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Notations

Co(X)

Co(X)
C{;(:Y)
C{X)

M. K etc.
A. B etc.
M{A)
anA
B(H)
Bo(H)

S, T etc.
Dom T, D(T)
a{T')

@, v, etc.
o) (v}
M,

SpV |

Space of all continuous functions on a locally compact Hausdorft
topological space X having compact support
C*-algebra of all continuous functions on X vanighing at infinity

C*-algebra of all bounded continuous functions on X

The space of all continuous functions on a compact Hausdorff

topological space X

Hilbert spaces |

C" or von Neumann algebras
Multiplier algebra of A

The element ¢ js affiliated to the von Neumann algebra A

C* or von Neumann algebra of all bounded operators on H

C*-algebra of all compact operators on H
Operators on Hilbert spaces

Domain of the operator T

Spectrum of the operator T

Elements of a2 Hilbert space

The operator w — (v, w)n

The set of n X n complex matrices

The complex linear span of a subset V of a vector space.



Introduction

The central theme of the present thesis is quantum stochastic dilation of semigroups
of completely positive maps on operator algebras. It is the aim of all mathemati-
cal. or even all scientific theories,_ta understand a given class of objecis through a
canonical and simpler subclass of it. For example, abstract (*-algebras are studied
through their cqncreté realisation as algebra of apexjat.ors, 'can.tractian.s on a Hilbert
space by unitaries. Hilbert modules by the factorizable ones., to mention only a few,
In most of these cases, a general object of the relevant class is associated with a
canonical candidate qf the si_mpler subclass, in which the fﬂ'rrher s “embedded in
some natural way” and obtained back by some canonical operation _liké festrictioﬁ or
projection. Such an association of larger ob jects having simpler' structure 1s known
as dila.tion._ Typical examples include the Sz Nagy's unitary dilation of contarctions
and the Stinesp_r.ing‘s dil.a.tion_c:-f completely positive maps. On thé_ﬁ_thér hand. in
many physical theories. a dilation corresponds to viewing a physical phenomencn
in an enlarged system .cnntaining the original systém as a. subsystém, Let us now
restrict ourselves to physical models which have some relevance to the marhematical
- theories develmped in the thesls, [t is 'cu_stqmary_to model the dynamics of a con-
servative physical system by an appropriate Ha_,m'ﬂtonian mechanism described by
a group of unitaries ( in the Hilbert 'Spac_e_ framéwnrk) Or more _abstractly' a group
. of automorphisms { in the operator algebra framework), rep;:eseriting. thlewreversibie
time evolution of the system. However, in i'na.ny real physical systems the evolution
g Ir revermble and th1s is attributed to the interaction with t;he envlronment or the
| -so~called heat-bath. The evolution, when seen in the bigger system cnnmst]ng of the
c::rlgmal one as well as the the envxronment will be revermble but due l:r.:] our inability
to observe or lack of interest in the dyna.mms of the total system tha phenomenon

of nlevermbﬂlty or dlsmpd_tlmty in the system takes pla{:e
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In the context of dissipative systems arising in classical mechanies. it is often
roasonable to model the environment by the space of a suitable Markov process
(typically Brownian motion) so that the behaviour of the total system is described by
a stochastic differential flow equation and the evolution within the original subsystem
at a given time is obtained by taking conditional expectation with respect to the
filtration of the above stochastic process upto that time point. This may be physically-
interpreted as washing out environmental noises to recover the original evolution, by
the positive {or Markov) semigroup associated with the process carrying the noise.

This is the case of classical stochastic dilation.

The same idea extends to quantum mechanical systems, but there are consider-

able conceptual and technical difficulties, some of which are addressed and partially
solved in this thesis. The time evolution of an irreversible quantum mechanical sys-
tem can be represented by a semigrﬁup of linear maps acting on an appropriate
operator algebra. In classical mechanics, this algebra is taken to be some suitable
commutative algebra of functions on the state space. which is naturally replaced by
nujre general, possibly noncommutative operator algebra. in accordance with the phi-
lﬁst}phy of quantuim theory. However. the role of positivity is taken over by a stronger
| version.._namely complete positivity, which is justifiable from some physical intuition
if one demands a mild consistency of the dynamical theory with respect to composi-
tion of indépendent systems. Since the model for a reversible dynamics will be given
- by suitable families of *- -automorphisms, or at least invertible - thDmDI‘phISIHS of
the algebra Of observables, the pmblem of dilation mathematically translates as fol-
Nows ¢ | | ”
- given o srmzqmup T of cnmpletely pﬂ.ﬂiiﬂﬂ maps on an opemtur algebra A, can one
construct a semzqmuy} of 1 -1 *-hﬂmﬂmarphmms e acling on a bigger anebm 5
| Eqmpped with o conditional expectation F from B to A, such that' Ty, = F on, ¢
| To | pose it in a more rigorous manner one puts various topological properties on
both T; and A If Dné'intends to follow the classical path, it is natural to look for
a quantum an&lague of classical probability theory and then obtain a time-indexed
famﬂy 3 of *-hnmommphmms of A into a bigger albebra modelling the total system
ﬁ'cunmstmg of the orlgmal system and some “quantum noise” so that j, will sa,msfy a

sull;abla dlfferentlal equatmn usmg whlch n; may be constructed.

.-.-.j
)

'i'E-.'.}’-" AR I

A natural candidate far madelhng noise or heat bath In quantum theory is the
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Fock space over L(IR.)® fq for some Hilbert space &y. called the multiplicity space.
The choice between various kinds of Fock spaces (i.e. symmetric. antisymmetric and
free) is guided by the underlying physical model. However. we shall confine ourselves
to the case of symmetric Fock space, a choice motivated by the classical theories as
well. With a well developed theory of quantum stochastic calculus {{26], [45]) which
was achieved by the pioneering works of Hudson and Parthasarathy and followed
by a number of authors. a notion of quantum stochastic differential How was formu-
lated by Evans and Hudson { [15], [18] ) and subsequently studied by many authors
(18], [39] etc.). In this formulation an Evans-Hudson (E-H) flow is a family j, of -
“homomorphisms form the initial observable algebra A to a bigger algebra of the form
A ® B(I'(L*(IR.., ko)) for some suitable multiplicity space ko, satisfying a quantum
stachastic differntial equation djs(z) = jt(ﬂg(i))dhg(t) with jg = id. with respect to
the canonical quantum stochastic differentials dAS(t) defined in [45], [26] etc. The

maps B‘} called the structure maps. are from A {or a dense subalgebra of it) to itself
where 8 is the generator of the semigroup corresponding to the given dynamical
system. However, one may encounter all sorts of technical obstacles, arising from
- possible unboundedness of the structure maps or the possible infinite dimension of
the multiplicity space. There is a considerable amount of literature related to the
existence. uniqueness and characterization of E-H flows under various analytic con-
ditions. But the question which seems to be more important both from physical and
mathematical points of view, namely how to construct a canonical E-H flow starting
from a given semigroup, was not answered except for_ the relatively simple case of
a uniformly continuous semigroup on the fuil algebra B(h] for some Hi}bert spacé
h ([28]). One of the main achievements of the present work is the r:.o.mpiete solu-
tion of the above problem for any arbitrary. normal unifc:rmly uoxltinuou.s clampletely |
positive semigroup on an arbitrary von Neumann alge_bfa as well a,t-. any arbitrary
uniformly continuous completely positive semigroup on a_,' separable 'uni tal O alge-
bra. It may be noted here that another general dilal;iﬁn theory ﬁas?dévéloﬁed by (5]
where given any completely positive strongly continuous s_em.igmup it is possible to
obtain a time-indexed family j; of *-homomorphisms of A4 into 2 bigge_f algebra. but
in this case there is no further _str_uctﬁre of the bigger algebra,; and_thlus- there 18 no
differential equation enjoyed by j:. This theory is too'é,bst.racl; a.nd cannot give as
much information about the given semigroup as can be é;iva_n by a.nEH ﬁype dila- -

tion. However, we have shown that a ca,nonic_a,l consttuctiqn" :r'jf'__'_;Bhgt}Parthasarathy
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Blist-Parthasarathy (B-P) type dilation is always possible in the framework of Fock

~pace for semigroups to which our theory applies.

Not only we perform the general algebraic construction of canonical structure
maps to obtain an E-H flow, we also devise a new and elegant language for describing
rppantum stochastic differential equations both at the level of operator processes as
well as the map-valued processes. This is done by introdubing appropriate Hilbert
modules and module valued processes. We reformulate all the existing theory and
#lso extend its scope by accomodating any nonseparable initial or multiplicity space

without any artifice or extra effort.

Next. we extend our ideas to more general completely positive flows. Typically,
stich flows can arise by partial washing out of environmental noises and we prove that
under suitable boundedness condition this is the only way it arises. Mathematically,
the result tells that every completely positive contractive flow admits an E-H type

dilation {[22]).

Towards the end of the thesis we consider some class of strongly continuous ( not
~uniformly continuous ) dynamical semigroups for which the generator is given only
~as a form and we carry out the construction of the minimal semigroup along the line

of {12]. {31], {20] ete. with some applications.

Let us summarise the major new results contained in the thesis { references

mentioned in the paranthesis );

L. Dévelﬂpment of a module-based approach to quantum stochastic calculus. {25]
2. An extension of existing results to nonseparabie spaces. {25]
3 Construction of an E-H dilation for an a.rbitr&rf.' uniforinly continuous quantum
dvnamical .H.Emigl‘ﬂllp on a von Neumann algebra. [25]
1. A transparent proof of the homumorphlsm property of the above flow. [25]
3. Implementat‘.mn of the above flow by a partial-isometry-valued process. 125]
__ Ei Identiﬁcation of a B-P I;ype dilation in the same Fock space where the above E-H
N 'ﬂc-w is constructed [25] | |
B An extension of the result 3 to the case of a separable unital C* algebra. {23
o 8 Pruﬂf uf the resuli; that every cﬁmpletely positive contractive flow admits an E-H
- dilation. [22)

9 Canstructmn of the minimal Semigroup on a von \Teumann algebra starting from

e

| a gwen fﬁrmal unbounded generator. [24]
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Let us conclude with some relevant remarks. The emphasis of the eutire work
15 given on the semigroup out of which everything else has been constructed. Some
motivation for this point of view was in [46], though in a rudimentary form. Fur-
thermore. the achievability of a canonical dilation in the Fock space kindles hope
for an interplay between noncommutative geometry and quantum probability. al-
though to reach that ambitious target it w&ulﬂ be necessary to extend our theories

to semigroups with unbounded generator arising in any typical geometrical set-up,



5 | Introduction
Plan of the thesis :

The materials of the thesis are organised as follows :

Chapter 1.
In the fArst section we intruduce all the basic technical materials needed for our work.

We assume the reader’s familiarity with basics of functional analysis, in particular
the theory of bounded and unbounded linear operators on Hilbert spaces. All the
main results and concepts from theory of operator algebras, including the structure
of normal representation of a von Neumann algebra. predual of a von Neumann alge-
bra. universal enveloping von Neumann algebra etc. . are mentioned without proofs.
The section 2 is devoted (o a survey of basic results on completely positive maps
and semigroups, encompassing Stinespring's theorem. The Hille-Yosida theorem for
semigrdups on locallj.r convex spaces and a theorem on convergence of semigroups
are stated without proofs. Finally the characterization of the generator of a uni-
formly continuous completely positive semigroup due to Christensen and Evans ({8])
is given. In section 3 of the chapter a brief account of Hilbert C* and von Neumann
modules is presented. including the statements of KSGNS and Kasparov’s theorems.

which is foliowed by a survey of basic facts about Fock spaces and Wey) algebras in

~the last section.

Chapter 2. |

In this chapter we develop a coordinate free theory of quantum stochastic calcu-
~ lus, which works nicely for any arbitrary dimensional initial or multiplicity space.
In__ﬁrst section, we d'eﬁﬁ_e quant;uni stachastic processes ar(.), ag(.),ﬁrp(.) for R. S €
B{h,h@kg)and T € B(h@ku) where h and kg denote the initial and the multiplicity
space respectively. Thus we allow an mterplay between the initial and multlphmty

spaces, leading to the presentatmn of quantum Ito ft}rmulae in a nice algebraic lan-

guage, for example :
ar(dt)(z @ Tngr)al(dt) = R*(z ® Iy, ) Sdt.
where I' = D{L2(R.., ko)).
[ the second section of this cha_.pter, we extend the theory of quantum stochastic

calculus to map—valued.'processes in von Neumann Fock modules of the form A@T.
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Given d € B(A. AR ko).o € B(A, A® Blks)), L € B{.A). we introduce map-valued
processes of the forms a;, a}, Ag and 2 ;;'01'1 the elements of the form z @ e¢( f} where
r € A, fe L¥IR,. ky). the definitions of these processes are given naturally in terms

of the analogous processes in h ® I', for example, we set
rr}(.)(;r Re(f)u= ﬂ,;m(.)(ue(f))r u € h.

We obtain [to formulae for such map-valued processes also.

Chapter 3.
Here we take up the problem of solving a class of guantum stochastic differential

equations { q.s.d.e. } with bounded coefficients and proving various characteri-
- zations of the solutions. In the first section we study Hudson-Parthasarathy type

g.s.d.e. of the forms
dU, = ( L(dt) + as(dt) + Aq(dt) + Kdt),

and
dVi = {aR(dt) + ﬂ.g(dt) + AT(dt] + Kdt)V

with prescribed initial values. We also prove the conditions for contractivity. isometry
and unitarity of their solutions. This is followed in the second section by an account
of q.s.d.e. of Evans-Hudson type, cast in the coordinate-free language, We establish

here the existence and uniqueness of a map-valued q.s.d.e. of the form
dJ; = Jy o (al + as + Ay + Tp)dt,

with Jyp = id, where (L. 4, cr) 1S a triple of structure maps. that is. £ € B{A).§ ¢

BA.A®ky),0 € BALA® B(ko)) for some Hilbert space kg and satlsfymg some

algebram relations among them. We also construct a canonical *-hﬂm0m01phmm
A= A® B(I'(L2(IR4.), kp)) defined in terms of J; by, | N

jo(o) (ue(£) = Iz @ e(f))u.

The proot tha.t Jt is a *- homﬂmorphrsm becomes qurte transparent in our moclule
language In contrast to the proof of similar result gwen by Moh&rr and Sinha ([42).
| [39]) in the case of cauntable Jnﬁmte multlphclty ﬁrr:l:urrlly.l it is seen that the orig-
-mal proof of homomorphmm property given in r:ase of one dimensional ‘multiplicity
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space ([18]) extends verbatim if we choose the right language.

Chapter 4.
We start with an arbitrary uniformly contimious, completely positive, normal semi-

group T; on a von Nenmann algebra .4 C B(h) and recall the canonical structure
of the generator £ given by [8]. First we indicate the construction of Hudson-
Parthasarathy type dilation. namely a unitary operator-valued process Uy in h ® I
for an apprﬂpriate Fock space T'. such that U; satisfies an appropriate gq.s.d.e. and
the vacuum expectation of Uy{z @ 1}J] gives T;(z) for all z. However. we explain
that such a dilation need not be an Evans-Hudson dilation in general. if the algebra
is not B(h). For a general algebra, we construct a canonical - homomorphism of A’
( commutant of A} and applying the structure theorem for normal *-homomorphism
of von Neumann algebras we obtain a Hilbert space kg and structure maps {L. 4. &)
by a suitable “rotation ” of the set-up given by [8]. Thus. we prove that there exists
an PEvans-Hudson dilation for 7;. Furthermore, we prove that it is possible to imple-
ment the Evans-Hudson dilation 4; constructed by us by a partial-isometry-valued
process ( not necessarily unitary ) V,, such that the projection on the initial space of
V; belongs to A’ ® B(I'(L%([0,t) ® ko)) and that on the final space of V; belongs to
- AQB(T{L*([0.t) @ ko))). We also identify a weak Markov flow ( in the sense of [5] )
constructed from j; in a canﬂnical manner, such that its filtration is subordinate to
that of the Fock filtration. In the last section of this chapter we prove the existence
of Bvans-Hudson dilation for an a.rbitrary uniformly continuous completely positive

semigroup on a unital separable C* algebra, using the theory of Hilbert C* modules.

Chapter 5 | |

In -this chapter we generalize'the results of chapter 4 to completely positive con-
tractive flows. By such '@ flow, we mean a time-indexed family 5, : 4 - A ®
B(T(L*(R4, ko)) for somemultiplicity space kg, such that n Satisfies a flow equa-
tion of the form dn(z) = n(8%(z))dAS(t) and each 7; is completely positive and
contractive. We prove that any such #; can be realizéd as 1y = Lo 7; for some
+-homomorphic flow j : 4 - A® B(L(L (IR, ko ® k1)) where k; is a Hilbert
space and Ej denotes the :¢Dnditinnﬁl expectation from B(h ST (L2(Ry, ko & k1)) to
B (h®F(L2_(R+I.kO)D.. Whl(:h “ _washe# n_ut " noises associated with k. To obtain this

- characterization of completely pusitive contractive flows, we combine the results on
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the structure of such flows obtained by [35] and [36]. with the techniques developed

in {25},

Chapter 8
In this final chapter we take up the study of a class of semigroups with unbounded

generator. First we concentrate on the problem of constructing the minimal semi-
group starting from a formal unbounded generator and generalize the techniques of
Davies. Kato et al { [12], [31] ) for an arbitrary von Neumann algebra. Under suitable
hypotheses on the formal generator, we prove the existence of minimal semigroup
and obtain results on its conservativity. We also apply our theory to a large class of
classical Markov semigroups as well as some canonical semigroup on a type 1} von

Neumann algebra.



Chapter 1
Preliminaries

En this chapter we shall introduce all the basic materials needed for this thesis.

1.1 C* and von Neumann algebras :

For the material of this section. the reader may be referred to [51}], [14] and [30].

1.1.1 C* algebras

“An abstract normed *-algebra A is said to be a pre-C'* algebra, if it satishes the C°
pmpertjr . fle*z|| = ||lz]|®. If A is furthermore complete under the norm topology.
one says that A4 ig a C* algebra. The famous structure theorem due to Gelfand.
Naimark and Segal { GNS) asserts that every abstract C* algebra can be imbedded
as a norm-closed *-subalgebra of B(k) ( the set of all bounded linear operators on
some Hilbert space h). In vi_eﬁ of this, we shall fix a complex Hilbert space & and
consider a concrete C* algebra A inside B(h). The algebra A is said to be unital or
non-unital depending on whether it has an identity or not.

| We briefly discuss some of the important aspects of C* algebra theory. First

of all. let us mention the following remarkable characterization of commutative

algebras :

Theorem 1.1.1 Every commutative C* algebra A is isometrically isomorphic to
the C* algebra Cy(X) consisting of complez valued functions on a locally. compact
Hausdorff space X vanishing at infinity. In case A is unital, X is compact.

10
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If A is non-unital. there is a canonical method of adjoining an identity so that A is
imbedded as an ideal in a bigger ugital C* algebra 4. In view of this. let us assume
A to be unital for the rest of the subsection. For z € A. the spectrum of .z, denoted
by o(z). is defined as the complement of theset {z € €': (z1-z)~! € A}. It is known
that for a self-adjoint element z, o(z) C IR, and moreover. a self-adjaint element z is
positive { that is. z is of the form y*y for some y) if and only if o(z) C [U x}. There
is a rich functional calculus which enables one to form functions of elements of the C*
algebra. For any complex functian which is holomorphic in some domain containing
{x). one obtains an element f{z) € A by the holomorphic functional calculus.
Furthermore. for any normal element z. there is a continuous functional calculus
sending f € Clo(z)) to f(z) € A where f — f(x) is a x-Isometric isomorphism from
Clo{z)) onto C*(x), the sub C*-algebra of A generated by z. In particular. for any
positive element z, we can form a positive square root /z € A satisfying V/.E? = .
For any element z € A, we define its absolute value, deﬁﬁted by I:r;],:to be the element

vVz*z. For a self-adjoint element 2z, we define two positive elements =+ and 2~ called

respectively the positive and negative parts of z. by setting o+ = EELH I == f:ﬂ.; =,
Clearly. z can be decomposed as z = £+ — z~ and furthermore z*z~ = 0.

A linear functional ¢ : A — & is said to be positive if ¢(z*z) > 0 for all z. It
can be shown that the algebraic property of positivity implies the boundedness of
¢, in particular {{¢}| = ¢(1}. Any positive linear functional ¢ with ¢>(l).= 1 is called
~ a state on A. It is said to be faithful if ¢(z*2) = 0 implies x = 0. 1t is clear that
the set of all states on A4 is convex. and it is compact in the weak-* topology of A”.
The extreme points of this compact convex set are called pure states. The following

theorem. known as the GNS construction for a state, is worthy of mention

Theorem 1.1.2 Given a state é on A, there exists a triple { called the GNS triple )
(Hp, e, b)), consisting of a Hilbert space Hy, a x-representation ng of A into B(My)
and a vector £y € Hy whick is cyclic in the sense that {me(z)éyp : x € A} is total in
He, satisfyiﬁg - -

. aﬁ(ﬂi) = (fqba?:fd:(ﬂ_?)'ftﬁ)j.. B

‘Moreover, ¢ is pure if and only if 74 1s irreducible. =
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1,1.2 von Neumann algebras

As a Banach space. B(h) is equipped with the operator-norm topology. but there are
other important and interesting topologies that can be given to it. making it a lo-
cally convex { but not normable in general ) topological space. The most useful ones
are weak. strong, ultra-weak and ultra-strong topologies. However. although B(h)
is complete in each of these topologies, a general C* subalgebra A of B(h) need not
be so. It is easily provable that A is complete in all of the above four locally convex
topologies if and ﬂﬁly if it is complete in any one of them, and in such a case A is
“said to be a von Neumann algebra. Furthermore, the strong (respectively, weak) and
uitra-strong (resﬁectively, ultra-weak) topologies coincide on norm-bounded convex
~ subsets of A. It is known that if h is separable, then any norm-bounded subset of
A is metrizable in each of the ultra-weak and ultra-strong topologies. The following
theorem. known as the Double commutant theorem due to von Neumann is of funda-
“mental importance in the study of von Neumann algebras. Note that for any subset
B of B(h). we denote by B’ the commutant of B. i.e. {z € B(h) : zb=bx V be B}.

Theorem 1.1.3 A unital C* algebra A {is'_ﬂfso von Neumann if and aniy. if A =
- A”(E_ (w‘d.,)f]. .

For the rest of this subsection. let us denote by .A a unital von Neumann subalgebra
of B(h). A is said to be o-finite if :ther."e does not exist any uncountable family of
-lnutually orthogonal projections in 4. We say that A is a factor if the centre is
trivial, i.e. AN A" = {A1, A € @}, There is a profound classification theory of factors
| ~and also detﬁmpbsability of any von Neumann algebra into factors, but it is not
relevant to us, -

Any von Neumann algebra has enough projections and unitaries. in the sense that
A is the strong closure of the *-subalgebra generated by all projections ( respectively
| uni!;gr_ies)_ in A, Fur.the;rmﬁre, if £ € A and E.(.) denotes the-family-of spectral
mea,suifes of z. then E.(A) € A for all Borel set A. We remark that this fact is not
true for a general C* algebra which is not von Neumann. A state ¢ on A is said to
be normal if ¢(zq) increases to ¢(z) whenever 0 < z, 1 z for a net {ﬁnn} C A. More
‘generally, we call a linear map 9: A8 (-where B is a von Neumann algebra) to be
positive if it takes positive -e.]emenl.;s of A to positive elements of B. @ is called normal
if whenever 0 < :r:,.;,I Tz in A, one has ®(z,) T ®(z) in B. It is known that a positive
linear map is normal if and only if it is continuous with respect to the_ultra-ﬁeak
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topology mentioned earlier. In view of this fact, we shall say that a bounded linear
map between two von Neumann algebras is normal if 1t 1s continuous with respect
to the respective ultra-weak topologies. Normal states. and more generally normal
positive linera maps (in particular, normal *- homomorphisms) play a major role in
the study of von Neumann algebras. The following result describes the structure of

a normal state .

Theorem 1.1.4 ¢ is a normal state on A if and only if there is a trace-class operafor

p on h such that ¢(z) = tr(pz) for all z € A.
A is said to be maximal abelian if both A and A’ are abelian. It is known that

Theorem 1.1.5 A mazimal abelian von Neumann algebra is isometrically isomor-

 phic with L™(2,. F, u) for some measure space {(§2, F, 1s}.

In view of this result, the thearj' of von Neumann algebras can be looked upon as a
noncommutative measure or probability theory. Many of the well-known theorems,
such as Radﬂn-Nikodym theorem, martingale convergence theorem etc. have their
appropriate generalizations in the set-up of von Neumann algebras. However, we
- shall not go into that direction.

A remarkable property of von Neumann algebras is the beautiful and p&fticularly
simple structure of its normal *-homomorphisms, This plays a canonical role in a
major portion of the present work. There are three basic and na,tura.i.ways' in which
a normal *-homomorphism 7 of A can arise : - o
(i) Reduction : w(x) = PxP, where P is a proj.ection._'lt is easily seen that (see
Lemma 4.5.2 for a proof) P necessarily belongs to A" -'

(i) Dilation : m(z) = z ® 1} for some Hilbert space £.
(ii1) Unitary conjugation : #r(:r_:) = I"*zT where T is a unitary in B(h). |
The fa]lowing theorem asserts that every normal *-harﬁomﬂrphisrhs of A is a com-

position of the above three types.

Theorem 1.1.6 Given a normal «-homomorphism w : A = B(K) for some Hilbert
space K, there exists a pair (T, k) where k is a Hilbert space and I is a partial
isometry .from K to h®k such that nw{z) = I'(z ® L)', and the projection I"I‘f"
commutes with & ® 1. for all z € A, Moreover, if © is unital, P i an isometry. In

case.h is. separable, one can choose k to be separable as well.
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- We conclude ouf brief account on C* and von Neumann algebras with some discus-
sions on the enveloping von Neumann algebra and the predual of a von Neumann
algebra. Given a unital C* algebra 5. denote the set of all states by {). Yor o €
{1, we denote by (He,7e.Ep) the associated GNS triple. Let H = SpenHo and
T = ey We call 7 to be the universal representation of B and the weak clo-
sure of w(B), i.e. (B} in B(H), is known as the universal enveloping von Neumann

algebra of B. We denote it by B. Indeed, it has the following universal property.

Theorem 1.1.7 Given any »-homomorphism p of B in some Hilbert space K. there
exisls ¢ unique normal x-homomorphism p : B — B(K) such that pomw = p.

Moreover. the image of plB) is the weak closure of p{B) in B{K).

For a von Neumann algebra A C B(h), there is a Banach space A.. called the
predual of A. such that the Banach dual of A. coincides with A with norm topology.
whereas the weak * topology coincides with the ultra weak topology of A. Let us
| give an explicit description of the predual
 For a real linear space we shall consider as its dual the space of all real linear
functionals on it. We denote by By(h) and Ba(h) the set of all trace-class operators
| and of all Hilbert-Schmidt operators on h respectively. Let B5%(h) and B{-%(h) stand
for the real linear spaces of all bounded self-adjoint operators and all trace-class self-
adjoint operators on h respectively. For a von Neumann algebra A contained in
B(h). we denote by A, the subset of all_self—-adjoiﬁt elements in 4. and Ay, be the
predual of Ay, We define an equivalence relation ~ on B(H) by saying p; ~ ps if and
only if ir(p1z) = tr(mz)Vz € A. We denote by A% the closed subspace {p € B (h)
L P w'{l},: For p € B|{]). we denote by [p] its equivalence class with respect to ~., and
1ol = inf peslimlh, where |.}]) denotes trace-class norm. By Aj- we shall denote
the set of all self-adjoint elements in AL, Clearly; Aj is a closed subspace of the real
Banach spacé: Bi*(h) and hence one can consider the quotient space B (h}/A;
For p € "B‘f'“'(h), let us de'not&'by [p]n the equivalence class corresponding to p in
the above quotient. It is easy to observe that the quotient norm of [p]s, say ||[o}x]l,
coincides with ||[p]|| defined earlier. To see this, it is enough to note that whenever
5 ~ p and p is self-adjoint, then n* ~ p, and thus (n+9*)/2 € {p]; and ||(n+9*}/2||x
< linlli. This implies that ||[zlal] < lll[#}l] and hence they are equal.

We now describe the structure of A, and Ay, as follows
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Proposition 1.1.8 (1) A, = B\(h)/ A+ = Q4, where = denotes isomeiric isomor-
phism and (4 denoies the space of all normal complex linear bounded functionals on
A. The canonical identification between A and (By(h)/ A=) 15 given by. A> ¢ —
Cz € (Bi(h)/ ALY where (o ([o]) = tr{pz). Moreover, an element [p] of Bi(h}/ A+ is
canonically associated with wy,) 1n {14 where qa[p](a:) = tr{pz), z € A,

(1) Ap. = B (h)/ A} = Qgu,, where Q4, denotes the space of all real linear
normal bounded functionals on Ay. The identification between [ply and its counter-

part @y, (say) in 4, is given by, vy, = ir(pz), 2 € Ap.

PROOF : (i) is contained in Proposition 2.4.18 of {6]. We prove (ii} as an easy
application of (i). Let us consider v : Ay, — (By*(h)/Af)* defined by, ¥(z)([p]n) =
tr(pz), p € By“(h)/ A, z € Ap; which is clearly well-defined, linear and one-~to-one.
To see the ontoness of 1, it Is enough to note that given ¢ € (BF%(h)/ A7 )", we can
extend it to ¥ by defining 9([p]) = I({Rep|n) +i9([Tmp]s) and by (i), there is an z €
A such that '5‘([;1]) = tr(pz) ¥ p. Thus, 9{[plr) = 9([p]) = tr(pRe(x)) + i tr(pIm(z))
for p € B§%(&); and since 9{[p)) is real, we must have that 9([p],) = tr(pRe(z)) =
Y(Re(z))([pln). Now we observe that for a positive p € Bi(h), py, (as defined in the
statement of (i) ) is a positive linear normal functional on A4, and hence ||[p)s.

o)l = gl = @ (1) = tr(p). We bave () (oln)] < llalll[fohal, hence [l <
llzl|. On the other hand, for any self-adjoint z. ||z|| = supueh‘“ﬁ“,__;li < U, Y >

3“?1:&&.”1;”:1”7'(!3111'” ':. Supueh‘”u[[:llw(m)([ u]h)l < SHPHEE.’;,HHH::IHw(m)”‘“[pu]M' |
||(x)|| (where < ... > denotes the inner product in & and p, denotes the rank-one
operator |1 >< u| ). Thus, ||z|] < |[4(z)|] also, proving that |{z]| = |[¥(z)|].

The assertion that [p], — vy, is an isometric isomorphism is a straightforward

i

(

consequence of (i), after noting that any o € ,;1& can be extended to & defined by

&(z) = al(Relz)) + i a(Im(z)) for z E.A and it is easy to prove that &l = el

In fact. {ﬁ[b]h = (. and ({[plpl] = ll[p].ll.,' which completes the proof by invoking (i).

Let us fix sor_né more notational convention which will be useful parti.cu]arly "in__
chapter 6. For Hilbert spaces h; and vnh .Neuma.nn alg'ebras A, contained in B{h;} (2
=1,2), and a linear map T : Bie(h;) = B (h;i) (1,7 € (1,2) ), we shall say t_hat
T induces a map T : Bf%(hy)/ At = By ®(h;)] Aji- if TAij Aj+; and in such a
case we define T by T((p]s) = [Tpls. Upto canonical identification; T will give rise
to 4 map from Q A h' to 2 4;, which we shall denote by the same notation as T. For
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iPip € Bi*{h)and ¢ € Ap. Pl = triplaz) = tripz) is a class-map. We say i
to be positive if {r({pjpr] > 0 V positive z € Ap. It has already been noted in the
‘prouf of the previous proposition that for positive p. {p], is also positive. and j[p]n il
= tr{p) = ||p|l;. Conversely, if [p]s is positive, then the associated functional ¢,
(€ Q4) is positive and hence 3 a positive gy such that tr{pz) =, (z)=tr(pez) V 2
e A: which in particular implies [p], =[po]s. Thus. ||[p}e|l=llpa]all =tr{po) =tr(p).

This ohservation will be useful and let us summarise it as follows :

Lemma 1.1.9 [pln is positive if and only if 3 a positive py € [plp; and in such a

case. {|[plall = tr(p) = tr(po).
We also have.

Lemma 1.1,10 For two positive elements [p], and [o}y € By (A)/ Ay, IHiels +{a]nl]
= t'[ﬁ]h“ + l![':'i].l'tll

PrOOF : It is immediate from the previous lemma since {p+ ofp = [p]n + [o]n. which
is clearly positive: and thus {|{p + o]i|] = tr(p+ o). | 0

1.2 Completely positive maps and semigroups

'1.2.1 Complete positivity

Let us consider two unital *-algebras A and B and a linear map T : A — B. Recall
- tha_!:_.T is S:iir,_l to be positive if it takes positive elements of A to positive elements
of B. It isﬁ clear that a Iﬁqsitive map 18 “real” in the sense that it takes a self-adjoint
element into a sélf-adjoint element. Given any such pusiti've map 7. it is natural to
consider Tp =T ®id: A @ My — B ® M, where M, denotes the algebra of n x
cnmplex matrices. A natural question which arises is the following :

IS T,,_ a pomtwe map for each n ?

The answer tn th1s questmn is negative, as the following simple example illustrates.

Example 1.2.1 Lef A be Mo, the algebra. of 2x 2 complex matrices, and T : A — A
be the map given by T(X) = X', where ! denotes transpose. That is, (i,7)-th element
of T(X) is the (j,i)-th element of X. Clearly, T(X*X) = X' X > 0, where the
(4, 7)-th element of X is the complex conjugate of (i,7)-th element of X. Hence
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. . . _ . | L
T is positive. We claim that T is not 2-positive. Take Xy = | 0 | Xy =
; |

0 0 | | |
( _— ) . Consider the element of Ma ® My given by the block matriz form X =

X5X1 X5X,
computation it can be verified that T(X) s the 4 x 4 matriz

XX XX . - |
( [ ) . Clearly X is positive in My @ Mq = My, But hy o simple

2 0 —i 0)
0 0 - O
ioio1 1 [
\o 0 1 1/
which is not positive since its determinant = ~2 <0,

We say that T is n-positive if T}, is positive for all k < n,andnot for k =n+1. T
is said to be completely positive (CP for short) if it is n- positive for each n. The role
of positivity in classical probability is played by complete positivity in the q.u-a,ntum
theory.

Let us now formulate the notion of complete positivity in a slightly different but
convenient {anguage, namely that of positive definite kernels. For this purpose. we
first need a few definitions and facts. For a set X and a Hilbert space H. a map
K: XXX — B(H)iscalled a kernel. The set of all kernels is a vector space. denoted
by K'(X;H).

Definition 1.2.2 4 kernel K in K{X:H) is said to be +ve definite if for each posi-
tive integer n. and each choice of vectors wy,... 4y in H and elements z,,....2, € X.

one has ZEjzi(K(;Bi,mj)uj,ui)' > 0.

Deﬁnitiun 1.2.3 Kolmogorov decarﬁpdsitibn.: o

Let K € K(X;H). Let Hy be o Hilbert space and V : X — B(H,Hv) be o map
such that K(xz,y) = V(zy*V(y) V z,y € X. Then (V, Hy) is said to be a Kolmogorov
decomposition of K. It is said to be minimal if the set {V(z)u cx € Xou € H} is
total in Hy. Two K olmngm'nu_'de:compositims_ (V,’Hy) and (V. Hyr) are said to be
equivalent +f there exists a unitary U : Hy ~y M such that V'(z) =U V(:r:) Vr € X,

- Let us now prove that any positive definite kernel admits a canonical minimal Kol-
mogorov decomposition. Let Fy = Fy(X;H) denote the vector space of H-valued
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functions on X having finite support and let FF = F(X:H) denote the vector space
of all H-valued functions on X. We identify # with a subspace of the algebraic dual
F}, of Fy by defining for p € I the functional {p,.) on Fp given by.

(p, f) = Z(M)fm))

LEXN

for f € Fy: where the summation is actually over a finite set since f has finite support.
Given X € K{X:H) we define an associated operator K : Fp(X:H) = F(X:H) by,

(Kf)(z)= ) K(z,y)f(v).

yeN
Then it is easy to verify that K is +ve if and only if (K f,f) = 0V f € Fo(X;H).

Lemma 1.2.4 Let V be o vector space. V' be its algebraic dual, with the pairing
V!xV = @ written as v'.v = {(v',v). Let A:V — V' be a linear map such that
(Av,v) 2 0 Yu € V. Then there exists a well defined inner product on the image
space AV given by, (Avy, Ave) = (Avy,v2). .

Proof: The sesquilinear form vq,vs — a{v),v2) = (Av;,vq) is nonnegative, so that

by Schwarz's inequality one obtains
[(Avy, v)|* € (ATH_,Ul)(A’Ug,‘Ug).

It follows that the set Vi = {v € V : (Ay,v) = 0} coincides with KerA and the
natural projection = : V' — V/KerA carries the form a(.,.) into an inner product
( Ja on V/ikerA given by, {w(v{), 7 ‘Ug 1A = a{v),v2). the vector space isomorphism
| ‘1 V/KerA— AV given by A'm = A carries the inner product {.,.)4 into an inner
pro_duct (...) on AV givén by, (A*ul,Avg} = (A'w(v1), A'w(vg)}) = (w{vr), m(va)) 4y =
(Avy, ). | | | B | '

‘We now prove the existence-uniqueness for a minimal Kolmogorov decomposition

in a few steps.

'Thenrem 1 2.5 Given a +ve definile kemel K e K(X,H), there ezists o unique
Hﬂbert spuce ’R.(I{ ) of H-valued functzuns on X such that

) REK) s the closed linear span of K(.,z)u;z € X,u € H.

() (fz)u) = {f, K(,2)u) Vf e R(K), 7€ X andu € H.
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Proof © Since K is +definite. the associated operator K satisfies the hypothesis of
1.2.4 . so that we obtain an inper product (...} on K Fy and let us denote by KF,
the completion of K Fy with respect to the norm inherited from this inner product.
and identify K Fy with a dense subset of KFy. For each z € X and u € #. define
the function ur in Fy by setting u,{y) = » if y = = and 0 otherwise. Clrearly.
(Ku,j(y) = Kly.z)u. Define K on H by setting K,u = Ku, for all z € X.
u € H. Then [[K,uf < ”K(:Ih:ﬂ)”%.“’u“; and hence K, is a bounded linear map. A
straightforward calculation shows that on KFy we have K f = f(z). The mapping
from ﬁ into the space of all H-valued functions on X which sends f into the
function ¢ — K:f is linear, injective and compatible with the identification of K Fy
with a dense subset of IH{F{]. thus we regard ﬁ as a Hilbert space R{K) consisting
of H-valued functions on X. We have already proven that R{KA} satisfies (i) and

(ii). Uniqueness of R{K) is easy to see. | - - a

Detinition 1.2.6 R(K) in the above theorem is called the reproducing kernel Hilbert
space for K. |

It is now easy to prove the following :

Theorem 1.2.7 A4 kernel K 18 +ve definite if and only if it admits ¢ minimal
Kolmogorov decomposition, Moreover, any Hwo minimal Kolmogoroy decampasitiohs

for the same kernel are equivalent.

Proof : The if part of the Hrst statement is trivial; for the only if part we take H;- =
R{K) and V(z) = K; : H — ’R(K) as in the proof of theorem 1.2.4, noting that
(V. Hi-) s minirhal by (i) of that theorem. To prove the second part of the present
theorem, let us assume that (], Hv,) and ( Vg,?{;,;.) are two minimal Kolmogorov
decampﬂmtmns for the same kernel K. Define a umtary U : Hy, — Hyy by setting
U(Vi(z)u u) = Va(z)u and extend it by llneamty and density to the whole of Hyy. 16
: is clear that U is well defined and unltary | sl

Let us now come back to complete pos1t1v1ty and deduce the fundamental theorem

of Stinesming. Let us fix a Hilbert space h and a unital *ﬂsubalgebra A of B{h).

Proposition 1.2.8 Let T be a linear map from A into B(h). Define an associated
“kernel K7 : Ax A = B(h) given by, Kr(z,y) = T(z'y) for z,y € A. Then T is
completely positive (CP) if and only if Ky is positive definite, |
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Proof : For uy..... un € hand zy.....2n € A 3, K (, 25)uy, ui) = (T (X)i. 0).
where X denoctes the element in AQM,, = M, (A) given by the A-valued 7 x n matrix
({zjx;}), Ty denotes the map T ® I\, and & denotes the vector u; G ur & ... D uy
mhd... P A Since. by our choice X > 0 as an element of A& M,, it is clear that

- positivity of T, for each n is equivalent to the positive definiteness of K. 0

Theorem 1.2.9 (Stinespring’s theorem .) |
A lnear map T : A — B(h) is OP if and only if there is a triple (K.7m. V') consisting
of a Hilbert tspace K. a unital x-homomorphism 7w : A - B(K) and V ¢ B(h.K)
such that T(z) = V*n(x)V forallz € A, and {w(x)Vu:u € h,z € A} is total in
K. Such a iriple. to be called the ‘Stinespring triple' associnted with T, is unique in
the sense that if (K',n", V') is another such triple. then there is a unitary operator
C: K — K such that 7'(z) = T'n(z)[* and V' =TV,

Furthermore. if A s a von Neumann algebra and T is normal. w can be chosen

to be normal.

Proof : Let (A, K} be the minimal Kolmogorov decomposition for the kernel K7
defined in the statement of 1.2.8. For z € A, define a map n(x) on the linear span
of vectors /\(y)u by setting 7(z)(A(y)u} = A(zy}u, and by extending linearly. The
complete positivity of T enables us tdverif‘y that indeed #(z) is well defined and one
has,

b () ( Z}\(mt Jug) ”2 < ":I-'"z" Z-’\(ﬂh)u:[l?

for any ﬁmte collectlon Tise..,Zn Of elements of A and u1, cvoaty In A, Thus,
7 (:x) extends as a bounded linear map on the whole of X and it is also clear that
T A -}'B(Kf) is a *-homomorphism. To complete the proof of the existence part.
we choose V = A(1) and note that T(z) = A(1)*\z) = V*w(xz)V. The proof of
uniqueness is straightforward and omitted.

In case A is a von Neumann algebra and T is normal, let us prove the normality of
m. Let 0 < x4 Tz where Za is a net of elements in A and = € A. Note that normality
f_-:::-f T implies its ultra—weak continuity, which coincides with the weak continuity on

.:"nnrm-baunded convex sets. Thus, for 4,z € A, u,v € h, we have.
(ﬂ(ﬂ:n)()\(y)ﬂ)a M2)v) = (u, T(y" za2)v)

= (u, Ty z2)v) = (n(z)(My)u), A(z)v).
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Here., we have used the fact that z, is a bounded net and hence so is the net y"z,z.
Thus, for any vector € which is a finite linear combination of vectors of the form
Alyhu. vy € A, u € h, we have that (n{z,)&, £} converges to {w(z)£.£;. Since the net

m{Z4) is norm-bounded, this holds for all £ in . Hence 7 is normal. - 0

We now mention a result ( see [17] for a proof ) which shows that the distinction

between positivity and complete positivity appears only in noncommutative algebras.

Theorem 1.2.10 If A is a commutative C* algebra and 5 is any (™ algedra. then
any positive map from A to B is aulomatically CP. Similar statement holds for any

positive map from B to A.

1.2.2 Semigroups of linear maps in locally convex spaces |

In this brief subsection, we mention without proofs a few standard and ﬁseful results

from the theory of one-parameter semigroups of continuous linear maps acting on a
locally convex topological vector space. For a more elaborate account and proofs,
the reader may be referred to [52].

Let X be a locally convex, sequentially complete, linear topological space and
(Tt hi>o be a 1-parameter family of continuous linear operators from X to itself sat-
isfying Ty = Thps, Tp = I and limyy, Tiz = T,z for all z € X and £ > 0. Such
a family is called a 1-parameter semigroup of class Cy (or strongly continuous) of
operators on A, The family T; is called equi-continuous if given any cnn_tinudus sermi-
norm p on X, there exists a continuous seminorm ¢ on X such that p(Tiz) < g{z)
for all ¢t > 0 and z € X. If X is Banach space and £ — T} is continuous in map-norm.
that is, limy—, |7} — T3 || = 0. then we say that T; is uniformly continuous or norm-
continuous. 1t is easy to show that T} is uniformly continuous if and ahly if there
exists I € B(X) such that T, = et* for all ¢, o

Given an equi-continuous semigroup of class €y on X, we define a linear op-
erator A on X, called the generator of T), with the domain D(A) = {z € X :
lim;,04 Iﬁ%ﬂ exists}, given by Az = limy,04 z‘%:’—f‘i for z € D(A). It is a remark-
able fact that D(A) is dense and A: is closed. Furthermore, for any = € D(A4), Tiz
also belongs to D(A) for all t > 0 and AT,z = Ty Az. The following beautiful and
useful theorem due to Hille and Yosida characterizes generators of equi-continuous

sBm-igroups of class Cy.

o——
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Theorem 1.2.11 A closed linear operator A on X with dense domain is the genera-
tor of en equi-continuous semigroup of class Cy if and only if¥n = 1.2.... (nf-A}7*
ri5ts as @ bounded operator and the family {(I~n"'A)""}a=1.9....m=0.1.2.... (S EGti-

continuous.

Specializing to Banach spaces. the above equi-continuity translates into the existence
of a positive constant ¢ satislying [[(J = n~!A)"™ < C ¥Yn.m: and furthermore. A
s the generator of a contractive semigroup (that is. each T} is a contraction) if and
only if J( -n 'A< 1Vn=1,2,.

Convergence of semigroups is an important issue in the theory of semigroups and

in this context. we state the following theorem (due to Trotter and Kato} which will

be utilized by us in the last chapter of the thesis.

Theorem 1.2.12 Let X be a locally convez. sequentially complete. complec linear
space and for eachn = 1.2,... let .(Tt{”])tzﬂ be an equi-continuous semigroup of cluss
Co with generator A,. Assume furthermore that

(i) For any continuous seminorm p on X, there exists a conlinuous seminorm q on
X such that p(T™2) < gz) VE> 0.n = 1.2,... and z € X.

" (ii) For some g with Reig > 0, thef'ﬂ exists an invertible operator J: X -+ X such
that the range of J is dense in X and J(z) = imp—oec(io — Ap) ~Hz) Vz € X.

| _.T}’zerz (A'U — J1) is the generator of an equi-continuous semigroup (Ti)e>0 of class
Cy setisfying Ti(z) = limn_i.;ﬂT }_( ) Vz € X and the above convergence is uniform

over compact subintervals of [0, co).

In case X is a Banach space and T{”} Iy are contractive seinigmups. it is easy
to see that the followings are equivalent : |
(a) T { 3 (x) canverg&s (umfmmly on Lumpacts) to 1 (x).
(b} (A~ A4,V Y z) ~ (A A~ Hx) Yz as n — 0o for some A with Rel > U where
Ap and A denote the generators of Tf and T; respectively.
- (C):- (A—Az) " ) — (A=A)"Yz) Yz as n — o0 uniformly in A over compact subsets
~of the right half plane {): Re) > 0}. ' | .
. For a locally convex, sequentially complete, linear topological space'X . let us

 . denote lby. A" its dual. viewed naturally as a locally convex space. Given an equi-

. _continuous semigroup T; of class Cy on X, it is natural to consider the dual semigroup

T on X*. T} will be equi-c ontmuous but not in general of class Cy. It is of class

Co when X* is also sequenﬁmlly cumpl&te
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1.2.3 Generators of uniformly continuous quantum dynamical semi-

groups

Let us now restrict ourselves to the case when the general locally convex space X is
replaced by a topological algebra A, to be precise, a C* or a von Neumann algebra.

and study the implications of the complete positivity of Ty.

Definition 1.2.13 A quanium dynamical semigroup on a C* algebra A is ¢ con-
tractive semigroup T; of class Cy such that each T; is completely positive map from
A to itself. T; is said to be conservative if Ty(1) = 1 for all £ > 0.

For a uniformly continuous semigroup on a von Neumann algebra A g B(h.); we

have the following result :

Lemma 1.2.14 Zet Ty = e'* be a uniformly continuous contractive semigroup acting
on A with L as the generator. Then T is normal for each t if and only if L is ultra-

strongly {ond ultra-weakly) continuous on any norm-bounded subsetl of A.

Proof : It L is ultra-strongly continuous continuous on bounded seis. then clearly
etf is ultra-strongly continuous on bounded sets for each ¢, and hence normal. For

the converse. first note that for any £ > 0 and =z € A, we have

(o) ~ o < [ ITu(e@lds < bl

Hence it is easy to see that

Tt(ﬂ:) - :L‘”
A

= Iy [ {£@) - Tt

1 £
< ) IEmE@)sds

< heiPlels.

IL(z) -

Now suppose that z, is a bounded net of elements in A such that £, strongly
converges to £ € A and let ||zo]l < M Va. Fix v € A and ¢ > 0. Choose fy small
enough so that [|L[[ZM |juljto < -%E. Clearly, | |

|£(za — 2)ul N _
S & -z — (g —xy.
< getl(refatB ooy,
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which proves that £(x, — £)u — 0 since T} is normal, This shows the continuity of

£ with respect to the strong. or equivalently ultra-strong topology on bounded sets.

Similarly. one can prove the weak ( and equivalently ultra-weak) continuity.

In view of the above result, we shall make the following definition :

Definition 1.2.15 We define a quantum dynamical semigroup on e von Neumann
algebra to be o semigroup T, of completely positive. contraclive maps on the von
Neumann algebre such that T is normal for each t. In case when T} is uniformly
continuous. its norm-bounded generator is ulira-strongly { and ultra-weakly) contin-

uous on bounded sels.

It is to be noted that although each 7} acts on an algebra. the domain of the
generator need not be an algebra, nor it may contain any #-subalgbra which is sufhi-
ciently large in any reasonable sense. This is a fundamental difficulty in translating
the complete positivity of the semigroup into some property of its genera'tcir, How-
ever. when 7, is uniformly continuous, its generator is defined as a bounded map on
the whole of A. facilitating the analysis of complete positivity. Thus, for the sake
of convenience, we assume for the rest of the present subsection that Tt is uniformly
continuous. To understand the implication of complete positivity, let us first note

some definitions and results.

Definition 1.2.16 Let A and B be two C* algebras such that the former is a sub-
algebra of the latter, and L : A — B be a bounded linear map with the property that
L iz real, that is, £L{z*} = L(z)* for all z € A. We call L conditionally completely
postiive (CCP) if .

n
Z bi L{alaj}b; 20
ij=1t

for allay.....ap. in A and bq,.... by in B satisfying Z;fj_:l aib; = 0.

We first give a few characterizations of conditional complete positivity in the lan-
guage of positive definite kernels.  We state the result without proof, which can be
found in [17] (page 70-71, Lemma 14.5).

Lemma 1.2.17 In the notation of the above deﬁnitiﬁn (1.2.16), the followings are
equivalent : ' | | o

(i) For all a € A, the kernel A x A 3 (b, ¢) — H’ﬂ(.b;. ¢} = L(b*a"ac) +b*La*a)c —
L(b*a*a)e — b* L{a*ac) is positive-deﬁm’te. |
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(it) The kernel (A x A) X (A x A) 2 (by.63),{e).ca) — L(b}b5cocy ) + 07 L (b5 )y -
L£{b1b3ca)ey — b1 L(b5caey ) 45 positive definite.

Lemma 1.2.18 Let £ be a bounded linear real map from a unital C* algebra A to
itself such that e'“ is a contraction for each t > 0. Then the followings are equivalent:
(1) et* is positive for all positive t.

(i) (A — L) is positive for all sufficiently large positive .

(iii) For y,a € A with the property that ya =0, one has a* L(y y)a > O.

Proaof :

(1) = (iii) ;

First assume that £{1) = 0. I y,a satisfies the hypothesis of (iii), we have that
(“'Em(ylg“"“'?’:yﬂl = “-Ewﬁyul‘”“ > 0 for all positive £, and hence taking limit as

t — 0+. we obtain a*L(y*y)a > 0. Now. for the general case when L£{1) is not 0, we

consider an enlargement of the original algebra A to the bigger algebra 4 & @ and
an appropriate extension of T, = e given by Ti(z @ ¢} = (Ti(z) +¢.(I - TH{1})) G c.
It is clear that T} is a conservative quanturn dynamical semigroup on A® ¢ with the
generat'or L given by Llz @ ¢} = (L(x) — ¢L(1)) & 0. By what we have proven for
the conservative case. we have that if ya = 0 for y,a € A, then |
0> (a®0)*L{(y®0)* (y®0))(e®0) =a"L{y"y)a.

(iif) = (i) : | _ _

Let A be greater than ||L||. Let z be such that (A — L)(z) > 0. Since £ is real,
Im(A — L)(z) = (A — L)(Im z). and positivity of (A — L)(z) implies in particular
that Im{) — L)(z) = D.._ Hence we have (A — E)(a:) = (A = L)(Re z), and thus we
may assume without loss of generality that z is self-adjoint. We want to show that
r 1s positive. Let o = 7 — r~. with 27 aﬁd x~ positive and 2%z~ = {). -Thén..
by (i-iiL we have 2~ L{z1 )z~ > 0, so that § < :'f:'“h[:c'—-— AL(D)em = —(27) -
A e Lz + A 'z~ L(z" )z, Thus 0 < (z=) < A"I:B_L:(:I:_.'Jl‘h. and hence
Iz~ I1° < ALz 113, which implies fjz~|| = 0, since ||I£]| < A.

i) = () ! | ST . |

This follows from the identity et = imp_y00(1 — T—*;-—E)"‘". | n

- As asimple application of the above lemma, we obtain the following useful result :

Theorem 1.2.19 A bounded linear a&jm'nt-preserﬂing map L from a unital C* al-
- gebra A to idtself is COP if and only if e*“ is CP for all positive t.
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Proof : It is enough to observe that £ is CCP ifand only if (L&) : AQM; — ABM,

sarisfies the hypothesis of (iii) in Lemma 1.2.18 with A replaced by A ® M. -

We shall now prove a structure theorem for normal CCP maps acting on a von

Neumann algebra. For this, we first quote a result without proof. ( see (8] for a

proof.)

Theorem 1.2,20 Let A be a von Neumann subalgebra of B(L) for some Hilberi
space h and W@ A — B(h) be a derivation, that is. Wiab) = W(a)b+ aW (b). Then
there ezists an operator T € B(h) such that W{a) = Ta — aT for all a € A.

As an application of this theorem, the canonical structure theorem for normal CCP?

maps is established.

Theorem 1.2.21 (Christensen-Evans)

Let (Ti)i>o be a uniformly continuous quantum dynamical semigr;iup (g.d.s.) on
o unitel von Neumann algebra A C B(h) with L as its ultra-weakly continuous
generator. Then there is a quintuple (p, K, o, H, R) where p ts a unital normal -
representation of A in a Hilbert space K and a p-derivation a1 A — B(K) such that
the set D = {ae(z)u|z € A.u € h} is total in X, H is a self-adjoint element of A.
~and R € B(h.K) such that a(z) = Rz — p(z)R. and L(z) = R*p(z)R — L(R'R —
L))z -—%:p[R*R — L{1)) + i[H,z] Vz € A. Furthermore, L satisfies the cocycle -

- relation wt'_th e as coboundary, namely,
L(z"y) - Liz")y — s L(y) +2"L(L)y = a(z) aly).

- Moreover, R can be chosen from the ultraweak closure of sp{a(z)y : =,y € A} and

hence in particular R*p(x)R € A.

Proof : We briaﬂy'sketch only the main ideas behind the proof and refer the reader
“to [17) and [8] for details. o '

~ Consider the trilinear map D on Ax A x A defined by, D(z,vy,2) = L(zyz) +
rL{y)z — E(:;f:y)zf zL(yz). It is easy to verify that the kernel {ay,as), (by,89) =
D(aj,a3bs, by) is positive definite. By the theorem 1.2.7,we obtain a Hilbert space K
and A: AX A — B(h; K) such that {A,K) is the minimal Kolmogorov decomposition
for the above kernel. As in the proof of 1.2.9, it is easy to verify that p: 4 — B(K)
deﬁned by 'p(:r:)(,\(a.-_b)u) = Ala,zb)u extends to a normal x-homomorphism of A.

The proof of normality is similar to that of the representation 7« in 1.2.9, using
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the ultra-weak continuity of £ on norm-bounded sets. Denote by a{z} the operator
Mz, 1) € B(h.K). Then. it is easy to verify that A(:r:*,y*)*[a(ab)--p(a)cr(b)—a(a)b]l =
D(z.y,ab) — D(z,ya,b) — D(z,y, a)b = 0. By minimality of (A, K) we conclude that
a(ab) = pla)a(b) + afa)b, that is, o is a p-derivation. Now, to obtain R, consider
the faithful normal representation n : A — B(h® K) given by, w(a) = ( E p(oa) )
0 0
_ (a) O
Wi{n(a))w(b) + n(a)W (m(b)). By the theorem 1.2.20, there exists T' € B(h ¢ K)
| P O
R S
the canonical decomposition of B(h @ K), we obtain af{a) = Ra — pla)R. Consider

Let W : n(A) — B(h®K) given by, W (n(a)) = ( ) . Then W{m(a)mw(d)) =
o |

such that Win(a)) = Tn(a) — n{a)T. Writing T = ( ) with respect to

the map ¥(r) = L{z) — RB*p(z)R. A simple algebraic calculation will show that
r — () — -%(11'(1):1: + x¥(1)) is a derivation, and hence by 1.2.20 and also noting
the fact that ¥ is adjoint-preserving, we obtain a self-adjoint H in B{h) such that
U(z) - £(¥(1)z + z¥(1)) = i.[H,z]. The proof that R can be chosen from the
ultraweak closure of {a(z)y : 2,y € A} (thus R*p(z)R € A) and H can be chosen

from A is omitted; referring the reader to the original paper by Christensen and
Evans [8]. | 0

Remark 1.2.22 The above theorem also applies to the generator of a uniformly
continuous q.d.s. acting on a C* algebra A, with the only essential modification that
R*p(z)R and H will belong to the ultraweak closure of A instead of A itself.

Remark 1.2.23 From the structure obtained by the above theorem (1.2.21) it is

clear (since p is normal) that £ is normal, i.e. ultra-weakly continuous.

Let us complete this section bjf introducing a few notations which will be useful
later. For a unital C*-algebra A C B(h), a representation {m, ) of A, and operators
R € B(h;H) and H € B(h) we write dp,» and L g # for the Dperators' given by

Sprla) = Ra~m(a)R,  Lpgu(a)= R'n(a)R — }{R*R, a} + ifa, H],

where (b, ¢} =bc + cb. Thus dpx ' A= B(hiH) isa ?rn.dErivatiﬂn_and__ﬁ_Rm,H A=
B(h} satisfies | | e S |
OL gm0, b) = dpx(a)0p (b} +a*R*x(1)*R0 ~  (11)
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where. given 7: A = B(h). the map 97 : A x A — B(h) is defined by
U_*r{u‘ by = 'r(a*b_) —~a (b)) — r(a”)b+ a"T(1)b.
The following result in conta.ined in {8].

Lemma 1.2.24 Let (. p, H.5) consist of a map T € B(A), a *—represmtutiqn (p, H)
of A and a p-derivation 6 : A — B{h:H) salisfying d7(a.b) = d(a)*é(b) and i(1) =
(). Then there is an operator R € B{h:H) which lies in the ultraweek closure of

sp{dla)b: a.b € A} and an element H € A" such that
3(-) = 8rpl") end 7(-) = Lrpn(-) + 3{r(1),-}.

If T 1is real then H may be chosen so that H = H".

1.3 Hilbert modules

~ In this section we briefly discuss some useful results on Hilbert modules, and recom-

mend the book by E. C. Lance {33] for a comprehensive account.

. 1.3.1 Hilbert (™ mﬂdulés

A Hilbert space is a complex vector space equipped with a complex valued inner
product. A natural generalization of this is the concept of Hilbert module, which
has become q_uite an importa,nt tool of analysis and mathematical physics in recent
times. | | B

Definition 1.3.1 Given a C* algebra A, a semi-Hilbert A-module E is a right A-
- module_equipped with a sesquilinear map (.,.) : E x E — A satisfying (z,4)° =
{y,z), (@, ya} = (z,y)o and (z,z) > 0 for z,.y € E and o € A. A semi-Hilbert

" module E is called a pre-Hilbert module if {z,z) = 0 if and only if z = 0; and it

R called o Hilbert module if furthermore E is complete in the norm z — ||(z, z)|| 2

- whee A the C* norm of A. .

It.is clear that &ny semi-Hilbert A-module can be made into a Hilbert module in a
canonical way : first quotienting it by the ideal {z : {z.z) = 0} and then completing

| ‘the quotient. | | | |

The A-valued inner product (.,.) of a Hilbert module shares some of the impor-

tant properties of ushial complex valued inner product of a Hilbert space, such as
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the Cauchy-Schwarz inequality. However. some of the crucial properties of Hilbert
spaces do not extend to general Hilbert modules : the most remarkable ones are the
projection thearem and self-duality. Closed submodules of a Hilbert module need
not be orthocomplemented, that is, given a closed submodule F of E. there need
not exist any closed submodule & such that £ = F ¢ (. Furthermare, the Banach
space of all A-valued, A-linear. bounded maps on a Hilbert .A-module £ may not
be isometrically anti-isomorphic to F, in contrast to the Riesz’ theorem for complex
Hilbert space. These unpleasant {eatures make the study of Hilbert modules consid-

erably difficult and challenging as opposed to that of a Hilbert space. For example.

a bounded A-linear map from one Hilbert A-module to another may not have an
adjoint. For this reason, the role played by the set of bounded linear maps between
Hilbert spaces is taken over by the set of adjointable A-linear maps. To be more

precise. let us make the following definition :

Definition 1.3.2 Let E and F be two Hilbert A-modules. -We say that an A-linear
map L from E to F is adjointable if there exists a bounded A-linear map L* from F
to B such that (L(z),y) = (=, L*(y)) for allx € E, y € F. We call L* the adjoini
of L. The set of all adjointable maps from E to F is denoled by L(E. F'). In case
E=F, we write L(E) for L(E, E). ‘

It may be noted that an adjointable map is automatically bounded.

Let us fix two _Hilbert A-modules £ and F. Fort € L(E,F)and z € F, it is
easy to prove that (tz,tz) < ||t|*{z,z), where ||t]| denotes the map-norm of t. The
topology on L(E, F') given by the family of seminorms Mz Ny : z € E,y € F}
where ||t|l; = (tz, tm}% and [ty = (%, t"‘.y}.‘}i"._ is known as the strict topology. For
z € E. y € F. we denote by 0z, the element of L(F, F) defined by 8, ,(2) = y{x. 2)
- (z € F). The norm-closed subset generated by A-linear spanof {f,,: 2z € E.y € F}
is called the set of compact operators and denoted by X(FE, F), It should be noted
that these objects need not be compact in the sense of compact ﬁperamrs between
two Banach spaces, though this abuse of terminology has become standard. It is
known that KC(&, F) is dense in L{F, F) in the strict topology. In case F'= E, we
denote K(E, F} by K(E). Note that both £(E) and K(E) are C* algebras.

For a C* _a,lgebra. A (possibly nonunital), its multiplier algebra, dennte_d by M(.A).
is defined as the maximal C* algebra,_which contains .4 as an essential two-sided
ideal. In case A is unital, one has that M(A) = A and for A = Cp(X) where X is
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“a noncompact. locally compact Hausdorff space. M(A) = C(X), where X denotes
the Stone-Cech compactification of X. Let A denote the universal enveloping von
Neumann algebra of A. and let A be identified as a sub-C* algebra of A. Then. upto
s-isomorphism. M(A) can be described as the C* algebra {z € A: za.az € AVa €
A}. equipped with the norm given by [zl = supyg=1.aca{llzall, llazi|}. One has
fsee (331} the following resuit : |

Proposition 1.8.3 M(K(E)) is isomorphic with L(E) for any Hilbert module F.,

Let us now give a few concrete examples of Hilbert modules. For any Hilbert space
“H and C* algebra A, one may consider the algebraic tensor product A ®,, H as a

pre-Hilbert module by putting an inner product given by
(Z*L'I@nzrzm ®n})_‘zﬁ Unﬂ;)

which is casily seen to be a va.lld ca,nchda,te for inner product The completion of
- this pre-Hilbert module under the norm inherited from the above inner product is .
denoted by H 4 or A ®c- H. These relatively simple Hilbert modules are a kind of

universal objects, as the following remarkable theorem due to Kasparov asserts,

Theorem'1.3.4 (Kasp_arciv’s Stabilisation Theorem )

Let £ be a countably generated Hilbert A-module, that is, there is a countable set
= {1,y2,...} in E such that the norm closure af' the A-linear span of B is the

“whole of E. Th.éf; there exists a unitary element un LIEDHLHL), where H 15 a

| sepamble iﬂﬁnite-dimen.ﬁanal Hi!bert space In other words, E®H, is isamurphic

a.s a Hilbert module wzth 'HA,

’H A ﬂS Q camplemﬂnted closed submadu!e

~ Let us mentmn_a,n m_lpurtant nqnsequence of the above theorem, which will be useful

“in.chapter 4

- --Theﬂrem 1 3.5 Let Bg(K.) denate the C* ﬂtgebm of compact operators on a sepa-

o rable Hu'bart space K. Then, for any C* algebra A, L(A &c- K) & M{A® By(K}).

- Thus, in the motation of theorem 1.3.4, we have that for every s € L(E), tst* ¢
L(A ®c- H) = M(A® Bo(H)); hence L(E) can be imbedded as a C*-subalgebra in

- We shall conclude our discussion on Hilbert: C* -mndukés 'with'.t'he fnllﬂwmg beau-

- _"tiflil ﬁn-i’ﬁcation of Stinespring and GNS c'onstruct'inn's in the framework of Hilbert

 modules. o
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Theorem 1.3.6 ( KSGNS construction )

Let A. B be C* algebras, F' be a Hilbert B-module and 0 A LIF) be continuous
with respect to the strict topology on L{F). Furthermore. assume that p is completely
positive. Then we have :

(i) There ezists a Hilbert B-module F,, x-homomorphism n, : A — L(F,) and an
element v, in L(F, F,) such that p(a) = v,mp(a)v, for all ¢ € A andg the 5-tinear
span of {mp(alv,f i a € A, f € F} is dense in F,.

(i1} If G is any Hilbert B-module, 7 : A — L{G) is a x»-homomorphism, w € L{F, G)
such that pla) = w*n(a)w Va € A, and furthermore the B-linear span of {n(a)uwf :
a € A f € F} is dense in G, then there exists a unitary v € L(F,, G) such that

m{a) = um,(a)u* and w = uv,,.

The triple (Fp,mp,v,) is called the KSGNS triple associated with p. In case F' =

B = €. we recover the GNS theorem, whereas the Stinespring’s theorem is obtained

by putting B = .

| 1.3.2 Hi_lbert von Neumann modules

If A is a concrete C* algebra in B(h) for some Hilbert space A, then for any Hilbert
space H, the pre-Hilbert module A ®;1 H may be viewed as a subset of B{(h.h Q@ H)
and A ®¢- H is the closure of this subset under the operator-norm inherited from
B{h,h @ H). Instead, we may inherit one of the locally convex topologies from
B(h,h @_?{); e.g. the topology of strong convergence, and close A ®,; H under
that topology. This will lead to another. topological module, in general biggﬁr than
A @c+ H. To be precise. let us consider the closure under the topology of strong
convergence, that is, given by the seminorms X = | Xu|| for v € h. We denote the
closure by A®;H or simply by A®H when there is no pngéibiity of confusion. AR H
has a natural A" module action from both sides and has a natural A" -valued inner
product. In view of this, we assume that A itself is a unital von Neumann algebra in
B(h). We note a few simple but useful facts about the Hilbert von Neumann module
A ® H. For this, let us first mtroduce some nﬂtatmns, whlch will be very useful in
subsequeut chapters also. ”

- Let 'Hl,Hg be two Hﬂbert spaces and A be a { possibly unbﬂunded } linear
operatar from Hi to Hy; & ?—lg with domain D. For each f & He, we define a linear
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operator { f. AY with domain D and taking value in ‘H; such that.
(f Auv) = (Aduv ® f} o {1.2)

for w € D. v € H;. This definition makes sense because we have. {{Au,v ® f)| <
Az LA Woll, and thus Hi 3 v — (Au,v @ f) is a bounded linear functional.
Moreover. {|{f, A)ull < |Au]l [|f]], for all w € D, f € Hq. Similarly, for each fixed
we DuveH, Hodf - (Au.v® f)is bounded linear functional. and hence there

exists a unique element of Ha. to be denoted by Ay, satistying
(Ava, [} = (Av. v B f) = ({f, Au, v). (L.3)

We shall denote by (A, f) the :idjoint of {f,A), whenever it exists. Clearly, if A is
bounded. then sois {f, A} and {|(f, A)l| L A||{|f]]. Similarly, forany T ¢ B(H1@Hz2)
and f € Ho, one can define T} € B(Hy, Hi @ Hy) by setting Tru =T{uQ f).

With the above notations at our disposal, let us give a brief sketch of some

properties of A Q@ H.

Lemma 1.3.7 Any element X of AQH can be writlen as, X = },,c; %o ® Ya,

where {Ya}acs %5 an orthonormal basis of H and zo, € A. The above sum over

¢ possibly uncountable indez set J makes sense in the usual wuy: it is strongly

.coﬂuergent and Vu € h, there exists an al most countable subset Ju of J such that

Xu =) aes (Tat) ®va. Moreover, once {vo} is fired, x4 ’s are uniquely determined
by X. |

Pmﬂf Set 1o = (frm}{") Clearly, if X ¢ A@ﬂ:g H, T4 € .A for all ¢. Since any

element of A® H is a strong limit of elements from A ®g, H; and since Aj 1s strongly

_closed, if follows that z, € A for an arbltrary XeA®H. Now. for a fixed u € h,

let Ji; be the (at most countable ) set of 11_1d_1ces such that Vo € Ju, 3 vg € h with

(Xu.v, -@*m} # 0, Thlen:ﬁ::nr any v € h and v € H, we have with cg = (Yo, ¥),
{XU,U Ry = Z Cal{ XU, ¥ @ 4o) = Z Cl(('TuIX>”* u)

acJy | aeJy, |
L= Z(mau1ﬂ>(7u:i7}=(z ﬂ:a@'fu)ﬂ: 'U®'T);
_ ﬂEJu | . B ﬂEJu i .
that is. X = Zne JZa ® Ya in the sense descrlbed in the statment of the lemma.

| 'leen {'yﬂ} the r:hmce of z,'s I8 unique, because for a.ny fixed ayp. ('ynﬂ,X) = Tng

whlr.:h follows from the prevmus cnmputatlon 1f we ta,ke v to be Yao: =}
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Corollary 1.3.8 Let X.Y € AQH be given by X = } ,cjZa® Vs and ¥ =
Y ncs Yo ®Ya as in the lemma above. For any finite subset [ of J, if we denote by X
and Yy the elements 3_,c; 2o ®%a and 3,1 Ya @ Yo respectively, then limy (X, Yy) =
(X.Y) where the limit is taken over the directed family of finite subseis of J with

usual partial ordering by inclusion.

Proof : The proof is an easy adaptation of Lemma 27.7 in {45]. "

We give below a convenient necessary and sufficient criterion for verifying whether
an element of B{h,h ® H) belongs to A ® H,

Lemma 1.3.9 Let X € B(h,h @ H)., Then X belongs to A Q@ H if and only if
(v, X) € A for all v in some dense subset £ of H.

Proof : That X € A® H implies (y,X) € AV v € H has already been observed
in the proof of the previous lemma. For the converse. first we claim that (v, X} €
A for all v in & {where £ is dense in H) will imply {v,X) € A for all v € H.
Indeed. for any v € M there exists a net v, € £ such that v, — <. and hence
1¢7. XY = (va, XM € Hve = YilIXII — 0. Now let us fix an orthonormal basis
{Va}aes of H and write X = 3¢ ;{Yas X) ®72 by lemma 1.3.7. Clearly. the net X7
indexed by finite subsets Z of J (partially ordered by inclusion) converges strongly
to X. Since X7 € A®quy H for any such finite subset T (as {va, X} € AV ). the
proof follows by noting that A is strongly closed. | »

In case H = ['(k), we call the module A ® I'(k) as the right Fock A-module over
I’(k), for short the Fock module, and denote it by AQ T, |

For various applications of Hilbert modules in quantum probability and related felds.
we refer the reader to [2] and [49].

1.4 Fock spaces and Weyl Operatofs |

In this final and brief section of the first chapter we recall some well-known facts
about Fock spaces. For a Hilbert space ‘H and positive integer n, let #H, = 23"
denote the n-fold tensor product of h, and #y denote the one-dimensional Hilbert
'space €. The free Fock space _I"-r (1) is defined as , ' |

I/ (H) = 02 Hn -
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The distinguished vector @ = 1908906 ... is called the vacuum. For two Hilbert
spaces H. X and a contraction T : H — K. we denote by T;, the n-fold tensor product
of T and set Ty = [. Let us define T/(T) = @3 Ty : [/{H) - I'/{K). Then. it is

¢asy to verity the following.

Lemma 1.4.1 I/ is e functor on the category whose objects are Hilbert spaces and
mamhi&ms are contractions, that 1s. Ff(ST} = THS\CH(T). T/ (1) = I. Further-
more, T/(0) is the projection on the Fock vacuum vector and T/ (T*) = (T/(T))*.

The proof of the lemma is straightforward and hence omitted.

Let us now discuss symmetric and antisymmetric Fock spaces. Let H; and Hj
denote respectively the symmetric and antsymmetric n-fold tensor products of H
for any positive integer n, and Hy = H§ = Ho. Then the symmetric (or Boson) and
antisymmetric {or Fermion) Fock spaces over ‘H, denoted respectively by I'*(H) and
T H), are defined as. | -

- [S(H) = ®oHS,

Pe(H) = dX  HE.

We shall be mostly concerned with the symmetric Fock 'spaces in the present work,
and hence for simplicity of notation, we shall use the notation I'(H } for the symmetric

Fock space. Let us mention the basic factorizal;ion property of I'(H).

Theorem 1.4.2 Consider the map H 3 u s e(u) € T'(H) given by e(u) = @f‘:[j(n!)?{fu”.
where u® #s the n-fold tensor product of u for positive n and u® = 1. Then the
map e(.) is the minimal Kolmogorov decomposition for the pasitz’ué defintte kernel

H xH - @ given by u,v — exp((u,v)). Furthermore, {e(u) : u € H)} is a linearly
independent total set of vectors in .]."(’H).

Proaf : That e{.} is a Kolmogorov decompasition for the above-mentianed kernel is
verified by the relation {e(u},e(v)) = ezp((u,v)). Furthermore. the relation

eltullimo = (nl)

»
shows that for every u € H, u® bélongs to the closed linear span of e(u). Since
the vectors of the form u" where n varies over {0,1,2....} are total in (). the
assertion about minimality follows. To ptove the linear indépendence, suppGSe that

u1,%9,...,Un are distinct vectors in H and zy,...,2, are complex numbers such
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that 3°7_.; zje{u;) = 0, Then we have, for all ¢ € . 3 7., z;ezp(t{y;. v)} = 0 for
all v € ‘H. Since uy,us,....u, are distinct, there exists v € ‘H such that the scalers
(u;,v) are distinet and hence the functions {e*% )} are Iinearl_'}r independent. which

implies that z; = 0 for all j. =

Corollary 1.4.3 For any dense subset S of H, the set {e{u) : u € S} is total in
C(H).

The proof is easy and we refer the reader to {45] (corollary 19.5. page 127},

Corollary 1.4.4 There is a natural identification of I'(H @ K) with I'(H) ® I'(X)
under which e(u ®v) — e(u) @ e(v). |

Proof : The proof is a strtaightforward consequence of the minimality of the Kol-

mogorov decomposition mentioned in the theorem ( 1.4.2). ]

Let us conclude this section_by mentioning the second quantization and Weyl
opefatﬂrs. For a contraction (' -::m #. we difine the second quantization I'(C’) on
['(H) by S
I'(C)e(u) = e(Cu).

It follows that for ui, us....,u, € H, |[TCYE ; e(u:))||* = ,J__le(‘:'““c“ﬁ
Z?,j-:l eltiitty) = | 3o e(ui)"?. This shows that I'(C) is well defined and extends to
a bounded operator. Clearly, if C' is isometry (respectively unitary}, then so is I'(C).
For u € ‘H, we define the Weyl operators W(u) by setting

W (wle(w) = eap(~ 3l = {u, )e(us + ).

It is known that the von Neumann algebra geﬂeratad by the fa,miiy' {(W(u):u € S}
is the whole of B(I'(H}) Whenever S is a dense subspace of H.,

We refer the reader to [45] for a further detailed description of Fock spaces and .

related topics with applications to quantum probability.



Chapter 2

A coordinate-free quantum

stochastic calculus

2.1 DBasic processes

Let us recall the notations introduced in the subsection 1.3.2 and section 1.4 of
chapter 1. Let H; and Hz be two Hilbert spaces ( possibly nonseparable). Now,we
define a map S : I‘f (Ho) — ['(Hz) by setting,

- | 1

S @@ - ®gn) = 1) > 9a(1) ® ® Go(n); (2.1)
| n T ﬂ'ESn _

“and linearly éxtending it to H? “,_ where S, is the grnup of permutations of n ob jects.
Clearly, .||,5' |.H_£gn | < n. We denote by S the operator lm ® 5.

~ Let A bea linear map from H; to %, ® Hz with domain D. Let us now define the
creation operator a,T(A) abstractly which will act on the linear span of vectors of the
form vg<" and ve(g) {where g%" denotes g & - ®g),n > 0, with v € D, g € Ho.

| o n times
It is to be noted that we shall often omit the tensor product symbol ® between two

Oor more vectors when there is no confusion. We define,

- §((Av) ® ¢®") ' (2.2)
VAFl 0 |
It is easy to observe that 3_,5q m7llal(A)(vg®")|? < oo, which allows us to define

at(A)(ve(g)) as the direct sum @,q ( 11)' al(A){vg®"). We have the following
20 T € DO

at(A) (vg®") =

simple but useful observation :

36
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Lemma 2.1.1 Forv e D, u € Hi.g,h € Ho,
| d |
(al(A)(ve(g)). uelh)) = (Aup, h)e(g), e(h)) = C—;g(E(g +eAup), elh)):=o-  (2.3)

Proof : First observe that

(a'(A)(vg®"), ue(h)) = (\fnl-Tl

S‘((A’U) ® g@ﬂ T_L R hzrt-t-i

Vin+
It is clear that the adjoint S* of the operator S is given by S*(f% )} = nf?;". Thus.
we have that (S((Av) @ ¢®" ), u @A%™) = (((AV) @ ¢%"),u® S*(h®"")) = (n+

1){Auv, u@h)(g, h)™ (n+1)\/ﬁi(ﬂu,u,h)(9@"+e(h))-Hence'(a"(A)(ugz").ue(h)) =
.7L:1 (A”,h)( e(R)) = (Auy, W) {(g®".e(h)). From this the result follows.

(n+1)/n+1
{

In the same way, one can define annihilation and number operators in H; QT (Ha)
for A€ B(Hi, H1®@HMo)and T € B(H; ® Hoy) as .

a(A)ue(h) =< 4, h > ue(h),

A(T)ue(h) = al(Th)ue(h).

One can also verify that in this case al(A) is the adjoint of a(A) on Hy @ E(Ha),
where £(Hy) is the linear span of exponential vectors e(g), g S Hg Next. to define
the basic processes, we need some more notations. Let kg be a Hllbert space, kK =
Lz(ﬂh ko), ki = L?( [D t] @kg,ﬁc‘ == LQ((t m)) ® ko, I'y = F(k;,) F(k‘) [’ =
| F(k) We assume that R € B(h,h ® ko) and deﬁne R":" h @ T, > h @ I, @ &b for
t > 0 and a bouncled interval A in (¢, co) by,

R (ut)) = P((1n ® xa)(u) @ 9)

where x ! ko —}_k‘,_is the operator which takes a to x,_-;(d_tr for o € Fc{j, and £ is the: |
canonical unitary isomorphism from A @ k® ' to A @ I' ® k. We define the creation
field a}{(ﬁ\.) on either of the domains consisting of the finite linear combinations of

vectors of the form u; &® ft'E'"_nr of uy e(ft) forus e h@Ty, fLel, n>0. as:
ah(A) =al(RD), . (24

“where aT(Rf‘) carries the meaning discussed 'béfﬂre':lemina, '2'.1.1, _.wit'h ‘H; =
h@T;, Hy = kb Similarly the other two fields ap{A) and Ar(A) can be defined by
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ar(A) el ) = (( /'(R.f(snds)me(f‘). (2.5)

A
and for T € B{h ® ko).

Ar(A) (uce(f*)) = al(T) (we(£1)). (2.6)
In the above, Tﬁ‘ h@T, -+ h@T @k is defined as,
T (uee) = P(1® ga)(T{uf') ® o), (2.7)

and T' € B(h @ L2((t,00), kp)) is given by, T(u)(s) = T(u(s)), s > t, and ¥ is
the multiplication by xa{:) on L%((¢,00), ko). Clearly, [Tl < IT|}, which makes T
hounded. We note here that objects similar to aR(.),a}{(.) and Ar(.) were used in
27). however in a coordinatized form. In what follows. we shall assume that (H;):>o
and (H{);>o0 are two operator-valued Fock-adapted processes (in'the sense of {45]).
having all vectors of the form ve(f; )% in their domains. wherev € h, f; € k;, ¥' € T,

We also assume that {;here exist constants ¢(¢, f) and ¢'(Z, f) such that for £ > 0.

sup || Hs (ue(f))) Selt, llell,  sup [[Hg(ue(NN <& Nl (2.8)
0<s<t R 0<s<t

.Wé shall often denote an uperatﬂr B and its trivial'extensian B @f to some bigger
ﬂpace by the same notation, unless there is any confusmn in doing so. We also
denote the um_tary 150morphlsm from h® ko @ ' (k) onto h@]."(k) ® ko and that from
h@k@l"(k:) onto h RI'(k)® k by the same letter P. Clea.rly H,P acts on any vector

of the form w®e(g) where w € h@uggku,g € k and sup || H:P(we(g))|l < c(t, g}|lwl]|.
D<s<t

This allows one to extend H . P on the whole of the domain containing vectors of the
form @we(g). @ € h @ ky. g € k. We denote this extension again by H,P. Similarly
we define H;P. When P is taken to be the isomorphism from A ® k ® F(L) onto
h® F(k) @ ﬂ.. we define A, P and HtP In an exactly parallel manner.

Next we prove a few prehmmary results which will be needed for eqtabhshmg

qua.ntum Ito formula in the next subsectlon

Lemma 2.1.2 Let A, A’ C _(t-,éo) be intervals of finile Ieﬂgth. R,S €
B(h,h ®ke); u,v € hy g,.f'e k- Then we have,

(Hiah(8)(velg)), fus(a')(ue(f)» _ oV (H R (vela), HLSE (ue )
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+((f*. H RN elgr), {g*, HiSH Yue(f,))} = f ((H PR)(ve(g)). (H{PS)(uelf)))ds
ANA!

+ [ [i) HPR) elg)), (") ), HiPS)(ue(f)))ds ds'. (2.9)

A A

Proof. For the present proof, we make the convention of writing %ﬂlﬁzm for the

1
limit lim n(f(gy + ﬂ) f(eg)) whenever it exists, and Ra will denote {1 ® xa)R

n—oo

€ Bh.h ® k) for R € B(h,h ® kg). Let us now choose and fix orthonormal bases
{e,}ves and {kylecs of R ® T and I respectively (£ > 0). We also choose subsets
Jo and Ip, which are at most countable, of J and I respectively as follows. Let Jy
be such that

(HiPRA(ve(g)). ev @ ko) =0 = (e, ® kay H{PSa:(ue(f))) for all @ € I whenever
v & Jo. Fixing this Jy, we choose [y to be the unionof {,,, ¥ € J5, n=1.2.....00

such that

1 1 S
(e(g" + ;(HtPR&)ep,ue(gtj)a ko) = 0= (kq, e(f* + E(ngsﬁ')eu.ue(ﬂ))}

for all a # I, when n < 00, and
(E(gt)'s ko) =0 = <kﬂr:aﬂ(ft)} for o # 1.

We have now.

(Hiah(A)(ve(g)), Hiak(A")(ue(f))) _
m Z (Hgﬂj;{(&) (ve(g)), e, ® ka)ley @ kq, H;ﬂts(&f)(uﬂff)))

vrE Jy
a€ip .
d ¢ d ! /
o= Z (EE(E(Q +E(HtPR&)ﬂu,ue[g¢))1ka)ls:[]) p 4 (&;}'(kﬁ,ﬁ(f +Q(HfPS-’:\’)Eu,ue{f;}}”ﬁ':(-l)
nerd o
5 .
= Z Oed ( Z (6(9 + E(HﬁPR&)Eu,ue(gg)): kﬂ)<kﬂ:ie(f£ + "?(HEPS,&')eu,uﬂ{ﬁ)))IE:{]:r;)
veJy i a€Efp R | .
= 2 36317( (9" + e(HePRA) e, wegn): €' + n(H; Psm{e,, wefiy ) Memo=n)
veEdn
= z e{g 1f"} ((HtPRﬂL)E UE(E‘EJ‘ (HtPS&J)E uﬂ{fﬁ))

vedy .
+ {(HiPRA)e, wea)s J) 4" ; (HiPSat)e, ue(fi)))
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Before proceeding further. let us justify the intermediate step in the above cal-
culations. which involves an interchange of summation and limit, by appealing to
the dominated convergence theorem. Indeed. for any fixed o € Iy, w. ¥ € k.
if we write k5" for the projection of ko on kt® (n > 0), then {(e(g" + ¥} ko)

can be expressed as 3,5 c;¥et, where ¢ Znh (7 g™ @ w@ kY.
where g“?i"#” = ¢ ® - ®g°, and w@m = PR - @11). It can be easily veri-
"-——-v-'————"’ e e
{n—-:}-tlmes | i~times

fed that the above is an absolutely summable power series in &, converging uni-
formly for ¢ € [0, M|, say, for any fixed M > 0. Similar analysis can be done for
{ka.e(f' + m')). By Mean Value Theorem and some straightforward estimate, we
have that for e.n,£'. 5" in [0. M],

4 / k{l
T n)lﬁ%:uﬁ .9 + ) ka) ~ (e(g" + €'V}, ka))

_ X ({kq el f +109")) — (kare(f* + 79" )
< ¥ i'j'MWE( )( )Zl B @y Ky (K, £ ey )]

n20,.m 20, nim! a€lo
0ign.0g)<m
| EJMI'—PJ-E T ™m | {rn=1i) {1'.}' {m—j) 2/
R i L T N Vi Ve
' n-m- t j .

[since{k{™} 4e1, are inutua.lly orthogonal for any fixed n.

with [k € 1 Yoy

mllpl Jo' 1| (gt + Ml (LFH + Ml ()™
r; ) vmlin! | <

rn"._‘_?_ﬂ

<

This allows us to apply dominated convergence theorem.

‘Let us now ciioose a countable subset £y of I so that 0 = ({H;,PR&JE ,_,E(gl), ‘a) =
_(km. (H{PSAr)e, e 1)) for o not in I3, for all v € Jj. |
Clearly, we have |

. ZUE.JI] (.(HtPR&)EprvE(gi} ¥ (HEPS*&,)EP ,Hﬂ(ft‘.))

= Z -((HgPR&)(Ue(gt)):ﬂu ® ko) {(€v ® ka, (HEPSa*)(HE(fa)D
vEJo,a€ I . |

= ((H.PRa)(ve(g,)), (HPSar)(uelf). |
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We choose sequences w'™, "™ of vectors which can be written as finite sums of the

form. w'™ =5 -uE”j@:ﬁ}nj. W =5 ugn)®a§n}‘ where u%n},vgm € h, ﬁ:‘n}.&;m' € ko.

in)

and W™ — Ru, o' — Suasn — .

Then we have,

1HP(1® xa) (™ ®elg;)) — HPRA(ve(g:))]

< elt, g)|lw'™ — (Ro)|| |A] — 0 as n — .

where |A] denotes the Lebesgue measure of A. Similarly,
NH!P(1® xar) (" ®el(fs)) ~ (HIPSa)(ue(f))}} = 0 as n — oo, Hence we obtain

{(H{PRA)(velg)) (H{PSar{ue(fi)))
= lim (H,P(1® xa)(w™e(g)), HIP(1 ® xa )™ e(£)))

fi— o0

Jim [(H(Y o @ e(90) @ B™), BT ul™ @ e(£1) © o Nxany(s)ds

I

Fl=3 D0

i

lim |ANA{((HP) (0 Me(g:), (HIP)(w"™e(f1)))

L3O

|A N A'{(H PR)(ve(ge)), (HPS)(ue(f:)))

[ (HPR(ve(9.)), HiPS(ue(f)))ds.
ANA/ | | -

Moreover.

Y {(HiPRA)ew wetg)s 5 {85 (HIPSA) ey me(f))
vEJg

= ST ({fY HiPRa)velg)),e.) (eu, (gt HiPSar) (ue(f)))
2 At _

= ({f HiPRa)(ve(qr), (9", (H{PSar)) (ue( 1)),

where the last step follows by Parseval’s identity, noting the fact that for v ¢ Jp,
((f*, HtPRa)(ve(gt)), es) = 0 because for such v, ((HPRa)(ve(g)). ey ® ko) = 0

for all « € I and similarly (e,, (g°, (H{P.Sﬁ*'))(uﬁ(ft)» =0 Yv & Jo.
We complete the proof by observing that

(Y HRP) = f (f(s), H.PR)ds, and
A
0 HISE) = [(gls), HiPS)ds'.
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To see this. it is enough to note that for w € A, Ju € k4. we have,

((F* HiRP Y (ve(gy)), welhy))
/((HtPR)(HE(Qt))-ME(hg) ® fi(s))ds, which can be justified by considering o™

as before and applying dominated convergence theorem.

Since A C (f.~) and hence f'(s) = f(s) for s € A, the above expression can now

he written as

J((HPR)wel(g), welho)f (s))ds
J (5

f {(f(s), HPR)(velg:)), we(h:))ds.

7

This completes the proof.

- Remark 2,1.3 If H; and Hj are bounded, then (2.9) of Lemma 2.1.2 holds with . v
replaced by arbitrary vectors in h @ Ty and f,g by the same in k.

Lemma 2.1.4 Let T\ T € B(h ® ky). Then we have,

((HT)(velg)), (HITH Y(ue(f))
= | (HPTP (ve(g)g(s)), HLPT'P*(ue(f)f(s)))ds,
ANAY
and

¢ HITR) = [(als), HiTjiy)ds.
A
Proof : We choose sequences w™), o/ 0 b ® Lg((t 00), ko), which can be writ-
ten as finite sums, w(® = {n] @g( _) and w’ = 2. U; u™ @ f (ﬂ') g”} S
h, g™, f“” € L?((¢, 00), kﬂ) and w( o T(vgh), W™ T(uf ) in L2 as n — 00,

Clearly we h&ve

{H/T3 (ve(g)), H"T (ue(f))) | -
= lim (ZHt(vfﬁ(g))Xa(S)gi(S)yzHi(’ﬂjﬂ(f))?(&f(S.)fj(S))dS

7T~ OG0

lim [ (HP@™ (s)e(g)), HP(w"" (s)e(f)))ds

00
ANA!

[ (BP(Pogh)(s)ela)), HLP(@(uf (s)e(f)))ds.

ANA/

i
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The last step follows because [ [[H,P(w™(s)e(g)) - H P(T(vg ) (s)e(g)||2ds is
ana | :
majorized by a constant times [jw(™ — T'(vg'}||? which goes to 0. and similar state-

ment holds for H, and w"" . Since for s € ANA! C (¢,00), H P(T(vg")(s)e(g)) =
H P(T(vg(s))e(g)) = HPTP*(ve(g)g(s)), and similarly H{P(T'(uf')(s)e(f)) =
H{PTP*(ue(f)f(s)), the proof of the first part of the lemma is complete. The

other part is similar, B

Lemma 2.1.5 For n € ko, {n, HiPR)ve(g) = Hi({{n, R)v)e(g)), where v € h, g €
k.

Proof It is easy to see that by virtue of 2.8, for every fixedg, f € k., € kg, t 2> 0,
(H(ve(g)), ue(f)) (v, Myu) defines an operator M, € B{(h). Let M; = M; ® 1;,.

Then we have, forw =vQq, v =u®fB;a,B € ky, u,v € h,

(HiP(welg)), P(w'e(f))) = (w, M),

By the density of h®geko in h ® ko, we have that (H,P({we(g)), P(w'e(f))) =
(w,ﬂ;.f;w’) for all w.w' € h® ky. Thus

((n, H PR)ve(g) ue(f)) = (HiP((Rv)e(g)), ue(f)n)

= (H P((Rv)elg)), Plune(f))) = (Rv, My(un)) = (Rw, (Myu) ®1n)

= ((n, Ryv, Mew) = (H(({n, R)v)e(g)), ue( 1))

This completes the proof, since the vectors of the form uwe(f) are total in 2 &® I'(k).
| O

2.2 Stochastic integrals and Quantum Ito formulae.

Following [26] and [45], we call an adapted process (H});>q satisfying sup |[[Hsve(g)|| <
- 0<s<i

c(t,g)|lv]] (for all v € h, f € k), to be simple if H; is of the form.

rn
H.'f == ZH&X[!,' it ) (t)

i=0

where m is an integer (> 1}, and 0 = g < t < o <ty < tm+1 = co. If M denotes
one of the four basic processes aR,aE and Ap and tI; and if (H,) is simple, then
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¢ :
we define the left and right integrals [ H,M(ds) and [ M(ds)H respectively in the
0 0

natural manner :

f

[HMs) = S H Mt N 0.0,
0 =0 I |
i

[ M), = 3 M(ttinn) N0 H,
0 12=()

\

We call H; to be regular if £ = H;{ue(f)}) is continuous for all fixed u € h and f € k.
Also note that if H, is regular, then so is the extension H;P. The next proposition

gives the quantum Ito formulae for simple integrands.

Proposition 2.2.1 Letu.v € hi f,g € L*(R..ko); R. S, R'.S' € B(h.h®kp) and let
T.T' € B(h®kpy). Furthermore, assume that E.F,G,H and E'.F',G' . H' are adupted
simple processes satisfying the baund given at the beginning of this subsection, and
that | t | |

X = /ﬂ (ESAT(ds) + FSaR(ds) + Gsafs(ds) + Hsds) .

L
X! = /ﬂ (E\Aqi(ds) + Flap (ds) + Ghali(ds) + H'ds) .

Then we hqvf;_. - |
(1) (first fundamental formula}

< X;'?Je(g); ue(f) >
i, fn ds < {< f(s). EsPTyq) > +Fy < R,gls) > +Gy < f(s), S > +H,}(ve(g)), ue(f) >
o | (2.10)

(za)(second -fﬁﬁdﬂmenta[ | fﬁrmu!a or Quantum Ito formula )
For this part suppose that f,g € k0N LRy ky). Then

< Xyelg), Xjue(f) > - o ,
= ._/{; ds ["i Xsvelg), (< g(s), EgPTy g > ‘EF; ‘i.Rr,f(S) > +G; < g(s), S > +HiHue(f)) >]

fut ds [< (< f(s). EaPTyg9 > +F, < Rog(s) > 4Gy < [(5),5 > +H,Hvelg)), Xoue(f) >]
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t |
* /ﬂ ds [‘: Bl Tﬂm(”E(Q)LE;PT}{S)(tae( ) > + < EsPTy5(velg)), G PS {ue(f)) >

o ———

+ < GsPSlvelg), BLPTy s (ue(f)) > + < GsPS8(velg)), Gy PS (ue(f)) >

L

Proof : The proof is very similar in spirit to the proof in [26)], [45]. First. a comment
with regard to the notation used above is in order. For example, for almost all
s € R, the expression E;PT,)(ve(g)) is to be understood as (Es @ Ikﬂ)P(Tqmu@
e(g)) = (Es @ I1) ) P(T(v ® g(s)) @ e(g)) € h QT ® kp. Thus the operator E,PT,
maps h ® I' into h ® I @ ky and therefore by the discussion in subsection 2.1, <
f(s), EsPT,s) > maps h® I into h@T.

We denote by [|flleo and {lg]l« the essential supremums of f and g respectively.
We fix ¢t > 0, and without loss of generality, take P = {¢; }i=0.1....m+1 t0 be a partition
of [0,£) such that 0 =ty < ¢} < ... <ty = s and Ly = 352, Ly X, 0500y (8)s L5 =

1=0 Lt X[t; ti41)(8), where L is one of the four coefficient processes £. F.G. H and
L' is one of the processes B', F'. G'. H. Observe that the definition of stochastic
integrals for simple adapted processes does not depend on the choice of the partition
as long as Ls and L take constant values in any subinterval of the p.art.itian: and
this allows us to refine P arbitrarily. |

By definitions of the basic pmcesseé as given in the previous section. we have
that

(Xyve(g), ue(f))

= Y { B, Ar({tis tiv1)) + Frearlltn tiv1)) + Grabl{tistier)) + Hy (tin — )} ue(f))
- 1=0

[
3¢
——
=
&=

——
t
-+
E
>
_—
oy
2
£
¥ o ¥
R
=
&=
T
—
-
S’
™

t / ({Fi (R, g(3)> -+ Hti}(w(g)), ue(f))ds.

fitivt1)

Now, note that by 2.1.1, (Gyaly, ., (ve(a)), ue(£)) = (Gi,{f, S ) (velg)). ue(f)) =

L (GuU(6), Syelg) uc(f))ds. Similasly (B! 0,00 (ve(9)), el )

Lidign | | - g"'i' : | .

=[' J )(Esi(f(s),Tgmm(ve(g))me(f)).ds ={ J }(f(_s),EaPTg(sﬂ(vE(g)Luﬂ(f)>-Frﬂm
Eidial - Lirbigt | | |

this (i) follows clearly, | B __
‘Let us now prove (ii). We briefly sketch the arguments very similar to that of
(45, It is clear that the left hand side of (2.11) can be written as ST + 8§ + 5%,

(2.11)
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where

I

Sy ‘—'-Z(Xn(ﬂﬂ(!}))a{EE.--f\-'rf([iht:+1))+F§£ﬂﬂ*([fhti+1))+Giiﬂtgr({tiqfi+1))+H;.-(t1+1-'ii)}(ufi('f)))f
1=0

Sy = Y _{({Eydr(ftiti )+ Fap((ti, tin1)) +Gy, ab({ti tigr))+Hy, (Bi1—t:) Hoelg)), Xi, (ue( f))),
=0 |

57 =Y _{E Ar([titin)) + Friar([titin)) + Grak((ti, tier)) + Hy, (tix1 — t:)}Hvelg)),
1={

(E}, At tivr) + Flap ([t tis1)) + Gy aki ([t tinn)) + Hy, (tiv1 — ) Hue(f))).

Similarly. denote by 5. 55,83 respectively the first, second and third summand
in the right hand side of (2.11). We want to show SF — S; as P is made of arbitrarily
small norm . for 1 = 1,2,3. Let [|P|| denote the norm of the partition P. Suppose
that ¢p is a constant such that [[Esve(g)|| + ||Fsve(g)|] + |Gsve(g)|l + IIHS'ue N+
el f)) + | Flue( )] + IGLue( )] + | HLue(f)]] < co ¥s < t. Now.

.5 P""Sll
bivl
< 1[0 - Xo)wela)), Btuelr)

=0 -
(where By = (g(s), EsPTyrg)) + Fo(R' £(s)) + Gg{g(s), ') + Hy)

LI P |
< ;}/{ Xy, — X ){velg)licollili{llglloollfNloo I TNl + 11 f Moo IR'1] + gl 1S+ 1}

(2.12)
But for s € [¢;, tjv1),

Xy - X (el
__‘§ VB, Ar([t:, s))(velg))] + HFz.&R([tn s velg)ll + |Gy, ak ([t 5)) (ve(g))]
+ [ Hy, S—-iz)(ve(g))ll |

- "'Cl'early, by the Lemma 2.1.2; "

I[Gglﬂas([tn s)) “ﬁ(g).)”‘?
= s - t,)”Gt,PS velg NI’

T / gl GnPS)('vﬂ(g) (o LGE;PS)(Ue(g)))deT‘;
S "[tt-,s)i[t.,'s) - |

<t - ;|1;||2 211S11 {1 t:+1—t:)llyllm}
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Similar estimates for other terms will allow us to majorize the last expression in
2.12 by G'II’PII% when ||P|| < 1, where C is some constant independent of 7. This
shows that S — Sy as |[P|| — 0. Similar analysis can be carried out for SJ
and ST. For example, let us consider one typical term in the expansion of S7,

say $i(Gral((tis tirn)) (velg)), Ghyaly (i tor)) we()))- By the Lemma 2.1.2, this is

equal to

> (G al([ti ti1)) (velg)), Gr,aby [t tar)) (ue(£)))

= / 1((; PS(w(g)), Gy PS'(ue(f)))ds

+ Z _/ {f(s), Gy, PS)vels)), (9(s'), G, PS'-)(ue(f)))dsds'.

[thtl+l]:’{{£ntt+l)
the second term of which can be majorized (by a reasoning similar to the one given
earlier) by some constant multiplied by ||P]|, and hence goes to 0 as ||P]] — 0.

A similar analysis can be done for other terms which will show 8§ -+ S3. This

completes the proof. - 0

Let us state the well-known and useful lemma, due to Gronwall.

Lemma 2.2.2 Let F,G,a be nonnegative continuous functions on IR, and F.G be

monotone nondecreasing. Suppose F(3) = 0 and
(1) <:G(t)+f $)AF(s) V£ > 0.

Then we have,
| aeft) < G(t)ezp(F(t)) Vt > 0.

We refer the reader to [45) for a proof (proposition 25.5),

For a simple integrand Hy, dne_ can easily derive the following estimate 'by' Gron-

wall’s Lemma as in [45).
Lemma 2.2.3 Let v,g,X; be as in Proposition 2.2.1 (ii). then one has

_ 1 Xeve(g)||? < e / ds[|[{E PTQ{SJ + G, PS){ve(g))]
+||{<:g 3) BEsPTys > +Fs < R g( ) >+ < g( }, G PS:» +H5} ve (g)) F] (2.13)
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Proof : Write A(s) = {{g(s), EsPTyq) + Fs{R.g(s)) + {g(8),GsPS) + H;}(velg))
B(s) = ('ESPT_‘?(E} G.PS)(ve(g)). Then. by the second fundamental formula (2.11}

we have.

< QRE{/ ), A(8))ds} +/ I B(s)||*ds
< fu 1X; (ve(g)))>ds + /n (A2 + 1B (s)1P)ds.

The last step follows by the inequality 2Relz,y) < ||zl? + Jwl*. Now, by Gronwall’s
lemma. {2.2.2) we complete the proof, by taking a(f) = | X (ve(g)||%, F(t) =t and

Glt) = [y Il A(s))J* + || B(s)I|>ds. 0
The extension of the definition of X, to the case when the coefficients (. F.G, H)

are regular js now fairly standard and we have the following result :

Proposition 2.2.4 The integral X, with regular coeﬁicaents (E F G H) exisis as «

regular process and the first and second fundﬂmental furmu!ae as wel[ as the estimate

2 13 remain valid in such a case.

Proof : For n = 1,2,. deﬁneL” Ll_lf-?-{t(l—fﬂrj 0,1,2,.
where L denotes one of the four processes E F.G, H. By regularity of (E.F,G, H )
Lt ( e(g)) converges to Ly (ve(g)) uniformly over bounded subintervals of /R, Clearly,
ea::h L™ is simple adapted process and we can form X,En] = f( B A (ds) +
g r{ds) + G & T(f:.i.s) + H.g )d.s) By the estimate obtained in 2.2.3, it is easy
to see that X (m )ue(g) IS a Ca.uchy sequence, and hence its llmlt defines the stochastlc
~integral X (ve(g)). It is str aightforward to see that X; is indeed a regular adapted

process and the fundamental formulae and the estimnate of 2.2.3 are vahd See [45

ﬁ::nr a detailed proof. which will be applicable here also almost verbatim.

Corollary 2. 2 5 (i) Assume that in the above proposition B, F\ G, H sutzsfy C =
| SUPp <<ty (|1 Es|] + | Fs|] + ||G3|l + | Hgl|) < o0, Suppose furthermore that R. 8. T are
functions of t such that t — R(t)u, S(t)u, T(t)y are strongly continuous for u be-
- £0ngmg to a dense .subspuce D C Dom( 2(t)) N Dom(S(2)) Cheandy=u ®”f(t) =
c Dﬂm( ( )) C h@ku for ﬂ” te [0 to] with f € C, the set of all 6uunded continuous
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functions in L* (R, ko). Then the integral :

X(t) = f;(ESAT(d.S) + F.ap(ds) + Gsag(ds) + Hds)

defines an adapted regular process satisfying the estimate 2.153 with the constant
coefficients T, R, S replaced by T'(s), R(s) and S(s) respectively.

(ii)In the first part of the corollary, if we replace T(t), R(¢), S{t) by adapted processes
denoted by the same symbols respectively but with D replaced by D ®a) £(Cy), where

Ci = CnNky, then the conclusions as in (i) remein valid,

Proof : (i) Clearly we can choose sequences TV (t), R (), S (1) of simple co-
efficients such that T (£, R™(t)u and S (t)u converge to T(t)y, R(t)u and
S{t)u respectively for v and 9 as mentioned in the statement of the corollary.
With these, we can define the integral X™(¢) on u ® e(f) in a natural way us-
ing Proposition 2.2.4. The hypotheses of continuity of the coefficients will allow one
to pass to the limit in the integral as well by using the estimate 2.13. For exam-
ple, || f§ Bs(Aqin (d8) — Agimy(ds) )ue(£)|2 < Celle(F? fo (1 +11F(8)I2)ITRI(s) -
T{m}(s))(uf(.s))uzds —+ O as m,n — 00. The estimate for || X {{)ue(f)]] will also fol-
low by coﬁtinuity.

(11) This part follows easily from (i) with obvious adaptations. For instance. in the
‘estimate above we shall have instead Hfé' Es[Aqny (ds) — Apem) (ds)ue( )¢ <

Cet fy ds(1+ [LFSNIMNT™ () = T (s))(u @ e(fs) @ NI Pllel I s

Remark 2.2.6 Instead of the left integral, one could as well have dealt with the right
integral f; M (ds)H; and obtained formulae similar to those in Propositions 2.9.1 and
2.2.4

Remark 2.2.7 (i}The Ito formulae derived in proposition 2.2.4 can be put in a con-
venient symbolic form. Let 1o(z) denote z ® lpky and mo(z) denoie x ® lgy. Then
the Ito formulae are : -

ar(dt)ro(z)ak(dt) = R*mo(z)Sdt, Ar{dt)iy(z)Ar(dt) = Appyyrr(dt),
AT(dt)fg(m)aL(dt) = ﬂ}ﬁu(m}s(dt).‘ as{dt)mo(x) AT (dt) = ar« gy (x)5(dt), and the prod-
ucts of all other types are 0, | |

(i1) The coordinate-free approach of quantum st,ﬂchdstic calculﬂ.s developed here n-

~ cludes the old coordinatized version as presented in [{5]. Lef ug consider for example,
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for f € L*{(IR.. ko). the ﬁperatar Ry defined by Ryu = u® f, for v € h. It is easy
tn see that the creation and annibiletion operators a'(R 1) o{Ry) coincide with the
creation and annihilation operators ol (f) and a(f) ( respectively ) defined in [45] as-
sociated with f. Indeed, it is easy to see that (R)y, = (u,v}f foru. v € h. Thus,
for gl € k. (al(Ryvelg),uell)) = L({e(g +e(u,v) ), e(t)))le=o = @ (v, u)(f,1)
= (u,u}i(e{g +ef ), el le=o = (w,udal(fe(g), e(l)). It is also clear that (R}, g)
= {f.g) and hence a(Rys}(ve(g)) = (f,g)ve(g) = v(a(fle(q)). Finally, the number
operator A(T) in the sense of (45] for T' € B(k} can be identified with Ay, 5.



Chapter 3

Quantum Stochastic Dififrential

Equations

3.1 Hudson-Parthasarathy type Equations

We conside'r the quantum stochastic differntial equations (q.s.d.e.) of the form,

- dX; = X,(ar(dt) + al(dt) + Ap(di) + Adt), (3.1)
| d}g':’(g r(dt) + al(dt) + Ap(dt) + AdD)Y,, (3.2)

with prescribed initial values Xo® 1 and Yy ® 1 respectively, with Xy, Yo € B(h)
where R, S € B(h,h® ky), T € B(h® ko), A € B{h).

Proposition 3.1,1 Thﬂ"g.s.d..e. 's (3.1) and (3.2) admit unique solutions as regular

processes.

Prorif: The standard proofs of existence and uniqueness of saiﬁtions along the
lines of that given in [45] (section 26 for the left equation and section 27 for the
right equation ) work here also. We set up the iteration by.takiﬁg Xfm = [ and
{"H) = fﬂ {n) (ap(ds) 4 as(ds) Ap(ds) + Ads) forn = 0,1,.... Fix {5 > 0,
g € L‘x’(ﬂ?. kg) N Lz(ﬁ+,ku) By the estimates (2.13) and corollary 2.2.5 we have
for t < ty, | S

X el < e / (T + el
+ J)(< g(s )1Tg{s) >+ < R,g(s) >+ < g(s ) S > "l"A)(”E(g) 12] |

51
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< Civ)Plie(g)l)?.

where C = 460/ (JTY(llgllzo +ligllZ) + 1SN (1 +lglloc) + | Bglloo + 1AN). Note that
here we have used the fact that {|[p+gq+ 7+ 5|2 < 4(||p||1? + llg||2 + {|~||? + #sii*). Now
take the induction hypothesis that ||X( )('ue aM? < 6‘2“"‘ vl fle(g )I|2. Observe
that for W € h ® ko, | XV P(We(g))F < CPE|W 17| e(9)]i?, and hence we have

X D e(g)) 2
< / ds[ll{X\™ PTy(q) + XM PS} (ve(g))II?

(< g(s). XM PTy 5 > +X™ < R,g(s) > + < g(s), X" PS > + XM A} (ve(g))||°]

+
| ‘ R
< 4e‘ﬂcﬂﬂ||vu=*ne(g)||‘*(||Tn(a|gum+||g||§.c,)+||S||(1+ngnm)+||ﬂn||gux w14l | Zrds

n2 l.;,.l’l'l-l 5 9
oo Lol elg) P

This proves the induction hypothesis for all n. Clearly. the process X, defined by
X ve(g)) I ¢ i"”(t.:e(g,r)) is well defined. since the sum converges by virtue of
the above estimates. The estimates also enable one to show that X, is an adapted
regular process. That X, is a solution of (3.1) is also clear, This proves the existence
~of the left equation. To show uﬁiqueness,suppcse that X, is another solution of
(3.1). Since X; — X[ = f(f(ag(ds) —J—aig(ds) Ar{ds) + Ads), a reasoning similar to
the above shows that ||(X; — X!)(ve(g))||> < C*» f: lvl|*l{e(g)||? for all n and hence
Xyve(g) = Xjvelg). -

The proof for the right equation {3.2) is similar. For the iteration process in the

case of the right equation to make sense, one has to take into account the remark
2.2.7 whlle interpreting the right integrals involved. We also obtain the estimates :
supﬂqq{HX ue( f)|] + [Ysue()I} € clt, f)llul], for u € h, f € C and some constant

r(tf) o S | . S =

We now mnmder a palr of specnal g.s.d.e.'s:

dU,, Ut(aﬂ(dt}—{—f\.qx.l(dt) - ape R(dt + GH - ——R* e}, Uy = 1. (3.3)

AW, = (aR(dt) + Are_r(dt) - ab. p (dt) — GH + -2-R R)YdOW,, Wo=1I: (3.4)

"where T is a cantractmn in B (h@ku) R € B{(h, h@kg) and Hj is 2 selfadjoint element
of B (h) Then we have | |
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Proposition 3.1.2 (see [39] also )

(i) The solutions of both equations 3.8 and 3.4 exist as regular contraction-velued
processes and Wy = Uf. |

(ii) If furthermore T is o co-isometry, then W, is an isometry, or equivalently Uy is
o co-isometry.

(tie) If T' is unitary, then U; is a uniilary process.

Proof. (1) We have already seen the existence and uniqueness of the solutions {J; and
W in the previous proposition. A simple calculation using the second fundamental

formula in Proposition 2.2.4 and the right equation (3.4) give for u,» € hand f.g €C

t
< Wwel(g), Weue(f) > — < welg),ue(f) >= fu < Wivelg), < g(s) (TT* 1)y, > Wsue(f) >
(3.5)

This implies that for vectors ULy U2 vy Un € hand f;, fo,..., fn E C, we have

[ ZWt(u; (FN* | Eme (£

i=1

- E f Wauie(f:), (fils), (TT” = 1) 1)) Weuse( f5))ds

= /ﬂ )3 (- TT*)E(S)(WSHE*EU{)): (1 - TT*)E(EJ(WEWUJWS
.7 -

- /Ut | ZU = TT*)i(s)(Wsuie(fi))“zdS St

where we have used the fact that 7" is a contraction to take the square root of I ~-TT".

This clearly implies that W, is a contraction for each . Since W; € B(A® '), an ap-

plication of the first fundamental formula in Proposition 2.2.4 shows thai U; admits

a bounded extension ( which we denote also by U, ) to the whole of h@TD ﬂnd that

Ur = W, ' ' '

(ii) The relation (3.5) shows clearly that W; is an isometry if and only lf T is a

co-isomefry,

(iii) We note the following simple facts : | |

(a) For fixed g, f € L*(R4,ks) N L®(IRy, ko) and t > 0, there exists a umque oper-

 ator Mf‘g_ € B(h) such that (v, M{"u) = (U(ve( )) Up(ue(f))). |

~ (b) Setting M/ = M 9®14,, we have for allw w € h@kn, (U, P (we(g)) U;P(w e(f))}
(w, Mtf LITY - |
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It is an easy computation using the Quantum Ito formulae ( Proposition 2.2.4 } to

- verify that,

- t
(v, M 9u) ~ {ve(g), ue(f)) = [ ds(~(o, MI(T* R, f(s))u) ~ (v, (g(s), T"R)M#u)
_ ﬂ _

+{v. ‘.Mg;g(g(.s). Ryu) + {vg(s). M9 (T - 1)(ﬂf(s)))) + (v, MI9({H - %R*R}u)
4+ {v.{R. f-(s))MEf*”’u) + (vg(s), (T _ DML (uf(s))) + (v, ( i - %R*R)Mg’ﬂu)
+{Rv, M{9(Ru)) + (Rv, MP9(T — 1)(uf(s)) + (vg(s), (T — 1)M]*(Ru))
+{ug(s), (T* = NMIE(T - 1)(uf(s))).

- Let us consider maps Y;,? = 1,...,5 from [0,00) x B(h) to B(h) given by:
CYils, A) = ~A{T*R, f(s))—{g(s), T* R)A+ A{g(s), R) — 5(AR* R+ R*RA)+i[A. H]+
(R, f(s))A, Yals. A) = R*AR,where A = A ® ly,, Ya(s, 4) = (g(s), {(T* — DA +
A(T - 1) + (T* = VAT = 1)}y, Yals, 4) = (T* = DA*R, £(5)),

Ys(s,A) = {((T* - I)AR, g(s))". o E

Then it follows that. (v, M/ *9u) — (ve(g),ue(f)) = [Hv, iy Yi(s, M{9)u)ds. ie.

dM{*g 5 f.q
d.‘f = ;}";(tiMﬂ )

We also have that Mﬁr 9 = {e(g),e(f))I is a solution since the isometry property of
T implies that Y;(t, I) = 0V 1. Moreover, Y;'s are linear and bounded, hence by
“the uniqueness of the solution of the Banach space valued initial value problem, we

conclude that A tf = 'Mﬁ’r ¥ for all £, or equivalently that U, is an isometry.

3.2 Solution of Evans-Hudson type q.s.d.e.
1In the ﬁrevidus'subsectioﬁs, 'we have considered g.s.d.e.’s on the Hilbert space A& I,

Now we shall study an associated class of g.s.d.e.’s, but on the Fock module A® .
‘This is closely related to the Evans-Hudson type of g.s.d.e.’s ({18]; [45]).

' For this part of the theory, we assume that we are given the structure maps.

that iS,_: the triple of -normal-miaps (L,é,0) "_\i.rhere L e B(A),§ € B(A, A® ky) and

(Sl)-icr(n;) = n(z) — Q@ Iy, = Sz ® It,) 0 —z® It,, where T is é, partial isometry
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in & @ kg such that # is a *-representation on A.

(52} o(z) = Rz — wiz)R. where R € B(h,h ® kg) so that ¢ is a m-derivation, i.e.
o(zy) = d(z}y + n(z)o(y). |

(S3) L(z) = R*n(z)R + Iz + «l*, where [ € A with the condition £(1) = () so that L

satisfies the second order cocycle relation with 4 as coboundary, i.e.

Liz'y) — z° L(y) — L(z)*y = 6(z)*6(y) Vz.y € A.

Given the generator £ of a q.d.s., that one can choose k¢ and 3 such that the hy-
potheses (51)-(53) are satisfied will be established in the next section.
To describe Evans-Hudson flow in this language, it is convenient to introduce a map

© encompassing the triple (L, d,0) as follows ;

o(c) = (ﬁ(:c) 5t(z) ) | e
o(z) ol(z)

where £ € A.81(z) = §(z™)* : h ® ko — h, so that ©(z) can be looked upon as a
bounded linear normal map from A ® ko = h® (T ko) into itself. 1t is also clear
from (S1)-(S3) that © maps A into A® B(kp). The next lemma sums up important
properties of ©.

Lemma. 3.2.1 Let @ be as above, Then one has :

(i) Oe) = V(@) +K(e® 1) + (a ® 1 )K", (3.7)

where ¥ : A = A® Blko) is o completely positive map and K € B(h ® ko).

(i1) © is conditionally completely positive and satisfies the siructure relation :

Olzy) = O ® 1) + (@ ® 1 )O(y) + O@)FOW),  (38)

. 0 0
where () = .
| | 0 lpgko

(#1) There exists D € B(h_@lﬁu) such that ||©(z)(]| £ |{(z ® 1k~ﬂ)DC|I = h@ﬁg.

Proof : Define the ft:ullowing maps with respect to the direct sum dec_ﬂmpcusition
h@ky=h®(h®ky): o | |

R:( 0 0 ),fr(:n):: (a: 0 ),K: (z l{] . ) .
R -1 | 0 TI'(HJ) | K —§1h®ku |
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& _ lp O |
- 0 X

Then it is easy to see that (i) is verified with ¥(z} = R*S*(z ® lk-ﬂ)iﬂ = R*#(z)R.
~ Clearly, ¥ is completely positive. That © is conditionally completely positive and
satisfies the structure relation (3.8) is also an easy consequence of (i) and (51)-(53).
The estimate in (iii) follows from the structure of ¥ give'n above with the choice of
[) as |

D = ||ZR)| SR+ ||K[| 1,5z, + K.

We now introduce the basic processes. Fix ¢ > 0, a bounded interval A C (£, 00),

elements zi,Zo..... rn € A and vectors fi,fe,....fn € kiu € h. We define the

followings :

(fl'.ﬁ (Z-I-:@@(f: )u—“zﬂ'ﬁ{m ) (&) (uelfi)),

=] =]

(a}(&)(z T; @ E(fz )U = Zar,;(mt . ) (ue( (fi)},

==l j=1

(AU(&)(Z z; ® e( fi)) ) u=> Ay, (B) uelfi)),
- . =1 =l

(zﬁmnzmi@ ol ) = 3 AI(Lz)) ®el)),
' i=1 i=1

where |A| denotes the length of A.

Lemma 3.2.2 The abcﬁﬁe processes are well deﬁnﬂd dn A @;al-g E(k) and they take
values in AQT(k). - |

Pmaf Flrst note that e( fl) .. ve(fn) are linearly independent whenever fi,..., fq
are distinct, frnm which it is easy to see that 3, z; @ e(fi) = 0 implies z; = 0 Vi,

whenever fi’s are distinct. This will establish that the processes are well defined.

- . The second. part of the lemma will follow from lemma 1.3.9 with the choice of the

| den_se set £ to be S(!;)_'a,nd H = I'(k) and by some simple computation. noting
” 't'he faﬁt tha.t L,8,c are structure _inaps. -For example, -(e(g),aﬁ(é)(fs R e(f))) =
(e(g) e(f )} f(g(s) 5(z))ds € A, which shows that the range of aly is in A ® I'(k).
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Similarly. one verifies that (e(g), As (A)(z®e(f))) = (e(g). e(f)) J{g(s),0(z)5))ds €
A
A. since g(z) € A ® Blkg). =

Next, we want to consider the solution of an equation of the Evans-Hudson type

which in our notation can be written as :
| r. |
J, = idaep + f Jyo (al +ag + Ay + Ze)(dt), 0<t <t (3.9)
{ |

where the solution is looked for as a map from A ®I' into itself. For this. we first
need an abstract lemma which allows us to interpret the above integral on the right

hand side and to get an appropriate bound for such integrals.

Lemma 3.2.3 (The Lifting lemma) Let H be a Hilbert space and V be a vector
space. Let B: AQaz V — A®H be a linear map satisfying the estimate |

18(z @ n)ul] < call(z ® Lygnru (3.10)

for some Hilbert space H" and r € B(h,h ® H") ( both independent of n } and for

some constant ¢, depending on n. Then, for any Hilbert space H', we can define

amap f: (ABH)®uzgV = AGHOH) by flz® f®n) = flz@n) @ f for
€ An€eV, feH. Moreover, B admits the estimate |

1B(X @ null < coll(X ® Lapr)rull, (3.1

where X € A® H,

Proof : Let X € A® H' be given by the strongljr convergent sum X = > T, € é,.
where z, € A and {e,} is an orthonormal basis of H’. It is easy to verify that

18(E 0 ® ea @ ull* = X ||B(za @ null? < cf Ty |(Za ® Lagn )ru|? _
- c%ll(X ® 1o )rul|? and thus B is well defined and admits the required estimate.

Corollary 3.2.4 If we take V = @ and identify A®aV with A, then : A— AQH
is a bounded normal map and B is also o bounded normal map from A& H' lo
AQHQH ' ' ' ) |

The proof of this cﬁ_rollafy is'a simple consequence of the estimates.
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"~ We now want to define fﬂ ﬂ(a5+a5+ﬁ +Z,)(ds) where Y (s) : AQugé(k) —

A ® I'(k) is an adapted stmngl}r continuous process satisfying the estimate

sup ¥ (2 (z @ el )|l < ||z @ Lo )rull, (3.12)
o< t<ip

for z € A, f € C and where H" is a Hilbert space and r € B(h.h @ ?—[”) In this the
integrals corresponding to as and I belong to one class while the other two belong
to another. In fact, we define [; Y'(s) o (a5 +Z¢)(ds)(z ® e(f)) by setting it to be
equal to f; Y (s){(L(z V- (8(z*), F(s))) @e(f))ds. For the integral involving the other |
‘two processes. we need to consider }7(;) ARk ®E(k;) > AR5 ® kg as 1s given
by the previous lemma and fix 2 € A and g € C ( see Corollary 2.2.5). Define two
maps S(s) : h@_a.gs(cs) —+ h@I'y®kg and T(s): hQuz E(Cs) @ ko = h @' @ kg by

S(s)(ue(fs)) = ¥ (s)(3(z) ® e(fs))u,

and

g ]

. T(s){uel(gs) ®. f(s)) = Y(S)(g(m)f{s) ® e(gs))u.
_.By virtue of the hypotheses on ¥ (s }, the lifting lemma and the fact that s — e(gs) is
- strongly contmuou& the families S and T sa.tlsfy the hypatheses of corollary 2.2. 5(11).

B Theref’nre we can define the mtegra,l Jo Y (s) o (As(ds) +a5 (ds)(a:@ e(f))u by setting
it to be equal to (fu Ar{ds) + qs(ds)) (f) Thus we have

Proposition 3.2.5 The integral Z(t) = fﬂ Y(s 0 (an + as + Ay + Iﬂ)(dS) where
Y(s) satisfles (3.12) is well defined on A ®ag (C) as o regular process. Moreover,

the integral salisfies an estimate :

ll{Z(t)(:u@e(f)}ulF _ |
< 2 f emp(uﬁnmuv 3)(0e) iy @elful® +
76 ¥ (s)(@le) ey @elful}es, o (@a3)

where E-) was as defined earlier, Y(s) Y(s)®Y(s ) A® kg ®a1g5(cs) S AQT. QK.
f( ) = 1@ f{s) and f(s) is identified with 0 & f(s) in k‘g

Proof : We have already seen that the 1ntegra.l is well deﬁned To obtain the estimate,
fix z and define two operator processes R( ) and. H; by setting R(s V(ue(fs)) =
f(;](é(x*) @e(fs.))u and H(ue(fs)) = Y(.s)( (:"c) @e(fs))u for u € h. fs € Cs. Then
it is _clear'that S | -

Z(t)(:r Qe(f)u :(/ﬂ- an(ds_) +_at5.(d3) + Ar(ds) + Hsds)) (ue(f)),
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from which the estimate (3.13) by using (2,13) and Corollary 2.2.5 with £ = F =
G = I and recalling the definition of @. Note that we have also made use of the
inequality |la + 6" < 2(Jlafl® + [I8]]¥). | | a

Now we are ready to prove the main result of this section .

Theorem 3.2.6 (i) There ezists a unique solution J, of equation (3.9), which is
an adapted regular process mapping A® E(C) into AQ'. Furthermore, one has an

esfimate

sup HJi(z @ e(g))ull < C(g)l|(z & 1y i) Eroul;
0<t<to

where g € C.k = L*([0.t0), ko), E; € B(h,h @Ff( 1} C (9) is a constant and '/ (k)
is the full Fock space over k.

(1t) Setting 7:(x)(ue(g)) = Ji(z @ e(g))u, we have

(a) (G(z)ue(g), ju(y)ve( ) = (uelg), ju(z*y)ve(f)) Vg, f € C, and

(b) 7 extends uniquely to a normal x-homomorphism from A into A @ B(T'),

(iit) If A is commutative, then the algebra generated by {ji(z)jz € A,0 Lt <fp} is
commutalive,

(iv) ji(1) = 1 Vt € [0.tg) if and only if T*L = Lngk,.

Proof : (i) We write for A C [0,00), M(A) = as(A) +a;’j(ﬁ) —l-.A{,(.ﬁ) + Zr(A), and

set up an iteration by
K o) = [ I MEs)ze (), I @ e cf) =2 el

with z € A and f € C fixed. Since J\') = M{([0,#), J!" is adapted regular and has
the estimate { by the definition of M(A), estimate (2 13) and lemma 3.2.1(iii} ):
1 (2@ e(f)ull? < 2e][e(F)II2 J{ dsllO()(u ® F(sDIZIF(I? < 2le(/)]Pe
Iy d.s||f(3)\|2||(m ® 1;. )D(u@ f(s))||2. For the given f, define E{ Doph 5 hek

by (E{"u)(s) = D(u® f(s)lIfu(s)Il), where fi(s) = xpo,q(s)f(s). Then the above
estimate reduces to |

Iz @ e(f))ull® < 2lle(f )||“ tﬂu(a: ®1; )E“’un? - (3.14)
Now, an applica,tion of the lifting lemma leads to .

1J (”(X®e(f))uII2 < 2|le(f)]|%e *“n(x ®1; )E“)uuﬁ
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tor X € A® ky. where as in the previous proposition. J 7 ) = f{” b Jf Y As an
induction hypothesis. assume that Jf"” is a regular adapted process having an esti-
mate |7 (z @ e(f)ull? < CMle(H)2](z ® Lien) Bi™ul|?, where C = 2¢fo. By
h— h@k®" defined as :

(EMu)(s1,82, . 50) = (D ® Lpgn-1) P {(BS) "u)(s2.. . 82) @ f(s1)l| fuls1)ll}. Fur-
thermore, P, : h®@i®" ' @ky — h@ky®k®""" is the operator which interchanges
the second and third tensor components and E( ) = = 1. Then by an application

of the prupumtlon 3.2.5 one can verify that J," 1) also satisfies a similar estimate.

Thus. if we put J; = 32, J"’” then

iz @ e(fNul] < 3 1M (z @ e(f))ul)

n=({
< ()l 3. CHm) Hi(@ ® Lion a) TEMul|
n=>0
< lle{)] (Z ) (z ® 1[*!(5))5'!,“”1 | (3.15)
| n—[] _

| whefé_we' have set By : h — » @I‘f(k)- by Eyu = Pie D(n!) E( by, Tt i is easy to see
that || Eyufl* = 572 (nl) || By ull? <

! | s,
Tull? 3onzo(n) 2D I} dsy r:-'131IIf(Ffﬂ)ll'%l ||f(31)|14} |

0<an<sno1 <t <t - -
= [ful|? o (n!) I|D||?”pef(t)" where pp(t) = [§ ||f(s)]|*ds. The estimate (3.15)

proves the existence of the solution of equation (3.9 ). as well as its continuitv rela-
tive to the strong operator topology in B(h). The uniqueness of the solution follows

along standard lines of reasoning.

(11} First.we prove the fullowiug_identity ;
Az ® e(f))u..'Jr,(y ® E(:Q))?Q‘) = (ue(f), Jiz'y ® E(Q)J‘i})- ~ {3.16)

- For this it is canvement £0 llft the maps J; to the mﬂdule AT/ (ko) Ralg £(C). that
s, replace Aby A® l"f(kn) We define Je i A @ (ko) Ralg £(C) > AT ® (ko)
_-by Jt = (Jt ® 1d)P where. P 1nterchanges the second and third tensor components.
_. 'Reca]lmg from section 2 that Oz z) € B(h h®ky) forz € A, ¢ € ko, we can define
Q¢ A A K by O¢(z ) @(m)g, and extend as above tﬂ-@( : A@I‘f(ku)

A®1‘f kn) by setting @Cu en = O @idk.n@n. By the lifting lemma, both J; and
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é} are well defined and enjoy the estimates as in (i) of the present theorem (3.2.6}
and lemma 3.2.1(iii) respectively. |
Next. note that for fixed f,g € C and z.y € A. one has using the equation (3.9)

for J; and quantum Ito formula ( 2.2.5) and the structure relation in lemma 3.2.1{ii)

(J(= @ e())u, Ji(y ® e(g))v)
t n .
au®e(f).yv@elg)) + [ ds{Ju(@f,)(x) ® elf)u. July ® dls) @ elg))o)

+{(J(z®f(s)@el f))y Js (O 510y (1) @e(9))0) +{Js (O 5y () ®E(F)) 1, J5 (B g5y (1) Dl g) )0} },
(3.17)

where f(s) and g(s) in kp are identified with 0@ f(s) and 0@ g(s) in kq respectively.
We claim that the identity above remains valid even when we replace z,y by X.Y €
A& (ko) and O¢(z), ©¢(y) by é((X) é(( } respectively, where ( is one of the
vectors f (3), g(ﬂ }, f(s) and g{s). To see this, it suffices to Dbserve that in the resultmg
identity, both left and right hand sides vanish if X € A ® kg. andY € AQ® .&g

with m # n, and then use the definition of Jy and @C to prove the identity for
X Y € A®ayy k},@m. Finally, use corollﬁry 1.3.8 and strong continuity of J; obtained
from the estimate in (i) to extend the identity from X =3 z,®e€n, ¥ = 2 ya ® €q

(finite sums) to arbitrary X and Y. Thus one has upon setting
&,(X,Y) = (Ji(X ® e(f )u, (Y @ e(g))v) — (ue(f), J((X,Y) ® e(g))v)

the equation :

t R | |
@, (X.Y) =fﬂ ds{®s(0 ) (X}, Tp(s) (Y NHPs(T (X)), © Os(s) (}"))-l-‘b (© (5)(X). g{s}(Y))}-
| | (3.18)

where (X,Y) is the module inner product in A ® '/ (ko) and we have set for for
Coe-oin € ko the map JCEE RM... @) =N ... 01N, ®(, and extend it
naturally as a map from A ® I'/ (ko) to itself. It is clear that the estimates in lemma
3.2.1(iii) and theorem 3.2.6(i) extend to

18¢(X)ul] < [1X ®1; ) D(u @ )]
and .

sup (| (X @ e(f)) ul| < X ® L) Broul.
0<i<ig . |
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From the above estimates and definition of @y, it is clear that [®,(X.Y)!

< ullllel I XTHY IHELIC (@)X BrIC(F) + lle(H)Il}. This implies. by iterating
the expression (3.18) sufficient number of times. that & {(X,Y) = ( which leads
to ®;{x,y) = 0 for all x,y € A. Since (ve(g),je(z)(D =i uie{fi))) = (Ji{z" ®
e(g))v, ¥ use(f:)) by the above identity, it follows that j;(z) is well defined on
h ®ay £(C), and thus (ii)(a) is proven. The proof of (ii)(b) and (iii) are as in
(18] and [45] respectively. For (iv), we note that j(1) = 1 for all ¢ if and only
if di{(1®e(f)Ju =0V u € h,f € C; and from equation (3.9) and (51) it is
clear that this can happen if and only if 0 = f[f ds{ue(f), Js o (Axp-y_r(ds){ve(f)))
=~ [Tds(ue(f), Jo((f(s), (Z*Z — I) y15)) ® e(f))v) for all ¢, since (1)§ = 6. But this
is possible if and only if {(, (X% — I)¢) = 0 ¥V { € kg which is same as XL = /. O




Chapter 4

Dilation of a quantum

dynamical semigroup

In this chapter, we start with a uniformly continuous q.d.s 7y on a unital von Neu-
mann algebra A C B(h) and consider the problem of its quantum stochastic dilation,
We remark that without loss of generality we may assume T} to be conservative, since
the case of a non-conservative T} can be reduced to that of a conservative one by
suitably enlarging the given algebra and extending the given non-conservative semi-
group to a conservative semigroup on the bigger algebra (see the proof of the result
1.2.18 for a description of this enlargement). |
First, a unitary evolution U, is constructed in £ @ I’ such that the vacuum ex-
pectation of 7 (z) = U;(:z:'@ Ip)U} gives back the q.d.s. T} that we have started
with. However, j7(z) in general will not satis'fy a flow equation of the Evans-Hudson
type. It is shown that there exists a suitable choice of a partial isometry in h ® kg
such that the Evans-Hudson type of flow equation can be implemented by a partial
isometry—va,luéd process in h®T', It is to be noted here that in [28] an Evans- Hudson

type dilation was achieved with A = B(h) for a countably infinite dimensional & only.

4.1 Hudson_—Parthasarathy (H-P) dilation '

Let (p, K, a, H, R) be a quintuple associated with T} obtained from theorem 1.2.21, R
is the implementer of « as in 1,2.21, and (k{, £;) be the pair for the representation p
as in the theorem 1.1.6. Denote the projection 137 by P;. Now set R=%|R. Re¢

63



15 Chapter {. Dilation of a quantum dynaemical semigroup

B(h.h @ k) so that R* = R*3} and we have
R*(z ® I, )R = R'EHz® 1, )5 R = A% p(z)R.

Also.
R'R = R'Z{T)R=R*R, as L5 = Ik.
Now, we take the unitary process U/; which satisfies the following g.s.d.e. ( as in

section 3.1)
dl; = U, (a}e(dt) ~ ap(dt) + (iH - %R‘R)dt), Us = 1. (4,1)

Let I denote T'(L%(IR.. k). Taking j2(z) = U(e ® 1z)U/, we see that for each
t. j2(+) is a »-homomorphism. We now claim that (ve(0), 77 (z)}ue(0)) = (v, T;{z)u).
To prove this, it is enough to show that (ve(0), é%j?(:n)(ue(ﬂ))) = (9, Ty(L(x)}u). and
- this follows from the quantum Ito formula for right integrals as mentioned in remark
©9.2.6. Indeed we have, (U (ve(0)), (z ® 1)Uy (ue(0))) = Ufds(ve({]),jE(L(:B))(ue(O))),
 where £(z) = R*p(z)R — \R*Rz —~ L2R*R + i[H.z} = R*(z ® 1, )R — R*Rz —
%—L’R*R + 1| H, .ar:] Thus, it we denote by Fq the vacuum expectatioﬁ map which
takes an element G of B(h®T) to an element oG in B(h) satisfying (v, (EyG)u) =
| {ve(D), G(ue({)))} (_fﬂr u, ¥ € h), then

; |
thﬂft( T) = IEng(ﬁ(:B}),

‘which implies {since £ is bounded), that Fo3?(z) = Ti(z). |
A simple caltulatinn using the quantum Ito formula and e_qua.l:ir.in (4.1) shows
that | | | |

Gz) = Uilod () — G (@) + L)dU;,  (42)

where r:z(:ﬂ) = R:L —(zQ 1, )R = El[R:I: ~ p(z) K. for z € A. In general. a(z)
may not be in A® k; and therefore the equation (4.2) is not a flow equation of the

n:t[:r)

Evans-Hudson type. However, in case A = B{h), it is trivially a flow equation.

4.2  Existence of structyre'mlaps and Evans-Hudson di-

lation of Tt

- In.the context Df the theorems 1.2.21 and 1.1. 6 1t should be notecl that in general

K need not be of the form h@k' and neither p or o be structure maps as defined in
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chapter 3. that is. p need not be in A ® B(k) nor a(z) be in A® k'. However, the
following theorem asserts that one can * rotate " the whole structure appropriately
so that the  rotated ” p and o (denoted 7 and § respectively) become structure

maps without changing £ (see also [46]).

Theorem 4.2.1 Let T} be o conservative norm-continuous q.d.s. with generator L.
Then there exist a Hilbert space kg, a normal -representation m + A — A @ B{kg)
and a n-derivation § of A into A® kg such that the hypotheses {51)-(58) in chapter

3 are satisfied.

Proof : (i) Let {p, K, «, H, R) be a quintuple for 7} as in theorem 1.2.21. We define
“amap o : A — B(K), where 4’ denotes the commutant of A in B(h), by |

p’(u)(ﬂ:(m)u) =oa(z)euz €A, ueh ac A, (4.3)

and extend it linearly to the algebraic span of D = {a(z)u : u € h,xz € A}

To show that it is well defined, we need to show that whenever 3 1%, a{zi)u; =0

for z; € A,u; € h. one has p (a)(Zl_lcr(:n,)ui) = 0. Since a(z;)*a(y) = Llz]y) —
L(xz})y — ziL(y) € A for y € A, we have for a € A', (p'(a)(032, alzi)w), alyh) =

™ {a(z;)au;, aly)v)

i m m
Z ui, a” (i) aly)v) = > {ui, afzs) ely)a*v) = (D ofzi)us, ofy)a™v), (4.4)
=1 o | =l t=1.
thereby proving that p' is well defined. A similar computation gives,
m m m | : -
16/ (@) alziduidl® = > ) (ui, alw:)* ol z;)a" auy). (4.5)

=1 =1 j=1

Denoting the operator cr(.n;)*cr(mj) by A-,,J, and noting that A = ((Ai;))ij= -1 . acts

as a positive operator on h @ ... D A, which commutes with the positive operator
i

m copies |
C® I, where C = ||a]|?.1 — a*a and I,, denotes the identity matrix of order m. we

observe that A(C ® I'),) is also a positive operator. Thus, considering u; ®us .. .S
Um € h@® ...8 h, the right hand side of (4.5) can be estimated as :
- & : . |

m copies
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m m

Z Z(”i* o (T; }*&(:ﬂj.)u*auj)

1=13=1

< Hall* D7 D (ui, ol alz;)uy)

=1 j5=1

1D alza)usl*|lall?,

pu= ]

|

proving that p'(a) extends to a bounded operator on K satisfying ||p{e)|| < ]]el]
since D is total in K. It is also easy to see from the definition of p' and (4.4) that
it is a unital %-representation of .4’ in K. Next we show that p' is normal. For this,
take a net {ao} such that 0 < aq T a where ag,a € A'. It is clear from the definition
of p’ that p'{ag)o(zlu — p(a}a{z)u for all z € A, u € h, and thus, p'(aq)® p'(a) on
K by totality of D in K and since [jp'(ax)l| < llag|l < llal] V e

(11} By {i). p"_: A" — B(K) is a unital normal *- representation. By theorem 1.1.6.
there exist a Hilbert space kg, an ismﬁetry Yo : K — h® ks with £ = RanXy = K.
satisfying, o | |

pla) = Ti{a ® 1;,)5,, | - (4.6)

and for all a e A a ® 1y, commutes with Py = X923, Let us now take §(z) =
Yao(z), ﬁ'(:n).= _Egp(lm)ﬂa. It is clear that & is a #-derivation. Moreover, §(z*)*8(y) =
a(z* ) LiLsa(y) = alz”)*aly) and hence L(zy)—zL(y) - L(z)y = 5(z*)*8(y) holds.
Taking R = TR € B(h, h®ks), we observe that §(z) = Ts tr(ﬂ:) = Eg(Rﬂi;p(:E)R) =
Rz — #{z)R. It is also clear that L(z) = R*#(z)R --%R*Ra: ~ zR*R + i[H. ]
= R'p(z)R— }R°Re - JeR*R+i[H,z].

- To show that §(z) € A®ks for all z € A, it is enough ( by lemma 1.3.9 ) to verify
that for any f € ko. (f,8{z)) € A or equivalently that (f, §{x)) commutes with all
a € A", For f € ks. a€ A, u,v € h, € A, since P and (a ® 1y, ) commute. we

have,

((f,d(z))au,v) = (§(z)au,v ® [} = (Tra(z)au, v ® f) = (T2p' (@) a(z)u),v @ f)

= (EQEE(ﬂﬁ?lkz)r‘?ﬂ’(m)ui‘u@f)'= (Pﬂ(a®1k2)22a(m)u,ﬂ®f) = ((a®1k2)gﬁ.2522&(m)u*u@’f)
= (Bt (0) @ £) = () a"v) = (al, Bz v)
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Next, we want to show that 7(z) € A® B{ks) for = € A; and for this it is enough to
verify m(z){a®1y,) = (a® 14, )7 (z) for all a € A'. Since TIP;- = 0 and P» commutes
with (@ ® 1y,), it is clear that 7(z)(a ® 1k,}Ps = Eop(z) L5 Pa{a ® 1g,) =10

= (a® 1, )7 (x)Pa. Thus, it suffices to verify that #(z){(a® 1y, ) = (e ® 11, )7 (z) P,
or equivalently ( since LoD is total in Ko} that 7t(z){a @ 1z,) Eoafy)u =

(@ ® 1, )7 () oa(y)u, for all y € A, u € h. For this, observe th&t,

T(z)(a @ lg, ) Noa(y)u = Tap(x) L] (e @ 1, ) Loa(y)u = Lyp(x)p'(a)a(y)u

= Dap(z}a(ylau = Lea(zy)au — Daa(z)yeu = Top'(a)(afzy) — olz)y)u
= Tap'(a)p(z)e(y)u = %223(a @ 1k, ) Zop(z) B3 (Tac(y)u)
= Pa(e ® 1, )7 (z)(X2a(y)u) = (a ® 1k, )7 (z) (Daa(y)u).

(iii) Recall that by the theorem 1.1.6, we can write p as p(z) = (2 ® 1,)5; as
in the previous section. It follows that #(x) = Lol o ® 1;,)0155 = 2z @ 14, )5
on h @ ko 80 that i‘_is a partial isometry with initial set Py(h ® ko) and final set
Pl(h ® k1). Now set kn' =k @k and D=S@0:h®k, - I ® kg with initial set
(0 @ P2)(h ® ko) and final set (P, & 0)(h ® ko) and 7(z) = #(z) & 0. 8{z)u = b(z)u
for z € A,u € h. It is clear that d{(z) € A® kg, 7w(z) € A® B(ky) and (S1)-(S3) are
satisfied. | | 0

Remark 4.2.2 Although p was assumed to be unital, ® chosen by us is not unital.
However, in some cases it may be possible to choose T, kg in such a manner that

1§ unital.

‘We summarise the main result of this section in form of the following theorem :

Theorem 4.2.3 Let (ﬂ)éﬂ be a Cun.?erwtive ﬁarm—contiﬁﬁaus. q.d.s. with L as its
generator. Then there is a flow Jy: A® E(C) - A® r satisfying an Evans-Hudson
type q.s.d.e. (3.9) with structure maps (L,6,0) satisfying (SI)—'(S.?), where [' =
T(L*(Ry, ko)) and C consists of bounded continuous functions in L?(ﬂ?}.I kq), such
~ that ji(x) defined in theorem 3.2.6 is a ( not necessarily unital) x-homomorphism of
A into A® B(ky) and Eoji(z) = Te(x) Vo € A,
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Proof : The proof is immediate by (i) observing the existence of structure maps ¢
and o satisfving ($1),(S2) from theorem 4.2.1.(ii) observing that L satisfies (53),
and fnally (iii) constructing the solution J; of equation {3.9) with structure maps

(£.d.0) as in theorem 3.2.6. That Fgj(z) = Ti(z) Yz € A follows from the ¢.s.d.e
(3.9). | | 0

Remark 4,2.4 With reference to the last sentence in the statement of 1.1.6, it may
he noted that both the Hilbert spaces ky and ko and hence ko can be chosen to be
separable if the inilial Hilbert space h 1s separable. In such a case, if we choose
an orthonormal basis {e;} in kg, then the estimate for § in (52) is precisely the
cnui‘dinate-free form of the caﬂdition

Z g (@ )ufl® < Z ||ﬂf?1-r)t:ﬂ*"ﬂ|f2

i=0 €1y
with Z:‘ern ]|D5u|l2 < agllul* as in [42] [39]. The similar conditions on ,u,}(j # 0)
as in [{2] are trivially satzsﬁad by ((#J))k’:’,_ ' .
easidy from (S1) and (8§3). It may also be noted that j, satisfies the BE-H equation
| dﬁ(:}:) Ehj jt(ﬂj (:t:))dAJ(t)_ with jo = id, in the coordinatized form with the ap-

pmpmaﬁe choices of p,J s in terms of L,6 and o as above. The flow equation (3.9)

| = o and for p = L as can be seen

is in fact a caﬂfdfiﬁate-ffee modification of the old coordinatized E-H equation given

ahove.

‘4.3 An interesting duality

In the préviags sectioh._ starting with a *-homomorphism p of A and p-derivation a.
we constructed a.*-hnmamorphism p' of A" which satisfies p'(a)a(z) = a(z)a Vo €
A'.z € A. Let us now observe that p(z) and p'(a) commute for each z € A and
a € A'. Due to the totality of vectors of the form a(y)u, y € A,u € h in K. it is
enough to verify that p"(q)p(m)a(y) = p(m)p’(ﬂ)a(y). But we have,

plalp(s)aty) = f(a)aiay) - d(a)a(z)y = a(zy)a ~ a(z)ay

= (alay) ~ alzl)e = p(e)alrla = pla)(@aly).

Denote by &, and Ey respectwely the spaces of mtertwamers of p a,ncl o that is.

={L e B(h.K) : L:-: =p(:1:)L vV € .A},



4.3, An interesting duality 69

={Se€BhK): Sa=p'(a)SVac A'}.

Cleraly. €, is a Hilbert von Neumann A’-module and &, is a Hilbert von neumann
A-module. The right module actions are given by (L.a) = La and (S.z) - Sz
for a € A" and z € A respectively. Furthermore, it is easy to verify that inner
- products of £, and £y, inherited from that of B(h,K). take values in A’ and A
respectively, To see this. note that Yz € A and L. M € &y, we have (L. M)z =
L*Mz = L*p(z)M = zL*'M = z{L,M); and similarly Va € A, 5,T € &,.
(5, TYa = a(S,T).

Clearly, a{z) € £, Vz € A, and hence there is an implementer R of a which
belongs to £y, since such an R can be chosen from the ultra-weak closure of {a(z)y :
T,y € A} Now, choose and fix any L from &, and a self-adjoint element H' € A’
Consider the p'-derivation given by Br(a) = Le - p'{a}L and the CCP map given
by L} ;p(a) = L*p'(a)L — %L*La — %L’LL*L +{H'. al. Since p'(a) and p(z) commute
for all ¢ € A" and z € A, it is clear that grle}) € &£, Ya € A'. Furthermore.
L*p(a)le = L'gla)p(z)l = L*p(@)p(a)L = zL*p'(a)L for ¢ € A.a € A
which shows tha.t L*p'(a)L e A’, and hence the range of the map L/, ' g 18 in A
Thus, given the sem1gmup Ti = e'* on A, we are able to construct a family of .
semigroups T( H) = e on A', indexed by L, H'. such that each member of
this family in “conjugate” or ‘dual” to Tt in some suitable sense. To make this

precise. let us make the following definition :

| Definition 4.3.1 4 pair of uniformly continuous g.d.s. (..S'h.S{) on A and A’ re-

spectively are said to be conjugate fo ﬂdbh other if there exist a Hilbert space K,

x-homomorphisms 7 of A and._n’ of A' into B(IC),_; an n-derivation § of A and -
derivation i’ of A' into B(h.K) and self-adjoint elements K € A. K' € A' such that
the followings hold : . |

(i) n(z) and 7' (a) commatte foreachz € A anda e A,

(i) There exist W.W' € B(h, K} such that B(z) = Wz — pz)W, f'{a) = Wia —
n'(e)W'. Wa =7n'(a)W and W'z = n(z)W' forallz € Aandaec A"

(1i1) The generators I.'.S and L5 of S; and S! (respectively) have the forms LS (z) =

W*n(z)W W*Wm - ﬁmW*W-I- i K, ] and L’.Sl(a) W"* '( W' — sWHW'a —
2&W’*W’+a[1{’ al. - |

It is clear that T; and T( ') are conjugate to each other for any L, H' according to
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‘the above definition. Note that in this definition, we do not require that either _r:}f the
sets {B(z)u : 2 € Au€ h}and {B'(e)u :a € A',u € h}istotal in K. In fact, in the
present context, there need not be any L € £, such that {8.{aju 1 0 € A u € h} is
total in X. For example, it A = B(h), then A’ is isomorphic to ¢, and hence for any
L. 8; will be identically zero. However, if A’ is not too small compared to A. one

may expect that for some L. the above totality will be achieved.

4.4 Appearance of Poisson terms in the dilation

Given the semigroup T}, we have obtained a quantum stochastic dilation j; which sat-
isfies Evans-Hudson typé q.s.d.e involving the deterministic (time} integrator T, {dt)
and nﬂn-de_i:erminist:ic integrators as(dt}, a}(dt} and A, (dt). We shall now investigate
' the necessity of A-coefficient, which we call conservation or Poisson term. We say
that the semigroﬁp 13 18 Pﬂissu_n-fre.e if there exists an E-H dilation for T} which has
HD.PDiSSDn or term. It is clear that T} wi{;h the generator L is Pt}isson-free if and only
if 1t is possible to obtain a trIplet of structure maps (£, 4, cr) with o being identically
Z€T0. I shﬂuld be noted here that there may exist some other E—H dlla,tlcms for a
Poxsson-free semlgmup i",: which mvalves nonzero Poisson-term. We first state and

prove a criterion for Poisson-free nature of a semigroup.

- Theorem 4,4.1 Let T, be a uniformly continuous canser.‘ﬂﬁt_ive_q;d.s.. on a unital
- von Neumann algebra A with the generator L. Denote by- Z the centre of A. Let

D AX ./-l x A= A be the trthnear form mtmduced in the proof of the theorem
1.2.21 of chapter 1. that is, D(a boc) = L{abe) — L(ab)c — af.(bc) + aﬁ(b}c Then,
 the fouawmg condition is necessary fﬂ?‘ T; to bﬂ Pazssun free
.'Forall:ﬂy-’éﬁaﬂdzez o

D(:I: z,y_):ﬂ(af',ly)z.-_ ._ o (4.7)

"?Furthemare when either Aor A is cammutﬂtwe then the above condition is also

suﬁ'icwnt far Tt ta be Pmsson free

:_:. F’rﬂof TG prove necessﬂ:y, a.ssume that Tr, lS Pmsson—free Hence there will exxst a

- .Hllbert space ko and a (¢ @ 15:.;,) deerﬂ-tlﬂn 5 € B(.A A ® ko) such that Liz'y} =

L= )y+5:*£(y)+c5(:1:) 5(’9) Vz,y € A. From thls cocycle 1dent1ty it is easily verifiable
| t;hat D(a b, ¢) == §{a*)* (b@alkn)é(c) But for T €- A, 5(3:) € A® kg, which implies that
5($)z “:[z@}lkn)ﬁ(m) Vz € Z Hence we have D( z*, 2,y) = 8(z)*8(y)z = D(z*, 1,)z.
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For the converse (sufficiency) part, recall the notations used in the proof of the
theorem 4.2.1. Clearly, D{a.b,¢) = afa*)*p(b)a(c) Va,b.c € A. For z € Z and
r e A, we have

(a(z)z — p(z)a(z))" (alz)z — p(z)a(z))
= z'Diz". 1L,z)z — D(z*, 2", z)z — 2" D(z*, 2,2) + D(z". 2" 2. z)
= Q. |

using the condition {4.7) and the fact that z and D(z*, 1, z) commute., This shows
that p(z)a(z) = a(z)z. But since p'(z)a(r) = a(z)z, we obtain that p(z) and p'(2)
agree on the total set of vectors of the form a(z)u,z € A,u € h and hence p(z) =
P {z) for all z € Z. As in the proof of 4.2.1, write p'(a) = ¥2*(a ® 1;,)L,, for some
Hilbert space ko and an isometry g : K — h®ky such that Pp = I,5,* € A® B(ka).
It has been shown that §(.) = Zga(.) € A® kg, (.} = Z9p(. )22 € AQ B{k2). But
in the present situation, p{z) = p'(2) = La* {2z ® 1x,)%; for all z € Z, and hence we
have 7 (z) = (# ® 14,)}P2. Assume now that A is commutative, that is, A = Z. Since
P28 = 6 and 4 is a #-derivation, it is clear that & is (z® 1, )-derivation, which proves

the existence of a Poisson-free E-H dilation.
1In case when A’ = £, we choose an isometry L' : K — A ® k' for some Hilbert
space k', such tha,t_E'E’* € Z® B{k'), and p(z) = &z @ 1y)X'. Then p'(z) =
2@ )Y for z € Z = A/, and it follows that )3’9:(..) is a (z ® I )-derivation
belonging to A ® B(k). This completes the proof in case ﬁrhen A’ is commutative.
O

Let us now investigate the two extreme cases of von Neumann algebras, namely

B(h) and commutative von Neumann algebras.

Cﬂmllary 4.4.2 Any umfﬂrmly continuous conservative g. d.s on B(h) is Pmswn-
free On the other hand, a umformly continuous conservative g.d.s. T, on a commu-

tative von Neumann algebra is Poisson-free if and anly of Ty 1s trwza[ ie THz)=zx
Yz € A, | | | |

Proof : First consider the case A = B(h). Since A" = Z is lsomorphlc to €, and
Dz, .,y) is clearly Clinear, the condition 4.7 follﬁws trmally o

Now, consider the case when A is comutative, and hence Z = A Assume that
4.7 holds. We claim' that this condition forces £ to be a derivation. Take z = y to



12 Chapter 4. Dilation of a gquanium dynamical semagroup

be a projection in A, By expanding both sides of the condition 4.7, we have :

Llz'y) — Ll yhy — 2 Ly) + 27 Lly)y = (L{z"y) — ™ L{y) - Lz )y)y.
o, [£{z"y) — =" L)L — y) = [L{="y) - z"L{y) - L{=")yly,
or, [L(zy)—z*L(y) - L(z"Ww])(1 - y) = [L{z"y) — 2" L{y) — L(=7)y]y,

where the last step follows because y(1 — y} = (. But the above implies
IL{z"y) — L(z™)y — 2" L{y}|(2y — 1) =0,

which shows (since (2y — 1)? = 1) L(z*y) = L{z)y + x*L(y) for all z € A and all
projections ¥ € A. But the fact that a,njr element of A can be approximated in the
strong topology by a norm-bounded sequence of elements from the linear span of
the projections in A and that £ is continuous in the strcjng topology on any norm-
bounded set imply that the above relation holds for all z,y € A, ie. £ isa derivation
of A into itself. But by the gerieral theory of von Neumann algebras (see (14}) there
will be a self-adjoint H ¢ A such that L(z) = [H,z] ¥z € A, which shows that
L(z) = ﬂ_s_iﬁce A is commutative, i.e. T;istrivial. This completes the proof of the
~ corollary,. = | - . S 0]
However, the. statement of the above proposition for cammutative von Neumann
algebras does not extend to the case when T} is not u_nifnrmly continuous. that i,
‘when its generatm* is unbounded. The simplest example is provided by the heat semi-

group on A = L®(R). Let .(Bt)géﬂ denote the Un'e-_-—dimensinna,l standard Brownian

- motion defined on the Wiener space (2, F. IP), where /P denotes the one-dimensional
Wiener measure. It is well-known (see [45]) that L?(JP) is naturally isomorphic
 with F(L%IRQ). Let h denote L*{IR). We define a time-indexed family j, of e

-hqmorﬁorphisms from A to A® B(I'(L*(Ry)) = L”‘“(R)’@ B(L%(IP)) by setting
7i(¢) to be the multiplication by ¢(. + By} in L*(IR) ® L*(IP). Denote by A(?) the
set of functions ¢ in L°°(IR) which ha#e second order continuous derivatives such
that qﬁ""aﬂd ¢ belong to LW(_R). It is then clear that for ¢ € A2, j,(¢) satifies the
S_tochastiﬁ: differential equation | | o

(@) = 5(@)ABy + Siud")dts jo(d) = 6

Translating this into the Fock space language and noting that dB; correspcinds to
a{dt) + al(dt), we obtain the following E-H flow equation :

dJy = Jy o (as(dt) + al(dt) +I(dt)), Jop = id,
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where J; is defined by Ji(¢ @ e(f)})u = ji(¢){ue(f)) for u € h, f € L*(R,), and
0{¢) = o', L{@) = 5¢" for ¢ € A, This is clearly a Poisson-free E-H dilation of
the semigroup generated by £. We shall now show that it is possible to construct
a sequence Tf“_) of uniformly continuous q.d.s. on .A which approximates T; in a
suitable sense and Tt admits an E-H dilation j( ") such that the Poisson or A-term

in the flow equation for jt( ") tends to zero as m — oo in an appropria.t;e sense.

- Let £ : A — A be defined by L,(¢)(z) = 5(d(z + T) + ¢z - ) — 2¢(x)).
Clearly. for ¢ € AP, £,(4) converges to L(¢) pointwise (since @" is contmuaus)
and hence strongly (by the dominated convergence theorem). To obtain structure
maps for constructing an E-H dilation of T{ W o= et let us consider the unitary
operator 7, in B(h) given by 7, f(z) = f(rf:-i—ﬁ). Let kg = €2 and R, € B(h, h®ko)
be the operator Rof = +/n/2((Tn — I}f & (T} — I)f). Define a *-homomorphism

' TéT: 0
, 0 TadT:
to see that 7,¢T, is multiplication by #(. + ﬁ;) and 7 ¢7T, is multiplication by
H(. — ;%-), it follows that m, € B(A, A® B(kp)}. Now, define a - derivation on by
setting 6n(¢) = Rn¢ — mn(@)Rn. Clearly, d(¢)(z) = VR/2{d(z + J=) - ¢(z).
¢z — -ﬁ) — ¢(x)}, which in particular shows that é,(¢) € A® kg Then we verify

that L,(¢) = R}m.(d) Ry — -I—R*anfa - %r,bR*Rn Thus, having got the structure
maps (L, 0, Tn — id), we can construct an E-H flow j( ™) for T{ ™) The A-coefficient

T, Of A into A @ B(kg) by setting m,(¢) = ( ) . Jince it Is easy

in this flow equation is m, — id. It is easy to see that for any continuous function ¢ in
A, m(¢d) — ¢ converges to 0 stmngly. If ¢ is everywhere continuously differentiable
with its derivative in A, then this convergence will take place in the norm of A. In
fact, if we denote by 4 the set of all smooth functions having the derivatives of all
order in A, then for any fixed ¢ € A%, L,(¢), dn(@) and (@) converge respectively
to L(¢), 5(:;{::) and 7(¢) in norm, where M) = ﬁ(gﬁ', —¢') and *ﬁ'(r;eb)::_ ( § Z ) :
For ¢ in Al?2), the above convergences take place strongly.

~ Let (B(” Bf?} Ji>0 be a two-dimensional standard Brownian motion and P,
be the measure induced by this process. Then L*(IP;} & (LR, @ %)) =
[(L*(R+4,ko)). Define By = -\}?(B,E” - BY). Clearly, B; is a one-dimensional
standard Brownian motion. If we set i A A® B(NL2(R4 ko)) & AR
B(L2(IP2)) by fi(¢) = niuItiplicati:::sn by ¢(. + B), then this :tirhe-indejced family of
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«-homomorphisms satisfies the following flow equation ;

15 L L= w 3
de(9) = i@V B = dB) + 55 d"Vdt. () =

where ¢ € A%}, In the Fock-space language, this behnmes updn getting jt(qé &
e(f))u = ji($)ue(f)) for u € h, f € L3Ry, ko)

dJ; = Jp o (az(dt) + al(dt) + I (dt)) Jo =id.

) satisfies an E-H equation

Thus we see that although the approximating sequence y{
with Poisson terms. in the limit the contributions of Poisson terms disappear. giving

a Poisson-free flow equation for j;.

4.5 Implementation of £ — H flow

Recall the notations of theorems 4.2.1 and 4.2.3. We have for z € A, 7(z) =
L2 @ 1k, )2 € A® Blkg), ¢(z) = Rz —w(z)R € AR ky for a suitable Hilbert space
kp, where R € B{h.h ® kp) and 2. is a partial 1sometry in A ® kg. Now let us consider
the H-P type q.s.d.e. : o |
1 L
dV, = Vt(aR(dt) -+ Ag ;(dt) — azg(dt) + (aH - —2-R*R)dt) Vo = 1. (4.8)

| Then by propoaltmn 3.1.2, there is a cuntractmn valued unique solution V; as a reg-

ular pracess on h @ L', The followmg thenrem shows that every Evans—Hudsmn type
flow Jy satmfylng equatmn (3.9) is actually 1mplemented by a process V; satisfving
equamf}n (4. 8) |

-_Thedrem 4.5.1 The flow J; satisfying the equation (8.9) is implemented by a par-
tial isometry valued.procass Vi satiéfying_(,{.cﬁ’) , that is, Ji(z @ e(f)lu = Vi(z ®
lr)V};"‘(ué(f }). 'Furthﬁ:rmure, the pmjection-i}alued processes P, = ViV and Q, =
A ‘I/E be!ang to A@B[ ) and A" ® B(T') respectively. |

| We need a 1énima. for the 'pm.of of this theo_rehi.

Lemma452 If B ts a:ﬂdn Neumann algebra 17 B(’H_) for some Hilbert space H
~and p 1s o projection in B(H) such that B 3 = ~ pxp is a *-homomorphism of A,
then pe B'. | | | | |
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Proof of the lemma : Let ¢ be any projection in B. We have by the hypothesis that,

pgp = pq"p = (pgp)" Vn > 1.

But
pap - pgp . . .
(pgp)* = ~——~— = (pg)"p = (PAQ)p =P Agq,
n times

by von Neumann's Theorem, where pAg denotes the projection onto Ran(p) [ Ran(g).
Thus we have, (gp}*qp = pgp = p A q, which implies that gp is a partial isometry
with the initial space Ran(p A ¢) and hence gp.p A g = qp. But gqp.p Ag=p A g, and
thus gp = pA g = (p A g)” (since pA g is a projection) = pq. This completes the

proof because B is generated by its projections. O

Proof of the theorem : Setting Ji(z®e(f))u = Vi{z @ 1r)V;*(ue(f)) foru € A, f € C,
and using equation (4.8) we verify easily that Jj = id and J] satisfies the same
flow equation (3.9) as does J;. By the uniqueness of the solution of the initial
value problem (3.9) we conclude that J; = J|. Now, as in theorem 3.2.6 , if we
set ji{z)ue(f) = Je(x ® e(f))u, it follows that j(z) = Vi(z @ 11)V{* and that 7(.)
is a *-humﬂmﬂi:phism of A, Therefore, Vi(zy ® Ip)V = Vi(z @ 1r)Qe(y @ 1) V¢
for z,y € A. In particular, P, = ji(1) = V,V;* is a projection, that is . V; is a
partial isometry valued regular process. It also follows from the same identity that
Qi(zy ® 1Ir)Q: = Qu(z @ 1r)Qu(y ® 1r)Q, that is, 2 ® Iy + Q(z @ 11)Q; is a
*-homomorphism of A ® 1r. Therefore @, € (A ® 1r) = A’ ® B(T'), by the lemma
4.5.2.

4.6 Weak Markov process assoclated with the £ — H
type flow. ' B

Here we consider the solution J; of the equation (3.9) or the associated j, and con-
struct a weak Markov process ( see [5] ) with respect to the Fock filtration. The next

theorem summarizes the results :

Theorem 4.6.1 (i) Let j; be as in theorem 4.2.8. Set Fy, = 7;(1)IE; where I, is
the conditional expectation operator given by IE,(ue(f)) = ue(fi). then there exists
a nonzero projection jeo(1) such that the family of projections {ji(1)} end {F,} de-

creases and increases 10 joo(1l) respectively. -



76 - Chapter 4. Dilation of a quantum dynamical semigroup

(11} The triple {ji,h @ [.Fi} is a weak Markov process as defined in [5], that is.
Efjo(z) = zFy, jle)F = Fglz) = Fjdz)F, Efjlz) = js(Tims(z))Fy for
0 <s<t<oc.x€ A where BF (X)=F,XF, for X e B(h®T).

(it1] If we set k(z) = plz)Fy = 3 lx)l) = Etjt(:?:), then the triple {k,h@T'. F} is
u conservative weak Markov flow subordinate to {F}} ( see [5] ), that is, ky satisfies

the properties listed in (i) above and also k(1) = Fi.

Proaf : (i) In the notation of theorem 4.2.3, j(1) = V,V,* and therefore taking
W; = V,* and using the relation (3.5) with T" replaced by &* we see that {5;(1)} is
 a decreasing family of projections. On the other hand, a simple computation shows

that for t > s > 0,

(ve(g), (Fe ~ Fo){ue(f)) = .
Wevelg). Weue(f))e™Jr @M (i ue(g), Wiue(f))e™Je (oIt

_ / exp{~ f (9(7°), F(r Ndr' H(Wrve(g), (9(7). £7Z pr) ) Wrue(f))dr.

{rom which it follows that { F; } is increasing family of projections. Since JF; increases
~to [ on h @ I, and since 7;(1) converges strongly to say jso(l), we have that F;
increases t0 Joo(1). Therefore jo (1) cannot be the zero projection.

(i) Let u. v €h. f, g € k., z € A. Since 7s(1)Je(1) = je(1) for s < £, we
have. |

(Fqi(z) Fs(ve(g)),ue(f)) = {(Js(1)de(z)ss(L)ve(gs), ue(fs))
= (:it(mIUE(g;),ue(fs)_).- = (Ji(z ® e(gs))v, ue(fs))

= (Lo @ elgn))vuelf) + [ (T (L@)e(g0) o, uelfo)ydr

o -.?Tt"_"_.(J's-(fB)I_Fs_(Ue(Q))’T ue(f)) +[& (Fye(L(2)) Fy(ve(g)), ue( ) dr,

o bgcauﬁé If;g:.:('r). = {],.:gs('r)"":ﬁ[]_ftrr > s Thus, if 'i:_.re denote by =; the map

A 3 z— Fgji(z)Fs then %f— = ZioL, for s > t. On the other hand, denoting by
[, the map given by, [I{z) = j,(Ti_s(z))F,, we can easily verify that 41 = 0 L.
Since Eg(z) = Bsjs(z) = js(z)Fy = Il,(z), the initial values of IT and = agree.

-~ Thus by the standard uniqueness result of differential equations, we conclude that:

B Ea-fEt'fniﬁ allt > s,

(iii) The proof of this part is obvious from the definitions. o
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We have no result with regards to minimality of the above process in the sense of
[6]. However, if we denote the closed linear span of {J;, (z1)jt, (z2) ... i, (za)ue(0)]
T; EA E >0 262 ... 218, >0} by K for 0 < ¢ £ oo, then it is an easy
observation that XC} is contained in the range of F; for each t < oo, and thus K7_ is
contained in jm(1)(hé}[‘). We suspect that KL, = joo(1)(h &'}, which we have not
been able to prove. If this turns dut to be true, then the above provides a complete
general theory of stochastic dilation for a uniformly continuous quantum dynamical
semigroup on a von Neumann algebra, It should also be noted that the final weak
Markov process (js, Fs) is actually living in h ® ['(k) and its filtration is subordinate
to that in the Fock space.

4.7 Dilation in the C’*'algebraic set-up

Let us prove the existence of a canonical dilation for a uniformly continuous quan-
tum dynamical semigroup on a separable unital C* algebra. Assume in this section
that A is a separable unital C* algebra in B(h) and T} is a uniformly continuous
‘quantum dynamical semigroup acting on A with the bounded generator £. Let us
first introduce some useful notations. Recall the discussions of Hilbert C* modules
~and related topics in the first cha.pter (section 3). Let ko be a separabié Hilbert
space. Fix an orthonormal basis {e1,ea,...} of kg. We denote the Hilbert modules
A ®¢+ kg and A ®c+ I by F and (¢ respectively, where C=T (L2 (H+,kg)) The C*
algebras A ® Bo(ko) and A @ By(I') will be denoted by F and G respectwely Note
that L(F) = M(F) a.nd .C(G') M(G). Re(:all the notation I for 7 € B{h,h ® ko)
~and f € ko, If 7 € A®ayg Bol(ko), say of the form n= le_l Tij @ \et)(ejl, we note
that n; € ARag kg given by

n o
ny =Y {ej, fzij ® les).
ij=1 o
~ We observe that ¥V u € h, |lgsull® = T; ||${u||2_,flwhere_'_;n{' = 2.; (e flzij. On the
- other hand, taking a = _Iﬁ’u if f is nonzero and ¢ = 0 when f = 0, we see |

that ne(u ® N2 = Nk Sojep Naiu @ led(H NP = i llefull. That is
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Inpull = li(na)(u® £l < Inallllulif|l, and hence {Infll < [inallllf|l. This shows

that given an element n € L(F') = M(F) and f € kp, if we choose a net n'®) from
A ®alg Bolky) converging in the strict topology of the multiplier to i, then n}m will
be norm-Cauchy. This shows that for all n € L(F), n; belongs to F'. Furthermore,
for a bounded linear map ¢ : A — L(F) and f € ko we set the map o7 : A — F by
oi(z) = ofz)y.

et us now prove the existence theorem for a canonical E-H dilation.

Theorem 4.7.1 Given a unifarmly continuous, conservative quantum dynamical
semigroup Ty on a separable unital C* algebra A with generator L, there exists o
separable Hilbert space ko end a *-homomorphism 7 : A — L(F) = M(F}. a 7~
derivation 6 : A = F such that L{z*y) — L{z*)y — 2" L(y) = d{z)*(y).

Furthermore, we can extend the maps L,0,7 to the universal enveloping von
Neumann algebra A of A such that the B-H type g.s.d.e. dJy = Jyo(ag(dt) +ﬂ§(dt) -4
Ap—ig(dt) + Tp(dt)) with the initial condition Jy = id admits a unique solution as a
map from A ®, ' to itself. The restricton of J, on G takes value in G and there is
a x-homomorphism je : A = L(G) = M(G) satisfying ji(z)(ue(f)) = Jilz @ e(f))u
forallz € A, u €h, f € L} Ry, ko), where h denotes the universal enveloping GNS
space of A. |

.me : Let us imbed A in its universal enveloping GNS space h, where the weak
 closure of the"image'.af A in & is the universal enveloping von Neumann algebra A of
| _: A. We identify A with its imbedding inside B(h). By the remark 1.2.22, we obtain a
- Hilbert space K, a *nhnﬁmmorphism o .A — B()C) a p'-'de'riva.tinn a: A= B(hK)
~ such tha,t'. .C(:n y} £(m by — :B'ﬁ(y) of{z)*aly). Now consider the Hilbert A-

' 1nnc ule E deﬁnecl as the closure of the algebralc linear span of elements of the form

'{x(:r:]y, where T,y € A, ‘with respect to the Dperamr norm of B(h,K). A acts on E

by the usual r1ght multlphcatlmh and the inner product of E is inherited from that

of B(h,KJ) namely, (L,M) = L*M for LM € E. We note that {a(z)y, a(a)b) =

y*a(z)*o(a)b € A, and thus E is indeed a Hilbert A-module. We identify p with
a left action g given by, j(z )(a( }) - a(zy) — cr(ﬂ:)y.a,nd extending it \A-linearly.
Furthermore, since A is se;}a.rable E is countably generated as a Hilbert A-module.
“To see thls ‘one can choose any countable family {:r:l} of dense subset of A and note
that E is the clﬂsed A-linear span of {m:(mI }. By the theorem 1.3.4, we obtain a
:'separable Hllbert space kq; an isometric A-linear map t E — F which imbeds E as a
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complemented closed submodule of F'. Clearly, by the theorem 1.3.5, tp(z)t* € L(F).
We set d(z) = t{a(z)) and n(z) = {5(z)t* to complete the first part of the proof.
For the second part, first note that 7 being a x-homomorphism it admits an
extension as a *-homomorphism of A4 into (L(F))" = A ®; B(kg). Also note that by
the remark 1.2.22, we obtain R in the ultraweak closure of {d{z)y : z.y € A} such
that £(z) = R*n{z)R — 3R*Rz — $zR*R +i[H, z] and §(z) = Rz — n(z)R for all
z € A, and for some H € A. We extend £ and § by the same expressions as above

with the extended 7 on A. Since R is in particular in the ultraweak closure of F.
which is same as A ®; kg, we see that the extended maps L and 4 map A into itself.
Now, by the results of section 4.2, we obtain J; and j; as mentioned in the statement
of the present theorem. It remains to show that Ji{z ®e(f)) € G for z € A, and
ji{z) € L{G).

To this end, first note the following. If g € B(A, A ®; ko) such that B(z) € F
for all.z € A, then we claim that a},(&)(m ® e(f)) belongs to G for any bounded
subinterval A of IR, and z € A, f € L*(R.,ky). This follows from the definition of
aL(A)(m@ £®") which belongs to G. This enables us to prove that a}(.) and Aq_ig(.)
maps zQ® e(f) into G for £ € A. That az(.) and Z(.) also do sc is quite clear. Now.
recall the iterates J;" ") constructed in the proof of theorem 3.2.6 of chapter 3 and by
the estimates made in that proof, it is clear that ||(Ji(z ®@ e(f)) — Lmcn Jt(m}(:c ®
e(f))ull < [fullllzfiile(HINNEN X mantr C%. (m*)_l for come constant C, and thus,
|Ji(z @ e(f)) — Xmecn d (m’)(:c Q® e(f))|| — 0 But by iterative construction, each
J(m)( ® e{f)) belongs to G.

We now prove that 7;(z) € L{CG)} = M(G) for z € A. By definition of multiplier.
we have to show that for all A € G, 4(z)A and Ajs(z) belong to G. It is enough
to verify that ji(x)A € G for all =, A, as G is *-closed and jt(s:*)' = f(z)*. Since
G is the operator-norm closure of elements which are finite linear combinations of
the form y & |e(f)){e(g)| for y € A, f,g € L*(IR.,ky), it suffices to show that for
fixedz € Aand t >0, 5:(z)(y® le(f)Me(g)]) isin G for y € A, f,g € L*(IR+, k).
Since fi{z ®e(f)} € G = A®c+ T, we can choose a sequence L, of the form
y ke z( " & p,E"') for z( " € A, p( "™ ¢ I such that L, converges in the norm of G to
Jo(z ®e(f)). Now, observe that for u € h and nel, jdz)(yQle(f ) elg))(u®n) =
(e(g)ym)Ji(z @ e(f))yu = limn;m(e(g),n)Lnyu, Choose an orthonormal basis {y}
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of I' and take a vector W = ", w; ® v of T', Tt is easy to see that
) )
H{Ge (=N y @ le(F)e@) - > %™y p" el W]l <
| 1=1 |

> lelg), wI(J(z @ e(f))y — Loyl <
{ | |

17z @ e(£)) = Lalllullle@I(Y Jwl®)? = iz @ e(£)) = Lallllullle(a) W
{ .

and hence j,(z)(y®le(f)){e(g)]) is norm-limit of ©52 2™ y®|o™){(e(g)] € AalgBo(L).
This completes the proof. | | -



Chapter 5

Dilation of completely positive
flows

In quantum probability the basic notion of a stochastic process is a time-indexed
- family of *-homomorphisms between operator algebras (4; : A = B). When com-

posed with a conditional expectation onto a subalgebra ¢ the resulting family of

maps (k; = IF o j;) is no longer composed of *-homomorphisms, however each &,

completely positive and contractive. If C is of the form C; ® B(I['g} for a Fock space

Iy carrying quantum noise, and if & is adapted to the filtration of the noise and is a

cocycle with respect to the natural shift, lthen, under some regularity assumptions,

k is necessarily governed by a quantum stochastic differential equation of the form

dk; = k; 0 83 dAB(t) ([37]).

Here we consider the converse problem, and realise every adapted, regular, com-
pletely positive, contractive flow (k; : A —» A®B(['g)) as a conditioned *-homnmarphic
flow: ky = I ¢ 0 j;. The speciai case when & is a deterministic CP contractive semi-
group has been treated in the previous chapters,

To achieve the above stochastic dilation we combine the special form that the

coefficient matrix ¢ has, by virtue of £ being completely positive and contractive
(35),[36])), with the technique developed in [25] (utilised in chapter 4) for obtaining

structure maps (that is QSDE coefficient matrices) from CP semigroups.

81
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5.1 Introduction

In the previous chapter. we have proved that for a uniformly continuous, normal,
contractive semigroup T on a von Neumann algebra A one can always obtain an
Evans-Hudson dilation in the Fock space over a suitably chosen noise space. In
this Fock space picture one may think of T° itself as a flow satisfying the QSDE
dT; = Ty o 69 dAJ(t), since dAJ(¢) = dt and where 6§ is the generator of T. That is,
T is a flow with only deterministic (time)} components and we construct its dilation
j by adding suitable noise or random components which are averaged ouf by' the
vacuum expectation to give back 7. This idea admits a natural generalisation if one
replaces T by 3 more general flow k = (k; : A -+ A ® B), a family of completely
positive (CP) and contractive maps, that satisfes a QSDE of Evans-Hudson type.
An obvious way of constructing such a flow is to take a conditional expectation of
the *-homomorphic flow 7 which averages out some but not all of the noise space.
It is now natural to ask the converse question: given a GP contractive flow & with
some noise space g, can we enlarge the noise space by adding another Hilbert space.

| say, and obtain a *-homomorphic flow j acting on ® I'(L?(IR4:0 1)) so that

- Iy 0 5y = k, where IF; denotes the conditional expectation that averages out the
noise corresponding to (7 ‘This is a generalisation of the dilation problem for a

CP semigroup. In the present chapter we give an affirmative answer to the above
question in the case when A is a von Neumann algebra and the CP contractive flow
k is ultraweakly continuous, thus extending the results of [25]. The construction is

‘based on the structure theorem for CP contractive flows ([36],[35]), con}bined with

techniques introduced in [25] to obtain “structure maps”. In Section 5.3 we present
& suitable modification of the structure theorem for CP contractive flows and then
construct the required dilation in Section 5.5 using the new form for 6.

- The commutative (or classical) version of such CP flows appear often in stochastic

filtering theory and in me'asure'-valuéd or super-processes, We shall discuss potential

- .. applications. of our theory in these two contexts at the end of the chapter. Similar

‘questions have beeri posed by Belavkin (3], [4]. However the dilations obtained there
- are different for two reasons. Firstly the algebra .4 under consideration is the full
| algébra*ﬁ'(').,-and 3_ecoﬁdly the CP flow is implemented through conjugation by the

' solut.ion V, say, of a Hudson-Parthasarathy type QSDE. That is & has the form
kt(a) = Vi*(a ® 1)V,. In the present context, a similar implementation of the CP
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flow on a von Neumann algebra by inner perturbations of a *-homomorphic flow (in

the spirit of {16]) will be treated elsewhere,

5.2 Some notations and terminologies

Fix here. for the rest of the chapter, a Hilbert space h, the initial space. and A C
5(h), a unital C™-algebra., .

In {36}, [37] the noise space k is always assumed to be separable since the quan--
tum stochastic calculus with infinite degrees of freedom used there is the version
developed by Mohari and Sinha ([42]}). We believe that this restriction of separabil-
ity can be removed by a suitable modification of the arguments in [36), [37) replacing
the coordinatized. calculus by our coordinate-free version. However. in the present
chapter we do not want to take up the problem of extending the theory of [36), 137
and shall assume the separability of the noise space (but not of the initial space). An

orthonormal basis {e;}$2, of k is chosen. and the noise differentials {dA% re

} a
defined in terms of these vectors. They fall into four distinct classes: dAf iﬂc?tu the
time cﬁmponenh; dAl = dA!, the ith annihilation component (i > 1); d:’\? = dA}',
the jth creation component (7 > 1); and dA}, the (i, j)th conservation or gauge
component (i, 7 2 1). The generator of a quantum stochastic flow is then an infinite
family 8 = {63} C B(A). But as noted in [35], the Hilbert spaces h ® (T'® k) and
®.s0oh can be identified by use of this basis (adding ep = 1 € @) to give a basis of
(d'& k), and if 8 is the generator of a CP contractive flow then there is a bounded
map 6: 4 — A" ® B{@@® k) which has components 3 with respect to this basis.
This global boundedness property connects with the approach in the previous
chapters, all of which is essentially contained in [25] where the calculus was refor-
mulated in a coordinate free manner using Hilbert module techniques. The modules
encountered by us in {25] are all of the form A"®8(k;; ks), for any two Hilbert Spaces
k; and kp. This can be characterised as the set {T € B(h®@k;;h@ks) : (¢! ®15)T =
T(a' ® 11)Ve' € A'}, and coincides with the closure of A ®,; B(ki; ka} in the weak,
ultra-weak, strong and ultra-strong topologies. In the above (and throughout the
- chapter) we use the notation 1; to denote the identity t‘:-pera,torpn_the_' Hilbert space
k;. Since B(Z' k) is naﬁurally identified with k, we write A" @ k for AY @ B(@: k).
So with the global boundedness of 8 guaranteed by Thedrem 5.2 of [36] when &
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is CP and contractive. we will write

ez(T” ) (5.1)
X o-—1

where 7 € B(A).v: A - A" @ Bk;€),x: A—» A" ®k and 0.1 : A — A" @ B(k).
Throughout the chapter ¢ will denote the map t{a) = a ® 1y for the relevant k. and

byv 8 we will denote the associated mapping matrix

i=" 7.
X O

Let us introduce smﬁe more notations here. Fc:-r_a, Hilbert space k, we denote by
- Bragyk and By, py i the spaces B(T(L*([a,b), k))) and B((L?([a,b), k))) respectively
where 0 € a < b < 00. B o)k is denoted simply by By. For a.ily finite or infinite
interval A, 15k will denote the identiﬁy on Cak = I‘-(LZ(A k)) and ) will denote
the Fock vacuum vector in I‘(Lz(ﬂ{+,k)). If A is a von Neumann algebra and

‘is a Hilbert space with subspace k;, the vacuum conditional expectation F;
_A 3 B — AR By, is given by [\ {c] = E*cE where E is the isometry h @ 'y, 3

£ E€Q® Qk..L € h®I'x. When k, = {0} it is denc}ted . Throughnut the chapter,

. we shall use the Emsteme summation convention. The Greek indices a. 3 etc, will-

© . vary over 0 1,2,..., whereas the Roman indices 1, j etc.. will vary over 1,2..,..

Given a Hllbert space k, a contraction process on A with noise dimension space
k is a weakly measurable family of contractions k= (kt)t}[} satisfying k; : A —
A" @ By g ® 111000,k C A" ® By. In other words k is adapted to the Fock filtration.
. When- A is. a von Neumann algebra k is called normal if the map a - ki(a) is
ull;raweakly continuous for each t.

A completely positive, wntra.ctwe nc:rmal process k on A, with noise dimensmn

. space k. is a stochastw_cucyc_le if

kgur = ks 0050 ky (5,8 > 0)

*where o s the right shift 4 @ Bx — A ® Bis.oopkc C A @,' By, and k. is the normal
‘extension: of the map A ®alg: Bis,c0),k 2 6 Qb+ ky(a a}(1jg,q,k ® b). For a stochastic

-~ cocycle k the family (o ki) is- & one-parameter semigroup, called the associated

}'vfarkgu semigroup, ‘A regular cocycle-is one that is pointwise weakly continuous and

whose Markov semigroup is uniformly continuous.
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Theorem 5.2.1 ([37]} Let A be a von Neumann algebra. let k be a separable noise
dimension space. and let k be a completely positive. contraciive. normal proress.

Then the following are equivalent:
(i) k is a requler cocycle.

(ii) &k weakly/strongly satisfies a QSDE of the form dk = ko83 dAB  kola) = a& I,
for o bounded coefficient matriz 6 = (63) : A = AQ B(T@ k).

Let k and [ be a pair of contraction processes on A with noise dimension spaces

ki and k respectively, where k; is a subspace of k. { is a stechastic dilation of k if
n’ﬂ‘; = IF ol (t > 0)

Thus in this terminology, if k is a stochastic cocycle with Markov semigroup P. then
k is a stochastic dilation of P, When k and | are processes that satisfy QSDEs it is

possible to determine if { is a stochastic dilation of & by inspecting their generators.

Lemma 5.2.2 Let k), ky be Hilbert spaces, and let k and | be contractive processes
on A with noise spaces k; and ki @ ko respectively. Sﬁppose that ¢ : A - A" ®
B{C&k1) and ¢: A — A"@B{L’U@ k; & ka) are bounded mapping matrices such that
k and | weakly satisfy the QSDEs

diy = ky 0 05 dAB(2), dly = I 0 ¢ dAL(2).

Then l 18 a.stochustic dilation of k if and only if ¢ has the _fﬂm

(¢ ' ' -
QS"(A ¢)’ | _(5'2)

where n A = A"@B{kqo; Tk ), A A — A”@B((U@kl k») and 'qb A = A"QB(ks)

are bounded linear maps.

Proof : If L is a stochastic dilation of & then '(ue_(fl b U).?:lg(a)w(gl ® 0)) =
(ue(f'), ke(a)ve(g')). It is then straightforward to show that ¢ has the form (5.2) by
applying the first fundamental formula of quantum stochastic calculus to each side,
differentiating the resulting expressions at { = 0, and varying f and g. In the other
direction, if ¢ is of the form {5.2) then the process IF) o/ is also a weak solution to
the QSDE satisfied by k. Thus by umqueness of sc::lut;mns ({36), Theorem 3.1) we
have k = IE, ol e | | | ]
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5.3 Structural form for a cocycle generator

[n this section we refine the characterisation of CP cocycle generators found in {36]
and [35] in such a way that when A is a von Neumann algebra, the constituents may
be used to determine a *-homomorphic dilating cocycle. The refinement uses the
technique introduced in [25] for dilating CP semigroups. |

In the following we do not assume that the low &k is contractive, therefore & need
not be bt}unded, and so we must work with individual components 9_3.‘ of §. Also, let
hog be the subspace of @,»,h = h® (C'® ko) consisting of vectors with only finitely

many non-zero components with respect to the chosen basis.

Theorem 5.3.1 Let 8 be a mapping matriz on A af the form (5.1} that weakly
generates o flow k with separable noise space ko. |

fa) The following are equivalent:

(i) k is completely positive. | |

(1t) 8 is real and there is a qmnt_uple R = (ki,m h,d,{s;}) _consi.gting of a Hilbert
space ki, a “~homomorphism w : A - A" ® B(k;) and operators h = h* € A" d €
A" ® ki and s; € A" @k( (j =1.2,... ,'dim(kg)) such that ' '

( 'r.(a) u_,{-(a') ) - ( L{a) + 2{1‘, a.} 6. )3:,. +a(cj) ) (5.1'&

x'(a) o}(a) sidla) +cfa  sin(a)s; |
- w(l)d=d and 7w(l)s; =s;Vj (5.1ii)

" Ran(n(1)) =K (5.1iii)

where t = 7(1),¢' = x¥(1), 5 = 5”,1: zd,,_.h and }Cu {8(a)ud + n(a;)s;u :
- 0 € A, (u?) € hoo}. o

{ b) If ’R1 and Rg are gumtup[es sutisfymg (5 1) then therﬁ is unigue partiol
zsnmetry V h ® k1 -—} h@ k2 satzsfymg | | |

. . VY = ﬂ'l( -] VV™ = mo(l) (5.23)
S 11'2({1) Vm(a)V (52 e Vﬁh .gj = VS (52‘12)

i'f-..;roaf :-The implication: (au = ai) is contained in {36}, Theorem 4.1.

©fal = au) Suppose that & is completely positive. Then, by Thearem 4.1 of [36],
9 is: real and there is a quadruple @ = (p, H,-y, {D;}) consisting of a representation
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(p.H) of A. a p-derivation v : A — B{h;#) and a family of operators {D; : i =
1,....dim{k,}} in B(h:H) such that
( or(a,b) vjla) ) _ ( Ya)ab)  v(a)D; +av(l) ) o

x'(a) oila) Div(a) + x*(1)a Dy pla) Dy
. p is unital 5.3ii

where Ho = lin{y(a)u® + p(a)Dju' : a € A,(u%) & E[}u}. For each unitary w € A’
define bounded linear operators 4% : A — B(h;H) and D} € B(h;H) by v“(e) =
v(a)w and D¥ = Djw, and note the following relations:
7" (a) " (b) = w*0r (e, b)w = d7(a,b) = y(a)"y(b);
(DY) (a)=w*Diy(a)w=w"(x"(a) - x'(La)w=x'(a) - X' (L)a=Dfv(a};
(D¥)*p(a) DY = w*D}pla)Djw = wsi(a)w = o} (a):
Ho = Ho.
‘In other words the quadruple QY = (p, H,~¥, {D¥®}) also satisfies (5.3). Hence, by

the uniqueness part of Theorem 4.1 in [36], there is a unique unitary operator p'{w)

on H such that
- p(w)D; = Dyw: p'(w)y(a) = v(ajw; p{w)p(a) = pla)p'(w). (5.4)

The resulting map p’ is easily seen to be a unitary representation of the group of
unitaries in 4’ by checking matrix elements against vectors from the dense subspace
Hg, and it follows that p’ extends linearly to a normal, unital representation of A’
Hence by 1.1.6, there is a Hilbert space k; and an isometry V : H = h®k,; such that
Pz )=V*(a'®L|)VWandp :=VV* € (A ®1,). Now define ' : A' = B(h®k;), 7 :
A— Bh®k;),d: A— Bh;h®k,),and s; € B(hih®k;),5 > 0 by

' (z') = (' ® 11)p, 7(a) = Vp(a)V*, §{a) = Vv(a), s; = VD;. (5.5)
Since p € A" ® B(k, ), algebraic manipulations applied to (5.4) reveal the following
identities: |
(1) =p; pd(a) = 8(a); ps; = s,
(a)(z' ® 11) = (z' ® 11)w(a) = 7'(')7{a),
~ §{a)z = (¢’ ®11)d{a),

Sj:[:’ == (ﬂ?f @ 1y)s85.
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Thus 7(A) ¢ A" ® B(k;).6(A) C A" @ k; and s; € A" ® ky. Moreover
. Ran(7(1)) = Ran(V) = VH, = K.

By Theorem 2.1 of (8], there is an operator d € lmuw{c‘.?( )b:a,be A} C A" @k
such that 8§ = 8, .. Since §(1) = 0,7(1)d = d, and since d7{a, b) = Sgn(a) dqn(b) it
follows from Lemma 1.2.24 that 7(-) = Lgan(’) + %{T(l), -} for some h = h* € A",

This completes the proof of part (a).
(b) Writing XK' for EE C h®k;,i = 1,2. Theorem 4.1 of [36] ensures the existence

of a unique unitary operator V5 : X! — K? satisfying
Vos; = s%; Vo1 = dy; Vomi(a) = me(a)Vo.

Let V be the unique extension of Vp to h ® k that satisfies (5.2i). Then V satisfies
(5.2ii), and is clearly the unique partial isometry satisfying (5.2). | O

Remark 5.3.2 If the initial space h is separable, then, by Proposition 4.9 of [36],

the representation space H in the nonstructural quadruple Q@ may be assumed to be

!

separable. Thus the von Neumann algebra p(A) is o-finite, and so we may assume

that the Hilbert space ki is Se'pambfe (.s'ee 14}/, p.ﬁ'ﬁ).-

| Theﬁrem 5.3.3 Let 0 be a mapping matriz of the form (5.1) that weakly generates

a flow k. The following are equivalent:
(i) k is completely positive and contractive.

. (i) '6' is real and bﬁundéd and there is o quintuple & = (kj,'zr',h, d,s) consisiing
of a Hilbert space ki, a *_homomorphism 7 : A — A" ® B(k,) and operators
h _h* A‘” d e A@ ki and a contmctwn s € ./-l” ® B(k{}, k1) such that

e = ( {t 2} 4'(a)s +ac’ )563
5( ) +ca s*m{a)s

(l)d =d and w(l)s = s H.61i
- Ran(n(1)) = K, 5.6iii

. ( bt ¢ )30 5.6
\—¢ 1-48"s

where t = 'r( ),c= x(l) 5 = Jd,r,f, f'd-rr,h and /Cg = {§(a)i® +n(a)su; :a €
A (uﬂ '1.'.1) E hnu} |
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Proof : By [36]. Proposition 5.1 and Theorem 5.2, (ii) implies {i). Conversely if (i)
holds then € is bounded and satisfies 8{1} < 0. so that ¢ is completely positive and
contractive. Letting (ki, 7. h.d,{s;}) be the quintuple of Theorem 5.3.1. define an
operator s : h®ky -+ h®k; with dense domain hgg by sv = s;vi, Since w{l)s; = s;

for each 7, and
Isv]|? = (s;v!, s;vd) = (v!, sin(1)syvd) = (v, o} (1)V)) = (v, o (1)} &£ vl 2.

it follows that s is a contraction. The remaining properties now follow easily from
Theorem 5.3.1.

5.4 Implications of contractivity

In this section we extract some consequences of the operator inequality (5.6iv) which
are needed for defining both methods of dilation and also their comparison in the

next section. We summarise these consequences in the form of three lemmas,

Lemma 5.4.1 Let H| and Ho be Hilbert spaces. let X;; € B(H i H;) fori.j = 1.2,
and suppose that the element X € B{H,®Ha)} with the X;; as components is posiiive,

X
X = A1 A > 0.
- X1 XKoo

that is

Then we have the following:
(i) X113 and X9 are positive and X9 = X3.

(ii) There is a unique operator K € B(HpiHy) such that KXM? = Xy and
Ker(K) D Ker(X;f). Moreover this K satisfies KK* < X1y,

Proof : (i) is straightforward.
(11} First note that since Xglf is self-adjoint we have the decomposition Hy =
Ran( Xéég) @Ker(Xééz). A standard argument, as in the proof of the Cauchy-Schwarz

“inequality, gives |
e Xem)? S (& XXy P VE € Hin € Ha.

In particular Kef(Xéég) C KGI‘(XR#), 50 thefeﬁ is a well-defined linear map Ky :
Ran(X;éz) —+ Hy such that .Ku(ngn) = Xjon, and also note that Ky is bounded.
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Let K denote the unique continuous extension to Ran(Xééz), then if we extend K
to all of Hq by setting to be zero on Ker(}{éég) we obtain the required K. which is

obviously unigue.

For each positive integer n let ¢, be the function on [0, co) defined by

A2 X > 1/n,
() = { /n

0, otherwise.

Let B, = ¢,(X9), and observe that (X, 1% B Bp) = (BnXéﬁ’z) converges strongly

to the identity. In particular K* = s — lim;B,Xs;. So now fix £ € H; and set
- -—BEXglé. Then

o<(( ) ()]
n Tn
' (€, X11€) — 2Re(€, X13B2X01€) + [|Xph B2X g ||

— (&, X11E) - | K€

il

from which the inequality follows, o | 5 o )

Lémma 5.4.2 Let Hl.'Hg,ij and K be as in Lemma 5.4.1. Let Hs be another

Hilbert space and suppose that Xqog = 1 — D*D for some contraction D € B(Ha; Hs).
Then L € B(H1;Hy) defined by [ = DK* satisfies |

(1 — DDV L = DXy Ker(L"') D Ker({1 ~ DD*)V/%); 1L < X11 — xglxgl

Furthermarﬂ, if the Hilbert spaces H; are of the form H; = h @ Ki,i = 1,2, 3,

N far some Hilbert spaces H,K;, and if C C B(H) is o von Neumann algebra such that
- Xel ®B(KI1 @ Ky) and D E C® B(}Cg,}Cg) then

KeC®B(Kyky) and L €C® B(K13 Ks)-
.Praﬂf Smce (1 DD"’)WD D(l — D*D)U? we ha.ve |
-(1_ - DD*)U?L'-—__.- D(l - D*D)I/?K* - DX’k = D Xa,. '

* Also, if 11 € Ker((1 ~ DD*)'/2) then D*n € Ker((1 - D*D)"/2) = Ker(X}}?), so
| | Ln = 0 and the mequahty for KK* in Lemma, 5 4, 1 gives -

- KK*a-—-KXmK KK"' - Xiy X € Xy~ X5 Xy
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For the second part note that X € C ® B{K{ @ K1) implies B, € C & B{ky) and

SO
K*(d ®1k,) =s = limBaXa1(c' ® 1x,) =s — lim(c' ® 1x,)BpXar = (¢ @ 1k, )K"

for all ¢! € C’'. The result for I now follows from its definition and the hypothesis on
D. | ' "

The final lemma summarises some easily proved facts about linear equations in

operators.

Lemma 5.4.3 Let Hy.Ho be Hilbert spaces, and suppose A € B(Hg)‘B¢X[] =
B(Hi; He) are such that AXg = B. Then any solution of the equation AX = B
can be written as X = Xg + Xy where AX,; = 0. Moreover if Xj|ker(a) = 0 then
XiXy=0. ' |

5.5 Dilation

In this section we give the main result of the chapter, namely that any regular
stochastic cocycle on a von Neumann algebra has a *-homomorphic stochastic dila-

tion. In fact we give two methods, and discuss the relationship between them after

the main result.

Theorem 5.5.1 Every regular stochastic cocycle on a von Neumann algebra with
separable noise dimension space kg admits a normal *-homomorphic stochastic dila-

tion.

Proof : Let k be a regular stochastic cocycle on A with generator 6 and let (k, 7y 1y d, $)

be the data for a standard structural form for € from Theorem 5.3.3. Thus.

i * _ | . -
é'(g,)z( T(a) 6T(a)s + ac )&nd( L ¢t )20! e

s*6(a) +ca  s'w(a)s —C (1' — §%s)

where £ = 7(1) < 0 as before.
We give two classes of dilation for k.
Direct appmac:h: First note that —¢ > ¢"c by Lemma 5.4.2, and let.g € A ® k;

satisfying the constraints

30 +7rg =0and g'g € —t—cc, |
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where r = (1 ~ ss")/2 ¢ A ® B(k,). A particular example of such an operator is

given by taking go to be the operator L from Lemma 5.4.2.
Definevy: A A@(kodki® @) and p: A > A Blko®ky & € by

[ s$*6{a) + ca \ [ s*w(a)s s*wm(a)r O \
1a) = | ré(a) -+ ga and p(a) = | rw(a)s rwa)r O
\ eq ) | \ 0 0 0
where e € A satisﬁes.a*e = Ft ~ c*¢ — g*lg. It is easily verified that p is a *-

homomorphism and - is a p-derivation satisfying
v(a)*y(b) = 7{a"b) — a*r(b) — 7(a*)b = O1(a,b) — a™1(1)b. (5.8)

So if we define ¢: A - AR B(CD ko ® ki &) by

o
¢:(T K ) ' (5.9)
v p-t _ N

-then ¢ is clearly ultraweakly-cantinut}ﬁs., and assumes the correct algebraic form for
‘it to be the generator of a *-homomorphic flow ([36], Theorem 6.5). Since the top
left Cornergcnmpdnem is E-by .ﬁonst_ructiﬂn., the solution § to the QSDE is a dilation
of k by Lemm& 5.2.2, If ky is separable, which is the case if h.is separable. then j
- may be constructed using the methods detailed in [36], otherwise the module based

calculus of chapter 3 musi_;'be employed.

'Appmach by reduction: This timelet f € A® B(kg) and | € A® kg be a
solution to the simultaneous (in)equalities f*f < 1 — s*s, f*l = c and [*] < —¢t. An
example of such a pair is given by taking fo = (1 ~ 5*s)!/2 and letting /y be the
operator —K™* from Lemma 5.4.1. Then we have

o ST |
B(a) _—._( ) ;(‘"")3 ) _ (5.10)

__.where i A A® Bk dkp),5€ A® B(kg; ky @ko) and E A — A@_.(kl @ ko)

are, respectively, a "-homomorphism, a contraction and a #-derivation given by

....'.' .___' m(a) 0O ...____ s\ oz . _ [ ) .
'ﬂ‘(a)-—.( 0 0)15_—(.,«)‘6(&)—( lo )
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Now define v : .4 — A@(kg@(kl Bky)d@ andp: A AR B(ked(k, S ko) & D)

by
( 55(a) [ 3%a)5 FF(a)F 0 )
Ya)={ 7é(a) |,ple)=| F#(a)§ FRa)F 0 |,
\ na ) \ 0 0 U/
where 7 = (1 — §5*)/2 € A® B(k, @ ko) and n € A satisfies n*n = (—t - *)}/? ¢

A. As before p is a *-homomorphism, < a p-derivation satisfying {5.8), and so
constructing ¢: A = AR BT ko @ (k1 ® kq) & @) as in (5.9) gives the generator
of a "~-homomorphic flow that will be a dilation of k by Lemma 5.2.2, (]

In the approach by reduction the generator & of the cocycle k& was rewritten so
that the term ¢ = x(1) was absorbed into the n-derivation to give a #-derivation 4,
which will not satisfy 5(1) = 0 in general. However if ¢ = 0 then 8 is already in the
form {5.10) and so we can skip this part of the construction {and must choose n so
that n*n = —t for the dilation), This has the efféct of reducing the noise space of
the dilating process from kg @ (k) @ ko) ® @' to ko ® k; & €. Similarly if e in the
direct approach, or n in the approach by reduction is zero, then the final copy of €
may be omitted.

Note that if k& is unital, then 6(1) = 0 ([36], Proposition 5.1), so ¢ and ¢ are zero,
and s is an 1sometry. The the Dnly possible solution to the constraints for g, f and {
is to set them all to be zero, and also it follows that e = n = 0. Analysing the two
methods then shows that the two dilations actually coincide in this case.

When k is non-unital however the relationship between the methods of dilation
is less clear. Let ¢9¢ be the generator of the dilation obtained by the direct route for
a given pair {g,e). Then g and e appear as components of the matrix ¢9°(1) and so
the dilation for different values of the pair (g,e) will be distinct ([36], Theorem 3.1).
For the approach by reduction, although'n is readily deduced from ¢/ *"ﬁ(l) since it
appears as a component, there is no 'obvious. way .to obtain f and [. However if we
fix f = (1 — s*5)!/2 then the operators [ that satisfy the-reléﬁant-(in)equalities are

in bijective carrespondeuce with the g, as shown below.

Proposition 5.5.2 Letf: A -+ A® B(ﬂﬁ'@ kg) hr.we the farm (5 7) and set f =
(1 —s*s)!/2. Then the map | -' "

B :Agkﬂ 31 ﬁsi-fE A ®_ki
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gives a bijection of F = {l : fl = c.I"l < -1} onto G = {g:s5c+rg=09g7g <

—f — ¢*¢}.

Proof : Let | € F and put g = —~sl. Then rg = —rsl = —sfl = —sc. Moreover.
grg=Ussl=1"1-I"fl=Ml~cc<-t—c¢,andsoge§. If —8l = —sl’ then

0= sl 1) = (1~ fA)( =),

and since 2l = f%I'. B is injective,

" It remains to show that B(F) = G. Let gy and /g be the particular solutions to
their respective equations discussed in the proof of Theorem 5.5.1', and let g € G.
Write ¢ = go + g1 = g1 — 8lp as in Lemma 5.4.3. Let { = Iy — s%gy, then —sl =
go+55"g1 =gg+{1—r°)g1 =g asrg =0,

Since fs*g; = s*rg1 = 0, we have fl = flg— fs*g1 = cand Ran(s*g1) C Ker(f) C
- Ker(ly). So finally we have | | |

i

= Ijlo+ gss°g1 = Blo + gig1 — gir?e:
= [3lo+g7g1 = lglo + Q*Q_ ~ 9090
= Bjlo—Bs"slo +g*g =13+ 39’9
= c'c+g'g < -t '
This shows that [ € F and completes the proof, - )

“Suppose now that & is a CP contractive cocycle whose generator § has the form

 that is 'there ATE N0 Poisson:terms in the QSDE satisfied by k. Let S = (k;, 7, h,d, 5)

" be a quintuple satisfying the conditions of (5.6). So in particular s*7(a)s = a ® 1.

and since 7(1)s = s, we have that s is an lsurnetry Note also that the 1nequal1ty

(8. 61v) 1mplles that ¢ = x(1) = 0. We now consider two cases:

§8" = 1: In thlB case 570y = O;- d:, and Lgpp = ﬁﬂfd,,,,h. So note that by the identity
(L1) | T
: b5:44(0)" 65+ (b) = BLr a4y nla,b) = Br(a,b).
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It follows from (5.8) that k is *~homomorphic if and only if 7(1} = 0. So it r(1) = 0
then there is no need to dilate k; otherwise note that (1 — ss7)}/% =+ = 0. Thus the

generators of the two types of dilation are -

f 7{a) 6Ye) ag® ae* N [ 7{a) 6T(a) O an’ \
~ da) ta) 0O O ~01n d(ay tla) 0 O
&.& — 1+ —
) ga 0 0 O A 0 0 0 0 |
\ ea 0 0 0 \ na 0 0 0 )

Note that at least one of g or e must be non-zero, and that n # 0. So even after
removing noise dimensions that are not required for the dilation we see that the

QSDEs for 79¢ and 79" will contain Poisson terms.

ss* # 1: In this case it is not so easy to see if # is the generator of a *~homomorphic
cocycle. However if there is a need to dilate, that is if £ is not already *-homomorphic.
then note that since r = (1 — s8*)1/2 = 1 — ss* is a non-trivial projection we have
rr(a)r # a®1. A similar analysis to the above shows once again that Poissen terms

will appear in the dilation.

5.6 Unitary dilation

In this section we consider contraction cocycles on a Hilbert space. and their stochas-

tic dilation to unitary cocycles.

A stochastic contraction cocycle on the Hilbert space h is a contractive operator

process (X;)i>0 on h adapted to the Fock filtration and satistying
Xsat = Xs05(Xi)
in which the right shiit o, acts on B(h ® I'y) by
ags(X)=1; ® S: XS],

where S is the right shift h@I'y — h®€212((0,5),1)®1'[5,00) k1 15 18 the idenfity operator
on h®Tg 4k, and some natural identifications of tensor products are invoked ({37]).
The Markov semigroup of X is defined by P, = IB[X| = E*X,E (t > 0). The process
X is called Markov regular if P is norm continuous IR, -+ B(h). The counterpart

to Theorem 5.2.1 is
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Theorem 5.6.1 ([37])) Let X be a contraction process on the Hilbert space h. with
separable noise dimension space kg, Then the following are equivalent:

(i} X 5 a Merkov regular stochastic cocycle on h.,
(ii) X weakly satisfies a QSDE of the form

dX; = X, F§ dAB(t), Xo = 1. (5.11)

for a matriz F' = [F§| of bounded operators on h.

In this case X satisfies the equation strongly, and F defines an element ofB(h@lE)*
The Propositions 7.5 and 7.6 of [36] may be stated as follows.

Theorem 5.6.2 Let X be a process on the Hilbert space h with separable noise

dimension space kg, weakly satisfying a QSDE of the form 5.11. Then the following
equivalences hold

(ai) X is a contractive process. |
(afi) F is bounded with block matriz form.

oo [ H-HM M+ B BVO-W'W)VE - MW
M W -1

where H = H* B >0, V|, |W] < 1.
~(otii) F 15 bounded with block matriz form
P H-$(LL*+C%  -L \
WL - (1 -WWH'2v'C W -1

where H = H*,C > 0, V'], (W} <1.

(b'i) X is isometric.,

(bii) F' is bounded and has block matriz form

o [ iH —ivwM —mrw
M W —1

where H = W'W=1

(ci) X is coisometric.

(cii) F zs bauﬁde:d with block matriz form

o [iH-GLD L
o\ owr o w-1 )
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where H = H*. WW* =1,

The representation (aii) is unigue provided that V satisfies Ker(V) O Ker(l —
W*W) and Ran(V) C Ran(B), which may be easily arranged. Uniqueness of the

representation (aiit) may be similarly arranged.

Remark 5.6.3 If X weekly satisfies the QSDE 5.11 and the Poisson terms of the
coefficient matriz F' are (W — 1) where W is unitary, then X is isomeiric if and only

if X is coisometric,

Theorem 5.68.4 Fvery Markouv regular stochastic contraction cocycle on the Hilbert

space h, with separable noise dimension space kg, admits a unitary stochastic dila-

tion.

Proof : Let X be a regular contractive cocycle. By Theorems 5.6.1 and 5.6.2 it

satisfies the QSDE 5.11 in which the coeflicient matrix matrix has the form

oo [ H =3+ BY) —L \
M W -1
where H = H* B > 0,||W| € 1and L = —-BV(1 - WW*)1/2 4 M*W for some V

such that ||V] < 1. |
Let G € B(h® (L® ko & ko ©T)) be the operator with block matrix form

( iH~{M*M+BY)  -L ~-L1 MU
- M W -1 (1-Ww=l/2 g
~V*B (1 - W*W)l/? -W* -1 0

\ My . 0 | 0 Up—1 /

in which L, = BVW* + M*(1 - WW*)!/2, U, € B(h) is unitary, and M, € B(h)
satisfies Mo Mg = B(1 — V*V) B, B

Viewing G as an Opératcr in B(h® k), where k = kg ® kg & €, and bearing in
mind the remark after Theorem 5.6.2, it is easily checked that G is the generator of
a unitary cocycle Y. It follows, by the ﬂper’atnr pfncess analogue of Lemma, 5.2.2,
| tha_t Y is a stochastic dilation of X, - S o
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Remark 5.8.5 (i) In some cases stochastic dilation may be realised more efficiently.

Thus if W is unitary. or B is zero. then the third (respectively fourth) row and column

is redundant,
(ii) If ko = {0} then, with M =iB.W =1 end U; = 1. s0 that

{ iH - $B? _iB
iB 0

the dilation is effected by the solution X of the QSDE
1
dX, = (iEth + (iH - EB?)dt)

. where Q; = (Ay + Af). Since the process Q) is a classical Brownien motion, the
dilation is “essentially commutative” in the terminology of [382]. When the operators

B and H commute it ts given emplicitly'by

X, = ei(BlEQt-l-tH@I) .

(iii) Throughout this section we have in fact been dealing with left cocycles. in the
terminology of [37]. A right stochastic coniractive cocycle is a contractive operator
process Z that satisﬁes Zsrr = 05(Zt) s, and such cocycles thal are Markov regular

necessarily satisfy the ﬂght H-P equation, that is dZ; = Gz dAS(t) for some oper-

o atﬂr matriz G. The dilation theurem for such pmcesses 18 an immediate consequence

of the time reversal techniques developed in [37].

5.7 Applicati.ons to classical probability

One. of the most obvious examples in classical probability to which the theory of
CP-valued quantum processes can be applied is that of measure valued processes.
Consider for example a compact Hausdorfl set X and let P(X) denote the set of
all regular Borel probability measures on X. Let.{ﬁf}.egu,a:'ex be a family of maps
defined on some meﬁsure space (Q,F;V) such that for each z € .XI,;@ = P(X)
is a measurable map, where we view P(X) as a metric Space in'ﬁ_lthe topology of
weak convergence and equip it With the Borel stfucture arising from this topology.
. Assume furthermore that for each f € C(X), the map X 3z~ (f,uf) = [ fdu?
is continuous for almost all w € 2. Thus {xf} may be identified with the famlly
of (~valued processes (f, 17}, Let us now assume that there is a family {Nt}:-i
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independent Poisson processes such that N* with intensity parameters A; > 0. and

that the following stochastic differential equation is satisfied:

d{f,u;) = (ao(f), ) dt + Z(af(f),#f) ANf, p§ =62, (5.12)

1=1

where {o;}™, are bounded linear maps on C{X), with o;(f) = &; (f). We call {pf}
a measure-valued flow in such a case,

Now let h be the direct sum of the Hilbert spaces arising from the GNS construc-
tion associated with the irreducible representations of C'( X}, and let A C B(h) be the
enveloping von Neumann algebra of C'/(X). Clearly the a; can be extended to nor-
mal, bounded linear maps on .4, which we also denote by «;. It is well known that
the Fock space D(L2(IR.; @™)) is canonically isomorphic to L2(iP) = L*(Q,F, P}
where (2, F, P) is the measure space induced by the processes { N}, ([38], p.71).
" Define maps & : ./-‘l — AQ B(T(L (R 4; €)= AQ B(L2(IP)) as follows: first define
k. C(X) = C(X) @ B(L?(IP) by setting &:(f)(z) to be multiplication in L2(JP) by
(f,u7), and then.ext’end to A by continuity. It is clear that & satisfies the equation

- dki(a) = ki{ag(a)) dt + ikt(m(a)) dN}, Ya € A.
i=1
However N} is realised in B(L2(IP)) = B(T(L2(R4: T™))) as the operator AX(E) +
Vi (A;(t) + Ag(t)) + Ast ([38], p.74), and thus k satisfies the QSDE: dk = k 0 8% dAS
where we set . .
93 = g + ig}\iﬁri, 93 = ¢! = VA, and 9_% = 5}&;. - (5.13)
i=] ,

By construction £ is a GP contractive flow, and so0 by the genefal theory above we
can construct a *-homomorphic dilation 7 of £, Furthermore, since A is abelian. the
family {ji{a) : t > 0,0 € A} will be abelian {see [45], Theorem 28,8). On the other
hand, given any *-homomorphism # from C({X) onto a commutative C*-algebra C.
by Gelfand theory there exists a map 7 from the Gelfand spectrum of C to X such
that 7 is unitarily equivalent to the *-homomarphism' [ fon. In view of this we
obtain a time indexed fa,mily n, of maps from some abstract space to X such that
for each ¢, j; 1s unitarily equivalent fo the *~homomorphism f — f on,.. However
we can as yet say very little about {n:} as a process. Roughly speaking the dilation
of £k may be viewed as a lifting of a measure-valued process u* to a process taking:

values in the underlying state space X,



100 Chapter §. Dilation of completely positive flows

As a final application. another source of CP flows arising in classical probability
come from filtering theory. One considers the signal process Z, on a space (L, F, P)
which is a Markov process with (possibly unbounded) generator L. and also an
‘observation process Y; which satisfies an equation of the form :/Y; = hi(Z;) di + dW,
for some Wiener process W independent of Z and some h that is sufliciently well-
| behaved. Assume for simplicity that Z and Y are JR™-valued processes. Then Bayes’

formula gives, for any FZ-measurable and integrable random variable g,
E[g|F]] = 0¢/(g,Y)/a:'(1.Y)
where

ﬂ'tf(giy(w))
[ awexp > L_ > [ rx () ari) —_-é- [ Ina(Xs(w )P ds} dP(w).

and h7 and YJ denotes the jth compcment of » and }’ respectlvely The map &y
is then deﬁned by 0‘;( f. Y) = o (f (X;), Y) for all f such that the rlght hand side
makes sense. Furthermore o, _sa,tl_sﬁes the well known Zakai equation (under certain

assumptions) which is of the form
a6 (f,Y) = Gy{Lef, Y ) db + E ou(hi f,Y)dY/.

This Zakai equatmn has a fﬂrmal s1m113.r1ty with the flow equation consldered by
' us, although L and A7 are in general unbounded. We refer the reader to [29] for a
comprehenswe a.ccount of the Zakai equatmn and related topics. We remark that
f = Ge(f, Y) is mdeed a, CP map on the underlylng functmn algebra but in general

it will nnt be a -homomorphmrn



Chapter 6

Construction of minimal

semigroups

(Given a formal unbouﬁded generator, the minimal quantum dynamical semigroup on
a von Neumann algebra is constructed. A set of equivalent necessary and sufficient
canditions for the conservativity of the minimal semigroup is given and in the case
when it is not conservative. a distinguished family of conservative perturbations of
the semigroup is studied. Finally, some of these results are applied to the classical
Markov seinigroup with arbitrary state space. o |

The structure of generators of uniformly continuous quantum dynami_cal_ semi-
groups (i. e. semigroups of normal completely positive linear maps ) on a von
Neumann algebra was completely characterized by Christensen and Evans 18] and
Lindbiad {34]. However, no such structure theorem is avallable when the semigroup
is not uniformly continuous but only confinuity with respect to some other suitable
weaker topology is given. There have been several attempts to construct a “minimal”
semigroup starting from a given unbounded operator. Such endeavuurs have proved
to be successful when the underlying von Neumann algebra is either a commutative
one ( in particular classical Markov processes with countable state space, studied
by Feller {20] and Kato [31] } or the full algebra B(H) for some complex separable
Hilbert space H ( Davies [12], Mohari and Sinha, [43], Chebotarev [9]). Our aim here

is to construct a minimal semigroup on an arditrary von Neumann algebra, starting

- with suitable assumptions on the formal generator; then study the conservativity

property and apply the construction to a large class ofclassical Markov semigroups.
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as well as to the irrational rotation algebra Ay. The previously considered cases of

commutative function algebras and B{?) are special cases of this construction,

6.1 Construction of minimal semigroup

Suppose that h and K are two Hilbert spaces, A C B(h) is a von Neumann algebra.
7 : A — B(K) is a normal, unital, *-representation: (F;)¢>0 is a Cp -contraction
semigroup on h; and R : h — K is a closed, densely defined, linear ( possibly
unbounded ) map. Formally we introduce a map £ by, £(z) = R*w(z)R+zG+ Gz,
r € A; where G is the generator of (F});>0. Let us make the following assumptions
on G and K ; - |

(A1) G n Aand R*w(z)Rn A,V z € A; where n denotes affiliation to a von Neumann
algebra { see [50], {14] for the definition of affiliation and relevant discussion ).

(A2) D(G) C D(R) and ¥ u,v € D(G), < Ru,Rv > + < u,Gv > + < Gu.v > =

0. where D(E) denotes the domain of a linear map E.

Ren'iark'ﬁ.l..l (i) Note that for a uniformly continuous quentum dynamical semi-
'gi’uu'p; its generatdr is 'gi*ueﬁ by Christensen-Evans form (8] :

- L(z) = R'w(z)R + =G + G*z, where R € B(h,K) such that R*n(z)R and G are in
A for z € A. Thus the assumption (Al) is a naturally possible generalization of the
8] p.ropér'tie..s to the case where L is unbounded. Note also that (A2) corrEsﬁands to
formal statement that £(1) = 0. It is also clear that when A = B(h), (A1) is trivially

- satisfied.

(zz) Hmﬁeuer; it 18 to be noted that the assumption (A1) does not cover the case of
the heat semigroup. o o
'-'(ii*i)r-Nate*fﬁaf (A2) is equivalent to the following :
(A2): (1=-G)'R'RA-G)"'+ (1 -G'G(1 - G) '+
(1-6"te*(1 -Gy =0. | | |
Let us now consider 7(A) as a von Neumann algebra in B(K) and define a map

7 from 7{Ap)« to Ay by, (m){a) =1 (n(a)), a € Ay, and ¥ € Qria,) = (7{AR))x.
Modulo canonical identification, m, can be viewed as a map from B3¢(K)/(m(Ap))+
| to By (h)/Ak; and we won’t nata.tioﬁally distinguish between these two views. It
o s cleai:.-ftha,t tr((mnp)z) = tr([nlar(z)) V x € Ap, n € Bi*(K).
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Lemma 6.1.2 ||7.|| < 1. 7. is positive. and the dual of 7. is the restriction of w to

A

Pfﬂﬂf : For ¢ € Qﬂ'(v‘lh}} we have ”ﬂ'*'t,él — SupﬂEA;,,HuII*_:I[(W*w)(ﬂ'” =
SUPae Ay et <L P (T(a))] < supperpap o<1} ( since |[m(c)]] < [lel|l ¥ c. for any
*.representation w ) = ||¥||.

The map . is positive because for any positive functional W € Oy, ) (Tuth)(a*a)
= (w(a)"w(a)) > 0V a € A. The assertion about its dual is straightfﬂrward. 0

Before proceeding further, we note a standard fact about operators affiliated to

a. von Neumann algebra , the proof of which is easy and is omitted.

Lemma 6.1.3 A possibly unbounded, closed, densely defined operator B acting on
a Hilbert space h is affiliated to a von Neumann algebra B if and only if for every o
¢ B and u € D(B), we have that a'u € D(B) and Ba'v = a'Bu. where B' denotes
the commutant of B. Moreover, if B and (' are ﬁwa closed, deﬁseiy deﬁned operalors
affiliated to B, such that BC is also a closed, densely defined operator, then BC is
affiliated to B. |

Now, let us define Sy : By*(h) — Bi%(h) by, Si(p) = PpP’ (t 2 0). It is

immediate that (5;);>0 is a positive, Cp-contraction semigroup.

Lemma 6.1.4 (A ~ G)™} € A Y positive A Moreover, V ¢ € A}I, Pral € Ap ¥V
t>0and (1 -G) 'R*'r(z)R(1-G)"t € Ay,

Proof. We have for A > 0,a' € A'and u € h, (A - G)a' ()~ G)u =d'() -~ G){) -
G~ lu (( by Al and 6.1.3 ) | |

= A—-G)a'(A-G) ' =d

= d(A-QG) = ~-GF) a7t foralld’ € A |

= (A —G)™' € A" = A, because (A — G)~! is bounded. This also gives, P; =
s — liMmpoo(nft(n/t — G)~')* € A, Thus, for any z in Ay, Pz P, is a self-adjoint
element in 4, 1. e. belongs to Ap. | | |

Now, let z € Ap. Let us consider the polar decomposition of R as, R = U|R),

~where |R| is a positive operator affiliated to A ( because |R| = (R*R)/%. R*R
= R'n(1)Rn A) and U is a paftia.l isometry with the closure of range of |R]
as the initial space and the closure of range of R as the final space. It is easy
to note that |R|(1 — G)“‘1 is bounded { a8 Ran({(1 — G)~') C DP(R) = D(|R|) )
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and by 6.1.3 { second part), it is affiliated to A, hence € A. For any bounded
continuous function f from [0,00) to R, f(|R|} € A, as |R| n A. In particular.
n(l + n|R|)~! € A for any positive integer n. So, n*(1 + anl)“IR*ﬁr(m)R(l -+
niR)~! = (ﬁ(l + n|R))"YR)U* n(z)U(n|R|(1 + n|R))~") € A ( since it is clearly
bounded and is affiliated to A by 6.1.3 ). But n|R|(1+n|R]|)"" — 1 strongly as n —
~«: hence U*m(z) = s = limnaoeon?(l + n|R|) "' R*r(z)R(1 + n|R|)~! € A. Thus.
(1—-G*)"'R*a(z)R(1 - G)~! = (|R[(1 - G)" 1) (U*n(z)U)(|RI(1 - G)™') € A. { as
IRI{1 — G)~! € A ) and being also self-adjoint, it belongs to Ay. -

[

Lemma 6.1.5 For t 2 0, 5, induces a linear map S; Ape = Apy, and (E;)t:,g
is a positive, Cg-contraction semigroup on Ap. ( positivity means that S_g ([oln) i5 a

positive element whenever [p)), is so in Ap. ).

Proof : If we take p, Ny € Bf'“* (h) such that p; ~ pg, then for any z € A, and ¢ > 0,
tr(Si(pr)z) = tr(Bepr1 Pl x) = tr{p1 Pz Ry) = tr(pe Pz By N
( by 6.1.4 ) = tr(Si(p2)x}). Thus, Si(p1) ~ Si{p2), which proves that S; induces a
map S;. Semigroup property and positivity of (Sg)t,}[] are immediate, whereas strong
continuity follows from the fact that (St)t:;g is strongly continuous and | |St [pln) =

Pl < 1Se(p) ~ plIL ¥ p € By2(h), t > 0. - . D

Let us dem}te the generator of (St)i>0 by Z. Since each S induces an operator
on th . Z will do so. It is easy to see that the generator c_uf (S,g),g_;:{] will be a
- closed extension of the map induced bjr z. We, by slight abuse of notation, denote
by Z the generator of (E)tan. Let us define ¢ : B'f'“'(h) - B *(h) by, v(p) =
(1— G)~'p(1 - G*)}L. Since (1 - G)~! and (1 - G*)~! belong to A, v will induce a
. map § from Aj « to Ap, which can be proven in a way similar to the proof of 6.1.5.

- Let us denote by D and D the ranges of cp and ﬁ respectively.

Lemma 6.1.6 D and D are dense in B{%(h) and A, , res;mctweiy Moreover, they

' are cores for Z and Z respectwefy

Proof: Since ’D(G) is dense in f, the real linear span of rank-one operators of the
form |u >< ul, u € ’D(G‘) is dense in Bi-*(h). But for u € D(G) = :Ran((l ~ Gy 1)

Cu >< ul is clearly in D, which proves the density of D in Bj-*(h}. Core property
of D follows because e_ach St leaves D invariant. The_ assertions about D follow
similarly, only thing to note is_that Helh = ol S llp =l Y p, 0 € Bi*(h).
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Lemma 6.1.7 Given [p]; € D and ¢ > 0. we can get posilive elements || and
[p2ln in D such that [pja = [p1]n — [p2ln and [|[o1]al] + 1l[p2]all < Hllolali + €

Proof : Let us consider a general {p]; € D such that p = p(o), o € Bi*(h}. Given
e > 0. we can choose sufficiently large n such that |

owln — [Jall < € where o, = (1~ G/n)(1 = G)'al(1 - G/n)(1 - G)7')"

= (1—G/n)p(a)(l —G*/n) = (1 - G/n)p(l — G*/n). By the non- commutative
Hahn decomposition ( Theorem 4.2 (ii) of page 140 of [51] }, we can get two positive
elements o, o, ( not necessarily the positive and negative parts of o, ) such that
lionlall = il all+lloz sl and [o]a = lo]s ~ [ ]a- Take oy = (1-C/n) o7 (1-
G*/n)™ pp = |
(1 - G/n) o (1 - G*/n)~!: and observe that ||{p1]all + 2]l

= i|(1 = G/a)lof (1 - G /n) i + 11 = G/n) o (L - G*/n)™ Hh ((as o1, P2
are positive ) |
< ol + oz

p—

r

o nll + lllon Inll

p—
—

= {l{onlnll < lllolall + €.

Now. [mi]n = [pen = [(1 = G/n) ot - 07)(1 = G*/n) s =

(1 - G/n) Lo (1 — G*/n) " n = {p]n, because (o;F — o) ~ o implies
(1-G/n)y Hot —o7)(1 -G /n)"t ~ (1L = G[n)"lon(l - G*/n)"".

Let us now define J : D — Ap . by,
J(p(p)) = m([B(1 = G)'p(1 - G*)"'R*}y), p € B<(h); where (1 - G*)'R* is to
be interpreted as the bounded operator (R(1 — G)~')*. Next two lemmas give some

useful properties of the map J induced by J.

Lemma 6.1.8 The map J : D = An. given by, J(@([o]s)) = J(p(o)) for o €
- Bi%(h) is well-defined and linear. | _

Proof : It is enough to prove that whenever (o) ~ 0, we must have J(o) = [0].
Given (o) ~ 0, we first show that o ~ 0. Let us denote by G, the operator
{1~ G/n)"Y, n = 1,2,... Clearly, each G, is in A, and G, — 1 strongly. So,
(1 -GG - G)t — 1 strongly. T'his implies that {1 — GG,){1 ~ G)~la(l -
G*) Y1 - GGy)*x converges to oz in trace-norm as n tends to oo, for any = € Ap,

and hence tr(ozx)
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= liMpontr((1 ~ GGR)(1 ~ G) la(l = G*) "Y1 — GG,)*z) |
= liMp—aootr(wlo).(1 — GGy ) 2(l — GGR)) = 0V 2 € Ap; where in the last step we
have noted that (1 — GGy) € A, which implies (1 - GGR)*z(l - GGR) € Ap. Hence,
o ~ (. | -

Now,V z € Ay, ir(J(oz)) = tr(R(1 — G~ lo(l — G*)" ' R*r(z)) =
tr(o(l - Y R*n{z)R(1 ~ G)~!) = 0, because
(1 -G 'R'n(z)R(l - G)~t € Ap. This completes the proof.

Lemma 6.1.9 J is positive. and tr(J({oln) + Z([oln)) = 0 ¥ [p]n € D.

proof . Positivity of J follows from the positivity of 7.. An easy computation shows
that for p € D, Z(p) = Gp + pG*; hence for [p]s € D , tr(z([p]h)) = tr{Z(p)) =
tr(Gp + pG*). Now for any o € B{*“*(h), we have tr(f(@([a]h))_) = tr(J{p(o))) =
tr(R(L —G) ta(l ~ GV R™7(1)) |
= tr{o(l - G*) 'R*R(1 - G)™1)

= ~tr(o(1 - 6*)7'G(1 - G)™' +o(1 - G*)"'G*(1 - G)™') ( by A2')

= —tr(Gu(o) + ¢(0)G*) = ~tr{Z(([c]1r))), which completes the proof. 0

For A > 0, (A ~ ZI)‘"1 ¢an be expressed as [o°e~*S;dt, hence (A — Z)~! leaves D
invariant and is positive. Similar statements are valid about
(A= Z)L. | | | |

“Let us define B(A) : D = Ay, by, B()\) = J(\ - 2)~1.

Lemma 6.1,10 E( )) eztends to a posttive linear contractive map. from Ay« to Ap .,

which we denote by the same notation. |

proof : For positive [p]h- € D, with p € D, we have ||BOA)([pln)]] = tr(B(A\)([p]n))
= tr(J(A = 2)"' ([pln)) = —tr(Z(A = Z)"([pla)) = tr(p) — Mtr((A = Z)~'([pln)) <
tr(p) = |llplsll. For an arbitrary [p] in D and any positive 'numbei' e, we choose

- two positive elements [p], and [pa]y, satisfying the conclusions of 6.1.7. Therefore,

1Bl < B (o ]mll+ B M) (o)l < llpuall + Healall < lllplkl] +€. This
proves that IE(A)([p]h)H < Hiolsll ¥ [ela € D, and we complete the proof by the

density of D in Ay..

| Lefnma' 6;1.]_.1 | j extends L‘o_ Jt on D(Z) such that tr(Z([p]n) + J'([p)s)) = 0 ¥ [p]n
€D(Z). . : -
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Proof : Tt is enough to take J' [P]h = B(1)(1 — Z)([p]n), for [olx € D(Z), and to
note that D is a core for Z. | O

By a slight abuse of notatidn, we shall continue to denote J/ by J.

Theorem 6.1.12 For 0 < r < 1, define G = Z +rJ. Then G, genemtes a

positive, Cy conlraction semigroup, sey (T; )t;-,u, on Ap; and (A - G, )7l = (A -
Z)"IZH_UT”B(A) for A > Q.

Proof : Fix A > 0, r € [0,1). We have, (A ~ G;) = (1 —rJ(A = Z)"H)(A ~ Z)
= (1 - TE(A))(A ~ Z). Since Hrﬁ(,\)ﬂ < 1, we can use the Neumann series to
get (1 — rB(A\))"! = Zfzurﬂg’(A)“, which shows in particular that (A — E?:)"l =

(A— 2Z)~ Zﬂ_ﬂr"B(,\)ﬂ exists as a bounded operator. Now, for any positive [p],
€ Ap., let us denote by [o]y the element (A — Gy)~'([o]n). Clearly, (A — G,)™! is
positive since (A — Z)~! and B()) are so; and hence [0],, is positive. Thus, ||{g]n|| =
tr((p}n) | |
= Atr([o]) + (1 = n)tr(J([o]a)) (as tr((J + Z)([o]n)) = 0 )

> Atr{|o]a) |

= Allla]all-

So, |[(A = G¥) “(leladll < llolntl/A for all pUSltIVE [p];l in A, and hence for all
[0)n in Ap,., since we can decompose any {p]n as [p]n = [p1]n — [p2ln with [{o]nl| =
lle1)zll + llp2]al| where [o1]n and [p2]n are positive ( Theorem 4.2 (ii) of page 140

of [51] ). We complete the proof of the theorem by appealing to the Hille- Yosida
= (r)

Theorem. and also noting that positivity of (A — Gr)~! implies posutmty of T}

~ {min}

Theorem 6.1.13 As r T 1, Tt{r) + Tt , where (Tt(mm))t;-,g zs a positive, Cj
“contraction semigroup on Ap,.; and the above convergence is strong and uniform in

t over comnpact subsets of [0,00).

Proof . We see that for positive element [P]h € Ah ' Tg(r}([p] > T:m ({

such that 1 > 7 > s > 0. This follows from the series expansion of (A- ~G.)~"!asin the

pln) = Oforr,s

preceedmg theorem and from the fact that Tf;( LR limy oo (n/ t) (n/t -~ Gp)~ o

) (r)
Moreover. ir(B" ({o]4)) < lIllll[o}all, since I 1| <1. So (tr (T ((ola)))reony s
“an increasing bounded net of positive numbers and hence it converges to some finite

positive llmlt as 1 1. For r > s we have ||'II‘¢(1'-)([,¢:}];L,L Tt(a)([p}h)ll = tT(Tttr) ({plr) —
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lﬁ} [p]h - 0 as 7. 8 __} 1 &nd hence Tt [p] can‘&f&rgES iﬂ. the (L8] g 94| ﬂf -AIL*

to say Tt mm} ([pln) as r T 1. We extend T (W1 6 the whole of Ap . by linearity

using Theorem 4.2 (ii) of page 140 of [51] ; and observe that this extension will be a

e T']'
positive, contractive, linear map from Ay . to itself, since each Tt is s0. Semigroup

(min}
)e>0 is obvious.

property of (T}
We now show that the convergence is uniform over compacts in £, which will also

prove strong continuity of (N{mm }i>0. Suppose that this is not true. Then, there

exist positive [p|s € Anx, positive number €y, and sequences {rn)a=1.2,., (ta)a=1.,...
- n) ——(min)
suchthat 0 < r, T1,0 < ¢, — {g for same tg > O; and ||T¢n( (lpln) — T, ([2]r)]]

n )
> €9 V positive integer n. Since T;n [p n) and (=T} r ) ({o)n) -fl}n{mm ([e]n)) are

positive, we have by 1.1.10 that ||T¢ﬂ{mm)f o) = T, (r") ([pln)] +”Ttn mm) ([p]n) —

Al T (el ~ 1 (oIl 2 €0, So, ¥ m <,

olr )i, which implies, ][Ttn
5 {rm) ——(rn) (mm) , .

| ”Ttn ([P] M €T, (F’]h || < |13, [p]h) |-60.*Kee_p1ng m fixed and letting
™™ ((pJa)ll — €0; and then by

n tend to oo, we obtain that ||T¢D(rm} ([pl) | < |73
(el < 11T ™™ ([oln)I] — eo, 2 contradiction.

letting m tend to oo, |[Ti to

(mm))

Theorem 6.1.14 The generator of (Tﬁ >0, SQY A, is an extension of 7+ J;

. and we have the fal!uwmg minimality property :

- Whenever (T )gbﬂ i5 a pomtwe Cy contraction semigroup on Ap .« whose gener-
_'atnr ( say A’ ) e:ctends Z + J we must huﬂe Tt > Tg(mm) Vi> 0. |

- _-Pruﬂf The first pa.rt of the theorem follows from the fact thal: G [p],v1 (Z -+
o J )([p]h as r T 1, ¥ {pln € ’D(Z }. For mlmmallty, 1t 18 reqmred to observe that for
A0, A=Ay ~(A=Gy)l=(A- AV YA = G)(A = G)™! 2 0, since the
restriction of A’ to the range of (A — Gr) L i e to ’D(G ), is the same as Z + J >
'G,-, and (A — A’) A= G,-) ~1 are pomtwe WB complete the proof by notmg that
'Tg = 8 = liMp o n/t) (n/t — A’)'"— > 8= lzmn_.,m(n/t) (n/t ) "= Tt(r} "

7 L.

For a linear map V from A , to Ay ., we consider its canonical extension V from
A. to A, defined as, V{[p]} = V([Re(p)]n) +i.V{{Im(p)|n). We will say that V is
completely positive if the dual of V,say V', is completely positive as a map from A

L] ’ . - ] - n L) '. L]
to A, i e for any zy,32, ..., Zn; Y1, %2 . .+, Un I A, 52 :B;?V*(y;yj)a:j is positive.

 This is agam equivalent to,

B tr(z{V (s}ys)s1p) 2 0 for ol positive p € B (h).
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py ﬂtr(y;‘ij([:::jpa:}‘])) > 0 for all positive p € Bj*(h).

ij=1

I}__‘_l”tr(yjl_f([atjpa:;‘])y;‘) > 0 for all positive p € B{**(h).

It is easy to note that complete positivity is preserved under taking finite sum, com-
position and strong limit of operators. Now we prove in the following theorem that
the minimal semigroup constructed in the present section is not only positive but

also completely positive,

~ (min)

Theorem 6.1.15 T; is completely positive for all t 2> 0,

Proof : It is enough to prove that for any » € [0,1) and ¢t > 0, T, ") is completely
positive. For this. it suffices to verify that ()\ G,)~! is completely positive. be-
cause T ") s strong limit of (n/f)"(n/t — G.)"™ as n — oo, But, (A — G;)~!
(A—2)" 1}:?;0?'5’?@){ and so it is enough to check that (A — Z)~! and B()) are
completely positive. |

Now, for zi,....Zni%1,...,Yn € A and positive p € B{%(h), we have that
2" tr(y;(A — Z ['T'.mel] yi)

,j=1

= [Pe 2 tr(ythmjpmfP*yi)d

= [ooe”Mir(mm; )dt ( where ¢ = Sy Paipt?, 2 )

> 0.

Finally, we want to show that 1_121 tr(yj_m Wzi0ziyl) 2 0 By density of

D(G) in ‘H. we choose sequences p( ) € Ba(h), i =1,2,...,n such that
(1 — G)‘"lpi ) 2;p/? in Hilbert-Schmidt norm as k — oo, for each i. Re-

callmg the definition of B{)\) and procaadmg as in tha prevlaua paragraph we get .
2 "t BN = 6 6P (1 - 67) )

t,j=1
rn T
= 2, tr(BOY(((1 - &) o (1 - e wtes)
= [ T " (R(1 - G) lpp“““ P (R(1 - G)™') m(y}y;))dt
= [Pe M, 2 tr(n(y)R(L - G Pl ol Pr(R(L - @)yt

> 0, clearly.

This completes the proof. S o B | - O
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6.2 Conservativity of the minimal semigroup and its

perturbation

We say that (‘_I'{g(ﬂrrm Ji>0 is conservative if fﬁ (min) (1) =1V i > 0, where Tﬁt(mm)
denotes the dual of T}(mm} The above is equivalent to tr(Tt(mm ({pln)) = tr(pln} ¥
[p]ln € Aj... We now want to describe some useful criteria for conservativity.

ForA>0,let O ={z € A4pz>0:< Run(z)Rv >+ <u,zGv > +
< Gu.zv> =A<z >Yuv € DG) }.

Also, for A > 0 and for z € Ay, we define a bilinear form EM*(u,v) =
e M < u, P R*#(z)RPw > di. To see that it is well defined, we first note that
by the assumption A2 we have, [|[Ru||? = —2Re < Gu,u > and ||Rv[|? = —2Re <
Gv,v >. Thus, | < RPu,n(z)RPw > | £ |ln(z)||||RPu||.||RPw|| £ 2||z|{.|Re <
GPu. Piu > |Y?|Re < GPw, Pl Hence, |EM®(u,v)| |

<2zl e M| Re < GPu, P > |Y2.e7M2|Re < GPw, Prv > |12t

< 2lzl|(—fe M Re < GPu, Pu > dt)}/?
- {(—fQe M Re < GPw, P > dt)lﬂl | |
= |lall (= P e M fdel| Pl |22 (~ [P e Md fdt|| Pl [2dt) 2

< {fall.ltulf Il . . _

This implies that the bilinear form is well defined and also it is bounded by
[lzl]-Nufl.[lv{l, which, by density of D(@) in h, gives that there exists a bounded
operator @Qy(z) such that < u, (z)v > = E""“’(u v) for all u,v € D(G). By

- construction, @y(z) is self—adjmnt for £ € A, and it is positive if z is positive.

Moreover, ||QA(11:)|| lz]]. We also claim that Q;\(:u) ¢ Ap. For any ¢ & .A" and u,
v.€ D(G), say u = (1 -G)" M, v = (1 — G) ', we have that,

<u,Qa(z)av> ' -

= [PeM < RP(1 - G)~! ",ﬂ(:::)RPt d'(1-G)~' > dt

= e M < (1 - G*)"“IP;R*W(:B)RP.:(I G)~ta'v' > dt (since (1-G)"'and
o' commute by 6.1.4 ) - | B -

= [P <, d(1- G*) L PP R*n(z)RP(1 — G)~v' > dt ( as
(1= G*)“_lPt*R*ﬂ(:r)RPt(l_ -Gl = Pl -G 'R r(2)R(1 - G) P, € A,
by 6.14) o S
= [P < () (1 e Y, Pt R*qr(m)RPt(l -G > it

@

= < (), Qo) >

=< u,a'Qalz)v >
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By density of D(G) in h, we conclude that Q) (z) commutes with a’. and since
@ (z) is also self-adjoint. so Qy{z) € Ap. Thus. @y : Ay — Ay is a positive linear
contraction.

Now we state the main result on conservativity.

~ (min

- Theorem 6.2,1 The followings are equivalent : (i} (T}

(ii) T (o)l = lllohull for any positive (ol € An,e
(iii) For some ( and hence for all) A > 0, (B(A)*([o]n) = 0 as n — o0, ¥ [o]s

E Ah‘*-
(iv) For some {(and hence for all) X > 0, (A — AYD is dense in Ay ., where A is

~ (min)

the generator of (1}

) : .
)i>0 @8 conservafive.

)exo.
(v) For some ( and hence for all ) A > 0, (A)*z = Az has no nonzero solution
in Ay, where (E)* is the map dual to A,
| (vi) By contains the only element O for some ( and hence for all) A > 0.
(vii) Qx(z) = x has the only solution £ = 0 for some ( and hence for all) A > 0.
(viti}) X =0 for some (and hence for all) A > 0, where Xy =5 — limg-,00Q%{1),
which exists and equals the magzimal element of 8\ ({0 € ¢ £ 1}.

The proof is omitted, since it is very similar to that for the case when A is B{h)
( [43],[7], [47) ). ' '

It is easy to see that if the minimal semigroup is conservative then it is the only
positive contractive strongly continuous semigroup with the prescribed generator.
This fact follows in an exactly similar way as in [7) for the case of B(h). More-
over. when the minimal semigroup is not conservative, we can construct a family of
~ “perturbed” semigroups each of whose generator extends Z + J. For a fixed real
number m. we construct a semigroup (‘ﬁ{m})tam Fix a pﬁsitive [w]r € An,. of norm

=~ {m)

1, and define for A > 0, Ry~ = (A — A)~'(I + H,), where I denotes the identity

map on Ap,., and H), is defined as Hy([p]s) = (m +1 — o) " Hr([gJn X 1) [wla; o =
tr({w]y X ). We denote by R, the resolvent of A, ie. (A — A)~!, and let Py be its
“dual. We have the following result. o

Theorem 6.2,2 (i) X, = 1—/\?’1(1), and thus, the minimal semigroup (ﬁ‘"‘"‘f’)tgn
is conservative if and only if }3;(1) ="l | |

(i) For u > 0, u # A, we have, P\(X,) = (1 — \)~H(Xx - X,)

= (m) = (m) == (m)

(@) B - Ry = (u~ N Ry
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(iv) Iﬁ(m} is one-to-one and it is the resolvent of a closed operator Alm

(v} For m > 0, llRA{m]II < A1, and hence AU is the genemtﬂr 0f a positive.
contractive. Cy semigroup, which is conservative if and only if

m =10, |

(vi) Form > 0, D(A™) = D(A), and for [p]s € D(A), A™((p]n) = A((p]n) — (m+
- 1)“ltr(ﬁ([p]h))[w]h. Moreover, A"™) and A agree on D.

The proof is essentially identical to that of Theorem 3.1 of [47].

6.3 Application

To itlustrate the above theory with a concrete example, let us consider a o-finite
measure space {{}, B, p) and denote by LP(u) and LP(u)m the space of all measurable
cnmplex—valued (real-valued, respectively) functions on Q with finite LP-norm, for
p > 1. We denote by h the Hilbert space L*(u) and by A the abelian von Neumann
algebra L>(u), to be identified as multiplication operators on h. Tt is well-known

that Ax, = L'(u)p. Our aim is to construct the minimal semigroup when the

generator is given by,

(L) f }w)
= ([ a(w, 2)(p(2) — p(w))}u(dz)) f(w), _
whenever the right hand side exists ( ¢ € A and f € h ). Its formal predual is
given by, (AY}Hz an y, T)P{y)p(dy) — ([ qelz, y)u(dy))¢(z), whenever the right
hand side makes sense for 9 € L'(p). We assume that a : 2xQ — [0, c0) is measur-

able and [ a(z, y)u{dy) is finite for almost all z. This is the obvious generalization

of classical semlgroups studied by Feller [20] and Kato [31]) where p was chosen to

be the counting measure on the set of positive mtegers
Let us cnn31der the Hilbert space s ® k, where h = Lz( ( w)), k = L2 (u(dz))

. and K --._h, ® k & L?(u(dw) @ p(dz_)), where yi ® p denotes the measure-theoretic

product of two copies of u. Let < .,, >4 and _<'.,. >y denote the iﬂnerpmduéts
in H and K respectively, whereas (| || and || ||c be respective norms. Define
A = B(K) by, (n(@)F){w,2) = p(2)F(w, 2); z,w € @, F € K. It is easy to verify

* that 7 is a normal, ¥_representation, Note here that the representation chosen is not

(#(¢) F)(w, z) = p(w)F (i, z). This change in the choice of representation has deeper |
implication at the level of stochastic dilation as was observed in [44], (see also [41])
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where it was shown that this necessitates introduction of a unitary operator-valued
number process. Now. define R : h — K as follows :

Let D(R) be the set of all f in h such that [ [ a{w, 2)|f(w)|*1{dw)u(dz) is finite:
and {Rf)(w, 2) = a{w, 2) f(w) for f € D(R).

Theorem 6.3.1 The operator R is densely defined and closed; and D(K*) contains
the set D uf all G € K such that [ vJa(..2)G(.,z)p(dz) is in L*(u). For G € D,
(R* = [ Va(w. 2)G{w.z)u(dz); and the setD={f € D(R): Rf € D} is a core
for R*ﬂ'(tp)R for any positive ¢ € A, Moreover, if we put an additional restriction,
namely sup ea [ aa(w, 2)p(dz) < oo for all measurable set A having finite p-measure,

then D(R*) and D coincide.

Proof : Let us denote by g(w) the function [ a{w, z)p(dz). Clearly, as p{w : g{w) =
>} = 0. the linear span of elements of the form fx(,.q(w)<n)s Where n is any positive
number and f € L?(u) is dense in L*(u), where yp denotes indicator of B, But
fx{w:g'{m)gﬂ} € D(R) for f € L?(u), n > 1; which proves that R is densely defined.
To see that R is closed, suppose that a sequence f, in D(R) converges ( in || [|5 ) to
f € L*(u) and Rf, converges in || |[« to ¥ € K. Then, we can choose a subsequence
(ng)p=19.. such that f,, — f a.e. () and Rf,, = ¢ ae. {(p®u). But, V 2 € (.
(Rfn)(w, 2) = Va(w, 2) fn, (w) = Va{w, 2} f(w) for almost all w; and hence H{w, z)
= a(w, z) f(w) a.e. (p® p). Since P € L*(p ® p), it is clear that f € D(R), which
proves closedness of K. |

Now we want to show first that D C D(R*). Suppose G € D. It i3 easy to see
that if [ /a(w,z)G(w, z)u(dz) is denoted by h{w), then h € L?(n) by hypothesis
and V f € D(R), | |

< foh >n = [ [ Fw)Valw, 2)Gw, 2) p(dz) u(dw)

= [ [ f(w)Valw. 2)G(w, zu(dw) d

= < Rf,G >k, where the mterchange of the order of integration is justified
because [ [ va(w. 2)|f(w)Gw, 2)|p{dz)u(dw) < [|Rf]IklIGllc < oo , by Ca,uchy-
Schwarz inequality. This proves G € D(R )and (R*G){(w) = [ Va(w, z)G(w, 2)p{dz).

To show that D is a core for R*m(¢)R for positive p € A, we consider the

semigroup (Ly);>0 where Ly = e~ tR'T@IR Tt is enough to show that for each ¢, LD
C D. which is easy to verify. | |

Now, assume also that sup,cpfaa(w,2)p(dz) < oo for all A with finite p-
measure. Let G € D(R*). Then, 3 ¢ € h such that < Rf,G >x = < f, 0 >»
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v f € D(R). But € Rf.G >x = [ flw)p{w)p(dw). as we have already computed
(where p(w} = ['Va{w.z)G{w. 2)uldz) ). Thus. [ f{w)(p(w) - p{w))p(dw) = 0.V f
€ D(R).

Partitioning § into disjoint sets of finite y-measure, say {24} (n=1.2,.., and choos-

ing f to be Xa.n{wip(w)~plw)>e} for € > 0, we can deduce from the above identity
" that p{{w : p(w) — plw) > ew € Q,}) = 0. Note that this argument requires
X0, N{wie(w)—plw)>e} t0 belong to D(R), which is a consequence of the assumption
that sup,eaf  alw,z)p{dz) < co for all A with p(A) < oo. Similarly, one obtains
that p({w : p(w) —p(w) < —ew € Q,}) = 0 for all n and positive . Thus, ¢ = p
a.e. (1), and hence p € L%(u), proving G € D. This completes the proof.

In order to incorporate the present example into the framework of the general the-
ory developed in section 2. one only has to identify the generator G with —1/2R*R
which is a multiplication operator by the measurable function —1/2 fa(., 2)u dz)
" and hence is affiliated to A. Similarly, R*m(p)R can be seen to be a multiplication
operator by the measurable function [ a(.,2)p(z}p(dz) and hence is affiliated to A.
- Thus, for positive @ € Lm( }and f € D, it is easy to verify that .

((R*n()R - (1/2)R* Ry - (1/2)pR*R) f)(w)

= (R'7(p)R - pR'R))w)

= (J a{w, 2){p(z) — p{w))u(da)) f (W)

= (L) f)(w). - | |
- If we make the assumption that 'supweﬂ Jaalw, 2)u(dz) < oo for all A with finite
p-measure, then the above identity holds for all f in the domain of R*R, which is
the same as the domain of R*7(¢)R — @R*R for any ¢ € A in this case.

Example 2 | |
Consider another example where our theory works on a von Neumann aigebra, which
is a type II factor. { so it is neither commutative nor of the form B(H).) |

- We fix some irrational number 6 and consider h = Lz(IR) and the C* algebra 4,
generated by the unitaries U and V where (Uf)(s) = (3-1-1) (Vf)(s) = egﬂiﬂgf'(s),

- In this case U and V obey the commuta.tmn rela.tmn 1A% = eV, It is known

[11] that the double commutant A is a type II; factor in B(h) Let us consider
~ a canonical. derwatlcm d with the domain D consmtmg of all polynomials in U and
- V,.and given by, §(U) = U, (V) = 0. It'is easy to see that §(X) = [R, X], for X

€D, iwhere (Rf)(s) = —sf(s) for all fe LZ(IR) such that sf(s) is alsa in LA(R).

o . We:note: that R 18 afﬁha.ted to J-l whlch follows beccause for ea,ch mteger n, Ag
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contains multiplication by *™% { which is nothing but V™ } and since ¢ is irrational.
multiplication by e'®® belongs to Aj for any a € R. Thus, R*n(z)R = R*xRnAj.
We now take the formal expression £(X) = (R, [R. X]] = R*XR~L1R*RX~ ;X R*R.
for X € D, where R* = R, It is easy to see that L(U™V™) = —m2U™V",

Remark 6.3.2 The probelm of stochastic dilation of the minimal semigroup for the

case when h 13 separable can be deall unth exactly identically as was done in the case
of B(h) by [40] and [19]
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