks, kZ))
1 {d . . .
exp(—ATd ) (;)(&kl/'\)’(m(g?‘l)d I pa(ry +12))
J=1

where gi(ki, k2) = —(1/(12k1) + 1/(12k)) — 1/2log(k1k2) + log(2n).
~ Now, we choose A so large that k1/A < 1. Then the last term in the

exponential can be wntten as

AT Z ( ) (aky JAY (p1(2r)* + palra +72)"7)

j=1

by drga(py (2r)41 + palry + 12)%Y)

d - .
+Ama(kn /A7 @ (af ((2r1)"™ + palrs + 72)*)

j=0

= k] d?i'd(.}f(p] (2?‘1)01“1 + Pg(?‘] - ?‘g)d'—l) + C] k’f/z\,

where (y = 'nd[pl(a + (27 )Y + pg(r:r - (?1 + 73))4).

Now setting ¢ = lug(ﬁﬂdpla ) — drga{p(20)47 + pa(ry + )4 )
and ¢; = log{emy(r; — ?'2) ) and g(ki, ko, A) = g1(ky, k2) — C1k? /), the
lemma follows., = o
Note, if both ky > 1 and k; > 1 are fixed, (4.11) can be re-written

I

as
Py [E(JL-I Tk )]
> exp(—AmaLlp+ )"+ (ks = (d = D) log A+ O(1)),
as A - co. o

In case k; — oo, k //\ — 0 and ky > 1 is ﬁxed (4 11) becomes,

Po| Bk ka)|



4.3. LOWER BOUNDS | 85

> exp (—AardE(p +71)" 4 (d = 1)k1 log(ki/A)

s lug)t+0(k1)),

as A — 00,
If k; > 1 is fixed and ky — 00, k3 /A — 0, (4.11) reduces to

P [E(kl, kg)]
> exp (-—-Amﬁ(p +ry) = (d = 1)k, log A

+ky log(Apz/k2) + 0(’“2)):

as A — oo,

When both &y, k; — oo but £y /A — 0 and ka/A — 0, (4.11) reduces
to |

Pp [E(kl, kg)]
> exp (-—-AvrdE(p +11)* + (d — 1)k log(Es /A)

+ks log(Apa/ kz) + O(kr) + O(kr) ).

Next we consider the case when W(0) comprises only of big balls
or only of small balls. We prove the result only in the case when W(0)
comprises only of small balls, the other case being similar.

Lemma 4.2 Let k be either fized or k — oo but k/A — 0 as A —

oo.Then we have as A — o0,
' A

P (E"(O, k)) > exp(—-—).:rrdE(p +1a)¢ — (d — 1)k log(A/ k) + O(k)).

Proof: The proof in the case when W(0) consists of only small balls
follows a similar line as in Lemma 4.1. The possible structure of the
cluster W(0) is that the centres of all small balls are packed tightly in a -
small sphere of radius ay(k/)) where oy = pa(ma(2r2)?~1)"! and there
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is a spherical region containing no points of ¥ and an annular region
containing no points of Z. Thus, we have

P (E’(O, k))
> Ps(Na((aalk/N)V) = by N (s + ra) + (e / N)U) =0,

Na((2ra -+ e/ MU \ (es(k/A)U) = 0)

wapa(ca(k/N)"
exp(—Amgpa((azk/A) + 213)%) ATap (k!(k/ )]

exp(—Amapr((aak/A) + (r1 + r2})").

|

Similar calculations using Stirling’s formula, as in previous lemma., yield
the result. | | n

4.4 Upper bounds

In this section we obtain the upper bounds of the probability of the
events we have considered. We divide the event E(ky,k;) into several
events with restrictions to the size of the cluster and estimate them
separately, |

In next two lemmas, we obtain the upper bound of the probability
of the event when the size of the cluster is very big. For this we define,

dy (0) := max{d(0,3) : y; € W(0) N Y}.

Lemma 4.3 Let either ky, ko be both fized or k; be ﬁsced, ko — oo but
kaf A — 0 or ky be fized and ky — oo but ki /A — 0 or both ky,ky —
but ki /A — 0 and ky/A — 0 (as A — oc). Then, for all ) large, we

~ have :

P E(ky, ka), dv (0) > rl)

< exp ("“f"‘WE(P + Tl)d — )‘del(rl/g)d/g + c3ky + 041‘?2):

where ¢3 and ¢y are positive constants not depénding on ky and k.
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Proof: Since the cluster has only (&) 4+ k2) Poisson points (besides the
origin), the Poisson point in W(0) which has the maximum distance

from the origin, can be at most at a distance 2(k; + kz)m from the

origin. 50, we have,

P (E(kh k2),dy(0) > 1'1)

2R+ k)
< ¥ P (E(kl,kz),j-r] < dy(0) < (7 + 1)?'1)-

3=l

Now, we estimate the summands in the above inequality. Suppose that
ir; < dy(0) < (7 + 1)r1. Then, there is at least one Poisson point
in W(0) NY which lies outside the sphere (jr;)U/. Let ymax be the
Poisson point in W(0) NY which is furthest from the origin and hence
iry < d(Ymax; 0) < (7 + 1)r;. Now, if we centre a ball of radius 2r;
at the point y,ax, the part of the ball which lies outside the sphere
((7 + 1)ry)U will contain no points of the process Y. An easy lower
bound of the volume of the region of the ball of radius 2r; which lies
outside ((7+1)71)/ can be made by noticing that a ball of radius (r/2)
will always be contained inside such a region. To make this formal, we

use a conditioning argument,
Let C, be the positions of all Poisson points of ¥ and Z inside

((7 + 1)r)U and the origin, {0}. Define, for m,n > 0,

A {Ny((2r)U) = m}
B, {Nz((r1 +r2)U) = ??}-

Since the event E{k;, ky) occurs and the origin is the centre of a big
ball, the ball (2r1)l/ may contain besides the origin, at most k; Pois-
son points of Y and hence, the event UﬁizoAm must occur. Simi-
larly, U:;:“":an also occurs. Let 0,yi,... %, be the Poisson points

in C, N W(0) which are also centres of big balls. Thus, we have,

Pg (E(kler):jrl <dy(0) L (7 + 1)?‘1) .
= E|p (E(kl, ka), jr1 < dy(0) < (5 + 1) | c)]

r

< B[ Pa(Ny (US4 (3, + 2 U) \ (G + DnU) = 0| G

!
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ky A2
>3 anla,

m=0 n=0

i i Ps(Am) Pa(By) exp(—Amapy(r1/2)°)

7N

=0 n=0

BKP( A E(p 4 m)%) exp(—Amapi(r1/2)")
)" G 2

b1 ().ﬂ',fp 21‘
2 Z e —

=0 n=0

Choose constants Ca,Cy > 1 such that
(2?‘1 T‘1/2 do'g/‘i

}

and .
| }'3'2(7‘1 -+ 3'"2)‘1r < pl(?’l/g)dc;gj‘i.

Then, we have

)4 )™ (Amgpa(ry + r2)")"

1 AT 12
LL( dP(T’l e

m={n=0 _
9 &, (Arap (T‘ [2Y¢Cf 4) (Amapy(r1/2)0C3/4)"
= 2__‘02_1} 1 1m. n!
& 7k (Amgpy(r1/2)2/4)™ (Amapr(r1/2)° 4)"
S (h( ; Zu;a m! n!

= Ch O exp(dmap, (r1/2)4/2).
Now, combining together, we have N
PB(E(kI,kQ),dF(G) > 7‘1)
< exp [*"/\?T,fE(ﬂ + )t — A?r{;;Jl(rl/Q)d/Q
ha log Ca + by log G| (208 + b))
< exp(=Amelp + ) = A (1 /20712 + ey + eaks ),

where g = log (7 -+ 2 and ':":., = log (' + 2. - N
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Lemma 4.3 proves that that centres of big balls cannot be too far
apart. Now we look at the case when the centres of the small balls are

too far from the origin. For this, we define,
dz(0) := max{d(0,z) : z; € W(0)N Z}.

Lemma 4.4 Let either ki, ky be bolh fixed or ky be fized, ky — o0 bul
ka/\ — 0 or ky be fized and ky — oo but ky /A — 0 or both ky, ky — o0
but ki /A — 0 and kp /A — 0 (as A — o0). Then for all A large, we have

Pp (E(klw ky),dy(0) £ r,dz(0) > ?‘1)

< eXp (*—-/\‘.ﬂ'dE(p -+ ?’l)d — /\ﬂ'dpg(f‘zfg)d/g + Csk‘l -+ Cﬁkg)

where c; and cg are posilive constants nol depending on &y and ks.

Proof: The proof of this lemma follows a simitar line as in Lemma 4.3.

Py [B(k1, k2), dy (0) < 1, dz(0) > 1]

ki+kz
< S P [E(kl,kz),dy(oys -

§=0

r1+ jre <dz(0) <r + (7 + 1)?‘2}.

Now, we follow a similar method as in Lemma 4.3 to estimate the
summands in the inequality. Suppose, ry+7ry < dz(0) < ry+4+(5+1)rs.
Let zyay be the furthest Poisson point from the origin in W(0) which is
also centre of a small ball. Thus, r1 + jr2 < d(Zmax, 0) < 11+ (7 +1)r2.
By a similar argument, a region lying outside (r1+(j+1)r3)U of volume
at least ?Td(?‘g/g)d will contain no Poisson points which are centres of
small balls. By a similar conditioning argument as in previous-Lemma,
we obtain,

ry+ry < dz(0) S+ (7 + 1)
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5> 5 Py (An) Pa( Ba) exp(—Amapa(ra/2)?)

- m=0 n=0

exp( z\mE(ﬁ + r1)%) exp(—Amapa(r2/2)")
)d]'“ (Amapa(rs 4 2) "

b1 [.-\ﬂ'dp 2?‘
2 E o nl

| m==0 n=0

IA

1

By choosing the constants ¢s and ¢g suitably the lemma follﬂws as

earlier. o

For a fixed constant i > 1, we define,
U, (y) = 3(3/4)*pyma_1(2r1)* 'y — log(eprmap®y®).

Note here that W,(y) — oo as y — oo.

Lemma 4.5 Lei either ky, ky be both fized or ky be fized, ky — oo but
ka/A — 0 or kg be fized and k) — oo but ky /A — 0 or both ki, ky — oo
but ki /A — 0 and ko /A = 0 (as XA — o0). Then for all X large, we have

Pa (B(k1, k), d5(0) < 11,k /3 < dy(0) < /)
P< E:J{p(--/\frdE(p 1) = (d = 1)k log(A k1) — ka0, (y)
k2 log(Apa/ka) + crks + h(k, )) .

‘where ¢7 1s a constant and h(k,) is a function of k1 only.
Proof: We define,

G, = {all points of ¥ inside the ball (uyk, /A)U} U {0},
H, {all points of Z inside the ball r,U}.

1}

" The r-fattenmg of the set £ is defined by
E" = {ue R*: there exists v € £ such that u € S (v)},

where S,(v) is the ball of radius r at v. Also we define

A = {Ny((uyka /WU = by}
B {Nz(T?IU) == kg}
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We have,
PB(E(E,,!@),;{;!JI/A < dy(0) < puyky /X, dz(0) < ?',)
. [PB (E(k,,icg),ykl/,k < dy(0) < puyky /)

d2(0) 11 | (G 1))

E[l 1aPs (Ny((}'fr‘ U HT gk INU) = 0,

IA

NZ(GrH2 U H\ 1 U) = 0] (G, H*))].

Since the origin is the centre of a big ball, we have {(GT1V2\r U) >
ma((r -|—rg)d—?’f), where £(-) denotes the Lebesgue measure on IR%. Now
easy calculations yields that (see also Lemma 3.1 of Alexander (1993)),

(G U HPH2 \ (pyki /AU) 2 LGT\ (pyk JNU) 2 ma((2m1)* -
(yky /) + 3(3/4)d?rd_1(2r1)d‘1y%1. Thus, we have, for all X large,

Po(E(ky, ka), vk /X < dy(0) < pyki /A, dz(0) <)
NP pd)k2
AT cxp(-Amap (ki /A))

(Amapr(pyk,/ XA)*)H

o exp(—Amgpa((ry +12)* — 17))
exp(—Amap1(((2r1)? — (uyki/A)®) — 3(3/4) maa(2r) " yhi /)
exp(—=AmgE{p + r)* — (d — 1)k, log(A/ k)
+he log{Apz/ka) — kW, (y) + erka + h(ky)),

< exp(—Amaparf)

{

where ¢; = log(emyr?) + 1 and h(k;) = log(27) + (log k1) /2. "

The function A(k;) is a constant when &, is fixed and is of small
order of ky when %, goes to infinity. The important thing to note here
is that the function A{%:) is independent of y and y.

Now we want to estimate the probability that all the centres of big
balls comprising the cluster W(0) are compressed in the optimal sphere
about the origin. Let o = py(my(2r)*"") ",
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Lemma 4.8 Let either kq, k; be both fized or ky be fixed, ky — oo but
kg/)\ - 0 or k‘g be ﬁiﬂlﬂd o kl — 00 but k1//\ — 0 or both k], kg —y 0O
but'ky /A — 0 and ko/A — 0 (as A — c0). Then for all A large and for

some conslants cg and ¢, we have

Pp (E(khkz)sdv(ﬂ) < aky/A,dz(0) < T’1)
< exp (—/\?rdE(p +11)* = (d — 1)k log(A/ k)

+kg log(Ap2/ke) + Cékl + coky + h(kl'))!

 where h(k,) is as in previous lemma.
Proof: We have,
Pg(E(k1, ky),dy{0) £ aki /A, dz(0) <)
S Pp(Ny ((aki/NU) = ky, Ny((2r1)U \ (ak; /A)U) =0,
Nz(rU) = ko, Nz((ry + 1)U \ 11U} = 0}

e}{p(-—,lqrdpl(aki //\)d) (/\’ﬂ'dm(&‘kl /A)d)kl

ky!
AT apari)F2
CabtD)” exp(=Amam((2n)* — (aky/ )
exp(—Amapa((r + 1) = 71))
< exp(=AmgE(p+ 1) — (d — )ky log(A/ k)
+kalog(Apa/ka) + caky + coky + h(ky)),
where cg = log(emyp;a?) and ¢y = log{emyr{) + 1. _
Next we look at the clusters which are of moderate size.

_Lemma 4.7 Lel either ky, ky be both fixed or ky be fized, ky — 0o but
kAo 0 oor ks __be fized and ky — oo but ki /A — 0 or both ki, ky — oo
but ky /A —= 0 and ky/ A — O (as A — o). Then there exists 8 > 0 and

- constants ¢;9 and ¢y so that for all A large, we have

Po( Bk ko), B /A < dy (0) < 11, dg(0) < 1)

EXP("“)\MPET‘f)

S exp(=AmaB(p+ r)* = (d — 1)k log(A/ky)

+k2 log(/\pg/kg) +-.G1Uk:t -+ C“kg -4 ’L(k[)),}
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where h(k1) is as earlier.

Proof: We fix p > 1. We choose f large so that ¥,(p'8) > j for
every 7 > 1. By the definition of ¥,(-) this is possible. Now let

M = min{j : Biky/ X > r}. Hence,
Pe(E(ky, ky), Bk /A < dy(0) < 7,dz(0) < ry)

= 3 Pon(Elk, ko), dz(0) < iy 77 B /X < dy (0) < Bk [A)
j=0
M .
< 2 exp(—AngE(p + )" - (d —1)ki log(A/ky)
3=0 .
~k1 Wy (Br'™") + ko log(Apa/ks) + erka + h(ky))
<

exp(—AmaEB(p + r1)* — (d — 1)k log(A/ky)

1=0 | .

—kyj + kalog(Apz/ka) + crks + h(k1))

< exp(—=AmaE(p + 1) — (d — 1)k, log(A/ k)
+kz log(Apa/ks) + croky + crka + h(ky)),

where ¢1g 1s a constant, suitably chosen. -
Finally, we look at the case when the origin is the centre of a small

ball and W{0) comprises only of small balls. . Calculations simular to
that of previous lemmas yield the next result, whose proof we omit.

Let hi(k) = (log(2wk))/2. Then h;(k) is a constant if % is fixed and is
- of small order of k¥ when k& — oo.

Lemma 4.8 Let k be either fized or k — oo but k/A — 0 as A — .
Then, for some constants ¢;5 and ¢|3 and for all A large, we have

}

i) PS(E’(O,k),dZ(O) >r2) .

< ﬂXp(—AfrdE(p + T‘g)d — }s;ﬂﬂ(f’z/z)dﬂ + Clﬁk) )

i) PS(E’(O,k),dz(O) < alk/)\) .

< exp (—/\?rdE(p + ) —{d — 1)k log(AZk) + c13k + hl(n‘v)) |

il

.,



94 CHAPTER 4. RAREFACTION PHENOMENON

iii) For
] ¢, (y) = 3(3/4)3pama_q(2rs)* "ty — log(epamapy®),

we have, for p > 1 and y > 0 and for all A large,

Ps (E’(U, k),yk/A < dz(0) £ y‘uk/,}\)
< exp (-,\mE(p + 1)t — (d = 1)k log()/ k)

+kd,(y) + hl(k))* |

ww) There exists B > 0 such that for all \ large we hu-ve,

Py (B(0,8), B4/ < d(0) <1 )
< exp (-—-)«?TdE(p +79)% = (d — )k log(A/k) + ciak + hl(k)),

where ¢4 15 a constant not depending on k.

4.5 Proof of Theorems

The proofs of Theorems 4.1 to 4.4 are similar, so we prove only Theorem
4.]. |

Proof of Theorem 4.1; For the first part, we note, for k; and k;
fixed, | I |

PB(E(khkz))
= Pg(E(ky, k), dy(0) > 1)
+Pe{E(ky, ky), dy (0) < ry,dz(0) > )
+ Py (0) < 71,dy(0) S aky/))
z(0) < r1,eky /A < dz(0) < 7ry)
(
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Now, using Lemmas 4.3-4.7 and Lemma 4.5 with y = a and o = /o
for the last term in the above relation, we obtain,

IJH (E(kh k?))
< exp(=AmaB(p+ 1) + (ks = ka(d = 1) log A+ O(1) ).

This along with (4.11) proves the resull,
To show the second part, we see that, for any 0 < «;(A) < (r1 — 1),

Py (d(W(U) > ar(A) | E(kl,fcg))

S Py (dz(ﬂ) S a(A) | (k. kg)). (4.12)

If dz(0) < rq, all points of the process Z are inside the sphere ri{/,
As we have discussed earlier, we may place these points uniformly inside
the sphere (r; — ro) without changing the region formed by the union
of all balls (big and small). This is because any point inside this sphere
will be totally contained inside the ball placed at the origin. Thus we

have,
Pa(d2(0) > (M) | Bk, k), dz(0) < 1)
> 1 — ( () )dh. (4.13)

™ — 9

- If we take a;(A) such that Aa(A)? — oo but a;(A) = 0 as A — o
(one such choice is a;(A) = A"/}, we obtain from (4.13) and (4.12)

as A — 00,

P, (d(W(n)) > a0 | E(kl,kg)) o1 (4.14)
Now, we note that, §(A) = 'iwtld_&%(ifll))d < f;:ﬁf)la + 0 as A — o0,

on the set {d(W(0)) > a;(A)}. So, by our choice of the a;{}), we have,
P (8(3) = 0| Bk, k) ) = 1 (4.15)

as A — oo, proving the theorem. | -
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Finally we are left with the proof of Theorem 4.5. The proofs of the
first and the second part follow a similar line as in Theorem 4.1. To
show the third part we need upper bound of Ps(£'(ky, k2)) for ky 2 1.
For this we use the equation (4.7).

Proof of Theorem 5: We have,

Pon(BOB | #WO) =k+1)
Zﬁlm PIPB(E(kI: k— kl)) + P2 Ztlﬂ PS(E’(ku k — kl))

2 | - PZPS(EJ(Oa k))

o k + 1 [maxock, <k Pe(E(k1,k— k1))

- P2 Ps(E'(0,k))
, MaAX1 <k, <k PS(EIU""I: k — kl))] (4 16)
| Ps(E'(0, k)) ' o

Define = E(P + Tl)d — E(p —+ ?‘g)d > 0.
For fixed k, we have,

max Pg(E(k k— k) < exp{—AmaB{p +1)* + c15log A + c16),

0<k <k

where ¢;5 and cig are fixed positive constants not depending on A
Further, from (4.7), we have

121??:{& Ps(E'(ky, k — ky)) S exp(—Amq B {p + 7 )ﬂf 4+ ¢17log A + c13)

where cy7, c1g are positive constants not depending on A. Thus from
the lower bound of Ps{E'(0, k)} in Lemma 4.2, (4.16) and above upper-
bounds, we have for some constant ¢q

P (E(0,8) [ #(W(0)) = k + 1)
, | o
> | - }—)--t:?xp(--—,\?] (max{cys,ci17) + log A
)
+eyoh + iug(ﬂ:_ + 1))

— JasA—o |,

proving (4.10).
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When & — co but k/A — 0, we have to do little more work. We
first choose M so that (logz)/z < n/4 if x > M, where 5 is as above.
Now we choose Ag such that for all A > Ag we have Ap/k > M and
Apa/k > M. From the upper bounds, whenever A > Ag, we have for

‘some constant cyg (not depending on £ and A},

f

max Pp(FE(ki,k— ki ))

o<k <k
<  max exp(—Amyf5(p + " )® 4 ko log(Aps/ka) + crok)

o<k <k

< exp(—Amal(p + )t 4+ (n/4)N + egok).

(notation 0-oco = §) By using the equation (4.7) and the above inequal-
ity, we obtain |
T2, Ps(E'(ky, k — ky))
<  max exp(—AmgE(p + rl)d + ko log(Apa/k»)

0<he <k
+caok + log(p1/p2) + log k)
< exp(—AmaB(p+r1)* + (n/2)A + eu k),

where cy; is a suitable constant not depending on A. Prom the lower
bound of Ps{E'(0,k)) in Lemma 4.2 and the above upper bounds and
(4.16), we conclude (4.10). : o



08

PHENOMENON
ER 4. RAREFACTION PHE
CHAPTER 4



Chapter 5

The random connection
model

5.1 Introduction

Consider a forest of trees and suppose that the mango trees in this
forest are susceptible to some virus, It is natural to suppose that the
mango trees are distributed uniformly in the forest and that the virus
spreads from one infected tree to a non-infected mango tree according
to a probabilistic mechanism which depends on the distance between
the trees. This and other physical phenomena can be mathematically
studied by the random connection percolation model.

The underlying process of this model is a homogeneous Poisson
point process of intensity A on the d-dimensional Buclidean space IR
for d > 2. We connect two points x and y of this process by an edge with
probability g(|  — ¢ |} where |- | denotes the d-dimensional Euclidean
distance. Penrose [1991] parametrised this random connection model
- (RCM) by the intensity A and introduced two critical intensities Ay (g)
and Ap(g), (see (1.15) and (1.16) of Section 1.4 in Chapter 1) which he
showed are positive and finite whenever 0 < [7° 2% 1g(a)dz < co0. Bur-
ton and Meester [1992] studied this model for g(z) = exp(—fz), f >
0,2 > 0, and an underlying stationary, ergodic point process. They ob-
tained results relating to the existence and uniqueness of the unbounded
- connecled cluster with respect Lo parameter f. |

99
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A related model of interest is the mosaic structure of the random
connection model. In this case the Poisson process has intensity A,
and the connection function is g, such that A,/n¢ — X > 0 and
7. (y) = g{ny). Here we study the asymptotic behaviour of the number
of isolated points in a compact set K. Further we obtain a central limit
theorem for finite clusters in this model. This model and results here
are an extension of similar results in the Boolean mosaic model (see
Hall [1988) Sections 4.4 and 4.5 of Chapter 4) for the mosaic RCM.
The details are described in Section 5.5. . |

5.2 The model

Let X' = {2,2;,...} be a homogeneous Poisson point process of in-
tensity A on IRY,(d > 2). Fix zg = 0, the origin. Let X = {zg, Z1,...};
l.e., X is a Poisson point process ‘conditioned to have a point at the
origin . | |

Let g(z) : (0,00) — [0, 1] be a measurable function with

0 <._/{Jm$d“_'lg(:n)dm'< 0. (5.1)

“Given two points z; and z; of X we connect them by an edge with
probability g(|z; — z;[) independently of all other pairs of points of X
and of the process X. In other words, for each pair (z;,7;),0 < i <
j < oc.of points in X we define a random variable blz;,z;) such that

1) Plb(zi,z5) = 1) = g(la; — 2;]) = 1 = P(b(x;,2;) = 0),
(”) for U < Z';,,. < jk < DQ,FC - 1121' " with (imzujm) 7é (in:jﬂ)
lor all m # n, 6(zi,, 5, ), o(xiy, 255),+ - - is an independent
o secuence of random variables, .
(1) forevery 0 <i < j < oo, b(a;, x;)} 1s independent
ol the point process X.

or €4 < 7 < oo, we define b(x;, z;) as identical to b(z;,z;). (For a

‘mathematical construction of the random connection model see Section

1.4 of Chapter 1,) -
Penrose {1991) has proved that for ¢ satisfying condition (5.1), we

have - | | | | | -

U<arlg) Sdnlg) <ocoy (5.2)
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where the quantities Ap(g) and Ar(g) are as defined by (1.15) and (1.16)
in Section 1.4 of Chapter 1. |

In this chapter we extend the work of Penrose [1991] and show that
’ | |

g 18 continuous with bounded support. (5.3)

then the two quantities Ay and Ar are equal.

Theorem 5.1 In ¢ random connection model where g satisfies the con-
dition (5.53), .
| Aulg) = Ar(g). (5.4)

The proof of the theorem uses the standard Menshikov [1986] argument
to derive an exponential decay for the size of the cluster of origin. The
estimates are similar in nature to that of Grimmett [1988] and hence a

similar analysis may be carried out.
This work has been generalised by Meester [1994] to pmi.re the equal-
ity of the two critical intensities in the case where g is a decreasing

function satisfying (5.1).
The advantage of the Menshikov approach is that the BK inequality

is available for the discrete approximation model and therefore standard
inequalities are available for the random connection model through a

himiting argument.

5.3 The lattice approximation

Let IL,, be the lattice Zﬂf (552)% = {(&,...,33) : w; € Z}, and let

E., denote the collectlon of all edges between vertices of Z¢. Thus,

E. = {ea(u,v) : u,v € 2L}, where e,(u,v) is the edge connecting two
points « and v, |

Now, for each vertex u € L, and edge e, (u, U), we define {0,1}-
valued ra,nd()m variables V' (u) and b,{u,v) so that

1) bn{v,u) and by(u,v) are identical

2) {V(u), b(u,v) :uyv € Ly} is acollectlon of mdependent ra,ndom

variables. | | |
We say that a vertex u (respectively an edge e,,(u,*v)) is open if V{u) =

1 (respectively b,(u,v) = 1). In this lattice we say two vertices u,v are
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connected by an open pa,th (denated by u S v} if there are vertices

U = 80,51, . — y € IL, such that V(s;) = 1 and b (3,“1, i) = 1
for ¢ =1, 2,. ... m. Let C,,(0) be the open cluster of the origin, i.e.
C.(0) = {u € Z¢ : 05 u}. ~ (5.5)

Now, to relate the random connection model with the lattice per-
colation model, we need to choose the parameters of the lattice perco-
lation model suitably so that we are able to approximate the random

" connection model. For this, we require a vertex u to be open if and
only if the cube By (u)(:= u+ (=2 +1), 92-(nt1)1d) contains at least one

Poisson point. Thus,

p(A) = P(V(u)=1)
= Py(Bn(u) contains at least one Poisson point)

= l-exp(-A2™™). o (58)

“We define the edge e, (1, v) to be open if U{u,v) < g(|u—v}), where
(u,v) are the uniform random variables defined as in Chapter 1, in
the construction of the random connection model. Hence,

 Pla(u)=1) = Pr{U(u,9) < g(lu o))}
= g(|u~—v]). _ | .- (5.7)

From the independence of the point process and the set of uniform

~ random variables, it is clear that the resulting lattice percolation model

is an independent one i.e., the vertices and the edges are open indepen-
dently of each other. Also this is clearly a finite range model as the
connection function g is of bounded support. This model is also trans-

* lation invariant due to the fact the probability of the edge en(u, } being
5 Qpen 18 g(}u — v]) which is invariant under translation.

Since g is of bounded support, we may assume that

supp(g) C [0, 1]
Let 5“-{116 L, : lul <r}. Let R"J—-SI,R“* S“\.S’“ LT > 2,
Now, we fix an integer m > 1. Define, Dy, = {C,(0) N R?, # @},

Let . I |
Ba(p(N) = Prsy( D), 68
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where f,y 1s the probability measure governing this independent, lat-
Lice percolation model.

Definition 5.1 Lel [0 be an coenl depending on finitely many vertices
and edges. Lelw € 8 be a configuralion, A verlez w € N, is said
lo be pivolal for (1w} if Ip(w) # /(W) where the configuralion W' is
obtuined by a change of occupancy of the verlez u, i.¢., w'(s) = w(s) if
s#£uendw(u)=1—wlu).

With this defimtion of pivotal vertices, we may obtain Russo’s {or-
mula for an increasing event, /7 along the lines of Grimmett [1988].

Lemma 5.1 (Russo’s formula) For an increasing event I' and for any
vertex 1 € IL,,, we have

4
. (A)

where py(A) is the probability that the vertex u is open.

P(F} = P(u is pivolal for (F,w)). (5.9)

REMARK : We can also give a similar definition for pivotality of
edges and obtain a similar formula as in (5.9). But we note that in this
model the probability that an edge is open is not a function of p(}).
So the pivotality of the edges do not contribute in the rate of growth
with respect to p(A) (d/dp(A)(Pyn)(F)) of the probability of increasing
events /v,

Hence, for any increasing event I7, we have from (5.9),

] d
Pﬂ(f\)(F) di”(’\)

1 |
= —=F,y(number of pivotal vertices for F' | I7).  (5.10)

p(A)

Let s1,55,... be the pivotal vertices for (D*,w). Let s; € SHAE B
,2,.... Define & = &y and §; = max{k; — k;_;,0} for 1 > 2. Now we
1mitate the proof of Lemma 6.3 of Menshikov, Molchanov and Sidorenko
[1986] to obtain

Pp(}a)(F)

Lemma 5.2 Fordy,dy,...,d; non-negative integers with SF ,di<m,

Pp(,\)(&-"}' dk ‘ Dy m{él S df'a?: — [121-' "1k—1}) S P}l{:\)(_ :fl;,)‘ (5]1)

1l



104 CHAPTER 5. THE RANDOM CONNECTION MODEL

Once we have Lemma 5.2, we follow the proof of Lemma 3.17 of Grim-
mett [1988] to obtain,

Lemma 5.3 For any0 < p{}) <1 we have,

d & (p(N))

i - m 1], 5 19
oy P 2 7500 [ m o B (p(M)) l] (5:12)

where by (p(A)) is as defined in (5.8).

- We are going to use i_nequality (_5.1.2) to obtain a similar inequality
for the randorn connection model through a limiting argument. Once,
we have an inequality of this form for the random connection model

we may use Lemma 3.24 of Grimmett [1988) to obtain the exponential
decay.

. 5.4 Proof of theorem

The basic step of the proof is to show that RJ,(p())) converges in a
suitable way to the appropriate limit. We do that in the following
lemma. | | S

Fixm > 1. Let D, = {a € R*:ja] < r} and Ry = Dy, Ry = D; \
" D.4,i> 92 Clearly, R, C [-r,r[t. Define by (A) = PA{C(O)NR,, # B}.

Lemma 5.4 For( < A <A <o and m > 1, we have

B ((N) = h(A) uniformly in A€ (Ao, M) (5.13)

as n — 00,

.Pro'of @ Iyis rather difficult to compare the random connection model
...and the lattice percolation model we have defined. In order to do that

- we introduce a dependent lattice percolation model.

. Lel Iy, be as earlier. We define u € [, to be open if B.(u) con bains
- al least one Poisson point. Now, for u,v ¢ IL,, we define the .erlgﬁa
.f_f,_;(H,'U),' joining u and v to he open as follows: |
a) il both the vertices u and v are open i in this case e“(ﬁ,’u) g
open if there are Poisson points :r:;";:rj;,,:r:;-.e Bi.(u),z; € B,(v) such that
U(enzs) <gllu—of). pbi s Ballih b & : |
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b) if both the vertices u and v are nol open @ in such a case the
edge en(u,v) is open with probability 1. | _

Having defined this model, we first note that this dependent lattice
percolation model stochastically dominates the mdependent lattice per-
colation model defined earlier. To show this, 1L is enough to show that

;(lf)p{en(u v} is open | u,v both open } 2 g(|u — v)),

where P{(i,\) is the probability measure governing this dependent lattice

percolation model.

For this we need a conditioning argument. Given that both » and v
are open, there is at least one Poisson point in each of their respective
boxes. Also, given there are exactly » (z 1) Poisson points inside a
box, the points are uniformly distributed mside the box. So, il there
are k and [ Poisson points inside B,(u} and B, (v) respectively, the
probability that at least one pair of points (one point taken from B, (u)
and other from B,(v)) is connected is exactly 1 — (1 — g(Ju — v])*¥.

Hence, we have,

p[)b) {En(u “U) 18 open ‘ u, v both open }

= BLL C(lf)p{enuv) is open | N(B,(u}) = &,

p(A) & I=1
N(Bﬂ(v)) = [} P\{N(Bn(u)) = k} PA{N(B,(v)) = {}

_ 00 na‘ (Azwmi)k o (Azmnd)l
p(/\ E ggexp A2~ 7 exp(—A2~"")

1 b
(2—nd)k+1/ ‘[Bn(‘“)/n(“) '/;31'1(” 1'“ 1# (lumv')) ]
d:z:l dmkdﬂ

! AQHHH ; — 1t ’)‘2-“& '
2 EE;exp (—A2™ 'f ( x ) oxp{—A2 f)( 7] J

9( u —v))
- { . {1
(2—-:1&)#-}-! B ( u} /}3“(“} »/n(u] L"(u) (L .. A LAY . G
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Thus, we have
- PdPrcder0)n L #0) 2 By{Ca0)NRL #0)
= ho(p(A)) - (5.14)

where C‘E “P(0) is the bpen cluster of the origin in the dependent lattice

percolation model and R?, = {u € &y, 1 m — 1 < |u| Sm}. |
We have observed that.the dependent lattice percolation model

stochastically dominates the independent lattice percolation model.
Now, we prove that on a subset of { whose probability is close to
1, two lattice percolation models restricted inside a bounded region are

equwa.]eut in law.

Let Ap = [~{(m+1+2- (“"'1)) (m +142"0HN]E, Let Qm,ﬁ = {no
box B,(u) of A,, contains more than one Poisson point}, i.e., Q,, , =
Nue Amnk, L Bn(u) has a most one Poisson pmnt} Flrst we shaw that,

-~ for fixed m 2> 1,
. P,;(an},) _——} 0 umforrnly in A E [/\u,,\l] as 1 — 0.
Clearly, we have, | o o
A(0S,) £ 1-(1- q)en)2)

< [@m+3)2" e

where o = PA{B (0) contains at least two Poisson pomts} A simple
estimation gives, a < [,\2 "2 Thus, we have for all A € [Ao, \y),

PA(QE-.,,,{) < 2m + 3]df\§2_ nd _, 0asn - 0.

Now, we claim that the conditional distribution of dep

{c (0)nRg, £}

N given Qm“ 1s the same as that of I{g (o]nﬂn +0) given {l,.
Tc:r see thls we first note that,

P:(lf)p “u 18 Gpen-' () Pp(k) [u 18 Op en l Q]

Also let {u; € A,,N L, 1 <i <1} be a.ny subset Then for 4; = 0 or
1,1 <2 £, we have, - | |

dep L ‘ 4
PP(A)_ [Iu.'- 13 open = 'T_ijl St S l_ l Q]

= | p{A) [[ui'i_s Upen.::. ’;rl’:l ...<... ) S_J, Q}
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Led

T

b1ty 0) 2= {{f.-"(u.u} s open in the independent lattice model}

and

dep
by {1 v) o= ‘{{rn(u ) 18 open in the dependent lattice murlvl}
Given §,,,,, and a set O as Lhe set of all open vertices {u; : 1 <0 < 1}
it Ay, N Iy, the joint distribution of {by,(w;,uw;) 0 1 <1 <5 £ 1} 1s same

as that of {bd( p(u;,uj] 1 <t < 5 < {}. To prove this, we note that,
the random variables {b,(u; w;) 0 1 €4 < 7 £ 1} are inclependmt of
Qi and also of the states of u‘:a e, on whether or not ws are open.
Hence for gy, =0 or 1,1 €1 <y £ !,, we have,

‘(;;J(\} (bfu,(ul'! ”‘j) s ?’1'1.3"1 1 S -‘3 < j f:__ ! ' !1111;,11‘. () ())

== H .r'p.[,\ (bn U, ?JJ — ?)” ' Qm ” M O)

1<i¢i<

== H P ,(;\)(fin(u,, ;) = ?M)
1<i<3<!

= [T g(fwi— )™ (1 — g(fus = u3])) ™.
1<i<I<!

Now, for ;; =0o0r 1,1 <t < j <, we have,

p(})

3
= = i — uj])™-
(2-—-11{!)! By (1) B} 1S£-E<f (l J

('l - !7('15,' — ’ttj;'))ih"”” {f.’!}] 'y (L’L‘[

[T glhe = uil)™ (1= gl = )™,

1<i< <!

Pdep (bﬂ(umtj) =iy L 1<) S Qi N O)

|

Given Q,,,, and given the set of all open vertices {u; : I < 2 £

[} in A,, N I, the conditional distribution of [ dep - and
{'f-"u {ﬂ)nﬁ::l?&m}

: dep
L (0ynrn ¢y depend ondy on the random variables (e Pluguy) 1 &
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i < j <1} and (bo(uiyuj) 1 1 <2 < j < 1} respectively. Hence the

_ tribution of [ given {1, 1s same as that
CDHEllthIl&l distributio {G,Elep(ﬂ)ﬂﬁ 6) m

of I{r;'ﬁ(u)nnnm;eﬁ}' gi‘ﬁ?en Qm;n Thlls, we have

plep (@dEIJ( JNR™ #0 | Q,,,_,n) = Py (Gn(ﬁ) g R, # 0 Qm,n)'

Hence we have,

_ P‘}f{’ (Gdep((]) N Ry, # @)

< A ;%f}’(odep(o)nm 7é®|ﬂmn) +Pz(0fn,n).

~—y—

- = PA(QT,;,@)PF(A} (Cﬂ(ﬂ) NRy #0] Qm,n) + PA(nfn,n) |
< A(CUO)NRL#0) +R@). (5.15)

- Now we campare the random connection model with the dependent
percolation model. For this also we work on the event {1, . We have, |

for Ry = {u € I, m—-1<|u|<m}

pdeP cder oy B2, A0}

P(:‘*)

< P §?HCMWmm £ 000} + B(0,)
= 5 PdeP((clder(o) n A #MHQM\N( An) = k)

k=0

-_XPA(N(Am) k) + Pr(0%, D . (5.16)

~where N(A) is numl}er of Pmssan points in the set A. |

. Note that for any conﬁguratlon in Qnp, a box By(u) with u €

-Am N, may contain at most one Poisson poml} Thus each Poisson
~point of A,,-is contained in a unique hox B a(u). So if we condition on
the event that there are exactly k& Poisson points inside the box A,

- then we have exactly k boxes inside A,,, each of which contain exactly
- one Pmsson point. - Let us consider two such boxes, Bn( ) and B,(v).

~ Lel z; and z; be the Poisson points such that ; € B,(u),z; € Bp(v).
~Now the Pmaam] poml;s are C{}Ilntct((l I U(a:” z;) < J(lfﬂ, z;|) and the
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vertices u and v are connected (in the dependent percolation model) if
U(zi, z;) <9 (|~ vf). |
Since, g is continuous with bounded suppart g is uniformly contin-

~ uous. So, given €> 0, we may choose § > 0 such that |g(s) — g(1)] < ¢
. whenever [s — ] < 6. Choose n large so that 2Vd2™" < §. Note
" that this choice ensures that for any two boxes B,(u) and Ba.(v), we
Chave | Ju — v] ~|s = t] |< & for any ¢ € B,(u) and ¢ € By,(v).
So, under the condition that ,,, occurs and there are exactly &
Poisson points inside the box [—(m + 1),(m + 1)}, the event that
,E]ep(ﬂ) N R # @ but C(0)N Ry, = 0, will oceur if for at least one
~ pair of Poisson points zi,z;,2; € By(u) and z; € B,(v), we have,
{9(Jz; — z;|) < Ul=zi, ;) < g(ju —v])}. Clearly’the probability of such:

an event is no larger than k(k — 1)e.
Now, to make this formal, we do a conditioning argument. Given

~ there are exactly & Poisson points inside the box A,,, the Poisson points
are uniformly distributed. Writing F,, ... () for this conditional prob-
ability measure, we have,

dep({cdep( )ﬂR“m 7& Q)} nﬂmn \ N(A:m) - ))

F(A)

e LS Pm,';x,:({ deP 0y R £ 0} 1 Qe )dan . dey

From our above disscussion it follows, PII,;,_,E,:({CH BP(O) NR #4061 nN
Qi) € Poy,..e(1C(0) 0 Ry # 0} Ny n) + k(k —1)e. Thus we obtain
from (5.14) and (5.16), for all A € (Ao, A1), S

A (p(A)) = oy {Ca(0) 0 B2, # 0)

‘< PIP{cder(o) n Ry, # 0)
< B({0(0)N R # 0} 01 Q) + Pr(5,) + [ha(2m 4 3)Pe
P{C(0) N Ry # 8} + (2m + 3)°A327" 4 [\ (2m + 3)%) e

HIA

hin(A) 4 (2m + 3)*A227 + [A1(2m + 3) e,
From (5.15) and a similar calculation. as above, we have,

b () e
= PCONR.F4)
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PUP cdep (0) 0 B2, # 0} + PA(050) + [ (2m + 3)Pe

oy {Cn(0) N By, # 0} + 2PA(7,.0) + [ (2m + 3) e

e

IA A

This proves the lemma. n

Having obtained this l‘em;na; we prove a similar inequality as in
(5.12) for the random connection model. Let us define, for fixed m > 1

and for all n > 1,
K5 (A) = Ry (p(A)).

" By Lemma 5 4, we ha.ve ,’,‘1(,\) — hm(/\)l as n — o, uniformly for all
A€ [Ao, M) B -

Lemma55 For0<)~g</\1<mandm>1 weha’ue |
' A--,\D w1

ko) < bl ex ( = [ 1]) (517

. ( U) ( 1) P . Zk—{]hk()\) VA ( : )

 Proof : We Jusl; note from the Lemma 5.3,

1od o exp(-A2emr
K (A)— 1-—-exp( —A2-nd) [EkanF(A) 1]

Kn(,\)d,\ m
Thus integrating between [/\g,h] we obtain,

S A1 exp( /\2 "“"")2"""‘]E m
K (Au)<K (/\1)8}(})( /Au 1___ xp(—32-d) [Zk— Kk /\) lld/\)

Now using Lemma 5. 4 a,nd the contmulty of the exponential functlon

- we obtain o
Cr ok 1T m IR
b (A ex ( [ ' _ll'd,l)
| ( 1) p ~/ Zk—nhk( ) -_ |
| A=A m .
b At)ex ( s u[ -1]);
_( e AR
N{}W we follow Len:una. 3. 24 of Grlmmett [1988] to obtaln fnr )\ < Aey

Pa{C(O)ﬂRm¢ﬁ}<exp( «,!:(,\) ) ' (5 13)

|

I/\

Rl

IA
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'Jl'

for some P{A) > 0.

Proof of Theorem 5.1 : IFor A 2 A,

PA#(C(0)) > 20(2m + 3))

< PA{#(C(0)) 2 2M2m + 3)' N {C(0) N Ry, = B})
+ﬁ{(, (0)N R, # W)

< ( V(Aw) 2 2A(2m + + 39 4 exp(=p(A)m). (5.19)

Now, N{A,.) is a Poisson random variable with expectation A{2(m+
1) 4 27"}, Thus the first term can be estimated easily. In fact,

PuN(An) > 20(2m + 3)9)

Py(exp(N{(Am)) 2 exp(2A(2m + 3)¥))
L(exp(N{A;)))

exp(2A(2m + 3)9)

exp(A(2(m + 1) + 27"} (e — 1))

exp(2X(2m + 3)4)

o exp(A(2m + 3)%(e — 1))

= exp(2A(2m + 3)¢)

= exp{—(3 — e)A2m + 3)%),

]

A

|

where the first inequality follows from the Markov inequality and the
moment generating function of Poisson random variables has been used

for the next step.
Thus we have,

PA(#(C(0)) = 1) < exp(—¢(A)r'/?) + exp(—n{A)r) (5.20)

% {or some ¢(A) > 0 and some n(A) > 0. Hence we have {he theorem. =

55 RCM _.mosaic -

In this section we study the mosaic structure of the random connection
model. The Theorems 5.2, 5.3 and 5.4 are analogues of the Theorems
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4.7. 4.8 and 4.9 of Hall [1988] in the RCM. The proof of the theorems

“also closely follow the proofs of Hall [1988].
Let (X, ¢) be a random connection model in IR, Let g be function

having bounded support, i.e.,

g(r) = 0 for all r > R for some M > 0. (5.21)

A Poisson point € X is called isolated in the RCM (X, g) if for |

all y € X z and y are not connected.
* Fix a bounded subset & of R?, Let N(K) be the number of Poisson

~ points inside K and let {z,,...,zn(k)} be arealisation of these Poisson

T

- points. Define

(A K)
P(z, is isolated | N(K) > 1)
= P(0is 1solatt_-3d),. | | (5.22)

P

1

" The Poisson points which are connected to the origin form an inhomo-
geneous Poisson process with intensity function g(|-|). Thus

pwe@ —A / Iyl )dy) = exp(—A / (ly))dy), (.5423)

where Bp is the ball of radlus R at the orlgm Deﬁne also,

= palA, h ) = P(z; and z; are both isolated | N([&) > 2). (5.24)

. A similar calculation may be carried out to find p;. We note that

the Poisson points which are connected to either the point z; or x,

form an inhomogeneous Poisson point process with intensity function

h(y; z1,22) := gl — yl) + g(lz2 — y]) = gllz1 — y]g(lz2 — y|). Thus
the probablht}f that two arbitrary points in /' are both isolated can

"be thought as follows: first we put two independent uniform random

variablesin K. Next we put an independent Poisson process of intensity
ﬁﬁ (%Dnncf't all the points according to the connection rule given by the
function g. Thus the probability thal-z; and z3 are both isolated is p,.

 Clearly,
A

= R /f ) /ﬁ (1= g_(_.la: m)ep(=A [ by, 2a)dy)derdas.
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Let M = M(K) be the total number of isolated points inside K in
~ the RCM (X,g). The expectation of M(K) can be calculated easily
by using a marked point process argument as was used earlier in (4.1).

Define a mark I at z,; as follows:

0 otherwise .

- { 1 if 2; is isolated

Thén define f(r,{) =1 if » € K and 0 otherwise. Thus,

ff) Zf (z3)1;

t=1

Hence

E(M(K))

I

E (;i] f(=i, f{))
,\E( / f l)dr)

A [ B ))dr

= )./ pldr

I

Il

This can also be obtained more directly. Deﬁne the R-fattening of
K, KF as follows:

= {a€ R’ :[a~ b < R for some b € K},

Now if we condition on the event that there are exactly m points inside
K®, then the points are uniformly distributed and thus MK ) can be

wrltten as
™

M(K)I = Z{{I.- is isolated; ziek)' (5-26)

1=

E(M(K))
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[recse™
ml

Z exp(—A(J(T))?

m=0

m - Ry
E(E [{:.-.:t- is isolated; zeK) | N(KT) = m)
i=1
[Me(K)™

m!

Z exp(— ,\E(KR))

=D

mEU{:&, is isolated £,6K) | N(KR) = m)
R
Z &}{p }‘E(Kﬁ)) [AE(K )]

m=(0)

rnP(a:l is isolated; z; € K | N(K®) = m)

Ryjm
z;anp /\E(KR))[M(i )

_ T2,(1 ~ gllz1 = zi))
mf /KR ::i:::m da:gd:nl

H

i

Al
'

L
N

kR ((ET)"
e
Ji gui'R) - (Iifn)' Kng(lml“yl)dy]mmldh
(k) 35 exo(-2ec P  — b f attn]”

1

.M(K) exp( M(K'R)+A£(I{R)[1---' T o, g(ly])dy])

AU exp(=2 |, ()

E@hg;.variance may also.be calculated in a similar fashion.

M “K)

e
Py

B

[

| 2 E((Z; I{:m 1S lsola,ted m.EK})2 l N(KR) = m)]

L

=
P m

E|B(3 L, i isolated; ey | N(K™) = m)]

- oa=)
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+ 1y [L Z ]{I. and «, are both isolated; o c,en) l N K7 = m)].

1#£2

The first term in this sum 1s A A Ip;. So we are to calculate £ [H(Z#J—

! (=, and =z, are both isolated; z,.», ek

) | NU’(“) = m)]. Thus we have,

E(M?(K)) = (K )p

\

|

I

t

oa { Ir»'R m
> exp(— /\E’(KR))[A ( ‘11 )
— m!

Ry __
Z {z; and zj are both isolated; »i2;eK) | N(IT) = m)

1#]
A(J [fR i
Z exp{—AE( K R))[ ( il ) m(m — 1)
m=0 m.
E('[{:r:l and =, are both 1solated 71 .TQEH}IN( (") =m)
o0 rRyim
S exp(—Ae I{R))[M(h I (m — 1)
— m!

P(zy and z, are both 1sola.ted,:r1}:t:2 cK|N KR

o R
Zexp — AL I{R))[/\igf( T {R))m /}{/ ]I{'H ,/I{R

=

(1 —g(jz1 — z5])) H(l — h(m;;mhmg))dmm R £

Zexp — XK [Ailf 2! _//(1—- (lzr — z2]))

| .
[1 — f(I{R / h(yﬁhhiﬂg)dy] dﬂ:ldmg

(E(KR))?

Now we note that for any xy, 2z € K, h{y;z1,T;) = 0 for all y ¢ K%
Thus, fien h{y; 1, 22)dy = [ga h(y,a:l,'::,g)dy for @y, € K. PFurther
all the terms in the above expression are non- negatwe Thus using
Fubini’s Theorem, we obtain,

E(M (X)) — A(I)p,

1

AE/I; H(l = gz — :f-‘:al))ﬂxli‘_(‘f"‘)‘e(ﬁﬁ))
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Hyim -
Z [)1{} ]’L .)] [ }" - f i h(y, ‘."E],;Eg)dyzl dmldmz
H :

m=0 {(KR)
— 2 _ B B R
= /fff;{(l 9|z i’ﬂl))ﬁ?{l}( A(KT)
]
R 3 -
HMEN E’(K”)/ﬁd My"“!“"*'?)dy])dmd‘m

== AQ./}{L(l — g“ﬂ:] - :I?gl)) ﬂ}(p(""/\ ./Rd h(y,ﬁﬂ], Cﬂg)dy)dﬂf]d.l‘g
= (M(ﬁ)) Pa. |
~ Hence the variance of M (K) is glven by,

uar(M(K))--M(K)P: FOUEN (pr—p).  (5.27)

Let us now consider the mosaic {(Xn,gﬁ) i n 21} where X, has
intensity A, and g, is defined as gn( = g(_ﬂr). Let A, be such that
A, /n? —Aasn— 00, | |
 We now consider the isolated pﬂmts inside K in this random connec-
tion model (Xn, ga). Let M, = M,(K) denote the number of isolated
points inside K in (X,,g,). We shall prove that the expectation and .
- variance of M, grow linearly with A(K’) when we let n tend to infinity.

Theorem 5.2 Let (Xﬁ',gn) be a faﬁdﬁm connection model with inlen-
sity A, and g.(v) = g{nr) such thal /\,,,,/n‘“E — A as n — oo where
0< A< 00, Then . |

- | (A,,E’(I&)) IE(M ) = P

and |

o (A E(h)) vm{M — H,g(g)

- asn — oo, whem D = pl()t K) is as in (5.22) and

(J) =Pt }\/ { 0 and & are both zsa!ated) ~ pf}dm
4)&;}1] P{ 0 is :qolated 0 and T are comwcted)d:s

Proof of T.heﬂr,_em 5.2; Daﬁn{,

pl’(” Au,’ .
{;‘" y"]{thf‘ Pmas&n ]mmt £ is isolated ] N ]1) > ]} H.28)
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By (5.25), we have (M, (X)) = AM(K)p1(n,A,). Hence we are to show
that pi(n, A,) — p1 as n — oo, Now,

h (n: /\ﬂ) |
= P, g.){the Poisson point z is isolated | N{K) > 1]

= exp(—A, gn(lrl)dr)

Rin

exp(~hn [ g(rnlrl)dr)

An
= an(-2% [ girl)dr

~ p1(A) asn — oo.

)

To prove the second part we first note that

P(N(K)Y>2) = 1—exp(—M{I))(1+ M(K))
= 140o(A7). (5.29)

Define pa(n, A,) as the probability that z; and z, are both isolated
given that there are at least two points inside K in the model (X, g,)-

Thus

pa(n, Ap) - |
= Fongn) {z1 and x4 are both isolated | N(&) > 2}
Py, 121 and x5 are both isolated; N(K) 2> 2}
- Panany(N(K) 2 2)
P, e {71 and zq are both isolated; N(X) > 2} +o(A;")

H

> Pion{z and z, are both isolated | N(X) = m}
m=2 -

XP(A“,g“](N(f{) = m) -+ O(/\El). ' (530)

I

As before the last term above can be interpreted as follows: first we
~ put two independent uniform random variables zq and z; in K. Now
- we put an independent Poisson process X of intensity A,. Let N'(K)
be the number of Poisson points inside K. Clearly the distribution of
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both N{K) and N'(K) are identical. Thus we obtain,

- Ppangn{w and z, are both isolated | N(K) = m)
= P, {1 and z; both isolated | N'(K) = m — 2},

‘Hence we have from (5.30)
pa(n, M) + 0o(A]7) |
= Z P.e)1%1 and z- are both isolated

| N’(K )=m — 2}PH" o (N(K) =m)
Z P {An gn){fb‘l B-Ild To are both isolated

m=0

VU = m) Py (V) =+ 2)
Z P(xngs)1%1 and x4 are both lsola.ted |

m=0

IN (K) = m}Pia, gn)(V'(K) = m)
+ E P, o) 121 and 2, are both isolated l N'(K) = m} .

m=0
[Poanany(V'(K) = m +2) - P(Amgn)(N (K) = m)]
= Pla,g.)171 and x5 are both isolated} + A(n, A,),

where A = A(n, A,) is _deﬁned as follows:
. A(n, An) | | . |
= Z Pirn,gn) {1 and z, are bnth lsola.ted I N"(K) m}

[P(Ar..yn)(N’(ﬂ’) m+2) - F(Amyn](N (K)=m)}
Z Pirn,ga) {1 and :ﬂg are both isolated | N’(I{) m)

m=0

P(An an)(V'(K) = m)(

H

gl

15

(Asl(K))*.
(m + 1}(m +2)

First we prove that as 7 -—+ 0o,

1),

A E’(K ) [P(,\“ ,g,.)(m and z; are both lsolated) |
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Jor

2
— H Fia, g (i 15 isolated)
i

— A {P{-\.yl(o and x are both isolated) - pf}d_fr. (5.31)
Bk

We employ the same technique of first putting two independent
uniform random variables in A" and then putiing another independent
Poisson process to calculate the left hand side of (5.31). We begin
with a change in the length scale, v — nr. This will give us a random
connection model (nX,,g) where nX, has an intensity A, /n% Thus
we obtain that the left hand side ol (5.31) equals

, | . |
ML) /;{ /’:{ T -{P(An,gn)(f"! and :.Eg are both isolated)
2

- H P{;\rhgn)(I‘f iS iSOIﬂvtE(I)}dﬂ:]dmg

1=

1 |
AHE(I{)/!_ /F (i) {]J{An/ndlg)(:ﬂl and z, are both isolated)

|

2
- H P(}.n/nd,g](mf 1S isolated)}d$1d$2-
1=1

Now by using the translation invariance of the model the above term
equals |

An / E(nff N{nk —a))
" ntf( K)

where K, = {ys — 32 ' y3,¥2 € nK}. Asn — o0, A,/n® — A. For each
fixed z,€(nK N (nK — z))/€(nk) — 1. Also if |z| > 2R, the integrand
equals zero. Thus by an application of the dominated convergence

theorem, we obtain (5.31).
Next we prove

AM{K)A(n, Ay —
4Ap, I8, 5 P(‘Lg]:((} is isolated; 0 and & are connected)dwr. (5.32)

{P(An/nd,g)(o' and & both isolated) — p ﬁ}dm’

nd

By_l__lsiug Markov inequality we first note that for any ¢,/ > 0,

Ponan (V) = ] > @%) < (BON(K) — plf gt 1P)
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- O(JL(IIE)I/;L((IIEJH)*')
= O(u™)
where ;1 = M 0(K). Denote v = pul//2+¢, Thus, by choosing [ large

“enough, we obtain

A(n, A) |
= Y Pingmy{zi and zo are both isolated | N(K) =m}

m:|ni—u!£u

i

.

- P (V) = m){(m+ 131(m+2) 1} +o(p™"). (5.33)
Let r=1m .-— L. Then for I"l <y Wé'have - - |
.”2" ) - )
(m +1)(m +2) - {1+("'|'1')/P} {1+ ?‘+2)fp}

= 12 +3)/u+3(r/p)’
+O(IrP/i + (Ir] + 1)/ 42).

" Choose € < 1/6, then A(n,A,) reduces to -

| A(n'l Aﬂ-) - | | |
o= 2. Pongm{z1 and 22 both isolated; N(K) = m}

- mzpm—p|<v

. {-'(21-1{3 ) 1+ 3(r/ p) 2} + 0('#“‘) |

!

Z P[Amgn){ml and 2 both Ht}lated N(Ii') m}

m=0

{-tor 377} ol

4
—--P(,\" yn){:r] and & hoth isolated}

Jut
| -.“""” E P(hm_q"}{ml &nd 1?2 bot,h 1s.c:lated N(K) == m}(m — 1)

J m=0

:  +-— E P{xmyn){:rl dl]d $2 lmth lsolated N(K) = m} — ;1)2

1 m*"’U

+U(,u."'[-).-
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We have shown in (5.31) that /\nf(f()[f*’(,gn,y"){:r:l and @y are both

isolated} — Pan,gn)10 18 isolated}”] converges Lo a limit which is non-
negative. Thus we obtain that
Py, gy (1 and zq both isolated)
= P, (08 isolated)? 4+ O(A; ")
= P00 18 isolated)? 4 o(1).

Similar calculations yield

i Pirom {71 and z, are both isolated; N(K) = m}(m — )’
m=0
= 3 P (0 is isolated)? Py, g (N (K) = m)(m — p)* + O(AL")
m=0 1
= uP, (0 is isolated)® + O(A;").
50 |
A(n, M) = 2A1(n, An) + o(p™1), (5.34)
where
Al (n} /\n)
= “"'5‘1“' Y Piangyizi and z, both isolated; N(K) =m}(m — p)
m=0
= Y Py, s {z1 and z; both isolated | N(K) = m)
m={

Pl (V) = m) ~ Pa g (N(K) = m = 1)

E [P(Amg"){ml and zo both isolated | N(K) = m}

Tt ={)

—P.em121 and x4 both isolated | V(K) =m - 1}]
.XP(AmHn)(N(I{) = m)

To calculate this we again employ the same technique. Let @3 be an-
other uniform random variable independent of the all previous random
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variables and the Poisson process. Thus we obtain,

P, s iz and z, are both isolated | N(K) = m + 1)
= P, {71 and z2 are both isolated; z3 is not
connected to both z; and z, | N(K) = m}.

Hence

Al(nw ’)‘n) |
= 3 Pa,en{z1 and z2 are both isolated; x5 is

m=0
connected to at least one of z; and z, | N(K) = m}

= P, {71 and z; are both isolated; z is

connected to at least one of z; and =,}.
‘Again similar calculations can be carried out to yield

Piangn)iz1 and z; are both isolated;
3 18 connected to at least one of xy and x4}
= 2P(,,g{%1 and z, are both isolated;
3 1s connected to z;} + o(u™?).

Thﬁs we have

Ai(n, Ap) |

= _QP(A“,QH){&:"II and z, are both isblated;

T3 15 connected to z;} +o(p~') |
QP(,#,'HHH){&:Z i3 isdlated}P(;hmgn){ml isolated;;

T3 18 connected to ml} + U(ﬂ_'l)

l :
9 .o _
Ky ~/K /x;P (hnon) {21 I8 isolated;

 r3 18 connected to ml}dmldma + 0(#"1.)
I

2 | Y | 1 - .
plf(n}{’)ﬂ -/i;fc’ /r;f( Pirngn{ T lsqlated, -

&3 1S COHHECted.t{) ‘T.l}dmldﬂ?a—]-o(p"l) o

I
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l
ln"f( )2 I,
Pian.a {0 1s isolated; @ is connected to O}de + o(p™').

2 (N (nk — )

Now note. that, for each fixed ¢, ¢{(nK N (nK — 2))/n(K) = 1 and
the mtegrand equals zero for x| > 2R. So by an application of the
dominated convergence theorem, we obtain

(M) AL (e, A)
~— 2;_1,/3 P10 is isolated; @ is connected to 0}dz. (5.35)
2R

The theorem follows from (5.33) , (5.34) and (5.31). | N

Now, we consider clusters of finite order k(k > 2). A Poisson point
xy 18 said to be a part of a fimte cluster of order & if there are Poisson
points {xg,xa,...,&t} such that the set {zy,2q,...,2¢} form a con-
nected set and no other Poisson point is connected te any of these &
noints,

Define p(k) to be the probability that an arbitrary Poisson point x
is a part of a finite cluster of order k. For y1,¥2,...,¥r € IR%, define
flyi, 92, ..., yx) to be the probability that the set {y1,%s,...,¥yx} form
a connected set. Then

Sy, y2y - ) = ZHQUEJ:‘ ~ ;1) H(l - g(lyi — ¥;1}) (5*36)
G

where the sum runs over all connected graphs G of {1,2,...k} and the
product [T runs over all edges (7,7),(1 <7 < 7 < k) which are in &
and the product [T" runs over all edges (¢,7),(1 <1 < 5 < k) which are
‘not in (.

Now again we consider the mosaic {(X,,¢) 1 n > 1}. Suppose that
T = An/n% — 0 as n — co. |

Theorem 5.3 Let {{X,,g.) : n > 1} be the mosaic with u, — 0 as
n — oo Let p,(k) be the probability thal an arbilrary Poisson poinl s
a part of a ﬁnitﬁ cluster of order k(> 2). Then

1
(k) }“ /W f 0, %1, Yk—1)dyr... dyp-1 + 0 (‘*'Tn )



S pa(i) = o{mh), (5.38)

s 7, ~— 0.

Proof: Clonsider the RCM (X, ga) of Intensity A,. Without any loss of
generality we may take the origin to be a point of the Poisson process.
Since g(z) = 0 for ¢ > R, the cluster of order k& will be contained in a

_sphere of radius kR/n. Clearly tor the origin O to be part of a finite
cluster of order (k+1) or more, at least k points are needed to be inside

the sphere of radius kR/n. Hence we have,

- i pa(?)
i=k+1 .
2. L dyi
< ZEXP("Anwd(kR/n)d)(A"H‘i(}zf%/”))
i=k :
| | o0 /\nﬂ' fcR ﬂ AN\
= k(R expl-Duma ki) (oL

< kR exp(—AamlkR/n)) S

1=0

E— T}:: (ﬂ'd( kR)d)L .

This proves (5.38).
Now, if origin is part of a finite cluster of order &, then the clus-
ter is totally contained inside the sphere 5, of radius (k — 1)R/n.
Now, let N(5,) be the number of Poisson points inside S,. Clearly,
if 2y,%9,..., 255, he the Poisson points inside .5, then the cluster of
- order & must be subset of these points. Further, given that there are m
| Ti_%ﬁ”pgints inside 5,,, the points are uniformly distributed over 5,,. Hence

. Pn(k)
— i “:';I"lm"*mm)
. el

y . e i
Pia, gt (N(S,) = / _ v da
(2, Hmant (V) =10) J, s [ES

% . [ Iz, 2n)

Pogd gl N(S) =1 / Iz ...dz,
Z (,\"/ IpJJ( ( ) ?n') e - Js [‘?(.S')]m fT"l (L

m=k—1

Al
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where S i1s the sphere of radius (k — 1)R and fi{z,...,z,) = P(the
finite cluster of order k formed from the points {0,x,,...,z,} contains
0 in the model (X,,9,)) and fi(z1,...,2,) = P(the finite cluster of
order k formed from the points {0, zy,...,2,,} contains 0 in the model
(X,9))- .

Clearly, fi(z1,...,2¢-1) = f(0,zy,...,21_1). Now the first term of
the series is

f U N o [P if
P("‘ /n 5’)(N =k - 1)/ f fES k-1 l)dml-*-dmk—l

| nn (9))*! N TR
== EXP(‘_WHE( __1)), / ]f 1 L__IL ])dﬂ:l dl’EL 1

_ 1)1/ /f 0,1, . $k~1)d$1-nd$k~1
(k%—- . (1—exo(- 7;,,,:?(5')))
f ff 0,21,...,L5-1)d1 ... dTy_;

| (k‘:I)I-/:g.../sf({),:cl,...,mk.hl)dml...da:k_l-}-0(7}#“1).

1

J

The second term is o(nf~1) as (1 — exp(—n,wg(kR)?)) — 0 as n — oo.
The rest of the terms in the series is dominated by '-

Z P(Anfﬂasﬂn)(N(S) = m)

m=k
) o (0a(kR))"
— Z exp( T}nﬂ'd (kR)%) g
= 0(?’]#_‘1).
This proves the theorem. | -

A finite cluster of order % is a set {z, 9, ...,z } of Poisson points.
We define the “centre” of such a cluster as the pmnt x; whose first
co-ordinate is the largest. |

Let K be a bounded compact subset of R*. Let Mﬂ(k) = ﬂ(k, i)
~be the number of finite clusters of order k& which have centres inside K
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in the RCM (Xn, ¢s). We may use again a marked process argument

. to obtain that

E(Ma(K)) = MUK palk).  (5.39)

The factor k= appears here as all k points in the finite cluster of order
k contribute once. Theorem 5.3 implies that

f JT1ye sy Doy )dTy . d:ck 1
= ulk) (s2) - (5.40)
A similar a.rgu.ment as in Theorem 5.2 may be used to prove that
Mt~ var(M, (K)) — ().  (5.41)

I‘he equations (5.40) and (5. 41) suggests that M (k) may have an
~asymptotic Poisson dlstrlbutlon -

Theorem 5.4 Let (X,,,g.) be as in Theorem 5.2. Let M,(k, K) be the
number of finile clusters of order k which have centres inside K in the

model (Xn,gn

(i) If \anf™? — a(< 00) asn — oo then M (k K) has an asymptotic
Poisson dzstrzbutwn with mean ap(k) where u(k) is as given by (5.40).
(ii) If Aamy™! — o0 as n — co then [var{ M, (k, K]~ V*(M,(k, K} —
E(M,(k, K))) is asymptotically normal N(0,1).

Proof: Let m be _aL fixed large positive nuﬁlber. Define

p = (Mt

£

" Let B= Rm/(2n) Rm/(Qn)]d and By = (—R(m +2k)/( n), R(m +
2k)/(2r)]4. For each point z € I, define B( )=z -+ B and Bl(a:). ==
2+ B. Let C(z) = By(z) - Blz).
- Let z,,,2,,,...,2,, be points of IL such that B( ) C K for 1 =
L2, ap. Let Al = U2 B(zr,). Also suppose that TpyyTpgyeeey Tpg

are pmnts of L such that C(z;) C K. Let A, = Uf“IC(mp) and
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td.r

Az = K\ (A UAy). Dehine M (2, k) as the munber of clusters of order

k which have their centres inside Ay ¢ = 1,2, 3. Clearly,
Mu(k) = M,(1, k) + Mu(2,k) + M, (3, k). (5.42)

First. we prove that M, (1, &) satisfies the central limit theorem.

Note that any cluster of order £ which has its centre inside the box
B{z,;) for some 2 = 1,2, .., ,, must be contained entirely inside the
box By(y,). For cach ¢ = 1,2,... 0y, let M:(1,k) be the number of
clusters of order & which has is ((utm inside the box B(w,.). Thus

Xn

M, (1, &) ZM* ki (5.43)

The random variables {M}(1,k)} : ¢ =1,..., &, } are independent and
identically distributed by our choice of the size of hoxes. Also we have

EOMJ(Lk))gf{m(l,k)zz})

< E((N(Bi(mm i@ 320
(An[R(m + 2k) /n])!

— !_Z% ll i exp(— A, [R(m + 2k)/n]*)
< (AH[R(W + 21"3)/'*'1]“)2 :ia T

2k
5 n2*9e [R (m + Qk)}
for n so large that n,[R(m + 24)]¢ < 1. Thus we have

E((MI ) oz ) = Ol). (5.4
Also we have

P(MM1,k) = 1) — P(M)(1,k) =1, N(By(z,,)) = k)
P(M!(1,k) =1, N(By(z,,)) > k+ 1) |
PIN(B\((xp, )2 b+ 1)

<
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5 Qhlfion s Y (= Aal RO -+ 26) ]

I=k41

qd(k+1)
[R(m + Qk)]

(k+1)!
_ O(ni-l-l) (5.45)

k41
<

" Further we have,

P(MM(1,k) = 1, N(By(z.,)) = &)
= P(N(Bi(er,)) = k)P(ML(L,K) = 1| N(Bi(,,)) = k)

(Al R (m;ﬂk L) e (-AaR(m + 26)/n]?)

P{(yl, ...y ¥k) 1s a connected set}
/mm)' - /B (2r,) [R(m + 2k)[n]®

dyy - Yk

Now we effect a change of scale « — na. This along with the
translation invariance of the model will reduce the above integral to

| - _ _
— o e uddu . d
T /HBI flyn,«ue)dyr - dyx

H:Bl

| Thu_s we l1a§rﬂ'

P(M, (1 k)= 1,N(B(z,)) = k)

= T}H/B / f Yl o :yL)dJl dyk
nB

"(1 — exp(- n,t[li(?ra + 'QL)]‘E)

—"ﬁ
] / Jn- 1Jk)dyl . dy
nf. nfh

= by + O(m ) - (5.46)

where b = 3 ny  dns Sy o )dyy L dyg.
Combining (5.45) and (5.46), we obtain,

POMY(1 k) = 1) = g 4+ Ok, (5.47)
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Thus we obtain from (5.44) and (5.45),
E(M,(1,k))
= P(MN1,k)=1)+> IP(M)(1,k) =)
I=2

P(M,(1,k)=1)+ E((Mr:.(lak))zj{M,{(l,kJEE})

= byl + O(n,""). (5.48)

Similarly, we have,
E[M, (1, k)]
= P(MLE) = 1)+ S PP(MI(L, k) = )
=2

< P(Mu(1,k) = 1)+ B(My (1, £))* Ly ay22))

= by} -+ O(n; ™). (5.49)
From (5.48) and (5.49), we have,

var(M1(1,k)) = bn* 4 O(n**). (5.50)

Further we have, for any sequence x(n) diverging towards infinity as
n — 00,

2
E([Mi(la k) — B(M,(1, k))} I{M(w-E(M,amnlzm(nn)
2
< E((M&(lak))zf{m(m)gz}) + (E(Mi(lxk)))
= O(n") (5:5)
By translation invariance,

Sy v ue) = F(0, 02 =y Uk — 1),

Thus we have,

- /nﬂa "B, f(yh :yk)d:‘/l o dyy
~ /Blfﬂ R /B 0,2, Yk )Yy - ..y
k h.ﬂ -
= [R(m + 2k)) LM

(K
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where a ~ b implies that a/b — 1 as n — oo. Thus

_ L RmAPaE) (5.5
0K

Also, we have
{K)
7 [R(m +2k)/n]*
LK)
= M R+ 2R
Now we are ready to prove the theorem. Let us first consider the
case when A\,n¥~! — a < o0 as n — co. Note that,

(5.53)

S P(Mi (i, k) > 2)

t=1

< Y E ([Mri(ir k)]zl{Mg(l,k)gz})

. . UK)
/\nﬂn [R(m—l—?k)]”‘o(n")

— () asn—+m

Also, we have from (5.52) and (5.53),

S P(Mi (G k) = 1)

=1
- {Innnb T HHO(T);‘:H)

' o HK)
= M R+ 20

— au(k) asn — oo.

b+ O(Aan’)

22+ Thus, we obtain that M,,(1,k) = .57, M!(1, k) has an asymptotic Pois-

R " - 1
/P

son distribution with mean ap(k) as n — oo.
Next we show that M, (2, k) and M, (3, k) are very small compared

to M,(1, k) First we note from (5. 39) and Theorem §.3 that for i = 2, 3

(z k)) = Ak n(k)e (A;)

-1 nn - k—1 |
= k7O )E(A)—i—,\no( ) (5.54)
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as 1 — 0o and op = [ oo Spa JOO o e My o dygy
Clearly as 1 — oo, {{Ag) -» 0. Henee we have,

B(Mn(3,E) = 0 asn — oo, (5.55)

For A,, suppose that K is contained in a big d-dimensional hox
of length L. Thus total number of disjoint hoxes of size R{m 4- 2&)/n
which can be placed in this square is at most 2(n L)”E/[R(rn,-}-Qk)]"'. I5ach
such box will contribute a maximum volume of 2d( R /) 126 B/n to
f(Ay). Thus we have

21 4nd 2dRAmA 124
{A) < [R{mn 4 2k)]¢ ~ L
m

where (9 is a constant independent of n,m. Thus we have

-1
2n
ol
——

lim limsup (M, (2,k)) = 0. (5.

?n""'*m Il'_llr:."*l

This proves the theorem for the Poisson case.
- Now suppose An?¥ =1 = 00 as n — 0. By independence of Mi(1, k)
fori=1,2,...,k, and using (5.53) and (5.50), we obtain,

> var(M;
t=1

= ba:“nfi -+ aHO(nf‘;)
— An??:#lﬂ’(k) + 0(/\“?}-;?“1)* (557)

var(M,(1, k) )

|

Let ¢ > 0 and z(n) = efvar(M, (1, ANP/2 Then using (5.51), we have

i1 F((Ml(l k) — E(Mﬂ(lrk)))21{|nrr,!,(1.k)-fe:(n-f,l,(l.kmgm(u)})
var( My (1, k)}]! ) o
= At (k) - o( A1) Lo, O ()
= O(n,)

— }  asn -— 00,
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Hence the random variables {M(1, &) }i=1,...an Satisfies the conditions

for Lindeberg’s central limit theorem to hold (see, for example, Chow
and Teicher [1978], page 291). Thus, applying Lindeberg’s central limit

theorem we conclude that, as n — 00,

var(M, (1, k)7 [Mn(l, k) — B(M,(1, J:))} = Z (5.58)

- where Z has a N(0,1) distribution.

Now we show that the random variables M, (2, k) and M, (3, k) are

asymptotically negligible compared to M,,(1, k). First we partition the

whole space R? into 2¢ disjoint sets where each of those sets consists
of boxes of size (RJ’“H“) and two boxes are at a distance of (R(m+2’l'))
For fixed z and 4,: = 2,3 and 7 = 1, 2,.. ., 2% let Ai; be the region OfA
which is in the [-th box of the j-th pELI‘tltIOIl Thus the sets A;, 7 = 2,3

~ can be written as union of disjoint sets A;; where 7 runsover 1,2, .. .Q‘f

*and ! runs over all boxes By (z) for which C(z) is either contained in K

(in case of 7 = 2) or the box Bj(z) is not entirely contained in /K but
have non-empty intersection with I, Let M, (:jl) be the be number of
finite clusters which have their centres inside A;;;. Thus we have

2 my;

M, (1, k =Y Y M. (i5), (5.59)

7=1 =1
for 7 = 2,3. Note here that for fixed 2 and 7 and for I £ [y, the sets

Aizi, and A, have a distance more than 2hR/n between each other.

Hence the random variables {MH(EJ l)} are independent for fixed ¢
i>1

_and J. The total number of terms in the double sum is O(n*). Now,

usmg the lml@pon(lenro of the random variables M, (45(} for fixed ¢ and

| j_, we have

20y,

2‘” Z Z var .M“ zﬂ

JII_.

war (M, )

[ A\

2 iy,

< 2SS B(ME(ig), (5.60)

3= i=1
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Now we have,
E(MZ(ij1)) < B(My(isl)) + E{Mﬁ(ijl)f{mwnzﬂ}* (5.61)

Since Aqj; is always a part of a box of size B(m + 2k)/n, we can imitate
the argument of (5.44) to conclude that

sup [ {Mf(ijf)fwnwr)?_z}} = 0(n"), (5.62)

131

as n — oo. Combining (5.60) (5.61) and (5.62), we obtain,

24 iy nd iy
var(M,(3,k)) < 2435 BE(M,(i50)) +03LLn
=1 [==1 j=1 {=1
= 2ME(M.(i,k)) + O(n“pi") (5.63)

Now from (5.57) , (5.54) and (5.63), we obtain for ¢ = 2,3,

var(M,, (7, k)) 2 pr 4 NI A |
e < G A () +o(1). (564

Thus as in case (i), we have for i = 2,3,

var(M, (i, k))

e

= (. 5.65
A, I SUP T (1, ) (5.69)
This along with (5.58) proves the theorem. .

Note the asymptotic variance of the distribution in both the cases is
Anp¥=2u(k). For a Poisson random variable X with parameter yu, then

pVHX — ) = Z as p— o0

where Z 1s a normal random variable with mean (0 and variance 1.
Thus in the case (i) of Theorem 5.4, we can say that the Poisson
limit becomes a normal as the mean of the Poisson mndom variables
’\nnn P(A’) —* 0Q.
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