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Introduction

Suppose P is a diflerential operator of degree d on a Riemannian manifold M, which is

selfl adjoint and formally non-negative. Let

Pf:/om,\dmf

be the spectral resolution of P. Given a hounded function m(A) we can define the operator

m(P) by
m(P)=/ﬂmm(/\)dEA.

Such operators are always bounded on L?(M). However, some smoothness assumptions are

needed on m(A) to ensure that m(P) : LP(M) — L?(M) is bounded for p # 2. It is a basic

problem in Harmonic Analysis to find suflicient conditions on m so the the operator m(P)
will be bounded on LP(M). There is a universal multiplier theorem due to Stein [36], which
guarantces that m(P) is bounded on (M), 1 < p < o0. His condition on m{A) requires

that m(A) is in the symbol class S?(R)_.
Recall that the symbol classes S§(R); @ € R,0 < p <1 are defined to be the class of all

O functions on R which satisfy the estimates
mP(\)] < C5(L + A"

for § = 0,1,.... Sharp results under weaker regularity assumptions are known in maiy
particular cases. When P = —A on R"™ the corresponding result is the classical theorem of
Marcinkiewicz'-Mihlin-—Hm'mander and one requires tlie above estimate to hold only for j =
0,1,... N where N is the smallest integer bigger than -’% ‘The case of campact Riemannian
manifolds I1.'«1..€1)<.1t.!11 studied by Sceger and Sogge [34]. Tn most of the particular cases optimal

conditions on m()\) which guarantee boundedness of m(P) on a given P have been obtained,



Operators of the form m(P) with m coming [rom S;%(R),0 € p <1 are also important

as they occur naturally in applications. For example, the solution to the Cauchy problem
Ofu(z,t) + P u(z,t) = 0,u(z,0) = 0,0u(x,0) = f(z)

is given by

u(z, t) = S“i/t—\/_f ()

. _1
and the function m(A) = 5“‘\/‘){: comes from the symbol class 8, 2(R). The boundedness
2

properties of this operator have been investigated in various contexts.
When PP = —4A on R*, Miyachi [19] and Peral [30] have shown that i“—’j% is bounded
on LP(R") for |-— — - < ﬁ The case of the sublaplacian on the Heisenberg group H"

has been recently settled by Muller and Stein [25]. Operators of the form P = ~A + Viz)

where V' is a non negative potential have been studied in the thesis of Zhong [49]. More

generally, multipliers of the form
map(A) = [P p(2),  Ref 20, a >0

where 1 denotes a C°°°(IR) function which vanishes for |A| < 4 and equals 1 if |A] > 1 have
attracted much interest. For the Euclidean case see the works of Hirschinan (9] , Wainger
[48] , Miyachi [20] , Schonbek [33] and others. Multipliers of the above type on non-compact
symmetric spaces have been studied by Giulini and Meda [6]. Results for the sublaplacian
on stratified groups hdve been obtained by Mauceri and Meda, {17].

In this thesis we are mainly interested in the case of the sublaplacian £ on the Heisenberg
group H"™ and operators related to £ such as the twisted sublaplacian (also known as the
special Hermite operator) L on C" and the Hermite operator H on IR®, We prove optimal
results for multipliers of these operators by making use of the explicit spectral theory of

these operators, Another tool we use is a general multiplier theorem for operators P for



which the associated Bochner-Riesz kernel s%,(z, 1) satisfies a good pointwise estimate for

large values of d.

We first recall the definition of the Bochner- Riesz means associated to P. These means

are defined for 6 > 0 by the eq_uation
R )
Shi=[ (0= 2) By,

0 R

Let 8% (2, y) be the kerrel of §% defined by the equation
Sh1@) = [ shlan) 1) dy.
We consider operators P for which the kernels s%(z,y) satisfy an estimate of the form
s(,9)| < CRE(1+ Rilz ~y|)=+

where a > ) and 8 are fixed constants.

Estimates of the above type are known in various special cases such as the Laplacian
—A on R", the Hermite operator H = —A + |z|* on R", the special Hermite operator
[ = — 11,02 Ly 9 .0 n - ators for
L = -AA4 3|2% - i) (x; By; Vi ij) on C™ and so on. Another class of operators for
which pointwise estimates for the Bochner-Riesz kernels are known is the class of Rockland

operators on stratified nilpotent Lie groups. If L is a Rockland operator of homogeneous

degree d on a stratified nilpotent group G, then the estimate
! ' sh()| < CRE(1 + Ri[af)™3+.

~ has been proved in Hulanicki {11] . Here Q is the homogeneous dimension of G.
Using a heat kernel estimate proved in [2} and modifying a method in Hebisch [7] one

can prove the following., If L is a Rockland operator of homogeneous degree 2, then the

Riesz kernel associated to L satisfies

R(@)| < CRE (1 + Rifa])~7.



In [16) Mauceri studied operators of the form p(s7' £) on the Heisenberg group H" where
T' = 0, L is the sublaplacian and p is a homogeneous I_}Glyxlomial of degree d with certain
properties. We remark that they fall under the categdry of Rockland operators. Among

other things he has proved that the Riesz kernel satisfies the estimate
shig) < CRE(1 + Rijgl)=51,

In the first chapler we study multipliers of the form m(P) for mn coming from 5," and P
is a differential operator whose associated Bocllnei'-Rieéz kernel satisfies an estimate of the
above type.

In the second chapter we specialise to certain eigenfunction expansions and study some
multipliers in detail. First we consider the special Hermite operator L on €'*. We remark
that L is reiated to the sublaplacian on the Heisenberg group H" . The Heisenberg group

H" is the Lie group whose underlying manifold is € x IR, with the group operation

]
(z 1) (w, 8) = (z+w,t + 8 + Efmz.’tb").

The sublaplacian £ is explicitly given by

L=—h- -{-11-1;312 52 — No,

where N is the rotation operator Zj_’,-‘ﬂ(wﬂ% "yjﬂ_i;)* The special Hermite operator L and
the sublaplacian £ are related by L(e'f(z)) = e®Lf(z). For this reason L is called the

twisted Lapiacian. Spectral decomposition associated to L is given by the special Hermite

expansions, namely
OO

Lf(2) = (20)™™ 3 (2K + n)f % ox(2).

_ k=0
Here (#) are the Laguerre functions of type (n — 1),

IRUE N AT
- eule) = Ly (laff)em

(1 .



and the twisted convolution [ x g of two functions on ¢'" is given hy

[ X g(z ./d}‘" z —wlg(w )e?‘(m‘””dw

We remark that this is related to the group convolution on H™,

(Given a bounded function m on IR define the operator

m(L)f = (2r)™" > m2k+n)[ X s
k=) |

Multipliers for the special Hermite expansions have been extensively studied in recent times,
see the works [44] and [46] and the references given there. Consider the multipliers given

by
ma(A) = VI A5 T4 (tVA)

Observe that when o = %
Ma(A) = ﬁi‘ﬁiﬁ
Y - \/I
and so, \/— £2 “EJ i t\/_) (2) = u(2,1) solves the wave equatmn

(0; + Dyu(z,t) = 0,u(z,0) = 0, 8pu(2,0) = f(2).

_ahl ' KT
The function mgq 'Jelnngs to Sl ‘(IR) and so the above mentioned general multiplier

Hc}wever, this result can be improved to show that the operators L™% J, (tv/L) satlsfy the
estimates

L2 VD)1l < Cillfllp »f € 1P(C7)

fara>(2i1—1)|——~l|é% and 1 < p < o0

As a corollary we obtain the boundedness of the solution to the wave equation associated

to the special Hermite operator. The solution u(z, t) = 285 f (z) of the Cauchy problem

I (8} + L)u(z,t) = 0,u(z,0) = 0, du(z,0) = f(2).



satisfies [[u(., 1)l < Cellfllp provided | — 3 < 5.

The above result will be proved by studying an analytic family of operators. Lef

Nk+ DM a+1) 4,1

ofyy a2y ,—~ %2
N = TP rarn) AN

be the Laguerre functions of type « defined for all Re o > —%. Consider the family

T,%f(2) = @)™ S et} [ % wr(2).
- h=()

We will use the facts that T,% : LY(C"™) — L'(@™) is bounded if Re &« > n — 1 and
T,% : L2(C") — L*(C") is bounded if Re @ > —4. Analytic interpolation will prove that
T, LF = L? il > (21— 1) -;; - % ~ %. Using a Hilb type asymplolic formula for the
Laguerre functions ¢ (£), we will compare the operators L=%2 Jo(tVI) and 732 which will

complete the proof.

The above results have analogues for the Hermite operator H = —A + |z[? on IR®. We

remark that H and the sublaplacian £ on the Heisenberg group are related via the group

Fourier transform. Recall that for each A € /R there is an irreducible unitary representation

my, of H™ realised on L2(IR") which is explicitly given by
mA(2, 1) () = eMtePNeEHaG (£ 4y,

¢ € L(IR™). The group Fourier transform of a function f € LY{H™} is defined to be the

operator valued function

'f(/\) =/nm(z,t)f(z,t)dzdt.

Then it is known that ( see {46] )

>
}
e
R
=5
>

(LS

where H(\) = —A + A?[z|% In particular (££)(1) = f(1)H.



The spectral decomposition of H is given by the Hermite expansions. Let ®,(z), o €

IN" be the normalised Hermite functions which are eigenfunctions of H with cigenvalues

(2[a] +n) where ] = ay ++ + au. Let Prf be the projections defined by
Pof(z) = Z (f) @) Do (z).
laj=4
Then the cpectral decomposition of H is given by

20
Hf =) {(2k+n) P/
k=0

For various properties of the Hermite expansions we refer to the monograph of Thangavelu
(44].

We start with a study of the following analytic family of operators defined by
Sy f(z }: Wi (E) P f (=

The operators S{* and T; @ are related to each other via the Weyl transform. The representa-

tion 7y of H™ defines a projective representation # of €™ by the prescription n(2) = m1(z,0).

W)= [ 7@ 1) dz

is then called the Weyl transform, which takes functions f on €™ into bounded operators

acting on L2(IR"). For f € L}(€") we have the relation

The integrated representation

W(T )= §W(/).

Using this connection we will prove prove that S is bounded on LP(JR™) for 1 < p < oo

L o |

whenever o > 1= — 3

Using the explicit expressions obtained for the kernels of the S{* we study the maximal

operator supg.;<q |58 and improve the almost everywhere convergence obtained in [32].

7



As befcre comparing H™2 J,(tVH) with S;' we obtain corresponding results for the opera-

tors H™ 2 J,(tvH) and by taking o = % we get the estimate |[uf., )|y < Gy | fllp provided

1 3] < &, for the solution u(z,t) of the Cauchy problem:

(87 + H)u(z,t) = 0,u(z, 0) = 0, 8u(z,0) = f(z).

Unlike the case of L or the standard Laplacian —A, the ahove is the hest one can
get, That is, the above estimate for the solution u(z, 1} to the wave equation cannot be
extended to the bigger range l;l; — 3| < -ﬂ—_l_—l This has already been observed in [49] where
such estimates for the operators —A + V(z) have been obtained. However, if we consider
only radial functions it is possible to improve the above result, see Theorein 2.2.7.

In the third chapter we take up a study of multipliers associated to the sublaplacian £

on the Heisenberg group. Boundedness of m(L) has been studied by several authors, See

the works [13], [15], [17] and [43]. The optimal result has been proved in Muller-Stein [24]

and Hebisch {8]. Note that L and the operator T' = ;.% commute with each other and so

they admit a joint spectral decomposition which can be written down explicitly, Define
ei(2,t) = eMyp(z) = Mo (y/|Al2)
for A€ R, A#0. Then eﬁ(z,t)lare joint eigenfunctions of £ and T :
A — " A Fah A — }\
Leg(z,t) = (2k + n)|AMeg(2,8) , Te(z,t) =ire (2, ).

The explicit spectral decomposition of £ and T studied in great details by Strichartz [40]

and [4.1] is then written as
oo 00
f(z,1) = cp f (3" [ xep(z8) [A™ dA
—0 k=0
Given a bounded function m(€,n) of two variables we can consider the operator

MIGD =en [ (3 m(kN) 1+ cblat) A" dA
T k=0

8



One can naturally ask for conditions on m(k, A) so that M extends to a bounded operator

on LP(H™).

Recently this problem has received considerable attention. In the papers(22] and [23

Muller, Ricci and Stein have obtained sufficient conditions on m(€,n) so that M is boundec

on LP{H"). More precisely, if m(£, n) satisfies the Marcinkiewicz type conditions

1(€8e) (08y)Y mi&,m)] € Cap

for sufficiently many derivatives, then M is bounded on IP(HY 1 < p < oo. In [23] the
authors have obtained a sharp Marcinkiewicz mult; plier theorem where the above conditions
are required to hold only for an optimal number of derivatives.

When m(k, A) = m((2k +n)|A]) the operatorM is nothing ]'J.I.]l- m(L) and Marcinkicwicz
conditions hold when m € S?(R). In the general case, when m € SY(IR?*) the corresponding
operator M is bounded on LP(H™),1 < p < oo as is proved in [23]. Boundedness properties

of the solution to the wave equation associated to £ have been studied recently by Stein

and Muller, where they have proved that for ﬁ- — %| < 7=, the operator S—h‘—j%z is bounded
1 _ 1

on LP(H™), Our aim is to improve this result to the bigger range ]5 ~ 5-' < g in the

case when f is band limited in the central variable, We also explain a method to obtain
pointwise estimates on Bochner-Riesz kernels using estimates on heat kernels.

Last chapter is devoted to a comparative study of Bochner-Riesz means assoctated to
the Hermite and Fourier expansions, Using a recent result of Stempak and Zienkiewicz
we also study boundedness of Bochner-Riesz means associated to Hermite expansions for

' polyradial functions on JR?", Recall that the Bochner- Riesz means associated to the Fourier

transform on JR® are defined by

53/(z) = (2m)"" [

Iui<i



where

-

Jw)=@m [ e (o)ds

is the Fourier transform on R*, The Bochner-Riesz means for of Hermite expansions are

given by

3 )
Spf(z) =) (1 = 2&;— n) Py f (z).

-

For the propertics of Hermite functions and related results see [44].

In our study of the Bochner-Riesz ineans associated to Hermite and special Hermite
expansions we make use of a transplantation theorem of Kenig-Stanton -Tomas [12]. From
the transplantation theorem it follows that local results on boundedness of Bochner-Ries
means associated io Heﬂnite expansions imply global results for the Bochner-Riesz means
associated to the Fourier transform on the Euclidean space. At this point a natural ques-
tion arises, to what extent the converse is true?. We answer this question in the aflirmative
in dimensions one and two and partially in higher dimensions. We also study the equi-
summability of the special Hermite expansions. In this case we show that the local uniform

boundedness of the Bochner-Riesz means for the special Hermite operator is equivalent to

the nniform boundedness of §§ on IR*",

10
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Chapter 1

Bochner-Riesz kernels and

Multipliers

In this chapter we study multipliers associated to a class of differential operators on IR".

Let P be a self-adjoint non-negative differential operator on IR" of degree d. Let
o0
p= f B,
0

be its spectral resolution, If m is a bounded function on IR then m(P) will stand for the .
operator defined by [y~ m(A) dEy. Clearly m(P) is bounded on L2, We study boundedness

properties of m(P) on L? spaces for m coming from the symbol classes S5 ([R).

1.1 ~ A General Multiplier Theorem

We assume that Bochner-Riesz kernels sjfz (z,y) associated to P satis{y estimates of the form

|8%(2,9)] < CR¥ (1 + Ra|z — y|)~** (L11)

il



for some constants a > 0 and 3, for all large d. For this clags of operators we have the

following,

Theorem 1.1.1 Letm e S;%(R) 0<p<1and 1l < p < oo Assume thet the spectral
measure of P has no mass at the origin. If the Bochner-Riesz kernel .ﬂ?t(m,y) associated

to P satisfies the estimates (1.1.1) then m(P): L?( IR") — LP( IR") is bounded whenever

il-0)11 1
oS> f(nﬂ)'ﬁ — 4.
FFor proving Theorem 1.1.1 we start with a simple proposition.

Proposition 1.1.2 Lefm be a smooth compactly supported function on IR and 1 < p < o0,
If the Bochner-Riesz kernel .sfi(a:,y) associeled to P solisfies the estimales (1.1.1) lhen

m(P) : LP{ IR") = LP( IR") 15 hounded.

Proof: Let K(z,y) be the kernel of the operator m{P). Thus,

o

.me=ﬁmmmwmmm=ﬁlr%U&ﬁMM-

Integrating by parts and making use of the identity

d —1al-
(A8 (2,9)) = X718, ()

we get

me=aﬁmmﬁwmﬁﬁmw@,
Now using the estimate (1.1.1) we have

| K (=, 9} < Ci fﬁ T mF () AR (14 A (| - )~
From the above expression it is clear that, if [ is large enough then .we haye

sup f . | Kz, y) dz <oo
yelR" /M

12



which proves the proposition. 0

In view of the above proposition, to prove Theorem 1.1.1 it is enough to prove the

following,.

Theorem 1.1.3 Lel m & S;%(R), 0 < p <1 besuch that m{A) =0 for |Al' < 1 and
] < p < oco. If the Bochner-Riesz kernel s%(x,y) associated to P satisfies the estimales

(1.1.1) then m(P): LP( IR™) = LP( IR") is bounded whenever o > "(};”}I-;; — 3]

Proof: Let ¢ € C‘ﬁ“(% < t £ 2) be such that Z;"’:_mtp(?‘jt) = 1 for every { # 0. Let

m;(t) = m(t)e(277t) and m;(P) be the corresponding operator, that is
'DG
m;(P)f =/ m4(A)dE) .
0

We then have m(P) = 3 .2y m;(P) since m(A) vanishes for |A] < 1. Under the hypothesis

- - of Theorem 1.1.3 we will show that there exists a d > 0 such that

Ims(P) 1l < C 27|/l (1.1.2)

for all f € LP(JR"). Theorem 1.1.3 will then easily follow by summing a geometric series.

In order to get the estimate (1.1.2}) we look at the kernel A;(z,¥) of m;(P) which is

given by
.
kjiz,y) 2./0 mi(A)LE) (z, 7).

Let 1 < p <?2. Since o > ”(1;”) (% — 2} we can choose ¢ > 0 stlcll.that o > n(-l-'[{ﬂ+e)(-pl- - %),

Let ¢ = 122 4 ¢ ~ 1 50 that @ > n(y+ 1—11)(;15 ~ %), We write

ki(z,y) = kya(e,y) + ke, p)

where k;1(z, y) = k;(z, ) if |z —y| < 277 and 0 elsewhere. We first consider the operator

given by

Kol (x) = /m ki (1) () dy

13



Proposition 1.1.4 Under the hypothesis of the Theorem 1.1.8 the following holds. For
some 0 > 0

[ Kiaf @z s €27 [ 1P
for all f € LP(IR") and § = 1,2,....

In order to prove the above proposition we will make use of the following estimate on

the kernel k;(z,y).

Proposition 1.1.5 Let m be as in Theorem 1.1.5. Then we have
[kj(a,y)| < Cp 2 W—p=DHEFE] 1 g maltita
for all positive integers |,

We will assume this for a moment and complete the proof of Proposition 1.1.4. We only

need to show that
sup/ Nkja(zy)de < Cco,
y JIR

for some § > 0. In view of the above estimate on the kernel k;(z,y) we have

/ ki (2, p)lde < G Qili(i=p~§)+24E2] / " ymebtBratn-1 g
it %1
< &) 9li=p-ely+)oi(nt+B+a)(r+y)

Since 1 — p— a(y + -{1;-) < 0 choosing [ large enough we can get the required decay.

To prove Proposition 1.1.5 we need to use the estimate (1.1.1}. Sinco

Sy = [ miNdB(oy

and Ej(z,y) = 8%(z,y), integrating by parts and making use of the identity

d 1 =
5 (N'Si(z,y)) = N1y ()

14



we get |
O
ki(z,y) = C /0 A8 (g, )8, (m (A))dA

As mj € §;% and is supported in 277! < ¢ < 27! we have

nj+1

k(e < G, AANE 4 Al - gl) ot
} - .

< O o — y| e gli(t=p= i+t

This completes the proof of the Proposition 1.1.5, (]

Thus we have taken care of k;q(x,y}. To deal with k;) ;we proceed as follows. First we
prove the following analogue of the Hardy-Littlewood-Sobolev theorem for the operator P

which has been proved in [47]. However for the sake of completeness we state and prove it

here, o

Theorem 1.1.6 Let 0 <a<n,1 <p<g<ooand % = f; —~ 2, Then we have

11+ Py~ 111, < ClIf 1l

Proof: By spectral theorem

(1+P)4/ = /ﬁ T+ A)"2dBy f

and so the kernel of (14 P)~ 7 is given by

/ — > -a :
ka(Z,y) A (1+ A)"ddEx(z,y).

As above let ¢ be a smooth function supported in (3,2) such that 322 _, ©(277)) = 1 for

every A # 0. Let kq ;(z,y) be the kernel of (2~ P)(1 + P)~7, Then

of+1

kﬂ,j (mi y) = ./;,f-l 1':”l'v:}c,.j('!\) dE) (‘.’I}‘, 1{)

i

where mq i(A) = @(27IA)1 + A)~ 4,

15



integrating by parts we get

9)+1

ka(2,9) = Cay f B4 (110, YNN8V (3, 1) dA

i1

It is easy to see that |85 (ma,;)(A)] < C A~" with C depending only on « and . We use the

estimate (1.1.1) to get

2/ +1
kag(@ )| SC [ ATETE(1 4 Mz - y) oo hd
ni-
which is bounded by
2778 |z -y
Clz —y|2=n f A=+ -1 4 pd)mekats gy,
0 Ug—yit

Since for any ¢ > 0 at most two of the intervals of the type (2971¢,27+11) can intersect we

have,

00 oo
balo ) SC ) [aj(@p)| S C lz—y|*" fn A~ (1 4 Aa)mattets,

j==00

The last integral converges if ! is large enough since 0 < o < n and we have
ka(2,9)| < Clz —y|*™ .

Now it is a routine matter to prove the proposition, See, for example, the proof of the

Hardy-Littlewood-Sobolev theorem in Stein [38] . u

Using the above theorem,we prove the following result. Let B be any ball of radius 27,

Proposition 1.1.7 There is a § > 0 such that
1

U (P @Pes)” s e ([ i)

for all f € LP(IR"),1 < p < 2.

16



Proof: By Holder’s inequality,

1
2

(/;3 |mj(P)f(33)|Pd:B)f’_ < ]Bl"lﬁ"% (/ |Tnj(P)f(:U)[2dﬂ:)

Now by spectral theorem

oJ+1

Imy(PB = [ Imi(PAEL f).

271

Since my; € 5,7, the zbove is bounded by

oi+1
[, @B )

j—1

—veek

0f—1
< 0212t G-2)) 1 + P)=1 4|12

2J+1

with ¢ = n(% — %). Using the result of Proposition 1.1.6 we obtain
| m (b LY g B (L L
([ imi(P)f@)Pda)” < o=yt =l
B
_ 2-j[ﬂ~(’r+7}111(%-%)]‘lf”p
which completes the proof by the choice of Y. - ' ;

We are now in a position to complete the proof of Theorem 1.1.3. Let Kj;i be the

operator defined by | |
Kinf(z) = f R Fin(®y) J) &y,

" To deal with this operator we decompose f into three parts. Let £ € IR" and define

flo) = 1(o0x (1o - ¢ < 327)

falz) = f(z)x (%2” < |z —=§ < -3-2-’”)

17



and f3 = f — f1 — fo. Let B(£) be the ball |z — ¢f < $277. We will show that

[ Vonrf(@)F da < c29 | (@) do

[w—g|<3 27

for some ¢ > (. Integration with respect to & will prove
[ Kias@)? do < c2 P p|

Wl}_en |z — €] < %23‘7 and y belonging to the support of f3 it follows that [ — y| > 27 and

consequently Kj1f3 = 0. When |z — ¢ € 1297 and y belonging to the support of f; one has

lz —y| > %—23’7 and we can repeat the proof of the Proposition 1.1.4 to conclude that
[ K1 fa()|P do < G20 / fa(z)IP dz.
B3(£)

Finally applying Proposition 1.1.7 we obtain the estimate
/Bm Kish(@ dz < G2 [ @) da.

Putting together all the above estimates we prove Theorem 1.1.3.

We finish this chapter with the following observations. Above method can be applied
to certain differential operators on homogeneous groups. Let G be a stratified nilpotent Lie
group. Let () stand for its homogeneous diinension. If P is a positive Rockland operator
(see [5] for definition and properties of Rockland operators} which is homogeneous of degree
d then it is known that the Bochner-Riesz kernel s%.(g) associated to PP satisfies the estimate

(see [11]) | |
sh(9)] < CR?(1+ Rijg])~4+.

Here |.| stands for a homogeneous norm on G. Assuming that the spectral measure of P

has no mass at the origin and proceeding as in the above theorem we can prove that, if

m € §7%(IR) then m(P) is bounded on LP{G) provided a > 3Q(1 - p} % — %|. But when P

is of homogeneous degree 2, this can be improved. We have the following.

18



Theorem 1.1.8 Let P be a Rockland operator of homogeneous degree 2. Leltm € 5;% and
1 <p < oo. Then m(P) is bounded on LP(G) provided & > Q(1 - p)|;, — 3]-

To prove the above theorem it is enough to get the following estimate on the Bochner-

Riesz kernels:

155(9)] < CRE(1 + Rilg|)~5+4, (1.1.3)

This can be achieved by following a method by W. Hebisch [7) and using the heat kernel
estimates proved in [2]. This will be explained in morc details in Chapter 3 (sec Propositions

3.1.1 and 3.1.2) where we study certain multipliers associated to the sublaplacian on H™",
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Chapter 2

Special Hermite and Hermite

Expansions

Main objective of this chapter is to study certain multipliers associated to the special
Hermite operator L and the Hermite operator H. We consider the wave equation associated
to these operators and study the LP boundedness properties of the solutions. In the course
of the proofs we make use of Stein's analytic interpolatiﬁn theorem, a Hilh type asymptotic

formula which connects Laguerre functions and Bessel functions and the general multiplier

theorem proved in the previous chapter.

2.1 Wave equation for the special Hermite operator

Before we proceed to study the wave equation, some remarks are in order. Let Sﬁt be the

Bochner-Riesz operator associated to the special Hermite operator. Then

ShI(2) = f x sk(2)
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where the kernel s4 is given by

sp(2) = i (1 %;{n)a ok (2)-

k=0 +

Here ¢y (z) = L' (%]2]%) e~ 4/%°, Then it is known that 3% (z) satisfies the estimate,
sh(2)| < CRM(1+ R3|2))~~3

see Proposition 2.5.1 in {44], So Theorem 1.1.1 will imply that operators m(ZL), n coming

from §,;%(JR) are bounded on LP({") provided o > 2n{l — p) -:; ~ 51|,1 < p < oo We

remark that the above result can be improved to include the case p = 1 as well. To prove

this we proceed as follows. A close examination of the proof of Theorem 1.1.1 reveals that

we only need to prove the following.

Let B be any ball of radius 2% where v is as in the proof of Theorem 1.1.3 and let k;

be the kernel of m;(L).

Proposition 2.1.1 There is a § > O such that

([ 1 xkstaldz) < o7 [ 11z
for oll f € LY(C").

Proof : By Holder’s inequality
1

/Bllf X ky(2)|dz < C|BJ? ( f /% kj(z)lzdz) y

By the Plancherel theorem for the specisl Hermite expansion,we have

Jgn 1 % Rita)Pds = (2m) 72" 3 2k + )71 x el

which is dominated by

S (2k+n) S x exll3:
W1 L2h4n<2+]
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Since ||prlla < Ck*F (see [44]), we have

1/ % @lle < Hewlle 1171 < CE*T (£

and therefore the above is dominated by C24(=204n)|( 7112, Now the proof can be completed

~as in the proof of Theorem 1.1.1, O
Next we turn our attention towards the Cauchy problem,
(at? + L)u(z,t) = 0,u(z,0) = 0,8:u(z,0) = f(z). (2.1.1)

Solution to this problem is given by the multiplier operator L% sinty/L f(z). Note that
Ei"jﬁ = ()7 —{*ﬂf— So more generally one can look at the operators L™2 J,(tv/L). The
5 2 (ﬁ) ’ y bk X '

a_1 : A
functions J ) belong to S, * * and so from Theorem 1.1.1 it follows that L™7J,(¢VL)
2
is bounded on LP(€") provided a > 2n|: — %- - -%- But this can be improved. We have the

i
following resulf.

Theorem 2,1.2 et 1 < p < 00. The operators L“%Jn(t\/f) are bounded on LP( €")

whenever a > (2n — 1)]% — % — -%
Taking o = % we get the following estimate for the solution to the Cauchy problem
(2.1.1).

Corollary 2.1.3 Let u(z,t) be the solution to the Cauchy problem (2.1.1). Then we have

luC Dllp < Cullfllp Sor |3 = 3 < m=p+

To_study the boundedness prﬂpefties of L™% J(tv/L) we consider the analytic family of

operatnrs defined for Rea > ....2L by

T3 (2) = (2m)™" ) 9E () J % pu(2).

1=u
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Here 17 are the Laguerre functions

Fk+ DM a+1) ,,1 .0, _10
Qfy __ aft
¥i (1) Tk +a+ 1) Li(5t)e™ .
We require the estimate |
, |
sup () <C  for a2 -5 (21.2)
0<t<1 2

for which we refer to Szego[42]. We also make use of the lollowing proposition,

Proposition 2.1.4 Let y, stand for the normalised surface measure on the sphere S; =

{lz| =1} in ©". Then

[ x m(z) = (2m)7" i K (n - 1‘)_1_{ wi(t) [ x oplz)

Proof: See Theorem 2.4.4 in [46].

Using analytic interpolation we establish the following result.

Theorem 2.1.5 Let 1 < p L oo and o > (2n — )|+ — 3| — 5. Then for f € LP(C"),

1T 1lp < Cllfllp uniformly int, 0 <t <1,

Proof: In view of Propoesition 2.1.4 we know that Tt"‘l is bounded on LP(C"),1 <p < 0
-l

uniformly in 0 < £ < 1. From the estimate (2.1.2) it follows that T, * is bounded on L*(C")

uniformly in 0 < ¢ < 1. For the analytic interpolation we need to consider T} ® when o is

complex. We make use of the following formnula connecting Laguerre polynomials of different

type :

ek P(k+a+ﬂ+1)/‘.1 01 — Vi1 120500
B = Sy TR ra ) Jo © 0T Belends
which is valid for Rea > —1 and Re 8 > 0.

Given ¢ =n —1+4§410,0 > 0 we can write "

I':bz(t) — P(n+5_“+ iﬂ”) /'1311—'*1 (1 __-3)6+flt'a'—1 6-—-%(1.—.5)52 -,llb;:—l (i\/g) ds I
| 0 |

I'd +i0)l'(n)
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so that T; ® is expressible in terms of T~ as

. Mn+d+i0) 1 . fbig—1 -3 {1-3}t? gm—1
ﬂﬂ:rw+wﬂﬁﬂu 7 (1 - g el Tiss 48

From this it follows that 7} ¢ is bounded on L?(€") 1 < p < oo for Rea > n — 1. Similarly

when & = — 5 + § +io it can be shown that 1} is bounded on L(@€"). Using estirmates for

the gamma functions ,we can easily check that the family T; ® is admissible in the sense of

Stein [37). Applying Stein’s analytic interpolation theorem we obtain Theorem 2.1.5. O
We now consider operators of the form L~2J, (t\_/f), with tle corresponding multiplier

(2k + n)"2J{tv2k +n). We first remark that it 1s enough to consider the multiplier

(2k+ o+ 1)”%17:1 (tv2k + o+ 1). To sec this let us assume ¢ = 1 and look al their dilference

*

m(k) = (2k + n)~ 2 Jo(V2k + 1) — (2k + a+1)" 2T (V2% + a + 1).

Writing F'(s) = s7*J,(s) we have

m(k) = F(VEE+7) - F(VIE T a+ 1)
=/ﬂ '£(J3+2k)ds
atl  2v3 + 2k l

Since F '(s) = —s~%J,11(s) we have the expression

_ 17 Jagi(Vs + 2k)
0 =3 ) (Vs + 2Ryt

2

~2at3
which clearly shows that m € §; ¢ (IR). Therefore m(k} will define an LP multiplier
. ‘ - 2
provided § + 2 > n(% ~ z) which is clearly satisfied when o > (2n —~ 1)(% ~2)— 2.

Thus it is ‘enough to consider the multiplier (2k + o + 1)” 7 Ja(tv/2% + a + 1). Recall
that we are assuniing 0 <t < 1. We compare this multiplier with ¥ (%) using a Hilb type

asymptotic forinula for the Laguerre polynomials; see Szego [42]. More precisely formula

(8.64.3) on page 217 of [42] gives,

Ja(t,\/ﬂ? + Cl"i:-—l) | . - r
ek rarne el (2.1.3)

¢ﬂ0=2“ﬂﬁ+n
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where
Cla)

sin am

/ | {Jn(t\/ﬁ)J_;x(ts»/ﬁ)—Jﬁ_n(t\/ﬁ).fﬂ(w\/ﬁ)} s&+3 1h2(¢s} ds.
0

td

m(k, a,t) =

where N = 2k + o+ 1 and C(a) a constant which depends only on . In the above formula

if o is an integer J_, must be replaced by the modified Bessel function Y, and sinam by

~1. Now define mqa(A\) = A" % Jo(VA) and
ta(0t8) = (TR _alts V) ~ Toa(tVN)JaltsVR)) 8754

For the symbols a4 we‘prove the following estimates,

Lemma 2.1.6 For 0 <r,s8 <1 we have the estimales

8% ag(A 7 8)| < C (1+ )11

valid for all A > 0 ,k > 0. More precisely ,

|3§Ga()ﬂ‘i-ﬂ)l < Crd sg'(l + A)‘“%(M‘l)
((1+020)7F (1472208 +52(1+r20)F (1+1%70)7%)

Proof: Let Bo(\) = )\"%“Ja(\/x) and when ¢ is a negative integer replace J, by Y,. Then

B, satisfies the equation |
d 1 '
'&I a(’\) : “EBa-t-l:(/\)-

The asymptotic properties of the Bessel function give us the estimates
d . -1 1
() Ba(N| < C(1+ 2y 3leHR42),

Consider the first term in aq(A, £, 8) which is equal to Bo(r?N) B_q(r?s2A)s3rt, The kt

derivative of this term is a linear combination of terms of the form
2444 2 — 4 ¥ 2
Pt Bayi(r®d) (r? 8%)¥7 B_gyp-j(r? 8° X) &
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which is bounded by a constant times

P2kt 2k=2043 (1 4 p2 \y=hleti) (1 4 g2 g2 \)R(-akb-dtD),

As0<r,s <1, the above is bounded by a constant timesg
rg (1+ A)~ 3+ (1+r20)7% (14r%20)7%

which is bounded by € (1 + A)~7*+1) Similarly, the k¥ derivative of the second term is
bounded by
C 1% 20T (14 A)77175 (1420 (1 +2%%0) "%

which in turn is bounded by ¢ (1 + z\)"%('{”""”. This proves the lemma. O

Iterating in the formula (2.1.3) we have

Jo (1 \/Zk-l-a-_}-__ll —

Ye(t) = 2% IMa+ 1) VT ESiT +mi(V2k +a+ 1,t)+ e(V2k + a+ 1,1)

where

- 1
m1(V2k + a + 1,1) = Ci{c) /0 aa (N, t,8)Mma(t*s2N) ds.

THE, -3
From the above expression it is easy to check that my (VA1) € S, * " and so when
P

a > (2n — 1)(% - 3) - %,_m1(\/2k.+ a4 1,1) defines an P multiplier. Further iteration

produces better and better terms. We can write

Jn(t\/gk'FCE-l'l) t - -
; (V2 1, ’ |
(tV2k+a+1)e > mi(V2k+a+1,t) +e(V2k +a+1,¢)

7=1

(1) = 2% T(a + 1)

where the error term e;(v/2k + a + 1,1) can be written as

a(Vah+a+1,t)
| 1 o | | |
= c;(ﬂc')/{‘] ./[‘} GQ(N,t,El) ﬂﬂ(N,taj,Sg).-*-aﬂ,(N,thg-=-Sg_.1,.'3[)
CYg(ts1 e 8y) dsy e dsy.
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Here N =2k + a4+ 1.

All the sequences m;{(vV2k +a+1,2), j=1,2-

LP(C") when a > (2n — 1)[-1- — 2| — %. Now il follows from Lemma 2.1.6 that the multiplier

L
(A2, 81)aa (A, 881, 82) - - aa (A, 8185 -+ s;_l,S;_) belongs to 5'_;5 with estimates uniform in

.+ { will define bounded multipliers on

s1. Hence using Theorem 1.1.1 and Theorem 2.1.5 we get that the operator defined
+ % < -i: Thus the

81,924
by the sequence ¢;(/2k + a + 1,1) is also bounded on the same L? if %

diflerence

¥ (t) ~2° Do+ 1)(tvV2% + a + 1) " *Jo(tV2%i + o+ 1)

defines a bounded L? multiplier for o > (2n—1)(% —-% — 2. As g (t) defines an L? multiplier
this implies that (2k+a+1)"7J, (V2% + @ + 1) also défines a bounded LP multiplier which

completes the proof of Theorem 2.1.2 .
J (~/'
-— in the theorem and noting that \/_ i‘fﬁ i ) we infer that

u(z,t) = 5'"\}-—‘*——)'(3) satisfies the estimate [Jul.,1)||, < Cy|f||p for |l ] < == This

proves Corollary 2,1.3 .

By taking o

We {inish this section with a few comments on the above corollary. As in the Euclidean
case it is natural to expect that the above is valid in the range |- — -2- < g En —~. Belore we
describe the difficulties involved, let us briefly explain the methods used in [30] by Peral to
get the end point result. First he considers a different analytic family of multiplier ﬁl}ératdi's
given by the functions Ja-1(J€1)[€]%. Using the boundedness of (—~A)¥#, § € IR and the Riesz

transforms on the Hardy space H!, it is proved that the family of operators given by the

above multipliers and their derivatives are all bounded from H! to L'. Now expanding the

Bessel functions in terms of sines and cosines, taking proper linear combinations and using

analytic interpolation he gets the result at the end point -11; — -}2- = ﬂll as well. We make

an attempt to adapt these methods to our situation. “f'o begin with, we have to study
boundedness properties of L .on spaces which are analogues to the usual Hardy spaces.

The natural space to look at is the twisted Hardy Space H!. These spaces were introd uced

27



and studied in [18).
Let 1 be a C®-function on C™ with compact support such that 4 = 1 in a neighborhood
of zero. Define

Ry(2) = |z|§f;+1¢(z)= Rj(z) = ,zlﬁﬂ (%)

for § = 1,--+,m. Then H' can be defined as the set of all f € L! for which R; x f and

72__?: x f are in L for all . Norm on H! is given by
n n =l_
11l = 1Al + DRy x flls + 3 1Ry % £l
=1 =1

Basic properties such .as atomic decomposition and boundedness of singular integral oper-

_ators etc were studied in [18], We will make use of the following theorem proved in (18].

Theorem 2.1.7 Lel K be a funclion with compact support such that
/ | K {7 —w) — K(z)| dz < A,
|2[>2|w]

and assume either ||[K x f|lz < B||fll2 or |K(§)] < B. Then Kf = K x f is a bounded

operator from H' into itself.

Now we proceed to study the boundedness of L¥# on . We have the following result.

Theorem 2.1.8 The operator L is bounded from H' to L for all f € IR.

Note that- L? = m(L) where m(t) = t*. Let ¢ be a C® function on IR such that
supp ¢ C (%, 2) and TR _ (29t} =1 for every t # 0. Let m;(t) = ¢(29t)m(t). Then we
have m(L) = 3523 m;(L). Let k;(2) be the kernel of m;(L). Then

ki(2) = 2m)™ S my(2k +n) oi(e).
k=0

We first obtain estimates for the kernels k; away from origin. We need the following propo-

sition, Let Ay and A_ denote the forward and backward finite difference operators defined

28



by
Agpplk) =Pk +1) -9k —1), A_wpk) =p(k) -k 1)

and let A stand for the operator A (k) = —(kA-Asp(k) +nA_yp(k)).
Proposition 2.1.8 If My(2) = S ieo(k)wr(z) then we have
'IZI2M¢ Z Ayp(k

Proof: See Lemma 2.4.2 in [44)

Proposition 2.1.10 Let a(z) be a CP function such that o =1 in e neighborhood of thc.

origin. Then there exists a § > 0 such that
./ﬂn | (1 — a(2))k;(2)| dz < C 2~%
with C' independent of 7.

Proof: A repeated application of the Proposition 2.1.9 gives

(315P)Vky(a) = 3 &Vmj(2k -+ nua).
k=0

Hence

k4 ()] < Clal " |§ AV img(2k + n)pi(2)]
=) ~

Note that the function m(t) = ¥ satisfies the estimates [m{)(z)] < CJt|~7 for every 7.
So |[ANm;(2k + n)] < Cn(2k +n)~N where Cx depends only on N. Hence using Cauchy-

Schwarz inequality and the orthogonality of ¢, we have

1
2

/63" [(1 — a(z))ki(z}| dz < Cy ( z (2% + n)—zﬂ “‘PJLH%)

2j=1 (¢.k+n{21+1
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where Cy depends only on' N. Since |||} < C k*71, choosing N large enough we get the

proposition. 0

This takes care of the part at infinity. To deal with the local part we look at the

operators L=+ for 0 < ¢ < 1. Let p; and K stand for the kernels of the operators gt

and L€t respectively. Then

o |
pi(z) = (2m)~" 2 B-—t(?k-{—n)(pk(z) = (47)""(sinht)™" o~k lal?(coth t)
k=0
Using the the identity
1 60
L—E"Hﬂ g . - f tt’-—-fﬁ e“tbdt
(e —2B) Jo

we have

o
K(2) = 0'1:,-(;“_1_ 5 fu ge-i8g=xlal(cotht) (ing 1)~" dt.

An easy computation shows that
la(2) Ke(2)] < C 217",
V(@K )(2)] £ Cle| ™"

with ¢ independent of 0 < ¢ < 1.

Now we are in a position to prove Theorem 2.1.8. Let K(2) stand for the kernel of
the operator L*#. From Proposition 2.1.10 it follows that (1 — a(2))K(2) € L' and so the
| operator f - fx{(l1-a)K is bounded from H! to L. Nnte!tha,t the operators f — f x K,

are all bounded dn LE(G“), uniformly in ¢ > 0. Proceeding as in Proposition 2.1.10 we can
eagily show that the kernels (1 — a(2))}K(#) are in L!}(€™) with norms uniformly bounded
in 0 < ¢ < 1. Hence it follows that the operators f = f x aK, are all bounded on L2(C'")
uniformly in 0 < € £ 1. Now using the above observations and Theorem 2.1.7 we have the

operators f — f X oK, are bounded from ! to L' uniformly in 0 < € < 1. Letting ¢ = 0
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we have the boundedness of the operator f — f x aK. Putting together we get Theorem

2.1.8,
Now let us define another analytic family of operators by setting G¥ = L=2 .7, (tV/L).

When ¢ = n— 1410 the Operatdr Gf is the composition of the operators L~ =n Jn—1 (t,\/ﬁ)
and L"“iag. Comparing \/E'I-I,L,_l(t\/f) with Tt""l as in the proof of Theorem 2.1.2 we get
that the operator LI_IJﬂ_l(t\/E) is bounded on L'(€7). Using Theorem 2.1.8 we have

@ is bounded from H! to L1, When Re o = —%, % is bounded on L2 as 872 J,_1 (t\/5)

is a bounded function. Now we need to apply analytic interpolation to the above family.

For H' replaced by the usual Hardy space H! this is a famous theorem of Feflerman and
Stein [3]. The same proof can be modified to deal with the present situation. The sharp

maximal function has to be replaced by the twisted sharp maximal function
1 | > ilmso
f2(6) = sup o= [ |1(w) = fo A=) du
’ 1@l Jq |

where fo = ]-cl-;,] Jo [ (w)fz““Jﬂf'Im"""“15 dw. Here ) is a cube centered at z. In order to complete

the proof of analytic interpolation theorem we need the fact that

Cr Il WS < Call Sl

This has already been proved in Phong- Stein [31] and so we have the following interpolation

theorem in the twisted setup.

Theorem 2.1.11 Let T'* be an admissible analytic family of operators, defined on the strip
{2, 0 € Re z < 1} such that, when Re a = 0, T is bounded from H! to L' and when
Re a =1, T% ig bounded on L% Then for 0 < a < 1, T% is bounded on LP forl&p<?2

where p is defined by 1 — § - %*

Applying analytic interpolation to the family G® we have that G is bounded on L? when-

ever a > (2n — 1) % — 3/ — 3. If we could get the same results for the family L™= % J,(¢VL)
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then by taking appropriate linear combinations we would have the Corollary 2.1.3 in the

range ]-— — 4| € 5747, Metheds in [30] are not suitable at this point.

2.2 Multipliers for the Hermite operator

T~

In this section we study certain multipliers associated to the Hermite operator H = —A+- ||

on JR". Bochner-Riesz kernels associated to A are given by the expression

i) = 3 (1- 23 a0

k=0 -+

where

= D Ba(z)Paly).

a=F

They satisfy the estimate (see [47))
|s% (2, y)| € CRE(1 + Rz — yf)~+PHn+2,

So Theorem 1.1.1 implies that m(H} is bounded on LP(IR") for m coming from S;%(IR)
provided o > n{l — p)l% — 31, 1 < p < 0o. We remark that as in the previous section,using

the estimate ||Pyf|la € Ck2~1|[f]]1, the above can be improved to include the case p = 1

as well, We start with a study of the following analytic family defined by
S¢f (@) = Z 98 (1) Pl (o)

where
| arn . DR+ T(a+1)
i) = T'(k + e+ 1) Ly (2

For this family we prove the [ollowing,.

t2) lt

Theorem 2.2.1 Let S be defined as above. Then for1 < p < oo, Sf: LP(IR") — LP(IR™)

18 bounded whenever o > n]-;; ~ 3|~ 1.



Note that when a =n—1, §~ ! is precisely the Weyl transform of the surface ineastire

up on the sphere {2z : |z| =t} in €". That is
[ = /lzl-—ﬁ z)f du

where 7(z) is the projective representation of €™ defined by m(2)/ (&) = e®4FI=V f(£ 4 ).

Here z = z + 1y.
First we express S for Re @ > n — 1 as the Weyl transform of a function. Let

oy a1
(o + n) -9 2]2\ ~Le2|z]2)
gt ( ) = 2 Qn-—-]t " (1 3 g 4\

Fla) T(n) ),

where wgy-.1 is the measure of {z : [2] = 1}. Then for Re @ > 0, gf is an integrable

function.

Proposition 2.2.2 Let Sff and gff be defined as above., Then for Re o > 0 we have the
relation SPTV = W(gR)f, f € LA(IRM).

Proof: We use the following formula which connects Laguerre polynomials of different

types :

L'k + 1)I(p + v+ 1) pr(ﬁ)e_ﬁa ~
Clh+p+rv+1) 7F 12 B

'k + 1P (g + v+ 1) / -1, L—(l 5t°
i J—1 - —8) oY
T()T(k + o + 1) / #{1-38)""e D=5 s

which is valid for Re g > ~1, Re v > 0. In the above .take 4 =7 —1 and v = . Then

after a change of variables we have

D+ DIMa+n) pgnog, 2y _2
Tk +a+n) o (-—-)e )

P(}u + 1)+ ?1) on—1 o-1, -'ﬂ—(l . 5212 2,2
— . = ""3) n—1 ---"L‘-L-
MLk + ) /03 (1= 4% B (e s
. -1 Ma+n) & a1 g L2(1-}af?)
211 1 F(CE)F(H} UC“F” 1), /.d;m Izl 4( Izl ﬂpL(f,Z) dz

I

Al (n - 1)!
(k +n- 1)] /d}’"
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Thus we have the relation

ceHit—1 — ﬂ""l
Ve ) (k-l-n-—-l /a;" (2) dz.

Since gf*(z) is a radial function it can be uxlnandt,[l in terms of pg(2) and we have the

expansion

which leads to the fortnula

g; (%) (2??)“"2 BT E) or(2).

Taking Weyl transform of both sides and notmg that W) = (27)* P, we get our propo-

sition, O

We make use of the above proposition in the following way. The function ¢ is inte-
grable and hence W(gf) is a bounded operator on L*{JR"), whenever Re v > 0. We will
express W(gf') as an integral operator with an explicit kernel X which has an analytic
continuation for Re o > -4 + % Using this, we will anﬁ]yticaliy continue Wgf) to the
region Rea > -5 4+ 3 L with an integrable kernel. Now the above proposition will imply

that this continuation has to agree with S¢ on that range. Thus we obtain expressions for

the kernels of the operators S which proves that these operators are bounded on L! (JR™)
whenever Re ov > — £ + 3. Using estimates on the Laguerre functions we can easily prove

that S is bounded on L? whenever Re ¢ > -_--%. Analytic interpolation will prove Theoremn

2.2.1.

In the next proposition we compute the kernel of W(gf*). Let us set G (r) = 2% r~%J, (7).
Proposition 2.2.3 Let K{*(£,y) stand for the kernel of W (g{¥). Then we have

K& y) = e+ a)t™™

| Doy g1
(— 13 2 Mo+ 7) |I!—"§|2 R .
> ="  Cargag-i(ztaly +2)
+ -
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Proof: Recalling the definition of the Weyl transform given in the introduction, we have

the explicit formula
WHE) = [ 4= g(a,g) 9(¢ +1) dady
where g(z,7) stands for g{z + iy). Thus W(g) is an integral operator with kernel

K6 = [, ooy —6) eHe o

In view of this formula, the kernel K of W(g}*) is given by

KEG) = fyp (e ) 60 i

In order to evaluate this integral we expand the exponential factor in the definition of

g into an infinite series getting

F(C}.’ T ﬂ) —~1 . t—-znz ("'"dlj)’;;'t?j ( |3| )iﬂ;_l.

We now define £ to be the kernel

i~ 12 2y o1
k' (€, y) = I{(a) fm, (1--[-‘9-1- y - ‘fl) e 35 (640) gy,

so that K is expressed as

00 ¢ ANF 424
KfE,y) =2 IF(ST*? ))“’i?ﬁ_lz ( 1')3-.” Mo+ 35) K7 (60y),

Note that k¥(£, y) vanishes for |y~ £| > t. Therefore , by putting s* = 1 h”;flg and making

a change of variables in. the definition of & we get

ki v 2 _[20 a1 doesn) d
60 = Fry [ (68— 5 eH ) g
t—*ﬂ

— 2a+n- / 1__* 7 2yo~1 t.sm.('y+£) do.
P(a,) | Jirk I I)
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The last integral is a constant multiple of the Besscl function (see Theorem 4.15 in Stein-

Weiss [37] )
/ L (1= 1a)57" e do = 7% 2273 T(a) Jpgn-a(l€]) €7

Therefore, we have the formula

4|

Cr X ;~n Iy T glg " !
k&) =% 7" (1- 5y Gatg-1(5tsly +£))
+

Putting this back in the expression for X* we obtain

K2(6,y) = cal(a+ )™
. , N A .
$ (1)) 2 D+ j) (1 ly—slﬂ)““*’ | !

&4 () 2 Gotgri-1(56sly +¢))

7=0 +

which ends the proof of the proposition.

Note that for fixed y and £ each term in the sum is holomorphic in ¢ as long as Re o >

(";l). We also note that

e+ 1)
()

15 an entire function of ¢,

For the kernel K* we now prove the following estimate.

Proposition 2.2.4 Assume that Re o> (”;1). Theln

-4
2

2 ar o £
KR, 9)] < Ca e -7 (1 ly tj')
..I..

where Cq is of admissible growth as o function of Im a.

Proof: We only need to check that

I’ r '
sup (o + n)_ (o + 5} Ga+%+3_“1(r) < C,

520 e |
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X [ .
for all values of 7 > 0, when Re o > —(%51). The Bessel function Jo(r), for Re « > —3 is

defined by the integral

J( — 2—[1 3 / tr-; *___ ﬂ)ﬂ-—-‘ﬁ ds
«(7) \/_ 8 .

Therefore, |Gao(r}| < All'(a + -%—)|“l where A depends only on Re a. So we have to show

that
['a+n) I'(a + ) <
A

M) T{a+j + %)

When n = 2m -+ 1, the left hand side reduces to % ;‘(';;‘:JII{']"'(“EEEE”__U which is certainly

bounded by a constant Cp of admissible growth. When n is even we can use Stuhng S

formula to arrive at the same conclusion.

We can now complete the proof of Theorem 2.2.1. Consider the family of operators

K21 @) = [, Ke@v) [0) dy

Note that in view of propositicn 2.2.4 this is an admissible analytic family of operators for
Re a > —(21) which are bounded on LP(IR") , 1 < p < oo uniformly in 0 < ¢ < 1. By
the result of Proposition 2.2.2 we know that S¢ agrees with £§~ """ for Re a > n — 1.
But 57 is analytic in the bigger range Re a > '“E and so we can think of Sf as an analytic

continunation of )C“'“("'"'U

As in the proof of Theorem 2.1.5 we now have the estimate [|S®f||2 < C|[/]]2 for Re a >

-1, C being independent of , for 0 <2 < 1_‘ For a = &5l 4 § 44y, §¢ = K] n=l BE MY
bounded on LP(IR"} , 1 < p < 00. By analytic interpclation we get |
15l < Cllflly o>l b= L
| - p 2 2
where C is independent of ¢, 0 <t < 1. T'his completes the proof of Theorem 2.2.1. 0

The operators Sf were studied in [32). Among other things it was proved in [32] that

Si=f(2) converges to f(z) as £ = O for almost every ¢ in JR" and for f € L7, p > gffffl
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Using the explicit expressions we obtained for the kernels of Si* we improve Lhis to get the

following,

Theorem 2.2.5 The mazimal operator supgcy<; |57 /(%)] is bounded on LPIR"), l <p <

oo for a 2> L. Consequently, for [ € LP(IR™)

lim 8¢/ (2) = J (a)

for almost every x in IR

, Sf is given by the kernel I{f"(ﬂ"l). It is enough to prove the

Proof: When o > "El
theorem for « = 4. Proceeding as in the proof of Proposition 2.2.4 it is easy to show that

sup IS:%f(m)i‘SjC' sup 7" f [f()] dy.
0<t<1 O<t<oo lz—y| <t

The right hand side is just the Hardy-Littlewood maximal function and hence

[ swisti@pis<c [ (1@)p d

0<t<1

for 1 < p < co. Hence S? f(z) converges to f(z) almost everywhere as ¢ — 0.

Next we consider the following Cauchy problem for the Hermite operator.
52v(z, 1) + Ho(z,t) =0, v(z,0) = [(z) Bv(z,0) =0,

Formally the solution is given by
v(w,t) = cos tVH f(2).

We consider what may be called the Riesz means of the solution v. These are defined by
| y
. L g2 a—3
vz, 1) ='./0 . 1 - ") v(z, 8) ds.
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As in [32], we can prove the pointwise convergence of Riesz means to the initial data 1n

small dimensions, That is, for n = 1 and 2, we have

for almost all ¢ in JR" provided f € LP(IR"), 1 < p < oo, We omit the details,

Next we study the boundedness properties of the operator H-% sinéy/ H. Proceeding
as in the previous section we can compare S* with the operators H=%.J, (IWVH ) and prove
that the operators H~% J,(tvH) are bounded on LP{IR") as long as a > n] ------ 5. Bub
we note that these results follow from a direct application of the general mu]t:pller tlleorem

proved in the first chapter. Taking o = 11- we get the following estimate for the solution to

the wave equation associated to the Hermite aperator.

Corollary 2.2.6 For [— ~ 5| < % we have the estimate
qmt\/H
I- Y f”ﬂ < Clifllp.
If we wish to extend the above to the bigger range |— ---\ < H -7, in the proof of Theorem

2.2.1 we have to interpolate between Re o > % —1and Re o > -—-%. But a close look at
the expression obtained for the kernels K of S shows that, K are not integrable for
Re @ € —% + 5. Hence the above corollary seems to be the optimal result one can obtain
about the L? boundedness of the operatorg &0t HI' L Tln;s has been already proved by Zhong
[49], where he has considered Schrodinger operators with nonnegative potentials. However

if we restrict ourselves to radial functions il is possible to extend the above result to the

bigger range [ ~ 3| < L7, We prove

b

Theorem 2.2.7 Assume f € LP(IR™) is radial. Then

sint/H 11 ]
II- Y, Hip SCIMp  Sor |5-§I<ﬂﬂ1-
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To prove the above we have to recall several facts about Hermite expansions and La-
guerre translations. We refer to the monograph [44] for more details. When [ is a radial

(unction Hermite expansion reduces to a Laguerre expansion. Then we can view the op-

erators Si* as operators on the space LP([0,c0),7" " !dr). When o = & — 1, Sf becomes

a Laguerre convolution aperator which is bounded on all I?, for 1 < p < 00 and when

a = —z, S¢ becomes a bounded operator on L2. Analytic interpolation then will prove

Theorem 2.2.7. First we recall the necessary resulits:

Theorem 2.2.8 If f is a radial function then Py f =0 and

a1

Pouf(z) = RZ(f) L (laf?) e tkF

where

Cn =t [T 0 ) e e

Proof: Sece [44] (Theorem 3.4.1),
We also need the following facts about the Laguerre translations, The lL.aguerre trans-

lations T f () of a function f on R, = [0,0¢) for a > 0 is defined by

2°T(cx + 1) ¢ 7
T2 f(y) = \(/%?r_ )—/‘u f ((m2 + % + 23y cos 0)'%) jﬂ_%(my sin0) sin®® 0 dg.

where we have written j,(t) = t~2J,(¢). The following results are proved in [44]. (see pages

139 and 141.)

Lemma 2.2.9 If 4 (z) = E%&FMI@T(:1':'5‘3) e" 1% then TPt (y) = Tpf(ﬂ“)‘if’f ()-

N 20 . -
Let du(z) = z“*tldz. Let us denote the norm in LP(Ry, du) by ||f|lp,u Thus A, =

LT f(z)|? z?ot1dy,

Lemma 2.2,10 Fora > 0 and 1 < p < o0 we have UWTE Mo < S Mp e
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We refer to the monograph [44] for more properties of Laguerre translations. Now we
proceed to prove Theorem 2.2.7. Define the analytic family of operators

Btf““Z% ) Par f

k=0

k+1)Matl) ra 2) 12 ~ i is a radial function. For
JTTTJ%&H) LY (%) . Here we are assuming [ is a ,

this family we have the following results,

where w,t

Proposition 2.2.11 ) ||B#f|li < C(@)If [l , for Re a > § —
i) ||Bgf|l2 < C()IIf 1|2, for Re ot > —3

Proof: Since f is a radial function we have by Theorem 2.2.8
| R P
BEf(@) = S vR () RET'() LE 7 (af?)
k=0 .

Hence by Lemma 2.2.9

n-—t

f(z) =T f(|a])

and by Lemma 2.2,10 we have

| .1
”Btz ”LI(RH} = “Btﬂ f”‘:ﬂ' 5 O “f“l,}l = G ”'f LI(}R“T

Naw as in the earlier sections we can prove (i), Similarly we can prove (ii) as the sequence
-1
. 2 (t) forms a bounded sequence and so the operator B, ? is bounded on L*(/R™). It can

be checked that Bf forms an adinissible analytic family of operators in the sense of Stein.

By analytic interpolation theorem we get the following result.

Theorem 2.2.12 Assume that f € LP(IR") is radial. Then we have the estimale || B f||p <

Cillfllp » Jor &> (n = )I3 ~ 41 - 3 | -
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Again as before comparing Ju (1) 7% with PR (L) we get the same result for the multiplier

JaltV2k+4n} | .
E" Tl that is

JtVH) 1< ol

|
B
for all radial functions when & > (n - 1”}? ~ 2 - - Taking o = —- we get Theorem 2.2.7.

More generally one can consider

Lot P = ~A + V(z) where

We finish this chapter with the following reinarks.

Schrodinger operators on IR" with non negative potentials,

the potential V(z) is non negative and continttous. Let e~ (2, 9) denote the kernel of the

operator e t¥. By the Feynman-Kac formula we see that [7]

0 < e *Pz,y) < pul=,y) (2.2.4)

ik |
where py(z,y) = Ant)~7 e~ LJ'L . Now, using the above and modifying the method in [7]

one can obfain pointwise estimates for the Bochner-Riesz kernel s%(z,y) assoclated to P.

This will be described in details in Chapter 3 (see Propositions 3.1.1 and 3.1.2), We have
|s%(z,0)| < C RE(1 + Ri|o: — y|)=5+7 (2.2.5)

for some constant 4. Hence, Theorem 1.1.1 is applicablle to the above operator, As a

consequence, we get the following result.

Theorem 2.2.13 Let P be as above and f & L”(IR”} Then the estimate llﬂi"i/[f ||, <
Ct 1|[/llpy holds for |2 — 3] < 5 o L}

~ This theorem has been proved by Zhong [49] using a diflerent method.
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Chapter 3

Oscillating Multipliérs on the
Heisenberg Group

In this chapter we deal with the sublaplacian £ on the Heisenberg group H™ = " x IR. 'FThe
sublaplacian can be explicitly writtenas £ = —A - 1|2|*8% — N 9,. Wave equation associated

to £ has been studied .recently' by Stein and Muller. We slightly improve their result on

the boundedness of the operator £~ % sinsv/L in the case of band limited functions. Before

we proceed to study the operatof L3 sinsy/L, we first exfjlain how to obtain Bochner-
Riesz kernel estimates using known estimates on heat kernels and modifying a method used
by Hebisch in {7]. We will be considering the operators P, = L 4 ial, where T = g
We obtain uniform estimates on the Bochner-Riesz kernels of these operators as long as
la| < n—¢, ¢ > 0. We remark that this method is applicable to a wider class of operators
such as Rockland operators on stratified nilpotent groups and S(:ln'oedinger operators on

IR and so on.
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3.1 Heat kernels and Estimates on Bochner-Riesz kernels

For ¢ € IR consider the operator P = L +taT" which is a Rockland operator on A" as long

as a is admissible, that is when la| < n. We have the following uniform estimates for the

heat kernels of these operators,

Proposition 3.1.1 Lete > 0 be fized. Let psqo(2,t) be the kernel of the operator e=*"a | 5 >

0. Then we have
Ps,a (3; t) <C 3"!22 e""‘il(lzl”'ﬂﬁl)

where A and C are independent of a for ja|.<n —e.

Proof: Note that F, is homogeneous of degree 2 with respect to the Heisenberg dilations.

5o it is enough to consider s = 1. Let us write py 4(2,¢) = Kq(z,t). It is easily seen that the

kernel is given by the formula

Kalz,t) = e f ka(2, 6, A) d)
— 00

where

_ —~al A bo-A Azl i

kﬂ(z, L, ,\) = e o4 (coth A)|z] piAl
sinh A

Note that kq(z,, A) extends to a holomorphic function of X in the strip lIm Al < %. Hence

by Cauchy’s theorem

: _ A
Kai{z,1) = lim {/[; 4 ko{2,t, —R +i0) do

fi— o0

Ao ‘IT T
+ /R ka(z,1, )*‘I“"':'['l') dA “‘A ko(2,t, R+ i0) do}.

In the above the first and last integrals go to zero uniformly in ¢ as B — oo, provided

la| <n — ¢ Then we get
%

I(ﬂ(zlt) - Cﬂ/ ku(z, fv, /\ +3"})d/\

=00
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and from this we obtain

|Ko(z, )| <« Ce il 1 >0 (3.1.1)

where C is independent of a. The same estimate holds for £ < 0 as well. As colh A behaves

like A~! for A small we easily get the estimate

|Ka(2,8)] < C em1lF, (3.1.2)

The estimates (3.1,1) and (3.1.2) put together prove Lhe proposition.

Using thie heat kernel estimates proved above and following a method of Hebisch(7] we

can obtain uniform estimates on the Bochner-Riesz kernels associated to PP,. Let us write

w = (2,t) and |w] be the homogeneous norm defined by |u|* = |2|* + [([%

Proposition 3.1.2 Let S}, (w) be the kernel of the Bochner-Riesz means associated to P,.

Then for la] € n— ¢ and for all large ¢,
[Shaw) S C R (1+ Riful)=4+7
where C' 15 independent of a, R and 8 is a ficed constant.

Proof: Due to homogeneity of the operators P, it is enough to consider 1 = 1, Following
Hebisch we let B} (w) be the kernel of the operator ¢™¥ K with K = ¢~ =, By appealing

to Theorem 3.1 in (7] we get the estimate
/ B )] (U o)) dw < O+ [nf)T+5
for every v > 0 and C' independent of a. Defining €2 to be the kernel of ¢™ K2 we have

en(w) = Bf xpy o(w).

Here * denotes the convolution on H®. Using the I! estimate of B and the heat kernel

estimate of P, we easily get the estimate

led (w)] < C (1 +w])™" (1 + n))7+$ (3.1.3 )
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for all v > 0 with ' independent of a.

We can now make use of the functional calculus developed in [7] to get estimates of the
Bochner-Riesz kernel. For the sake of completeness we briefly indicate the method. Let
F(A) = (1 — M4 9(\) where ¢ € O™ he such that ¥(A) = 1 for A > 0 and 9()\} = 0
for A < —e”!. Let G(A) = A™2F(=log)) for A > 0 ; G()) = 0 otherwise. Then G(\)
is supported in [0,e] and I7(P,) = G(e~"4) e~2?%, Expanding G()\) into Fourier series as

G(A) = T2 _ . G(n) €™ we get
o0

F(R)= Y.  G(n)e™ K2
n==00
where, as before, K = e~ 5,
Using the cstimate (3.1.3) we get
o]
SV ale, )l S C (L) 30 1GMI(L + ) 7+E,
n—=—0Q

The coefficients G'(n) are given by
| ﬁ e o
G _— / -inA 1y
(1) o G (/\) e dA
Making a change of variables we get
2 1
Gin) = 5=

As F'(t) = (1 — t)9(t) we easily get the estimate

l
f F(t) e e~ire™ gt

g—1

IG(n)| < C(1-+n))~!

provided § > { — 1, Taking § = v + % + 2 we have |G(n)| < C(1 [-.nl)"""""’t}“'2 and hence
Sta(w) < C (1 +u])~*E+2

where C is independent of a. This completes the proof of the proposition. O

We remark that, as a consequence of the ahove and Theorem 1.1.8 in Chapter 1 we have

the following.
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Theorem 3.1.3 Let m € §;% and 1 < p < co. Then the operators m(Py) are uniformly
1 1 (]

bounded on LP(H™) for |a] < n — € whenever a > (2n+ 2)(1 — p)}5 — 31-

3.2 Wave equation for the sublaplacian

Next we return to the wave equation, with s as the time variable,

B%u(z,1,8) = Lu(z,t,8), u(z,,0) =0, dsu(z,t,0) = f(z1). (3.24)

In {25] Stein and Muller have studied the L? boundedness properties of the solutton to the

above problem. They have proved

Theorem 3.2.1 (Muller-Stein) For [é - 1| < g, the operator L% sinsV/L extends o a
bounded operator on LP{H™),
We improve this result slightly in the case when f is band limited in the { variable.

Let LI {(H") stand for all f in 'LP(H“)' for which the partial Fourier transform f#(2) in the

t-variable is supported in |[A] £ B. On this space we have the following improvement of

Theorem 3.2.1.

Theorem 3.2.2 Let n > 2. The operator L% sin V'L is bounded from Lin (H™) to L% (H")

for |2 — 3] < 5=

More generally we can consider operators of the form £ J.(v/L). We have the following
result for these uperators.

Theorem 3.2.3 The operator E“%Jﬂ(\/Z) is bounded on L3 (H™) for |:; — % < %:—:'f—é
Y43

provided 6 < dn~5. Otherwise it 1s bounded on L (H") in the smaller range !%—--ELI < fnti-
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Note that Theorem 3.2,2 follows from the above when o = % As in the earlier chapters we

first consider the operators

1o (et) = [ (5_: wf(r\/ﬁnf*eir(z,t)) A" dA
o\

+.__-0.

For this family we prove the following result.

Theorem 3.2.4 1)When a > (2n — 1) % — -é-| — 5, T3 are uniformly bounded on L (H™)

for0<r £ 1.
i) When a > (2n — %)I% ~ | — 3, T ave uniformly bounded on LP(H™) for all r > 0.

Proof: Let u, be the normalised surface measure on the sphere S, = {(2,0); |2] = r}.

Then it is well known (see [29] ) that

frm=ea [ (X o /N Fecd) Al an (3.25)
0 k=0 |

Now Laguerre functions of diflerent type are related by the formula

a-+f - P(k+a+ﬁ+l) : 1 — o
Lk+ (r)_l"(ﬁ) F(k+ﬂ:+1)./g s (1 — s)? L2 (sr) ds

which is valid for Re @ > —1 and Re # > 0. Using this we can write whena =n—1+46+1io0

Nk+n+d+1i0) 11 o1 —~(1—8)r? 1
RO = i faay o (e A0 e By da (320)

Let us define an operator A, f by
(An))Me) = e fA()

where fA(z) is the partial inverse Fourier transform of f (#,£) in the {-variable. Tor ¢ =

n—1+ 4410 we then have

. Fin+46+i0) f1 -
ma g had s n-1¢1 _ N+Ho—1gm—1
rd '(6 + o) T'(n) ./u o ° (L= 8)" TG A-syaf ds (3.2.7)
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Similarly when a = —2 + & + io- we have

N(—5+0+i0) f1 1 S+ -v.1r ~3
(6 + io)(~3) Jo 731 -8) ry/s O (1—8)r"

The operators A,f are nothing but the Poisson integrals in the ¢-variable and so they are

Taf =

uniformly bounded on LP{H™) for all 1 < p < co. Therefore, from (3.2.7) we see that

ITF e < Clodllfllp s 1Sp S 00

_1 ,
whena =n—14 4§+ i0. When o = __% , the Laguerre functions ¢, ? (r) are uniformly

- 1)) be such that

bounded in k as long as r remains bounded. "Let x € CP(|A] £ (B -
x{A) =1 for |A| € B. Define x(23;) to be the operator

(x(38)NMz) = x (N[ (2).

Then the multiplier corresponding to T%x(i8:) is ¥§(v/[A] r)x(A) which is uniformly
bounded. That is ,

¥k (/1A Ix() < ©

forall Aec R, k=0,1,-+- and 0 < r < 1. Therefore, by Plancherel theorem

|1TFx(28:)/ |2 < Crlo)l|/]l2

when o = —3 + § + {0, Using Stirling's formula for the gamma function we can check that

C(o) and Cp(o) are of admissible growth.

By appealing to Stein’s analytic interpolation theorem we obtain

T80 £l < CII I,

fora > (2n—1) % — %)~ % This proves part (i} of Theorem 3.2.4, To prove the other part

|
we use the uniform estimate [y, * ()] < € which is valid for all ¢ > 0 and & = 0,1, (see

Szego [42]). As before, analytic interpolation will prove part (i1).
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Now we will use the above thearefn to study multipliers of the form m((2k 4+« + 1}| A]).

However, to prove Theorem 3.2.2 we wieed to treat multipliers of the form m((2k 4+ n}|A|)-

This can be achieved by comparing these two multipliers, Taking m(t) = ™% Jo (V1) we

have the equation
m((2k + n)AD) = m{(2k +a+ 1)[A]) = 1A f {2k + Dl
L m

Since m’(t) = —%t"g:ﬂﬂJﬂ.l,l(\/_) we have

b T (VEEFDIN )
1IA) = —= |,\|f e e (329)

m((2k + n))\]) — m((2k + a -

g 2.3
Note that )\““EF]'JG,H(\/X) belongs to the symbol class S, 7 (IR} whereas A~ 7 J(v/A)
2

oLl
belongs to S, ? *(IR),
2 .
Therefore, if we can show that the operators J2f defined by

o Jﬂ-{ 1{ \/(Zk + r)l’\‘l) A n
il = /_ k_o (VR F et 4 * ek AT A

are uniformly bounded on LP(H™) for 20 + 3 > 2Q(jl} - -%-) , @+1 < r < n, then from
(3.2.9) it will follow that m(L) is bounded on L%, (H") when the multiplier m{(2k+a+1)|A|)

defines a bounded operator on L%, (H™). Thus we require the following.

Theorem 3.2.5 Let m € S“"‘*(IR) and lel M, be the operalor given by the mulliplier
m((2k + r)|A|) where 0 < € < r < 2n —¢. Then M, are uniformly bounded on LP(H™)

when a > Q(1 — )-5—-%-

Proof: Let H f be the Hilbert transform of f in the ¢-variable defined by

(Hf)Mz) = —isgn) fA(2).

Write g = (f +iHf) and h = $(f~1iH[f) so that f = g+ and Holl, < Cilfllp s hllp <
C||f]|p- Note that g*(z) vanishes for A < 0 and A*(2) for A > 0. Now

00 &)

Mg=ca [ (Y m(@k+n)Al+(r=n)) g e} ) IA"dA

©0 k=0

&0



which is nothing but m(L + i(n — r)T")g. Similarly M. h = m(L — i(n — r)}T)h. Now from

Theorem 3.1.3 the operators M, are uniformly bounded on LP(H"). As M, f = Mg + M:h
1

we see that M, is bounded on LP(H"™). This finishes the proof of Theorem 3.2.5.

In view of above theorem and the remarks preceding it, it is enough to consider the

operator M given by the multiplier m&(k, A) where | _

Ja(T/(2k + a + 1)[A])
(r/(2k + o+ D[A)e

As in the previous chapter we compare the multipliers m&(k, A) and g (/|A| r) by using a

m&(k, A) = 2°T(a + 1)

Hilb type asymptotic formula for the Laguerre polynomials. Formula 8.64.3 on page 217 of

Szego {42] gives
Y (r) = m(k, 1) + ek, o, 1) (3.2.10 )

where e(k, o, r) is given by the integral

4 /[; : (JE(T\/E)J__Q(TS\/E) e Ja(TS\/f_f) -I—E(T\ﬁf))

3“"’311)? (rs) ds

i1 r
23 sin o

In the above formula K = 2k + a + 1. When o is an integer,. sin am in the above formula
has to be replaced by —1 and J_., by the modified Bassel function Y.

Let us define an(A, 7, 8) for A > 0 by
-; aa(A 1,8) = ( Jn(r\/x) Ja(rsV ) ~ J._.H(*r\/z) Ja(rsv/A) Jet 3y

and let Ay(r, s) be the operator whose multiplier is aq{ (2k + n)|Al, 1, 8). Let x and x(i5;)

be as before. Irom (3.2.10) it follows that

1
T % (i8,)f = M%x(i8,)f + ¢ /D Aq(rys) T x1(i0y) [ ds
where x1(A) = A2x()\) and ¢; is some constant. Another iteration produces the formula
| | |
MPX( 8)f = Tox( 00 +e1 [ Aalrys) Mixali ) ds

1 ’ ,
+ ¢g /[; /ﬂ Aa(r,8) Aalrs,s) 17+ x2(i 1) ds ds (3.2.11)

0l



where y2(A) = My()) and ¢; , ¢ are constants,

We are now in a position to prove Theorem 3.2.2 . From Theorem 3.2.4 we know that

. 201 2043
T2y (i6;) is bounded on LP(H") for |-:; — %| < %—E—% If 6o < 4n — §, then 2235 < E?F—ET and

consequently 5 -+ % > %l% ~ -é-| whenever I% — %| < %—ﬁ-—'ﬁ% The multiplier corresponding $0

the product Aa(l,s) MZ is given by the symbol
m(/\is) = aq(A, 1,8) B (32 A)

~a_3 | »
where Bqa(t) = =% J,(+/1), which belongs to the class S% 2. 4(R). Using Lemma 2.1.6 in

Chapter 2 we can show that
B5m(),s)] € C (1 + A)~Tlati+h

1

- %\-}; — %L from Theorem 3.2.5 we conclude

e fioad

where C is uniform for 0 < s < 1. Since § +

that
| Aa(1,8) M [l < C /|l

where C is independent of s. Therefore, the operator

/ﬂ " A1, ) MOx(i 8)f ds

is bounded on LP(H™).

For the third term in (3.2.11), the symbol of the operator Ay(1,8) Ax(s, s} comes from
STH{IR) and the derivatives satisfy uniform estimates for 0 < s , s <1 in view of Lemma
2

2.1.6 in Chapter 2. If 0 < a < -é- we can conclude that the operator

1 41 , |
_/;; _/.; Aa(ly8) Aa(sys) Ty xali 01)f ds ds

is also bounded on LP(H"). Therefore, from (3.2,11) we see that Mf x(i ;) is bounded on

P(HY). o> -é-, we can perform further iterations and then the symbol of
Au(1131) An(31:32) e Aa(3132 e 81y 81)
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"""L ' ' ' "
will come from S, ?(/R) with estimates nuniformly in sy,2,+ 8. We can choose [ large
D

)
enough so that § + -3— < % and appealing to Theorem 3.2.5 we get the boundedness of

M¢ in the case when 6 < 4n — 6. If 6 > 4n — 5 then we need to assume the condition

% — %] < %ﬁ’f&-} so that 5 +% > %]% - %| We then proceed as before to complete the proof.

O
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Chapter 4

Bochner-Riesz Means and

Equisummability

This chapter is devoted to a study of the Bochner-Riesz means associated to various eigen-
function expansions. rom a transplantation Theorem of Kenig- Stanton-Tomas it follows
that local uniform boundedness of Bochner-Riesz means associated to Hermite or special
Hermite expansions imply corresponding global results for the Euclidean Fourier expan-
sions. Here we are interested in the converse of this result. In the first section we prove
that uniforin boundedness of Bochner-Riesz means associated to Fourier transform on /™
is equivaient to the local uniform boundedness of Bochner-Riesz means associated to the
Hermite expansions in small dimensions and partially in higher dimenstons. Next, by com-
paring Bochner-Riesz means associated to spécial Hm‘:ﬁite expanéimls on € with that of
the Fourier expansions on R we prove the equivalence of local boundedncss for special
Hermite expansions and uniform boundedness of Fourier expansions, We also study the

Bochner-Riesz means associated to the Hermite expansions on JR*" for functions having

some homogeneity,



4.1 Hermite expansions

In our study of the Bochner-Riesz means associated to Hermite and special Hermite ex-
pansions we make use of a transplantation theorem of Kenig-Stanton -Tomas [12]. Let us
briefly recall their result. Let P be a diferential operator acting on Cu®(IR") C L*(IR")
- which is self adjoint. Let

p =f AdEs

be the spectral resolution of P. Let m be a bounded function on & and define

ma(P)= [ m(%) dE,.

Let K be a subset of " with positive measure and define the projection aperator x g on
L*(R") by
xx f(z) = xx(z) f(2).

where xx(z) is the characteristic function of K. Let p(=z,£) be the principal symbol of P.

Since P is symmetric p is real valued. In [12] the following transplantation theorem is

proved.

Theorem 4,1.1 Assume 1 < p < oo and that there 1s a set of positive measure Ky for
which the operators xx,mr(P)xx, are bounded on L"(IR™) uniformly in R. If zg in Kq is

any point of density , then m(p(zq,£)) 45 a Fourier mﬁttiplier of LP(IR").

- Let B be any compact set in JR" containing origin as a point of density. Ll S be
~ the Bochner-Riesz operator associated to Hermite expansions on R™ and let S} be the
Bﬂchner—Riéﬁz operator associated to the Fourier transform on IR™, Then from Theorem
4.1.1 it follows that the uniform boundedness of xpS%xp on L?(IR") implies the uniform

boundedness of Sf on LP(IR™). Thus once we have the local summability theorem for

Hermite expansions then a global result is true for the Fourier transiorm.

- 8b



In the higher dimensions it is convenient to work with Cesaro means rather than Riesz

means. These are defined by

where Aﬂ are the binomial coefficients defined by Afc = ﬁi—,(_fﬁ%%ﬁ . It is well known that

o8, are uniformly bounded on LP(JR") iff §% are uniformly bounded. Let E stand for the

operator

Ef(z) = e"11% f (x).

We then have the following equisummability result.

Theorem 4.1.2 Eo% F are uniformly bounded on LP(R") iff S¢ are uniformly bounded on
the same LP(IR"™), provided 6 > maz {0, — 1},

Let Sy f(z) = S8 o(f, e )hs(z) be the partial sums associated to the one dimensional

Hermite expansions. In 1965 Askey-Wuainger (1] proved the following celebrated theorem

Theorem 4.1.3 Sy f — f in the LP? norm iﬁ% <p <4

Note that this is in sharp contrast with the well known result, $¢ are uniformly bounded
on P, 1 < p <coforall § > 0. In particular when ¢ = 0 we have, the partial sum operators

St associated to Fourier transform on "™ are uniformly bounded. As a corollary we have

the following,

Corollary 4.1.4 Let 1 < p < co. Then for the partial sum operalors ussocialed Lo lhe one

dimensional Hermite expansion we have the uniform estimate
[isns@petam s [irwpetvas
Thus for [ € Lp(egyzdy), 1 < p < oo the parlial sums converge lo [ in Lf’(e"gmﬂdmL
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For a general weighted norm inequality for Hermite expansions see Muckenhopt’s paper

[21].

The celebrated theorem of Carleson-Sjolin for the Fourier axpansion on R? says. that if

0 > 2(% - i — %, 1<p< % then §¢ are uniformly bounded on LP(MR?%). As a corollary to
this we obtain the following result for the Cesaro means ¢, on IR”.

] ]

Corollary 4.1.5 Letn =2, 1<p< 5‘5 ond & > 2(y - 5) - % Then Jor [ € LP(IR?)

[ ok spetilas < ¢ [ 17 @petio’ay

It is an inferesting and more difficult problem to establish the above without the expo-

nential factors.

We now proceed to prove Theorem 4,1.2. It is a frivial matter to see that uniform
bhoundedness of Ea}f,E implies the same for ygo% x5 for any compact subset B of IR™. In

fact, if Eo$ F are uniformly bounded, then

[ IxackxssP ds
= [ el eklel'|of, (et (5 £(y) eBb)) Paa
<C [ |EoyB(xsl(y) etW")P do
<¢ [ /@ ds.

In view of the transplantation theorem this proves one way implication. To prove the

converse we proceed as follows. Let

P(z,y) = ) Balz)Baly)
- al=k
be the kernel of the projection operator P, Then the kernel 0% (%,y) of the Cesaro means

is given by

1 |
g?ﬂ (z,y) = ViR Z Ai’-—:kq)k(msy)* |



We first obtain a usable expression for this kernel in terms of certain Laguerre functions.

Let Li(t) be the Laguerre polynomials of type o > —1 defined for ¢ > 0 by

1 db
~fiarargy _ ¢ 1)A =Lih+o
THOLE(E) = (— 1) —x(eTh),

We have the following expression.

Proposition 4.1.6
ol (z,y) = 1 i(_.l) "*2 | %) e ~tlz—y* 2! _1_‘.,- |2 - 1lz+yl*
ijy *—Air’kn .-"'}-—y J)ru 2u:+y G ‘

Proof: The generating [unction identity for the projection kernels @ (x,y) reads (see [44]))
' ' : 0. ArE,
z?‘k‘f‘k(iﬂay) — '}T_%(l — ) 2 e g‘r'_!:—,.b'“ |2 |yl2)+1_~:¥
k=0
Since

1—-r“‘5" ZA
&

the generating function for o (z,y) is given by

11472 0 2z,
Zr"‘Am‘;.(m y) =(1—-17r)" -3 2~ {1 4 )™ 2e oyt (] +Iyl“)+fi
k=0
The right hand side of the above expression can be written as

1 -
(1 = p)~ 04151l (] 4 )~ Fe-TiFrletol

Now the generating function for the Laguerre pnlynmnials  is (see Szego [42] )

a—1; 1tz

e 1 1,2
S kL (-—ﬁ) 4 = (1 - et
h=0 2

Therefore, we have -

o0 00

> r*alol(z,y) = (Z‘mﬁ” (31~ ) 'S*ﬂ"’)

k=0 4=0
00 a_ .
(Z(__T)i]'tz ( ‘:U—I-’Ul‘!) |~T-+1f|)
1=0



Equating the coeflicients of r* on both sides we obtain the proposition. O

The Laguerre functions LY are expressible in terms of Bessel functions J,. More pre-

cisely, we have the formula (see [14])

1 m L
“Tga L (z) = RS T (2V/1m)dt
e “z2 LT (z) F(k+1)/;; e T2 Jo (2Vix)d

Using this, the kernel e -3lel® 54 Nz, y)e” 31* of the operator E'crNE is given by the integral

/ t_st—-s)” 631 Ja+n(\/“l-"ﬂ yl) Ja_i (V2| + )
/ NI aile g (Vasls 4 y)h

where C depends only on §. Now the kernel of the Bochner-Riesz means S? on IR" is given

dids

by
Jsra (tz —yl)

Sf(m, y) =1"

(tle —y})?*s
When n =1 we have ?r% 12 J %(t) =23 cost and hence
N
it gl —8 -1
Ec% B/ (z / f to 5 { I) t% s fﬁf( )dt ds,

where

= [ 8o, ) cos(VEsla+ 1) 1) dy
and C an absolute constant. Writing cos V28(z + y) = %(eim(”y} + e~iV2(@+1) i is easy
to see that uniform boundedness of 8¢ implies uniform boundedness of T,{fs. By Minkowski’s
integral inequality we get

|N

_/ / oo W 57|15,/ llp db ds
C'||f||p__ '

I

”Eai’Ef”F

INA

since
L0 OQ
f / ete™ |t~ sV ¢ 577 di ds
0 0
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: o0 A o0
< / e 19 (/ e~ th“% s + f ¢S gV 3“"% d.ﬂ) di
t
X

<:0f “‘t“'t”dt+1‘(}\f+é)/ et 19 i
0

< CN!I N?

which proves the theorem in one dimension.

When n > 2 we have the Bessel functions Jo inside the integral. If dy is the surface
measure on the unit circle || = 1 in JR" then we have
Ja_1(|=) -
e = f e du(y).
{2 - Jlyl=t

where ¢, is an absolute constant. If we use this in the above we get Eo$ Ef (x) equals

—_— N ] |
fﬂ f f e~te=s L f) (587190 (o) VL didsdu(8),

Cn

where Fe o(2) = f(:z:)e"‘/ﬁ"”"f. As before, ising Minkowski's incquality we get
|Ba} Bflp < ClIS llp

since

f / Lo |-V 10 57T dt ds
o0 : ~ 0 |
</ ot 5 (f TR A / o8 GNA4E-) ds) it
:
O

<C‘/ "tt‘stwda-%T‘(N-i-g)fO et 10 di

< OT(N 446 +1)

provided § > § — 1. This completes the prool.
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4.2 Special Hermite Expansions

Recall that the Cesaro means associated to special Hermite expansions are defined by

(gw)ﬂﬂ ZAN v % pe(z).

Jﬁf()
| H k=0

In this section we prove the following Theorem 4.2.1. Throughout this section S} will stand

for the Bochner-Ricsz means for the Fourier transform on Ji*" =4,

Theorem 4.2.1 Let B be any compact subset of O" containing the origin. Then for a

fized 8, xpod xp are uniformly bounded on L?, 1 < p < oo if and only if S? are uniformly

bounded on the same [P,

Proof : The kernel ¢%,(z) of f:rf{, is given by

)~ N
J?\.’(Z) = ( Pr. Z AN kok(Z
N k=0

Using the formula (see Szego [42))
Z A% LX) = LEHH (1)

we have
(2m)~"

oy (z) = A8, L‘”"'( IZIQ)E“%'“F-

“As in the previous section we can express the Laguerre function in the terms of the Bessel

functions, thus getting

(2m)~ " 1 1tk / o0 o—bpd+ N+ J6+n(V le)
s t ¥

Now, er;,f = [ % 0% so that
Al @) = [, oz w) f(w)du
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~ whete
o (2,w) = e3!MeT &8 (5 ),
Writing {z — w|? = |2|*> + |w|* — 2Rez.W we have
/ -t L‘+H+N Jlf‘f'ﬂ(\/_—,’z — wl) %‘W'E dt
P(N +1) (V2t]z — w|)d+n

Iﬂl (2. w) L|2|2_ p—tytntN Jon(V2tiz — 'U»’Q % {wf®
)e Al P(N+1)f (V22 — w])s+n d

E—%zw

aif (zi'w) = E%IEF

where (2.7/)¢ stands for (217} - ++ (22@n)*". Therelore,

B L E (___l) o _l__ > emttﬁ-{*h’ it frZ)d'f.
XBQ‘NXBI(Z) - A%F(N"}" I) ~ 2 or) 0 a4/ \

where

z|? n Jo+n fz* o Alyl?
Th5/ () = xa(a) st [ o %z—-lwmﬂ) () T [ (w)do,

If we ass_au.me that §¢ are uniformly bounded we get
(T4 5/ 1l < CR|( 1,
when B is contained in the ball {z:)z| < R}. Using this in the above equation we get

IxsonxBS|lp < Chilf|lp-

The converse is the transplantation theorem of Kenig-Stanton-Tomas. | Cl

In [45] the following local estimates for the Casaro ineans were established

Theorem 4.2.2 Lel 2@;”"” <p<ooandd ::.> d(p) = 2ﬂ(~ ~ §- o - Then for any compact
subset B of C"

[ loksPaz< Co [, 1(0a

6%



Recently K.Stempak and J. Zienkiewicz [39] have proved the global estimate

[nlobs@ra <c [ 1@

1 * L -
for the range gg’;‘jl ) <p < 00. The key point is the restriction theorem namely, the estimate

1_1y..1
1f % pxllz < CE*G2 1) 4|,

which they cstablished in the range 1 < p < 2{22,'{3:311. Tn the next section we use bhis

restriction theorem in order to prove a positive result; for the Hermite expansions on JR?",

4.3 Hermite expansions on R*"

In this section we consider the operator —A + £|2|? rather than the operator —A + 2.

If ®,(z,y), u € N* are the eigenfunctions of the operator —A + |2|* then U, (2) =

-:I)H(;‘”fz, %) are the eigenfunctions of ~A + %|2[* with eigenvalues (| +n). The operator
—A + %I:a'l2 has another family of eigenfunctions namely the special Hermite functions. In
fact, ®,p are cigenfunctions of the operator —A + :,l-[z|2 with eigenvalue {|e|+ | 5| +n); here

o, €N

In this section we study the expansion in terms of ¥, for functions having some ho-
mogeneity. The torus T'(n) = {('%,¢e®...c*) : 0 € R*} acts on functions onC" by
70f(2) = f(e?2) where e¥z = (&1 2, 0225, - ct0nz,), Wé say that a function is m-
homogeneous if 75 f(2) = "™ f(2), here 7n € Z" and m.0 = m1.0; + - - +m,.0n Tt is a fact
that ®yp is ( — @) homogeneous,  0-homogeneous lunctions are also called polyradial.

The operator —A + ;ll-lz::l2 caminutes with 79 for all 0, therefore Prrpf = 1Py f which
shows that P f is m-homogeneous if [ is . In particular, Py [ is polyradial if f is. Therefore,

for such functions L(Pyf) = (~A + |z P f = (k + n)Pyf. This shows that P/ is an
-n: k=0,1,..}

eigenfunction of L with eigenvalue k +n. But the spectrum of L is {2k -

which forces Py f = 0 when k is odd.
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Proposition 4.3.1 Let [ be polyradial on €". Then Py f =0 and Py f = [ X s

Proof : We show that when f is polyradial the operators f — Py f and f — f X ¢y have

the same kernel. Let

Up(z,w) = Z Vyu(2) ¥y (w)

|a]=k
be the kernel of P, Then by Mehler's {formula

O ‘
S k() = m(1 tz)..ne-Hf%uzlﬂ+|w|ﬁ+-,:'pnc(zm
k=0
so that
o0
z ikpkf(z) o~ .ﬂ-*—ﬂ(l - t2)—-ﬂ/ e 4ii%T(IEIEHWFH—LTRE(E-W)f(w)dw
k=0 | ¢"

Let w; = uj +1v; = rje', When f is polyradial f{w) = fo(r1,r2,++7s) and so we have
Zt"‘P&f / / T(s,7) folr,  ra)rirg T A1y dry - dry

where s = (81,89 8p), 8; = |2;| and ¥ is gwcn by

Ws,r) = (1- tz)#ﬂ/' IR0 AR g, gy, . dp,
(0, 27]

Now Re z;.T; = r;8; cos(0; — ;) where z; = s;¢4, w;j = rje’’s, Consider the integral

2
02—
""LZ'"J-H cos(fy fp_f)dgj

el—t
0

which equals, if we recall the definition of the Bessel functions, Jo(787743;). Thus we have

proved
it

= Tij).

U(s,r) = (1 - %) "e” HE () I, Jof
On the other hand when [ is polyradial f x vy reduces to the finite sum

[ Xpp= E (/s Paa)Paalz)
|| =4
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(/ _/ Jo(riy oorn) Daa(riy o) rooory dry -'-a.'rﬂ,) Dan (81, 8n)
|ﬂ|'"k

where we have written Qoq(2) = $aalry,: < ro) as it is polyradial. Then [ x ¢y, is given by

the integral

03 o0
-/!} | /ﬂ ( 2 Pa,al(ry s Tn)Pa,als1, 311)) Jolryy s omn) Toeory dry e cdry,

o=k
We have the formula (see[44))

0 1 | __l 12
(bﬂ# (2’) = (217) < H;'I=1L”j ("2",33',2)6 A 31 _
Recalling the generating function identity for the Laguerre polynomials of type 0,

ey, [ A—myw)
Zm Mag(yw® = (1 - w)~le T-w@W g [ =

1 —w
we get, i Sy (r, 3) is the kernel for [ x ¢

OQ i/
> 158 (r, ) = (1 - ) e 15D e, g ( ﬂg f‘f-%*) |

k=0
Comparing the two generating functions we sce that
o0 | CO .
S 124 Sk(r,8) = > t* Ty (r,8)
k=0 k=)

from which follows Uqx(r, s) = Sk(r, ) and this proves the proposition. O

Consider now the Bochner-Riesz means associated to the expansions in terms of ¥, ()

defined by

]
st =3 (1- L) 90w,

i
For these means we have the following resuit.

Thecrem 4.3.2 Let 1 < p < 2(3545), 6 > 5(p) = 2n(% ~ 3) ~ § and let [ € LPE") be

polyradial, Then
1SR/ ls < ClI/

where C 8 independent of [ and I,

(b



The key ingredient in proving the above theorem is the IP — L2 estimates
n(i-1y-1
|Fifllz < CR 27210 f]

which now follows from the correspondinz estimates for f X v, We omit the details,

We conclude this chapter with the following remarks. As we have observed, P.f is
m-homogeneous whenever f is and so P.j can be obtained in terms of [ x ¢, when f
is m-homogeneous. So an analogue of the above theorem is true for all m-homogeneous

functions. More generally, let us call a function f of type N if it has the Fourier expansion

where

Im(z) = / [ (ﬂmz)e"i’"‘gdm o dOy,

Note that f,, is m-homogeneous. We can show that when [ is of type N then
1S%S |lp < CwllS |lps

under the conditions of the above theorem on p and § where now Cy depends on N. We

omit the details. It is an interesting problem to see if the theorem is true for all functions.
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