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Chapter 1

Introduction

This thesis presents a series of algorithms for polygonal approximation of closed
digital curves followed by sca.le;-space analysis with its application to corner detec-
tion.

Approximation of a closed curve by piece straight line segments is known as
polygonal approximation. Any curve can be approximated by a polygon with any

desired degree of accuracy.
Polygonal approximation is useful in reducing the number of points required to

represent a curve and to smooth data. Such representation facilitates extraction of

numerical features for description and classification of curves.
Basically there are two approaches to the problem. One is to subdivide the

points into groups each of which satisfies a specific criterion function measuring
the collinearity of the points. The collinearity is measured either by integral square
error or by absolute error or by some other criterion function such as area deviation.
This approach treats polygonal approximation as a side detection problem. Another
approach to polygonal approximation is to detect the significant points and join the
adjacent significant points by straight line segmenta. This approach treats polygonal
approximation as an angle detection problem. In this thesis we treat polygonal
approximation as a side detection as well as an angle detection problem.

A number of algorithms for polygonal approximation of digital curves are already
existing. Ramer [38] and Duda and Hart [13] propose a splitting technique which
iteratively splits a curve into smaller and smaller curve segments until the maximum
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of the perpendicular distances of the points of the curve segment from the line
joining the initium and the terminus of the curve segment falls within a specified
tolerance. The curve segments are split at the point most distant from the line
segment. The polygon is obtained joining the adjacent break-points. The procedure
need multiple passes through data. Pavlidis and Horowitz [33] use split-and-merge
technique which fits lines to an initial segmentation of the boundary points and
computes the least squares error. The procedure then iteratively splits a curve if
the error is too large and merges two lines if the error is too small. Pavlidis {32]
develops another procedure which is based on the concept of ’almost collinearity’
of a set of points. To check whether a set of points are collinear / almost coilinear
the procedure computes an error of fit which is a function of two variables C and
T. T is the maximum of the perpendicular distances of the points being tested
for collinearity from the yet-to-be obtained line segment. And C is a normalized
variable (0 < C < 1) which is determined by the ratio of the number of sign changes
to the total number of sign changes the perpendicular distance goes through. If
T — CWy—Ty < 0 then the line segment is acceptable,.else if T'— CWy — T, > 0 then
the line segment is rejected, T, being the acceptable error and W, is the weighting
factor of C'. The procedure need multiple passes through data.

The fundamental problem in the splitting technique and in the split-and-merge
process is the initial segmentation. For open curves one can start with the two end
points of a curve as the initial break-points. If a curve be closed Ramer [38] suggests
that the top left most point and the bottom right most point can be taken as the
initial break-points. In the split-and-merge process the initial segmentation is done
by decomposing the curve into a suitable number of points., Unfortunately, in this
approach the approximation depends on the initial segmentation. A different mode
of initial segmentation generates a different approxirmation. This difficulty is caused
by the arbitrary initial segmentation. We believe that if the initial segmentation is
done following some deterministic rules then this difficulty may be overcome.

Ansari and Delp {3] make the initial segmentation using the extreme curvature
(maximum of positive curvature and minimum of negative curvature) points as the
initial set of break-poihta. They convolve the data points with the Gaussian kernel
and find the extreme curvature points of the Gaussian smoothed curve. Those'points



along the original boundary which correspond to the extreme curvature points are

used as the initial set of break-points.
In chapter 2 we introduce the concept of rank of a point to resolve the problem of

initial segmentation. The split-and-merge is done using the perpendicular distance
of a point from line segment joining the initium and the terminus of a curve segment.
The initial segmentation is computationally less expensive as compared to that in
3].

Ii: chapter 3 we introduce a sequential one-pass algorithm [40]. A number of
sequential one-pass algorithms for polygonal approximation of digital curves are al-
ready existing. One such algorithm proposed by Williams (59| uses cone intersection
method to find the maximal possible line segments. Circles of specified radii are
drawn around each point until the intersection of the cones with their vertex at the
initial point and touching the circles is an empty set. The segments are obtained
by joining the initial point to the last point that passed the test. The procedure
need a single pass through data.

Wall and Danielsson [58| develop another sequential one-pass technique which is
based on the concept of area deviation per unit length of the approximating line
segment. The procedure finds the maximal line segment by merging points one
after another with the initial point until the area deviation per unit lengthrnf the
approximating line segment exceeds a maximum allowed value. The line segment
is obtained joining the initial point to the [ast point that passed the test.

Though Williams’ procedure [59] is sequential one-pass and it need a small and
finite memory (so the procedure is highly efficient) but it has two defects. Firstly, it
need a considerably large number of arithmetic operations and secondly, it misses
corners and rounds off sharp turnings (spikes). The algorithm designed by Wall
and Danielsson (58] is faster than that of Williams’. Williams® procedure need
seven multiplications / divisions and evaluation of one square root, whereas, Wall

and Danielsson’s procedure need six multiplications and the simplified version of it
need only three to four multiplications. For chain coded curves Williams’ proce-
dure need five multiplications, whereas, Wall and Danielsson’s procedure need two
multiplications and its simplified version only one. The basic version of Wall and
Danielsson’s procedure, too, rounds off sharp turnings. They introduced a ”peak



test” which retained the sharp turnings.

The sequential one-pass algorithm [40] that we propose in chapter 3 need no
arithmetics except subtractions. The procedure is based on a proposition from
numerical analysis and some concepts from regression analysis. The vertices are
located by identifying some patterns exhibited by the first order finite differences
of the boundary point data. Since the procedure need no arithmetic except sub-
tractions hence its computational load is very much lower than that of the existing
sequential techniques and neither does it round off sharp turnings nor does it miss
coTners.

Though this technique is computationally simpler than the existing ones but
it holds for curves with uniformly spaced points only. In chapter 4 we present
another sequential one-pass algorithm [41] which holds for curves with uniformly
spaced points as well as non-uniformly spaced points and it is computationally
less expensive than the other sequential one-pass algorithms. The procedure is
based on Pavlidis’ concept [32] of almost collinearity of a sequence of points. The
collinearity is checked by measuring the area and the perimeter of the triangle
formed by sequence of points triplets.

In the polygonal approximation techniques discussed so far the maximum allow-
able error is specified either directly or indirectly. Stone [55] considers the problem
of approximating a known non-linear function by a polygon with a specified number
of line segments. The procedure minimizes the sum of squares of errors between
the known function and the line segments forming the polygon and thereby deter-
mines the points of subdivision and the parameter of the line segments. Stone’s
approach is classical in nature. Bellman [9] use dynamic programming [8] to solve
the same problem. Bellman primarily confines himself to the analytical aspects of
the solution, briefly mentioning how the solution of the equation for each partic-
ular point of subdivision can be reduced to a discrete search. He further suggests
the extension of his method to polynomial fittings to known functions. Gluss has
written a series of papers [19], [20], [21]. In [19] Gluss considers the computational
aspects of Bellman’s work fully, noting the similarities to some of Stone’s equations
and deduces an equation to determine the points of subdivision that involves an
equality rather than minimization. Stone’s procedure does not necessarily produce



continuous approximation. The line segments can be, and in general will be broken
in the sense that they need not meet at the points of subdivision. Only when the
given function is quadratic, Stone obtains a continuous approximation. Bellman’s
procedure, too, does not necessarily produce continuous approximation. In [19]
Gluss considers a mode] in which the lines are constrained to meet on the curve at
the points of subdivision. In [20] Gluss considers the problem of approximating a
continuous non-linear function by a polygon where the line segments are considered
to meet at the point of subdivision but not necessarily on the curve. The method
of solution presented in [20] involves a functional of two variables. This makes the
solution much more cumbersome than for the same problem without continuity con-
straint which involves a functional of a single variable [9], [19]. In [21] Gluss avoids
this difficulty by introducing a new criterion function which involves derivative of
known function and the slope of the line segments. Cantoni {12] solves the problem
of finding a continuous polygonal approximation of a known mon-linear function
by minimizing the weighted integral square error (called the performance index)
between the known function and the approximating line segments. The approach is
classical in nature. Pavlidis [34] obtains approximation of planar curves and wave-
forms using integral square error as the criterion function. The break-points are
located by finding the zero of the first order derivative of integral square error by
applying Newton’s vector method.

All these algorithms produce optimal polygon in the least squares sense. In all
these works the user of the procedure has to specify the number of line segments
and minimize the sum of square of errors. Dunham (14} suggests an optimal algo-
rithm which, instead of specifying the number of line segments, specifies the error
(Lo norm) and determines the minimum number of line segments. Dynamic pro-
gramming is used to solve the problem. The recurrence relation used to determine
the minimum number of line segments is simple. A scan along implementation of
the algorithm is made along the lines of Williams [59] and Skalansky and Gonzalez
[54]. The approximation is continuous and the knot points are constrained to lie
on the curve. (Some other works on polygonal / piecewise linear approximation are
cited in the bibliography.)

In all these algorithms the user of the procedure has to specify either the number



of line segments or the maximum allowable error. The maximum allowable error
or the number of line segments to be used are generally determined on the basis
of a trial and error process. So these procedures cannot run without operator’s
intervention.

In chapter 5 we are looking for a data-driven method [42] in which neither do
we specify the error nor do we specify the number of line segments. We keep both
these parameters free and allow the procedure to determine them on the basis of
the local topography of the curve. The procedure looks for the longest possible
line segment with the minimum possible error. Integral square error is selected
as the error norm to measure the closeness of the polygon to the digital curve.
An objective function is constructed using the length of a line segment joining two
points of the curve and the integral square error along the line segment. The vertices
are located at the points where this objective function attains local maxima. The
local maxima are looked for by a discrete search method. The objective function
is computed by merging points one after with an arbitrarily selected initial point
until a local maxima is found. The process is restarted from the new vertex and
is repeated and carried beyond the starting point till the vertex generated last
coincides with one of the vertices already generated. The procedure is sequential and
one-pass but neither does it miss corner points nor does it round off sharp turnings
(spikes). Moreover, the number of arithmetic operations required by this scheme
is less than that required by the Williams’ scheme. Williams’ scheme need seven
multiplications / divisions and extraction of one square root whereas, this procedure
need only five multiplications / divisions and extraction of one square root. Though
the number of arithmetic operations required by the Wall and Danielsson’s scheme
1s comparable to that required by this procedure, but the former cannot run without
operator’s intervention. |

All algorithms for polygonal approximation use either the integral square error
or the abaolute error as a measure of closeness. In chapter 6 we present another
sequential one-pass algorithm [43] where the sum of absolute errors (L, norm) is
used as a measure of closeness. The procedure is technically and conceptually
similar to that we present in chapter 5. The objective of designing this scheme is to
show that: though the most commonly used norms are integral square error and the



absolute error but it is possible to use L; norm to make polygonal approximation

of digital curves.
The procedures over viewed so far treat polygonal approximation as a side detec-

tion problem. The sides of a polygon are determined subject to certain constraints
on the goodness of fit. Another approach to polygonal approximation is to detect
the significant points and join the adjacent significant points by straight line seg-
ments. Significant points are of two types, namely, curvature extrema points and
points of inflexion. The concept of detecting local curvature extreina originates from
Attneave’s famous observation (6| that information about a curve is concentrated

at the curvature extrema points. Freeman [18] suggests that the points of inflex-
ion carry information about a curve and so these points can be used as significant

points.

A series of algorithms on the detection of significant points on digital curves are
already existing. Rosenfeld and Johnston [48], in an attempt to determine whether
a procedure (49| designed to detect discontinuities in the average gray level can also
detect discontinuities in the average slope, detect significant points as the curvature
extrema points. The procedure is parallel and need an input parameter m. The
value of m is taken to be 1/10 or 1/15 of the perimeter of the curve. The input
parameter is introduced to determine the region of support and the k—cosine of the
boundary points. The significant points are the local maxima of k—cosine.

An improved version of this procedure is given by Rosenfeld and Weszka [50].
They use smoothed k—cosine to determine the region of support and to detect the
significant points. The procedure is parallel and need an input parameter m as in
48].

Freeman and Davis [17] design a corner-finding scheme which detects local max-
ima of curvature as significant points. The algorithm consists of scanning the chain
code of a curve with a moving line segment which connects the end points of a
sequence of s links. As the line segment moves from one chain node to the next, the
angular difference between the successive segment positions are used as a smoothed
measure of local curvature along the chain. The procedure is parallel and need
two input parameters s and m. Both are smoothing parameters and their assigned
values determine the degree of smoothing. The greater the s, the heavier is the



smoothing. The parameter m is used to allow some stray noise. For a well quan-
tized chain s will always be a relatively small number ranging from 5 to 13. And
the parameter m will take value either 1 or 2,

Anderson and Bezdek [2]| devise a vertex detection algorithm which, instead of
approximating discrete curvature, defines tangential deflection and curvature of dis-
crete curves on the basis of the geometrical and statistical properties associated with
the eigenvalue-eigenvector structure of sample covariance matrices. The vertices are
the significant points in the sense that they carry information about the curve. The
procedure is sequentlial and need more than one input parameter.

Sankar and Sharma [53| design an iterative procedure to detect significant points
as points of maximum global curvature based on the local curvature of each point
with respect to its immediate neighbors. The procedure is parallel. In contrast to
the algorithms [48], [50], {17] and {2], it does not need any input parameter.

Each of the algorithms [48], {50], [17] and [2] need one or more input parameters.
The choice of these parameters is primarily based on the level of detail of the
curves. In general, it is difficult to choose a set of parameters that can successfully
be used to detect the significant points of a curve which consists of features of
multiple size. Too large a parameter will smooth out fine features, and too small
a parameter will generate a large number of unwanted significant points. This
is the fundamental problem of scale, because the features describing the shape
of a curve vary enormously in size and extent, and there is seldom any basis of
choosing a particular value of parameter for a particular feature size [61]. Though
Sankar-Sharma’s scheme [53] does not need any input parameter, it does not involve
determination of region of support. The procedure is iterative in nature and fails
to operate successfully on curves which consist of features of multiple size. .

To detect dominant points {curvature maxima points) Teh and Chin 56| have de-
signed a procedure which need no input parameter and remains reliable even when
features of multiple size are present on the curve. In contrast to the existing belief
that the detection of dominant points depends heavily on the accurate measures
of significance (e.g. k—cosine, k—curvature, cornerity measure, wéighted curvature
measure), Teh and Chin make an important observation: The detection of dom-
inant points relies not only on the accuracy of the measures of significance, but



primarily on the precise determination of the region of support. Their procedure is
motivated by the Rosenfeld-Johnston angle detection algorithm [48], in which both
an incorrect region of support and an incorrect curvature measure may be assigned
to a point if the input parameter is not chosen correctly, and hence dominant points
may be suppressed [15]. To overcome this problem they propose that the region
of support and hence the corresponding scale factor or the smoothing parameter of
each boundary point should be determined independently, based on its local prop-
erties, They use chord length and perpendicular distance to determine the region
of support and have further shown that once the region of support of each point
is determined, various measures of significance can be computed accurately for de-
tection of dominant points. The dominant points are detected as the local maxima
of k—cosine, k—curvature and l-curvature. All these measures of significance are
found to produce almost the same results. The procedure is parallel and need no
input parameter.

In chapter 7 we present a new algorithm [44] for detection of significant points
of digital curves. The procedure is motivated by the Rosenfeld-Johnston angle
detection scheme [48]. The procedure need no input parameter and remains reliable
even when features of multiple size are present. The k—cosine is used to determine
the region of support. A new measure of significance based on k—cosine (smoothed
k—cosine) is introduced. The significant points are the local maxima / minima of
the smoothed k—cosine. The procedure is parallel. The objective of this work is to
show that one can use k—cosine itself to determine the region of support without
using any input parameter.

In the works on the detection of significant points the region of support (if in-
troduced) consists of equal number of points on either side of the point of interest.
We propose to call this region of support as symmetric region of support. But the
local properties of a curve may not everywhere be so as to have a symmetric region
of support. We believe that an asymmetric region of support consisting of unequal
number of points on either side of the point of interest is more natural and more
reasonable than a symmetric region of support. A symmetric region of support may
be looked upon as a special case of asymmetric region of support. In chapter 8 we
present a new technique [45] on the detection of dominant points (curvature maxima



points) which, unlike the existing algorithms, introduces the concept of asymmet-
ric region of support based on the local properties of a curve. A new measure of
significance, called k — [ cosine, is introduced. The dominant points are the local
maxima of k — [ cosine., The procedure is parallel. It need no input parameter and
remains reliable even when features of multiple size are present on the curve.

As already stated the fundamental problem in data smoothing is choice of in-
put parameter. Too large a parameter will smooth out many important features
(corners, vertices, zero-crossings) and too small a parameter will produce many
redundant features, This is the fundamental problem of scale because, features ap-
pearing on a curve vary enormously in size and extent and there is seldom any basis
of choosing a particular parameter for a feature of particular size, This problem
may be resolved by automatic parameter tuning. The parameter size can be tuned
on the basis of the local properties of the curve using a suitable criterion function.
Teh and Chin [56) resolve this problem using chord length and perpendicular dis-
tance as the criterion function to determine the region of support of each point on
the basis of the local properties of the curve, 3

Another approach to the solution of the problem of scale {choice of input param-
eter) is scale-space analysis, The concept of scale-space was introduced by Witkin.
[61] and Koenderink and van Doorn [25]. Scale-space analysis of a signal is made
by convolving it with the Gaussian kernel treating the parameter o of the kernel as
a continuous scale parameter. The zero-crossings of curvature / extreme curvature
points of the smoothed signal are located by varying the parameter continuously.
The arc length is shown along the z— axis (horizontal) and the scale parameter
along the y—axis (vertical). The image on the zy half plane showing the location
of curvature extrema or the zero crossings of curvature at varying scales is called
scale-space map. '

Mokhtarian and Mackworth [31] extend this work to two-dimensional shapes
locating zero-crossings of curvature over scales.

Asada and Brady [5] use the concept of scale-space filtering to extract primitives
- such as corners, smooth joins, ¢rank, bump / dent from the bounding contours of
planar shapes. They make scale-space analysis of the behavior of these primitives
by varying the parameter of the Gaussian kernel in one octave, corresponding to
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multiplying by /2. A tree representation showing the movement of the position of
the local positive maxima and negative minima in the first and second derivatives of
the Gaussian smoothed curve is constructed by varying the parameter of the kernel.
The primitives are detected and located in a process of parsing the tree. Using the
location of the primitives at each scale as a set of knot points they have made a
polygonal approximation, circular spline approximation, cubic spline approximation

and B-spline approximation of the planar shapes.
Saint-Marc et al. [52] suggest adaptive smoothing leading to construction of

scale-space map without using the Gaussian kernel. The smoothing is done using
a decaying exponential window which is a function of a smoothing parameter k
and a measure of signal discontinuity. The underlying concept of the procedure is
to keep the window size of the smoothing kernel constant and to apply the kernel
iteratively on the signal. They construct two types of scale-space map. In one
kind they keep the parameter &k fixed and use the number of iterations as the scale
parameter, Here the parameter k£ determines the magnitudes of the edges (corners)
to be preserved during the smoothing process, They call this scale-space map as
the Gaussian scale-space map. The other scale-space map that they construct has
been referred to as the adaptive scale-space map. Here the number of iterations
to be performed is held fixed and the parameter 'k is varied to construct the scale-
space map. Without making an attempt to give a multi-scale interpretation of the
map they detect corners on planer shapes for different values of k. They also show
application of the procedure to edge detection from gray level image and to range
image segmentation.

Meer et al. [30] suggest a method to detect dominant points by first determining
the optimal scale of a Gaussian-like convolution multiple scale representation of
the boundary. Then, a measure of optimality, which is directly proportional to the
total curvature of the boundary, is defined. The optimal scale is determined such
that the difference in the measure of optimality between two successive scales is the
smallest. The corners are detected at the optimal scale. The procedure does not
take into account various levels of detail of a curve.

Rattarangsi and Chin [39] use the concept of scale-space filtering to design a cor-
ner detector which takes into account various levels of detail of a curve. They make
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5 6 7

Figure 1.1: Directions in Freeman chain code

an analysis of the scale-space behavior of different corner models such as I" models,
END models and STAIR models. The extreme curvature points are detected and
located by convolving the curve with the Gaussian kernel with varying window size.
The scale-space map shows the movement of the extreme curvature points over
scales. The scale-space map is converted into a tree representation with the help
of two assumptions namely, identification and localization. A number of stability
criteria are derived on the basis of the scale-space behavior of the corner models.
The tree is interpreted using these stability criteria and corners are detected and
located. The procedure works well on curves which consist of features of multiple
size and is robust to noise.

In chapter 9 we present scale-space analysis of digital curves using one of our
polygonal approximation schemes and show its application to corner detection. The
procedure {46 presented in this chapter holds for curves with uniformly spaced
points only. The scale-space analysis is made without convolution with a smoothing
kernel. The corner detection is done without estimating curvature.,
~ In chapter 10 and chapter 11 we present scale-space analysis using convolution
with a smoothing kernel and corner detection is done via curvature estimation. In
chapter 10 digital Gaussian filter coefficients are used iteratively to convolve the
curve whereas in chapter 11 a discrete scale-space kernel is used.

Finally in chapter 12 we draw conclusion.

Before we close this chapter we give the definition of a closed digital curve. A
closed digital curve C; with n points is defined by a sequence of n integer coordinate
points

Ca={pi=(zi, %), 1=12,..,n},

12



where p;41 is a neighbor of p; { modulo n).

The Freeman chain code of C; consists of n vectors ¢; = p;p;+; each of which can
be represented by an integer f = 0, 1, 2,..., 7 as shown in Figure 1.1, where inxf
is the angle between the z-axis and the vector ¢;. The chain of C; is defined by

{ci, 1=1,2,..,n}and ¢ = Cisy .
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Chapter 2
A split-and—merge technique

The fundamental problem in the existing splitting techniques and also in the split-
and-merge techniques is the initial segmentation. Ansari and Delp (3] try to resolve
this problem using curvature extrema points as the initial set of breakpoints.

In this chapter we present an alternative approach to initial segmentation for
chain coded curves. The initial segmentation is done introducing the concept of
rank of a point defined in the following section. The split-and-merge is done using
the absolute perpendicular distance of a point from the line segment joining the

initium and the terminus of a curve segment as the criterion function.

2.1 Procedure

Before we present the procedure we define rank of a point. The smallest angle
through which the vector ¢; should be rotated so that ¢; and ¢;,; have the same
directions determines the rank of the point p; and if §; be the smallest required

angle then the rank of p; is defined by
ri=(4/x)6;, 1=1,2,..,n. - (2.1)

We note that the only possible values for r; are 0, 1, 2, 3, and 4. The angle §; is
computed by the relation | |

0. = -1 Ci . Cita . 2 0
$= oo (e i) (2.2
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As already mentioned the fundamental problem in the split-and-merge process is
the initial segmentation. We propose to make the initial segmentation on basis of
the rank of a point. The procedure Instial segmentation looks for those points with
rank greater than or equal to 3. If there exist at least two points with rank greater
than or equal to 3 then these points are used as the initial set of break-points, If
there exists only one point with rank greater than or equal to 3 then this point
together with those with rank equal to 2 constitute the initial set of break-points.
If there is no point with rank greater than or vqual to 3 and there exist at least two
points with rank 2 then these points only constitute the initial set of break-points.
If there exists only one point with rank 2 then this point together with those points
with rank 1 comprise the initial segmentation provided there is at least one point
with rank 1. Lastly, if there exist only two points with rank 1 then one can start
with these points. We note that we give priority to those points which have higher
rank. This approach reduces the false choice of vertices in initial segmentation.

Since the rank is obtained by taking the angular difference between the vector ¢;
and c;4; and multiplying it by 4/7 hence the computational load is lower than that
of Ansari and Delp (3] in which the total number of multiplications and additions
depends on the window length of the Gaussian filter. The larger the window length
is, the higher is the computational load.

Using the initial set of break-points we perform a split-and-merge process. The
split~-and-merge is done by a collinea.rityl check. The criterion function for collinear-
ity check is the absolute perpendicular distance of a point from the line segment
joining two successive break-points.

The perpendicular distance of a point p; from the segment joining two successive
break-points p; and p; is computed by the formuia

d, = 1 — vi)ze — (25 — @)y — 2iy; + 254 | | (2.3)
V(i — 2 + (v — w)*

where £ = 1+ + 1,4+ 2,..., 7 — 1. Points are split at those points where d; is a
maximum and exceeds a specified value, which we take as one pixel. This threshold
of one pixel is determined based on the fact that a slanted straight line is quantized
into a set of either horizontal or vertical line segments separated by one-pixel steps.
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In addition, we assume that the boundary noise is no more than one pixel. If this
noise level is known a priors then this threshold can be adjusted accordingly [39).
Merging is done in the following manner. For each pair of adjacent line segments

comprising three successive break-points p;, pi+1 and py; (say), if the absolute
perpendicular distance of all points intermediate of p; and p;42 from the line segment
pip1+2 does not exceed one-pixel then the point p;;1 is merged, otherwise this point

is retained.

2.2 Algorithm

The input are the data points (z;, %), t =1, 2,..., n. The output are vertices p; of
the polygon.

Begin
Step 1. Initial segmentation
Compute
- CiCit1 :
0;‘ — 1 L =1, 2,...
O alTewa] ) F=hBm"
and

=(4/?‘I‘)9i, t=1,2,..n.

If there exist at least two values of ¢ for which r; > 3, then these points constitute
the inttial set of breakpoints

else if there exists only one ¢ for which r; > 3 then this point together with those
with r; = 2 constitute the initial set of break-points

else if there exists no point with rank r; > 3 and if there exist at least two points
with r; = 2 then these points constitute the initial set of break-points

else if there exists only one point with r; = 2 then' this point together with those
with r; = 1 comprise the initial set of break-points |

else if there exists no point with r; = 2 but there exist at least two points wﬂ;h
r; = 1 then these points comprise the initial set of break-points.

Step 2. Splitting

16



Compute

’

wherek=1+1,¢t+2,...,7 — L.

If dy, > 1 then the segment p;p,; is split at the point where d; is a maximum

else if d; < 1 then no splitting is necessary.

After all necessary splittings are done go to Step 3.

Step 3. Merging

For every three successive break-points p;, pi+1 and pi43 the vertex p;4i is merged
with the segment p;p;. s if the distance of every point intermediate of p; and p; s
from the segment p;p;.2 does not exceed 1

else merging is not pnssible.

After all necessary merging is done go to Step 4.

Step 4. Repeat Step 2 and Step 3 until an equilibrium is reached.

End.

2.3 Experimental results

To focus on the performance of the algorithm 2.2 we apply it on four digital curves,
namely, a leaf-shaped curve (Figure 2.1), a figure-8 curve (Figure 2.2), an aircraft
(Figure 2.3) and a screwdriver (Figure 2.4}, The first two of these are taken from
Rosenfeld and Johnston [48|, the third is taken from Gupta and Malakapalli [23]
and the fourth is from Medioni and Yasumoto [28]. The polygonal approximations
are shown in Figures 2.1 through 2.4. These figures also show the approximations
as obtained by the Ansari-Delp algorithm 3],

As seen from these approximations the algorithxﬁ 2.2 places the vertices at the
position where they should be (as judged by perception) whereas, the Ansari-Delp
algorithm sometimes fails to do so, shifting the vertices from their actual position,
rounding off sharp turnings (see Figure 2.3 and the upper right part of the Figure
2.1). An overview of the results of the approximations as obtained by algorithm 2.2
and those by the Ansari-Delp algorithm are displayed in table 2.1. The table shows
the number of data points (n) of the digital curve, the number of vertices (n,), the
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(2) (b)

Figure 2.1: A leaf-shaped curve and its polygonal approximations. (a) Algorithm
2.2, {b} Ansari-Delp algorithm.

(2) (b)

Figure 2.2: A figure-8 curve and its polygonal approximations, {a) Algorithm 2.2,

(b) Ansari-Delp algorithm.
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Figure 2.3: An aircraft and its polygonal approximations. (a) Algorithm 2.2, (b)
Ansari-Delp algorithm.
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Kigure 2.4: A screwdriver and its polygonal approximations. (a) Algorithm 2.2, (b)

Ansari-Delp algorithm.
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compression rate (n/n,), percentage of data reduction, integral square error and
the maximum allowable error (which is 1.00 in all cases). As seen from this table
the algorithm 2.2 consistently outperforms the Ansari-Delp algorithm with respect
to integral square error, the number of vertices and compression rate / percentage
of data reduction for given maximum allowable error. For each of the digital curves
the integral square error as obtained by the algorithm 2.2 is smaller than that
obtained by the Ansari-Delp algorithm, though the number of vertices as obtained
by algorithm 2.2 is not more than that obtained by the Ansari-Delp algorithm and
consequently, the percentage of data reduction / compression rate as obtained by the
algorithm 2.2 is no less than that obtained by the Ansari-Delp algorithm. Precisely
speaking, the number of vertices of the figure-8 curve and of the screwdriver image
as obtained by algorithm 2.2 is smaller than that obtained by the Ansari-Delp
algorithm and as a consequence of it the percentage of data reduction / compression
rate as obtained by the algorithm 2.2 is greater than that obtained by the Ansari-
Delp algorithm but the integral square error as produced by algorithm 2.2 is less
than that produced by the Ansari-Delp algorithm. As regard to the leaf-shaped
curve and the aircraft image the number of vertices / compression rate / percentage
of data reduction as obtained by either of the two algorithms are the same but the
integral square error as obtained by algorithm 2.2 is lower than that obtained by
the Ansari-Delp algorithm. This shows that the algorithm 2.2 produces integral
square error which is no greater than that obtained by the Ansari-Delp algorithm
without producing more vertices. Moreover, algorithm 2.2 does not shift vertices, it
does not round off sharp turnings and produces symmetrical approximation from a
symmetrical digital curve. Whereas, the Ansari-Delp algorithm does not have these
merits. So we conclude that the algorithm 2.2 produces more accurate results than

the Ansari-Delp algorithm without producing redundant vertices.
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Table 2.1 A comparison between algorithm 2.2 & Ansari-Delp algorithm

Digital curve Leaf Figure-8 Aircraft Screwdriver
Number of points(n) 120 45 200 267
Results of algorithm 2.2
Number of vertices(n,) 20 9 29 41
Compression ratio(n/n,) 6.00 5.00 6.90 6.51
Percentage of data reduction 83.33  80.00 85.50 84.60
Integral square error 21.24 . b5.27 8.71 55.75
Maximum error 1.00 1.00 1.00 1.00
Results of Ansari-Delp algorithm

Maximum allowable error 1.00 1.00 1.00 1,00
Number of vertices(n,) 20 10 29 43
Compression ratio(n/n,) 6.00 4.50 6.90 6,21
Percentage of data reduction 83.33  77.80 85.50 83.90
Integral square error 28.59 5.50 14.56 62.50
Maximum error 1.00 1.00 1.00 1,00
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Chapter 3

A sequential one-pass method

In this chapter we present a sequential one-pass technique for polygonal approxi-
mation of digital curves with uniformly spaced points. The procedure [40] is based
on a result from numerical analysis and some concepts of regression analysis. Here
we find the first order finite differences of the abscissa (z) and the ordinates (y) of
the data points describing the digital curve. Then we try to identify some patterns
(described later) in the first order finite differences Az and Ay. By recognizing

these patterns we find the sides of a polygon approximating a curve.

3.1 Pattern recognition of finite differences

From the boundary point data (z; , y;) we construct the first order finite differences

Az; and Ay; using
Az; =z — 2 and Ay = Y1 — ¥i s (3.1)

For digital curves with uniformly spaced point these differences take values 0,1,-1
only. The successive differences, as we go through them exhibit one of the following
patterns: | B

a) Az;’s are constant for a series of equidistant values of y.

b) Ayi’s are constant for a series of equidistant values of z.
¢) Az;’s take values 0 and 1 only for a series of equidistant values of y.

d} Azi’s take values 0 and -1 only for a series of equidistant values of y.
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e) Ay;’s take values 0 and 1 only for a series of equidistant values of z.
f) Ay;’s take values 0 and -1 only for a series of equidistant values of z.

3.2 Basic results and concepts

The polygon representation of the shape of the boundary of an object can be ob-
tained using any boundary tracking algorithm. It is not uncommon that such a rep-
resentation involves a polygon having too many vertices. Since the time required for
processing a polygon is dependent on the number of vertices, this polygon is usually
determined using a data smoothing technique. Our polygonal approximation, too,
involves a smoothing technique which is based on the following proposition from

numerical analysis [561] and some concepts from regression analysis.
Proposition 3.1 If the nth differences of a tabulated function are constant when

the values of the independent variable are taken in arithmetic progression then the
function is a polynomial of degree n.

Besides the above proposition we use some concepts of regression analysis. In the
regression analysis the scatter diagram of the bivariate data exhibits either a linear
or a curvilinear tendency. Either the points of the scatter diagram exhibit that
there is a tendency in the points to cluster around a straight line or they exhibit a
tendency of clustering around a curve (curvilinear tendency), provided the variables
are related. If the points of the scatter diagram exhibit a linear tendency then we can
find a linear relationship between the variables i.e. the points can be approximated
by a straight line. In regression analysis this line is the least squares line. In our

smoothing technique we exploit the above concepts without using least squares line.

3.3 Smoothing technique

The smoothing technique involves reading the first order finite differences Az; and
Ay;, locating the breakpoints and joining the successive breakpoints by straight
line segments. In this section we describe how to perform the smoothing so as to

locate the breakpoints.
Following the proposition stated in the last section, the series of points where
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pattern (a) is observed can be smoothed out by a single straight line segment which
is obtained by joining the end points of the series. The series of points revealing
pattern (b) can similarly be smoothed out following the same proposition.

The series of successive points revealing pattern (c) exhibit that there is a ten-
dency in the points to cluster around a straight line. Hence from the concept of
regression analysis stated in the last section, these points can be approximated by
a straight line segment. The straight line segment that is used here is not the least
squares line. The use of least squares line sometimes leads to unconnected bound-
ary, since the estimated line does not necessarily have to go through any of the
points of the series. The straight line segment that is used to smooth out these
points is obtained by joining the endpoints of the series revealing the pattern (c).
The series of points revealing pattern (d), (e) and (f) are similarly smoothed out
by a straight line segment,

In order to identify pattern (a) or (b) a counter ¢ is introduced that will count
the number of finite differences of z {or y) that remain constant for a series of
equidistant values of y (or z). We set the critical value of this counter to 4. Larger
values of ¢ will produce less number of vertices at the cost of higher approximation
error (please see chapter 9). Thus if at least four successive differences of = (or y)
remain constant for a series of equidistant values of y (or z) then the pattern (a)
(or (b)) is identified. The approximation error is controlled by this counter. Setting

this counter to different values different approximations can be obtained.

iy

3.4 Complexity

From the above description of the smoothing technique it is clear that the proce-
dure need no numerical computation except subtractions. For n boundary points 2n
subtractions are required. The procedure mainly involves comparisons. One com-
parison is needed for each value of ¢ and so a total of 2n comparisons are required.

This shows that the complexity of the procedure is O(n).
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(2) (b) ()

Figure 3.1: Polygonal approximations of the leaf-shaped curve. (a} Smoothing
technique 3.3, (b) Williams’ algorithm, (¢} Wall-Danielsson algorithm.

(2)

(c)

Figure 3.2: Polygonal approximations of the figure-8 curve. (a) Smoothing tech-
nique 3.3, (b) Williams’ algorithm, (c) Wall-Danielsson algorithm.
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Figure 3.3: Polygonal approximations of the aircraft. (a} Smoothing technique 3.3,
(b) Williams’ algorithm, (¢} Wall-Danielsson algorithm. .
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Figure 3.4: Polygonal approximations of the screwdriver. (a) Smoothing technique
3.3, (b) Williams’ algorithm, {c) Wall-Danielsson algorithm.
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3.5 Experimental results

We have applied the smoothing technique 3.3 on four digital curves, namely a
leaf-shaped curve (Figure 3.1), a figure-8 curve (Figure 3.2) an aircraft (Figure
3.3) and a screwdriver image (Figure 3.4) as in the last chapter. The polygonal
approximations of the curves are shown in Figures 3.1 through 3.4, Since this
algorithm is sequential we compare it with the Williams’ algorithm [59] and the
Wall-Danielsson algorithm [58] both of which are sequential in nature. As already
stated the smoothing technique 3.3 involves a counter ¢ and the maximum error
is controlled by this counter. The maximum error as obtained by this algorithm
is used to run Williams’ algorithm on the same digital curves. The polygonal
approximations are shown in Figures 3.1 through 3.4. As seen from these figures
the worst approximation is obtained with the leaf-shaped curve (Figure 3.1) where
the lower part of the curve which has a sharp turning is completely wiped out by the
approximation and almost none of the other turnings are a.ppmxima.te& according
to their nature. The corners are always shifted to the nearby point. The vertices
are located at a point away from where they should be. This is true for other
digital curves also. But ithe approximations as obtained by the smoothing technique
described in section 3.3 does not have any such deficiency. Neither does it round
off sharp turnings nor does it miss corners. To compare our procedure with the
Wall-Danielsson algorithm we use the maximum error returned by our procedure
as the stopping criterion of the Wall-Danielsson algorithm. As already stated apart
from the peak test the criterion function of the Wall-Danielsson algorithm is the
area deviation per unit length. For comparison the threshold on the area deviation
is initially set to a large value and is then diminished until the maximum error
returned by our procedure is surpassed. The polygonal approximations as obtained
by the Wall-Danielsson algorithm are shown in Figures 3.1 through 3.4. These
approximations show that though the Wall-Danielsson algorithm retains the peaks
but it fails to locate the vertices at their actual position when the turning is not
so sharp (see Figure 3.3). An overview of the results of the approximations as
obtained by smoothing technique 3.3 and those obtained by the Williams’ and the
Wall-Danielsson algorithm are displayed in Table 3.1. The table shows the number
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of vertices (n,), compression ratio, percentage of data reduction, maximum error

and integral square error.

Table 3.1 A comparison among smoothing technique 3.3, Williams’ & Wall-Danielsson algorithm

Digital curve Leaf Figure-8 Aircraft Screwdriver
Number of points(n) 120 45 200 267
Results of smoothing technique 3.3
Number of verticea(n,,) 24 10 30 72
Compression ratio(n/n,) 5.00 4.5 6.67 3.81
Percentage of data reduction  80.00 77.78 85.00 73.00
Integral square error 16.45 5.30 8.88 20.95
Maximum error 1.18 0.97 1.03 1.34
Resgults of Williams’ algorithm
Maximum allowable error 1.18 0.97 1.03 1.34
Number of vertices(n,) 18 10 30 72
Compression ratio(n/n,) 6.67 4.50 7.41 7.63
Percentage of data reduction 85.00 77.78 §6.50 86.89
Maximum error 1.17 0.73 1.03 1.30
Integral square error 46.63 5.99 44.00 94.27
Results of Wall-Danielsson algorithm

Maximum allowable error 1.18 0.97 1.03 1.34
Threshold 0.996 0.63 0.64 0.958
Number of vertices(n,) 21 12 38 41
Compression ratio(n/n,) 5.71 3.75 5.26 8.51
Percentage of data reduction  82.5 73.33 81.00 84.6
Maximum error 0.995 0.707 0.65 1.26
Integral square error ~ 21.075  8.22  11.22 54.54
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Chapter 4

Another sequential one-pass
method

The procedure presented in the last chapter holds for digital curves with uniformly
spaced points only. In this chapter we present another sequential one-pass algorithm
[41] which holds for uniformly spaced points as well as non~uniformly spaced points.
The procedure [41] is based on Pavlidis’ |32] concept of almost collinearity of a
sequence of points. Initially, the in-radius of triangles formed by the sequence of
points triplets is introduced as a criterion function to measure the collinearity. This
is an indirect approach but justified by a proposition which establishes that the
higher the in-radius is, the higher is the perpendicular distance. Unfortunately,
evaluation of in-radius is computationally expensive. To reduce the computational
load the in-radius is replaced by the area and the perimeter of triangles. The
vertices of the polygon are located by comparing the area and the perimeter with

their critical values.

4.1 A_pproximation technique

If pi, pj and p,, (k = 7+ 1) be three points of a digital curve Cd defined chapter 1,
then the cross product of the vectors p;p; and p;p, is

piP; X pivk = { (=5 — =) (v — vi) — (v; — wi) (2 — =) }f. (4.1)
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where £ is a unit vector perpendicular to the plane determined by p;p; and p,p; .

The magnitude of the cross product is
|piD; X pibe | = | (25 — =) (v — wi) — (5 — )z — 25} | (4.2)

Translating the origin of the coordinate system to the point p; and denoting the
new coordinate system by prime, the magnitude of the cross product reduces to the

form
| op} X op | = | 23y — Ty | (4.3)

Again, the cross product of the vector p;p; and p;pi is
pip; X pibe = { (=5 — =) (we — 95) — (45 — w) (2 — ) }4 (4.4)
and its magnitude is
| piD; X pibe| = | (25 — =) (e — ¥5) — (5 — i) (ze — 25) | (4.5)
In prime coordinate system (4.5) reduces to
| op}; % piph | = | 25k — ¥5) — ¥j(=i — =3) |- (4.6)

Both the magnitude (4.3) and (4.6) are twice the area (A) of the triangle with

vertices at p;, p;, pr that is,
24 = | Zjy; - Y2 | (4.7)

24 = |zi{v; — v;) — ¥i(zh — =5) | (4.8)
The last form (4.8) is useful for chain-coded curves where y; — y; and z}, — z; take
values 0, 1 and -1 only. |
Proposition 4.1. If the area of a triangle with p;, p;, and p, as vertices be
zero / almost zero (i.e. within a specified value) then the points p;, p; and p,
are collinear / almost collinear.
Proposition 4.2. If three points p;, pi+1 and p;+2 be collinear / almost collinear
and the three points p;, p;+2 and piys be also collinear {/ almost collinear then the

points p;, pi+1, Pis2 and p; s are collinear / almost collinear. Again, if p;, piys and
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Figure 4.1: The in-radius and perpendicular distance

p;+4 be collinear / almost collinear then the points p;, p;s; and p;ﬂ; , Pits and p;'H
are collinear / almost collinear. And this process can be carried on for any finite
number of points,

Using the Propositions 4.1 and 4.2 and taking the measure (4.7) for curves with
non-uniformly spaced points and (4.8) for curves with uniformly spaced points
(chain-coded curve) we can check the collinearity of a sequence of points by speci-
fying the critical value of 2A. But the choice of this critical value is problematic. If
we set it to 1, we get many redundant vertices and if we set it to 2 we miss many
important vertices and so we lose the shape of the curve. So it is not effective to
use 24 only as a measure of collinearity. In the following we introduce

A 24 magnitude of cross product

roe—=—= = : :
8 2s  perimeter of triangle op;p;

(4.9)

as an alternative measure of collinearity. The geometrical significance of r is that
it gives the in-radius of the triangle p;p;p; (opip;). This is an indirect approach to
the problem but is justified by the following proposition.

Proposition 4.3. In any triangle the in-radius (r) and the absolute perpendicular

distance (I) of a vertex from the opposite side are related by r < ;1.
Proof. Sincer = ‘—:- , referring to Figure 4.1 r = - :ﬁi_c . In any triangle, ¢ + a > b,

50, 2 4 1> 2 je. HEE > 2 jee. ;ﬁ-—_‘g < 3lie r <l

This result shows that the higher the in-radius is, the farther is the point p; (p;)
from the line op} (pip;). So we may take r as a measure of prominence for the point

p; to be a vertex. We can decide upon a critical value of r and comparing r with its
critical value we can locate the vertices. This procedure fails to catch the peaks of

a curve. Sometimes peaks also play an important role to detect defects of an object
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[5]. Observation shows that as the procedure passes a peak the in-radius maintains
non-zero constant value which is below its critical value. So it is possible to locate
the vertices accurately if we incorporate a check on two successive non-zero values
of r, in addition to comparing it with its critical value.

Unfortunately, the evaluation of r is computationally expensive, because evalua-
tion of perimeter need evaluation of three square roots {the length of three vectors
o;;- \ GEL and p;-f;-f,: . So we approximate these lengths by the maximum of the abso-
lute value of the components of the vector. Thus the length of o;);-, op) and p;_ﬂ

are approximated by

opt| = maz(|z:], |¥]),
op,| = maz(|zi],|vk]);
|Pipk | = maz (|2, — 23], | —v;]). (4.10)

Using this approximation we may use r to locate the vertices by the procedure
described earlier. But the evaluation of r involves division of the magnitude of the
cross product by the perimeter of the triangle. We avoid this arithmetic operation
by dispensing with the measure r and replacing it by two measures namely, 2A
and 2s. Now we can compare these two measures with their critical values 1 and 3
respectively to check the collinearity of a sequence of points.

Since the comparison of r with its critical value fails to catch the peaks hence
comparison of 24 and 2s with their critical value will also fail to do the same, But
if we use r as a measure of collinearity, to catch the peaks we incorporate a check on
two successive non-zero values of r when it is below its critical value. Similarly if we
use 24 and 2s as a measure of collinearity we incorporate a check on two successive
values of 258 when it is above its critical value and 24 is equal to 1.

So instead of using r as a measure of collinearity we use 24 and 2s as a measure
of collinearity, This replacement of r by 24 and 2s reduces the computational load
significantly and at the same time they perform the same task and produce the
same results as obtained using r only. Further using two measures we can make a
good compromise between unwanted vertices and loss of important vertices which
occur when we consider only one measure 2A.

The collinearity check can be started from an arbitrary point and is carried
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beyond the starting point till the vertex generated last coincides with one of the

vertices already generated.
With this discussion we are now ready to present the algorithm for detecting the

vertices of the polygon. We propose to denote the magnitude of the cross product
(4.7) and (4.8) and the approximate value of the perimeter of the triangle formed
by the points p;, p; and px (k = 7+ 1) by Dy and P respectively.

4.2 Algorithm

Comments: The input are the coordinates (z;, %), ¢ = 1, 2,..., n. The output are
the vertices. All arithmetics are performed in integer mode. All arithmetics are in

modulo n.

Begin

Step 1. Initiate ¢+ = 1.

Step 2. Translate the coordinate system to the point p; so that it becomes the

origin of the prime coordinate system; set 7 = s+ 1; k = 1 4 2,

Step 3. Compute

Dy = |2y — ;) —vyi(z — ;) |, for chain coded curve

Dy = |ziy —v;zy], elsewhere.

Step 4. If D, = 0 then the point p} (ps) passes the test; change j to j + 1; k to
k+ 1; go to Step 3
else if Dy = 1 then compute P, by

Py = maz (|2, |y} |) + maz (||, [vh]) +maz (|2 — 2, |k~ ¥} )

Step 5. If P, > 3 and P, # P then p} (pi) pa.ssés the test; change y to j+1; k
to k + 1; go to Step 3 '

else p; (p;) is a vertex; write §; (z;, y;); go to Step 2.
Step 6. Repeat this process till the vertex generated last cmnc:des with one of the

vertices already generated.
Step 7. Join the vertices in order to obtain the polygon.

- End.
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4.3 Computational complexity

As it is clear we have used two forms of the same measure D), namely,

!

Dy = |2i(yk — ¥5) — yj(=i — z)) |

and
N I N I

The second form is deducible from the first form. We use the first form for chain
coded curves (curves with uniformly spaced points) where y; — y; and z} — z} are
either 0 or 1 or -1 and so the evaluation of D, need no multiplication. For other
curves we use the second form which involves two multiplications. Here if we use the
first form instead of the second it will increase the total number of arithmetic op-
erations (introducing two unnecessary subtractions). The evaluation of P} involves
no multiplication. This shows that our procedure need omnly two multiplications
for digital curves with non-uniformly spaced points and no multiplication for chain

coded curve.

4.4 Discussion

The polygonal approximation proposed by Williams [59| used scan along technique
which need a single pass through data. Wall and Danielsson [58] too, used scan along
technique but it is faster than that of Williams. For curves with uniformly spaced
points Williams’ technique need seven multiplication / divisions and evaluation of a
square root, Whereas, Wall and Danielsson’s technique need six multiplications and
the simplified version of it requires only three to four multiplications. For curves
with non-uniformly spaced points {chain coded curves) Williams’ technique requires
five multiplications whereas Wall and Danielsson’s need two multiplications and the
simplified version of it need only one multiplication. The algorithm 4.2 presented in
this chapter requires only two multiplications for curves with non-uniformly spaced

points and no multiplication for chain coded curves.
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(a) (b) (c)

Figure 4.2: Polygonal approximations of the leaf-shaped curve. {a) Algorithm 4.2,

(b) Williams® algorithm, (c) Wall-Danielsson algorithm.

(2) (b) (c)

~ Figure 4.3: Polygonal approximations of the figure-8 curve. (a) Algorithm 4.2, (b)
Williams’ algorithm, (¢} Wall-Danielsson algorithm.
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Figure 4.4: Polygonal approximations of the aircraft. (a) Algorithm 4.2, (b)
Williams’ algorithm, (¢) Wall-Danielsson algorithm.
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Figure 4.5: Polygonal approximations of the screwdriver. (a) Algorithm 4.2, (b)

Williams’ algorithm, (c) Wall-Danielsson algorithm,
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4.5 Experimental results

The algorithm 4.2 developed in this chapter is applied on the same digital curves
as in the previous chapters. The digital curves and their polygonal approximations
are shown in Figures 4.2 through 4.5. The data are processed in the clockwise
direction. Since this procedure is sequential and one-pass hence we compare the ex-
perimental results of this procedure with those of the Williams’ algorithm [59] and
the Wall-Danielsson algorithm [68]. As we have already seen this procedure controls
the maximum error indirectly, so the maximum error that is obtained by applying
this procedure on each of the four digital curves are used to run the Williams’ algo-
rithm and the Wall-Danielsson algorithm on the same digital curves. The polygonal
approximations as obtained by the Williams’ algorithm and the Wall-Danielsson al-
gorithm are shown in Figures 4.2 through 4.5. As seen from these figures the
approximations as obtained by our procedure is better than those produced by
the Williams’ or the Wall-Danielsson algorithm. The Williams’ algorithm misses
corners and rounds off sharp turnings (please see the leaf and the aircraft). It
also detects false vertices (please see the screwdriver). The worst approximation is
obtained with the aircraft image {Figure 4.4) where most of the turnings are not ap-
proximated according to their nature. The vertices are shifted to the nearby point
from their actual position. Though the Wall-Danielsson algorithm retains the peaks
but it misses corners (please see the bottom of the leaf) and sometimes it detects
false vertices (please see the aircraft and the screwdriver). A comparison of the
results obtained by our procedure with those of the Williams’ and Wall-Danielsson

are shown in Table 4.1.
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Table 4.1 A comparigon among algorithm 4.2, Williams' & Wall-Danieisson algorithm

Digital curve Leaf Figure-8 Aircraft Screwdriver
Number of points(n) 120 45 200 267
Results of algorithm 4.2
Number of vertices(n,) 33 16 32 70
Compression ratio(n/n,) 3.64 2.81 6.25 3.81
Percentage of data reduction 72.50 64.40 84,00 73.80
Integral square error 11,17 3.75 0.63 41.40
Maximum error 0.896 0.73 0.896 D0.92
Results of Williams’ algorithm
Maximum allowable error 0.896 0.73 (.806 0.92
Number of vertices(n,) 20 9 28 50
Compression ratio(n/n,) 6.00 5.00 7.14 B.34
Percentage of data reduction 83.33 80.00 ~ 86.0 81.3
Maximum error 0.894 0.73 0.896 0.91
Integral square error 26.61 5.99 37.60 47.85
Results of Wall-Danielsson algorithm

Maximum allowable error 0.806 0,73 0.896 0.92
Threshold 0.95 0.63 0.65 0.67
Number of vertices{n,) 21 12 38 66
Compression ratio(n/n,) B.71 3.75 5.26 4.05
Percentage of data reduction 82.5 73.33 81.00 75.33
Maximum error 0.894 0.707 0.64 0.77
Integral square error 18.44 3.22 - 11.22 25.18
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Chapter 5

A data-driven method

5.1 Departure from conventional approach

In the polygonal approximation techniques discussed so far the maximum allowable
error is specified either directly or indirectly. The optimal algorithms for polygonal
approximation which use the least squares principle ([55], [9], [19], [20], [21] and
(34]) need the number of line segments to be specified. The ﬁptimal algorithm
given by Dunham [14] need error specification. In all these procedures the user of
the procedure has to specify either the number of line segments or the maximum
allowable error. The maximum allowable error or the number of line segments to
be used is determined on the basis of a trial and error process. So these procedures
cannot run without operator’s intervention.

In this chapter we are looking for a data-driven method [42] in which neither do
we specify the error nor do we specify the number of line segments. We keep both
these parameters free and allow the procedure to determine the length of the line
segment as well as the maximum allowable error adaptively on the basis of the local
topography of the curve. So the procedure does not need operator’s intervention.
Though the procedure is sequential and one pass, but unlike the existing sequential
algorithms neither does it miss corners nor does it round off sharp turnings.
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5.2 Procedure
The equation of a straight line joining the point p; to the point p; is
(yy — w)z — (25 — zi)y — zy; + 234 = 0. (5.1)

Translating the origin of the coordinate system to the point (z;, ¥) and denoting

the new coordinate system by prime so that

.T-; =Ty — Iy and y; = Y5 — Ys (5.2)

the equation (5.1) takes the form
yiz' — 2y =0. (5.3)

The error e, betweeli the point py, k =1+ 1,1+2,...,, 7 — 1 and the line (5.3) is

the perpendicular distance of the point p; from the line (5.3) that is,

YT — T

R

So while a,pproxima.ting the points pp, k = 1,1+ 1, 1 + 2,..., J; the integral square

error along the line segment (5.3) is

=1 vz, — =)

(5.4)

€k

. = 5.5
J k=z';+1 :!3;2 + y;ﬂ ( )

And the length of the line segment joining (z;, y) to (z;, y;) is
Iy = /2 + gl (5.6)

Our objective is to make I; as large as possible by ct.:mtinucusly merging points one
after another with the point (z;, y;) so that s, is as small as possible. We ncte
that we cannot increase [; indefinitely nor ¢an we decrease the error s; arbitrarily.
Because in the former case, the approximation error will be too large resulting in
an approximation that may fail to locate many significant vertices. And in the
later case, the approximation may result in many redundant vertices. So it is
necessary to make a compromise between the length of the line segm.ent' and the
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approximation errors. We solve this problem by combining /; with s;. Since our
objective is to make /; as large as possible so that s; is as small as possible, we take

the mathematical combination
fi =1 — ;. (5.7)

The procedure looks for the local maxima of f; by continuously merging points one
after with the point p;. The value of j for which f; attains a local maximum gives

the location of a vertex.
The procedure is started from an arbitrary point p;: The origin is shifted to the

point p; by the transformation rules (5.2), write j = ¢t +1 and compute f; using the

formula,

fi ==+ y? (5.8)

because for § =t 41, 8; = 0. Then j is changed to 7 + 1 and f; is computed using
the formula (5.7} and f; is compared with f,;_;. Points are merged one after another
with the point p; giving increment to 7, f; is computed using (5.7) and compared
with f;-1 until f; falls below f;_;. At this stage yj = j — 1 gives the location of a
vertex which is not necessarily a valid vertex. We write ¢+ = 77, franslate the origin
to the point p;, set j = 1+ 1 and compute f; using (5.8). J is changed to 7+ 1 and
f; is computed using (5.7) and compared with f;.;. Points are merged one after
with the point p; giving increment to j, f; is computed using {5.7) and compared
with f;..; until f; falls below f;—;. When f; falls below f;_; another possible vertex
is recorded at the point 57 = j§ — 1. The coordinates of this vertex are (z;;, ¥jy).
The origin is again translated to the point 57 and the same computation is carried
out in the same fashion as already described. The procedure is carried on along the
entire digital curve beyond the starting point till the vertex generated last coincides
with one of the vertices already generated.

At this point we note that Williams {59] and Wall and Danielsson [58], too locked
for the maximal possible line segments. But in their procedure it is necessary to
specify the error. In Williams’ technique the error is specified directly whereas, in
Wall and Danielsson’s technique the error is specified indirectly in terms of area
deviation per unit length. But the present procedure looks for the maximal line
- segments without specifying the error. We keep the error unspecified and allow the
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procedure to determine it on the basis of the local topography of the curve.

5.3 Algorithm

The input are the data points (z;, %), { = 1, 2,..., n. The output are the vertices
(z;i, ¥5;) and jj. All arithmetics are in modulo n.

Begin

Step 1. Initiate ¢ = 1,

Step 2. Translate the origin of the coordinate system to the point (x;, y;) by the

transformation rules

I
T; =2z; —x; and Yy =¥ — Y.

Step 3. Set 7 =141,

Step 4. Compute f; = \/z}2 + y;-z.
Step 5. Change 3 to 4 + 1.

Step 6. Compute f; = {; — s;.

Step 7. If f; > f;-1 then go to Step &
else write j7 = 7 — 1 and (z;;, y;;) using

! . I | .
Tiy; = T+ and Yy = Yy Y

set 1+ = 37; go to Step 2.

Step 8. Repeat this process beyond the starting point till the vertex generated last
coincides with one of the vertices already generated.

Step 9. The set of coordinates (z;;, y;;) that form a closed chain is the required
set of vertices, These are joined in order to determine the polygon.

End.

5.4 Computational complexity

At each point of a digital curve f,; is computed once only except at the points imme-
diately following the vertices where f; is computed twice, once for the generated line
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segment and the second time for the line to be generated. So if the approximation
results in m line segments from a closed digital curve with n points (m < n) then
the number of times f; is computed to generate the approximation is m + n. Since
m < n,som-+n < 2n. As the computation is carried beyond the starting point, a
part of the digital curve comes under arithmetic operations twice. But this part is
much smaller than the input data size and the additional number of times for which
[; is computed on this part of the digital curve has only additive effect to the sum
m + n. So the computational complexity of the algorithm is O(n).

Though the computational complexity is O(n), but the program execution time
will be higher if the approximation results in long line segments than that if it
results in short line segments. Because in the former case evaluation of s; involves

computation of a large number of terms of the form
2
(zhy; — vizy)" (5.9)

We illustrate this with the help of an example. Let a closed digital curve consisting
of 100 integer coordinate points be approximated by 10 line segments each of which
approximates 11 points. Then to generate each line segment evaluation of s; involves
computation of as many as (10 x 11) /2 = 55 terms of the form (5.9). But if another
closed digital curve consisting of 100 coordinate points is approximated by 5 line
segments, each line segment approximating 21 points thean to generate each line
* segment computation of s; involves evaluation of (20 x 21)/2 = 210 terms of the
form (5.9). So in the former case the total number of terms of the form (5.9) to be
evaluated is 55 X 10 = 550 and in the later case this figure is 210 X 5 = 1050 which

18 almost twice of the former.

5.5 Experimental results

We have applied the algorithm 5.3 on four digital curves as in the previous chapters .'
The data are processed in the clockwise direction starting from an arbitrary point.

-~ The polygonal approximations are shown in Figures 5.1 through 5.4. Since this pro-
cedure is sequential and one-pass hence we compare it with the Williams’ algorithm

- [59} and the Wall-Danielsson algorithm [58]. In Williams’ algorithm it is necessary
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i 3 -
(a) (5 ()

Figure 5.1: Polygonal approximations of the leaf-shaped curve. {a) Algorithm 5.3,
(b) Williams’ algorithm, (¢) Wall-Danielsson algorithm.

(a) (b) (c)

Figure 5.2: Polygonal approximations of the figure-8 curve, (a) Algorithm 5.3, (b)

Williams’ algorithm, (c) Wall-Danielsson algorithm.
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(b) ()

Figure 5.3: Polygonal approximations of the aircraft. (a) Algorithm 5.3, (b)
Williams’ algorithm, (¢} Wall-Danielsson algorithm.
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- Figure 5.4: Polygonal approximations of the screwdriver, (a) Algorithm 5.3, (b)
~ Williams’ algorithm, (c) Wall-Danielsson algorithm.
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to specify the maximum allowable error. As already stated we do not specify the
maximum allowable error in algorithm 5.3. We keep this error unspecified and al-
low the procedure to determine it on the basis of the local properties of the curve.
The maximum error returned by the algorithm 5.3 is then used to run Williams’
algorithm and the Wall-Danielsson algorithm. The polygonal approximations as
obtained by the Williams’ algorithm and the Wall-Danielsson algorithm are shown
in Figures 5.1 through 5.4. It is clear from these figures that the algorithm 5.3
produces better results than the Williams’ and the Wall-Danielsson algorithm. The
worst approximation produced by the Williams’ algorithm is obtained with the leaf-
shaped curve, where the lower part of the digital curve, which has a sharp turning,
is completely wiped out by the approximation. Moreover, none of the other turnings
are approximated according to their nature. The vertices are always placed beyond
the turning point. This is true for other digital curves also. Though, algorithm 5.3
1s also sequential and one-pass but neither does it round off sharp turnings nor does
it shift the vertices from their actual position. The approximations obtained by the
Wall-Danielsson algorithm are no better than those by our procedure. It produces
redundant /false vertices. It also dislocates the vertices. The peak-test introduces
by Wall and Danielsson succeeds to retain the very sharp turnings but it fails to
locate the vertices at their actual position when the turnings are not so sharp. An
overview of the results of the approximations obtained by the three procedures are

displayed in Table 5.1,
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Table 5.1 A comparison among algorithm 6.3, Williams’ & Wall-Danielsson algorithm

Digital curve Leaf Figure-8 Aircraft Screwdriver
Number of points (n) 120 45 200 267
Results of algorithm 5.3
Number of vertices (ny) 22 9 26 50
Compression ratio {r/n,) 5.45 5.00 7.69 5.34
Percentage of data reduction 81.67  80.00 87.00 81.27
Integral square error 16.95  6.01 22.80 42.85
Maximum error 1.05 1.00 1.20 0.93
Results of Williams’ algorithm
Maximum allowable error 1.05 1.00 1.20 0.93
Number of vertices (n,) 18 7 24 50
Compression ratio (n/n,) 6.67 6.43 8.33 5.34
Percentage of data reduction 85.00 84.44 88.00 81.27
Maximum error 1.05 1.00 1.20 0.91
Integral square error 34.27 14.05 63.33 4'7.85
| Results of Wall-Danielsson algorithm

Maximum allowable error 1,06 1.00 1.20 0.93
Threshold 0.996 0.91 1.05 0.67
Number of vertices{n,) 21 0 27 66
Compresgion ratio{n/n,) 5.71 5.00 7.41 4.05
Percentage of data reduction 82.50 80.00 86.5 75:24
Maximum error 0,895  1.00 1.05 0.77
Integral square error 21.08 7.08 42.69 25.18
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Chapter 6

Another data-driven method

6.1 L; norm as a measure of closeness

While approximating a curve by a polygon it is necessary to have a measure of
closeness. The error norms are used as a measure of closeness. The most com-
monly used norms are the maximum error (Lo norm) and the integral square error
(L, norm). The existing algorithms for polygonal approximation of digital curve
use either the maximum error or the integral square error. In the polygonal ap-
proximation schemes where the approximation errors are controlled indirectly, the
maximum error is controlled by the criterion function. In this chapter we wish to
show that though the most commonly used norms are integral square error and the
maximum error but it is possible to use the sum of absolute errors (L; norm) as a
measure of closeness. The procedure (43| that we present here is conceptually and

‘technically similar to that presented in the last chapter.

6.2 Procedure
The equation of a straight line joining the point p; to the point p; is

(vi — i)z — (25 — @)y — ziy; + 258 = 0. (6.1)
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Translating the origin to the point (z;, 1) and denoting the new coordinate system
by prime so that
!

z;=x;—z; and y;=y;—y (6.2)

the equation (6.1) reduces to
y;z' — 2y =0, (6.3)

The error e, between the point p,, k =¢+ 1,7+ 2,...,7 — 1 and the line (6.3) is
the perpendicular distance of the point p; from the line (6.3) that is,

(gl — oy
ey = 210k, (6.4)
Vet +y

So while approximating the points p,, k =1,1+ 1,1 4+ 2,..., 7; the sum of absolute

errors along the line segment joining the point p; to the point p; is

F—1
abs s; = D |e]. (6.5)
k=i-+1
And the length of the line segment joining p; to p; is
l; = /2% + yi? (6.6)

Our objective is to make /; as large as possible so that abs s, is as small as possible,
Note that neither we can increase /; indefinitely nor we can diminish the sum abs s,

- arbitrarily. Because, in the former case, the approximation error will be too large

. resulting in an approximation that may fail to locate many significant vertices. And

in the later case, the approximation may result in many unwanted vertices. So it
is necessary to make a compromise between the length of the line segment and the

approximation error. We solve this problem by combining {; with abs s;. Since our

object is8 to make /; as large as possible so that abs s; is as small as possibie, so we

take the mathematical combination
f,* = I,' — abs 51' ] (6.7)

- The procedure looks for the local maxima of f; by continuously merging points one
after another with the point p;. The value of 5 for which f; attains a local maximum
gives the location of a vertex. The procedure can be started from an arbitrary point
and is carried beyond the starting point till the vertex generated last coincides with

“one of the vertices already generated.
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6.3 Algorithm

The input are the data points (z;, %), t = 1, 2,..., n. The output are the vertices
(z; , y;;) and jj. All arithmetics are in modulo n.
Begin
Step 1. Initiate t = 1.
Step 2. Translate the origin of the coordinate system to the point (z;, y;) by the
transformation rule

,

— . . b e are . a1

Step 3. Set g =1+ 1.

Step 4. Compute f; = :r:.}: + y}z.
Step b. Change 7 to 7 + 1. |
Step 6. Compute l; = \/z;’ -+ y;i.
Step 7. Compute

Step 8. Compute f; =1; — abs s;.
Step 9. If f; > f;-1 then go to Step 5

else write jj = § — 1 and (z;;, y;;) using
i = p+zi and Y= yp v

set ¢+ == 77; go to Step 2.
Step 10. Repeat this process beyond the starting point till the the vertex generated

last coincides with one of the vertices already generated.
Step 11. The set of coordinates (z;;, y;;) that form a closed chain is the required

set of vertices. These are joined in order to determine the polygon.
End,

6.4 Computational complexity

~ The procedure is sequential one-pass and following the same line of arguments as
presented in the last chapter it can be derived that the computational complexity
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(a) (b) (c)

~ Figure 6.1: Polygonal approximations of the leaf-shaped curve. (a) Algorithm 6.3,
(b} Williams’ algorithm, (¢) Wall-Danielsson algorithm.

(2) (b} (¢)

Figure 6.2: Polygonal approximations of the figure-8 curve. (a) Algorithm 6.3, (b)
Williams’ algorithm, (c¢) Wall-Danielsson algorithm. |
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(b) (c}

Figure 6.3: Polygonal approximations of the aircraft. (a) Algorithm 6.3, (b)
~ Williams’ algorithm, (¢} Wall-Danielsson algorithm.

56



®)

Williams’ .
illiams’ algorithm, (¢} Wall-Danielsson algorithm.
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of the algorithm is O(n) and the program execution time will be higher if the
approximation results in long line segments than that if it results in short line

segments.

6.5 Experimental results

We have applied algorithm '6.3 on four digital curves as in the previous chapters.
The data are processed in the clockwise direction. The procedure is compared
with the Williams’ {59] and the Wall-Danielsson {58] algorithm. The polygonal
~ approximations as obtained by algorithm 6.3, the Williams’ algorithm and the Wall-
Danielsson algorithm are shown are shown in Figures 6.1 through 6.4. As seen from
these figures the approximations generated by our procedure do not round off sharp
turnings nor do they miss corners. The approximations produced by the Williams’
algorithm round off sharp turnings and miss corners. The approximations produced
by the Wall-Danielsson algorithm are no better than our procedure. The results of

the approximations as obtained by the three procedures are shown in Table 6.1.
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Table 6.1 A comparison among algorithm 6.3, Williams' & Wall-Danielsson algorithm

Digital curve Leaf [Iigure-8 Aircraft Screwdriver
Number of points(n) 120 45 200 267
Results of algorithm 6.3

" Number of vertices(n,) 26 10 28 56
Compression ratio(n/n,) 4,62 4.5 7.14 4.77
Percentage of data reduction 78.33 77.80  86.00 79.03
Sum of absolute error © 29.43 8.62 34.27 68.70
Maximum error 1.05 1.0 1.33 1.00

Results of Williams’ algorithm
Maximum allowable error 1.05 1.00 1.33 1.00
Number of vertices(n,) 18 7 22 36
Compression ratio(n/n,) 6.67 6.43 9.09 7.42
Percentage of data reduction 85,00  84.44 89.00 86.50
Maximum error 1.056 1.00 1.31 1.00
Sum of absolute error 45.62 17.90 105.64 101.25
Reaults of Wall-IDanielsson algorithm

Maximum allowable error 1.05 1.00 1.33 1.00
Threshold 0.996 0.91 1.05 0.78
Number of vertices(n,) 21 0 27 61
Compression ratio(n/n,) 571  B5.00 7.41 4.38
Percentage of data reduction 82.50 80.00 86.50 77.13
Maximum error 0.995 1.00 1.05 1.00
Sum of absolute error 38.88 11.48 75.94 57.84
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Chapter 7

' Polygonal approximation as angle

- detection

7.1 Curvature based polygonal approximation

The algorithms developed in the last chapters treat polygonal approximation as a
side detection problem. The sides of the polygon are determined subject to certain
constraints on the goodness of fit, Another approach to polygonal approximation

is based on curvature estimation.
In the real Euclidean plane, curvature {x) is defined as the rate of change of

tangential angle () with respect to the arc length (s)

K = Gl (7.1)

ds
In Cartesian coordinate system if the equation of a curve is expressed in the form
y = f(z), then the curvature at any point of the curve is defined by

K= F - (7.2)

For digital curves however, it is not immediately clear how to define a discrete
analog of curvature. If the discrete curvature is defined by simply replacing the
derivatives in (7.2) by finite differences, there is a problem that small changes in
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slope are impossible, since the successive slope angles on a digital curve can differ
only by a multiple of w/4. This difficulty is avoided by introducing a smoothed
version of discrete curvature e.g. k—cosine, k—curvature, k is called the region of
support and it is determined by introducing an input parameter m. The input
- parameter m is selected on basis of the level of detail of the curve. The finer is the
level of detail, the smaller should be the value of m. Difficulty arises when a curve
consists of features of multiple size. And this difficulty can only be avoided by using
different m for regions with different levels of detail. Moreover, there is seldom any
basis of choosing a particular value of parameter for a particular feature size. Teh
and Chin [56| used chord length and perpendicular distance to determine the region
of support without using any input parameter. This technique is justified, because
the region of support for each point is determined only on the basis of the local
properties of the curve.

In this chapter we present an algorithm [44] for polygonal approximation of dig-
ital curves which is based on discrete curvature measure. We propose that one can
use k—cosine itself to determine the region of support without using any input pa-
rameter. A new measure of discrete curvature based on k—cosine, called smoothed
k—cosine, is introduced. The local maxima and minima of smoothed k-—cosine are
located. We call these points as significant points. The adjacent significant points
~are joined to determine the polygon.

In the following section we present a scheme to determine the region of support
of each point of a digital curve. The procedure is parallel in the sense that the
results obtained at each point do not depend on those obtained at the other points.
The procedure need no input parameter. The region of support of each point is

determined on the basis of the local properties of the curve,

7.2 Procedure:Determination of region of support

Begin
Step 1. Define the k—vectors at p; as

2 = (Timk = Tis Yiok — Yi) (7.3)
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bir = (Tipr — iy Yier — i) (7.4)
and the k—cosine at p; as |
a;x - by
| @ik | | Die |
where cos;; is the cosine of the angle between the k—vectors a;; and b,; , so that

—1 < cosy < +1.
Step 2. Start wii;h k = 1. Jompute cos;; giving increment to .

COS; = (7.5)

~ If | cosi k+1 | > | cosix | then k determines the region of support of p;

else if | cos; | = |cos; 141| then the greatest k for which this relation holds determines
the region of support of p;

else if cos;y and cos; x.1 be of opposite sign then the least value of k for which it
happens gives the region of support of p;. |

The region of support of p; is the set of points given by

D(pi) = { Pivks ey Pim1y Pis Pitlseees Pitk }-

End.

7.3 Measure of significance

The last procedure determines the region of support (k;) of the point p;. To detect
the significant points we need a measure of significance. Rosenfeld and Johnston

48] used cos;,, as the measure of significance and h; as the region of support of p;.

Rosenfeld and Weszka |50] used smoothed k cosine as a measure of significance. We

propose to introduce a new measure of significance. We denote it by cos; and define
it by

COS; = —— ¥ COByj - (7.6)
This measure of significance is a kind of smoothed cosine but it is different from that

given by Rosenfeld and Weszka [50]. In the following section we present a procedure

for detection of significant points using the region of support k determined by the

- procedure given in section 7.2 and the measure of significance cos; introduced in

this section.
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7.4 Procedure:Detection of signiﬁcant points and

polygonal approximation

Comments. As the procedure runs remove those points from consideration where
cos;’s are too small (cos; < —0.800), because in the neighborhood of these points
the curves are relatively straight and our ultimate goal is to make a polygonal
approximation of the curves.

Begin

1st pass. Retain only those points p; for which either

(a) cos; > cos; (7.7)
for all 5 satisfying
|f--ﬂ < %-:-, ki > 1
= ki, ki=1. | (7.8)
or,
cos; < Co8; | (7.9)
for all 5 satisfying
‘f-—jl < %, ki > 1
= ki, k=1 (7.10)

In (7.7) and (7.9) strict inequality should hold for at least one j satisfying (7.8) and
(7.10) respectively. The points detected by (7.7) are the local maxima and those

detected by (7.9) are the local minima of smoothed k—cosine.

2nd pass. If a minima point falls within the region of support of a maxima point
then the minima point is discarded and the maxima point is retained.

If two successive points p; and p;,; appear as maxima points then

if both p; and p;,, have the same cosine and the sarne region of support then retain

D¢ and discard Pi+1
else if the cosines be the same but the region of support be different then retain the

_point with higher region of support and discard the other.
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The points obtained from the 1st and the 2nd pass constitute the set of sig-
nificant points and the adjacent significant points are joined to make a polygonal

approximation,

End.

Remark 1. When two successive points p; and p;4; appear as maxima points
and both have the same cosine then both the points are equally important for being
selected as significant points and so in this situation there is a tie. We have proposed
to break the tie by choosing p; only as the significant point. On the other hand,
when p; and p;+; have the same cosine but different region of support then there is
no tie and the choice is deterministic.

Remark 2. The 1st pass of the procedure can be carried out in parallel whereas,
the 2nd pass is sequentia.l; We note that the 2nd pass is carried out only on a small

number of points.

7.5 Approximation errors

~ The shape of a digital curve is determined by its significant points. So it is very
much necessary to locate them accurately so that sufficient information about the
curve is contained in the location of the significant points. In section 7.2 and section
7.4 we have described a procedure to detect significant points of digital curves.
We propose to measure the accuracy of the location of the significant points
by the pointwise error between the digital curve and the approximating polygon.
We measure the error between the digital curve and the approximating polygon by

the perpendicular distance of the point p;’s from their approximating line segment.
We denote this error by ¢. Two error norms between the digital curve and the

approximating polygon are

1) Integral square error E:=3%0, ¢,
2) Maximum error E. = max; | ¢|.
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Figure 7.1: A chromosome shaped curve and its polygonal approximation.

Figure 7.2: The figure-8 curve and its polygonal approximation.
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Figure 7.4: A curve with four semi-circles and its polygonal approximation,
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7.6 KExperimental results

The procedure presented in this chapter is applied on four digital curves namely, a
chromosome shaped curve (Figure 7.1), a figure-8 curve (Figure 7.2), a leaf-shaped
curve (Figure 7.3), and a curve with four semi-circles (Figure 7.4}. The last figure,
taken from [56], is an example of a curve that consists of features of multiple size.
" The chain code of the curves.are given in Table 7.1. The curves have been coded in
the clockwise direction starting from the point marked with an / on each curve,
using the Freeman chain code defined in chapter 1. The procedure processes data.
in the clockwise direction.

In an attempt to focus on the efficiency of our procedure as a significant point
detector and a polygonal approximation technique we have computed (a) the data
compression ratio given by n/n,, n, being the number of significant points, (b}
the integral square error and {c) the maximum error. The results are displayed in
Table 7.2, together with the results obtained by the Teh and Chin algorithm [56)

(reproduced from {56|).

7.7 Discussion

We have made no attempt of comparing our procedure with those in {48], [50], [17),
2] and [53]. A very good comparison of these algorithms with that in [56] can be
found in [56]. We only focus on the following features of our procedure.

(a) Our procedure, like that of Sankar-Sharma (53] and Teh and Chin [56], does not

require any input parameter.
(b) Sankar-Sharma’s procedure does not require any input parameter but it does

not determine region of support, whereas, our procedure, like that of Teh and Chin,

does determine region of support.
“{c) Our procedure detects more significant points than the Teh-Chin algorithm.

(d) All processing are done locally, so it is be suitable for parallel processing.
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Table 7.1 Chain code of digital curves

Chromosome shaped curve

01101
hbb6bb

11112
43112

11212
12256 45432

006656 65560 01010 76555

45555

Figure-8 curve

11217
22112

87767

70071 01212 22344 45555

56545

54534

Leaf-shaped curve

33333
12766
85655

32307
61111
55566

00003 32323 07000 03323
16665 64550 00100 56656
67666 66666 64222 22229

22267
55001
22232

17222
10665
24434

Curve in figure 7.4

22222
66666
32222

21221
65767
54544

11111 00100 00000 07007
(6664 654434 36666 56554
34232 21213 22

17777
64444

66766
34332

Table 7.2 A cﬂmpariq_on between algorithm 7.4 & Teh-Chin algorithm

Digital curve Chromosome Figure-8 ILeaf  Pig. 7.4
Number of points{n) 60 45 120 102
Resuita of algorithm 7.4
Number of significant points{n,) 18 14 29 30
Compression ratio(n/n,) 3.33 3.21 4.14 3.40
Integral square error 5,25 2,51 15.34 17.19
Maximum error 0.6806 0.728  0.996 1.00
| Results of Teh-Chin algorithm

Number of dominant points(ng) 15 13 29 22
Compression ratio{n/n ) 4,00 3.50 4.10 4.60
Integral square error 7.20 5.93 14,96 20.61
Maximum error 0.74 1.00 0.99 1.00
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Chapter 8

Polygonal approximation as angle
detection using asymmetric region

of support

8.1 Asymmetric region of support

In the last chapter we have shown that it is possible to use k—cosine to determine
the region of support without using any input parameter. The region of support
as determined by this procedure is symmetric in the sense that it consists of equal
number of points on either side of the point of interest. The region of support as
determined by Rosenfeld-Johnston [48], Rosenfeld-Weszka {50] and Teh and Chin
(56| is also symmetric. But there is no reason why the region of support should be
symmetric. We believe that an asymmetric region of support is more reasonable and
more natural than a symmetric region of support. A symmetric region of support
may be looked upon as a special case of asymmetric region of support.

In this chapter we propose to determine asymmetric region of support without
using any input parameter. The region of support is determined on the basis of the
local properties of the curve. We call the regions on either side of the point p; as
the arms of the point. The curve is described in the clockwise direction. The arm

extending from the point p; to the forward direction is regarded as the right arm of
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p; and the arm extending from the point p; to the backward direction is regarded as
the left arm of the point p;. The size of the arms is the number of points comprising
the arms. We propose to denote the size of the right arm by k and that of the left
arm by {. The region of support of p; comprises the points in its arms and the point
p; itself.

This concept of asymmetric region of support is utilized to detect dominant
points on digital curves. The dominant points are the points with high curvature.
To determine the curvature using the concept of asymmetric region of support we
introduce the concept of & — | cosine which is defined as the cosine of the angle
between the k—vector and the [—vector at the point p;. The dominant points
are those points at which the k — [ cosine is a local maximum with respect to its
immediate neighbors. The polygonal approximation is made joining the adjacent

dominant points [45].

8.2 Determination of arms

We define two vectors R; and R; at p; by

R; = (ZTix1— Ty Yier — i)
R{j = (ﬁj = Tjy Yy — yi) (3'1)

where § = 1+ 2, t + 3, 1 + 4, .... I §; denotes the angle between R; and R;; (Figure

8.1) then we propose to compute 8; by the relation

R;.Ry;
;o ~1 : 2 ). R.2
8, = cos (\RiHRi;‘l) (8.2)

0; is computed giving increment to j until for some J

B3 <0; < 0j41. (8.3)

eyl

When the last relation holds for three consecutive values of § (j — 1,5,7 + 1) then
the set of points { piy1,Pir2se-sPj-1 )} is said to constitute the right arm of the point

pi, and the length of the arm is k = j —1 — 1.

70



Figure 8.1: Left and right vector and angles 8 and .

Again we define two vectors L; and I,; at p; by

Ly
Ly

Il

(ﬂ?i-l — Ly Y1 — y,-)

(‘T’J' - i, ¥ — Ui) (8'4)

1]

where 7 = ¢ — 2,1 — 3,4 —4,.... If §; denotes the angle between L; and T.;; (Figure
8.1} then we propose to compute ¢; by the relation

L. L;,‘

¢; = cos™ 1 \ 8.5
’ (ILiHLiJ'I) (8.5)
¢, is computed giving decrement to j until for some j

bir1 < &; < dj1- (8.6)

When the last relation holds for three consecutive values of 7 (j + 1, 7, 7 — 1) then
the set of points { p;_1, Pi—gy.,0;j+1 } 18 said to constitute the left arm of the point
p; and | = ¢ — 5 — 1 is called the size of the left arm of p;. |

The region of support of p; is then given by the set of points

{pi—h_"'-.tpi'-hpﬂ Dit1y o Pitk }‘

This technique for determination of arms is illustrated with the help of the figure-
8 curve as shown in Figure 8.2. For the ith point as shown in the Figure 8.2, the
vector R; has the components {0,1) and the vector Rj; = R; ;2 has the components
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Li L2 L,i-a

Figure 8.2: Iliustrating computation of 8’s and ¢’s

(0,2) and so using {8.2) we get 0;42 = 0°. Similarly #;+s = 18.4°, 6,4 = 26.6°. And
since ;43 < 0,43 < 6;,4 hence the points p;;; and p;yq comprise the right arm of
the point p; and the length of thearmisk=57—-1—-1={4+3—-1-1= 2.

Again for the ith point L; has the components (1,0) and L;; = L;;_3 has the
components (2,-1} and hence using (8.5) we get ¢;_1 = 26.6°. Similarly ¢;_3 = 0°,
bi—s = 0°, ;5 = 11.3° ¢;_s == 18.6°. And since ¢;_4 < di_s < ¢;-¢ hence the
points p;_1, Pi—2, Pi—s, D;—4 comprise the left arm of the point p; and [ =1 -5 -1 =
t — 3+ 5—1=4is the length of left arm.

The region of support of p; is the set of points

{PI"'-'H Di-8: Pi—2,Pi-1,Piy Pi+1y Pit+2 }-

The region of support of the other points is computed in a similar manner.
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8.3 Procedure: Determination of asymmetric re-

gion of support

Begin
Step 1. Define

R, = (3i+1 ~ %y Y+l — yi)
Ri_f = (zj““zh y.f—!h') .

where j =t4+2,1+3,1+44,...

Compute
R;. Ry

Rt‘l IRH l )

0; = cog ! (-
' giving increment to ;7 until for some 7
9_,'._1 < §; < 841

- k= j—1—11is the length of the right arm and the set of points { pi+1, Pi+2y +++) Disk }

- comprise the right arm of the point p; .
Step 2. Define

Li = (Zy-1— %i, Yi-1~ ¥s)
Ly = (3,1? — Liy Y — yi)

where g =1 — 2,1 - 3,1 —4,....

Compute
L; ' L,'_,*

Lol 1Lg]

qu — (‘,03_1 (
giving decrement to 7 until for some 3
Piv1 < @5 < Pj_1.

I =1—7—1is the length of the left arm and the set of points { pi~1, Piwzy 00y Pi1 }

comprise the left arm of the point p; .
Step 3. The region of support of p; is the set of points

{pi-—-h ey P Dy Dt g areey Pitk }*

 End.
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-_8.4 - Detection of dominant points

Once the right arm and the left arm of each point is determined by the last pro-
cedure, we define the right vector of p;, The right vector is denoted by a,;, and is
~ defined by

| &k = (Tivk — Tiy Yirk — U:) (8.7)
and the left vector at p; is denoted by by and is defined by

by = (Ziwt ~ i, Yizt — 4i)- (8.8)

We define k — ! cosine at p; by

a;x - by
| a5 | | ba |

A two-stage procedure is applied to detect dominant points. At the first stage,

COS{kl — (3 .9)

some input threshold is applied to the k — I cosine to eliminate those points from
consideration whose k — [ cosine is too small (< —0.800). At the second stage,
~ a process of non-maxima suppression is applied to the remaining points to elimi-
" nate points whose k — [ cosine are not local maxima with respect to its immediate
| neighbors. The points remaining after these two stages are the dominant points.
To improve the compression ratio, if two successive points of a curve appear as
dominant points, the point with smaller region of support is suppressed.

The polygonal approximation is made by joining the adjacent dominant points.

- 8.5 Procedure: Detection of dominant points and

polygonal approximation
Begin
Step 1. Define a k—vector at p; as

&k = (Tivr — Tiy Yitk — i)
and an [—vector at p; as

by = (Ziet — i, Yit — Yi)-
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Step 2. Define k& — | cosine at p; as

ak . by
ag | [bu|

Step 3. Suppress those points whose k - I cosine < —0,800.

CO8;p; = ‘

Step 4. If cosy, lies between cos;..; 4 and cos;,.y ¢ then suppress p;

else p; is a dominant point, |

Step 5. If two successive points of a curve appear as dominant points then the
point with smaller region of support is suppressed.

Step 8. The points remaining after Step 5 are joined successively to make a

| polygonal approximation of the curve.
- End.

8.6 Approximation errors

The accuracy of the location of dominant points and the closeness of the polygon
to a digital curve can be determined by the pointwise error between the digital
- curve and its approximating polygon. We measure this error by the perpendicular
~ distance of the point p;’s from their approximating line segment and denote it by
¢;. Two error norms are defined as

1) Integral square error

2} Maximum error
Eo = max |¢;].
1

8.7 Experimental results

We have applied the procedure developed in this chapter on the four digital curves
* used in the last chapter. The digital curves and their corresponding approximations
are shown in Figures 8.3 through 8.6. In an attempt to focus on the efficiency of the

procedure for detection of dominant points and polygonal approximation, we have

15



Figure 8.3: The chromosome shaped curve and its polygonal approximation.

lllll

~ Figure 8.4: The figure-8 curve and its polygonal approximation.
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Figure 8.5: The leaf-shaped curve and its polygonal approximation.
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Figure 8,6: The curve with four semi-circles and its polygonal approximation.
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computed the data compression ratio, the maximum error and the integral square.
The results are displayed in the Table 8,1 which also contains the results of the Teh
‘and Chin algorithm (reproduced from their work).

| Table 8.1 A comparison between algorithm 8.5 & Teh-Chin algorithm
Digital curve Chromosome Figure-8 Leaf  Fig. 8.6
Number of poinia [n) 60 45 120 102

' Results of algorithm 8.5
Number of dominant points(ng) 18 14 32 28
Compression ratio(n/ny) 3.33 3.21 3.75 3.64
Integral square error 5,42 4.81 13.40 9.27
Maximum error 0.64 0.73 0.996 0.88

Resaults of Teh-Chin algorithm

Number of dominant points(ng) 15 13 29 22
Compression ratio{n/ng) 4.00 3.50 4,10 4.60
Integral square error 7.20 5.93 14.96 20.61
Maximum error 0.74 1.00 0.99 1.00

8.8 Discussion

- We have made no attempt of comparing this procedure with the existing ones except

- with the Teh and Chin algorithm, We find the following features of the procedure.

1) This procedure, unlike the existing ones, uses asymmetric region of support and
asymmetric cosine, |

' 2) This procedure, like that of Sankar-Sharma and Teh and Chin, need no param-

eter.
3) Sankar-Sharma’s procedure need no input parameter but it does not determine

region of support. The present procedure, like that of Teh and Chin does determine

“-region of support.
4) Our procedure detects more dominant points than the Teh and Chin algorithm,
5) All processing are done locally, so it is be suitable for paralle! processing,.
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Chapter 9

Scale-space analysis and corner

detection on chain coded curves

 As already stated in the opening chapter the fundamental problem in data smooth-
ing is choice of input parameter. Too large a parameter will smooth out many
important features (corners, vertices, zero-crossings) and too small a parameter
will produce many redundant features. This is the fundamental problem of scale
because, features appearing on a curve vary enormously in size and extent and there
is seldom any basis of choosing a particular parameter for a feature of particular
size., This problem may be resolved by automatic parameter tuning. The parameter
size can be tuned on the basis of the local properties of the curve using a suitable
criterion function. Teh and Chin [56] resolve this problem using chord length and
perpendicular distance as the criterion function to determine the region of support
of each point on the basis of the local properties of the curve. In chapter 7 and
chapter 8 we too, have developed two such schemes in which automatic parameter
tuning on the basis of the local properties of a curve is suggested.

- Another approach to the solution of the problem of scale (choice of input param-
~ eter) is scale-space analysis.

In this chapter we propose to make scale-space analysis of digital curves using the
polygonal approximation scheme presented in chapter 3 and show its application
to corner detection [46]. Our scale parameter is discrete in nature. As the scale
p'a.ra.meter is varied the location of the vertex points of the polygon is plotted against
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the ordinal number of the points of the digital curve. The map showing the location
of the vertex points over scales is called a scale-space map. This scale~-space map is
used to detect and locate corners on digital curves.

9.1 Scale-space map

The polygonal a.ppmximatioh discussed in chapter 3 involves a counter ¢ which is
- responsible for imparting different degrees of smoothing to a curve. As the counter
is varied different sets of vertex points are obtained. For small values of the counter
the approximation results in a large number vertices and for large values of the
counter the approximation results in a small number of vertices. For small values
of ¢ the vertices are located at fine levels of detail (low smoothing) and for large
values of ¢ the vertices are located at coarse levels of detail (high smoothing). As
¢ is varied the curve is analyzed at different levels of detail. So ¢ is called a scale
parameter (7]. This scale parameter is discrete in nature.

 As the values of ¢ are increased from zero in a step size of one, different sets
of vertex points result and different polygonal approximations are obtained. For
¢ = 0 all points of a digital curve are vertex points., ¥For ¢ = 1 each point where the
curve changes its direction is a vertex point. The number of vertex points for ¢ = 1
'is less than that for ¢ = 0. As ¢ is increased further the number of vertex points
decreases resulting in higher smoothing, though two or more successive values of ¢
may produce the same number of vertices.

The striking feature is that as ¢ is varied from small values to large values, no
new vertex point is introduced: but as ¢ decreases from large values to small values,
- new vertex point may be introduced but the existing ones never disappear.

As a digital curve is smoothed out with different values of ¢, different polygonal

~ approximations result each of which reflects a specific level of detail of the curve.

These information are integrated in the form a scale-space map.

The z—axis (horizontal) indicates the ordinal number ¢ of the point p; of a digital
curve and the y—axis (vertical) indicates the values of the counter ¢, As the counter
 is varied from small vaiues to large values the position of the vertex points are
plotted on the zy half plane. The map showing the position of the vertex points at
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- different values of the counter is called scale-space map. The map consists of a series
of vertical lines at each vertex point. Some of these lines grow indefinitely and some
other terminate as the counter increases. The Vertical lines that grow indefinitely
are indicative of those vertices which are detected at all levels of detail, fine as
- well a8 coarse. Whereas, those lines that terminate are indicative of those vertices
~ that are detected at fine level of detail but disappear ag the degree of smoothing
increases. The location of the vertices at any scale is obtained by the orthogonal
projection of the vertical lines on the z—axis.

We have constructed a scale-space map of the digital screwdriver. The digital
curve and its polygonal approximations for different values of ¢ are shown in Figure

9.1 and the scale-space map is shown in Figure 9.2, The counter has been varied

from zero to 32 (= 2°). As the counter increases the number of vertex points de-
- creases. We find that for ¢ > 15 the number of vertices remains unaltered indicating
the existence of a stable scale. The scale-space map is obtained by combining the
- different sets of vertex points that are obtained through the variation of ¢ as already
- discussed. The curve is described in the clockwise direction starting from the point

 marked with an  on the digital curve of Figure 9.1.

9.2 Scale-space behaviour of corner models and
corner detection

~ In this section we are studying the scale-space behaviour of different corner models,
namely, I' model, END model and STAIR model as presented in {39]. We consider
these models on digital domain where each model is represented by a sequence of

~ integer coordinate points. )
Figure 9.3 shows I' models with different included angles and their respective

scale-space map. As we are considering eight-connected curves, the included angles
~ can only be a multiple of 7/4. As seen from these figures, if the included angle be
- 37/4 then the scale-space map of the model consists of a single line pattern which
vanishes ultimately as the counter increases. If the included angle be either 7/4
or /2 then the scale-space map consists of a persistent line pattern which never
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Figure 9.1: The screwdriver and its polygonal approximation for varying values of
¢, (a) ¢ =8, (b) ¢ > 15. |
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Figure 9.2: Scale-space map of the screwdriver.
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disappears no matter how large the counter is.

Figure 9.4 shows END models with different included angles and their respective
scale-space map. Here too, the included angle can only be multiple of w /4. As
seen from these figures, if both the included angles be 37 /4 then scale-space map
consists of two line patterns one of which survives and the other disappears as the
counter increases. If one angle be 37/4 and the other be either /4 or 7/2 then
also the scale-space map exhibits the same behaviour except that in the former
case (when both the included angles were 37/4) the line pattern which is farther
from the starting point persists, whereas, in the latter case the line pattern that

corresponds to the included angle not equal to 37 /4 only persists. If none of the

included angles be 37/4 then the scale-space map of the END model consists of two
persistent line pattern none of which disappears no matter how large the counter

is, showing that the END model is a combination of two ' models with included
angle other than 37/4.

Figure 9.5 shows STAIR models with different included angles (which can only be
a multiple of 7/4) and their respective scale-space map. As seen from these figures,
if both the included a.ngles- be 37 /4 then the scale-space map of the model consists
of two line patterns both of which vanish as the counter increases. If the leading
arm, the trailing arm and the base consist of equal number of points then both
the line patterns disappear simultaneously, otherwise, one vanishes earlier than the
other depending on the length of the arms and the base of the STAIR. If one of the
included angles be 37/4 and the other be not equal to 37/4 then the scale-space
map consists of two line patterns, but the line pattern corresponding to the angle of
37 /4 disappears and the other persists as the counter increases indefinitely. If none
of the included angles be 37w/4 then the scale-space map consists of two persistent
line patterns none of which disappears no matter how large the counter is, showing
that the STAIR model with included angles other than 37 /4 is a combination of

two I' models with included angle other than 37 /4.
The central problem is how far the counter should be varied. One can observe

that the maximum value of the counter cannot exceed the number of points of the
digital curve. But it is not necessary to make the counter vary upto this limit. To
find the maximum value of the counter we look for a series of adjoining STAIR
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Figure 6.3: T models and their scale-space map. The left figure is a model and right

1§ 1ts scale-space map.
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Figure 9.4: END models and their scale-space map. The left figure is a model and

right is its scale-space map.
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and the right is its scale-space map.
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models (of the digital curve) with included angles equal to 37/4. The maximum
value of the counter can be taken to be equal to the total number of points in this
longest series. This observation is in direct consequence of the scale-space behaviour
of different corner models,

Following the above discussion we derive the following stability criteria for corner
detection from the scale-space map of a digital curve:

1) The lines that persist upto the maximum value of the counter correspond to
corner points,

2) The lines that do not survive all scales (all values of the counter upto its maxi-
mum]) buf in the immediate neighborhood of the persistent lines also correspond to
corner points provided these non-surviving lines are separated from the persistent
lines by more than unit length in the scale-space map.

3) The pair of lines that do not survive all scales correspond to corner points pro-
vided that they are separated by more than unit length in the scale-space map.

These stability criteria are the direct consequence of the scale-space behaviour
of different corner models.

In order to detect corners from a digital curve, a scale-space map of the digital
curve is constructed and the corners are detected and located by analyzing the scale-
space map with the help of the stability criteria. The corners that are detected by
this process are not necessarily true corners, some of them may be redundant due
to quantization noise and boundary noise. In order to remove these redundant
corners we introduce a two-stage cleaning process. At the first stage, 1f two points
p; and p;4 of a digital curve appear as corner points then the point p; is retained
and p;., is discarded. At the second stage, at each corner point we find out the
perpendicular distance of the corner point from the line joining the two adjacent
corner points. If this distance exceeds unity then the corner point is retained,
otherwise it is discarded. This threshold unity is selected based on the fact that
a slanted straight line i quantized into a set of either horizontal or vertical line
segments separated by one pixel steps. In addition, we assume that the boundary
noise are no more than one pixel, and if the noise level is known a priors then this

threshold can be adjusted accordingly [39].
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Figure 9.6: The chromosome shaped curve. The corners are indicated by bold solid
circles. {a) Present method, (b) Rattarangsi-Chin method.

Figure 9,7: The figure-8 curve. The corners are indicated by bold solid circles. (a)
Present method, (b) Rattarangsi-Chin method.
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Figure 9.8: The leaf-shaped curve. The corners are indicated by bold solid circies.
(a) Present method, (b) Rattarangsi-Chin method.
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" Figure 9.9: The curve with four semi-circies. The corners are indicated by bold
~ solid circles. (a) Present method, (b) Rattarangsi-Chin method.
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9.3 Experimental results

The corner detector developed in this chapter is applied on four digital curves as
shown in Figures 9.6 through 9.9. The corners are indicated by bold solid circles.
These figures also show the results obtained by the Rattarangsi-Chin algorithm [39].
We find that our corner detector detects more corner points than the Rattarangsi-
Chin algorithm.
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Chapter 10

Scale-space analysis and corner
detection using iterative Gaussian

smoothing with constant window

size

The scale-space analysis and corner detection scheme presented in the last chapter
holds for digital curves with uniformly spaced points only. The scale-space analysis
does not involve convolution of a curve with a smoothing kernel, Corner detection is
done without estimating curvature. In this chapter we propose another scale-space
analysis technique followed by corner detection. The procedure involves convolution
of a digital curve with a smoothing kernel, Corner detection is done via curvature
estimation. The scale-space analysis and corner detection scheme holds for digital
curves with uniformly as well as non-uniformly spaced points.

Rattarangsi and Chin |39] make scale-space analysis using Gaussian kernel with
varying window size. So the space requirements for the Gaussian filter coefficients
is of the order of the square of data size. In this chapter we present an alternative
approach to scale-space analysis followed by corner detection using iterative Gaus-
sian smoothing with constant window size. As the window size is held constant,
the space requirements for the Gaussian filter coefficients is finite and independent
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of data size. In the following sections we present the iterative Gaussian smoothing
process, show its convergence and determine the maximum number of iterations
that can be performed on a closed digital curve without wrap around effects. A
scale-space map showing the location of the maxima of absolute curvature at vary-
ing iteration scale is proposed. The map is shown to enjoy scale-space property. An
analysis of the scale-space behavior of corner models is presented. The scale-space
map of a digital curve is converted into a tree representation and corners are de-
tected and located in a process of interpreting the tree. The space requirements and
the computational load is discussed and compared with the most recent work (39].

Experimental results are presented to show the performance of the corner detector.

10.1 Gaussian smoothing and curvature measure-

ment

For a continuous and smooth curve, the curvature at a point is defined as the rate
change of tangential angle (1) with respect to the arc length (s). So the curvature

at an arc length of s is given by

dy
== — 10.1
K= (10.1)
In the Cartesian coordinate system, if the equation of the curve is described by

y = f(x), the curvature at a point (z, y) is given by

iy
k(z) = dz* — - (10.2)
(1+(3)Y

If the equation of the curve is expressed parametrically with the arc length s as

the parameter so that the curve is described by z = z(s) and y = y(s) then the

curvature at a point s is given by

ds  ds? ds ‘ (10.3)
2

But



S0 ,
dz,”  dy?
(E.;) | (d.s) =1

and
dy dz  d*z dy

K(8) = —

(4) ds? ds  ds? ds
The curve (z(s), y(s)) that arise in computer vision and other allied prob-

lems may be continuous but' net smooth (a digital curve is neither continuous nor

(10.4)

smooth). So smoothing is, in general necessary before we detect the significant local
events of a curve. Smoothing is usually done with the Gaussian kernel as it has
some attractive properties (7], [64]. To smooth a curve (z(s},y(s)) it is convolved

with the Gaussian kernel

1
e 1% 00 <5< too. (10.5)

9(3: CT) = \/2—?1_0_

We assume that the curve in question is closed with arc length S sothat 0 < s < S

and the parameter o is sufficiently small so that three times o does not exceed S/2
so as to avoid aliasing effects. The convolution of {z(s), y(s)} with the Gaussian
kernel (10.5) is defined by

X(s, o) z(s) * g(s, o)

8+5 /2
f 5/ z(u) g(s —u, o) du, (10.6)
u=2a—5/%

)

Y (s, o) y(s) * g(s, o)

a45/2
/ + /S/ y(u] g(s - U, 0') dﬂ- . (10.7)
u=a—ajf2

I}

]

As g(s, o) is maximally often differentiable and the convolution and differentiation
are commutative so the derivatives of X{s, ¢) and Y (s, o) with respect to s do exist

and in particular, their first and second derivatives are given by

dX o(s) dg(s, o)

i

ds | (d.S ) 1

Y dg(s, o

= : 10.8
s y(&) * ds ( )
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d*X ) d*g(s, o)

3}5 = o{s)* ———=,
d*g(s, o
77 = Y[8) - QL, ! (10.9)

And the curvature of the Gaussian smoothed curve is given by

_d’Y dX d*X dY
ds? ds ds? ds

Rattarangsi and Chin [39) find the first and second order derivatives of x(8, o) with

respect to s to locate the extreme curvature points for varying . Since the Gaussian

k(s,,0) =

(10.10)

kernel has negligible contribution beyond the 3¢ limits hence the maximum value
upto which the parameter ¢ is to be varied is determined by 30,,,, = S/2 which
leads to 0,z = 5/6 50 as to avoid aliasing effects [39).

10.2 Iterative Gaussian smoothing

- To convolve a digital curve with the Gaussian kernel, Rattarangsi and Chin [39) use
the digital Gaussian filter coefficients of [10] namely, ¢_; = 0.2236, ¢co = 0.5477 and
¢; = 0.2236 for window size w = 3. These filter coefficients have been mentioned in
{29} and [11] as the best approximation of the Gaussian distribution for w = 3. The

digital Gaussian filter coefficients for window size higher than w = 3 are obtained by
repeated convolutions of these coefficients with themselves, The maximum window
size should not exceed the length of the curve so as to avoid the wrap around
effects. Kach window size corresponds to a specific value of the parameter o of the
Gaussian distribution. The greater the window size is, the higher is the value of the
parameter,

In this chapter we make an alternative approach to the problem. Instead of
smoothing the curve with varying window size, we repeatedly convolve the curve
keeping the window size constant at w = 3. This approach has an advantage over
that presented in [39]. In the later approach as the varying window size is used, the
space requirements by the Gaussian filter coefficients is of the order of square of data
size. But in the present approach the space requirements by the filter coeflicients
is finite, small and does not depend on data size. Moreover, it is shown later that
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the computational load of the smoothing process in the Rattarangsi and Chin (39}
algorithm is O(n?) whereas in the present approach it is O(n).

The iterative convolution is performed with the digital Gaussian filter coefficients
c-1 = 0.2236, ¢o = 0.5477 and ¢; = 0.2236 using the iterative process

1

Xi= ) Xiim Om

" m=-—1
1

B o= Y Yhle,. (10.11)
m=—1

(X}, Y;) denote the Gaussian smoothed coordinates of the sth point (z;, ;) at the
tth iteration, ¢t =1,2,3,..;and X) =2;, Y =4,1=1,2,8,..., n.

Though Saint-Marc et al. [52] use repeated weighted averaging process but they
do not use the Gaussian filter coefficients. The kernel they use depends on input
data. The kernel involves gradient of the signal, As gradient is orientation depen-
dent so the smoothing process too, will depend on the orientation of the signal. A
particular point of a signal will be subjected to different degree of smoothing for
different orientation of the signal. But it is essential that the extent of smoothing
should not depend on the orientation of the signal. On the other hand the Gaus-
sian kernel is shift invariant (does not depend on data). The degree of smoothing

subjected to a curve /signal depends only on the Gaussian filter coefficients.

10.3 Convergence

The repeated convolution of a digital curve with the digital Gaussian filter coeffi-

cients can be written in the matrix form as

Xt =AX"! and Y'=AY"! (10.12)

98



where A is the convolution matrix of order (n + 2) x (n + 2) given by

0_1 ﬂﬁ J

and
X =,_[.X;,Xi, X;:"'! X;,X{],

Y = [Y:, Yf, Y;,..., Y:, Ylt]

are the column matrices of order n + 2. The iterative process will converge if for
some norm, A satisfies | A|| < 1. Since the infinity norm of a matrix is simply the
maximum sum of the moduli of the elements of the matrix, hence the infinity norm
of the convolution matrix A is ||A||le = ¢_1 + ¢g + €1 < 1. Again, the largest of the
moduli of the eigen values of a square matrix cannot exceed its infinity norm i.e.

p{A) < ||A|le- So the 2 — norm of the matrix A is also bounded by unity. So the

convolution process converges as || Al < 1 [52].

10.4 Maximum number of iteration

For a closed digital curve with n points the number of iterations is determined by
the data size n in order to avoid the aliasing effects. If the curve has an odd number
of peints (n odd) then the maximum number of iterations that can be performed
is (n — 1)/2 and if n be even then the maximum number of iterations that can be
performed is n/2 — 1.

To show this we decompose the Gaussian smoothed coordinates (X}, Y}) in terms
of (z¢, ;). For this analysis we propose to write ¢c_; = ¢1,, ¢g = ¢j and ¢; = ¢}. So

1
-1 .1
X: = Z Xi-l-mcm

m=-1
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+m cm
m=—]
But
i
-1 —3
X: — E X:f-m G:‘,‘
m=—]
S0
a
— -2 .1
Xit_' E X:+m. Con
Mmese-2
where

2 _ 1 2 a1l 9 1 1
C_ g = C_y, c__l—-Zf:ﬂc___l,cD:c_j +cn+c}, cf=2¢éc}, cg':c}.

Decomposing X~? in terms of Xt~ we get

¢, i8 a homogeneous function of ¢_y, ¢y and ¢; of degree 3, for each value of m =
-3, -2, =1, 0, 1, 2, 3. So using mathematical induction, at the /th decomposition

we get,

where ¢! is a homogeneous function of ¢_;, ¢; and ¢; of degree [, So X} in terms

of H oy is

f
P __ ¢ —_
Xf s—_— z x-i.f.m ﬂm, t — ].f 2, NN

m=—¢

where ¢, is a homogeneous function of ¢.y, ¢, ¢; of degree ¢. Similarly,

}
Vi Y wimdh, t=12,.

m=-{
This result shows that at any iteration ¢ the iterative convolution process actually

takes into account the effects of the points § —¢, { —t+ 1,00 =1, 8, £+ 1., 41—
1, t+¢. So in order that a particular point of a curve is not evaluated twice during the

convolution process i.e. to avoid the aliasing effects, none of the member of the set.
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{i—t, ¢—t+1,..., t—1} should be a member of the set {141, ¢+2,., +t—1, t+1}
and vice-versa. This condition is satisfied if and only if

bmnaz = nf2-1, n even

= (n—1)/2, n odd. (10.13)

So the maximum number of iterations that can be performed on a closed digital
curve with n points is

1l

nf2-1, neven

(n—1)/2, n odd, (10.14)

tmaz

{

Though Saint-Marc et al. [52] has shown the convergence (which is too slow) of
their iterative process but they could not suggest the number of iterations that
should be performed on a closed digital curve.

For open digital curves the number of iterations to be performed should be so
chosen that the end effects do not come into play. This can be done bjf choosing
tmaz properly; so that it does not exceed the number of points on the right / left of
any point being convolved. One can as well take the open curve to be sufficiently

large so that one can perform a large number of iterations.

10.5 Curvature estimation and scale-space map

To compute the curvature at a point of a digital curve Rattarangsi and Chin [39]

define the first and second order finite differences of (z;, ¥:) a3

i+t — Xi-
Az; = +1= = = (10.15)
(:B,'.i..l — xi-—l) + (yH-l - yf-l)
YVi41 — Yi-1
Ay = 2 = ]2 , (10.16)
\/ (Tit1 —zi-1)" + (Y — Yi1
Tif 1Ty oy e Zi __ﬂw
Az (-":1'-{-1*-:-‘5.:)5'-!-(!:'1'-1-1-I.If:']"I \/E”""i)iﬂw_w“’]i , (10.17)
| %\/(EHI ~ 5:'—-1)2 T (yi+1 - yi-l)
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(If—l;‘_l)g +(F1'_§'|'-—l J 1

Aiyi —. (”H‘l _=51+(P¢’+1 _y#')n

1 10.18
i\/(xiﬂ - -"3-'—-1)1 + (Yit1 — !,f'«'—l)2 ( )

and the curvature measure is given by
k= Az Ay~ Ay Alz. (10.19)

We use these expressions for. Az, Ay, Az, A?y and & with (z, y) being replaced
by the corresponding Ga.ussia.n smoothed coordinates (X', Y). So the curvature
measure of the Gaussian smoothed curve at the ¢th iteration and at the sth point
is given by

& = AX; A'Y} - AY! AYXY, (10.20)

At each iteration t = 1, 2, 3,... the local maxima of the absolute curvature | x§ | are
detected. For a fixed ¢, the value ¢ for which | k! | exceeds | x¢_, | and | &%, , | gives the
location of a local maximum of the absolute curvature, As the iteration proceeds
different sets of absolute curvature maxima for different values of # are obtained.
These information are integrated in the form of a scale-space map of the digital
curve, Along the z—axis (horizontal) the ordinal number ¢ of the points is shown,
along the y—axis (vertical) the number of iterations ¢ is shown. As the iteration
proceeds location of the maxima of absolute curvature are plotted on the zy half
plane. The dot diagram showing the location of the absolute curvature maxima at
different iterations is a scale-space map which we propose to call fterative Gaussian
scale-space map. The map consists of a series of dot patterns some of which grow
reaching the maximum iteration scale and some other terminate as the iteration
scale increases. A pair of dot patterns may grow and merge to become a single
dot pattern which may reach the maximum iteration scale. The dot patterns that
survive the maximum number of iterations are indicative of those local maxima
which are detected at all levels of detail, fine as well as coarse. The dot patterns
that appear but terminate after a number of iterations are indicative of those local
maxima that are detected at fine levels of detail but disappear as the degree of
smoothing increases. The dot patterns that appear at all scales are the more com-
pelling determiners of the global shape of a curve than those that appear at fine
scales but disappear as the iteration scale increases, As the iterations proceed the
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dot patterns either remain stationary or interact with each other. Two neighboring
dot patterns may either attract or repel,

A number of digital curves and their scale-space map are shown in Figures 10.1
through 10.4. The starting point is indicated with an /" on each digital curve
and the curve is described in the clockwise direction. The scale-space map of each
curve consists of an aggregate of dot patterns some of which persist surviving the
maximum iteration scale and some other disappear as the iteration proceeds, Two
dot patterns may interact either attracting or repelling each other. Some of the

dot patterns merge to become a single dot pattern which may persist and reach the
maximum number of iteration,

10.6 Scale-space property

The digital Gaussian filter coefficients ¢_;, ¢g and ¢, satisfy the scale-space property
which demands that the number of local maxima of absolute curvature should not
increase as the iteration scale increases. This conjecture follows from a proposition
presented in [27] which states that a three-kernel with positive elements ¢y, ¢g and
¢; is a scale-space kernel if and only if ¢g? > 4cje—;. We find that the coefficients
¢_1, €o and ¢, are all positive and the relation ¢;* > 4c¢yc..; is satisfied. As the digital

curve is iteratively convolved with the same kernel, at each iteration the scale-space

property is preserved,

10.7 Scale-space behavior of corner models

In this section we propose to make an analysis of the scale-space behavior of isolated
corner models, namely I' model, END mode!l and STAIR model as presented in the
last chapter. The models being open curves, the curvature measurements on them
are affected by the ends of the curve. In order to avoid the end effects the arm length
of the models (given by the number of points on the leading and the trailing side
of the model) is taken to be sufficiently large (each side of the model should consist
of at least 100 points) so that 100 iterations can be performed on each model. The
search for extrema is restricted in the neighborhood of the angular points of the
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Figure 10.1: The chromosome shaped curve (top left), its scale-space map (top
- right) and tree organization (bottom). |
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Figure 10.2: The figure-8 curve (top left), its scale-space map (top right) and tree

organization (bottom).
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Flguzfe 10.3: The leaf-shaped curve (top left), its scale-space map (top right) and

tree organization (bottom).
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Figure 10.4: The curve with four semi-circles (top left), its scale-space map (top

right} and tree organization (bottom).
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model. In order to avoid the spurious numerical absolute curvature maxima, a very
small input threshold 0.0001 is used. An absolute curvature maxima is regarded
as a true maximum if the absolute curvature exceeds 0.0001. The scale-space map
of a model is constructed neglecting the spurious numerical maxima of absolute
curvature and restricting the search for true extrema near the angular point(s) of
the models. The map shows the location of the true absolute curvature maxima
over the iteration scales.

Figure 10.5 shows I' models with different included angles and their scale-space
map. As seen from these figures, the scale-space map of a I' model with included
angle w/2 consists of a single persistent and stationary dot pattern located at the
angular point of the model. The scale-space map of a I' model with included angle
of either 7 /4 or 37 /4, too consists of a Single persistent dot pattern located at the
angular point of the model. The dot pattern is not stationary. It exhibits movement
as the iteration scale increases.

Figure 10.6 shows END models with different included angles and their scale-
space map. The scale-space map of an END model with both the included angles
equal to 7 /2 (Figure 10.6(a)) initially consists of two dot patterns each located at the
angular points of the model. But as the iteration proceeds, the two dot patterns
merge to become a single persistent dot pattern. The persistent dot pattern is
stationary if the number of points forming the width of the END model is odd,
otherwise it exhibits an oscillatory movement (see Figure 10.6(b)). Figure 10.6(c)
shows another END model with both the included angles equal to 7/2 but the
width of this model is half the width of the model in Figure 10.6(a). The scale-
space map of this model exhibits the same behavior as that of the former, but as
the width is smaller the dot patterns of its scale-space map merge faster than those
of the former. Figure 10.6(d) shows an END model with both the included angles
equal to 7/4 and 10.6(e) shows another END model with both the included angles
equal to 37 /4. The scale-space map of either of these models is similar to that of
the END model in Figure 10.6(a). Figure 10.6(f) shows an END model with one
angle equals to /4 and the other m/2. The scale-space map initially shows two
dot patterns located at the angular points of the model. As the iteration proceeds
the dot patterns attract each other but they do not merge. The dot pattern at the
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Figure 10.5: T' models and their scale-space map. The left figure is the model and

the right is its scale-space map.
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Figure 10.5: Continued,
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(b)

Figure 10.6: END models and their scale-space map. The left figure is the model

and the right is its scale-space map.
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(b)

Figure 10.7: STAIR models and their scale-space map. The left figure is the model

and the right is its scale-space map.
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weaker corner (angle= 7/2) terminates whereas the other persists. Figure 10.6(g)
shows an END model with one angle 7/4 and the other 37 /4. Figure 10.6(h) shows
another END model with one angle /2 and the other 37/4. The scale-space map
of either of these models is similar to that of the model in Figure 10.8(f).

Figure 10.7 shows STAIR models with different included angles and their scale-
space map. Figure 10,7(a) shows a STAIR model with both the included angles
equal to 7/2. The scale-space map consists of two persistent dot patterns located
at the angular points of the model. The dot patterns repel each other as the iteration
scale increases. Figure 10.7(b) shows another STAIR model with both angles equal
to 7/2 but with width half that of the model in Figure 10.7(a). The scale-space
map of the model is almost similar to that of the model in Figure 10.7(a) but as the
width of this model is smaller the dot patterns repel earlier. Figure 10.7(c) shows
a STAIR model with both the included angles equal to 37/4. The scale-space map
consists of two persistent dot patterns each located at the angular points of the
model. The dot patterns initially attract each other but sﬁbsequently repel as the
iteration proceeds. Figure 10.7(d) shows another STAIR model with both angles
equal to w/4. The scale-space map consists of two persistent dot patterns located at
the angular points of the model. The dot patterns initially attract each other but
remain separated without being merged as the iteration proceeds., Figure 10.7(e)
shows a STAIR model with one angle equals to 7/4 and the other 7 [2, Figure
10.7(f) shows a STAIR model with one angle equals to 7/4 and the other 3x /4
and Figure 10.7(g) shows a STAIR model with one angle equals to r/2 and the
other 37 /4. The scale-space map of each of these models consists of two persistent
dot patterns located at the angular points of the model, The dot patterns initially
attract eacn other for once only but subsequently repel as the iteration proceeds.

From the above discussion we conclude that the scale-space map of a I' model

consists of a amgie persistent dot pattern which may either be stationary or may
e iteration scale increases. The scale-space map of an END

exhibit movement as th
model initially consists of two dot patterns located at the angular points of the

model. If both the included angles be equal then as the iteration proceeds, the

two dot patterns attract each other and merge to become a single dot pattern

which may be stationary. If the angles be different then as the iteration proceeds

119



ke el o e S e By e gl g S ol i e e L N o e g P S o - g e e O B i

L L e e o i ot e R e L o L gk - BT e M
- gy g T W Y W - o o -
[ 1 Kl

- Ll

[P [ A S .l._l.l.-.l_.l.ll-.l_lll.llll_l._l_.l.l..l.-_

L ]
g e ™ T T el e Bl e - e S - g T [T ke el e -y "

LU R E e Ny N TR Y o [ 1 9 LA B3 ¥ L3 N,

T4 1
rhe o A O o O O o e R gy B " O
-

B ol W ol by gy’ e e gy ey ey S o TR W OB R W TN BN B g g N CEE AN B o B A e Wl gy A A Ny e

= — =5y 7 7 [ 11 -l IS e e T
e . I E o S N = e T e I e i LI - - R v W - B o BT O ok g SR Y Rl NN b ke gy S A e ke ™ W A ey
L
u
= 4
n "
L] 4
- . 4
- - L
. -
VR . *
- . . :
i - L ]
L - ' ”
- L L .
o+ L] L] ".
L} L] - -
- [ ] L] n
n ] r -
L . L] )
] - L] -
r L - a
- b -
. - L] *
] » ] -
- .-_..._. - -
]
1 Y a . .
- ]
- " . :
- - * ]
: = " *
- L [ ] =
- - * -
* L n
- - .-_.-. ]
L] L]
& - L H
- - - L
L | - - -
L J . [ ] - -
L] - N L 8
-
-
- -
- -
- I.l - -
w - - ir
L - L] -
- - & -
T . L "
- - L3 L]
] - -
- - - L
* - - L]
-
- _s_l - »
- L]
AR B ALY FEP S R RS AR Ay AR A A FF PR TAERE R _-..l.l.lH H - = -
w a & L - »
o+ - - - - =
L 3 [] L ] -
- L L] . . - -
- " - - - n
-t - - - - »
a » L] L] [ ]
- - a = -
r - - - * +
" ™ - L] - [ 3
" & o L | -
* - - - ’
b - - L ] -
a [ - L] - w
& & - - - .
- - = - = »
- 1 3 LY - L3 -
L] - L r - u
- - - - [ *
- L] - [ ] -
=+ - - - -
- [ ] - - L ] [ ]
[ . -, - - -
- L ] L] - [ ]
el L L L] ]
- ] L] - -
* M L] a L] *
- L] 1 . -
- " - L F =
- - . * . -
L] - . . - -
L - - L] -
- .". I.l - o +
] - - . - -
p = . . " :
L] ]
bl . - - - a
- - - - n
L] * s = L ]
- - * P . -
" - - - - -
- -
M - . " = -
“ - - u “ .
- - - ol -
L] I
- ] -
L i -
“. L |
-

TTTRIEE TR AR R LS B ] arsapadttrty st rrnpnydrrndkunnw
T TR I T ALl T AR LY (I E R LR L LR L b L

A number of polygons and their scale-space map.
120

Figure 10.8



o ok e - I iy e R

[E 3 1 N | Py F |

Ly e N i N e B N M O O R b ey e el iy O

LI L]
[
el ey -y B S A e oy g - I.'..l-ll.l.ll.l..llt-l...l.ll..l.-.ll_...ll... o -
L Lo J 1 1 F*F 0 LR T | .l._l.-._l.l:l_l_l__l_..r -
12 L]
L 3
e P - iy - g B B B i e i P S T ! W i [———
ey ey ™ L S eyl
A o e A A —

s

. Continued.

Figure 10.8

121



though the dot patterns initially attract each other but the one at the weaker corner
terminates and the other persists, The scale-space map of a STAIR model consists
of two persistent dot patterns located at the angular points of the model. The dot
patterns may either repel each other or may initially attract each other for once
only but subsequently repel. The dot patterns do not merge nor do they disappear. I

The models that have been analysed are single and double corner models, There
is no explicit analysis of models that consist of more than two corners. In order to
give the reader a perspective of the scale-space behavior of models that consist of
more than two corners, a number of polygons and their scale-space map are shown
in Figure 10.8. These maps are in conformity with the scale-space behavior of the
models that have been analysed.

- 10.8 Tree organization and corner detection

- To detect corners on digital curves, a tree representation similar to that in [61] and
[39] is constructed from the scale-space map of a curve. The dot patterns that are
caused by extremely low absolute curvature (below 0.0001) are removed from the
map. After this cleaning process, for each dot patiern a vertical line located at the
finest scale location of the dot pattern is drawn. If two dot patterns merge to become
a single dot pattern then two vertical lines located at the finest scale location of
the two dot patterns are drawn and a single vertical line located at the merging
scale of the two dot patterns is also drawn. The three vertical lines are joined by
a horizontal line. Each of the non-surviving vertical lines is joined by a horizontal
line to its nearest immediately more persistéﬁt vertical line. The persistency of a
vertical line is measured by its height from the z—axis. A non-surviving vertical
line L; (say) is joined to its nearest vertical line L, (say) if and only if the height of
L, from the z—axis is immediately greater than that of L. This tree construction
method is based on the assumption that each dot pattern is influenced most by
its nearest and immediately more persistent dot pattern. The tree organization of
two END models are shown in Figure 10.9. The tree organization of a number_ of
digital curves are shown in Figures 10.1 through 10,4. We note that this method of

construction of tree is simp]er tha.n that in [39].
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Figure 10.9: Tree organization of the scale-space map of two END models. The [eft
Bigure is a scale-space map and the right its tree organization.
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A tree consists of a root and numerous branches and leaves. To parse a tree the
length of its root, branches and leaves are measured. A tree consisting of a single
root only corresponds to a corner point located at the foot of the root. For a tree
with offspring the length of the root is compared with the height of its offspring
which is defined as the vertical distance between the branching point of the tree and
the z—axis. If the root length does not fall below the height of the offspring then the
root only corresponds to a corner located at the point of orthogonal projection of the
root. Otherwise the search for corners proceeds to the offspring. If an offspring is
a leaf whose length is greater than that of its parent then the offspring corresponds
to a corner located at the location of the leaf at the finest scale. If an offspring has
its own offspring then the search for corner is applied to this family of tree and the
searching process is similar to that already described for a tree with offspring. This
searching process continues until all branches and leaves of a tree are evaluated.
Each tree of the tree organization of a scale-space map is evaluated in the similar
manner. This tree parsing method has similarities as well as dissimilarities to that
in [39]. In Figures 10.1 through 10.4 the limbs of the tree organization representing

corners are indicated by bold lines.,

10.9 Space requirements and computational load

In the Rattarangsi-Chin algorithm [39] as the varying window size is used the space
requirements by the Gaussian filter coefficients is different for different window size.
The space requirements () is exactly equal to the window size (w). The window
size is varied in arithmetic progression whose first term is 3, common difference is
2 and the last term is is n — 1, when n is even and n, when n is odd. The number

of terms of the progression is n/2 — 1, when n is even and (n —1)/2, when n is odd.
So the total space requirements by the filter coefficients is
Y s = (n—-2)(n+2)/4, when niscven
= (n—1){n+3)/4, when n is odd. ~ {10.21)

In the present approach as the constant window size w = 3 is used, the space
" requirements by the filter coefficients is small and finite (= 3). This shows that the
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present approach reduces the space requirements considerably. In the Rattarangsi-
Chin algorithm the space requirements is O(n*) whereas, in the present approach
the space requirements does not depend on the data size, it is small and finite,

To determine the computational load we note that the smoothing process in
[39] and in the present approach are parallel in nature. So in order to compare the
computational load of either of the Bmoothiné processes, it is sufficient to determine
the same at each point. In the Rattarangsi-Chin smoothing process, for a window
size of w = 3, the number of multiplications(m) and additions{a) required are m = 3
and a = 2, for a window size of w = 5, m = 5 and a = 4, for a window size of
w =17 m=17and a = 6 and so on for higher window size. For a window size
of w = 27 + 1 which should not exceed the length of the curve, the number of
multiplications required is m = 27 + 1 and the number of additions is a = 25. This
shows that the number multiplications as well as additions each form an arithmetic
progression. For a digital curve with n points the number of terms in each series
is (n — 1)/2, when n is odd and n/2 — 1, when n is even. So the total number of

multiplications and additions required are

Y m

|

(n — 1)(n +3)/4, when n isodd
(r — 2)(n +2)/4, when n is even (10.22)

§

and

Sa = (n—1)(n+1)/4, whenn tsodd
= n(n—2)/4,  when nis even. (10.23)

So the total number of arithmetic operations required at the smoothing stage is
(n? + n — 2)/2, when n is odd and it is (n? — n — 2)/2, when n is even. So the
computational load of the smoothing process in (39} is O(n?) at each point.

In the present approach at each iteration and at each point, the number of
multiplications and additions required are m = 3 and a = 2. It has already been

shown that the number of iterations to be performed on a digital curve is (n—1)/2,
when n is odd and it is n/2 — 1, when n is even. So the total number of arithmetic

- operations required by the iterative smoothing process is (5n —5)/2, when n is odd
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and it is (5n — 10)/2, when n is even, So the computational load of the iterative
smoothing process is O(n) at each point.

10.10 Experimental results

The corner detector developgd in this chapter is applied on the same digital curves
as in the last chapter, The corner points are indicated by bold solid circles on each
curve. These are shown in Figures 10.10 through 10,13, These figures also show
the corner points as obtained by the Rattarangsi-Chin algorithm [39]. From these
results it is found that the corner detector developed in this chapter detects more
corner points than the Rattarangsi-Chin algorithm,

To show the robustness of the corner detector to noise, white Gaussian noise is
added to the digital leaf making the noise level o vary from 0.5 to 2.5 in an interval
of 0.5. The noisy curves are shown in Figure 10.14 indicating the corner points
on them by bold solid circles. From these results we find that as the noise level
increases no additional corner point is detected. The location of the corner points

on the noisy curves is comparable to that on the original image.
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(2) (b)

Figure 10.10; The chromosome shaped curve, The corners are indicated by bold
solid circles. (a) Present method, (b) Rattarangsi-Chin method.

(a) . (b)

Figure 10.11; The figure-8 curve. The corners are indicated by bnld solid circles.

(a) Present method, (b) Rattarangsi-Chin .method.
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Figure 10.12: The leaf-shaped curve, The corners are indicated by bold solid circles.
(a) Present method, (b) Rattarangsi-Chin method.
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solid circles. (a) Present method, (b) Rattarangsi-Chin method.
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Chapter 11

Scale-space analysis and corner

detection using discrete

scale-space kernel

The Gaussian kernel is by its very nature applicable to continuous signals and
curves. Babaud et al. [7] has proved that in a broad class of functions Gaussian
kernel enjoys scale-space pmperty while convolving it with continuous signals and
curves. Lindeberg [27] observes that in order to apply this kernel to digital sig-
nals / curves it is necessary to discretise it properly otherwise scale-space property
may not be preserved. Rattarangsi and Chin [39] use the digital Gaussian filter co-
efficients of [10] namely, ¢_; = ¢; = 0.2236 and ¢y = 0.5477 for window size w = 3.
These filter coefficients have been mentioned in |29} and [11] as the best approxima-
tion of the Gaussian distribution for window size w = 3. The digital Gaussian filter
coefficients for window size w = 27 4-1, 7 > 1 are generated by convolution of these
coefficients with themselves for j times, Using discrete scale-space theory devel-
oped by Lindeberg [27] we have shown in the last chapter that the digital Gaussian
filter coefficients used by Rattarangsi and Chin [39] do satisfy scale-space property.
Since convolution of a scale-space kernel with another scale-space kernel generates
a scale-space kernel {27] so the digital Gaussian filter coefficients for window size
higher than w = 3 generated by Rattarangsi and Chin [39] do satisfy scale-space

property.
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The essence of scale-space theory is not only to preserve scale-space property but
to keep a provision for allowing arbitrary amount of smoothing. In scale-space anal-
ysis with digital Gaussian filter coefficients with varying window size, each window
length corresponds to a specific value of ¢. If for two successive window length of w
and w + 3 the corresponding values of o be oy, and o3 then it is not possible to im-
part a digital curve a degree of smoothing corresponding to an arbitrary o satisfying
Op < 0 < Oyw+s. In the iterative Gaussian smoothing which we have presented in
the last chapter each iteration corresponds to a specific degree of smoothing, Since
the iteration scale is discrete in nature hence the amount of smoothing is also dis-
cretised. So in Gaussian smoothing with digital filter coefficients it is not possible
to smooth a digital curve by an arbitrary amount, if desired.

Instead of discretising the Gaussian kernel Lindeberg {27 has developed a gen-
uinely discrete theory for scale-space analysis of discrete signals and curves with a
continuous scale parameter, Starting from a two-kernel having scale-space property
he has obtained a generalized binomial kernel with finite support. He has also sug-
gested the form of a discrete scale-space kernel with infinite support. Introducing
the semi-group property and the symmetric property he has concluded that for dis-

crete signals the most reasonable discrete scale-space kernel with a continuous scale

parameter £ is
T(n;t) = e~*L,(t), t>0 | (11.1)

and I,,(¢) is the modified Bessel function of integer order. In this chapter we propose
to show the application of the kernel T'(n;t) to scale-space analysis of 2 — D digital
curves followed by its application to corner detection., A 2 — D digital curve is
deccmposed into two 1 — D signals. Each signal is convolved with the kernel T'(n;?).
The extreme curvature points are located at varying {. The scale-space map showing
the movement of the curvature extrema over varying ¢ is used to detect and locate
“the corners. The numerical problems that arise in the implementation are addressed

in sequence and solutions are proposed.
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11.1 (GGeneration of filter Coefﬁcients

To convolve a digital curve with the kernel (11.1) it is necessary to generate the filter
coefficients T'(n;t) = T(—n;t) for different values of n and at varying t. The function
sub-programs generating Iy(t), I;(t) and I,(t), n > 2 are available in Numerical
Recipes [37]. So one obvious attempt to generate the filter coefficients T(n;¢) is to
make use of these function sub-programs. Unfortunately in this approach as the
values of ¢ increases arithmetic overflow occurs and the system fails to generate
T'(n;t) for large ¢. But a careful observation into the function sub-programs of [37]
generating Iy(t) and Iy(t) reveals that both Iy(t) and Iy(t) involve ¢ for t > 3.75.
This exponential function is responsible for arithmetic overflow. As ¢ increases ef
increases catastrophically, But we observe that T'(n;t) involves e™*. So in order to
generate T'(0;¢) and T'(1;¢) for t > 3.75 we omit the term e* from the function sub-
program of Ip(t) and I;(¢) and consequently these function sub-programs generate
T(0;t) and T(1;¢) for t > 3.75. To generate T'(0;t) and T(1;t) for 0 < ¢t < 3.75
each of the functions Iy(t) and I;(¢) is multiplied by e~* so that the function sub-
programs generating Io(t) and Iy(t) for 0 < ¢t < 3.75 return T(0;¢) and T(1;¢) for
0 < ¢ < 3.75. The modified function sub-programs generating T'(0;t), T'(1;¢) and
T(n;t) for n > 2 are given in the Appendix . These function sub-programs are
similar to those available in Numerical Recipes {37] except for the modifications
that have been suggested here to avoid arithmetic overflow,

The function sub-program generating T'(n;t) involves a parameter "face”. In the
function sub-program available in Numerical Recipes [37] this parameter was set to
40. We have changed this value to 400 so as to attain the desired accuracy. Larger
values of "tacc” were tested but the final results were found to be insensitive to it.

11.2 Truncation of smootﬁing kernell

A 2— D digital curve can be decomposed into two 1— D signals namely, z; denoting
the z—coordinate and y; denoting the y—coordinate of the tth point of the curve.
Each of these 1 — D signals is convolved with the kernel T'(n;£). At the first place

we assume that the curve is open and has infinite length. The convolution of z; and
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y; with T'(n;t) is defined by

o0

Xi(t) = ; T(n;t) Tjn,
Yi(t) = i T(nit) gion. _ (11.2)

To generate X;(t) and Y;(t) the infinite sum on the right hand side of (11.2)
should be approximated by a finite one. Following the arguments in [27] a reasonable

approach to approximate the infinite sum is to truncate it for some sufficiently large
value of n, N (say)

N

Xi(t) = ;N T(n;t) Ti-p
Yi(t) = iNT(n; t) Yi—-n» (11“?;)

chosen such that the absolute error in X;(t} and Y;(¢) due to truncation does not

exceed a given error limit €;un.. If we assume that both z; and y; are bounded

functions and
maz(|z; |) = M1, maz(|y; |) = M2 and M = maz(M1, M2)

then we get the sufficiency condition

OO

2M > T(njt) < €rune- (11.4)
n=N+1

So in order to determine the number of filter roeflicients that must be generated
for a given ¢ to satisfy (11.4) we go on generating the filter coefficients T'(n;t) for
increasing n. The exact number of filter coefficients required is the maximum n

satisfying the condition

N

S T(n;t) 2 1 — €rune/M. (11.5)
n=—N

The problem of the choice of €yns has not been addressed by Lindeberg in 127].
We observe that for a given €yune , M may be such that €irunc /M falls below 10.0e -6
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and visa-versa. But as seen from the function sub-programs generating T'(0;t) and
T'(1;t) both Iy(t) and Iy(t) are polynomial approximations. The minimum of the
- absolute error in approximating Io(¢) and I (t) is of the order of 10e — 7 [1]. So
the sum Y5 _y T(n;t) can never be correct beyond the sixth decimal place. So
for a given €iunc , M may be such that the desired accuracy may not be attained.
We avoid this difficulty by truncating the sum %2 _ _ T'(n;t) instead of truncating
the infinite convolution X;(t) and Y;(t) as done in [27]. We generate as many filter
coefficients as will satisfy the condition

N
> T(nt)>1—¢, €>0, (11.6)
n=-—N

As seen from this condition the number of filter coefficients to be generated
depends on t only but not on the input data as in {27]. For a given ¢ the same
number of filter coefficients operate on every curve. We take ¢ = 10e — 6 since the
maximum of the absolute error in approximating I;(t) and I,(t} is of the order of
10e — 6. Larger values of ¢ are feasible from the standpoint of numerical analysis.
But it will make the results var(t) =t and 3% T(n;t) = 1 more inaccurate and
it may also cause overshoots in the scale-space map. X;(t) and Y;(t) are generated
using the convolution formulae given in (11.3) and the number of filter coefficients
that should be used is determined from the condition (11.6).

11.3 Choice of scale levels

X;(t) and Y;(t) are generated for t > 0 treating ¢t as a continuous scale parameter.
As mentioned in [27] the concept of a continuous scale parameter is of considerable
importance, since we are no longer locked to fixed predetermined discrete levels
of scale. It allows us to defocus a signal with an arbitrary amount of blurring,
which will certainly make it easier to trace the events. But in real implementation
it is impracticable to generate the representations at all levels of scale. However,
the important idea is that instead of specifying the scale levels in advance, with a
continuous scale parameter the scale-space representation at any level of scale can
be calculated if desired. This advantage cannot be enjoyed in scale-space analysis

with digital Gaussian filter coefficients.
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In order to construct the scale-space map the continuous parameter should be
sampled at some levels of scale. It is certainly a non-trivial problem to make an
appropriate selection of these scale levels, The point of a scale-space having a
continuous scale parameter is that it provides a theoretical framework in which the
scale steps can be varied arbitrarily. .

The problem of choosing scale levels has not been addressed by Lindeberg in {27].
In this section we address the problem of choosing a suitable set of scale levels in
real situation. We make the parameter { vary in an interval of 0.01 starting with
an initial value of 0.01. The choice of the initial value and the size of the interval
is not crucial except for the fact that both of them should be sufficiently small so
that ¢ can be treated as a continuous scale parameter. Varying ¢, the scale-space is
sampled at those increasing values of ¢ only for which the maximum number of filter
coefficients (V) satisfying the condition (11.6) increases. If t = ¢; be the minimum
value of ¢ such that the maximum number of filter coefficients satisfying (11.6) is
Nj then to find the next value of ¢ at which the scale-space should be sampled, ¢
is increased from ¢, in an interval of 0.01, the least value of ¢(= ¢, , say) for which
the maximum number of filter coefficients N,(say), satisfying the condition (11.6)
exceeds Ny, is the next value of ¢ (next to ;) at which the scale-space should be
sampled. So if ¢; and ¢; be two distinct least values of ¢ (t; > t;) for which the
maximum number of filter coefficients satisfying the condition (11.6) are Ny and N,
respectively then the scale parameter should be sampled at ¢; and ¢; if and only if
N, > N;. Following this rule the parameter ¢ is sampled from its minimum value

to the maximum allowable value.

11.4 Termination criterion

The central problem is the termination criterion. How far ¢ should be varied? At
what value of ¢ the smoothing process should stop? What should be the maximum
value of t7 If N be the maximum number of filter coefficients satisfying the condition
(11.8) for a sampled value of ¢ then the window length of the smoothing kernel 1s
N + 1. So for open digital curves ¢ should be increased till the tail of the window
does not go beyond the end points of the curve. For a closed digital curve ¢ should
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be increased till aliasing effects do not come into play. If a closed digital curve

consists of m points then in order to avoid aliasing effects the maximum value of N
is determined by

Npgz = ——1, meven,

= ,  m odd, (11.7)

So t should be varied until N attains N,,...

11.5 Construction of scale-space map

To compute curvature from a digital curve we use the first and second order finite
differences of the smoothed coordinates X;(t) and Y;(¢) and the curvature measure
as presented in the last chapter following Rattarangsi and Chin [39]. The curvature
measure at the sth point and for a given ¢ is given by

xi(t) = AX;(t) A*Y(t) — AY:(t) AZX(t) . (11.8)

The digital curve is convolved with the kernel T(n;t) and the local extrema of
curvature are located at the sampled values of . The values of ¢ for which |x;(t)]
exceeds |k;—1(t)| and |ki41(t)] give the location of the extreme curvature points.
The ¢ values are sampled using the increasing N criterion. In order to construct
the scale-space map along the x—axis (horizontal) the ordinal number 1 of the points
of the curve is shown and along the y—axis (vertical) N is shown. The local maxima
of absolute curvature at varying N are plotted as points on the zy half plane. The
image showing the location of the maxima of absolute curvature at varying N is
the scale-space map of the curve. The map consists of an aggregate of dot patterns
some of which grow reaching the maximum allowable value of N 1.e. N,,,, some
other terminate as N increases. A pair of dot patterns may grow and merge to
a single dot pattern which may reach Np,.,. The dot patterns that survive the
maximum smoothing are indicative of those maxima that are detected at all levels
of detail fine as well coarse. The dot patterns that appear temporarily are indicative
of those maxima that are detected at the fine scales but disappear as the degree
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of smoothing increases. A number of digital curves and their scale-space map are
shown in Figures 11.1 through 11.4.

11.6 Experimental results

The scale-space behavior of corner models such as ' models, END models and
STAIR. models when convolved with the discrete scale-space kernel T'(n;t) are shown
in Figures 11.5 thrcugh 11.7. The models being open curves the smoothing should
be performed upto a value of ¢ for which N does not go beyond the end points of
the model. To detect corners on digital curves the scale-space map of a curve is
converted into a tree organization and corners are detected and located in a process
of interpreting the tree, The procedure is similar to that presented in the last
chapter., Figures 11.1 through 11.4 show the tree organization of the scale-space
map of a number of digital curves. The limbs of a tree representing corners are
- indicated by bold lines. Figures 11.8 through 11.11 show the corners on four digital
curves together with the results of the Rattarangsi-Chin algorithm [39). We observe
that the corner detector developed in this chapter detects the least number of corner
points on circular objects (please see figure 11.11).

To show the robustness of the corner detector to noise, white Gaussian noise is
added to the digital chromosome by varying the noise level o from 0.5 to 2.5 in an
interval of 0.5. The noisy curves are shown in Figure 11.12 indicating the corners

on them by bold solid circles. From these results we find that as the noise level

increases no additional corner is detected. The location of the corner points on the

digital curves is comnparable to that on the original image.
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Figure 11.1: The chromosome shaped curve {top left), its scale-space map (top

right) and tree organization (bottom).
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Figure 11.2: The figure-8 curve (top left), its scale-space map (top right} and tree

organization (bottom).
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Figure 11.3: The leaf-shaped curve (top left), its scale-space map (top right) and
tree organization (bottom).
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Figure 11.4: The curve with four semi-circles (top left), its scale-space map (top
right) and tree organization (bottom).
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Figure 11.5: T models and their scale-space map. The left figure is the model and

the right is its scale-space map.
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Figure 11.5: Continued,
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Figure 11.6: END models and their scale-space map. The left figure is the model

and the right is its scale-space map.
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Figure 11.6
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Figure 11.6: Continued,
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Figure 11.7: STAIR models and their scale-space map. The left figure is the model

and the right is its scale-space map.
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Figure 11.7: Continued.
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Figure 11.7: Continued.
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(2) (b)

Figure 11.8: The chromosome shaped curve. The corners are indicated by bold
solid circles. {a) Present method, (b) Rattarangsi-Chin method.

(2) (b)

Figure 11.9: The figure-8 curve. The corners are indicated by bold solid circles. (a)
Present method, (b) Rattarangsi-Chin method.
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Figure 11.10: The leaf-shaped curve. The corners are indicated by bold solid circles.
(a) Present method, (b) Rattarangsi-Chin method.

Figure 11.11: The curve with four semi-circles. The corners are indicated by bold
solid circles. (a) Present method, (b) Rattarangsi-Chin method.
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Figure 11.12: The noisy chromosome at varying noise levels. The corners are indi-

cated by bold solid circles.
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Chapter 12
Conclusion

We have developed a series of algorithms for polygonal approximation of closed
digital curves. The problem has been treated as a side detection as well as an angle
detection problem:.

The split~-and-merge technique introduced in chapter 2 resolves the problem of
initial segmentation. The initial segmentation technique is simpler than that of the
Ansari-Delp algorithm [3] as it requires less number of arithmetic operations than
that of the Ansari-Delp algorithm. The procedure has been tested with a number of
digital curves. The experimental results have been compared with the Ansari-Delp
algorithm, The procedure has been found to produce more accurate results than
the Ansari-Delp algorithm. |

From chapter 3 through chapter 6 we have developed a series of sequential al-
gorithms., The algorithm developed in chapter 3 is a one-pass algorithm which is
simple and fast, It involves no arithmetics except subtractions. The approximation
error is controlled indirectly by the counter. The higher the counter is, the higher
is the approximation error. The procedure is purely a searching technique which
is done in a sequential fashion. Though this algorithm is simple and fast but it
holds for curves with uniformly spaced points only. It may be possible o make this
procedure applicable to curves with non-uniformly spaced points also by replacing
the finite differences by divided differences.

The algorithm developed in chapter 4 is sequential one-pass and holds for curves

with uniformly spaced points as well as non-uniformly spaced points. This algorithm
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is more efficient than the other sequential one-pass algorithms such as Williams
(59], Wall and Danielsson 58| in the sense that it involves less number of arithmetic
operations than the others. It need a small and finjte memory and detects the
‘gides on fly. The approximation error is controlled by the critical values of the area
and perimeter of triangles, The approximation made in computing the side length
of the triangles is taken from Wall and Danielsson (58] and has also been used in
many problems of image processing [22]. We have used this approximation because
it produces good results reducing the computational load significantly. One can as
well use Tchebychefl’s approximation at the cost of higher computational load.

In each of these algorithms it is necessary to specify the maximum allowable error.
In the algorithms developed in chapters 3 and chapter 4 the maximum allowable
error is specified indirectly by the counter and the critical values of the area and the .
perimeter of the triangles. In the other existing algorithms too, either the number
of line segments or the maximum allowable error is specified (either directly or
indirectly).

In chapter 5 and chapter 6 we have shown how to make a polygonal approximation
without specifying the maximum allowable error or the number line segments. In
these algorithms we keep both the number of line segments and the maximum |
allowable error unspecified and allow the procedure to determine it on the basis of
the local topography of the curve, So these procedures can run without operator’s
intervention. -

In chapter 5 integral square error has been used to measure the closeness of the
polygon to the curve, In chapter 6 we have shown that though the most commonly
used norms are integral square error and the maximum error, but it is also possible
to use the sum of absolute errors (L, norm) as a measure of closeness.

Both these algorithms are sequential one-pass and they hold for curves with
uniformly spaced points as well as non-uniformly spaced points. Unlike the existing
sequential algorithms, neither do they round off sharp turnings nor do they miss
corners, |

Each of the sequential algorithms that we have developed has been compared
with the Williams’ [59] and the Wall-Danielsson (58] algorithm both of which are
also sequential and one-pass in nature. In each case our algorithms produce more
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accurate results than either of the two algorithms, Our procedures neither miss
corners nor do they round off sharp turnings. The Williams’ algorithm misses
corners and rounds off sharp turnings. The Wall-Danielsson algorithm does not
round off sharp turnings but sometimes it detects false vertices. The peak-test
introduced by Wall and Danielsson succeeds to retain the sharp turnings but it fails
to locate a vertex at its actual position when the turning is not so sharp i.e. where
the length of the line joining the last vertex to the current point exceeds that joining
the last 1lil.fert'.e:cc to the last point that passed the test.

In chapter 7 and chapter 8 polygonal approximation has been treated as an angle
detection problem. In contrast to the other algarithms, here all processing are done
locally and hence they are suitable for parallel processing. In chapter 7 we have
shown that it is possible to use k-cosine to determine the region of support without
using any input parameter. A new measure of significance named smoothed k-cosine
has been introduced. This measure of significance is different from the smoothed
k-cosine introduced by Rosenfeld and Weszka [50]. The procedure has been applied
on a number of digital curves and promising results have been obtained. It is found
to perform well on curves which consist of features of multiple size.

In chapter 8 we have introduced the concept of asymmetric region of support and
a new measure of significance named k¥ — ! cosine. The procedure has been tested
with a number of digital curves and promising results have been obtained. The
procedure does not need any input parameter and performs well on curves which
consist of features of multiple size.

Bach of these algorithms have been compared with the Teh and Chin algorithm
[56) and in each case our procedures are found to detect more significant / dominant
points than the Teh-Chin algorithm., |

In chapter 9 we have made scale-space analysis using one of our polygonal ap-
proximation schemes and have shown its application to corner detection. Qur pro-
cedure is shown to detect more corner points than the Rattarangsi-Chin algorithm
[39]. This scale-space analysis, in contrast to the existing scale-space technique does
not require convolution of the curve with a smoothing kernel. It does not detect
corners via curvature estimation. It holds for curves with uniformly spaced points

only.
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As the conventional scale-space analysis technique involves convolution of a curve
with a smoothing kernel, in chapter 10 we have made scale-space analysis by re-
peated convolution of a curve using Gaussian kernel with constant window size.
This is in contrast to the existing Gaussian smoothing process which makes use of
the Gaussian kernel with varying window size. This technique reduces the space
requirements to a small and finite quantity from O(n?) which is required in the
existing Gaussian smoothing process. The computational load has also been shown
to be reduced to O(n) from O(n?) in the existing Gaussian smoothing process. The
smoothing process has been shown to enjoy scale-space property. The scale-space
map has been used to detect corners on digital curves. The corner detector has
been found to produce more corner points than the Rattarangsi-Chin algorithm
[39]. The corner detector has also been found to be robust to noise.

In chapter 11 we have used the discrete scale-space kernel with a continuous
scale parameter proposed by Lindeberg [27] to make scale-space analysis and cor-
ner detection on 2 — D digital curves. The numerical problems that arise in the
implementation of the discrete kernel have been addressed and possible solutions
are proposed. The corner detector has been found to produce the least number of
corners on curves that consist of circular arcs (Figure 11.11). The corner detector
has also been found to be robust to noise.

From the last three chapters on scale-space analysis we conclude that scale-space
analysis of digital curves without convolution with a smoothing kernel is feasible
provided the smoothing technique preserves scale-space property. Scale-space anal-
ysis of discrete curves‘using a continuous scale-space kernel is also feasible provided
the continuous kernel is discretised properly. Scale-space analysis of discrete curves
using discrete scale-space kernel with a continuous scale parameter is also feasible

with some suitable assumptions.
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| Appendix
Function sub-programs generating T'(n;¢)

function bessio (x)
¢ returns the modified bessel function Jo(x) for all real x
real pl,p2,p3,p4,p5,p6,p7,q1,92,93,94,95,96,97,98,49
data p1,p2,p3,p4,p5,p8,p7/1.0d0,3.5156229d0,3.0899424d0,
C 1.2067492d0,0.2659732d0,0.360768d-1,0.45813d-2/
data q1,92,q3,q4,95,a6,q7,98,q9/0.3989422840,0.1328592d-1,
c 0.2253194d-2,-0.1575654-2,0.916281d-2,-0.2057706d-1,0.2635537d-1,
¢ -0.1647633d-1,0.392377d-2/ o
if(abs(x) .1t. 3.75) then
y=(x/3.76)**2 | | .
bessio=exp(-x)*(p1+y* (p2+y*(p3+y*(p4+y* (p5+
¢ ypety*e7)))
else
ax=abs(x)
=3.75/ax
bessiol=1.0/sqrt{ax) | | |
bessio2=(ql-+y*(q2+y* (a3+y*(ad+y*(¢5+y*(ab+y*(qT+
¢ y*(a8+y*a9)))))) o
bessio=Dbessiol*bessio2
endif
return
end

function bessil(x)
C returns the modified bessel function I1(x) for real x

real p1,p2,p3,p4,05,p6,p7,q1,42,93,94,45,96,47,a8,09
data p1.p2,p3,p4,p5,p6,p7/0.5d0,0.8 7890594d0,0.51498869d0,

C 0.15084934(:10,0.2658733{1-1,0.301532(1-2,0.32411(1—_3/ -
data ql,q2,93,94,95,96,97,98,9° / 0.30804228d0,-0.3988024d-1,
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-0.362018d-2,0.163801d-2,-0.1031555d-1,0.228296 70d~1
-0.2895312d-1,0.1787654d-1,-0.420059d-2/ '
if(abs(x) .lt. 3.75) then

y=(x/3.75)**2 |
bessil=exp(-x)*x*(p1+y*(p2+y* (p3+y* (p4+
y*(p5+y*(p6+y*pT7)))))) "

else |

ax=abs(x)

y=3.75/ax

u=1.0/sqrt{ax) |
v=ql+y*(q2+y*(q3+y*(qd+y*(a5+y* (a6+y*(q7+
y*(a8+y*a9))))) - |
bessil=u*v

if(x .1t. 0.0) bessil=-bessil

endif

return

end

function bessi(n,x)

returns the modified bessel function of intéger order
parameter{ iacc=400 , bigno=1.0el10 bigni=1.0é10 )
if(n.1t.2) pause 'bad argument n in bessi’
if(x.eq.0.0) then

bessi=0.0

else

tox=2.0/abs(x)

bip=0.0

bi=1.0

bessi=0.0

m=2*(n+int(sqrt(float(iacc*n))))

do 10 j=m,],-1

bim=bip+float(j)*tox*bi
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10

bip=bi

bi=bim

if (abs(bi).gt.bigno) then
bessi=bessi*bigni
bi=bi*bigni
bip=bip*bigni

endif |

if(j.eq.n) bessi=bip

continue

bessi=bessi*bessio(x)/bi |
if(x .1t. 0.0 .and. mod(n,2) .eq. 1) bessi=-bessi

endif

return

end
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