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INTRODUCTION

Hitchin [Hi2] realized the importance of studying pairs (B, ) where E
is a vector bundle and ¢ is a homomorphism of E into E®L for a fixed line
bundle L. When C is a smooth projective algebraic curve this has since
been studied quite extensively. One can construct a covering of C in this
situation and the given data can be completely recovered by this covering
map and a line bundle on the covering curve (see Beauville, Narasimhan
and Ramanan [BNR]). When L is the canonical bundle this procedure gives
a completely integrable system on the cotangent bundle of the moduli of
vector bundles. |

The aim in the first chapter, which based on a joint work with S. Ra-
manan [BR], is firstly to extend some of these results to the case of arbitrary
principal bundles, bundles with parabolic structures, etc., but more impor-
tantly, to set forth a systematic infinitesimal study of the moduli functor.
Some of the results we prove are indeed valid for higher dimensional vari-

eties.
The computations here are made in the following framework. We start

with an algebraic group G and a vector bundle V on a smooth algebraic
variety. We consider deformations of pairs (P, ) consisting & principal G-
bundle P and a section § of ad(P) ® V satisfying the condition § A 8 = 0.
We calculate the infinitesimal deformation as the hypercohomology of a
complex natually associated to the pair (P, §). This regult is obtained as a.
corollary of an identification of infinitesimal deformations of a more general
object. We then address the question of smoothness of the related functor
and obtain a necegsary condition for smoothness.

We then take V = K and define a natural 1-form on the moduli space
of Higgs bundles on curves; the exterior derivative of this form defines
a symplectic structure on the moduli space. If we confine ourselves 10
the pairs where P is stable, the moduli space can be identified with the
cotangent bundle of the moduli space of G-bundles, and the symplectic
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structure can be identified with the Hamiltonian structure. In the case
when G = SL(n), Hitchin considered the global analogue of the map which
maps g into C ™! given by the coeficients of the characteristic polynomial.
We look at the analogue of the Kostant map of g into C ! for all semisimple
groups and show that the fibres are Lagrangian at the smooth points of the
fibre and also that the symplectic form vanishes on any smooth variety in
the fibre over 0. Asin Laumon [L], this leads to the existence of very stable
bundles. we then extend these results to pairs with parabolic structures.

Now we come to the description of the second chapter.

M. Green and R. Lazarsfeld developed a very interesting deformation
theory for cohomology of holomorphic vector bundles. Given a family of
holomorphic vector bundles Er, on a Kéhler manifold X, parametrized by
T, the infinitesimal deformation of cohomology is given by a map T3(T) @
HY(X,E,)—H"*(X, E;). The basic theorem is that the deformation of
cohomology is guided by the deformation of the bundle itself. In other
words the above map is obtained using the infinitesimal deformation of bun-
dles, Ty(T)— H'(X, End(E,)), and the cup product, H'(X,End(FE;)) ®
HY(X,E)— H'*\(X, E;). In fact, in [GL2], the set up for deformation
of cohomology of general elliptic operators is established. But of course
the above mentioned theorem is only for a special class of elliptic operator
namely, the class of 8 operators.

Here we consider a slight variation of the class of operators analyzed
in [GL2]. A Higgs bundle is a holomorphic bundle (X, E), along with a
section of 8 € End(E) @ (1} satisfying some integrability condition. A
Higgs bundle comes naturally with a complex

D D= E-——D!' = E@ﬂ};{-—-——-*ﬂz = B @Q.ﬂ;{-—%

The infinitesimal deformation of a family of triplets (X, E,#) parametrized
by T is given by a map of the tangent space of T' into the 1-st hypercoho-
mblog‘y’ of a complex obtained using the sheaf of first order operators on
E. We show that the infinitesimal 'deformation of the hypercohomology
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HH(D.), in the sense of [GL2], is given by cupping with the corresponding
infinitesimal deformation class of the triplet (X, E,§). When the § = 0
over the family and X is not deformed, then this coincides with the result
of [GL2] stated at the beginning.

Next we consider the deformation of cohomology of 2 local system.
There again the corresponding result holds namely, the infinitesimal de-
formation of the cohomology of a local system is given by cupping with the
corresponding infinitesimal deformation of the local system itself.

There is a natural correspondence between the set of irreducible local
systems and the set of stable Higgs bundles with vanishing Chern classes
S2]. Also there is a natural isomorphism IH*(D.) with the i-th cohomology
of the corresponding local system [S2]. We prove that the deformations
of IH*(D.) and the deformations of the cohomology of local system are
compatible with the identification of cohomologies. We then give some
applications; one of them being a new proof of the main theorem of [A].

Finally we prove some weaker versions of the results about symplectic
structure on the moduli of Higgs bundles over a curve proved in the first
chapter, in the case of higher dimensional varieties. More specifically, we
show that the space of infinitesimal deformations of a Higgs bundle on a
smooth projective variety admits a natural 1-form which is defined analo-
gously as in the case of curves. When we restrict ourselves to Higgs bundles
satisfying ¢,( End(F)) = 0, the exterior derivative of the above 1-form is
actually nondegenerate on the infinitesimal deformation space, and hence
defines a symplectic structure on the smooth locus of the moduli of Higgs
bundles. This 2-form, when restricted to a cotangent bundle of a moduli
of stable bundles, coincides with the natural symplectic form. Finally we
prove that the coordinates of the Hitchin map Poisson-commute.

Acknowledgement I am very grateful to my thesis advisor 5. Ramanan
for explaining things, and encouragement, and more imporiantly, for help-
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CHAPTER ONE :
HITCHIN PAIRS

§1.1 INFINITESIMAL DEFORMATIONS.

Let X be a smooth complete algebraic variety over C. In what follows
we will always assume varieties to be defined over C. Let GG be an algebraic
group, and g its Lie algebra.

Let P-2»X be a principal G-bundle over X; in other words, @ acts
equivariantly on P and the action satisfies the following properties: there is
some open cover {U;}ier of X, such that the restriction p~'U; is isomorphic
to U; x G as G-spaces with identity map on U;. The bundle associated'to
P for the adjoint action of G on itself, is denoted by Ad(P). Note that
Ad(P)is a group scheme over X, and it has a natural action on all bundles
associated to P. Similarly the bundle associated to P for the adjoint action
of G on its Lie algebra g is denoted by ad(P). Note that ad(FP) is the
Lie algebra bundle corresponding to Ad(P), and it has a natural map to
infinitesimal automorphisms of any bundle agsociated to P.

N.J. Hitchin in [Hil] introduced the concept of a Higgs bundle on a
Riemann surface; it is a pair of the form (E,§), where F is a holomorphic
vector bundle on Riemann surface M and § € H(M, End(E) ® Kps). This
was generalized for higher dimension by C. Simpson. For a holomorphic
vector bundle E on a complex manifold M, the algebra structure on End(E)
and the exterior algebra structure on @), combines to give an algebra
structure on End(E) ® (©Q%,); this algebra structure is also denoted by A.
A Higgs bundle on M is a pair (E,#), where E is a holomorphic bundle on
M, and § € H(M, End(E) ® (}},) with the property that § A § = 0.
| Let V be a vector bundle on X. The following is a generalization of

Higgs bundles which, following the terminology of [BR] we will call a Hitchin

pair,



Definition (1.1.1). A Hitehin pairis a pair of the form (P, 8), where P
is a principal &G bundle on X, and § € HO(X ,ad{P) ® V) satisfying the
condition 8 A 6 = 0 as an element of HO(X,ad(P)® A V')

Fix two finite dimensional representations p and p' of the group &, on

the vector spaces W and W; respectively. Also fix two vector bundles V
and V; on the variety X. Let

h:VW —VieWwW,

be a G-equivariant symmeiric bundle map of degree d; where by Wy we
mean the trivial bundle X x W, similarly for W x. Let P be a principal
G-bundle on X; pP and py P are the vector bundles associated to P for the
representations p and p’ respectively. The above map b would induce

h :pP@V.—w——rp’P@V;l,

a symmetric bundle map of degree d.

The subspace of W, spanned by the G-invariant vectors is denoted by
- WE. Let
B e H”(X,fo ® Vi)

Note that for any principal bundle P, since # being G-invariant, it gives an
element of HY(X,p1 P ® V1), which will also be denoted by .

If we denote the principal G-bundle P x SpecCle] over X[e] by P[e], then
the bundle of automorphisms of P[¢] which induce identity over the closed
point is just ad(P). Note that ad(P) is a bundle of Lie algebras. For a
section s of ad(P) the corresponding automorphism of Ple] will be denoted
by 1 + se. Then it is obvious that s; 4+ 83 corresponds to the composite of
the automorphisms corresponding to g; and sy, If 7 is a representation of
G then ad(P) acts on 5P. Moreover if v + we i8 a section of (7P ® V)[el,

then we have

p(1 + se}(v + we) = v +we + p(s)(v)e
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This justifies our notation as well.

Primarily we are interested in an infinitesimal study of deformations of
the pairs (P, ), where P is a principal G-bundle and § € H "(X,pP ®V),
such that

R8) = B
Let (P,6), with § € H*X,pP @ V), be a pair such that
M) = B

To any (parameter) scheme T' = Spec(A) with A an Artinian local algebra,
associate the set of all isomorphic classes of pairs (P, §), on T x X such that
h(8,....,8) = 3, and a given isomorphism of the restriction to mx X, where
m is the closed point of SpecA, with (P,#). This defines a functor on the
category of Artinian local C-algebras with values in sets. We may call this
functor the formal deformation funcior of (P,#), and denote it by Fpg, or
simply by F. The space of infinitesimal deformations of F is defined to be
F(Cle]), with € = 0.

Define e(f) to be the map adP — pP®V, given by e(8)(s) = —p(s)(9).

Lemma (1.1.2). The following is a complex of sheaves on X

dﬂ — ) H)

C': C° = ad(P) C'=pPRV <5 PRV — 0,

where di(s) = dh(s,b,....,8).

Proof. This is obvious. Let Ad(P) be the gauge bundle defined earlier.
We mentioned that Ad(P) acts on all the associated bundles, hence in
particular on pP @ V and p'P @ V;. For g € I'(U, Ad(P)), where U C X is
an open set, | |

R(g(8)y.y9(8)) = g(A((8),..,9(8))) = 9(B),

since h is G-equivariant. But, # being G-invariant, we have, ﬁ(g(ﬁ), vy §(8)) =
- B. The infinitesimal version of this equality is: dgody = 0.




Theorem (1.1.8). The space of infinitesimal deformations of F is canofn-
ically isomorphic to the first hypercohomology IH*(C"), where C" is the com-
plez (1.1.2).

Proof. Let U = {U; = SpecA;}ics be a finite covering of X by affine open
sets. Denote the restriction ad(P)|U; by M;, M; is an A;-module. Also
denote the restriction on U;, pP|U; by R;, and the restriction on U, py P|U;
by S;; H; and 5; are also A;-modules. On the intersection Uy 1= U; U U; =
Spch,-j, denote Gd(P)IUij —— M;'_.,;, pP[U,:j b R,‘j and p1P|U;j = S{j, Mij,
R;; and S;; are Aj-modules. Similar notations are used for higher order
intersections. We will use the same notation M; to denote the space of
global sections of the sheaf M; on U;; similarly for R;, S, ete, Consider the
following Cech resolution of C" :

- 1.1.4
| 0 0 0
L |
0 — (° : C1 ! C?

0 — DM, 2 SR; @ (U, V) A, %5 @ (Ui, V1)

0 — IM; 2 ER;eI(U;V) <5 S, NUi;, V)

T

This is an acyclic resolution of C* and hence IH'(C") can be computed as
the quotient Z/B. Here Z consists of pairs (s;;,%;), where

8i5 € P(U{j, Gd(P)) — Mi:,": |



and
i € T(Us,pP @ V) = R; ® (U, V)

such that
1. 8i; + 8k = 8ix a8 elements of M;;;
2. t; — t; = do(si;) as elements of M;; @ T(U;;, V)

3. dl(ti) = 0,

and B is the subspace of Z consisting of pairs (s; — s;, do(s;)), with s; € M.

‘Starting with an element (s4,1;) of Z, we will construct a principal G-
bundle P on Spec(Cle]) x X and § € Hp(P)® V), satisfying hf = B, such
that there are isomorphisms P[X —s P and 8|X = 6. Take the bundle
(p2)*(P|U;) on Uile] := Spec(C [¢]) x U; for every 1, where p; is the projection
Spec(C [€]) x U;—U;. This bundle will be denoted by B.. Now we may
identify the restrictions of P; and P; to Ui;[€] by means of the isomorphism
1 + s3;¢ of P;;. Condition (1) above ensures the compatibility of these
~ identifications, and hence we get a principal G-bundle P on Spec{C [¢]) x X.

On Uile] we have 6; + t;e € T(Uile],pP; ® V). We claim that these
sections of pP; ® V on U;[e] patch together to give a global section 8 + te &
H(SpecC [¢] x X, pP). Indeed we have to show that over Uy; the following
identity holds.

p(l -} 8,'3'6)(9; 4 i,:f:‘) = §; + i;e.

But this follows from the cocycle condition (2). Now

E((Q, ot E€)y cinny (6; + t;_&')) = h(ﬂ{, vy 0;) + dﬁ(t;, B:y .00y 0; )€
. So, condition (3) implies that (P, 8 + {e) € F(Spec(C [e]).

Thus we have associated to ((si;), (%)) an infinitesimal deformation of

| (P, ). |



Suppose ((B,J) (#;)) € B, thatis to say 8i; = 8;i—8;,%; = do(s;). Then the
identification P; — P; on U,_., 18 given by the automorphism 1+ (8; — s;)e.
Hence if we consider the automorphism of P; given by 1 + s;¢, the following
diagram commutes.

1.1.5 e -
B, % p,
l1+3ij£ lt'd
B, 4 p,

This shows that patching by 1 + s;¢ and patching by identity give
isomorphic bundles. In other words, if (su, ;) € B, then the construction
leads to a bundle isomorphic to pi(P) globally. Moreover we have the
identity (1 + 8:€)(0; + tie) = 0 +tie + 8(0)e = 6; in - view of the definition
of coboundary, implying that e(8;)(s;) = .

Thus if the pair (s;;,%;) € B, then the associated pair (P, ) is isomor-
phic to the trivial pair (p5P, p}#). Hence we have given a map from IH'(C")
into the space of infinitesimal deformations.

Now we want to construct a map from the set of infinitesimal deforma-
tions of the pair (P, §) to IH'(C"). Let P be a G-bundle and 8 € I'(p(P)®V)
such that (P|X,8|X) is the given pair ( P,0). Using the fact that U; is affine,
it is easy to see that the G-bundle P; := P|U;[e] is the pull back of a bundle
on U;. Clearly then P; is the pull back of ;. |

So P is obtained by gluing Pi[e] = piP|(SpecC [¢] x U;) and Pjle] =
piP|(SpecC [€] x U;), over U;;[e] using some automorphism of Pyle; this
automorphism is of the form 1 + s;;¢, where s;; € T'(Uij,ad(P)). Clearly
these s;;’s satisfy the condition 8;; + 8z = 84 on Upje.

It also follows that the homomorphism § is given by g + 1€, where
t; € D(U;, pP) ® V). As 8 is a global homomorphism, the ¢; should satisfy

the following compatibility condition on Uy;.

(1 + 8:5€)(0 + tie) = (8 + i;€)
This implies that do(s;;) = (¢;—1;). Moreover, h(8,...., #) = £, which would

10



imply that A(#;,0,....,0) = 0. Thus ({s;),(t;)) belongs to Z. This gives a
map from the set of infinitesimal deformations to IH'(C").

We now want to show that the above map is the inverse of the map from
H'(C") to infinitesimal deformations constructed earlier. But this is quite
obvious. The family on (P,§) constructed earlier from (s;;,%;) € Z comes
with an isomorphism of P; with pjP|U; and an isomorphism of §|U;[¢] with
f + t:e. Hence the cocycle constructed for this family (P, #) along with the
above isomorphisms is indeed (s;;, ;). Hence the composition is identity.
It is clear that composing the other way what is got is also identity.

Corollary (1.1.6). The infinitesimal deformations of a Hitchin pair (P, §)
is given by the first hypercohomology of the the following complex

ad(P)2 ad(P)@ V2L ad(P)® A V—0

Let f: G Z.Hbea homomorphism of algebraic groups, P is a principal
G bundle on X. Using f, G acts on H by left translations, and the bundle
associated to P for this action has a natural structure of a principal H-
bundle, called the eztension of siructure group; this bundle will be denoted
by f(P). We will assume that are given homomorphisms (still denoted by
f) of G-representation space p and p' into H-representation spaces p; and
p} respectively, which are compatible with f. Also assume are given section
e HY(X,pP @ V) and & € H(X,p.f(P} ® V) which are compatible in
the obvious sense. Then we have a morphism of the functor F(pg) into
the functor Fisp),zs)). The carrespc}ndin'g infinitesimal map is given by
the natural morphism of the complex C given by (P,8) into that given by

(F(P), £(6)).

Remark (1.1.7). Let X be a complete curve; and (P, §) be a Hitchin pair
(definition (1.1.1)). Then we have the obvious exact sequence

0 — (pP & V)[1] — C* — ad(P) —» 0
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Here we write, In conformity with the notation of the theory of derived
categories, (E")[1] to mean that there is a shift in the indices of the complex.
Also any sheaf is considered as a complex with the only nontrivial entry at
the 0-th degree.

Now this exact sequence of complexes yields the cohomology exact se-
quence

0 —s H(C") ~— H(adP) — HO(pP ® V) — HY(C")

— HY(adP)} — HY(pP® V) — IH*}(C") — 0.

It is easy to see that the above map H(adP) — H%pP @ V) is the map
e($). In particular, JH°(C") is isomorphic to the space of sections of adP
satisfying p(s)¢ = 0. Moreover the map JH'(C') — H'(adP) is clearly the

differential of the *forget’ map from the functor F into the moduli functor
of principal bundles.

Remark (1.1.8). When X is a complete curve, the moduli space of semi-
stable Hitchin pairs (P, #) has been constructed, to our knowledge, only for
a few special cases, e.g @ = GL(n) or SL(n), p = ad and V is a line bundle.
Whenever such a moduli space exists, the infinitesimal deformation space is
the Zariski tangent space at (P,8) to such a moduli space if the stable pair
admits no nontrivial automorphism. In particular, this applies to stable
pairs of vector bundles. Indeed, this is also true for the ‘local’ or ‘formal’
moduli space at the points (P, #) where the pair (P,f) does not admit any
nontrivial automorphisms.

| The most important example of Hitchin pair is of course when p is

the adjoint representation in g and V = Q, i.e. the Higgs bundle, since
stable Higgs bundles can be identified with the irreducible representation-
s of m(X) in G. If G is a semisimple group of rank [, then there are !
primitive adjoint invariant polynomials which generate all invariant poly-
nomials. These are of degrees m;, called the ezponents of the Lie group.
Putting all these invariant polynomials together we obtain a morphism of
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the moduli functor F into the affine space ET(X, $™iQL ). Hitchin proved
the properness of this map when X is a complete curve. Simpson proved the
analogous statement for higher dimension. Note that when X is a complete
curve, the dimension of the moduli space of pairs (assuming that it exists)
is 2(dimG)(g — 1), while the dimension of the affine space mentioned above
is Z(2mi(g — 1)+ 1~ g) = (g — 1)(Z(2m; — 1)). But then it is wellknown
that £(2m; — 1) = dimG. Hence its dimension is (dimG){g~1) = 1/2(dim
of the moduli space). We will come back to this point later.

£1.2 SMOOTHNESS OF THE FUNCTOR F

Let (P, 8) be a Hitchin pair. The formal deformation functor F of (P, 6)
may not always be pro-representable. We now investigate when it is and if
so, when the representing complete local algebra is regular. |
Theorem (1.2.1). Let P is a principal G-bundle, V a vector bundle and p
a linear representation of G. Let 8 be a section opr@V such that the group
of automorphisms of P which fiz the section 8 is generated by I'( AutV') and
['(Z), where Z 1is the bundle associated to P with kerp as fibre. Then F 18
pro-representable. Moreover if IH*(C") = 0 then the representing complete
local algebra 1s regular.

Proof. We will use the work of Schlessinger [Sch] in proving this. Ii is
a straightforward matter to see that the functor F satisfies the conditions
H1 and H2. By Theorem 2.1 the vector space of infinitesimal deformations
of F is isomorphic to JH'(C"). Clearly this is finite dimensional, proving
that F satisfies H3 as well. By Remark following ([Sch], Theorem 2.11),
we only have to check that any automorphism of (P,#) on SpecS x X
can be extended to (P,8) on SpecT x X whenever S is defined by an
ideal I with I'm = 0 (where m is the maximal ideal. This would follow if
we could show that T'(SpecS x X,G(P,0)) is generated by I'(AutV) and
['(Z). The latter statement has been assumed for § = C, and can in
general be shown to be true for all Artinian local algebras by induction
on length. Finally, assume that H*(C") = 0. Then we will show that the
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morphism F(Cle] /(")) — F(Cle]/(e)) induced by the natural surjection
p: Cle]/(e"t*) — Cle]/(€™), is surjective. Define G(n) to be the following
complex of sheaves on X X Spec(C[e]/(€"),

G(n): G(n) — pP@V — 0

where G(n)is the gauge group of the trivial family P of principal G-bundles
on X x Spec(Clel/(¢")) and the map is given by g — p(8). (By a trivial
family we mean the pull back of P from X}, We have the following exact
sequence of complexes of sheaves,

0 — 0" ® (") —> Gn+1) — G(n) —s €

This in turn induces the long exact sequence of cohomologies

H(G(n+1)) — H(G(n)) — H*(C") ® (¢")

We have here used the fact that e”.¢™ = 0 to deduce that H*(C' ® (¢")) =
H*C') ® ¢*. Now by assumption H?*(C') = 0. So, H{(G(n + 1)) —
H'(G(n)) is surjective. Hence F(C[e]/(e"t)) — F(Cle] /(")) is surjective.
If F is represented by a complete local ring A, then this shows that any
homomorphism A — C[X]/(XT) can be lifted to a homomorphism 4 —
C[X]/(XT*1). This completes the proof in the light of the following

Lemma (1.2.2) Let R be a local C-algebra. If any algebra homomorphism

of R into C[X)/(XT) can be lifted to C[X]/(X™*"), for allr > 1, then R is

reqular. |
Proof. Let (fi,..,fy) be a minimal set of generators for the maximal

ideal. It is enough to show that if § is a homogeneous polynomial of degree r
such that 8(fy,..., fzy) € m"™1, then 6 is identically zero. In fact we will show
that 8(ai,...,an) = 0, for every (as,...,an) € C¥. Consider the algebra
homomorphism [ : B — C[X]/(X?), such that I(f;) = a;X. Any lift of
[ to C[X]/(Xr+) takes 8(fi,..., fi) to zero by assurmption. On the other
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hand 0(fs, oo fir) = 001X, oy an X) modulo X7+, But, 0(ay X, ey an X) =
d(aiy .. an)X" by homogeneity and hence #(ay,...,an) = 0.



¢1.3 HIGGS BUNDLES ON A CURVE.

Let X be a smooth complete curve; the canonical bundle of X is denoted
by K. Let G be a reductive algebraic group over C. Since G is reductive,
the Lie algebra g of G admits a nondegenerate symmetric invariant bilinear
form; choose and fix such a form B on g. A family of Higgs G-bunles on X
narametrized by T is a pair (P,#), where P is a bundle over X := X x T
and 8§ € HYX x T, Q}/T). Note that given a morphism f: T — §, and
a family Fs := (P,8) of Higgs bundles on §, the pullback of the family
f*Fs = (f*P, f*0) is a family of Higgs bundles parametrized by T. A
n-form on the moduli funclor (also called moduli stack) of Higgs G-bundles
on X is a datum consisting of a n-form ar on T for any family of Higgs
bundles parmetrized by ', and an equality f*ags = ar for base change,

Fp — [f'Fg
L
T — 8§,

which for every composition

Fr — [*Fs — g§'Fg

| l

r L, g 2 8.

satisfies the cocycle condition

f*(g*aﬂl) — f*ﬂS

PR

(g f )*aSl — ar.
Now we will construct a 1-form and a 2-form on the moduli functor of
Higgs bundles which henceforth will be denoted by M. What we call M,

in [L] is denoted by T*Fibx,n.
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We have seen that the infinitesimal deformations of a Higgs bundle (P, 8)
is given by the 1-st hypercohomolgy of the following complex C-

C: C° = ad(P) 2% C! = ad(P)® K — 0.
From the complex C* there is a natural projection to the complex
D.: D = ad(P) — 0.

This projection induces a map at the level of hypercohomology which is
denoted by F, i.e. F; : IH'(C") — IH'(D.) = HY(X,ad({P)). The tangent
space to M at (P, #) is given by IH'(C"). Using the form B on g thereis an
isomorphism ad(P)~—sad( P)*. Hence the two vector spaces HY( X, ad(P)®
K) and H'(X,ad(P)) are dual of each other by Serre duality. So

o —3< F1(ﬂ:),9 >

defines a 1-form on IH'(C"), and it is easy to see that this actually defines
a 1-form on M, which is denoted by ®.

Before we describe the 2-form on M we will first recall the duality
theorem for hypercohomology of a complex of locally free sheaves. The
duality theorem asserts that the i-th hypercohomology of a complex

UﬁAn"—J'A;l-—}...-—}A,-'—?OI

is dual to the (r + 1 — 7)-th hypercohomology of the complex A given by
(A)r = A*_, ® K, the differentials being transposes of the differentials in
C' tensored with identity [ref]. We see that C* = C' and hence we have
dualities between IH'(C") and IH*(C") on the one hand and H°(C") and
IH*(C") on the other. The first one for example can be made a little more |
concrete as follows. Consider the following diagram of complexes

adP ® adP —fx—f I = J

.

0 —_—s K — 0
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In the top horizontal line, I denotes the bundle
(adP ® (adP)* ® K) @ ((adP)* ® K) ® adP)
. J denotes the bundle
((adP)* ® K) ® ((adP)* @ K)

and the map « is given by A 8§ ® Id + Id® A 6, This yields the following
pairing
1.3.1

HY(C)® HY (C)— H¥C @ C')— H)(K|[1]) = HY(K) =C.

This pairing is clearly a 2-form on JH'(C"). Hence it defines a 2-form on
M, which is denoted by (2.

A symplectic structure on a manifold X is a closed nondegeerate 2-
form on X. Any 2-form on X induces a smocth bundle homomorphism
Ty — T%. A 2-form @ is called nondegenerate if the above homomorphism
corresponding to ® is an isomorphism.

For any smooth manifold X, the total space of the cotangent bundle
T% admits a natural symplectic structure. Indeed if p : T3 — X is
the projection then for v € Ty, T%, the correpondence v — < dp(v),w >
defines a 1-form on T%, which is denoted by #. It is easy to see that the
form © := df is a symplectic structure on T%. |

Next we want to prove that on M the 2-form () defines a symplectic
structure. But before that we need the following result |

Theorem (1.3.2). On M the 2-form Q coincides with 4@.

Proof. We need some general facts about Higgs bundles. Let (P, #) be any
Higgs bundle. Define 0P4(ad(P)) := C®(X,ad(P)), i.e. the space of all
smooth (p, q)-forms on X with values in ad(P). Let Op be the dolbeault
operator which defines the holomorphic structure on ad(P). The complex
C", defined in (1.1.2), admits the following Dolbeault resolution
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This being a fine resolution, the i-th hypercohomology IH*(C.) can be com-
puted as the cohomology of the following complex

i1 — i+1
S Qi (ad(P)) 2K Zm'— ad(P)) 2 Zm' #1(3d( P)).
=0 =0

Let R be the ring Cley, 65)/ (612, e12€s, 61622, €23). Let (P,8) be a fam-
ily of Higgs bundles on X parametrized by SpecR, in other words P
is a holomorphic vector bundle on X := X x SpecR and 8 € H°(X X
Spec R, ad(P) ® 0% 15 .r). Let the restriction of this family to the closed
point ¢ := Spec(R/m), where m is the maximal ideal, be (P,68). © and
& will give a 1-form and a 2-form on Spec R respectively; these forms will

also be denoted by ® and O respectively. |
The family of bundlee P parametrized by Spec Ris O tmrlal in other

words there is an O isomorphism f : P — p*P, where p: X — X is
the natural projection. Using this isomorphism f, the dolbeault operator
that defines the holomorphic structure on ad(P) can be expressed in the

following form
Op + Are + Ases + Biel + Byel + Ceyea,

where 4;, B; and C are smooth sections of ad(P) ® Y.
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Using f, 8 can be expressed in the following form
0+ o6y + agen + ﬁ1ﬁf -+ ﬁzﬁg + Y€1€9,

where oy, B;,y € Q'°%(ad(P)). For ¢ € Q% (ad(P)) and ¢ € Q0(ad(P)),
define (¢,9) = [, B(¢ A 9), where the (1,1)-form B(¢ A 3) is defined
using the @ invariant bilinear form B on g. Recall that if Oy + he is the
holomorphic structure of the adjoint bundle of a family of G bundles over
Cle]/€® then, h represents the element of H'(X,ad(V)) which corresponds
to this infinitesimal deformation. The 1-form ® on Spec R 15

(A.lj g)dﬁl + (Az,g)dﬁg -} (Bl, g)d(ﬁ%) -+ (Bz, g)d(&'g) ‘l‘ (01 g)d(flfg).
Taking exterior derivation we get
dd = (-A-h 84 + 2ﬂ2&'2 -+ "}'E:[)dEg A dEl -+ (Ag, o1 + 2ﬂ1£1 -+ ’)’Eg)dﬂ A dfg

+ (B;[, 1 2,@262)261d62 A dE1 -+ (Bg, o1 “4- 2ﬂ161)262dﬁ1 A CIEQ
+(C, a3 + ve1)eades A dey + (C,01+ver)arder A des.

Hence d®(c) = [—~(41, ) + (A, 01)]der A dea. From the definition of ()
it is easy to check that this is same as Q(¢). Evaluation of the exterior
derivative of a differential form at a point depends only on the restriction
of the form to the second order neighborhood of the point in question. This

completes the proof. | 0
So the 2-form 0 on M is exact. To prove that it defines a symplectic

structure all we have show is nondegeracy of 2. But follows from the fact
that the complex C- is dual to itself. Hence we have proved

Corollary (1.8.8). The 2-form Q on M defines a symplectic structure.

Definition (1.3.4). A principal bundle P on X is said to be stable if for
any holomorphic reduction Py for a maximal parabolic subgroup H, given
by fi : X — P/H the {ollowing condition holds: -

degree(fpP(x}) <0
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where x is a dominant character with respect to a Borel subgroup contained
in H, P(x) is the associated line bundle on P/H.

A Ramanathan [R] constructed the moduli of stable principal G-bundles
on a Riemann surface as quasi-projective variety. Let Fg be the moduli of
stable G-bundles on X. The cotangent space at P, TpFg = HO(X,ad(P)®
K). It is easy to see that the construction of the forms & and Q on M can be
repeated to on T™Fg. The forms on T*Fg, thus obtained are also denoted
by © and ! respectively. Also Thm.(1.3.2) implies that on T*F¢, d® = Q.
We saw earlier that the total space of a cotangent bundle admits a natural
1-form. The natural 1-form on T*F; turns out to be @ itself. Indeed it
is quite obvious once the definition of the natural l-form on T*F¢ and
the definition of ® are compared. We also noted earlier that the exterior
derivative of the natural 1-form on the total space of a cotangent bundle
gives the canonical symplectic structure. Hence we have the following

Proposition (1.8.5). The 2-form Q) on T*Fg 13 the canonical symplectic
form.

$1.4 HITCHIN MAP AND VERY STABLE BUNDLES.

A homogeneous polynomial f on the Lie-algebra g, i.e. an element of
Sig*, is called G-tnvariant if it is invariant under the adjoint action of G
on g. Let I be the space of all G-invariant polynomials g. Let f € T
be a homogeneous G-invariant polynomial of degree d. If P is a principal
G-bundle on X, and 8 € H( X, ad(P) ® K), then the evaluation of f on ¢
gives an element f; € H°(X, K ). The correspondence f x § — f; gives a

map
H: ITxT'Feg — & H(X, K",

which is called the Hilchin map. .
The Lie algebra g of G has a direct sum decomposition of ideals

g g P s

21



where g, is the centre of g and g, := [g,g], a semisimple Lie algebra. The
nilpotent cone in g, will be denoted by n. Note that since n is IniG-
invariant it makes sense 10 talk about a section of adP ® X to be in n.
Such sections will be referred to as nilpotent sections.

Definition (1.4.1). A principal G-bundle P is said to be very stable if
HY%(X,adP ® K) does not contain any nonzero nilpotent section.

If @ is any reduction of P o a structure group H which is maximal
parabolic, then the isotropy representation of H has as its determinant a
dominant character. Hence if P is not stable then there is a reduction
of structure group to some H such that the degree of the vector bundle
associated to the isotropy representation of H is negative. Buf the nilpotent
radical ' of ), the Lie algebra of H is an H-.module which is dual to the
isotropy representation. Hence the associated bundle ad@’ with )y as fibre
has positive degree, and consequently the Riemann-Roch theorem implies
that ['(adQ’ ® K) is nonzero. This means that P is not very stable. In
other words, we have '

Theorem (1.4.2). Very stable bundles are stable.

In this section we wish to prove that very stable bundles form a nonemp-
ty Zariski open set in Fg. In the light of the following lemma, it is enough
to show the existence of one very stable bundle.

Lemma (1.4.8) The set of very stable bundles contitule a Zariskt open
(possibly empty) set of F | |

Proof. For a stable bundle P, let ad(FP,) be the subbundle of adP de-
fined by the Lie subalgebra g, of g. H°(X,ad(P,)) = 0. So considering
H%X,ad(P,) ® K) as the fiber over P, we get a vector bundle on Fg
and let p : P — Fg be the associated projective bundle (the space of 1-

dimensional subspaces). Let IN; C P be the subset of consisting of all those
sections s such that ad(s)’ = 0. Clearly N; is a Zariski closed subspace of

P; and that N/s stabilise after some finite step, i.e.

NJ — j"l‘l — Nj+2...
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Since the morphism p is proper, p(&;) is a Zariski closed subset of Fg.
But the the compliment of U;p(N;) in Fg is precisely the set of very stable
bundles. This completes the proof.

Indeed let us denote by N the subvariety of T Fg consisting of elements
of the form (P, #) where & nilpotent. Then the set of very stable bundles
in F¢ is given by Fg - p(N), where p : T*Fg — F¢ is the projection from
the cotangent bundle. Clearly, p{N) is closed in Fg.

Theorem (1.4.4). The symplectic form Q on T*Fg vanishes when re-
siricted to any smooth variety contoined in N.

Proof. Take a point of NV, namely a principal G-bundle and a nilpotent
section 8 of ad(P) ® K. Then at the generic point of X we get a nilpotent
element of g. This gives rise to a canonically defined parabolic subalgebra
of g whose nilpotent radical contains it. (Indeed this parabolic algebra.
exists over the algebraic closure of the function field of X and, in view of
its canonical description, one sees that it descends under the Galois action
to the function field of X). Clearly then there exists a subbundle of ad(F)
such that the generic fibre is the above mentioned parabolic subalgebra.
Now since the parabolic subalgebra has the corresponding parabolic group
H ag its normaliser in @, it follows that there is a reduction of P to an
H-bundle @ and a section 9 of ad(@) ® K such that # comes from ¢.
Denoting by (ad@) the bundle associated to Q with the nilpotent radical
h" of ) as fibre, we see that the pair (Q,%), with ¥ considered as a section
of (adQ)’ ® K has as infinitesimal deformation space, the hypercohomology
of the complex (Theorem 1.1.3) |

D: (adQ) “% (adQY®K — 0

Now given a deformation of (P, ), parametrised by an integral algebraic
scheme with all 8 nilpotent, it is easy to see that we may find a nonempty
open set U in the parameter scheme and reduce the structure group fo a
parabolic group H on the whole of U x X, such that 8 lies in (adQ) ® K at
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all points of U, where (adQ)’ denotes the nilpotent radical bundle as above.
This means that in order to compute the restriction of the symplectic form
on this family, we have only to compare JH'(D") with IT'(C") and compute
the restriction of the form. This amounts, in view of the definition of the
form {2, to computing the bilinear form on IH'(D') given by the pairing
(ad@) ® (ad@) ® K — K. But the Killing form itself vanishes on (adQ)’
“thus proving the following

Proposition (1.4.5). If (P,8) is a family of pairs in N parametrised by
an integrol scheme T then the pullback of the symplectic form on N to T

18 zero.
Clearly the above proposition implies Theorem (1.4.4).

Remark (1.4.6). When G is semisimple, the fibre of the Hitchin map
from the moduli M of Higgs bundles over 0 is not reduced. For example
the variety Fg itself is imbedded in M by mapping a bundle P into (P, 0).
Clearly Fg is contained in the Hitchin fibre over 0 and the differential of
the Hitchin map is 0 all along its points. But over the open sef of very
stable points in M, this is precisely the set theoretic inverse image A=2(0).
This shows that the subvariety A~'(0) contains a nonreduced component
whose reduced variety is M.

Now we will deduce from Theorem (1.4.4) a general statement asserting
the existence of very stable bundles for any structure group G.

Corollary (1.4.7). The set of very stable G-bundles fafm G nonempty
Zariski open set of Fg.

Proof. From Theorem (1.4.4) it follows that dimN < 1/2dimT*F¢ =
dimFq, where N is the family of pairs (P, #) with P being a stable principal
bundle and # a nilpotent section of ad(P) ® K. But on N there is a free
action of the group C* = C — 0 namely (P,8) — (P,A8), for any A €
C *, and this action commutes with the projection to Fg. So f:i-zls".rr,p(ﬁr ) <
dimFq — 1. This proves the existence of very stable principal G-bundles.
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Proposition (1.4.8). The infinitesimal deformation space of a pair (P, #)
so that the deformation is into pairs (P',0') where §' is in the same orbit as
that of 8 at the generic point of X, under the adjoint action of G, is given
by the first hypercohomology of the complez (D) where D is given below.

1.4.9
ad(P) P 0

Here F denotes the subbundle of ad( P)® K generated by the image of ad(8).

Proof. Notfe that the long exact sequence of cohomologies for the inclusion
of D' in C givces an injection of IH'(D") into JH'(C"). The construction
of the map from IH'(C") into the space of infinitesimal deformations in
Theorem.(1.1.3) would immediately imply that the image of IH'(D") is
contained in the infinitesimal deformations of the type described in the
proposition. Conversely, given an infinitesimal deformation it is easy to
see that the corresponding element in IH*(C") as described in Theorem 2.3

belongs to H*(D").

Theorem (1.4.10). If a pair (P,0) is a smooth point of the fibre of the
Hitchin map H, then the symplectic form §1 restricis to the zero form on

the tangent space of the fibre.

Proof. The assumption is equivalent to saying that the Hitchin map has
surjective differential. We will now show that this implies that for any fixed
point 2 € X, the element of g given by evaluating & at « is a regular elemen-
t, that is to say, has centraliser of dimension [ = rank(G). Consider triples
(P,8, ) where (P,8) are as before and o is an isomorphism of P, with a
fixed G-set on which @ acts simply transitively. Then these triples form a
G-principal bundle over M. In any case, the map (P,8,a) — h(P,0) has
surjective differential. Since evaluation maps T(K*) — (K*), are all surjec-
tive for 3 > 1, it follows that the composite of the differential of the Hitchin -
map with evaluation at z is also surjective. Now the Hitchin map followed
by composing the evaluation map at @ is obiained by evaluating ¢ at 2
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and identifying adP; with g using «, and then applying the Kostant map
g — C ' given by invariant polynomials. Infinitesimalising this commuta-
tive diagram, we conclude that the Kostant map has surjective differential
at the point (f)z. It has in fact been shown in ([ref], Theorem 0.1) that
this is equivalent to § being regular.

Finally, the infinitesimal deformations of the pair (P, 8) into nilpotent
pairs are given by elements of the complex D' by (1.4.8) above. But in this
case the map ad(P)ﬂQF is surjective since the map ad(f) is of constant
rank at all points of X. Thus D" is quasi-isomorphic to the single member
subcomplex Zy where Z; i8 the centraliser of §. Now it is obvious that the
symplectic form restricts to the zero form even at the complex level since
there 18 no nonzerc term at degree 1 in the complex. |

Remark. Since the fibre of the Hitchin map over 0 consists of a pure m-
dimensional variety (m = dimension of Fg) as we have seen in Proposition
(1.4.5), the generic fibre has also dimension m. It is on the other hand
certainly reduced, and hence has smooth points, Thus the assumption in
Thmeorem (1.4.10) is satisfied on a nonempty Zariski open set. In partic-
ular, the Hitchin map gives an algebraically completely integrable system.

¢1.5 PARABOLIC BUNDLES ON A CURVE.

Let G be a connecied reductive algebraic group over C, and g its Lie
algebra. Let Z be the center of G, and X a compact Riemann surface. C.

is a finite set whose elements will be referred as parabolic points. For a holo-
morphic principal G-bunlde P on X, the associated bundle for the adjoint
representation of G in g will be denoted by ad(P). Define K’ to be the set
of all those elements of g which are contained in the Lie algebra of some
maximal compact subgroup of G. The eigenvalues of the adjoint action on
g of an element v € K’ are 'ima',ginary. Hence v will give a flag structure
on g, indexed by real numbers, in the following way: for 7 € R, take the
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subspace 7" of g generated by the eigenspaces of ad(v) corresponding to all
the eigenvalues A satisfying ﬁ'; > 7. Let P, C g be the parabolic subalge-
bra associated with 4; it consists of all those elements of g whose adjoint
action preserves the flag structure; equivalently the subalgebra spanned by
the eigenspaces corresponding to all those eigenvalues of ad(y) which are
of the type 2mir where r > 0. o' € g is said to be equivalent to v if vy — 4/
belongs to the nilpotent part of P,, This relation is in fact an equivalence
relation; the set of equivalence classes is denoted by K. Note that both
K' and the equivalence relation on it being G invariant, X makes sense on
ad(P). The equivalence classes in ad(P), for z € X will be denoted by
Kps.

Definition (1.5.1). A parabolic structure on a principal G-bundle P— X
at a parabolic point z is a choice of an element I, € Kp,. A parabolic
bundle is a bundle along with a parabolic structure at each parabolic point.

Definition (1.5.2). A parabolic G- bundle P is said to be stable if for a
maximal parabolic subgroup H and any holomorphic reduction Py, given
by fu 1+ X — P/H the following condition holds:

degree(f&P(x)) + ) x(L) <0,

w€l |

where y is a dominant character with respect to a Borel subgroup contained
in H, P(x) is the associated line bundle on P/H, ¥ : H—C is the Lie
algebra homomorphism induced by x and I, € ad(Pg) is a conjugate of ..
U. Bhosle and A. Ramanathan in [BhR] constructed the moduli of sta-
ble paraboilic bundles of a fixed topological type and with fixed parabolic
structures. The moduli space is a smooth quasi-projective variety of C of

dimension

d’imZ + (g—1)dimG + ZdimG/P;,.
| | wel

 For a parabolic G-bundle P, déﬁne_adl_(P) to be the subsheaf of ad(P) |
whose adjoint action on ad(P) preserves the flag structure at the parabolic
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points. In other words the image of the bundle homomorphism

ad'(P)—ad(P)

at the parabolic points is precisely the parabolic subalgebra corresponding
to the parabolic structure. Also define ad’(P) to be the subsheaf of ad'(P)
whose adjiont action is nilpotent with respect to the flag, in other words
the image of the bundle homomorphism

ad’(P) — ad(P)

at the parabolic points is precisely the nilpotent part of the parabolic sub-
algebra corresponding to the parabolic structure.
Let My be a moduli of stable paraboilic G-bundles.

Lemma (1.5.3). For P € Mp, the tangent space TpMp is naturally iso-
morphic to H'(X, ad'(P)).

Proof. The proof is similiar in spirit to (1.1.3). As in (1.1.3), let & =
{U; = Specd;}icr be a finite affine covering of X, such that the parabolic
point p; € U;. Given any 1-cocycle s;; for the Cech resolution of ad*(P) as
in (1.1.4), if we repeat the construction of an infinitesimal deformation of
principal bundle P agin (1.1.3), we actually get a infinitesimal deformation
of parabolic bundle £. This is because the adjoint action of any element in
P, for a v € K preserves the set of elements of g constituting the class ¥.
On the other hand given a infinitesimal deformation of the parabolic
bundle P, if we repeat the construction of 1-cocycle for the Cech resolu-
tion, then since the parabolic structure on any parabolic point is fixed, the
cocycle must come from ad'(P). Indeed the Lie-algebra of P, foray € K

is precisely the subalgebra of g which preserves the set of elemenis of g
1

constituting the class 4.

‘Recall that there is a nodegenerate invariant form B on g Now is easy
to see that for any 4 € K, the annihilator of the Lie-algebra of F, is the
nilpotent part of P,. For any parabolic bundle P, let p;, be the parabolic
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subalgebra of ad(P), given by the parabolic structure I, at a parabolic
point z € I. There is the following natural exact sequence of sheaves on X

0 — ad(P) ® O(~I) — ad"(P) — Buerps, — 0
So taking the dual of the above sequence we get
0 — ad (P)* — ad(P) ® O(I) — @aer ad(P)a/pr, — 0
Now Serre duality implies that the dual of H (X,ad'(P))is HY(X, ﬂd”(P)@

K ® O(I)). Hence we have

Lemma (1.5.4). For P € My, the cotangent space T};Mp is naturally
isomorphic to H(X,ad’(P) ® K @ O(I)).

Another way to prove the above lemma is as follows. The form B on ¢
induces a nondegenerate pairing ad(P) ® ad(P) — C. Now, since for any
v € K, the annihilator of p., is the nilpotent part of it p,, clearly we have

a nondegenerate pairing

ad' (P) ® ad’(P)® O(I) — C

Hence the two vector spaces H°(X,ad’(P)® K @ O(I)) and H'(X,ad'(P))
are duals of each other by Serre duality.

Now we will consider deformations of pairs of the form (P,#), where P
is a parabolic G-bundle of with a given parabolic structure, and

0 ¢ HY(X,ad’(P)® K @ O(I))

. First note that for such a pair (P,8), the adjoint action ad(6) on ad(P)
-~ maps ad*(P) into ad’(P) ® K ® O(I). Consider the following complex C"

. of sheaveson X

(1.5.5)
| C: 0% =ad'(P) 25 ' =ad(P)QK — 0
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Lemma (1.5.6). The space of infinitesimal deformations of the pair (P, 6)
is canonically parametrized by the 1-st hypercohomology IH 1(O")..

Proof. Again the proof of Theorem (1.1.3) can be adapted for this situa-
tion, and we omit the details.

Now assume that P € My, and (P, 0) € T M». From the complex C"
defined in (1.5.5), there is a natural projection to the complex

D': DY = ﬂ.dl(P) — (.

The induced map of of first hypercohomologies is denoted bj F. The tan-
gent space to T*Mp at (P,8) is given by IH'(C). We saw that

HD(X,ad”(P)®K®O(I)) = Hl(X,adl(P_))*,

and hence
a —< F(a), 8 >

defines a 1-form on IH'(C'). It is easy to see that this actually defines
a 1-form on T*Mqp; this form is denoted by ®. The {otal space T* My,
being a total space of a cotangent bundle has a natural 1-form, comparing
definotions, it is easy to see that the form & isindeed the canonical 1-form.

Now we will define a 2-form on T* M. In §1.3 we defined the dual of a
complex. Clearly, the complex C' defined in (1.5.5), is dual of itself. Hence
there is a natural map from the complex C* ® C' into the complex

0 — K
So, as in (1.3.1), we have the following maps of cohomologies

H(C) @ HY(C) - H(C' ® G) - BYK[L]) = B(K) = C
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This defines a 2-form on IH*(C"). Now IH'(C") being the tangent space
of T Mp, the above pairing defines a 2-form on T*Mp. This 2-form is
denoted by {2. Now we are in a position to state the parabolic analogue of
Thm.(1.3.2).

Theorem (1.5.7). On the total space T*Mop the 2-form Q) coincides with
dP.

Proof, There is the following Dolbeault resolution of the complex ¢

This is a fine resolution, and hence the 4-th hypercohomology IH*(C.) can
be computed as the cohomology of the diagonal complex.

Let R be the ring Cley, €3]/ (61° e1%€a, €169%, €5°). Let P be a family of
parabolic bundles parametrized by Spec R. Let § € H*(X xSpec R, ad(P)®
0% specr ® O(I)), I is the divisor I x Spec R. Let the restriction of this
pair (P, ) to the closed point be (P, §). Now the proof of Theorem (1.3.2)
can be adapted to this situation and we omit the details.

Recall that the exterior derivative of the canonical 1-form on the total
space of a cotangent bundle is the canonical symplectic form. Hence we
have the following corollary of the above Theorem:.

Corollary (1.5.8). The 2-form Q on T*Mp is the canonical symplectic
form, | “ |
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Now we will define a parabolic analogue Hitchin map. Note that all G
invariant polynomials on g vanish on n, the nilpotent cone of the semisimple
part of g. Hence if f is a homogeneous invariant polynomial of degree d,
and § € H°(X,ad’(P) @ K ® O(I)), then the evaluation f; of f on § is a
section of K?O((d — 1)I). Recall that the space of invariant polynomials
on g were denoted by Z. Thus we have the follwing map

Hp: IxT*Mp — P HYX,K'® O((i — 1)I))
i>0

This map will be called the Hitchin map.

We will recall the definition of Poisson bracket. Let ¥ be a symplectic
manifold with a { being the symplectic form. For a smooth function f on
Y, let df be the smooth vector field on Y defined by the followmg property
for any tangent vectorv € 1.,

Q(v,&_f) = ﬂ(f)

The Poisson bracket of two smooth functions f1 and f, are defined as follows

{#1, fo} = dfi(dfy)

f1 and f, are said to Poisson-commute if {f, fo} = 0.
Now we will prove that the Hitchin map Hp Poisson-commutes, t.e.
if f; and f, are two linear functional on @;H°(X,K ® O((i — 1)I)), then

f1 0o Hp and f, o Hp Poisson-commute.

Theorem (1.5.9). The function Hp Poisson-commutes with respect to the
canonical symplectic structure on T*Mp.

Proof. Let P € Mp, and 8 € TpMp. Note that to check Poisson-
commutativity of Hp at 8, only involves 1-st order neighborhood of # in
TH Mop. _ _ '

Let (ai,fi) € Q% (ad (P)) @ 0*°(ad(P) ® O(I)), & = {1,..d} be
representatives of a basis of IH 1(0 ) in the Dolbeauls resolutmn of O given
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in (1.5.7). After a rearrangement of indices, let {o; Y5, be a maximal
lmearly independent subset of the set of sections {o;}%.,, and similarly
{8:}i=1 is & maximal linearly independent subset of {8;}%.,

For ¢ € 2% (ad*(P)) and ¥ € O'9(ad’(P) @ O(I)), define

(6,9) = /X B(4 A )

, where the (1,1)-form B(¢ A ) on X is defined using the nondegenerate

form B on g.

[t is easy to see that for any nonzero s € (% (ad'(P)), there is a ¢ €
010(ad®(P) ® O(I)) such that (s,#) £ 0. Conversely, for any 0 # ¢ €
1O0(ad'(P)), there is a s € Q% (ad®(P) ® O(I)) such that (s,1) # 0. Using
this it can be proved that the collection {{e}f.{,{B}}-;} can be increased
to a collection {{a}™,,{A}"}, such that the m x m matrix ((au, ﬁ;)) ;18
nonsingular. First extend the k x [ matrix ({4, ﬁj)) to some invertible
m X m matrix A. Then the equation ((a, ﬂj)) — A can be solved (in fact
space of solutions will be infinite dJmensmnal) Let V be the formal vector
space over C generated by the set {a}7, U {8},. We will call the vectors
corresponding to o; and §; by e; and f; respectively. Let w be the symplectic
form on V' defined by the following conditions: w(e,e;) = 0 = w(ﬂ”ﬁ_.,)
and w(c a;, ;) = (@i, B5)-

Let R be the ring Cley, ...., €2]/I, where I is the ideal generated by
{e;e;}, 1 < 4,7 < d. For the bundle P, let 8p be the dolbeault operator
which defines the holomorphic structure on ad(P). Then the operator dp +
S ¢, &y defines a holomorphic structure on the C* bundle pjP on X X
Spec R, this bundle is denoted by P. § := 0+ i, e:f: defines a section of
T*Mp over P. So the infinitesimal deformation in the direction ¢; of this
family is represented by (s, 5:).

Let R be the ring Cley, ..., €m, f15 -+ frn]/m*, m being the maximal ideal
Of C[€1y vey €my f1, orey Frn]. There is a natural inclusion b : Spec R— Spec R’
(recall that we enlarged a basis of {4}, and a basis of {#;}L,), defined
by the condition & — ¢ + f;. Let ¢ € Spec R be the closed point. The
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symplectic form w on V so defined that h*w(c) coincides with the symplectic
form on T.Spec R defined by (1.3.1).

There is a function H' : Spec R'—@]_;C(X, K*@O((i—1)I)) which is
defined in the same way the Hitchin map is defined. Clearly the restriction
of Hp to Spec Ris h*H'. Soin order to show that Hp Poisson-commutes at
(P, 8), it is enough to show that H' Poisson-commutes at ¢/, the closed point
of Spec R'. But the function H' depends only on the f;’s, and the subspace
of V spanned by {f;}2, is isotropic. i.e. the restriction of w vanishes on
this subspace. Hence H' Poisson-commutes at ¢/. This completes the proof.
[

Now we iniroduce the parabolic analogue of very stability

Definition (1.5.10). A parabolic G-bundle P is said to be wery siable i
HY(X,ad’(P)® K ® O(I)) does not contain any nonzero nilpotent section.

Imitating the argument in (1.4.2) we get that any very stable parabolic
bundle is actually stable parabolic. Also repeating the argument in §1.4 it
can be easilly proved that the components of the preimage of 0 under Hyp
are Lagrangian, i.e. the restriction of the symplectic form vanishes. For
the same reason as in (1.4.7), the set of very stable parabolic bundles is a
nonempty Zariski open set in the moduli of stable parabolic bundles. More-
over the fact that the fiber of Hp over 0 is Lagrangian combines with the
Poisson-commutativity of Hp to imply that Hp actually gives a completely
integrable structure.
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CHAPTER TWO :
DEFORMATION OF COHOMOLOGY

§ 2.1 DEFORMATIONS OF A HIGGS BUNDLE.

Let X be a compact complex manifold of dimension 7.

Definition (2.1.1). A Higgs bundle on X is a pair {E,6), where E is a
holomorphic vector bundle on X and # € H(X, End(E) @ QY), satisfying
the condition that 8 A # = 0 as a section of H(X, End(E) @ N%).

Note that the Lie algebra structure on End(E) and the exterior algebra
structure on @Y induces an algebra structure on ®(End(E) @ %), As
we mentioned in the previous chapter, Hitchin introduced the concept of
Higgs bundles on curves [Hil]; in higher dimensions it was defined in {S1].

Let E be a holomorphic vector bundle of rank r on X. D¥(E) denotes
the sheaf of holomorphic differential operators of degree <7 on sections of
E taking into itself. The following sequence of sheaves on X

0 — End(E)=D%E) — DNE) -+ Tx®EndE) — 0

is exact, where o denotes the symbol map. Define the Atiyah algebra of E

to be
A(E):= {DeDYEB): o(D)=1idg® Tx}.

D(E) is equipped with a natural Lie a.lgebra (taking cnmmutator) struc-
ture and A(E) is a sub- algebra | | | |
There is a natural action of A(E) on End(E ) ® Y W_hich is described
below. First an operator D € I'(U, .A(E)) on Ely, where U € X is an
open set, induces an operator on End(E)|y. This operator, which will be
again denoted by D, can be defined as follows; for a € T'(U, End(E)) and
seIU,E) S :
D(a)(s):z _' D(a(s))—aﬂ(&). |



Now let 8 € I‘(Ut, End(E) ® %) be ¥, ax ® wy, where oy, € I(U, End(E))
and wy € T(U,{¥% ). For D € (U, A), define the operator on End(E)® %,
which will be again denoted by D, using the following relation:

(2.1.2)

D(B)= ) [D(ox)®uwyx + o ® Lo(D)wy),

where I is the Lie derivative. This operator D is well defined i.e. does not
depend upon the decomposition of 3.

For a Higgs bundle (F,f) the map D +— D(8) defines a map
dg: A — End(E) ® Q.

Let mg be the operator on End(E)®S given by the right multiplication
by 8. For a € End(E)®Q% ms(a) = a A 8+8 A a where A is defined using
the composition of operators in End(E) and the exterior algebra structure
on ®f%. & A 8 = 0 implies that myds = 0. So the following sequence of
sheaves on X 18 a complex.

(2.1.3)

0 C° = A(E)-% C* = End(E) @ Q% =% C* = End(E) ® 0% —0.

Proposition (2.1.4). There is a natural map from the space of infinitesi-
mal deformations of the triplet (X, E,8) to the first hypercohomology I HX,C).

Proof. Let X -25T be a holomorphic fibration over some open ball T C Ck
containing {0} such that p~!(0) = X. (F,0) is a family of Higgs bun-
dles on X i.e. § € H(X,0% ;) and § A 6 = 0, such that the restriction
(Blp~1(0),8lp-1(0y) is (F,8). For a suitable finite Stein covering {U,} of
X choose co-ordinates of the form (2, ey Zny T15 vy Tr) ON €ach Ug, where
(1, ..., %) are the co-ordinates on T; and 2=, 4 € {1,...,k} are vector
fields on U,. Once trivializations of Elu. are chosen, -51‘%; can be inter-

preted as first order operators on Ely,. The symbol of this operator is

| 3;'%; ® idpy,, . The vector field ﬁti,.- 5:2 - 'projects to zero on T'. Hence the
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operators
3, 0
Dygsi=
'ﬁl atn’,i (0) atﬂ,i ({})

defined on Ely.nu, gives a 1-cocycle of A on X.
Using the trivialization of E on U, one can define

9,
Bta’ﬁ )

as an element of T'(U,, End(Ely,) ® Q% i) Clearly (Dagi, Sag) gives a
1-cocycle of the Cech resolution of C" for the apen cover {U, N X} of X.
Though this construction of co-cycle involved choices of co-ordinates on
X and trivializations of B|;_, the association of the cohomology class given
by (Da,g,, 8a,4) to the tangent vector 5‘-’;—; € To(T') does not depend upon

thege choices. This completes the proof.

S 1= dt?(

In the special case where X is a smooth algebraic variety over C, the
infinitesimal deformation functor in the sense of [Sch] can be defined in the
following way. To any (parameter) scheme A = Spec(A) with A an Artinian
local algebra, associate the set of all isomorphic classes triplets (X, %, §)
on A, where X is a flat A scheme and E is a vector bundle on X and
§ec HYX,QL / )y along with an isomorphism of the restriction to the closed
point m of SpecA with (X, E,8). Two families (X, F,8) and (X', F/, #')
on A are said to be equivalent if there is an A-isomorphism X —X' and a
compatible bundle isomorphism F=5F guch that d is mapped to & and
the restriction of these morphisms to m coincides with the identity map
on (X, E,8) after the identification. This defines a functor on the category
of Artinian local C -algebras with values in sets, We call this functor the
formal deformation functor of (X, B,8), and denote it by F. Let C' be the
complex defined in (2.1.3). The following theorem is similar in spirit to

Theorem (1.1.3).

Theorem (2.1.5). The space af.'s'nﬁniteas'mal deformations of the triplet
(X, E, 0) that is to say, the set F(Cle]) with €* = 0 is canonically isomorphic
to IH'(C"), | | |
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Proof. Let & = {U; = Specd;} be a finite covering of X by affine open
sets. Let Uy = U;NU; = Specd;;, and similarly Uy, N U, N ... U; is
denoted by Uy, .i,- Also define Ujfe] := Specd; ®¢ Cle] and Uy, . 5, [€] 1=
SpecA;, i, ®c Cle]. We consider the following Cech resolution of C :

2.1.6

0 0 0

l l l

0 — C° o RN C*

l l l

0 — IR, — IMQRIU,0) — MU,

l 1 . l

0 — ER_;:,: _ 2M{j®F(Uij;ﬂl) — EM{;i@P(Uij:Qz)

l S

where End(B)|y, = M; and A(E)|y, = R; are A;-modules and End(E)|y,, =
M;; and A(E)|y,; = Ri; are A;; modules ete. This being an acyclic reso-
lution of C* the hypercohomology H'(C") can be computed as Z/B. Here
Z consists of pairs (sy;,%:), where 8;; € (Ui, A(E)) = Ry, and & €
NU;, End(E) @ Q') = M; @ I'(U;, Q') such that

1, 8i3 + 3k = Sik EiS elements of H;jx
2. 2(,:* - ii e dg(&ﬁ) as elemeﬂts Of M,;' @ P(Uij, Ql)
3. mg(ti) = ),

And B is the subépa,ce of Z consisting of pairs {s; — 8;,dg(8;)), with 8; € R;.
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Let (8i5,%:) be an element of Z. The condition (1) implies that s;; is
a 1-cocycle of A(E). Hence using the symbol map A(E)-~Tx we get
a 1-cocycle os;; of Tx. The vector space H YX,Tx) being the space of
infinitesimal deformations of X, there is a flat C[¢] scheme X, along with
an isomorphism of X, ®¢y € with X. In fact X, is constructed by by gluing
pairs U; and U; along Uy; using the automorphism 1 + egs;; of Uy,

Consider the bundle (p1)*{E|U;) on Ui[¢] for every 7, where »; i8 the
projection U; x Spec(Cle])—U;. This bundle will be denoted by E;. The
operator 1 + es;; on E|U;; is compatible with the operator 1+ eosy; on Uy
in the sense that |

(L + esi;)(fs) = (1 + cr3ij) (1 + esij)s.

Now we may identify the restrictions of E; and E; to U;; by means of the
isomorphism 1 4 €8;; of E;;. The above compatibility of operators ensures
the compatibility of these identifications and hence we get a bundle E, on
Spec(Cle]) x X. |

On Spec(U; x Cle]) we have 8; + t;e € T'(Us[e), End(E) @ Q). We claim
that these sections of End(E)|U; ® ! on Us[e] patch together to give a
global section 6, € H(X, End(E.) ® Q% /). Indeed we have to show
that over U;; the following identity holds.

(1 - 631*5:)(9{ + tiﬁ) = 95: + ﬁjﬁ'

But this follows from cocycle condition (2).
The condition (3) implies that 6, A , = 0.
 Thus we have associated to the 1-cocycle ((si;),(¥:)) an infinitesimal
deformation (X., B, 8.) of (X, E,8).
Now suppose that ((s:;), (#:)) € B, that is to say si; = 8:—8;, 1; = dp(8;).
Then the commutativity of the following diagram

Usld =5 Uyl

J'l—r-e:::r Bij lid

Usld =3 Uyl
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implies that the family X, as above is trivial. Similarly the commutativity
of the diagram

1+4e8; id
= 14-ga; -
'EtJ e} E‘-J

implies that the E, is a pull back of F on X. Moreover the identity (1 4
€3;)(0 + €t;) = 0 + €t; + €3;6 = § implies that 8, is pullback of f. Hence the
family (X, Ee,fc) associated to (s; — si, dps;) is trivial. So we have a map
from IH'(C") to F(Cle]).

To construct the inverse map, let (X|e], Ele],8[¢]) € F(Cle]). X[e] is
obtained by gluing U;e| and Uj[e] along Uy;e] by some suitable isomorphism
of U{j [E]

The exact sequence of sheaves on Ujfe]

0 — End(C") — Aul(Cle) — Aui(CT) — 0
gives the following exact sequence of cohomologies

HY(Uilel, Bnd(C 7))— HX(Usle), Aut(Cle]"))—— H{Uile], Aut(C ")) —— B*(Ui[e], End(C 7)).
But H'(Ui[e], End(C ")) = 0 = H*(U;[¢], End(C ™)) and hence
HY(Uile], Aut(Cle]")) = H'(U{e], Aut(C ).

- which implies that any bundle on Uife] is a pullback of a bundle on U,

Now it is easy to see that for (X[el, Ele],0(e]) imitating (2.1.4) a corre-
 sponding element v € IH!(C") can be constructed. Also it is easy to see
that the map F(Cle])—H(C") given by (X|[¢], E[e], f[¢]) — « is the in-
verse of the map constructed earlier. ' 0

‘Remark (2.1.7). The space of infinitesimal deformations of the Higgs bun-
dle (E,#) with fixed bage is parametrized by the 1-st hypercohomolgy of

the following complex C”

C" : Bnd(E)™S End(E) ® %% End(E) @ 0% —0.
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The natural inclusion of ¢ in C' induces a map of cohomologies which
connects the infinitesimal deformations of (£, ) with that of (X, E, 8).

(2.1.8) Remark. Let 71 denotes the formal deformation functor of a Higgs
bundle (E,§) on a fixed smooth complete varity X; so the difference with
F ig that the base X does not deform. Then from Theorem 1.2.1 it fol-
Jows that if the subspace of H(X, End(¥)) consisting of endomorphisms
which commute with 4 is just the scalar multiplications then F; is pro-
representable in the sense on [Sch]. This happens for example when (E, 8)
is stable (see Section 2.4 for definition of stability). Moreover if IH*(C") = 0
(C" is defined in (2.1.7)), the representing complete local algebra is regular
(Theorem 1.2.1).

§ 2.2 DEFORMATIONS OF A COHOMOLOGY.

Let
(2.2.1)
(X7, ET, 1)
lp
T

be a family of Higgs bundles parametrized by a complex manifold T'. For
t € T the Higgs bundle on X := p~'¢ is denoted by (E,, §;). The condition
that 8; A 8, = 0 ensures that the following sequence D- of bundles on X is
a complex.

(2.2.2)
D : D9=E 24D = B, @0k 2 ... 2HD" = B, ® OF —0.

Let O, be the germs of holomorphic functions at { and m the unique
maximal ideal in O,. The following exact sequences of complexes

0 — mD'/m?D — D/m?D — D/mD — 0
. _ [n
D.@ﬂ* . _D'
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induces a map D. (2.2.3)
6: T(T)QMW'(D)— H™(D).

So for v € T,(T") we have a complex (IH*(D-),8(v,~-)) as follows
(2.2.4)

0—s (D) 25 (DY my D)3 Y5 g py—o.

Denote by C** the complex on X; defined as in (2.1.3). The algebra of
operators A(FE) acts naturally on E® Q. Indeed for D € T(U, A(E)) and
s € (U, E ® ¥y ) which is of the form s = 3, 83 ® o, where 3, € I(U, E)
and o € T(U,0%), D(s) = 3, D(sx) ® o + 9 ® L¢;pyor. 'This action
and the natural action of &;End(E) ® Q% on &;F @ (% yields a map of
complexes

f: C* Q@D — D,
f induces the following map of cohomologies

(2!2‘5)
fo: H(CY) @ H(D)— H* (D).
Let d : T,(T)—sIH'(C'*) be the infinitesimal deformation defined by
(2.4).

Theorem (2.2.8). The composition of maps f. o (d @id), as a map from
T(T) ® H'(D') to H'"' (D) coincides with §.

Proof. It is enough to prove when dim T = 1. Let ¢ be a co-ordinate on

an open subset U of T containing { with ¢ orresponding to { = C.

In order to prove (2.2.6) we will use a Dolbeault resolution of D'. For
notational simplicity The space of C* sections of the bundle Ey ® ﬂ}’u 1
on Xy is denoted by Q3 (Ey). Similarly, (1;7(E,) denotes the space of G
sections of B, ® Q}é on X,;. Let 05 be the dolbeault operator which defines
the holomorphic structure on Erp; it acts on Zi,j Qj;f (Ey). The following is

a. resolution of D-.
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0 0 0

0 -— DY IR Dt Dn -— 0

0 — OW(E) 25 OE) .. QFE) — 0
B s |2

0 — QW(E) 25 abl(B) . QFHE) — O
EE '5_[;; EE;

0 — Q%(E) 25 QRE) .. OFH(E) — O

This being a fine resolution, the i-th hypercohomology IH*(D') can be com-
puted as the cohomology of the following complex

{1 - i — i+1
Eﬂﬁi—-.ﬁ—-l(Et) B+ Zﬂﬁ:—g(Et) 5+9: zﬂjﬁ'_ﬁl(ﬁ't)-

j:ﬂ jx j:

The family Xy——U is trivial as a C° family i.e. there is a diffeo-
morphism of families A : Xy—X; X U. Moreover, the family of bundles
Ey— Xy is also trivial in the sense that there is a C isomorphism of
bundles p : Ey—\* E;. The vector field on Xy gotten by pulling back the
vector field E% on X, x U by X is denoted by n. The 1-st order operator
£ on O sections of A*(E,) pulls back as an C* section of A(Ey). This
pulled back operator which is denoted by D(n) has a natural action on
sections of } ; , 0% (By) as described in (2.1.2).

Let {U,} be a finite cover of p~1(U) and (24,1, .+ Za,n» ) be a co-ordinate
chart on U, as in (2.4). Using the co-ordinate chart we have a vector field
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J

= C on U/, which is denoted by 2- 5c-- The bundle Ey|U, on U, is isomorphic
to the pullback of E,, := El(X;NU,) on X; N U, by the projection
fo : U= X N U, defined by (2o, Zans$) = (Za1y - ,zﬂn) Fix such
an isomorphism Ay : Ey|lUa— fiE; . Then using pull back aﬁn giveé an

1-st order operator D, € I'(Uy, A(E|y.)).
D,{(0) — D(n) is a smooth section of A(E,;,) on X, N U, and moreover

on U, g the difference being holomorphic

Dc = EE(D-::(O) o D(n))

is globally defined section of Q% (X, A(E,)), where Og is the dolbeault
operator which defines the holo. structure on A(Er).
Define
pe = D{(n)(6v)|x,

as a smooth section of End(E,) @ Q3

The pair (D¢, p¢) is a 1-cocycle for the dolbeault resolutmn of C + and
represents the element in JH (C**) which corresponds to £ by (2.4).

Let @ € 23—0 0¥=7(E,) be in the kernel of 9z + Ht, ¢ denotes the
element in IH I"(D ) represented by &. p : X, X U—X, is the projection
and pi(®) is the pullback of & as a section of @,;pi(E; @ :Q"‘ =7), Using A

Ji—JF

and p, p¥(®) gives a smooth section p; 7t ® of @, ( By ® qu ,U)
In the above notation

| B(gr@8) = D)@+ A)FED)

as elements of H*(D"). Note that D(n)((Be+8y)(2:8))|x, on X, is Hg+6,
closed.  One way to see this is as follows: using A and p we have 831, =

O, +A(t) where A() : T, Q5 (B)— T3k, Q5-Y(B,) is a 0-th order

operator i.e. an endomorphism of bundles. That D(n){(85 + 8u)(21®))|x,
is Op + 6, closed follows from the fact that 4 is a holomorphic section and

on X; o
85, D(n)(s) = D(n)(dx(s)) - -—A(t*>(s)
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On U, we have
D(n)((Be+0u)(pi®)) = Du(@x(pi®)) — (Da—D(n))((pi®)) + D(n)(fyp; )

= Da(B5(p18)) — Dz((Da—D(n))(718)) +Ba(Da—D(n))pid + D(n)(0u738).

Since D, is a holomorphic operator and by construction D(n)(pt®) = 0,
applying Leibniz rule the above equality implies that on X,

D(n)((0s + v)(P1®))|x. = De(®) + pe(8).

But the right hand side of the above equality is fio (d @ z'd)(-a% ® ¢). This
completes the proof.

For a Higgs bundle (F,8) on X the following complex of differential
operators

(2.2.7)

0—Q0(EB) 22X @, arkt-k(g) B | %Y 4 qkbn-kE)—0

being elliptic (its symbol being same as that of 8z) the Theorem 1.7 of
(GL2] applies and in this special case ((1.7),(1.8),(1.9), [GL2]) gives the
following

Proposition (2.2.8). (i) If for some t € T in (2.2.1), for all nonzero
v € T, (T) the condition dim H?(IH*(D"),8(v,—)) < m (defined in (2.2.4))
is satisfied then for allt' € U — 1, where U 18 a neighborhood of 1 in T,
dim IH(D'y) < m. |

(it) If for all nonzero v € Ty(T), HI(HH*(D"),6(v,~)) =0 and i € §7(0g +
8) := {s € T| IH*(D-,) # 0}, then t is an isolated point of S?(8g + 8).

(i41) If for some v € T, (T), H'(H*(D"),6(v,—)) = 0 then ¢ is not an
interior point of S7(0g + 8). |
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¢ 2.3 DEFORMATIONS OF COHOMOLOGY OF A LOCAL
SYSTEM.

Let V is a.C® vector bundle of rank » on X and V be a flat connec-
tion on V. Note that V has a holomorphic structure induced by V. The
corresponding local system, i.e. the locally constant sheaf of flat sections,
is denoted by VV. There is a 1-1 correspondence between the set of all
flat connections on V' and equivalence classes representations of m(X) in
Gl(r,C).

The space of infinitesimal deformations of flat connections on V is given
by H*(End(VV)). So the infinitesimal deformations of the pair (X,V) is
given by HY(X,Tx ® End(VV)). |

Let
(2.3.1)
(XTlVT)
T

be a family of local systems on a C° vector bundle V. For ¢t € T let VV'
be the local system on X;, Imitating the derivation of (2.2.3) we have

(2.3.2)
v: T(T)QH(VY) — HIVY,

Let d : Ty(T)—HY(X,, End(V"")) be the infinitesimal deformation
map of the local system. The natural action of End(VV') on VV' defines
the homomorphism

(2.3.3)
g HYX,EndVV)@ H(VY')— HF (V).

Theorem (2.3.4). The composition of maps go (d®1id) coincides with ~.
Proof. The proof is similar (actually simpler) to (2.26). Asin (2.26) assume

- that dim T =1 and ( a co-ordinate on an open subset U of T containing

t with 1 corresponding to { = 0. Fix a deffeomorphism X : Xp— X, x U.
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For i’ € U, A}(V) denotes the space of i-forms on Xy with values in V i.e.
C> sections of V@ A T¢(Xy). Let n be the vector field on X, x U given

by 3‘%.
The following de Rham resolution of V'V’ is a fine resolution.

0— V¥ — A%V) 5 ANy s 42(v) X5 L S An o,

The cohomology class d(ﬂ%) 1s represented by the cocycle 3%‘\7‘:(0) for
the de Rahm resolution of End(V"").

Let & € AY(V) be in the kernel of Vt Using the projection p; : X; ¥
U—X,, ® gives a section pi® of V ® pj( ) on X; x U. Now

7(5‘% ® 8) = n(V*pi®)(0).

Since n(p;®) = 0, we have n(V¢p;®)(0) = -,;—%(V‘:)(O)i*. This completes
the proof.

Since the connection operator is elliptic ((1.7),(1.8),(1.9), [GL2]) gives
the following

Proposition (2.3.5). (i) If for some t € T in ({.1), for all nonzero v €
Ty(T) the condition dim HI(H*(VV'),v(v,~)) £ m (defined in (2.24)) is
satisfied then for allt’ in o punctured neighborhood of t in T, dim H j(V*’) <
m.

(1) If for all nonzero v € TYT), HI(H*(VV),v(v,-)) =0andt €
SH(V):={s € T'| HI(V*) # 0}, then t is an isolated point of SI(V).

(iti) If for some v € TY(T), HI(H*(VV'),y(v,~)) = 0 then t is not an
interior point of S7(V).

8 2.4 CORRESPONDENCE OF DEFORMATIONS.

Let X be a compact .Kiihler_manifqld of dimension n with w being the
Kéhler form. '
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The Higgs bundle (F, ) on X is called stable if for any proper subsheaf
0 # F C E with the quotient being torsion free, such that F is § invariant
i.e. 0(F) C F ® QY%, the following condition holds

deg(F}/rank(F) < deg(E)/rank(E).

The degree is defined by deg(F) := (¢,(E) U™ 1) N [X).

Hitchin for curves {Hil] and Simpson for compaet Kihler manifolds [51]
proved that a stable Higgs bundle admits a unique (upto scaler) Hermitian-
Finstein metric 1.e. if the metric is denoted by K then,

AD+ 8-+ 6 = Midg,

where A € C, D is the holomorphic hermitian connection on E for K, 6*
and A are the adjoints of # and the wedge product by w respectively. If
all the Chern classes of F vanish then A = 0; in fact vanishing of first and
second Chern classes is enough {S2]. In such a situation the connection
(D + 8 + 6*)? is flat. In other words E is associated to a representation of
m(X) in GI(k, C). It follows from [$1],[C] that the connection (D + 8+ 6*)?
irreducible.

Conversely, if V is a irreducible flat connection on a vector bundle
V— X then it follows from [D] when n = 1 and from [C] in general that
(V,V) admits a unique (upto scaler) harmonic metric, which means the
following: For a hermitian metric K on V define D§ by (D%)* = — A, V],
also define Gk 1= (VD% + D% V)/4. The metric K is called harmonic if

AGg = 0.

A result due to Deligne ((2.1), [S2]) says that AGx = 0 implies Gx = 0,
this in turn implies that (V 4+ D%)/2 induces a stable Higgs structure on
the C*°-bundle V. Note that the existence of flat connection implies that
all the Chern classes of V vanish. The details of the above correspondence
of stable Higgs bundles and irreducible flat connections can be found for
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example in [52]. Irreducible unitary representations correspond to stable
bundles z.e. § = 0.

For a stable Higgs bundle (E,f) with ¢,{E) = 0 = ¢3(E), let D' be the
complex of sheaves defined as in (2.22). If EV be the corresponding local
system then there is a natural isomorphism between IH*(D') and HY(EV)
((2.22), [S2}) which is described briefly below. The kernel of the operator

Ag = (Op+8)'(Os+0) + (85 +8)(8r +8)"

on AY(E) (C* sections of E® A Tg(X)), where the adjoint is taken with
respect to the Hermitian-Einstein metric and the Kéihler metric, is canon-
ically isomorphic to JH(D"). Similarly, H(E") is given by the kernel of
A = V*V 4 VV*on A(E). Using analogues of Kéhler identities (Sec.2,
[S2]) it can be proved that 2Ax = A. This relation among Laplacians in-
duces an isomorphism F : HY(EV)—IH'(D'). This isomorphism is not
holomorphic over families,

Let b : HY(End(EY))—IH"(C") be the composition of IH'(C")—H" (C")
(defined in (2.7)) with H*(End(E"))— IH'(C"), the infinitesimal version
of the correspondence between Higgs bundles and local systems. Recall the
maps f. and ¢ in (2.26) and (4.3) respectively.

A natural question that arises is: how the deformations of IH*(D") are
related to the deformations of H*(EY). Unfortunately, the following dia-

gram

HY(End(EV)) @ H(EY) -— H'Y(EY)
lh@F . lF
HY(C)@ HY(D) X H™YY(D) |
does not commute. Indeed an infinitesimal deformation of a line bundle is
given by ¥ where ¢ € HO(X,Q}) where as the corresponding infinitesimal

deformation of representation in U(1) is given by 1 + %. But this is the
- general picture which we proceed to elaborate. |
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Let (,8) € A (End(E)) & A'(End(E)) be a harmonic form repre-
senting an element 4JH*(C"). The infinitesimal deformation of Hermitian-
Kinstein metric corresponding to v is given by H, a symmetric element
of End(E). Let (o/,f') € A'°(End(E)) @ A°(End(E)) be the infinites-
imal deformations of Op + 6*, 85 is the (1,0) component of the unitary
connection. Differentiating the identity

(O52,y) + (z,08y) = 8(z,y),
where z,y € AY(E), we get
(H8gz,y) + (¢'z,y) + (Hz,0sy) + (z, 0y) = O(Hz,y).
After some cancellations we have
o = o + 8(H).
Difterentiating the identity (8*z,qy) = (2, 0y) we get in the same way
g = g 416" H)
Let ® € A*(E) be a harmonic form, Then
((OH + [0*, H])®,z) = (0(H®),z) + (HI"®, 2) + ([6*, H]®, )

= —(0"H®,z)+ (HO*D,z) + ([6*, H]®,z) = 0.

Define h : HY(End(EV))—HY(C') by ¢ — h(€) + h(£)*, where
h(¢) is the harmonic representative and the adjoint is with respect to the
Hermitian-Einstein metric. Note that A(£)* is also a 1-cocycle for the com-
plex C'. So combining everything we have

Theorem (2.4.1). The following disgram commutes

HY(End(EV)) @ H\(EY) s H*Y(EY)

Jfor |7

HY{(C) ® H (D) —'f—-a» H*Y(D).
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In view of (2.2.6) and (2.3.4) the above theorem connects deformations
of IH'(D-) with the deformations of H'(EV) on any family, even if there is
a deformation of the Kihler structure. That is because a deformation of

Kahler structure keeping everything else fixed has no effect on either of the
cohomologies,

¢ 2.53. SOME APPLICATIONS OF COHOMOLOGY DEFOR-
MATIONS.

Let H be the space of all harmonic 1-forms on the K#hler manifold
X. For a Higgs bundle (F, 8) the operator 0g + § will be called the Higgs
operator, this operator on the ¢ bundle E determines the Higgs structure.
It is easy to see that for ¢ € H, the operator 0z + 8 + 9 ® id determines
a new Higgs structure, This way, for fixed (E,§), we have a family of
Higgs bundles parametrized by H. Similarly, for flat connection (V, V) and
¥ € H, the operator V + 1) gives a flat connection. The dim IH*(D-) and
dim JH(VV) are constant on some Zariski open sets of H; the complex D
is defined as in (2.2.2). Now ((2.2.8),i) and ((2.3.5),i) gives the following

Proposition (2.5.1), (i) For o general Higgs bundle (E',8') in the family
on H as above, the restriction of fi, H @Hi(D')—{hH*“(D*) i8 zer0.
(1i) For a general (B, V) in H the restriction of g, HQH!(EV)——Ht}(EY)
i8 zero.

The above proposition in turn implies the {following
Theorem (2.5.2). (i) For a general (E,V) in any component of Mp, the
restriction of g, H @ HY(EV)-2s HH(EV) is zero.
(ii) For a general stable Higgs bundle (E',8') in any component of My the

restriction of fu, H @HI‘{(D')LH{“(D') i8 zer0.

For rank one local systems or Higgs bundles (2.5.2) holds without the
assumption that X is projective; the moduli spaces Mp and My exists for
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any Kahler manifold. When rank is one and 4 = 0, ((6.2),i1) is Thm.(2.7)
[GL2].

In the rest of this section we restrict our attention to rank one local
systems, and Higgs line bundles having zero Chern class. Note that the
moduli of such Higgs line bundles is the product Pic’(X) x HO(X,0L).

As before, Mp is the moduli of rank one local systems, and My is the

moduli of topologically trivial Higgs line bundles. H denotes the space of
all harmonic 1-forms on the K&hler manifold X.

Define -
F: = {V| V € Mp,dim H(X,V) > m}.

Similarly for Higgs line bundles define
St = {(L,0)| (L,6) € My,dim H'(X,D") > m}.

Note that the natural deffeomorphism between My and My takes F,; to
5,

The operation of taking tensor product equips Mg with a structure of
an abelian group. Note that the group structure on Pic%(z) induces a group
structure on My. It is easy to check that the correspondence between Mg
and M is an isomorphism of groups. The identity element i.e. the constant
sheaf C will be denoted by V°. The map ¢ — VY + £ defines a family of
local systems on H. The induced map p : H—MF is a surjective group
homomorphism. |

Since p is a local deffeomorphism, for any V € Mz, V' +— (p)~* (V' - V)
is a deffeomorphism from some neighborhood U of V to a neighborhood
of 0 in H. This map is denoted by {, note that {(V) = 0. The map
Hi(X,V')— Ht(X,V), given by o — U ((V') is denoted by U¢. Let
H' C H be a linear subspace. Define U’ := U N {~'H'. We have the
following complex DV of sheaves on U’ '

(2.5.8) . .
- mUX, V)e0(U) S B X, V)ROU!) 25 B (X, V)R0(U") ...
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Let V—X x U’ be a tautological family of Jocal systems parametrized by
U'. The sheat on U, given by the i-th cohomology of DV is denoted by
HH(DV).

Theorem (2.5.4). The stalk of the i-th direct image (R}, ,(V))v is tsomor-
phic to the stalk (H}(DV))y.

This theorem is similar to Thm.2.22 of [GL3]. The proof of (2.22 [GL3])
can be adapted almost without any change to prove (6.3), and we omit it.
The operator Gy, used in the proof of (2.22 |GL3]) (for example in (2.4
[GL3])} is to be replaced by V.

If H' is a one dimensional subspace of H generated by %, then from
(6.4) and ((2.23), [GL3]) we get that there is a punctured neighborhood
V C Mg Qf 0, such that for any V' € V

HY(V') = H(DY ® Oy/my),

where my: is the maximal ideal at V'. Note that the complex DV ® Oy /my:
is isomorphic to the following complex which is supported at V' and is
denoted by Dy

(2.5.5)

=% FRAX,V) 5 H(X,V) =5 EW(X,Y) 5

Let A be a irreducible component of F* and is of dimension at least one,
On some Zariski open subset AY of A, the dimension of the i-th cohomology
of local system remains constant. Take any smooth point V € A® and any
¥ € H such that D{¢{1)(¥) € Ty(4%). In ((2.3.5) take T to be a curve in
A? passing through V and tangential along D({*)(¢) € Ty(A"). Then it
follows from ((4.5),i) that 9 U H*(V) = 0. So for the complex Dy defined
in (6.5) dim H(Dy: > m. Hence an open subset of {~'(H'), where H'is the
line generated by ¥, is contained in F};,. This implies that A is a translation

of a Lie subgroup of M. _ |
We noted earlier that the correspondence between My and My is an

isomorphism of groups. So we have the following following Theorem of [A]

53



Theorem (2.5.6). (i) Any irreducible component of the subvariety Fi of
Mp, 18 a translation of some complez subgroup of Mp.

(1) Any irreducible component of St is a translation of some complex
subgroup of M.

§ 2.6 CONSTRUCTION OF SYMPLECTIC STRUCTURE,

Let X be a smooth projective variety over C, and L € H*(X,0}) be
an ample class on X. Actually most of the things we do holds for compact
K#hler manifolds.

In (2.1.7) we identified the space of infinitesimal deformations of a Higgs
bundle (F,8) on X. Since we will no longer consider deformations of X,
the complex in (2.1.7) will be denoted by C-.

There is a natural 1-form, and also a natural 2-form on IH*(C") which
we will now describe. The projection from C" to the complex End(E)--0
induces a homomorphism IH(C')-—H'(X, End(E)). Using the algebra
structure on End(E) and the trace map {r : End(E)—C, we have

fiH(X,End(E)) @ H*(X,End(E) ® Oy )—H'(X,0%).

The composition
(2.6.1)

C.

| (C')-2H'(X, Bnd(E)) =8 BV (X, 04) 55 B (X, Q%)

defines a 1-form on IH'(C"), which is denoted by ©.
Let 1] be the shifted complex 0, also denote the complex

00— End(E)® End(E)®Q% ®End(E)®0% @ End(E) by D'. The following
composition of morphisms of complexes is denoted by A.

OQC — D — 1],

So we have
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(2.6.2)
H'(C") @ HY(C") — HXC @ C) -2 HX(Q'[1])
= HY(X,0%) "5 HEv(Xx,0%) = C.

The above composition of maps defines a 2-form on IH'(C'), which is
denoted by P. Since the space of infinitesimal deformations of (E,0) is
parametrized by JH'(C"), on any family of Higgs bundles parametrized by
T, ©® and P defines a 1-form and a 2-form on T respectively, which will
again denoted by © and P respectively. Our next aim is to show that in
certain sense dO® = P,

Let R be the ring Clei, e2]/(e1°, €1%€a, €162%, €°). Let (E, 8) be a family of
Higgs bundles on X parametrized by Spec R, in other words F is a holomoz-
phic vector bundle on X := X x Spec R and § € H(X x Spec R, End(E)®
0% /specry With § A 8 =0. Assume that the restriction of this family to the
closed point ¢ = Spec(R/m), where m is the maximal ideal, is (5,6). ®
and P will give a 1-form and a 2-form on Spec R respectively: these forms
will also be denoted by © and P respectively.

Proposition (2.6.8). On the closed point ¢ € Spec R, the evaluation of
2-form dO(c) coincides with P(c).

Proof. We need some general facts about Higgs bundles. Let (E,8) be
any Higgs bundle. Define QP End(E)) := C*(X, End(E)), i.e. the space
of all smooth (p, q)-forms with values in End(E). Let 65 be the dolbeault
operator which defines the holomorphic structure on Fnd(E). Using the
Dolbeault resolution of the complex C- as in (3.6), the i-th hypercohomol-
ogy JH*(C") can be computed as the cohomology of the following complex

1 —1 - 1 — i1 | ‘
) Q4 End(E)) Ak Y Q¥ End(E)) 9ot Y Q¥ (Bnd(E)).

§=0 | 7=0 i=0

The given family of bundles B parametrized by Spec R is C* trivial, in
other words there is an O isomorphism f : E-——p*E, where p: X— X
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is the natural projection. Using this isomorphism, the dolbeault operator
that defines the holomorphic structure on End(E) can be expressed in the
following form

Or + Are; + Ases + Biét + By + Ceyes,

where A;, B; and C are smooth sections of End(E)Q® 931:1.
Using f, @ is of the form

0+ a6y + azep + :5'165 + Bee; + yer€2,

where ai, 8;,7 € Q(End(E)). For ¢ € Q% (End(F)) and ¢ € OV End(E)),

define (@, ¥) := [, tr(d A )L™, where the (1,1)-form tr(¢p A 1) is defined

using the trace map. Recall that if 8y + he is the holomorphic structure
on a family over Cle|/e* then, A represents the element of H*(X,V) which

| corresponds to this infinitesimal deformation. The 1-form © on Spec R is

(A1, 0)de + (Ag, 8)dey + (Bhg)d(ef) + (B3, 8)d(e2) + (C, 0)d(ere3).
Taking exterior derivation we get
d0 — (A1,0:2 + 2}5’262 + ")’El)dt'g A dE_'l + (Az,ﬂfl -t 2,6161 -4- "}’Ez)dfl A dEz

+ (By, 02 + 20265)2¢61des A dey + (Ba, 01 + 20161)2exde; A deg
+ (€, as + ve1 )Jeadea A dey + (O, a1 + ve2)erdey A de.

Hence dO(c) = [—(A;, ) + (A2, @1)]de; A deg. From the definition (1.4) it
is easy to check that this is same as P(¢). This completes the proof. 0

Let My be a moduli of stable Higgs bundles of rank r. There are two
canonically defined forms © and P on My, and from (2.6.3), d@ = P, |

We put the following condition on Myg: for some (hence any) (F,8) €
My, the 2-nd Chern class ¢;( End(E)) = 0. Henceforth we will always as-
sume this condition. Note that when X is a Riemann surface this condition

is automatically satisfied.
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Let (E,0) € My. (E,0) being stable admits a Hermitian-Einstein met-
ric (Hil], [S1). It is easy to check that the induced metric on the Higgs
pair (End(E),ad(f)) is also Kihler-Einstein. Hence (End(E), ad(f)) is
polystable [Hil], [S2], i.e. direct sum of stable Higgs bundles of same slope.
Since ¢i(End(E) = 0 and by assumption cy(End(E) = 0, the K#hler-
Einstein metric is harmonic (p.19 Thm.1, [S2]).

The Dolbeault complez for (End(E), ad(4)), denoted by D- is defined to
be the following complex

End(E)ﬂ@End(E) ® Q}fﬂf@End(E) R Qi»'f(ﬂ ‘E(—H)End(E) ® Q% —0.

Note that there is a natural projection b : D'— (" which induces isomor-
phism on JH'; since both JH' and IH? of ker(h) vanishes.

We saw that (End(F),ad(8)} is a harmonic bundle, and hence Lemma
2.6 of [52], which is a generalization of hard Lefschetz theorem applies, and
hence the map L* ! IH (D)—H in-1(D"), given by cupping with L™ 1,
is an isomorphism. Since End(E)* is isomorphic to End(E), the Lemma 2.5
of [S2] says that the natural pairing IH'(D")® H" *(D')—sC is perfect. So
combining this pairing with the isomorphism given by cupping with L™ !,
we have a perfect pairing IH'(D") ® IH'(D')—C. Using the isomorphism
between IH'(C") and JH'(C") the 2-form induced in JH*(C") coincides with
P defined by (2.6.2). Hence we have the following *

Theorem (2.6.4). The 2-form P on IH'(C') is nondegenerate.

Theorem 1.2.1 implies that the Zariski open subset of My consisting of
all Higgs bundles for which IH*(C") = 0, is smooth (see (2.1.8)).

Recall that a symplectic structure on a manifold is a closed nondegen-
erate 2-form. From (2.6.3), the 2-form P is exact. So we have the following

corollary of (2.6.4)
Corollary (2.6.5). P defines a symplectic structure on M.

Let M = {(E,8) € My| 8 = 0}. In other words M is a moduli of
stable bundles on X. For such a stable bundle E, the nodegenerate form on
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T(Mpu)|nm gives an isomorphism between TyM and HY(X, Bnd(E) @ 0L).
If F is stable then for any § € HX, End(E) ® Q%), the pair (E,8) is
stable. Also stability is an open condition, hence there is an open map
T* M~ s My, Total space of any cotangent bundle admits a natural 1-
form, and it is easy to see that this form on T*M is i*©. Also, on the total
space of a cotangent bundle, exterior derivation of the canonical 1-form

defines a symplectic structure. Hence we have the following corollary of
Prop.2.6.3.

Corollary (2.6.6). The canonieal symplectic structure on T*M 1is given
by P.

§2,7 POISSON-COMMUTATIVITY OF HITCHIN MAP.

As before, My denotes a moduli of stable Higgs bundle of rank r. There
is a natural map

(2.7.1)
H: Mg — P HX,50%),
i=1

which is defined as follows: let p; : A —— ir(A%), be the invariant poly-
nomial of degree i on M(r,C). For (E,8) € My, the correspondence
(E,8) — pi(#), gives a map My— H(X, $'QL), where S* denotes the
i-th symmetric product. The above map H, known as Hitchin map, was
introduced in [Hil], the higher dimensional analogue appeared in [S3].

Recall that on a symplectic manifold (Y, w), two complex functions A;
and h, are said to Poisson-commute if w(dfi, dfz) = 0, where df;, = 1,2
is the vector field on Y corresponding to the l-form df;, When X is a
curve, Hitchin proved that the function A Poisson-commutes, .e. if f; and
fo are two linear functional on @}_, H°(X, $*Q%), then fi o H and f0 H
Poisson-commute. The following theorem is generallza,tlon of the above fact

to higher dimension.

Theorem (2.7.2). The function H on My Poisson-commutes.
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Proof, Let (E,8) € My. Note that to check Poisson-commutativity of H
at (&, 8) only involves 1-st order neighborhood of (E, 8).

Let (o, /3;) € QY (End(E)) ® QY (End(E)), 1 = {1,....d} be repre-
sentatives of a basis of JH'(C") in the Dolbeault resclution of C- given in
(1.5). After a rearrangement of indices, let {a;}i_i be a maximal ]inearl:,r
independent subset of the set of sections {o;}2.,, and similarly {3;}\_, is a
maximal linearly independent subset of {f:}%,.

It is easy to see that for any nonzero s € 0% End(E)), there is a
t € QYO End(E)) such that (s,1) s 0 (recall the notation introduced in the
proof of (1.5)). Conversely, for any 0 # ¢ € Q' End(E)), there is a s €
Q0 End(E)) such that (s,t) # 0. Using this it can be proved that the col-
lection {{a}t,,{0}_,} can be increased to a collection {{a}2,, {412, },
such that the m x m matrix ((a, ,6_.,.)) is nonsingular. First extend the
k x [ matrix ((a,, ﬁg)) to some 1nvert1ble m X m matrix A. Then the
equation ((a;, f; )) = A can be solved (in fact space of solutions will be
infinite d1men31onal) Let V be the formal vector space over C generated
by the set {a}r, U{F}™,. We will call the vectors corresponding to a; and
B: by e; and f; respectively. Let w be the symplectic form on V defined by
the following conditions: w(a;, o;) = 0 = w(f;,8;) and w(ey, B;) = (as, B;)-

Let R be the ring Cle,...., 4]/, where I is the ideal generated by
{e:¢;}, 1 <4, < d. For the Higgs bundle (E, §), let 85 be the dolbeault
operator which defines the holomorphic structure on End(£). Then the
operator Og -+ 21_1 ¢;; defines a holomorphic structure on the °° bundle
9*E on X x Spec R, this bundle is denoted by F, 6 := 8+ E,__l e;3; defines
a, Higgs structure on E. So the infinitesimal deformation in the direction
e; of this family is represented by (o4, 5;)-

Let R’ be the ring C[ey, «.y €my f15 oy fn]/m?, m being the maximal ideal
 0f C[eq, cery €my f1y ooy fn]- There is a natural inclusion b : Spec R— Spec R/
(recall that we enlarged a basis of {¢;}{; and a basis of {f;}i.,), defined
by the condition €; ~— e; + fi. Let ¢ € Spec R be the closed point. The
symplectic form w on V so defined that h*w(c) coincides with the symplectic
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form on T,Spec R defined by (1.4).

There is a function H' : Spec R'—s @7, C°(X, 5*Q)) defined as in
(2.7.1). Clearly the restriction of H to Spec Ris h*H’. Soin order to show
- that H Poisson-commutes at (E,§), it is enough to show that H’ Poisson-
commutes at ¢’, the closed point of Spec R’. But the function H’ depends
only on the f;’s, and the subspace of V spanned by {f;}, is isotropic. i.e.
the restriction of w vanishes on this subspace. Hence H’ Poisson-commutes
at ¢’. This completes the proof. )

Remark (2.7.8) If X is a curve of genus g, then dim My = 2n*(g—1) + 2,
and the fiber of H over a general point is a jacobian of a spectral curve.
The genus of a spectral curveis n*(g—~1)+1, hence dimension count implies
that H is maximal rank, in other words H defines a completely integrable
structure on M. But for higher dimension such explicit numbers are not

available.
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