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CHAPTER 1
INTRODUCTION

1.1 SCHEDULING PROBLEM

Scheduling problems are quite common in real life. They arise whenever there
is a need to plan execution of various tasks over time and therefore they play
very important roles in commercial set-ups concerning manufacturing or service

in the optimal use of resources and/or customer’s satisfaction.

The theory of scheduling deals with the construction of suitable models and
their analyses. Researchers’ attention was drawn to the study of scheduling
problems using mathematical modeling, probably for the first time when Johnson
(1954] published his famous work on flowshop problem. Since then, the study
of scheduling problem and its context has gradually attracted the researchers
from various other fields. At present, a vast collection of research work on this

area is available in the literature. For a comprehensive study of the subject, one
may refer to Conway, Maxwell and Miller [1867], Baker [1974], Lawler, Lenstra,
Rinnooy Kan and Shmoys [1990], Rinnooy Kan {1976], French [1982] etc.

The formulation and analysis of mathematical models representing schedul-
ing problems involve the operations research techniques such as combinatorial

analysis, dynamic programming, integer programming, network analysis etc.

Depending upon the nature of the problem, the scheduling problems are clas-
sified into several groups, namely, single machine, Flowshop, Jobshop, Parallel
machines etc, Currently, the single machine scheduling problem has been of keen
interest 10 many researchers. Each of the above classes of problems is further
treated in two different ways, viz, using (@) deterministic model and (&) non-

deterministic (stochastic) model.

A large number of deterministic models are designed to represent scheduling

problems. The essential feature of these models is that they are combinatorial



in nature, and unfortunately, the available mathematical tools are not adequate
enough to cope with such problem efficiently. As a matter of fact, the majority of
these problems are recognized as difficult ones. The very recent trend has been

to develop pseudopolynomial procedures for the complex scheduling problems.

An extensive literature is available on the single machine scheduling starting
from the work of Smith [1956]. (For reference, see the review papers of Sen and
Gupta [1984], Emmons [1987], Gupta and Kyparisis {1987], Raghavachari [1988],
Cheng and Gupta {1989], Baker and Scudder [1990] etc.) A major part of the
literature deals with the natural early-tardy problem with various cost structures

as objective functions where the due dates of the jobs are either fixed or treated

as decision variables.

In single machine scheduling, the common objectives considered individually

or in combination are minimization of :

(1) Average Completion Time : C = L5t C
where C; = completion time of job j,

(2a) Average Lateness : L=1%% L
(26) Maximum Lateness : Limax = maXy¢jcn Lj
where L; = lateness of job j,

(3a) Maximum Tardiness : Tiax = Maxigi<n 15
(35) Number of Tardy Jobs : - {7 T5 > 0}
where T); = tardiness of job j,

(4) Early-Tardy Penalty : ! 2.0,<d % f(C—d) + Lo;sq ud,-f(C’j_” d)
where  C; = completion time of job 7,
d = common due date of the jobs,
u; (v;) = weightage associated with
early (tardy) jobs,

flz)= ]:r:l or 2.



The above objective (4) has drawn great interest from the researchers due to
the current emphasis on Just-in-time (JIT) production philosophy which espouses
the notion that earliness as well as tardiness should be discouraged. (See for
reference Bagchi, Sullivan and Chang [1989), Hall, Kubiak and Sethi [1991],
Kahlbacher [1989], Panwalker, Smith and Siedmann [1982] etc..) An important
special case of this objective is the variance of job completion times which is not

a regular measure of performance,

In this thesis, we study the problem of scheduling jobs on a single machine
so as to minimize the variance of job completion times. This problem is usually
referred to as CTV problem. The problem arises in computer file management
and is also applicable to many manufacturing as well as service facilities. It
is very relevant to the current emphasis on Just-in-time production philosophy.
The ﬂbjéctivé is especially important in situations where it is desirable to provide
customers or jobs with approximately the same treatment. This problem was first

considered by Merten and Muller [1972] in the context of organization of large
l computer data files in order to provide uniform response times to the users. Since
then, it has been drawing the attention of several researchers. The irnpr.jrta,nce
of this problem is further highlighted due to its relationship with the so called
MSD problem (a special case of objective (4)) as shown by Bagchi, Sullivan and
Chang [1987), Raghavachari [1988), De, Ghosh and Wells [1989] and Weng and

Ventura [1994]).

1.2 DESCRIPTION OF CTV PROBLEM

Throughout this thesis, we consider only completion time variance (CTV) min-
imization problem in single machines scheduling with either deterministic or
random processing times. The CTV problem is defined through the following

assumptions :

Al : There are n jobs to be processed on the single machine. The set of jobs is
denoted by N = {1,2,...,n}. |



A2 :

A3 :

Ad

A5

Ab

AT :

Initially at time { = 0, all the n jobs are ready to be processed and the

machine 18 availlable.

The machine is continuously available until all the n jobs are processed,

that is, no breakdown or maintenance of the machine is considered.

The machine can process only one job at any instance of time.

Each job, once started, must be performed to completion before another
job can start, that is, neither job cancellation nor preemption is allowed.

However, idle time of the machine may be allowed.

There i3 no precedence relation among the jobs, that is, jobs can be pro-

cessed in any order,

A job j, 7 € N, requires a processing time, p;, that includes setup time.,
These processing times are fixed and known. We assume, without loss of
generality, that py 2 p; 2 ... 2 ps. In the stochastic case, the processing
times P;'s (also including setup time) are random and independent, and
each P; has known finite mean (u;) and variance (¢7). In this case, we

assume that gy > py 2 ... 2 gy and, g? 2 cr_f whenever u; = p; for i < 3.

For a scheduling problem with the above assumptions, a schedule can be

represented by (a) a permutation (sequence) of the jobs, say, m = (my,m3,...,7n),

and {b) start-time (or equivalently completion time) of each job.

Given any 5equencé m, let 0, denoté the machine idle time just before the

processing of rith job (1 € r £ n) starts and let 8§ = (0,,0,,...,0,). We need to

know m and 8 to describe any schedule. Therelore, we denote a schedule S by

S(m, 8).

For a schedule S(m,8), let Ci,j(S(m,8)) denote the completion time of the

job in rth position of the sequence = for r = 1,2,...,n and C(S(7,8)) be the
average of the job completion times. Therefore, for the schedule S(w,8), the



variance of the jab completion times, denoted by V{5(r, 8)), is given by

V(S(m,0) = =3 [Cu(S(m ) -C(Stmen]’. (L2l

n re=1

‘The CTV problem is said to be deterministic (stochastic) if the job processing

times are fixed (random).

Hence, the deterministic CTV problem is to find a schedule S{=", 8") such
that

V(S(#*, 8%)) = min V(5(m,06)) (1.2.2)
all possible sim,8y

and the stochastic CTV problem is to find a schedule S(#*,8%) such that the
expected value of CTV is minimum, that is,

BV(SEON) = omin o BVSTON (129)

where F].] stands for the expected value.

Definition 1.2.1 : A schedule S(7,8) is called no idletime (NI) schedule if
0, =0foreach 1 <r<n.

Remark 1.2.2 : An Nlscheduleis completely specified by a sequence of the jobs.
Such a schedule is also referred to as permutation schedule and is represented

simply by a permutation, say 7, of the jobs.

While dealing with the CTV problems {both deterministic and stochastic),
all the researchers have so far restricted to the set of permutation schedules

only. In the following, we formally establish that, indeed, there exists an optimal

permutation schedule for any CTV problem.



Deterministic Case :

Lemma 1.2.3 ; For any schedule S(r,8),

n

n*V(S(m,0)) = Z(r—l)(n-—f"l'n‘?:..

r=1

+2'§(r = 1)%; Xn: (n—38+1)¢n, (1.2.4)

r=1 s=r+1

where gy, = 0, + p,, forr=1,2,...,n.
Proof : The proof is straightforward. - =

Remark 1.2.4 : It is clear from the equation (1.2.4) that for any schedule
S(m,8), V(S(w,0)) is non-decreasing in each ¢,, for r =1,2,...,n.

Corollary 1.2.5 : Let S(m,8) and S(mw,0") be two schedules such that 6, = ¢
for all 2 < r < n. Then

V(S(m,8)) =V(S(m,8)).

Proof : It follows directly from the Lernma 1.2.3. | | N

Lemma 1.2.6 : Let S(m,8) and .S'('n', 9’) be two schedules such that g, > 0, for
all 2 <r <nand 0] > 0, for some 2 < r € n. Then

V(S(m,8)) < V(S(m,8)).

Proof: Let g, =0, + p,, forall2 <r <n. Thengq,, =0, 4+p,, < 0. +p., = ¢,
for all 2 < r < n and for at least one r, ¢, < ¢; . Therefore, using Remark 1.2.4

and Corollary 1.2.5, we complete the proof. ||



Corollary 1.2.7 : Let S(m, 8°) be a schedule with 0° = 0 for all 2 < r < n.
Then for any schedule 5(w, 8),

V(S(m,8%) < V(S(m,8)).

Proof : It follows directly from the Lemma 1.2.6. N

Remark 1.2.8 : By Corollary 1.2.5, CTYV is invariant of the initial idle time of
the machine. Whereas, by Corollary 1.2.7, inserted idletime (between execution

of successive jobs) of the machine increases CTV value,

Theorem 1.2.9 : There exists an NI optimal schedule for the deterministic
CTV problem.

Proof ; The proof is simple 1sing the Corollaries 1.2.5 and 1.2.7. -

Therefore, we denote a schedule by « = (=y,...,7,), & sequence (permuta-

tion) of the jobs and in view of this, our problem is to find a sequence #* such

that

Vir*) = grnéII}IV(‘JT) . (1.2.5)

where I1 The set of all n! permutations of the jobs,

H

Variance of the job completion times -

=
A
I

for the sequence w

=3 [Ghi(m) - &), - (126)

r=1

£
2
i

Completion time of job m,, the rth job in =

| .
| ZPI:

1=1

il



and C(m) = Average of job completion times for o
1 n
= ; z: O[r](ﬂ') (1.2.7)
r=}
- ;11-2(“ —r 4+ Dps. (1.2.8)

i=1

In the present context, it is important to mention the MSD problem which is
defined as the problem of scheduling nonpreemptive, independent jobs with zero
ready times on a single machine so as to minimize the mean squared deviation
(abbreviated as MSD) of job completion times about a given fixed common due
date, say, d. Bagchi, Sullivan and Chang [1987], De, Ghosh and Wells [1989],
Weng and Ventura [1994] have discussed the relation between CTV and MSD

problems,

Depending upon the value of the common due date d, the three versions of
the MSD prablem are identified by Bagchi, Sullivan and Chang {1987} and De,
Ghosh and Wells [1989]. They are (¢) Unrestricted : when 4d is sufficiently large,
(¢4) Tightly restricted : when d is sufficiently small, and (izi) Restricted. De,
Ghosh and Wells [1989] have given a procedure to identify the version of a given
MSD problem. An unresiricied MSD problem is equivalent to the corresponding
CTV problem, that is, solution of such an MSD problem can be obtained on

translation by solving the corresponding CTV problem and vice versa. The same

may or may not be applicable for restricted MSD problem. However, there is no
relationship between the tightly restricled MSD problem and the CTV problem,

Stochastic Case

Lemma 1.2.10 : For any schedule S({=, 8),
1 & |
E[V(S(,0)] = Vu(S(m,0))+ =2 (r=1(n-r+1)oy, (1.2.9)

n r=1



where V,(S(m, 6))

= Variance of the expected completion times

of the jobs for the schedule S(w, 8)

'i‘eil(r = )(n =7 +1)(pr, +0:)°

{

) n-—1 n
+3 S(r = D(pn, +0,) > (n— 8+ 1)(pa, +8,). (1.2.10)
r=1 ' s=r+1

Proof : Let (Px,yPray+ -y Pry) be any realization of (Py,, P,y .+, Pr,). Using

Lemma 1.2.3, we have

V(S(m,0)|(Pryy. . Pry) = (Pays+ o P )

= ;117 Zn:(f' = 1)(n—r+1)(ps, +0,)°

r=1
% n-1 ] n |
+ 5 = 1)Ee £0) Y (1= s+ 1w, +0). (1211
r=1 g=r4l

It now follows from the equation (1.2.11) that

E(V(S(r,0))] = —s-g-il(r—l)(nhr—i-1){crfrr+(#w,.+9r)2}

9 n-1l n
+;;2‘ > (r = 1)(pt, + ) 2, (n—s+1)(sn, +0.)
r=1 a=r+41
Fl n _ _
= |5 20 =101+ 1) (g, +0)’
L r=1
9 n-1 L
-+ ;-l-i*z(?‘—l)(#rrr'*'ar) Z (n“3+1)(,'lﬂ'.l+9l)
r=1 s=r+41
1 2

t—3 Y (r=1)(n—r+1)os

r=1}

= V(S(m,0)) 4+ o5 1o(r =~ 1)(m =7+ 1),

r=1

Hence the lemma holds. o



Corollary 1.2,11 : Let S(=, 8) and S(or, 8') be two schedules such that 8, = ¢’
for all 2 < r < n. Then | |

E[V(5(m,8))] = E[V(S(, 8))

Proof : By Lemma 1.2.10,

ElV(S(x,0))] — E[V(S(m,6')]

= Vu(S(m,0)) - Vu(S(m,07))
(using the equation (1.2.9))

0  (using the equation (1.2.10)).

|
Lemma 1.2.12 : Let S(m,8) and $(,8’) be two schedules such that 0. > 0,
forall2 < r <nand? >0, for some 2 £ r < n. Then

E[V(S(m,0)] < E[V(S(x, 6'))]

Proof : Using Lemma 1.2.10, we get

E[V(5(r,8))] — E[V(S(m,0')]
V.u(S(’rr 9)) _ VF(S(ﬂ.I 9’))

The remaining part of the proof is analogous to that of Lemma 1.2.6. N

Corollary 1.2.13 : Let S(m, 8°) be a schedule with 6% = 0 for all 2 < r < n,
Then for any schedule S(,8), |

E[V(S(m,6%)) < E[V(S(r,0))) r

Proof : It follows directly from the Lemma 1.2.12,. . _

10



Remark 1.2.14 : By Corollary 1.2.11, the expected CTV is invariant of the ini-
tial idle time of the machine. From Corollary 1.2,13, inserted idle time (between

execution of successive jobs) of the machine leads to increase in expected CTV

value.

Theorem 1.2.15 : There exists an NI optimal schedule for the stochastic CTV

problem.
Proof : 1t is simple using the Corollaries 1.2.11 and 1.2.13. e
Hence, we designate a schedule sim:ly by o = (71,...,m,), a sequence of the

Jobs and the stochastic CTV problem is to find a sequence of the jobs for which

the expected CTV value 1s minimum.

For a sequence 7 = (7y,...,,), we denote E,(m) as the expected completion
time of the job at the rth (1 € r € n) position in @ and E(sr) as their average,
that is, E.(7) = E[Cy(n)] for r = 1,2,...,n and E(x) = E[C(w)]. Finally,
E[V(x)] represents the expected value of the CTV for a sequence 7.

1.3 DEFINITIONS AND NOTATION

Definition 1.3.1 : Given a sequence ™ = (my,mq,..., 7y}, its dual is defined by

Remark 1.3.2: If *{TD is the dual of 7, then = is the dual of w2, that is, (‘n'D)D

= .

Notation 1.3.3 : Let ® = (7, m,...,7,) be an arbitrary permutation of the
jobs in N and @ € N. The restriction of w to ¢} is a permutation of jobs in @,

11



denoted by wq and is obtained from 7 by dropping the jobs not in Q.

Definition 1.3.4 : A sequence a = (ay,...,a,) of a subset of jobs in N is called
a partial (complete) sequence if ¢ < (=) n. Without ambiguity in usage, we shall

denote the set of jobs in a partial sequence o by « itself.

Definition 1.3.5 : A partial or complete sequence 7 = {7y, 7, . . .y o) i8 in SPT
(LPT) order if pyy <+ < puy (Pry 20+ 2 Pry)-

Definition 1.3.6 : A partial or complete sequence 7 = (m,73,...,7,) is in
SEPT (LEPT) order if piny < oo < phoy (fimy 2000 2 pig,)e

Definition 1.3.7 : A partial or complete sequence 7 = {7y, m,...,7,) is said
to be V-shaped if there exists an index r (1 € r < ¢) such that p,, >+ > Pre S

0 < Py

Definition 1.3.8 : A partial or complete sequence 7 = (my,mq,...,7,) is said
to be V-shaped in mean (variance) if there exists an index r, 1 < r < ¢ such that
Pry 2000 2 fhp, S0 S fg (Uil 2 ?-J:r < S U‘E’q)'

Definition 1.3.9 : A complete sequence m is referred to as L-G-S in mean if
there exist three non-empty partial sequences «, v and B satisfying (a) 7w =
(o, 8,7), and (b) « () is in LEPT (SEPT) order and 3 is a general partial

permutation.

Definition 1.3.10 : Given two complete sequences 7 and 7'/, we say that =
dominales w' (denoted by ® =< n') if V(=) < V(x') in deterministic case, and
ElV(m)] £ E[V(=')] in stochastic case.

Definition 1.3.11 : Given a partial sequence a, we say that (3,,a,8,) is a

completion of « if (B,,8;) is a permutation of the jobsin & = N\ &

12



If (3,,,3,;)1s a completion of e, it is possible that either of 3, and 8, may
be empty but not both.

Definition 1,3.12 : Let o and o’ be two partial sequences of the jobsin Q@ C N,
The completions (3,, o, B;) and (8,,a/, 8,) are called identical completions of

o and a’ respectively.

Definition 1.3.13 : We call (8,,...,0,) a two-sided partial sequence if B8, and
3, are partial sequences such that g, U8, C N and 8, N B, = &.

In a twa-si_ded partial sequence (8,,... ,ﬂg_), jobs in the first |8,] positions
and the last |3,| positions are fixed, but jobs in the middle (n — |3,| — |3,]|) are
yet to be decided.

Definition 1.3.14 : Given a two-sided partial sequence (3,,...,3,), the se-
quence (3,, a, 3,) is said to be its completion if « is a permutation of jobs in

N\ (B,UBy)

Definition 1.3.15 : Let (8,,...,8;) and (B4,...,8;) be the two-sided partial
sequences such that g, U 8, = ﬁi U B;. The complete sequences (3,, ¢, 8,)
and (81, &, 3) are called identical completions of (B,4,...,8,) and (83,...,05)

respectively.

In the context of computational complexity of algorithms, we use the termi-
nologies — NP-hard problem, polynomial time algorithm, pseudopolynomial al-
gorithm, e-approximate algorithm, fully polynomial-time approximation scheme
etc. For rigorous definitions of these terms and concept, see Aho, Hopcroft and
Ullman [1874], Garey and Johnson {1979}, Horowitz and Sahni {1978}, Lenstra,
Rinnooy Kan and Van Emde Bas [1978], Papadimitriou and Steiglitz [1982},
Rinnooy Kan (1976} and Ullman [1976].

13



1.4 ORGANIZATION OF THE THESIS

We give below a brief account of the work presented in this thesis.

In Chapter 2, we primarily address the exact procedures for solving the CTV
problem with deterministic job processing times. Section 2.2 gives a detailed ac-
count of the mathematical results available in the literature on the deterministic
CTV problem. Since the problem is shown to be NP-hard by Kubiak [1993], the
recent approach has been towards the development of pseudopolynomial algo-
rithm for the same. Sections 2.3 to 2.8 are mainly devoted to the pseudopolyno-
mial algorithms, We derive here two dominance rules which are in turn used in
the development of a new pseudopolynomial algorithm (MP1). The algorithm
MP1 involves binary branching making use of the V-shaped property (due to
Eilon and Chowdhury [1977]). A node, in this algorithm, represents a two-sided
partial sequence of the form (a,...,8) containing the larger jobs. Based on
extensive numerical investigation on the performances of MP1 and DGW algo-

rithm (of De, Ghush and Wells {1992]), it is observed that (a) the performance of
DGW is excellent when the processing times are homogeneous, and (b) MP1

is very good for heterogeneous processing times.

Bsr taking advantage of the contrasting merits of DGW and MP1, we then
develop MP2 algorithm (which is once again pseudopolynomial). The perfor-
mance of DGW and MP2 alongwith the algorithm of Kubiak {1995) is numeri-.

cally investigated, and the results are reported in Section 2.8.

Next, we turn to the derivation of lower bound on the CTV which is used later
in the development of another algorithm (MP3), De, Ghosh and Wells (1990,
1992] are the first to deal with it. Manna and Prasad [1994] and Mittenthal,
Raghavachar.i and Rana [1994] observe the infeasibility of the solution given by
De, Ghosh and Wells [1992]. We derive here the correct version of the solution,
but note that the procedure of Mittenthal, Raghavachari and Rana [1994] is

superior to it. We also study the performance of the lower bound given by

Mittenthal, Raghavachari and Rana ['1994] by numerical investigation,

14



Finally, we present the algorithm (MP3) which involves a dominance condi-
tion and a lower bounding procedure, The algorithm is an implicit enumeration
method based on branch-and-bound approach. A nodein this algorithm is again
a two-sided partial sequence, similar to that of MP1, The lower bound on CTV
at any node (a,...,8) involves as a component the lower bound on CTV for
a subproblem consisting of the jobs in N\ (e U B). The lower bound for the
subproblem is computed using the procedure of Mittenthal, Raghavachari and
Rana [1994], The real advantage of MP3 is shown for non-integer processing

times.

Chapter 3 deals with the CTV problem with random (stochastic) job pro-
cessing times. In Section 3.2, we present the preliminary results which are used
later in this chapter to derive the properties of optimal sequences and in the

development of an algorithm. Like the deterministic version, this problem is also

NP-hard.

In view of the difliculty of finding an optimal sequence, research has been
directed towards the nature of optimal sequences. To be specific, it is of great
interest to the researchers to know whether there exits a V-shaped optimal se-
quence (see Chakravarthy [1986) and Vani and Raghavachari {1987]). Existence

of an optimal sequence in the set of all V-shaped sequences enables us to confine

the search to 2! sequences only.

Section 3.3 is devoted to the study on the properties of optimal sequences. In
Subsection 3.3.1, we derive two sufficient conditions on the existence of V-shaped
optimal sequence for the general stochastic CTV problem. Subsection 3.3.2 deals
with the special case considered by Vani and Raghavachari [1987] and provides
~ a simple but stronger sufficient criterion for V-shaped optimality. In Subsection
3.3.3, we introduce a special case in which the random processing times satisfy

the following order property :

4, <ty => oF <o’ foranyrands.

In this case, we first demonstrate that V-shaped property is not a necessity

15



for optimality, Then we derive a suflicient condition for the same and obtain
several results on the monotonic property of optimal sequence. We also prove

the existence of an L-G-S (in mean) optimal sequence for this problem.

In Section 3.4, we present a procedure to derive a lower bound for the ex-
pected CTV and a dominance rule which are in turn effectively used to develop
a branch-and-bound algorithm to solve the stochastic CTV problem with gen-
eral processing times. Further, we discuss here the required modifications in the

algorithm for ordered processing times.

The main contents of Chapter 4 are the heuristic procedures for the determin-
istic and stochastic CTV problems. Since both the problems are NP-hard, it is
very important to develop heuristic procedures to derive near optimal solutions.
Section 4.2 contains some preliminary results which are used in the development
of the heuristic procedure (of Manna and Prasad {1993]) for the deterministic
CTYV problem. The results of this section are mainly concerned with the lower

and upper bound on the position of the smallest job in an optimal sequence.

Section 4.3 deals with the heuristic procedures for the deterministic CTV

problem. In Subsection 4.3.1, we present the following procedures : {H1) Eilon
and Chowdhury [1977], (H2) Kanet [1981], (H3) Manna and Prasad [1993], (H4)
Vani and Raghavachari {1987} and (H5) Gupta, Gupta and Bector [1990).

We note that H1, H2 and H3 are basic heuristics constructing near optimal
- sequences, whereas H4 and H5 are heuristics which improve upon i given se-
quence. In Subsection 4.3.2, we study the performances of the above heuristics
by numerical investigation. Initially, we compare H1, H2 and H3. Later, we eval-
uate the effectiveness of H4 and H5 on the solutions generated by HI, H2 and
H3. Here, the percentage of relative error, E,, i3 taken as the performance index

of heuristic k. The salient features arising out of the numerical investigation are

as follows :

(a) Among the basic heuristics, H3 is the best. For all the problem instances,
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the percentage relative error Ej5 < 0.0085% and the overall mean of Fpys
- 18 only 0.0003%. The performance of H3 improves as the problem size

increases,

(b) H5 is more effective than H4.

(¢) The combination (H3, H5) is {ound to be the best with the maximum and
mean value of the performance index being 0.0012% and 0.0001% respec-
tively.

Finally, in Section 4.4, we present a heuristic procedure for the stochastic

CTV problem which makes use of H3 and H4, and we report on its performance,

In Chapter 5, we pose two conjectures based on the patterns observed while
studying the deterministic CTV problem. We also provide here some results

derived in an attempt to prove them.

The first conjecture is on the functional behavior of the CTV where the CTV
function is defined as the minimum CTYV value for a given position of the smallest

job.

Let S, (1 € r < n) betheset of all V-shaped sequences in which the smallest
job occurs at rth position, Obviously, § = S U S U --U S5, 18 the set of
all V-shaped sequences. Also, let 7" = mingqes, V(7) for 1 < r < n. The first
conjecture is : “T{;l ¥ min {T;,TQH} forany 1 < k < m—2 where m = [2]+17.
If this conjecture is true, it can be seen that 77,757, T, are either V-shaped

or W-shaped.

We derive here some results involving C, and C which throw some light on

the above conjecture,

The second conjecture is on optimal sequence for the CTV problem with
the processing times in arithmetic progr?ession.' It 1s as foilows : “Let p; =
a+(n—j+1)bwherea 2 0and &> 0. Only optimal sequences for this problem
are (1,2,5,6,...,8,7,4,3) and its dual (1,3,4,7,8,...,6,5,2).”
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CHAPTER 2
EXACT ALGORITHMS FOR CTV MINIMIZATION

2,1 INTRODUCTION

The problem of minimizing job completion time variance (CTV) on a single
machine arises, especially, when large computer data files are to be organized
in on-line systems for providing uniform response times to the users. It was
first considered by Merten and Muller {1972]. Since then, it has been drawing
the attention of several researchers. Later, Eilon and Chowdhury [1977] derived

some important results concerning the nature of optimal schedules.

Bagchi, Sullivan and Chang [1987] have pointed out the importance of the
CTV problem in the context of current emphasis on Just-in-time production
philosophy. Bagchi, Sullivan and Chang [1987], Raghavachari [1988], De, Ghosh
and Wells [1989] and Weng and Ventura [1994] have founc relationship between
‘the CTV problem and the MSD problem (discussed in Section 1.2 of Chapter 1).

From mathematical point of view, the problem is combinatorial in nature.
Recently, Kubiak {1993] has shown that the CTV problem is, in fact, NP-hard

(also see Cheng and Cai [1993]). So, it is very unlikely that an eflicient (polyno-
mial time) algorithm can be developed for the CTV problem. Thus, the recent

approach to obtain an exact optimal solution is towards the development of

pseudopolynomial algorithms.

Since the CTV problem is equivalent to the unconstrained version of the MSD
problem, we may take sufficiently large due date and adopt an MSD procedure
(for example, Bagchi, Sullivan and Chang [1987|, De, Ghosh and Wells [1990],
Federéruen and Mosheiov [1993] etc.) to generate a solution for the CTV prob-
lem, Alternatively, the CTV problem can also be viewed as a tightly constrained
MSD problem with unknown due date. By enumerating over all possible values
of the due date {see De, Ghosh and Wells [1992]-) and solving the resulting in-
stances of the MSD problem through an adaptation of the algorithm given by
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Hall, Kubiak and Sethi [1991], we can once again generate a solution for the
CTV problem.

However, some specialized procedures are available for the CTV problem in
Bagchi, Sullivan and Chang [1987], De, Ghosh and Wells [1990,1992|, Manna
and Prasad [1994, 1995], and Kubiak [1995]. All these algorithms are primarily

based on the V-shaped property of optimal sequence.

In this chapter, we primarily address the exact procedures for solving the
CTV problem with deterministic job processing times, Section 2.2 contains the
mathematical results available in the literature on the deterministic CTV prob-
lem. In Sections 2.3 through 2.8, we present the pseudopolynomial algorithms
of De, Ghosh and Wells [1992], Manna and Prasad [1995] and Kubiak [1995],
and study their merits with the help of extensive numerical investigation. We
describe, in Section 2.9, the implicit enumeration method of Manna and Prasad
(1994} which is based on branch-and-bound approach, and is of particular 1m-
portance for non-integer processing times. In this context, we study on the
derivation of lower bound for CTV in Subsection 2.9.1.

2.2 PRELIMINARY RESULTS

In this section, we present some important mathematical results that are available

in the literature on the deterministic CTV problem.

Lemma 2.2.1 (Schrage [1975]): For any sequence 7 = (m1,%a,...,n ), we have

n

nV(x) = ) (r=1)(n—r+1)p,

r=1

423 = s, 3 (nm s+ D, (22.1)

r=1 s=r+l

It can be seen from the equation (2.2.1) that thc expression V() is indepen-

dent of the first job in 7.
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The following result decides the position of the largest job (in terms of pro-
cessing time) in an optimal sequence. |

Theorem 2.2.2 (Schrage [1975]): Any optimal sequence is of the form (1,...).

This result follows dircctly from Lemma 2.2.1 by ubserviﬁg that given any

sequence 7,

i) each p; has non-negative contribution to V(r),

1) V() is independent of the first job in =

Remark 2.2.3 : In the case of multiple largest jobs, that is, py = pp = +++ = p,

for r 2 2, the jobs, one may relabel the jobs, without loss of generality, in order -

to note that Theorem 2.2.2 holds good.

Merten and Muller {1972} have proved the existence of at least {wo optimal

sequences by the following result,

Theorem 2.2.4 (Merten and Muller [1972]): Let = be any sequence and 1:'_“ be
its dual. Then V() = V(x").

| D D Dy g D ;
Proof : Let w = (my,79,...,m,) and w? = (#P,n,..., ;). Since 7~ is the

dual of m, we have Cpy)(%P) = Clj() + Ciip(7) = Cla—rgaj(7) for I < r < n.

Therefore,

i) C(#P) = Cui(m) + Cy () — O () .
11) O[r](‘n*D) — C'(ﬂ'ﬂ) = C’("")_"G{n-rﬂ](“) fDl‘ 1 S r S I
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and,

1< ~ y
V(r®) = =3 [C(xP) - C(=P)
r=1
12 = 2
= ;; Clri(m) — C(w))]
= V(m).
Hence the theorem holds. N

Theorem 2.2.5 (Eilon and Chowdhury {1977]) : Any optimal sequence is V-
shaped.

Remark 2.2.6 : According to the above result, V-shapedness is a necessary
condition for optimality of a sequence. Thus, it is enough to confine the search
for optimal sequence to the set of V-shaped sequences only. It may be noted that

the total number of V-shaped sequences is 22,
Theorem 2.2.7 : There exists an optimal sequence of the form (1,...,2).
Proof : The result follows from the Theorems 2.2.2, 2.2.5 and 2.2.4, - |

Schrage [1975] conjectured that there exists an optimal sequence of the form
(1,3,4,...,2). This was later shown by Kanet [1981] to be partially incorrect.
Specifically, Kanet [1981] gave numerical example to demonstrate that the fourth
largest job need not be at third position in the best sequence among the sequences
of the form (1,3,...,2). However, the question on the existence of V-shaped
optimal sequence of the form (1,3,...,2) remained-open for a long time. Later,
Vani and Raghavachari [1987) showed that such an optimal sequence does exist

for problems with 18 or fewer jobs. Finally, the issue is completely settled By
Hall and Kubiak [1993]. |
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Theorem 2.2.8 (Hall and Kubiak [1993]) : There exists a V-shaped optimal

sequence of the form (1, 3, ..., 2).

Remark 2.2.9 : Consequent to Theorem 2.2.8, one may restrict search for

optimal sequence to the set of V-shaped sequences of the form (1, 3, ..., 2).

2.3 THE ALGORITHM OF DE, GHOSH AND WELLS [1992]

The algorithm builds on V-shaped partial sequénces by successively scheduling
the larger jobs one at a time in n stages. In the first stage, the partial sequence
contains the only job n and at the final stage, the algorithm generates the com-
plete sequences. From a partial sequence a of stage k, two partial (or complete
if k = n — 1) sequences, namely, (c¢,n — k) and (n — k, @) are generated. The

maximum number of partial (or complete) sequences at stage k is 2*~!. But, al-

ter generation of all the partial sequences, at any stage, the algorithm compares
them to fathom, if possible some of these partial sequences, using a dominance
criterion and an elimination rule. Only the active partial sequences are used for

further generation new nodes at the immediate next stage.

. Let a and B be two partial sequences at stage k. Let C{a) and V(a) be the

average and the variance of the job completion times {or the partial sequence a.

Similarly, C(8) and V(8) are defined.

Lemma 2.3.1 : Let 7 and 7' be the identical completibns of & and ﬁ respec-
tively, that is, # = (&,<) and ' = (B,+) where v is an arbitrary V-shaped

partial sequence. Then

Vir) < V(x)

f Cla)=C(8) and V(a) < V(B) (2.3.2)

Proof : Refer to De, Ghosh and Wells (1992, - =
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Corollary 2.3.2 ; Let G (G') be the set of all complete sequences obtained from
the partial sequence o (8). If the condition (2.3.2) holds, all the sequences in
G’ are dominated by those in G with respect to CTV.

Thus, if the condition (2.3.2) holds, the node 3 is fathomed at stage k.

The lemma below describes the lower and upper bounds on the average of job
completion times for any given partial sequence to check whether it is potential

enough to yield an optimal sequence.

Lemma 2.3.3 : Let a be a V-shaped partial sequence of the jobs n — k + 1,
n—k+2,...,n Fathom a if any of the following holds :

- 1 [ nk “
() Ca) < ¢ g-ﬂ-f{S—-Z(n i+ 1)p; (2.3.3)
i j=1 i
N A 1 [n =
() Cla) > +|2MS=p)~(n-k=1) 3 p
k|2 »
i J=n—k+1
n-k )
- 2.7 = 1)p; (2:3.4)
=1 )
where MS = 377, p;.
Proof : Refer to De, Ghosh and Wells [1992]. o

Now, we describe the algorithm of De, Ghosh and Wells {1992}, denoted by

- DGW, using the dominance criterion given in Lemma 2.3.1 and the elimination

rule given in Lemma 2.3.3.

Algorithm DGW
Step 1: Set W, = {(n)}, Wa = ¢, k = 2.
Step 2 : Take any partial sequence o € Wy, Update W, — Wi \{a} and W; «
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W, U {(n —-k+1,a),(a,n =k + 1)} If W, = ¢, go to Step 3. Otherwise,
repeat Step 2. |

Step 3 : If £ = n, go to Step 4. Else, for every partial sequence a € Wi,
compute C(a) and V(). If either of the conditions (2.3.3) and (2.3.4)

holds for any partial sequence o € W3, remove a from W, Using Lemma
2.3.1, delete ali dominated partial sequences from W;. Set k « k+ 1, W,

— W, and go to Step 2.

Step 4 : Compute and compare the CTV values of all complete sequences in
W,. Let V(n*) = mingew, V(w). Return 7* as optimal sequence with

V(r*) as the corresponding optimal CTV value.

Remark 2.3.4 (Complexity) : When p,’s are Iintegers, the complexity of this
algorithm is o(n? 0., p;), because the number of distinct values of kC(a) (refer
to Lemma 2.3.1) is bounded by n3 %, p;, at any stage k (1 < k < n), in the

algorithm.

Remark 2.8.5 : It is evident from Remark 2.3.4 that the complexity of the
above aignrithm depends on the particular problem instance. Let p; € U for j =
1,2,...,n where U is a discrete sample space. For any given U, but sufficiently
large n, p;’s are quite homogeneous. In such situations, it can be easily observed

that the dominance rule, given in Lemma 2.3.1, becomes highly effective, that

is, the algorithm performs very efficiently.

2.4 A NEW PSEUDOPOLYNOMIAL ALGORITHM

We know from Remark 2.3.5 that when the job processing times are homo-
geneous, the performance of the algorithm of De, Ghosh and Wells [1992] is
expected to be very good. However, we can guess that the dominance rule in-
volved in that algorithm will not be much effective in fathoming the nodes for

heterogeneous processing times,
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In this section, we present a new pseudopolynomial algorithm that exploits

primarily the heterogeneity present among the processing times.

The algorithm involves, at any stage, generation of two nodes from an existing
node. A node is a two-sided partial sequence («,..., ) where a, 8 € N such
that () NP = ¢, (1)) aUB = {1,2,...,r} for some r, 1 € r < n, and
(1) the sequence (a, ) is V-shaped. For example, (1,3,6,...,5,4,2) is a node
with o = {1,3,6}, 8 = {5,4,2). From a node (c,...,8) with |[c U B| =k —1,
two nodes - (o, k,...,8) and («,..., &, B) are generated.

Consider a node (a,...,8) with e UB| =k~ 1 and let myy = (a, &, B).
Note that () 18 a V-shaped partial (complete) sequence of the jobs 1,2,...,%
it 8 <n (k=n), |

Let G; be the set of all complete sequences generated from the node
(o, k,...,8) and G, the same for the node {(«,..., k,B). It means that any
sequence in Gy ((G3) is of the form (e, k, 7., 08) ((ex, 71, k,B)) where 7y, is a
V-shaped partial sequence of the jobs_ k+1,k4+2,...,n.

Let C;(m@x)) and C(mwy) denote the completion time of job j and average

completion time respectively for the partial sequence ). Also, let
My = ¥ ier, p; ( = makespan of m,)
§ = +((n— k)pr ~ My]
b=|B|, and

Y =2k§ [C‘(ﬂ'(h) - Ck(ﬂ'(k))] +26ﬂ’fL5+(k—1)62+(ML+5)2+(1’1“;C)(}35—6)2.
We now derive two important results that are used to develop the algorithm.

Lemma 2.4.1 : Let 7w, be an arbitrary V-shaped partial se-quehce of jobs k+1,
k+2 ...,n Let # = {a,k,7,0) and 7' = (o, 7, k,B) be two complete
sequences generated from the nodes (o, %,...,08) and («,..., k, B) respectively.
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Then

N ny -
(i) V() > V(x") il D) 2 O ka’ (2.4.5)
(it) V(m) £ V(n') if Dper(my) < .2(M:~1: o (2.4.6)

where Dy, (7rL) is the minimum total flowtime of jobs in or;, which is given by
SPT sequence of the jobs in ny, and D,,.-(7) is the maximum total flowtime

of jobs in 7z, given by LPT sequence of the jobs in 7y,

Proof : Note that
Ci(m) for jeaUpf
Ci(w') = { Cj(m)+ M, for je {k)
Ci(w)—p  for jEm,

and therefore C{n') = C(m) — §. We have

aV(n) = Z C;(n’ é(fr’)]2+[ck(w*)-é(wf)]“

Jeﬂtu

+ 5 i) - ()|

= Eﬁ {Gj(ﬂ') — C(7) + 5}2 + [Ok(ﬂ') — O(m) + (M + 5)}2
Py [o (m) = O(m) = (ps — 8)] .
JETL

Let X = (k—1)6%+ (M +8)* + (n — k)(px — 6)%. Rearranging the terms in the

above equation, we can write
n[V(n') = V(x)]

= 25 Y. [Ci(w) = C(m)| +2(My + 6) [Ci(m) - Gfr)‘

-2p = 6) ¥ [Cs(m) - C(m)] + X
JETL
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JEQXU{kIU
(since 3 [Ci(m)=C(m)] =- 3 [Ci(m)=C(m)))
JET L jecxu{kiu
— 2p;, z Cj(ﬂ') — 2(.“4[, + kpk)c_’(?'!‘) + QMLCJ;(TI') + X,
jeauikiuf |

We also have C;() = « CJ'(WU-‘)) for j € U {k}
' | Ci(mrx)

( k)’l'ML fnrjeﬂ

which iniply that nC(w) = kC(mx)) + bML + Tjemr, Ci(r).

Now we can write

n[V(n') - V()]

206 | D0 Cilmum) + 3. Ci(mp) + bM,
-jE&U{k} J‘eﬁ

—~2(M;, + kpg)C(m) + 2M,Cr(my) + X
_ | L 1l ¢ -
Qkka(’Jr(k)) -+ Qbﬁfprk - 2(11-’![, -4 kp;;)-r; [A:C(ﬂ'(,i;}) -+ bML

+ E Ci() +2MLCk(7r(k))+X

1ET

[2kt5(7(7r(;,)) + 2bM 6 + ZA{LCk(‘H‘(k)) + X]

2(ML +!_kpk) z Gj(ﬂ,)

n JEM

J

z - A2 5 gy

n JET
where 7 = 2k56—'(7r(k]) + 20M 16 + 2M L Cr(my) + X,

Therefore,

Vim)2 V(=) it ) Cj(m) 2 2(M: 42- kpr)

JETT

- holds for any arbitrary V-shaped partial sequence 7, containing the jobs k +1,
k+2,...,n
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- Since Tjeq, Ci(7) 2 (n — k)Ci(w (k) + Dpin(7rL), it now follows that

YA
> ; ' r n T Y el E—
V(ir) > V(:-r) if Dmm(ir[,) > Q(M]:, T kPk) (n .'C)Cf;,(ﬂr(;,))
vV
.1 = > ; ’ . > — 'n .
e, V(m) 2 V(') if Dpin(wr) 2 3(M + Fr)

Using similar arguments, we can easily see that

< nY B
~ (M +kpr)

VY 2 V(n) il Dpaz(wr)

Corollary 2.4.2 : If the condition (2.4.5) ((2.4.6)) holds, all the sequences in

Gy (G ) are dominated by those in G (Gy) with respect to CTV,

Thus, if the condition (2.4.5) ((2.4.6)) holds, then the node (a,k%,...,3)
((cy...,k,3)) is fathomed.

Remark 2.4.3 : While gencrating two new nodes from an existing node, the
conditions (2.4.5) and (2.4.6) help us to fathom, if possible, one of the new nodes.

Lemma 2.4.4 : Let {(«,...,8) and {&/,...,8') be twc; nodes such that a U 3
=o' UB =1{1,2,...,k) = E (say). Further, let * = (a,71,8) and =’ =
(o, 7y, B') be two complete sequences where 7y, is an arbitrary V -shaped partial
sequence of the jobs k+ 1,k +2,...,n. Then

Vir) < V(=)

if C'E("") - Ejecr Pj

Ce(n') = Tiear s - (2.4.7)
and h(m) . -

a(r')

N

where Cp(w} = 1 L C'_,-.(fr) and &(w) = Z.J'Eg {C}(or) _ C’E(ar)r. Similarly,
Cg(n') and h(=') are also defined. |
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Proof : We know that

aVim) = 3[Cy(m) = ()’

= ¥ [6i(m) - Ox(m)]" + 2 [Cy(m) - Cu(m)”
+k(nn— ) [C’E(fr) — C'f';,(ﬂ')]2 (2.4.8)

(using variance partition formula)

where L = N\ E = {k+1,...,n}, C'L(?T) = ;{'EZjeLCj(ﬂ) and C(w) =
L[kCg(x) + (n—k)Cu(m)].

Let C'(7ry) (V(#y)) denote the average {variance) of the job completion times
for subproblem with jobset as L with the sequence 7. It may be noted that
Ci(7) = Tiea pj + Cj(wy) for all j € L and hence Cp(7) = Tjea pj + ClrL).
Therefore, we have, from the equation (2.4.8), '

nV(w) = h(w)+ (n —~ L)V(?TL)

12

-k
e e = S g - O(mr)| . (24.9)
S| j€or ]
Similarly, we can get
nV(n') = h(x')+(n = k)V(7L)
- -~ 2
Bl 8 e -~ 3 p; - C(mr)| . (24.10)
" X jea )
Now, the lemma follows from the equations (2.4.9) and (2.4.10). _

Corollary 2.4.5 : Let H, (H,)' be the set of all complete sequences generated

from the node (a, ..., ) (@) .., 3')) where (a,..., B) (a)...,3) is as de-
fined in Lemma 2.4.4. If the cnndltmn (2.4.7) holds, all the sequences in H; are

dominated by those in Hy with respect to CTV.
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Remark 2.4.6 : The dominance condition (2.4.7) is very similar to the domi-
nance condition (2.3.2), and due to this condition, the complexity of the following

algorithm becomes pseudopolynomial,

We now present a pseudopolynomial algorithm, denoted by MP1, which in-
volves the dominance rules presented in Lemmas 2.4.1 and 2.4.4. Due to Theorem
2.2.8, the algorithm restricts the search to the set of V-shaped sequences of the
form (1,3,...,2) and therefore it starts with the node (1,3,...,2).

Algarithm MP1 :
Step 1 : Initialize W, = {(1,3,...,2)}, Wy = ¢, k = 3.
Step 2 : Set k &k + 1. If k=n -1, go to Step 6. Else, go to Step 3.

Step 8 : If W, = ¢, go to Step 5. Otherwise, take a node (e,...,3) € W; and
update W; — Wi\ {{a,...,8)}. Generate two new nodes (a,k,...,05)

and (@,...,k,B).

Step 4 : If the condition (2.4.5) holds, update W «— W, U {(«,...,k,8)}. If
condition (2.4.6) holds, update Wy «— W, U {(a,k,...,0)}. If neither of
theses conditions holds, update W, — WU {{a,k,...,8),(a,...,k,8)}.
Go to Step 3.

Step 5 : Invoke the dominance rule given in Lemma 2.4.4 and delete all the
dominated nodes from W3, Set W, « W, and go to Step 2.

Step 6 : From every node («,...,d) € Wi, obtain a complete sequence m =
(a,n, B) and compute its CTV value, V(w). Let V(&) = ming V(7).

Return 7* as optimal sequence with V(x*) as the corresponding optimal

CTV value.

The algorithm starts with & = 3 and the initial node (1,3,...,2). At any
stage k (3 < k < n—1), we have a set of nodes of the form (a, ..., 8) with aUf
= {1,2,...,k}. From each existing node (a,...,) with |aUB| = k <n—1,
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the algorithm generates two nodes — (o, k + 1,... ,3) and (o,...,k+1,0).
Conditions (2.4.5) and (2.4.6) are used to fathom (if possible) one of these two
new nodes. This process is repeated for all nodes with |aUB| = k. The condition
(2.4.7) is then applied to fathom some of these newly generated nodes. From
every node (&,. .., B) at stage n — 1, a complete sequence (a, n,3) is obtained.

Finally, the CTV values of all such complete sequences are compared to find an

optimal solution,

Remark 2.4.7 (Complexity) : When p;'s are integers, the complexity of this
algorithm is o (n’{(pg — p3) + Lieg(U — 2)pj}), because % [C’E(fr) - e pj}
(refer to Lemma 2.4.4) takes, at any stage k, the integral values in the interval
(P2 = P2) = £aa(G = 203 (2 — o) + TG — 2.

2.5 COMPARISON OF DGW AND MP1

The algorithm MP1 takes good advantage of the heterogeneity presént. among
the job processing times (p;'s) using the dominance condition given in Lemma
2.4.1. In fact, the performance of this algorithm is expected to be highly satisfac-

tory if the p;’s are too heterogencous. To illustrate it, we consider the {ollowing

six-job problem,

Example 2.5.1 :

7 ] 2 3 4 5 6
p; | 1000 996 4 3 2 1

~ While solving this problem using MP1, it generates only four nodes —
(1,3,...,2), (1,3,4,...,2), (1,3,5,...,2) and (1,3,4,5,6,2), one at each stage,

In order to c;ompare the performances of DGW and MP1, we have carried
out extensive numerical investigation on both of them for a large number of

problems with various sizes (n) and several sample spaces ( the set of all possible'

values of p;'s ).
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In this iﬁvestigation, the (discrete) sample spaces considered are U, = {1, 2,
..y 1} for r = 10, 50, 100, 200, 300 and 500, and the problem size ranges from
20 to 100. Given a combination of n and U,, generation of a problem instance
involves drawing n random values from U, as the job processing times. For each
possible combination of n and U, ten problem instances are generated. Both the
algorithms (DGW and MP1) are applied on each of these problem instances

and the execution times are recorded.

This computational work has been carried out on the system DEC300/AXP
700 (in UNIX Operating System) and the computer programs are coded in FOR-
TRAN. The summarized computational results for both the algorithms are pre-
sented in Tables 2.5.1(&.) and 2.5.1(b).

Table 2.5.1(a) : Average Execution'Time {in seconds)
| for DGW and MP1

Uto | Uso Uluu
n |DGW | MP1|DGW [ MP1 | DGW | MP1
20 | 002 070 | 0.04| 213 o0.11
30 | o025| 007 734 203 2777 9.19
40 | 096| 044] 3412 24.26] 133.70 | 81.27
|50 | 3.34| 1.94] 109.37 | 84.23 | 434.32 | 373.14
60 | 9.12| 6.61] 281.57 | 250.23 T
70 | 19.83 | 20.44 | 608.43 | 742.48
80 | 37.99 | 34.95
00 | 75.09 | 84.38
100 | 119.66 | 145.39 J

Note : * indi-cates negligible.
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Table 2.5.1(b) : Average Execution Time (in seconds)
for DGW and MP1

p— A —

Usoo Usoo Usoo

n | DGW | MP1| DGW | MP1 DGW | MP1
20| 9.1 034] 1590 o044]| 39.14 044]

30 | 120. 38 | 24,78 26045 | 67.06} 634,49} 122,91

|40| 510,72 | 389.48 | 1044.46 | 577.94 | 3673.24 | 1730.36

For each combination of n and U;, the above table contains the average execu-
tion time (of ten randomly gencrated problem instances) taken by the algorithms

DGW and MP1,

Remark 2.5,1: On comparison of the performances of the two algorithms, we

note that

(2) for any fixed problem size, MP1 becomes more and more superior com-

pared to DGW as sample space increases,

(b) for any fixed sample space, MP1 is better than DGW for smaller prob-
lems, but DGW becomes more and more superior compared to MP1 as

the problem size increases,

We can explain the above phcnomc—:ﬁa as follows, The algorithm MP1 is de-
signed to take advanfage of the heterogeneity in the processiﬁg times, Whereas,
DGW exploits very efliciently the homogeneity and equalities among the pro-
cessing times using the dominance condition (2.3.2) given in Lemma 2.3.1. For
example, in a problem with 100 jobs and processing times generated from the
sample space {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the number of gqualitiés among
the processing times is very high. For such a problem, the dominance condition
(2.3.2) will effectively fathom a large number of nodes and thereby enables the

algorithm DGW to obtain optimal solution involving less computatmnal effort.

The foliowmg numerical example illustrates tlns point,
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Example 2.5.2 : Consider the problem data given below for n = 60.

AR AREIAFNEIAEEIER]
1 9f11 8l21 631 5|41 4[51 2.
2 912 7[22 632 542 3(52 2
3 8|13 7|23 633 5|43 3|53 2
4 8114 7|24 6|34 4l44 3|54 2
5 8|15 7|25 5|35 4|45 3|55 2
6 8|16 7|2 5|36 4|46 3|56 2
7 8|17 7|21 5|37 447 3|57 1
8 8118 6|28 5{38 4|48 358 1
9 8|19 6{20 5(39 4[49 2[5 1
10 8|20 6[30 5[40 4|5 2|60 1

In order to solve the above problem, the number of nodes created by DGW

algorithm at different stages are given below.

- No. of No. of No. of. No. of

Stage Nodes | Stage Nodes | Stage Nodes | Stage Nodes
1 1 16 25 31 579 46 1998

2 ! 17 20 32 641 47 2139

3 1 18 33 33 703 48 2190

4 i 19 37| 34 765 49 2188

5 2| 20 74 35  827| 50 2039

6 3 21 111 36 889 51 1849

7 4 22 148 37 987 52 1659

] 5 23 183 38 1085 | 53 1469

9 6] 24 218} 39 1183| 54 1279
10 7 25 253 40 1281 55 1089
11 8 26 288 41 1379 56 899
12 9 27 323 42 1477 57 709
13 13 98 393! 43 1575 58 520
14 17| 29 455 44 1716 59 272
15 21 30 517| 45 1857| 60 544
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We shall now describe graphically the performances of DGW and MP1, in
terms of number of nodes created, for the following numerical example. This

description gives a better insight into the nature of the algorithms.

Example 2.5.3 : Let n = 50 and the processing times be as given in the table
below.

7 P;'lj Pi | J Pi{J Pl J s
1 49111 4221 31|31 1941 &
2 48(12 42122 30[32 18|42 6
3 48113 42|23 29033 15143 6
4 4714 36 (24 27(34 15|44 5
5 46 (15 35{25 26(35 1545 5
6 5
7 5
8 4
9 4

4

45116 34 |26 24 (36 13 | 46
45 | 17 34 (27 23137 10|47
44 118 33 128 23 |38 9148
14 119 33 129 21[39 9|49
10 43 120 -31 |30 20 {40 880

Figure 2.5.1 gives the number of nodes created by DG'W and MP1 at every
stage. It is to be noted that the stages for DGW are numbered from right to
left. For either algorithm, the area undér the curve representirig the nuniber of

nodes is proportional (approximately) to the total number of nodes created.

[t may be seen from Figure 2.5.1 that as the algorithm MP1 progresses
through stages 3, 4, ..., n—1, the number of nodes gradually increases upto some
stage and then decreases steadily, It is true for DGW also. This phenomenon
is observed in all the problems investigated by us for this purpose. However, the

locations of the peaks of both the curves vary with problem instances.



— No. of Nodes

«— DGW

«— MP1

— Stage No.

Figure 2.5,1: Nodea Created at different stages
by DGW and MP1
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2.6 A HYBRID ALGORITHM

In order to take advantage of the contrasting merits of the algorithms DGW
and MP1, we have developed a new algorithm which consists of two phases, the
first phase involving MP1 and the second involving DGW,

This algorithm, in the first phase using MP1, obtains all the nondominated
two-sided partial sequences of the form (a,...,8) where U B = {1,2,...,¢}
for some predetermined integer g (3 < ¢ < n—1). In the next phase, by applying
DGW algorithm, it decides on all nondominated partial sequences ~'s where +
is a permutation of the jobs ¢ + 1,9+ 2,...,n. Then, from every combination
of (ox,...,3) and ~, a complete sequence 7 = (,%,8) is derived. The CTV
values of all such complete sequences are compared to find an optimal solution.
The algorithm, denoted by MP2, is presented below.

| Algorithm MP2 :
Step 1 : Choose an integer g, 3 < g <n -1,

Step 2 : Apply algorithm MP1 for k = §to g. Let £ = {(e,...,8) : aUB =
{1,2,...,9}} be the set of all nondominated nodes obtained from MP1.

Step 3 : Apply algorithm DGW fork =2ton—g. Let § = {+ : v is a partial
sequence of the jobs g+ 1,...,n} be the set of all nondominated nodes
obtained from DGW,

Step 4 : For each complcle sequence 7 = (o, ~, 3) where (o,...,8) € £ and
~ € &, compute the CTV value, V(7). Let V(#*) = ming V(). Return
7n* as optimal sequence with V(#*) as the corresponding optimal CTV

value.

Proof of Correctness of MP2 : Let V be the set of all V-shaped sequences of
 thejobs 1,2,...,n. Let V| = {(e,...,8) : aUB ={1,2,...,9} and (o, 3) is a
V-shaped partial sequence } and V; = {7 : v is a V-shaped partial sequence of
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the jobs g +1,...,n}. Obviously, L C V, and § C V,. Also, let W = {(ax, 4, 8)
: (a¢,...,8)€Land y €S }.

It is enough to show that if W $# ¢,

for any (o',v',8') € V\ W, there exists (a,v,8) € W
such that (o, ,8) <X («',v, 8) (2.6.11)

We know that

(1) for every (&,...,0') € Vi, there exists («x,...,B) € L
such that (e, 7', 8) = (a,+,8) for all 4/ € V; (2.6.12)

and (7:) for every 4" € V,, there exists v € § such that
(a7, B8) = (4, B) for all (&,...,8') e W (2.6.13)

Suppose W # ¢ and let (o', v/, 8") € V\ W. We pick (a,...,8) € £ and ¥
€ § such that #

(o, 7,8) 2 (9,8 (2.6.14)
(a,7,8) 2 (7,8 (2.6.15)
(e 8) 2 (7, 8) (2.6.16)
and (,7,8) 2 (%, 0) (2.6.17)

It is possible due to (2.6.12) and (2.6.13). Now, using {2.6.14) and (2.6.17) .

we get,
(y7,8) 2 (a,7,8) 2 (&7, B) (2.6.18)

Note that the dominance relation under consideration is transitive. Hence

it follows from the relation (2.6.18) that («,+,3) (€ W) dominates (&, “f", 8Y,
that is (2.6.11) holds good. This completes the proof, | |
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Remark 2.6.1 : It is evident that the algorithm MP2 is also pseudopolynomial

in complexity.

Remark 2.6.2 : MP2 involves the parameter ¢ (3 < g < n — 1).. It may be
noted that {f) MP2 coincides with MP1 for ¢ = n — 1, and (i) when ¢ = 3,
MP2 is same as DGW except for the positions of the three largest jobs. The

performance of MP2 depends on the value of the parameter g. Consider the fol-

lowing numerical example to see the effect of the value of g on the computational

time required by MP2.

Example 2.68.1 : Let n = 40 and the processing times be given in the following

table.

. . . T
;oL g opi{ 7 Pl P
1 49|11 38|21 2431 14
9 49112 36|22 23|32 12
3 48113 35023 19133 11
4 47|14 35[24 19[34 7
5 47115 31]25 193 7
6 47116 3026 18136 6

7 46|17 2827 18]37 3
8 45|18 28(28 17/[38 3
0 43[19 27129 16|39 3
10 42|20 24|30 15(40 2

To solve the above problem, the execution times required by MP2 for differ-

ent values of ¢ are given below.

Value of ¢

Execution time

(in seconds)

29.9 106 5.4 13.1 24.1 28.0 928.5

5

It can be noticed that as the value of g increases, the required computational

time initially decreases upto some point, and then increases., We observe that
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optimal value of g depends on the problem dimension and the magnitudes of the

processing times.

Remark 2.8.3 : In order to explore the optimal value of ¢, we have carried out

extensive numerical experimentation, and we have the following observations :

(a) The computational time required by M P2 describes a convex function of g.

(b) For homogeneous (heterogeneous) processing times, the performance of

MP2 is better with smaller (larger) value of g.

This computational study also strongly indicates the prospect of improving

the performance of MP2 by proper selection of the value of g. However, the

problem of optimal selection of the value of g remains open.

2.7 THE ALGORITHM OF KUBIAK [1995]

In a very recent publication, Kubiak [1995] has formulated the CTV problem as
a problem of maximizing a zero-one quadratic function which is submodular with

" special cost structure, and has developed a pair of dynamic programs in order to

maximize this function,

We make the following departure (only in this Section) from our standard
notation to describe the submodular function and the proposed pair of dynamic
programming (DP) algorithms, Let N = {1,2,...,n,n+ 1} be the jobset with

PrLSpr S S Pn S Pt

Kubiak (1995} also confines to.the set of V-shaped sequences with the largest
job in the first position (refer to Theorems 2.2.2 and 2.2.5) and has shown that

‘the CTV problem is equivalent to the following problem :

max {f(y)} | - (2.7.19)
Ye{o1}" |
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where

fly) = 2, dij(yi®y;),
21<1<iIsn
dij — JBI"TJ'}
Bi = (n—i4+2pi+ ), pj
1<5<i-1
v o= (G-Upi+ 2,
i<r<i—-1
and corresponding to a sequence ™, ¥ = (y1,...,¥s) With
0 if job i appears before job 1
yi = | |
1 otherwise,
Yi &b Yy = ?iy;,-‘ + y:'ﬁj:
yi = 1 -

In order to solve the problem given by (2.7.19), Kubiak has proposed the
{following pair of DP algorithms.

(I) Backward DP :

Solve for h(3,0) = max, ., ,» {f(¥)} using the recursive relation,

h(k,v) = max {(1“yk.1)[h(k+1 ¥) + Br] s

Vi,y {0
vk [B(E+ 1,7+ ) + Belvi =]} (2720

|||

with A(n +1,9) = 0 for all v, 4} = Fogjek 15 for 2 <k S<n~2, 7 =9" =
Y i<j<n—1(2 — n)p; and, for any v, yi has the same meaning as yj.
(I} Forward DP :

Solve for g{n —1,0) = max, ., . {f(¥y)} using the recursive relation,

g(k,B) = max {(1-ykp)lo(k—1,8)+nb],

¥k, A€{0,1}

vkalg(k — 1,B+B) +uBr - B))}  (2.7.21)
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with 9(1”8) = { for all ﬁ, ﬁ; - Ek—l—l_(_jf:_nﬂi fﬂrlg 5 k ﬂ n, ﬁ; == ‘B* —
2 Yacign (n—1+ 1)pi+ (n—2)(p1 + p2) and, for any f, yx s has the same meaning

as Y.

Remark 2.7.1 : Kubiak [1995] has shown that the time complexity of the above
algorithms are o(nv*) and o(nf"*) respectively. The criterion to choose among

the algorithms is based on the minimum of 4* and B8* for any given problem

instance.
|

2.8 COMPARISON OF ALGORITHMS

We now compare DGW and MP2 alongwith the very recently published algo-
rithm of Kubiak [1995] (described in Section 2.7) by extensive numerical inves-
tigation. We denote the algorithm of Kubiak [1995] by KBK.

For the. purpose of comparison, we have taken the same problem set as con-
sidered for the comparison of DGW and MP1, and the investigation is carried
out under identical computing environment. The computer programs (coded in
FORTRAN) for all the three algorithms give both the optimal sequence and its

CTV value.

It is already noticed that the performance of MP2 is dependent on the value

of the parameter g. We fix ¢ = [0.30n] in this investigation,

The summarized computational results are presented in the Tables 2.8.1(a),
2.8.1(b) and 2.8.1(c). For each combination of n and U,, the tables contain the

average execution time for ten problem instances as required by DGW, MP2
and KBK,
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Table 2.8.1(a) : Average Execution Time (in seconds)

Ulﬂ Uﬁﬂ

» |DGW [ MP2| KBK | DGW | MP2 | KBK
20 | o0.02] * * | o070 o0.06] 0.02
30 | 0.25] 0.03] 002 7.34| 1.23] 017
40 | 0.96] 021 004] 3412 674 055
50 | 3.34] 0.66| 009 109.37 | 21.64 | 1.24
60 | 942 1.56] 018 28157 72.98 | 2.58
70 | 19.83 | 4.08| 0.35]| 608.43 [200.33 | 4.97
80 | 37.99| 7.46] 0.59
00 | 75.09 | 12.02] 0.74 |
100 | 119.66 | 28.71 [ 1.07

Note : * indicates negligible.

e

Table 2.8.1(b) : Average Execution Time (in seconds)

Ulﬂﬂ UQIDO

n [DGW | MP2 | KBK | DGW | MP2 | KBK
20| 213] o014 005] 911] 033] o0.12
30 | 27771 3.42{ o041 120381 17.83] 0.63
40 [ 133.70 | 2171 134 51072( 103.26 | 2.74 |

}

50 | 434.32 [ 110.68 | 2.97 |

Table 2.8.1(c) : Average Execution Time (in seconds)

| Uso |  Usoo
n | DGW | MP2 | KBK | DGW | MP2 | KBK
20| 1590] 0.42] 040]| 3914 0.55] 0.90
30 | 260.45 | 41.78 | 375 63449 ] 7820 [ **

40 [ 1044.46 [ 191.14 | 6.36 [ 3673.24 [ 287.90 |  *¥

Note : ** indicates that the algorithm failed to produce

solution because of insufficient computer memory.
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Remark 2.8.1 : Based on this numerical invéstiga.tion, we infer the following :

(a) KBK is extremely good in terms of the required execution time.,

(b) MP2 is superior to DGW.

(c) As the sample space increases for fixed number of jobs, MP2 becomes
better than KBK.

(d) The computer memory required by KBK is higher than that required by
DGW or MP2. As a matter of fact, for n = 30 and 40 with the sample

space Usgo, KBK failed to produce solution because of this reason.

2,9 LOWER BOUND ON CTV AND AN IMPLICIT
ENUMERATION METHOD

In this section, we deal with the derivation of lower bound on CTV, and then, -
use this lower bound in the development of an implicit enumeration method to

solve the CTV problem with heterogeneous non-integer processing times.

2.9.1 Lower Bound on CTYV

Derivation of lower bound is important to develop good algorithms. For
example, approximation scheme of De, Ghosh and Wells [1992] and implicit
-enumeration method of Manna and Prasad {1994] make use of lower bound on
CTV, and the performance of these algorithms can be enhanced considerably
by using éharper lower bounds. De, Ghosh and Wells [1992] have presented a
fully polynomial approximation scheme to obtain a solution with relative error
bounded by a specified ¢ (> 0). The scheme involves lower bound on CTV in
such a way that the computational effort required by the scheme for a specified

e reduces as the lower bound becomes sharper.,

In this subsection, we discuss the derivation of lower bound on CTV. De,
Ghosh and Wells [1990,1992] are the first to deal with this problem. Later
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Manna and Prasad [1994) and Mittenthal, Raghavachari and Rana [1994] observe
the infeasibility of the solution given by De, Ghosh and Wells [1992]. Prasad,
Manna and Arthanari [1994] give the correct version of the solution. Whereas

Mittenthal, Raghavachari and Rana [1994] propose an improved lower bounding

scheme,

In order to find a lower bound for the CTV, De, Ghosh and Wells [1992] con-
sider a relaxation of CTV in which processing times of the jobs are assumed to be
variables, and the objective is to find the processing times which minimizes CTV
subject to the restrictions - () sum total of these processing time variables (say,
z;'s) equals the makespan (= 3_7_, p;) of the given problem instance, (i) upper
limit on z;'s using V-shaped property of optimal sequence, and (ii7) lower limit

}
on I;'s as py.

Let ; (1 £ 7 £ n) be the unknown processing time of a job in the jth
position of a sequence. Then, using L.emma 2.2.1, the CTV is given by,

{

2(3"1)(”2 7+1) 2+22 Z J—l n—“f‘l)mjmi
=1 n j=11i=5+1 n’

1
= “"E:I!TD:II
1

CTV

where 27 = (23, 23,...,2,), D — ((di;)) is the symmet.ric matrix of order (n—1)
X (n—1) withdy =iln—1),d;; =t(n—j)fori<yj.

Thus, the objective function is given by =¥ Dg that it is to be minimized

subject to the constraints :

(7) EJ__I z; = ) j=1 Pj- Using Theorem 2.2.2, we take z; = p; so that 1°7_, z;

n
j= =2 Pj-

(#1) By V-shaped property of optimal sequence (refer to Theorem 2.2.5), z; < p;
and z,_;49 < p; for j =2,3,..., f-’—‘%’—l-'\

(¢11) z; 2 pafor j =2,3,...,n
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Using the above, De, Ghosh and Wells {1992} have proposed as lower bound

the optimal objective value of the following quadratic programming problem.

(QP-1) Minimize z7Dzx
subject to efe = MS —p,
Pn S Z; S pj
and Pn S Tnejyr1 S0Py
for ;o= 2,3,..., 2]

where e is (n — 1)-component column vector of 1’s and MS =¥ 7., p;.

They have also given a solution to this problem in algebraic form. Asobserved
by Manna and Prasad [1994), this solution is not always feasible. For example,
their solution z9 = 25 = p9, T3 = 4 = ps with 0 < p3 + (py — ps) — p2 < 2ps
for n = 5 is not feasible, Moreover, De, Ghosh and Wells [1992] have given an

approach based on Karush-IKuhn-Tucker conditions to justify this solution. Fol-

lowing similar approach, we derive a correct and simple .rm of optimal solution.

Derivation of Lower Bound :

Let p; = pj—pnforj=2,...,nand W = MS —p, — (n — 1)p,. Consider

the following quadratic programming problem which is equivalent to QP-1.

(QP-2) Minimize ¢’y + >yT (2D)y
subject to Ay <b
and y 20
where

] 1 |

-1 -1 —1

1 0 - 0

Aptyxn-y=1{ 0 1 - 071,
0 0 - 1

40



¢=ip(n-12(n—-2),..,5n—7) ..., (n—=2)2, n — DT, v = (v, ¥3y ...,
yﬂ)T" bT = (bl]bij"'!bﬂ'i*]) With bl = "-bz — WI' ﬂ,nd bj e bﬂ-—j+4 = p;._l f{jr

.7-=31"*1|.E'§:ij‘

It can be easily verified that if * = {z5,...,2,)7 is a feasible solution to
the problem QP-1, then ¥ = (¥2,...,¥n)7 = (€2 = Pny. .., 2n — pp)7 is feasible
solution of QP-2 and 27Dz = Ty + y" Dy + p.2(n* — 1)/12. Since 27 De is
known to be convex, the function ¢Ty-+y7 Dy is also convex. In fact both of them
are strictly convex for n > 2. Thus, Karush-Kuhn-Tucker (KKT) conditions for
QP-2 give the unique optimal solution (refer to Bazaraa and Shetty [1979]).

KKT conditions for QP-2 are

e+ 2Dy + ATX > 0, (2.9.22)

Ay < b, (2.9.23)

AT(Ay -b) = 0, (2.9.24)
yT(c+2Dy + ATX) = 0, (2.9.25)
y>0, A>0. ' (2.9.26)

Let us denote the vector A by (Ag, A, Az, vy dn)7.

Theorem 2.9.1 : If pj > W, the solution (y,A) with
1) Y2 = Yn = %LV,HJ"-:O{.GI‘J'.:IB,...,R; 1,
1) Ag, Ap 2 0 such that (Al _ M) = [(n~ Dpn + W] /n, and
1i2) A; =0 for 3 = 2,....,:’1

salisfies conditions (2.9.22) to (2.9.26).

This can be proved by verifying that the solution (y,A) is a KKT point,
Therefore, the solution ¥y = ¥, = %W and y; = 0 for j = 3,...,n — 1 is the
optimal solution of QP-2.
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Note that if p; < LW, then there exists an integer k, 2 < k < |22}] such
that

k-1 k
> < W <Y rin (2.9.27)
j=1

j=1

Theorem 2.9.2 : Let pj < ;W and an integer k satisfy (2.9.27). Then the

solution,
Y;i = Yn-j4+2 = P;‘ fo_rjzgs'--:k:
| 1 ] k=1 |
Ye+1 = Un-k41 = D W -2 ZP}-{-I)
B =
and Y = 0 forj=k4+2,...,n—#,

is uniquely optimal to QP-2.

Proof : Let A = (Ao, A1, A2,...,As)7 be a non-negative vector such that

- k :
k(n —E)pa + 2 jyin | /n,
-

b J -

Ai = Anmjir = (M= X)—(G—=1)(n~7+1)p,
~2y2 +2a+... + (G- D+ ...+ yena)] /n
for 1 =2,3,...,k
"0 forg=4k+1,...,n—=k+1,

)q—)tg

and /\j

il

It can be easily seen that (y, A) satisfies KKT conditions (2.9.22) to (2.9.26)
and therefore the solution ¥ is uniquely optimal to QP-2, |

A Superior Lower Bound :

Later, we come to know about a lower bounding procedure developed by
Mittenthal, Raghavachari and Rana [1994). The basic approach is similar to
that of De, Ghosh and Wells [1992] by solving a quadratic programming problem
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where the job processing times are again assumed to be decision variables z;’s
defined earlier in this subsection. However, Mittenthal, Raghavachari and Rana
[1994] exploit the V-shaped property of optimal sequence in a better way by

considering the following constraints :

IA

T2+ Ty P2+ ps3

Ta+ 23+ Tp-1+2hn < p2t+ps+pitps

and so on

Using the above set of constraints, in addition to }°7_;z; = 7., pj, Mit-
tenthal, Raghavachari and Rana [1994] have minimized the 27 D and obtained

¥

optimal solution &* = (z7,x3,...,2}) as

z] = pi
o=, = (patps)/2
3 =Ty = (pa-+ps)/2

i if n is even

(Pu-1 +ps)/2  ifnis odd

3
=
-+
[—
i

li

mt’lﬂ = ‘rl.l'l‘_ﬂ..i.]
2 2

Remark 2.9.3 : It can be easily verified that the above lower bounding proce-

dure is at least as good as the one derived from Theorems 2.9.1 and 2.9.2.

e

Remark 2.9.4 : We observe from the structure of the solution ®* given above

that the procedure is likely to perform well when the p;’s are homogeneous.
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Computational Results :

We have carried out numerical investigation to assess the merit of the above
lower bounding procedure developed by Mittenthal, Raghavachari and Rana
1994]. For each value of n (n = 10, 20, ..., 70), ten problem-instances are

randomly generated with p;'s from discrete uniform distribution U{1,2,...,50}.

For every problem, the percentage relative error of the lower bound (LB) is

measured as Eﬁﬁé—& x 100 where V5 is the minimum (optimal)} CTV value. The
minimum CTV value, V;, is obtained with the help of MP2 algorithm (presented

in Section 2.6). Table 2.9.1 gives the minimum, average and maximum relative

error for each value of n.

Table 2.9.1 : Percentage Relative Errors

Number Percentage Relative Error
of jobs (n) | Minimum Average Maximum
10 | 00061  0.0903  0.2235
20 0.0046 0.0121 0.0219
30 0.0012 0.0029 0.0065
40 0.0005 0.0010 0.0023
50 0.0002 0.0003 0.0005
60 0.0000 0.0001 0.0003
70 | 0.0000 0.0001 0.0002

Remark 2.9.5 : It must be observed {rom Table 2.9.1 that the overall perfor-

mance of the lower bounding procedure developed by Mittenthal, Raghavachari
and Rana [1994] is highly satisfactory. We also note that the performance be-
comes superior for larger problem sizes. This is due to the fact that the job

processing times become more homogeneous for larger n.

Remark 2.9.6 : If p,’s are very heterogeneous, the performance of the above

procedure may not be so well., For example, consider a six-job problem with
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p, = 1000, p; = 996, p3 =4, py = 3, ps = 2 and pg = 1. The lower bound on the
CTV, for this problem calculated by the procedure of Mittenthal, Raghavachari
and Rana [1994] is 84339.4167. However, the minimum (optimal) CTV value for
the problem is 138899.8889, It means that the percentage relative error can be

as high as 39.28%.

2.9.2 An Implicit Enumeration Method

In majority of the real-life situations, we come across non-integer processing
times. With non-integer, but rational processing times, one can always adopt
the algorithms DGW, MP1, MP2 or KBK (described in the earlier Sections)
to solve CTV problem. However, they may not be very effective if the number of

decimal places in processing times are large (two or more decimal places), since

they are of pseudopolynomial complexity.

To solve the CTV problem with heterogeneous non-integer processing times,

we now present an implicit enumeration algorithm based on branch-and-bound

approach. The algorithm is very similar to MP1 except for the following modi-

fications :

(a) Selection of an existing node for the purpose of branching is based on
minimum lower bound for CTV associated with the nodes, |

(b) Dominance rule, given in Lemma 2.4 4, is not applied.

The notation used in MP1 algorithm is also followed here.

The following lemma provides a lower bound on CTV for any node (e,.. ., 8).

Lemma 2.9.7 : Let »p be an arbitrary V-shaped partial sequence of jabs
k+1,k4+2,...,n. Let = (a, k,7,B) and o' = (o, 71, k, B) be two complete

sequences generated from the nodes (a, %,...,8) and («,..., k, B) respectively.
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Then

(i) nV(m) > kV(ﬂ'(k}) + 2M;, Zﬁ [C;('rru,)) —_ 5(1!'(;,))]
- j€

+£-(i£——b—)-ME F (n~k)Y(rL), (2.9.28)

BV () +2My Y, [Cilmy) - Clomwy)]
ieBuik)

LA NE =2 Dy - bpv(r) (299

(33) nV (')

AY

where 7y = (o, k,B), b=|8], ML = Liem, P; and, Y(my) is a lower bound on
the CTV for the subproblem with jobset as L = {k+1,k% 2,...,n}.

Proof : Let E = o U {k} U 3. Using variance partition formula we can write

wVir) = 3 [05m) - Co(m)]' + T (C5(x) = G, (w)]

JeEE JET y,

kin—k) (., - 2
+ (nn ).[CE(W)"C'M(’T)]
- 1 = |
(where Cg(w) = ’ 2 Ci(m), and Cor (7) = p Z Ci(m))
JEE =& jemy
= TV\+ Ty + T3 (say)
It is obvious that C;(7) = Cilmw) J = U k)
M Gl + M, G €8
~ and C’E(‘JT) = C‘(‘ﬂ'(k)) + %bﬂfb
Therefore,
" . bML ]2
L= Y |Cimw) - Clmp) - =
jexu{k} L .
| . | ) oMo 12
+ 2 {Cilme) + My, = Cmm) - “g&
jeB - |
260M = - biM?
= kV(rw)~—= X [Cilrm)~Clrw)] + (k- b)—3*
k. k
J€xu{k}

52



+‘2'££: 2iMe 2 [C'J'(‘“‘(k)) - C'(ﬂ(k})] + b~(k — b M;

- 2
E . r
. b(k — b)ML*
= kV(rw) +2M1 T [Cilmp) - O] + 22
il

Next, let Y(7rr) be a lower bound for CTV subproblem with jobs only in n,.
Then Ty 2 (n —~ k)Y (ry,), and obviously T3 2> 0. Hence part (3) follows.

The part (¢i) can be shown in similar fashion. B

Remark 2.9.8 : (7) In order to compute V(=) for any jobset L, we use the
results of Mittenthal, Raghavachari and Rana [1994] described in the Subsection

2.9.1. (i2) The right hand side of inequality (2.9.28) ((2.9.29)) can be taken as
a lower bound on CTV associated with the node (o, %,...,3) ((ay..., &, 0))

respectively.

We now present the algorithm, denoted bj MP3, which involves both the
dominance criterion (in Lemma 2.4.1) and the lower bound on CTV (given by
Lemma 2.9.7). Due to Theorem 2.2.8, the algorithm restricts the search to the
. set of V-shaped sequences of the form (1,3,...,2) and therefore it starts with

the node (1,3,...,2).

Algorithm MP3 :

~ Step 0 : Initialize W = {(1,3,...,2)}. Compute lower bound for (1,3,...,2)
and set MCTV = (MS)2.

Step 1: If W = ¢, STOP. Otherwise, take a node {a,...,) with the least
lower bound from W and set W = W\ {(«,...,8)}. If |aUB| =n-1go to
Step 3. Otherwise, generate two nodes, say, (o, k,...,8} and (a,...,k, B)
and go to Step 2.

Step 2 : If ﬁondition (2,.4.5) holds, compute lower bound for (ay ...,k B) and
set W =WuU{(a,...,k,08)}. If condition (2.4.6) holds, compute lower
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bound for (a, k,...,8) and set W = WU {(a, %,...,8)}. If neither con-
dition holds, compute lower bounds for {a,...,k,8) and (o, k,...,3) and

set W =WU {(a,k,...,3),(c,..., k,B8)}. Go to Step 1.

Step 3 : Compute V() for the complete sequence 7w = (e, n,8). f MCTV >
V(wx), set MCTV = V(x), #* = 7 and delete all the nodes in W with

lower bound not less than V{ar). Go to Step 1.

From a node (a,...,3) with |a U 8| < n — 1, the algorithm generates two
nodes (a, k,...,8) and («,...,k,B) and includes nondominated ones of these

two nodes in the collection W of active nodes after computing their lower bounds.

The node (¢, ..., 3) becomes inactive and gets deleted from W. If [aUB| = n—1,

the variance of the single complete sequence (a,n,3) generated from (a,...,S)

is evaluated. The nodes in W with lower bound not less than this variance are

deleted from W along with (c,...,3). Always, the node with the least lower

bound in W is chosen for branching.

It can be easily seen that the sequence «* given by the algorithm 1s optimal

with MCTYV as its CTV value,

We now consider the following numerical example to demonstrate the effec-

tiveness of MP3 algorithm for non-integer processing times.

Example 2.9.1 : Let n = 25 and the processing times be as given in the table

below.

pi | J P tJ P LJ’ pi

;7opi |

1 9236 7.60|11 65916 530[21 3.50
o 8541 7 7.45|12 6.28 |17 5.25[22 3.49
3 82318 720113 6.14|18 4.86|23 285
4 819| 9 69114 58419 4.41[24 281
5 7.95|10 6.78 |15 5.39 |20 4.04)25 262
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It should be noted that the above problem instance could not be solved by
KBK algorithm, This is due to the higher computer memory requirement by
this algorithm. However, the execution times required by DGW, MP1, MP2

and MP3, to solve the above problem, are given below,

[ Algorithm | DGW [ MP1 | MP2 (with g = [0.30n]) [ MP3

Execution time | 415.0 | 75.5 36.5 1.2

(in seconds)

iyl

It must be noticed that MP3 is by far superior to DGW, MP1 and MP2
(with g = |0.30n}). We also evaluate the performance (given below in terms of
execution time in seconds) of MP2 for all possible values of ¢, and observe that

it is best with g = 13.

Time | ¢ Time rg Time | ¢ Time| g Time
2658 8 16.8|13 07018 9423 705
1918 ¢ 69114 0819 18224 755
1228110 27015  1.1)2 323
69.3 111 13|16 23|21 514

365012 09]17 50|22 620] |

~) Ch o e o

Since the optimal selection of the value ¢ is not completely resolved, MP3

algorithm is likely to be very useful to solve CTV problem when the processing

times are non-integers.

2,10 DISCUSSION

This chapter is devoted to the exact procedures for solving the deterministic
CTV problem. Since the problem is NP-hard, the recent approach has been
towards the development of pseudopolynomial algorithm for the same. We have
derived here two dominance rules which are in turn used in the development of a
new pseudopolynomial algorithm (MP1). The algorithm MP1 involves binary
branching making use of the V-shaped property. A node, in this algorithm,

08



represents a two-sided partial sequence of the form (. ..,3) containing the
larger jobs. The MP1 algorithm is intended to take good advantage of the
heterogeneity present among the processing times. In fact, it is highly effective

for smaller number of jobs with very heterogeneous processing times.

However, it is no better than the DGW algorithm (of De, Ghosh and Wells
(1992]) when the processing times are homogencous which can happen if the

sample space is small and the number of jobs is large.

The hybrid algorithm MP2 is developed in order to exploit the the con-
trasting merits of DGW and MP1. The complexity of this algorithm is also

pseudopolynomial.

Based on extensive numerical investigation, it is found that the recent al-
gorithm KBX (of Kubiak (1995]) is superior to both DGW as well MP2 in

general, However, we have noticed the following drawbacks of KBK algorithm :

(a) As the heterogeneity among the processing times increases for fixed n,
KBX becomes worse than MP2,

(b) The computer memory requirement of KBK is high in general, and it does

pose some problems even with reasonable computing facility.

The algorithm MP3 is an implicit enumeration method involving a domi-

nance rule and a lower bounding on CTV,

‘Observing an error in the lower bound given by De, Ghosh and Wells [1992]
for CTV, Prasad, Manna and Arthanari [1994] and Mittenthal, Raghavachari
and Rana [1994] have independently derived lower bounds for the same. It has
been noted that the lower bound of Mittenthal, Raghavachari and Rana [1994]
is sharper., We have incorporated it in our algorithm MP3. This algorithm is

of particular importance for non-integer processing times. It is demonstrated
by a numerical problem for which the KBK algorithm failed to obtain optimal

solution due to large memory requirement.
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CHAPTER 3

| CTV PROBLEM
WITH RANDOM PROCESSING TIM.

L
'

3.1 INTRODUCTION

In many real-life situations, the job processing times are not known at the time
of scheduling the entire processing. In fact, the processing time of a job is known
only after the job is processed. This is due to several uncertain elements in the
processing requirement of jobs. For example, repair times, project execution
times etc. are quite often random. If the variation in the processing time is
known to be very small compared to its mean, from practical point of view, such
variation can be ignored in scheduling. Otherwise, it must be taken into account

while scheduling the processing with some objective,

In this chapter, we consider the problem of minimizing the varia!ion among
job completion times with partial or complete information. The objective under
consideration is, to be precise, minimization of expected value of the completion
time variance (CTV). It may be noted that in this case, all job completion times

are random in nature and their probabilistic law varies with the schedule,

The stochastic version of the single machine CTV problem is studied by
Chakravarthy [1986], Vani and Raghavachari [1987] and Prasad and Manna
[1994]. Until now, no efficient algorithm (with polynomial time complexity) is

available to solve the problem. As a matter of fact, this problem is more difficult

compared to its deterministic version which is known to be NP-hard (see Kubiak
[1993] and Cheng and Cai [1993]).

Chakravarthy [1986]) and Vani and Raghavachari [1987] have shown indepen-
dently that an important result derived by Merten Muller [1972] for the deter-
ministic case holds good for the stochastic version also. Chakravarthy [1986] has
shown that if all the P;’s have same means (variances) an optimal sequence is

V-shaped in mecans (variances). Also, he has established that the property of
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V-shapedness is a necessary condition for optimality when P;’s are exponentially
distributed, Vani and Raghavachari [1987) have dealt a more general case assum-
ing that for each P;, the second (raw) moment can be expressed as a quadratic

function of the first moment (mean). Under certain conditions, in this case, they

have shown that optimal sequence 1s V-shaped.,

In section 3.2, we present the preliminary results which are used later in
this chapter to derive properties of optimal sequence and a lower bound on
the expected CTV. Section 3.3 is devoted to the study on the properties of
optimal sequences. In Subsection 3.3.1, we derive two sufficient conditions on
the existence of V-shaped optimal sequence for the general stochastic CTV
problem. Subsection 3.3.2 deals with the special case considered by Vani and
Raghavachari [1987] and provides a simple but stronger sufficient criterion for V-
shaped optimality. In Subsection 3.3.3, we introduce a special case in which the
random processing times satisfy the following order property :

e < gy = 0! < of for any r and s.
In this case, we first demonstrate that V-shaped property is not a necessity
for optimality. Then we derive a sufficient condition for the same and obtain
several results on the monotonic property of optimal sequence. We also prove
the existence of an L-G-S optimal sequence for this problem. In Section 3.4, we
present a procedure to derive a lower bound for the expected CTV and a dom-
inance rule which are in turn effectively used to develop a branch-and-bound
algorithm to solve the stochastic CTV problem with general processing times.

Further, we discuss here the required modifications in the algorithm for ordered

processing times,

3.2 PRELIMINARY RESULTS

In this section, we present some preliminary results required for deriving the

main results of this chapter.

Lemma 3.2.1 (Vani and Raghavachari [1987]): For a sequence 7 = (my, 79,
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..,y ), the expected variance of completion times under 7 is given by,

EV(r) = Vim)+ =30~ D(n—r+1)c (3.2.1)

' n re

where

£
2
{|
B e
[V]=
1)
3
t
=
3

1 n
= 2 (r=Dn-r+
r=1
9 n-1 n
t3 200 = Dptne 20 (=84 e, (3:22)
r=1 s=r41l

P
2
fi
)
=
2

o
=
.
=

3
it

I
)
|
~
-+

x

3

Remark 3.2.2 : It can be scen that the expression E[V(w)] is independent of
the parameters of the first job in r, but depends on the other jobs through their

first two moments only.

Remark 3.2.3 : [t is clear from the equation (3.2.1) that the special case o? =

g} = ... = g% becomes the deterministic version of the problem, and hence the

stochastic problem under consideration is also NP-hard.

Theorem 3.2.4 : Let w be any sequence and 7” be its dual. Then

E[V(r)] = E[V(xP)]

Remark 3.2.5 : The above theorem has been proved independently by
Chakravarthy [1986] and Vani and Raghavachari [1987]. Note that this is a
generalization of the result of Merten and Muller [1972] for the deterministic

case. The theorem proves the existence of at least two optimal sequences.
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Theorem 3.2.8 (Chakravarthy (1986)): If of = max,¢;<n o7, then there exists

an optimal sequence of the form (1,...... ).

Proof : It can be proved directly from Lemma 3.2.1 by observing that given any

sequence T,
i) each P; has non-negative contribution to B[V ()] through its mean (u;)
and variance (o}),

11} E[V(m)] is independent of the parameters of the first job in .

The following result gives the change in the expected CTV due to interchange

of two jobs in a sequence.

Lemma 3.2.7 : Let # = (m4,...,m) be any sequence. Let 7' be a sequence

obtained from #r by interchanging the two jobs 7, and =, (s < ) only. Then

n{E[V(n')] - BV ()]}

=1

= Upr, — pim) | {Ee() — E(r))

_I_(t — 5) i;ln-— t + 5) (m, — t1y.)
todlotoet g ) ey

Proof : Let D = n{E[V(n')] — E{V(x)]}. Using Lemma 3.2.1, we.can write

D = nfVr)-Vum)+ 3 LT D or 52y (324

r=1

where V,(=') (V,(7)) is the variance of expected job completion times for the

sequence ' (7).
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E.(r) forr=1,.,.,s—=1,4,t+1,...,n (3.2.5)
Emw)+ (r, — pir,) forr=s,541,...,0 —1 (3.2.6)

&
A
]

and E,.{(n')

and therefore

(Bny = f,)- | (3.2.7)

Now, we can write

Y [ ) - B2(m)] - n [E2() = B*(m)

(fmy ~— Hx,) Z: 2L (m) + (fmy — itr,)]

r=23
{ — 3

~(t = $)ptn, = tim) [2B) + 2, = )
(using the equations {3.2.5), (3.2.6) and (3.2.7)).

n [V#(WI) — V()]

[l

il

By simplifying the above terms of the right-hand-side, it can be seen that
n[V,(#x') — V,(7)] is same as the first term on right-hand-side of the equation
(3.2.3). Since o3, = o3 for all r except r = s and ¢, it can be easily verified that

the second term on right-hand-side of the equation (3.2.4) is same as that of the
equation (3.2.3).

Hence the Lemmma holds. H B

3.3 PROPERTIES OF OPTIMAL SEQUENCE

In this section, we derive first sufficient conditions for an optimal sequence to be
V-shaped for general random processing times. Next, we deal with two special

cases : one based on quadratic relation between mean and variance of processing

times, and another one involving an ordered property of the jobs,
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3.3.1 Results With General Processing Times

Chakravarthy [1986] and Vani and Raghavachari [1987] have derived, under

some assumptions, sufficient conditions for the existence of an optimal sequence

which is V-shaped in mean.

We now obtain suflicient conditions for the same under a general assumption

on the job processing times, that is, they can have any arbitrary means and

varlances.

If 3 = pg = +++ = py, that is, all the jobs have the mean processing time, it is
easily seen from Lemma 3.2.1 that optimal sequence is V-shaped in variance (also
see Chakravarthy [1986]. In fact, using a result (page 261) of Hardy, Littlewood

and Polya [1952], one can verify that an optimal sequence is

(TITTSJTS',I""TH—':S! Tn_l‘Tn,Tnﬂz,llﬁjTgi}‘Tg) lfn 1S even,
(71373, T8+« s Tne2s Tns Tae1Tn=3, -+ -, T4, T2)  if n 1s odd
where T = (11,72,...,Ta) is a sequence such that 0?2 > g2 >-.. > o2,

Hence, we assume that the values of all the p,'s are not same, and define

g} — g2’
A = max {0, max ——= 5, (3.3.8)
BiFRy Ly — [l

Theorem 3.3.1 : If for any three jobs r, s and ¢t with g, > max{u,,u}, the

condition

2ty + (1 = 1)(ts + 1) > 2(n — 2)A (3.3.9)

holds, any optimal sequence 7 = (my,...,m,) satisfies
(1) V-shaped property in mean, and
2

(22) if pr; = flayy, then o3 207 (07 S0f, Yfori <% (i 5+1)

62



Proof : Suppose the condition (3.3.9) holds for any three jobs r, s and £. Let
7 = (my,..., 7T, be an optimal sequence which is not V-shaped in mean. Then,

there exist three successive jobs m;, mit1, miy2 such that py, > max{fx, fir,}
Let (1} (7(?)) be a sequence obtained from = by interchanging the two jobs =;

and T (?T,'+1 and ‘?I','+g).

Let DM = n{E[V(x)] — E[V(7)]} and D) = n{E[V(x*))] - E[V(®)]}.

The values of D!) and D® are nonnegative since 7 is optimal. By Lemma 3.2.7,

we have
(1) . n—1 '
D = 2(}‘#.'“ o Ju?ri) E;('}T) — ir(ﬂl) + o (F#Hl - p’fi)
(n — 21+ 1)
2t N, -
- n—1
and D(Q) = Q(FFHQ _' nu'?l"|'+l) [El+1(ﬂ') '_" E(ﬂ') + 0m (#m” - P’FHI)]
n—2 — 1)
- (f::vfmr:2 - u':Hl). |
Let

Q = DO {2priys = #rigs)} = D2 piyy — 1)} (3:3.10)

Then, we can write

n-—1
@ = #F"+1.+ on (pen; + Friga = Q}Lﬂ.‘“)
n—2—1 | | |
I {(a.:’.;.;.g _ a:i.*.]) / (P“H—i — Pﬂ'i-}-l)}
n— 2t 4 1 |
+ 2n {(g:'i+1 — 0.12!') / (#ﬂ'i-i-l o )uﬂ'l')}

e, 2nQ = 2ug., +(n— D) (tn; + triga)
—(n =2 = 1){(07,,, = Onipy) [ (Bmis = Bmiga))
+(n =2+ 1){(0l,, = 07,) [ (Brigy — #xi)}

Sttnegs + (2 = 1)tss + frses) = (7~ 3)A = (n = 1)A
(since 1<i<n—-2)

2tpiey (0 — 1){ttx; + friyn) — 2(n — 2)A.

IV
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‘Using inequality {3.3.9), we can see that Q > 0, that is,

D(g)/{g(l‘wiu — ﬂﬁ-}l)} > Dm/{z(ﬂﬂ'iﬂ - p""’)}
> 0

since D1} > 0. It means D'¥ < 0 which leads to Lthe contradiction that 7 is not

optimal. Therefore the optimal sequence 7 is V-shaped.

Next, it can be seen from second term on the right-hand-side of the equation

(3.2.1) that any optimal sequence « must have the property (i1).

Hence the theorem holds. |

Remark 3.3.2 : From the condition (3.3.9), it can be seen that if the variances

(0§’s) are homogencous or small when compared to the means (g ’s), then opti-
mal sequence is more likely to be V-shaped in mean. However, if the variances
(0%’s) are very large in relation to the means (u;'s}), optimal sequence tends to

be V-shaped in variance (refer to Lemma 3.2.1).

The following result shows that when the coeflicient of variation of each job
processing time does not exceed a limit determined by the means of processing

times, any optimal sequence is V-shaped in mean.

Theorem 3.3.3 : An optimal sequence is V-shaped in mean, if

ﬂ'j/,uj .E [0: \/ﬁn/{(ﬁl +,“-'1) + 7/—‘? ] (3.311)

b= i, [ — .

for all 7 where v~
Proof : Let ¢ = max; o;/u; and o} = *u? —¢;, ¢ > 0fori =1,2,...,n For

any ¢ and 7 with u; # p;, we have

of — oF c*(ui — pj) + (¢ — &)

L

fi = R Bi =~ M
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i+ p5) + ~
BB

2
c'(p1 + pa) + max e

< fpn+ pa) + Sypi

}

IA

Thus

¢’ [(#1 + fi2) + 'TH?J
o

A IA

due to (3.3.11).

For any r, s and £, we have

2pr + (1 — 1){pts + o)

Now the result follows from Theorem 3.3.1. N

In view of the fact that the general problem is NP-hard, it also becomes
important to study special cases, develop eflicient exact and approximate algo-
rithms. From Theorems 3.3.1 and 3.3.3, it is clear that complete characteriza-
tion of optimal sequence looks very difficult, unless suitable assumption is made
on the underlying random processing times. It may be recalled that expected
CTV depends only on the first two moments of any job processing time (refer
to Lemma 3.2.1). And, because of this reason, Chakravarthy [1986] and Vani

and Raghavachari [1987] have considered special cases with different structures

involving the first two moments only.

In the [ollowing, we discuss two special cases on the structural properties of

optimal sequence.

65



3.3.2 Special Case I : Quadratic Relation Between Mean and Variance

Vani and Raghavachari [1987] have considered a special case based on a
quadratic relation between mean and variance of each processing time. They
have assumed that g; = Ap? + By;, 1 < j < n, for fixed non-negative values of
A and B, where g; is the second (raw) moment of P;, and observed that quite
a few standard probability distributions have this property. For example, the
distributions (2} Uniform (with interval starting from zero), (#7) Gamma (with
fixed shape parameter), (:ii) Chi-square, (iv) Poisson and (v} Binomial (with
A = (n—1)/n and B = 1) satisfy this property. They have proved that optimal

sequence 18 V-shaped in mean if

An+1) = 2(A = 1)i =2

5 = — >0, i=1,2,...,n—2 (3.3.12)
92— An+2A-1)j - A .
o = )”+;1 B=A S0 =23 . n—1 (3.3.13)

In order to know that there exists an optimal sequence which is V-shaped in

mean, we need to verify 2n — 4 constraints.

We simplily this result and show that these constraints are either redundant

or can be weakened depending upon the value of the parameter A.

Theorem 3.3.4 ;

(1) For 0 £ A <2 and B > 0, optimal sequence is ‘"-shaped in mean.

(1) For A > 2 and B > 0, optimal sequence is V-shaped in mean when

n < 5(!11:21)_
Proof : Suppose there is an optimal sequence ® = {m),...,7,) that is not V-

shaped in mean. Then there exists three successive jobs in 7, say, m;, 741 and

miy2 such that pr ., > max{px;, tix,s }-

We show that by interchanging ;TH;I with either of the other two jobs yields

a better sequence than .
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We use the same arguments as in the proof of Theorem 3.3.1. Here we can

write

A B
Q = 61'##& ’*,’,';'I"PH'.'H Qg fhpy, T ;’

I 2A -1 B
Oifn; + (‘2'}'1" +- o ) Frigr T Xig1fhriy, + ';

I

where o; and §; are given in the systems (3.3.12) and (3.3.13).

SINCE fir;,, > MaX{in;, friys }y WE Can write

] 2A —1 B

‘5;”#1‘ + QF+1PII.+2 T ;,;'

i

where 6} = 6 + -~ and af,; = i} + 3%;‘—1. It is obvious that §' = af_;, for

t=1,2,...,n— 2. We observe that

Sip 2 o 2 & = A -1)+1)
a; 2 2 oap_y = 4
for 0 < A <1 and
S 2 . 2 By = A[2-Am+s(A-1))
Qpy 2 2 o n-2 |

for A > 1.

It implies that @ > 0 for 0 £ A < 2. Morcover, ¢ > 0 for A > 2 provided
n < ."l{"_i."_l)._ . _

TAZ2

Hence the theorem holds. |
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- 3.3.3 Special Case II : Ordered Processing Times

In real-life situations, job processing time having larger mean is generally

expected to have larger variance also. Ior this reason, we now assume that

<y, = o*<o? foranyrands, (3.3.14)

The processing times are said to be ordered if the condition (3.3.14) is satisfied.

There may not exist a V-shaped optimal sequence even if the processing times

are ordered. For instance, consider the {ollowing numerical example of nine-job

problem with ordered processing times.

Job(;5)] 1 2 3 4 5 6 7 8 9
i 200 200 7 6 5 4 2 2 1
o; 50 50 42 41 40 36 35 3 2

The best among V-shaped sequences is (1, 3, 4, §, 8, 9, 7, 6, 2) which gives
6020.9136 as expected CTV (variance of completion times). However, the se-
quence (1, 3, 4, 5, 8, 9, 6, 7, 2) is the best among all 9! sequences but not
V-shaped. It gives 6017.4568 as the minimum expected CTV.

Theorem 3.3.5 : There exists an optimal sequence of the form (1,...,2).

Proof : It can be seen from Theorem 3.2.6 that there exists an optimal sequence
of the form (1,...). Suppose 7 = (m,73,...,T,) is an optimal sequence with
m=1. Let 7, # 2. Thennr, =2 forsome2 £k <n—1.

For k = 2, we can see by Theorem 3.2.4 thal the sequence (m1, 7q, Tn_y, ..,

T3, 2) 1s optimal.

Let 3<ik<n~-1.

Suppose gy > max{fip,, fir,}. Obtain (" (#(2}) from = by interchanging
only two jobs m; and 7 (7 and 7,). Let D) = n{ E[V(x())] — E[V(x)]} and

68



D® = n{E[V(x{®)] = E[V(x)]}. Then by Lemma 3.2.7, we have
(k —2)(n—k)

DW= 2uy ~ pmy) X ———(03 —~ 07,),
DO = 2, —pa) ¥ = BRI 021
where
X = 3 [E(m) - )] + G ),
¥ = T [Bm) - 5] + 2o e~

Since, 2 > max{fix,, pir, }, we have 07 > max{ol 07 }. We also have
DM >0, D) > 0 as 7 is optimal. It now follows that ¥ < 0 < X.

If (%) < Ex_1(m), then

~k(n k)
Y 2 (Tl — L),UQ | Y (#rrn PQ)
- ko k(n — k)
= (n—k) -1—5;;“ fo + . By

> 0

which is a contradiction.

Similarly, if we assume £(w) 2 Ej(m), we again arrive at a contradiction
that X < 0.

Therefore By_,(m) < E(m) < Ep(m). Let E(w) = Ey(w) — ¢, for some € > 0.
Now, we have

[k ,  nd+k—2
Y > (n—k) -E"—g‘;’ﬂg and X < (k-2) -e o ug-.

Then, Y <0 = ¢ < '2"%}12 = X < () which is a contradiction,

Therefore, if 7 is optimal with mx = 2 and 3 < k£ < n — 1, then p; ¥
max{pﬂ'ﬂi#ﬂ'n}' |
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Suppose iy, = lx,. lf jobs m and m; are interchanged, the value of first term
on the right-hand-side in the equation (3.2.1) remains same whereas the second
term does not increase. That is, interchange of jobs 7y and 7, does not increase
expected variance. Now it follows from Theorem 3.2,4 that (rq, 7, Th-1, ...,

Similarly, if px, = pr,, we can show that (my,m2,...,Teo1, Tny Thil,e.e
Ta-1,2) 18 at least as good as o, Hence the theorem holds. - |

In the following, we present some results dealing with monotonic property of

optimal sequence,

Lemma 3.3.6 : Let w = (m,7q,...,7,) be an optimal sequence. Then

(1) for any g, 2 < g <n,

n

- 1
g < Prgey = E(m) 20 Boor(m) + ——(tr, = pr,s)

~2g+3 0p, —0;
N 9% Try ” Ty - (3.3.15)

2”« pﬂ'y - p’-ﬂ'g—] ‘

(¢2) for any h, 1 < h < n,

_ n— 1
Brn < Bapyy = E(ﬂ') < Eﬁ(ﬂ) + om (F‘H’hﬂ — .”ﬂ'h)
_n=%h+1 omy,2-op, (3.3.16)
2n Frangr = Hay

Proof : Suppose pip, < pn _, for some g, 2 < g < n. Obtain the sequence '
from 7 by interchanging the two jobs m,.; and 7, only. Using Lemma 3.2.7, we

have

5 (BlV(n')] - BV ()]}

_ n-— 1
= (tny = tirges) |Baa(m) = B(m) + (e, = b))
T (3.3.17)
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Since 7 is optimal, E[V(xn')] — E[V ()] 2 0. Therefore, using the equation
(3.3.17), we get

_ n — 1 ﬂ.'—29+3 6:9_53"#-1
o _ *9. <0
Eg__l(-:r) E(ﬂ') o (Pr, ﬂfrp--l) o oy = Py -
_ n — 1 n—2g9+3 J?r _53-1
o o )= . _7g p-1
or, E('ﬂ') all Ey l(ﬂ') + M (H ¢ — Hmg 1) 2n Frg = Hrgon

Hence the part (1) of the lemma holds.

The part (i7) can be proved by similar arguments. -

Theorem 38.3.7 : If py, < fin,,, forsome 1 < A& < [®] in an optimal sequence

w = (T, M2,...,Ty), then _
e S . 3.
Hrrlﬂ;._l_-l- S. .u’rrlﬂa:l]_“ S w— pﬂ'n (3 3 18)
Proof : Let w = (m,m,...,m,) be an optimal sequence with p. < py,.,

for some 1 < h < [®]. Assume, if possible, the inequality (3.3.18) does not
hold good for w. Then there exists two adjacent jobs in 7, say, v,y and m,,

|2) +1 < g £ n, such that p,,_, > g, . Therefore, by Lemma 3.3.6(z), we

have

_ n—1

E(ﬂ') > Eﬂ—l(w) + I (#“'9 o 'u“'!—l)
n =29 +3 Ory = Iryey (3.3.19)

2n p“g o F’ﬂ'g—l
Because piy, < fir,,,, we also get from Lemma 3.3.6(z2),

_ n— 1

E(ﬂ') < Eh(ﬂ') + on (ﬂﬂ'h-n - Juﬂ'h)
n—2h+1 0x,y,2—0F

(3.3.20)

2n Prpgr — By |

Combining the inequalities (3.3.19) and (3.3.20),

(BA() = Bys(m)] + 2

[#n’h“ — Hry — Hmg + Ffr,_ll
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n—2h+1 of —0f n-2+3 o —0;

xh Xg—1
P S— + E—— 0 FR—— f " 2 0 3-3-21
2n Frper — Hmy, on Hxg ™ Bxg ( )
n—1

[P’#H: Lo ol (N ] Liar-wes [#““*1 T Brges (ny + Pw')]
2

B R
n—2h+1 o, 0’___ 4 :1 ~29+3 In =% L, (3.3.22)

n Fangr — Foxp 2n Frg = Brgos

-

Since 1 £ h <[] and [2| +1 < g < n, we note that

n—-2h+1 o  —0;

(1) - >0
2n Frngr = Hxp j
— ol — o
(1'1:)[ P'r 29 + 3 .l 11'9.71 _<_ 0.
2n F‘Fg — P'ﬂ'p-i

Therefore, the left-hand-side of the inequality (3.3.22) is strictly negative,

which i1s a contradiction.

Hence the theorem holds. - |

Corollary 3.3.8 ; If y, _, > pir,, for some [ﬂizl‘-lj +1 < ¢ £ nin an optimal

sequence w = (m,mq,...,7y), then

Hxg 2 Hxy 2 1o ->- prlﬂa._l_j“' (3'3'23)

Proof : It follows fr_om ‘Theorems 3.3.7 and 3.2.4. | - |

Theorem 3.3.9 : In every optimal sequence 7 = (7,...,m,), (¢) the first job

is the largest job, and (it) either u,, 2 ... 2 #”lﬂa‘-l}-u or p'tﬂj'-lj S / S

Proof : Using Theorem 3.3.7 and Corollary 3.3.8, it can be easily seen that for

any optimal sequence = (m, 7y,...,T,), the relation (i) holds.

Suppose the job 7 is not the largest, that is,

either gy > pty, (= 0] > 02 ),

or  p =y, and i > a3 .
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Let 7, be the largest job for some 2 < k < n.

Case (a) k = 2 : It can be easily observed {using Lemma 3.2.7) that the
sequence, obtained from 7 by interchanging m, and w9, is strictly better than .

This is a contradiction to the optimality of .

Case (b) k = n : Consider n”, the dual of 7. We know from Theorem

3.2.4 that w” is as good as w. Note that the largest job in 7P lies at the second

position and hence the Case (a) applies to w”.

Case (¢) 3 <k<n~1: Let #(V (7(®) be the sequences obtained from =
by interchanging the jobs 7 .and m; (7 and 7,) only. We can use the similar
arguments as in the proof of Theorem 3.3.5 and show that either #1) or #(?} is
at least as good as . We note that Case (a) (Case (b)) is applicable to ={})

(7)), and hence, we once again arrive at a contradiction.

This completes the proof of the theorem, |

Corollary 3.3.10 : There exists an optimal sequence 7 = (m,...,7,) which

satisfies (i) the first job is the largest job, and (1) gy, 2 ... 2 B ng
Proof : It follows immediately from Theorems 3.3.9 and 3.2.4.

Theorem 3.3.11 : There exists an optimal scquence 7 = (my,. .., T, ) satisfying

the following :

(1) the first job is the largest job,

(“) Hx 2 e 2 p"[ﬁj:ljﬂ’ and

(iii) “ﬂ'n-l S p’ﬂ'n‘

Proof : We know from Corollary 3.3.10 that 3 an optimal sequence & = (my,

T2, + .+ Tp) satisfying (¢) and (éf).
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We shall now show that u, > . .
Suppose pn, = piz. Because of (i), it follows that pu, 2> u, _,.

Let u, < pg. Using the arguments in the proof of Theorem 3.3.5, we can
show that p,, = pe. Now, obtain a sequence 7' from # by interchanging the

jobs 7,1 and 7,. By Lemma 3.2.7, we have

SAEWV(x)) - BV ()

- n — |
= (tn = Hraes) | Bnma () = B(7) + 2 (pin, = firas)
-3
4z (oz —ai ) (3.3.24)

2n

Since (i) holds and pt,, = p9, it can be easily seen that

n — 1

En_.](‘?'l') — E(ﬂ') om

(ian = tinaea)| > 0. (3.3.25)

If px, < fir,.,, because the ordered property (3.3.14), we have 02 < o2 .
It then follows from the equation (3.3.24) using the inequality (3.3.25) that
E[V (7)) < E[V(7)], which is a contradiction to the optimality of =, Therefore,

Hrp 2 Hxpoy -

[Hence the theorem holds. |-

Remark 3.3.12 : Using the above results, to obtain an optimal sequence, we

n — | — ko —1
may confine to ( L ) ( " ; ) (n — kg — 3)! sequences only, where
"0

k{} — l_EjQ:'lJ.

‘The following theorem restricts the position of job n in any optimal sequence.

Theorem 3.3,13 : Let w = (my,...,7,) be any optimal sequence with (my,7,) =
(1,2). Then pie, 2 fig, 2 pix, for n > 5. |
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Proof : Suppose i, > ftr,. Consider the sequence #’ obtained from = by

interchanging the jobs 73 and my. By Lemma 3.2.7, we have

n — 1

n{E[V(n')] - EV(m)]} = 2(px ~ pixy) |Es(7) —~ E(ﬂ') + ™ (Bxg = ins)

22861 o2, (3.3.26)

Note that

17— |
o (tery — Hins)

Ea(w) — E() +

%

[ n-1
T
(/“H': _#2)—{ 0 (P:ra“}'ﬂm)‘l" E(n-—r+1)p,r >

r=5 . y

!
nﬁ
< 0.

Now, from the equation (3.3.26) it is obvious that E{V(«')] < E[V ()], that

is, o’ is better than o which contradicts the optimality of m. Hence pix, 2 pin,.

We can argue similarly that ux, 2 yn,. | |

Corollary 3.3.14 : There exists an optimal sequence of the form (1,...,2) with

job n in one of the positions 4,5,...,n — 1.

Corollary 3.3.15 : If * = (m,...,7,) is an optimal sequence with (my,my) =

(1,2), then p, 2 pr _, 2 fin,_, forn >3.

Proof : This follows from Theorems 3.3.13 and 3.2.4. ||

- We now present some results on the V-shaped property for some small size

problems.
Corollary 3.3.16 : For n = 5, the sequence (1, 3, 4, 5, 2) is optimal.
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Proof : This can proved following the arguments given in Theorems 3.3.5 and
3.2.4. H

Lemma 3.3.17 : In any optimal sequence ® = (my,...,Tn), tix, < max{pir,_,,
fixyyr) for k= [%] +1 whennis even and fork = {3} +1 and 3] + 2 when n

1s odd.

Proof :  Suppose pix, > max{fis,_,,fin,,,}. Obtain #{!) (#x®) from = by
interchanging the jobs mx_; and 7 (7 and 7xyy). We shall show that w{l) s

better than .

Let DU} = H{E[V(ﬂ'ﬁ))] — E[V(=)]}, i = 1,2. From Lemma 3.2.7, we have

DY = 2z, = finy,) X — — ik + (070 = 020s):
where
X = Ep(x)- E(x)+ "z;l(u,,, ~ gy
and Y = Ei(r) - E(r)+ ng—;l(ﬂ““ — pim,):

It is obvious that Y > X.

Note that for k= [}]+1 and |[3] +2 with odd n and &k = [2] 41 with even
n, we have n — 2k + 1 <0 < n — 2k + 3. Since 7 is optimal, we have D{?) > 0,
that is, 2(us,,, — #tr,) ¥ 2 0 which implies Y < 0. As X <Y, it now follows
that
_no2rts

~1 (0, — 3, )

Nk Ah—1

D(l) < 2(”!’& ""J“H‘k-:l) Y
< 0

since n — 2k + 3 > 0. It means that the sequence (! is better than & which

contradicts the optimality of 7. Hence the Lemma holds. -
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Corollary 3.3.18 : For n = 6 and 7, there exists a V-shaped (in mean) optimal

sequence of the form (1,...,2).

Proof : If n = 6, it follows.immediately from Theorem 3.3.13 that any optimal
sequence of the form (1,...,2) is V-shaped in mean, For n = 7, one can easily
verify that any optimal sequence of the form (1,...,2) is V-shaped in mean due

to Theorem 3.3.13 and Lemma. 3.3.17.

Remark 3.3.19 : Further, it can be seen from the result of Vani and
Raghavachari [1987] concerning the position of the third largest job (for deter-
ministic case) and Lemma 3.3.17 that for n = 6 and 7, there exists a V-shaped

(in mean) optimal sequence of the form (1,3,...,2)..

We now derive a sufficient condition for V-shapedness of optimal sequence

for ordered processing times,

Theorem 3.3.20 : If for any three jobs r, s and ¢ with g, > max{su,, g},

20, + (n — 1) (g, + ) > (n~ 5)A (3.3.27)

where A is as defined in (3.3.8), there exists an optimal sequence w = (7, ...,
7o) which satisfies

(1) m = 1,

(1) V-shaped property in mean, and -

LIPS

(148} if p; ="ppny,, then o3, 208 (0F, S0f Jfori<3(i23+41).

Proof : (i) follows directly from Theorem 3.2.6. (ii) and (#4i) can be proved

using the same arguments as in the proof of Theorem 3.3.1. - | N

Remark 3.3.21 : Note that condition (3.3.27) is weaker than the condition
(3.3.9). |
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3.4 LOWER BOUND, DOMINANCE CRITERION
AND AN ALGORITHM

Here we first discuss on the derivation of lower bound for the expected CTV
which is used in Subsection 3.4.3 to develop a branch-and-bound algorithm for
the stochastic CTV problem with general job processing times. In Subsection
3.4.2, we derive a dominance rule for fathoming partial sequences in the pro-
posed algorithm to reduce the computational effort required by the algorithm.

Improved branching procedure for ordered processing times based on the results

of Section 3.3.3 is also discussed.

For a partial or complete sequence «, let

E;(a) = Expected completion time of job j for o
(Note that F;(a) is used in the earlier sections to denote

the expected completion time of jth job in a),

E(a) = Average of expected job completion times for a,

V.(a) = Variance of the expected-job completion times for o,
ElV(a) = Expectation of the variance of job completion times for «,
Epnin(a) = Minimum average of the expected job completion times for

the jobset o,

Also, for a complete sequence = of the form 7 = (a, 8) (a, 8 # ¢), we define

Ea(m) = 1 Ljea Bj(m) and Eg(7) = 7 T, g Bj().

3.4.1 Lower Bound on Expected CTV

Derivation of lower bound plays an important role in the development of
algorithm. In the deterministic CTV problem, lower bound on CTV has been
studied by De, Ghosh and Wells {1992], Prasad, Manna and Arthanari {1994]
and Mittenthal, Raghavachari and Rana [1994] and it is effectively used to devise

" approximate and exact algorithms. As done in the deterministic case, we derive
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lower bound on the minimum expected CTV and use it in the development of a

branch-and-bound procedure.

Recall (refer to Lemma 3.2.1) that for any sequence o = {71, 73,...,7n),

BV(m) = Vi(m)+ - Y

Vulm) + %T(ﬂ'aﬂ) ( say ) (3.4.28)

{

where V() is the variance of expected job completion times for the sequence 7

and w, = Xr—1)(n—-r+1)forr=1,2,...,n

In order to find a lower bound for the expected CTV, we treat the terms
Vu(mw) and T(o, m) separately, that is, we derive lower bounds separately for

Vi(r) as well as T'(o, w).

It can be seen from the structure of T'(o, 1) that the positional weights w,’s
(coefficients of o*,'*:.r"s) are independent of the jobs at different positions, Therefore,
one can easily obtain (using a result (page 261) of Hardy, Littlewood and Polya
[1952]) a lower bound for T'(e, w) by minimizing the same. Whereas, in order to
derive a lower bound on V,(w), we use directly the results of the deterministic
CTV problem and its lower bounding procedure (frel’er to Subsection 2.9.1 of
Chapter 2) by simply replacing the fixed job processing times by the mean job

processing times.

The lower bounds for V, () and T'(o,n), 50 obtained, together gives a lower

bound for the expected CTV, E[V(=)).

Lemma 3.4.1 : For a sequence 7 = («, 3), with |a| = &,

WV(m) = W)+ (s = B)V,(8) )
MR e ) - S - E@)] . (3.4.20)

n JEQX

=l
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Proof : Using variance partition formula, we can write

1€ ief

+*k(nn_ k)* [Ea(ﬂ). — Eﬁ(-:r)r : (3.4.30)

Observe that
E(r) = Efa) forica (3.4.31)
= > u;+E(B) foriep. (3.4.32)

JEX

Consequently,
Ea(n) = FE(a) (3.4.33)
and Eﬁ(?r) = E#;+E(ﬁ) (3.4.34)

jeQx

Therefore, we get, using equations (3.4.31) to (3.4.34),
- " 2
) [Bi(m) — Ea(m)] = kVi(a) (3.4.35)
i€

and Zf; [Ej(m) - Eg(m)]" = (n = k)Vu(B) (3.4.36)
j€

It

Finally, we get (3.4.29) by combining the equations (3.4.30), (3.4.33) to
(3.4.36). |

Hence the Lemma holds. - ||

The following result gives a lower bound on the expected CTV for an arbitrary

completion of a given partial sequence.

Lemma 3.4.2 : Let a be a given partial sequence with || = k and 7 = (a, 8)

be an arbitrary completion of c. Then

nE[V(x)] > _W,,(a) + ijwra?,, +(n —k)Vu(8)

r=1 T
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2

kn = k) | _

+ (ﬁn 9 | Bla) - 2. Pi_Emin(ﬁ)}

L JEXX

+ ). wo; (3.4.37)

rek41
where T = (?Tl,ﬂ'g,... ,Iﬂ'n),
Vu(B) = alower bound for the variance of expected completion

times for the subproblem with jobset as 3,
(Tkg1,...4Ta) = a permutation of jobs in 3 satisfying

the property that w, > w, = ¢? <o?

forallr# sandk+1<r,s<n,

Proof : For the sequence m, we have from (3.4.28),

nkV(w) = nV(r)+T(c,n). (3.:4.38)

Using Lemma 3.4.1 and following the definitions of._‘l‘_fﬁ(ﬂ) and E_’m;,,,(ﬂ), we
get

nVu(w) > kVu(a)+ (n - k)Vi(B)

- 2
kin — k) | - _
) Ela)- Y Ilj—'Emin(ﬁ)] . (3.4.39)
L | jexx |
We also have,
| k n
T(o,7) = Y wol + Y wa?. (3.4.40)
- r=1 - =kt |

Note that for giveﬁ a, the first term on the right-hand-side of the equation
(3.4.40) is completely determined. The second term on the right-hand-side of the
same equatioh involves the jobs in @ only and is minimized (refer to page 261 of
Hardy, Littlewood and Polya [1952]) by allocating the jobs as per (Tig1y+s.yTn)
(a permutation of the jobs in 38) satisfying the property that w, > w, = 02 < o2
forallr#sandk+1<r,s<n, |
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Thus,

]

k

T(e,w) 2 > weol + Y wol, * (3.4.41)
r=l r=k+1

Finally, combining the inequalities (3.4.39) and (3.4.41), we get the inequality

in (3.4,.37). I

Remark 3.4.3 : Note that V,(0) is a lower bound on the variance of the
expected completion times for the subproblem with jobset as 8. This can easily
be obtained using the lower bounding scheme for the deterministic CTV problem
detailed in Subsection 2.9.1 of Chapter 2. We take the scheme of Mittenthal,

Raghavachari and Rana [1994) for the purpose.

Remark 3.4.4 : It is well known (see Smith [1956], Conway, Maxwell and Muller
[1967]) that for a given jobset, the average of (expected) completion times is
minimized by SPT (SEPT) sequence. Thus E,,(8) is simple to workout.

Remark 8.4.5 : The lower bound given by (3.4.37) corresponding to a partial
sequence a with || = n — 1, is the expected variance of the completion times

for # = (o, j) where N\ a = {j}.

3.4.2 Dominance Criterion

The f{ollowing result gives a dominance rule for fathoming partial sequences

which is used in the development of an algorithm presented later in Subsection

3.4.3.

Lemma 3.4.6 : Let o, and a; be two given partial sequences f:ontaining the
same jobs. Also, let ® = (ay, 8) and 7w’ = (a3, 3) be the identical completions

of a; and ar, respectively for any arbitrary partial sequence 8. Then

EBV(m) < BV(")]
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KBV (e)] - E[V(ea)]) + 22X 3 - 1202, — a2

r=1
k(n — k) ¢ - i
< = - .) B(on) ~ B(aus))
12 20 #i+ 2Enin(B) — E(on) — E(as) (3.4.42)
JEQY, )

where = (T, F2y...,Tpn),

w' = (my, Mgy, T,

and k= |oy| = |ay]

Proof : For any sequence =, we know from the relation (3.4.28) that

nEV(m)] = aV,(x)+T(c,n) (3.4.43)

By Lemma 3.4.1 ,ﬁ we know that

nVu(r) = kVu(ou) + (n~ k)Vi(B)

12
kin —k
M) | Be)- 3w BE) . (@4
n 184 ]
Next,
k _ _ n o -
o, x) = Z_(r 1)(1?1 T+1)ﬂ'f-,+ 5 (r 1)({“:1 r+1la:r
re=1 r=k+41
=D k=r+1) , n-—k 2 o
— ;* ) Ox, Y3 ;(rml) l::".*llr,-
yy zlmmrt o, © (3.4.45)
reck4l n
Using the relations (3.4.44), (3.4.45) and (3.4.43), we get
nElV(r)] = kE[V(en)]+ (n — k)V.(B)

pH =) g m)—- S ;- E(0)

n jeQx




oy Tzt l) (3.4.46)

Similarly, we can get

nklV(r')] = kE[V(cs)] + (n~ k)V,(B)

k(n — &) | 1’

LA - 2 Hi—
i JEOY, il

n--»l. . 2

— 1rgiﬂ—wl):::r .
M (r=Dn-r+1) ,
+ 3 (r=1)n-r+ )a;‘:;; (3.4.47)
re=h+1 n

Note that Tieq, #; = Zjea,#tj and og = o, forr =k + 1,k +2,.
Therefore, using the equations (3.4.46) and (3.4.47), we have

n{E[V(r)] - E[V(=')]}
n—k&

= k{E[V(ay)) - E[V (az)]} — 2(r=1)}ox, = o)
kin —

-+

D) [B(en) - E(a,)]

B(en) + B(en) -2 3 s~ 2B@) . (3.4.48)

Thus,
BV ()] < E[V(x')

-

if L{B[V(cxl)] ~ E[V(oxs))} + — Z (r —~1)*(0}, — o%1)

k(n — L){ B(en) - —(D’*)l

m'

L

b

12 Y py +2B(B) = E(en) - E(ea)]| (3.4.49)

L iEQ: - J
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holds any arbitrary partial sequence 8. It may be easily observed that

2 Y s+ 2B(8) ~ B(en) - E(an) > 0. (3.4.50)
JEQ

- Hence, the inequality (3.4.42) follows directly from the equation (3.4.49). H

Corollary 3.4.7 : Let oy, a; be defined as in Lemma 3.4.6 and G, (G;) be
the set of all completions of ¢y {a3). If the condition (3.4.42) holds, all the
sequences in &y are dominated by those in Gy with respect to expected CTV.

3.4.3 A Branch-and-Bound Algorithm

At the present, there is no exact procedure available to solve the stochastic
CTV problem. In the following, we propose a branch-and-bound algorithm with
general job processing times using (¢) the lower bound and (i7) the dominance

rule derived in Subsections 3.4.1 and 3.4.2 respectively.

We represent a node in this algorithm by a partial sequence. A node is said
to be of order &k if the cardinality of the corresponding partial node is k., The
node of order zero is denoted by (). Every node of order &£ 2 1 is denoted by its
corresponding partial sequence, say, o. A descendant from a node o« of order k
(0 <k <n~-1)is(a,j)for somej € N\« and there arein all n~k descendants
from the node . A node a of order (0 € k < n~—1)at any stage is said to

be active, if it has no descendant till then. At any stage of computation, let W

be the set of all active nodes.

Step 1: Set W = {(.)}, @ = (.), MECTV = (jen ;) + maxjey a? and
k= 0. Go to Step 2.

Step 2: Generate n — k descendants of o of the form (t,j) for j € N\ c.
Let 1,72, .-+, Ya—k be the nodes thus generated. Update W « (W \ ) U
{Y1,721+++s Y-k} Foreachv; (1 €i <n-£k), compute .lo'.'éer bound given

by Lemma 3.4.2. Go to Step 3.
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Step 3: (a) f £k = n — 2, let Lo be the minimum of the lower bounds cor-
responding to the nodes v, and v, If MECTV > Ly, set MECTV =
Lo and delete all the nodes in W with lower bound not less than Lg.
(5) Invoke the dominance rule given in Lemma 3.4.6 and delete all the
dominated nodes from W. Choose a node @ € W having the smallest
lower bound and let & = |a]. If £ < n —1, go to Step 2. Otherwise go to

Step 4.

Step 4: The sequence a is an optimal sequence and M ECTYV is the correspond-
ing expeclted CTV value,

Remark 3.4.8 : If any problem instance satisfies the sufficient condition for V-
shapedness (refer to Theorems 3.3.1 and 3.3.3 for general processing times and
Theorem 3.3.20 for ordered processing times), an algorithm analogous to that
of Manna and Prasad [1994] (for the deterministic CTV problem, detailed in
Subsection 2.9.2 of Chapter 2) will be more appropriate.

Remark 3.4.9 : If o{ = max; ¢}, the algorithm starts with & = 1 and the initial
node as (1) (refer to Theorem 3.2.6).

Remark 3.4.10 : For the problems with ordered processing times, the algorithm
can be suitably modified to get substantial reduction in computation using the
Theorems 3.3.11 and 3.3.5 as follows :

t) Initialize the algorithm (in Step 1) with & = |22] + 1 and W as the set
of all LEPT partial sequences {of order k) with largest job at the first
position, that is, W = {a: o =1(51,72,73,...,7%} satisfying j; = 1 and
Big 2 By 20 2 Hy )

11) Inorder to generate the descendants (in Step 2) of anode o = (F1y720 0y Jk)
such that j; # 2 and |a| < n — 2, we make use of the Theorem 3.3.5. For

such an «, it is enough to consider the {n — k — 1) descendants — (a, j)

for j € N\ (a U {2}).
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i#i) From any node o with |a| = n—2, we generate (using Theorem 3.3.11(iii))
the only descendant («,j) where p; < y; and N\ @ = {3, 5}.

3.5 DISCUSSION

In this chapter have studied the CTV problem with random (stochastic) job
processing times with the objective as minimization of the expected value of the

completion time variance. Like the deterministic version, this problem is also

NP-hard.

We have derived several sufficient conditions (which are quite likely to hold
in real life) for V-shaped property of optimal sequences for general random pro-
cessing times as well as some special cases of the problem. A simple but stronger
sufficient criterion for V-shaped optimality has been obtained for the special case
studied by Vani and Raghavachari {1987]. We have introduced a new special case
with the realistic assumption that the job processing times are ordered, that is,
if i > p; for any ¢ and j, then of > o}. A numerical example has been provided
- to show that even under this assumption, there may not exist a V-shaped opti-
mal sequence. However, we obtain several results on the properties of optimal
sequence and prove the existence of an L-G-S optimal sequence w = (my,...,m,)
satisfying (¢) the first job is the largest job, (#1) y, 2> ... 2 Hang
(¢2) finn., £ pn,. It is shown that V-shaped optimality holds good for small

problems (n < 7) if the processing times are ordered.,

Finally, we have presented a procedure to derive a lower bound on the ex-
pected CTV and a dominance rule (applicable to partial sequences) which are
in turn used in the development of a branch-and-bound algorithm to solve the
stochastic CTV problem with arbitrary job processing times. We have also dis-
cussed here the required modifications in the algorithm for ordered processing

times in order to avail substantial reduction in the computation involved. |
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CHAPTER 4

HEURISTIC METHODS : DETERMINISTIC AND
STOCHASTIC CTV PROBLEMS

4.1 INTRODUCTION-

We have already discussed the procedures for exact solution of the deterministic

and the stochastic CTV problems in Chapter 2 and Chapter 3 respectively.

Since both the problems are NP-hard, it is unlikely that we can have efficient
(polynomial time complexity) algorithm in order to derive exact optimal solution

for the same. Therefore, it becomes essential to develop heuristic methods to

derive near optimal solutions.

For the deterministic CTV problem, Eilon and Chowdhury [1977] are the first
to propose heuristic methods. Subsequently, many researchers have contributed
towards this, For reference, see Kanet [1981], Vani and Raghavachari {1987],
Gupta, Gupta and Bector [1990], Mittenthal, Raghavachari and Rana {1993},
Gupta, Gupta and Kumar [1993], Manna and Prasad [1994] etc.

However, until now, there s no heuristic method available for the stochastic
CTV problem.

In section 4.2, we present the preliminary results concerning the position
of the smallest job in an optimal sequence for the deterministic CTV problem.
These results are used later in this chapter o describe the heuristic of Manna and
Prasad [1994]. Section 4.3 is devoted to the heuristic methods for deterministic
CTV problem. Here, we present the available heuristic methods and compare
their performance by numerical experimentation. In section 4.4, we propose a
heuristic procedure for the stochastic CTV problem with general job processing

times and assess its performance again based on numerical investigation.
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4.2 PRELIMINARY RESULTS

In this section, we present some preliminary results to derive lower and upper
bounds for the position of the smallest job in a V-shaped optimal sequence for

the deterministic CTV problem,

Lemma 4.2.1: Let & = (m,m, ..., 7M1, T, Tis1,. .., Ty) be a sequence and =’

the sequence obtained from 7 by interchanging the two jobs m; and 7;4;. Then

n —1

g[v(ﬂ') = V(7)) = (pr; = Priy) | Clir(7) = C() 2n (Pr, = pﬁ“)] |

This can be easily proved by observing that

(1) Cir(7') = Clpy() for r # 1,
(1) Cly(7') = Cla(7) + (Priss = Pri)s

(i) C(n') = C(7) + 3(Priss = Prc)-

The following result gives a necessary condition on the position of the smallest

job in an optimal sequence.

Theorem 4.2.2 : Forn > 5, in any optimal sequence of the form (1,...,2), the

smallest job does not lie in 2nd or 3rd positions when it is unique.

Proof: Let # = (m,m2,..., 7)) be an optimal sequence with 7y = 1 and 7, = 2.
Suppose w3 = n, that is, the smallest job takes third position in w. Now consider

the sequence n’ obtained from = by interchanging the jobs 73 and 7y, We have

from Lemma 4.2.1,

g[V(':r) = V(x")] = (pxy ~ Pm,) |Clap() = C () n;ll(P” ~ pﬂ)] '
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It can be easily verified that

n [C[al(ﬂ') - é(ﬂ') ng;l (Pn; — Py )]
= (Pry = P2) = {252(Prs + Px) + Liss(n — 5+ 1)ps,)
< {,

Since pyy — pr, < 0, it now follows that V() — V(=) > 0, that is, o' is
strictly better than or which contradicts the optimality of . Therefore 73 # n.,

Similarly, we can argue that m, # n. - |

Remark 4.2.83 : For n <5, Schrage [1975] has derived optimal sequences.

We now introduce two sets of indices which are used in deriving lower and up-
per bounds for the position of the smallest job in an optimal V-shaped sequence.

We follow the usual convention that 3°_ = 0ifa > b.

Define

Up = [Pa + mei(r = 2)pr + (b - I)Pn} — [P2 + Z:;I:H("" —k+ I)Pr]

T HEI (pn-k+2 - pn) |

ford <k<n-2

and

vk = [p3 + Trin pya(r = 1= E+ 1)ps| =[p2 + (n ~ k + 1)pa + ZPFH3(r — 2)p,|

"Eﬁ"l'(Pk “pn)

for5<k<n-—-1.
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Lemma 4.2.4 : Both u, and v, increase with &,

Proof : For any k, 4 < k <n - 3, consider

Ukl — Ui
k+1 k y
= [2o(r=2)p, =D (r = 2)p;| + pn
r=4 r=4 ‘ o
[ n—-1 n—1 A n - 1
- E (r—k)pr — Z (r—4k+1)p| + 5 (Pr—k+1 — Prn—ks2)
Lr=k+2 " or=k+1 _4
- n—1
— (k _ I)pk+1 T 2Pk+1 + Z pr+Pr t 9 (pn-—k—}-l '""' ank—l-Z)
‘ r=kt2
2 n— 1
= (k+1)pr4a1 + Z pr+pr + > (Pr-k41 — Pr-k+3)
r=k+2
> 0.

uy T k.

Next, for any k, 5 <k < n—2, it can be similarly seen that

- n—1
Ve41 — U = (n ~k+ 2)Pn-—l’c+2 T E pr + pr + > (Pk — Pk-i-l)
r=n—k+3
> 0,
Vi T k.

This completes the proof.

Lemma 4.2.5 : Let

4<k<n-2
and
U = 55@2—-1“ . Uk ?‘_ 0}
Then U - L 2 2.
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Proof : We can write vpyq — uy

= [E0)pga(r =7 = F)pe — Thes(r — 2)pi]
~ [Crk i (r = 2)p, —~ TRzhyy(r = b+ 1)y
-1 -
— 22 {Prs1 + Pr-kt2)

Rearranging the terms on the right hand side; we get

Vg1 — Uk
= [Cron-kealr = 2)pr = Thea(r - 2)p,-]
[ = 2~ SISl k4 U]
—(n—k=2) ) o pr (0 =1) [Pae1 = (Phtr + Pr-ks2)/2]

It is obvious that the first and last terms are non-positive, whereas the second

and third terms are non-negative, -

Thus vks; < ug. In fact, it can be seen that vey; < ux. It implies that
vp41 < 0 and consequently U > L + 1. Hence the Lemma holds. ||

The result below gives lower and bounds for the position of smallest job in

an optimal sequence,

Theorem 4.2.6 : To minimize the CTV, it is enough to consider only V-shaped

sequences of the form (1,3,...,2) with the smallest job in one of the positions

L+1,L+2,...,U~-1.
Proof : Consider an arbitrary V-shaped sequence w = (7, mq,...,7,) with
m=1m=3 7, =2and 7, =n, |

Case (i) k = 3 : Suppose the smallest job is unique. Then we have, by Theorem
4.2.2, a better sequence with the smallest job in fourth position so that it can be

treated as case (i1). If the smallest job is not unique, then 4 is also one of the
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smallest jobs and hence case (i) applies here.

Case (ii) 4 £ k £ L : Obtain the sequence ' from 7 by interchanging the jobs
mr and mg41. We will show that V(n) > V(o). From Lemma 4.2.1, we have

. ~ 1
(p“ﬂ'.l; “ p‘-"-’k+l) [C[H(TI") = C(ﬂ-) - ngn (pﬂ'; - pﬂ'j.+1)] !

Vim) - V(') =

NOW, n [G[k](ﬂ') — C'(ﬂ') ﬂg';l (P’ﬂ'k "'P?rk-n)

|
= [ps + S50 = Dps, + (k= D)pa] — [Trzkys(n =1+ Dpe, + 13

n—1

(pﬂ -"pﬂu-l)

[

< [po + Shealr = 2)pe + (k= Vpu] = [pa + Sichalr — b+ )]
"|‘E';T!'(pn—k+? _'pﬂ)
= UL,

The above inequality holds since p,’s are in non-decreasing order, the sequence
7 i8 V-shaped with smallest job in k-th position, and pp-1 < pay, S Pr-ks2.
Next, since k < L, u <up <40.

V() - V(n') 2 0.

So that n' is at least as good as -w. This interchanging procedure may be

repeated until smallest job is shifted to the (L + 1)-th position.

Case (1i1) k > U : Since k 2 L, vy 2 vy 2 0. Following similar arguments as
in case (ii), we can arrive at a V-shaped sequence 17 with smallest at (U — 1)-th

position such that n is as good as .

This completes the proof of the theorem. | |

Remark 4.2.7 : The above theorem enables us to confine the search for op-

timal sequence to a set of Zf;ﬂ“ ( ; q ) V-shaped sequences of the form

(1,3,...,2) only.
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Corollary 4.2.8 : If p, is sufficiently large, then (1,3,4,5,...,n—1,n,2) is an .

optimal sequence,

Proof : If u,_, <0, that is,

n+ 3 oy n—3
P22 p3t+ —5—pit ) (r = 2)pr = 2Py + —5—pn
r=>5

then, by performing pairwise interchanges repeatedly, the smallest job can be
shifted to the (n — 1)-th position. Now the result follows from V-shapedness of

optimal sequence. H

Remark 4.2.9 : It is evident from the above corollary that magnitude of the

larger jobs play vital role in the determination of optimal sequence.

4.3 HEURISTICS FOR DETERMINISTIC CTV PROBLEM

The heuristic methods, available in the literature, for the deterministic CTV
problem can be categorized into two classes, namely, ‘Basic heuristic’ and ‘Im-
provement heuristic’. The essential dillerence between these two is as follows.
Unlike a ‘basic heuristic’, an ‘improvement heuristic’ asks for an input (a se-

quence of all the jobs for a given problem instance) to initialize the method and

gives an improved sequence as output.

In this section, we present these procedures and investigate their performances
by extensive numerical experimentation. Subsequently, we also study combina-

tions of these procedures for possible improvement in solutions.

4.3.1 Description of Heuristics

We present now the heuristic procedures available in the literature and for

the convenience of reference we denote them by H1, H2, ... etc.
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H1 : ‘Method 1.2’ of Eilon and Chowdhury [1977]

Eilon and Chowdhliry {1977] have developed five heuristics for the purpose
and found that the ‘Method 1.2’ is best among them. Here we consider the

‘Method 1.2’ only.

This method uses V—shaped property and the conjecture of Schrage {1977} on
the position of the largest {our jobs. It starts with a two-sided partial seqﬁence
(1,3,4,...,2) and subsequently assigns the largest unscheduled jobs to the unas-
signed extreme right and left positions alternately until all the jobs are allocated,

Therefore, the method produces a sequence ©# = (7, m2,...,7,) as follows :

T & 1, mp &~ 3, 73 « 4, and 7, « 2,
J — 4,
For I = 4 to [-;}-J+1Da
Je— J+1,
Mn—I143 +— J.
J — J+1,
Ty J.
End { of [ }.

It n is odd then 7(gj+2 ¢« n.

- Remark 4.3.1 : This method, H1, considers only the order (by processing
times) of the jobs and does not take into account the actual magnitudes of the

processing times.

Remark 4.3.2 : The solution (sequence) of H1 will have the position of the
smallest job, n, almost at the middle of the sequence and the larger jobs are evenly
distributed on both the sides of job n following the V-shaped property. In an
optimal sequence, if the smallest job occurs closer to either end of the sequence,

for example, when p; is very large (sce Corollary 4.2.8), the performance of
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H1 will not be satisfactory. However, the method appears quite appealing for

homogeneous job processing times.

H2 : ‘SMYV Procedure’ of Kanet [1981]

The procedure involves n stages and builds on V-shaped partial sequence by
successively scheduling the smaller jobs one at a time in the following manner.
In the first stage, it starts with the partial sequence a containing the largest job
only, that is, c = {1). At any stage k(1 € k < n}, a V-shaped partial sequence
is represented by o = (o), k, a®) where (), al?) is a permutation of the jobs
in {1,2,...,k—1} and either a{") or a(? can be empty. From a, the procedure
generates two partial sequences B, and 8, where 8, = (e’ k + 1,k,a(?) and
8, = (aV), k k4 1,a®). Note that B, and 3, are V-shaped partial (complete
if £ = n — 1) sequences of the jobs {1,2,...,k+ 1}, Between 8, and 3,, tiic one
having smaller CTV value (defined for the jobset {1,2,...,k+1}) is retained to

determine the position of the next larger job as above until a complete sequence

having smaller CTV value is obtained.

Let V(a) denote the CTV value corresponding to the jobset o for the partial

(or complete) sequence a. Then the procedure is as follows :

a = {1).
FFor k=2 ton Do
Let o = (V) k — 1, al?).
B, — (& k k- 1,al),
By (e k =1,k aP),
If V(B,) < V(B,) then a « B,
Else a ~ 3,.

End { of & }.
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Remark 4.3.3 : Besides the ordering of the jobs, the procedure, at any stage
k, decides the position of job % given o (a sequence of the jobsin {1, 2, ...,
k — 1}) by making use of the actual magnitudes of the largest k jobs. However,

it fails to utilize the magnitudes of the remaining smaller jobs.

Remark 4.3.4 : Kanet [1981] has claimed that the ‘SMV Procedure’ (H2) pro-

duces optimal solution for n < 5. The following numerical example contradicts

the claim.

;11 2 3 4 5
p; {10 10 10 10 1

The procedure (H2) involves the following steps :

V(B,) = V(B2) = a=(4,3,2,1)
k=5 B, =(54321)
' B, = (4,5,3,2,1)
V(B,) = 200 > 140.96 = V(B;) = & = (4,5,3,2,1)

Thus, H2 yields the best sequence as (4, 5, 3, .2, 1) and 140.96 as its CTV
value. But, an optimal sequence (1, 3, 4, 5, 2) (see Schrage [1975]) has the CTV

value as 111.44. Hence, we get a contradiction to the claim.
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H3 : Heuristic Method of Manna and Prasad [1994]

It is based on the results derived in Section 4.2 of this Chapter, The heuristic
generates (U — L —~ 1) V-shaped sequences with the smallest job taking the
positions L+ 1,L +2,...,U — 1 and, it selects the best among these sequences.

This heuristic method considers the sequences only of the form (1,3,...,2).
For each k, L +1 <k < U —1, it gives heuristically best sequence say n{¥) with
the smallest job in k-th position. For the algebraic purpose, hypothetical jobs

with processing time p,._, are created.

For any particular position k, L+ 1 < k £ U -1, the seciuence (1,3, ...,n,
..., 2) with job n in the k-th position and (n — 4) hypothetical jobs in all the

positions except 1, 2, k and n is first considered. The hypothetical jobs are

replaced by jobs 4, 5,...,n —1,

The best scquence among these (U — L — 1) sequences w*Vg is taken as the

heuristic solution.

Let us consider an hypothetical job labeled as {(n 4 1) such that pp41 = pp-1.
Let L and U (from Lemma 4.2.5) be known., We call a position in a sequence as
‘unscheduled’ if it is occupied by a hypothetical job, By ‘putting an actual job

in an unscheduled position’, we mean replacing a hypothetical job by an actual

job. Now we present the heuristic,

Fork=L+1toU--.l Do
&) = (r, o) withm =1L, my =3, m=n,m, =2
and 7, =n+1forr#1,&n
For I=4to N-1 Do
If no unscheduled position on the left of position &,
put job [ on the last unscheduled position in ¥,
If no unscheduled position on the right of position &,
put job I on the first unscheduled position in =),
- Otherwise | | o |
Obtain 7' from 7%} by putting job [ on the first
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unscheduled position in w¢%),
Obtain 7" from 7*¥) by putting job I on the last
unscheduled position in 7).
If V(#') < V(n") then 7% = 5/
Else 7w(%) = g,
End {of I }.
End {of k }. _
Select 7r* among the 7¥)’s such that V{ar*) = min e V(7*).

Numerical Example : We illustrate the above heuristic by the numerical
example (Problem No, 3, Kanet[5], pp1457).

Jobs 1 2 3 4 5 6 7 8
Processing |16 10 ¢ 8 7 6 4 2
times |

It can be seen that [ = 4 and U = 6. This implies that in an optimal V-
shaped sequence, smallest job must lie at 5-th position, that is, k can take only
value 5. Hence the heuristic starts with 7®) =(1,3,9,9,8,9,9, 2)

I=4:7"=(1,3,4,9,8,9,9,2) V(m') = 142.609375
| " =(1,3,9,9,8,9,4,2) V(x") = 143.109375
(8 =(1,3,4,9,8,9,9,2)
I=5:7"=(1,3,4,5,8,9,9,2) V{n'} =172.75
' =(1,3,4,9,8,9,5,2) V(n") = 166.609375
~®) =(1,3,4,9,8,9,5,2)
I=6:="=(1,3,4,6,8,9,5,2) V(n') = 187.359375
x" = (1,3,4,9,8,6,5,2) V(x*) = 187.239375

%) = (1,3,4,9,8,6,5,2)
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I=17:7%=(1,3,4,7,8,6,5,2)

= =(1,3,4,7,8,6,5,2)

We observe that this solution, n*, is optimal for the problem.

Remark 4.3.5 : It may be noted that Y3 takes into account not only the order

but also the magnitudes of all the processing times.

H4 : Heuristic Method of Vani and Raghavachari [1987]

This method takes a V-shaped {complete) sequence as input and improves
upon it in (n — 3) iterations. In-cuach iteration, it checks sequentially the desir-
ability (with respect to CTV value) for interchange of two jobs chosen suitably.

The method is given below :

7w = (7, Ma,...,Ty) is a V-shaped sequence.
with my = 1 and 7, = 2.

k+—-l,'q+—l, m « 3.

Repeat

Obtain a sequence 7' from

by interchanging the jobs mz4+y and m—_,.
fV(r)SV(n')thenk~k+1, m+=—m+1,
Elsew e—n', ge—qg+1, mem+1,

Untilm =n.
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Remark 4.3.8 : The performance of the method is likely to depend on the input

sequence. Vani and Raghavachari [1987] suggests this input be taken as a ‘good’

V-shaped sequence,

Remark 4.3.7 : We note that given a V-shaped input sequence, the resultant
sequence (obtained from H4) need not be V-shaped, although it may have ob-

jective value very close to that of optimal one. Consider the example (problem

No. 8, Eilon and Chowdhury [1977), pp571). Here n = 10 and (p1, ps, p3, P4, Ps,
Pe, P71, P8y Po, Pro) = (100, 41, 25, 21, 13, 10, 9, 8, 7, 5). If one starts with the
V-shaped sequence (1, 3, 4, 5, 6, 7, 8, 9, 10, 2) as the input, this method gives
output sequence as (1, 3, 4, 10, 7, 8, 9, 6, 5, 2) which is not V-shaped. However,
it’s CTV value is 1348.01 against the optimal CTV value of 1336.

Hb5 : Heuristic Method of Gupta, Gupta and Bector {1990]

The present melhod, again, at Step 1, asks for a V-shaped sequence to ini-
tialize the procedure, and subsequently exploits the principle of feasible com-
plementary pairs (IFCP) (refer to Bector, Gupta and Gupta [1988]) to effect

improvement.

The d;scription of the method involves the following terminology :

Let w = (my,74,...,m) be a V-shaped sequence with Cp(7) < C(w) <
- Clrgqy{m) for some 1 < r < n ~1. Also, let = (my,72,...,m) and 8 =

(?rr—i-lj Met2yes 17rn)*

V-feasible Sequence : The sequence 7 is called V-feasible sequence if a (3)
is in LPT (SPT) order.

Feasible Complementary Pair : Let n; € a and 7; € 3 and o' be a sequence
obtained from = by interchanging the jobs #; and 7;. A pair (7, ;) is said to
- be Feasible Complementary Pair (FCP) if (i) px; < px;, (#3) #’ is V-shaped and
(122) V(n') < V(x). | |
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We now present the heuristic method below :

e =2 =4 B S R e

10
11,

12.

13.

Find an initial V-shaped sequence =,

Is w V-feasible ? If not, go to 8.

Is there any FCP available in 7 7 If yes, go to 7.
Find its dual #° and 7w « =D,

Is 7 V-feasible ? If not, go to 13.

Is there any FCP available in « 7 If not, go to 13.

Determine the sequence iteratively by interchanging the jobs in a FCP
(select the pair with most negative value) until such time there is no

further FCP available, and go to 4.
Find its dual #? and n - 7%,

Is w# V-feasible ? If not, go to 12,

Is there any FCP available in o« 7 If not, go to 13.

Determine the sequence iteratively by interchanging the jobs in a FCP

(select the pair with most negative value) until such time there is no

further FCP available. Go to 4.

Obtain V-shaped sequence, 7’ from 7 by arranging the jobs preceding
C(x) in LPT order and the remaining set of jobs in SPT order, = + =",
If = V-feasible ? If yes, go to 3.
STOP, .

Remark 4.3.8 : Gupta, Gupta and Bector [1990} have concluded that the
performance of this heuristic, H5 varies with input sequence. Specifically, they
have recommended the use of the heuristic of Kanet [1981], namely H2, to obtain

" an input sequence for this method.

Apart from the above methods, one may refer to Gupta, Gupta and Kumar
[1993) and Mittenthal, Raghavachari and Rana [1993] for heuristic solutions of the
deterministic CTV problem. The procedure of Gupta, Gupta and Kumar [1993]
is based on genetic algorithms (refer to Goldberg [1989]) and that of Mittenthal,
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Raghavachari and Rana [1993] makes use of the concept of simulated annealing
(refer to Ackley [1987]). Both of these procedures have potential to address more
general problem involving non-regular penalty functions. However, successful
implementation of these procedures depend upon careful determination of the

parameters involved therein. We omit these heuristic methods from evaluation

or comparison of performances here.

4.3.2 Comparison of Heuristics

We shall now compare the performance of the heuristics H1 to H5 by numer-
ical investigation. It may be noted that H1, H2 and H3 are ‘basic heuristics’,
and H4 and H5 are ‘improvement heuristics’. Initially, we consider only H1, H2
and H3 for comparison. Later, in view of the Remarks 4.3.6 and 4.3.8, we utilize
H4 and HS5, for improvement of solutions generated by H1, H2 and H3, to
assess and compare their effectiveness. The basis of comparison is the deviation

of the objective value given by a heuristic from the optimal one.

The investigation involves 70 numerical problems generated randomly with
the number (n) of jobs varying from 10 to 70. Ten problems are generated
for each value of n. The processing times are drawn from the discrete uniform
distribution with sample space as {1, 2, ..., 50}. For each problem, the heuristics
H1, H2 and H3 are applied, and an exact optimal sequence is derived using the
algorithm of Manna and Prasad [1995] (refer to Chapter 2).

For a given problem, let ¥ denote the optimal objective value and V}, the

objective value given by a heuristic i, The percentage deviation of ¥} from V; is

Vi - Vo
— - X 100.
7 X 10

By

We take E, as the performance index of the heuristic A and it is used for
comparison of the heuristics. The performance index is evaluated for the heuris-
tics H1, H2 and H3 in all 70 problems; and the values are summarized in the

Tables 4.3.1 and 4.3.2.
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Table 4,3.1 : Average of Performance Index Values
| Average of E for heuristic =
n CH1 2 H3 ’
10 | 0.0657 0.0043 0.0000
20 00459 | 0.0154 0.0014
30 0.0156 0.0954 00005
10 | 00139 | 00164 |  0.0004 l
50 | 0.0088 | 00162 |  0.0001
60 0.0090 0.1134 0.0001
|70 00046 | 02083 | <0.0001 |

Table 4.3.2 : Distribution of Performance Index Values

Heuristic—[

Number of Problems Solved with E,

(k) |=o0]<001[<005[<010[<050]<1.00| E, | E,
H1 | 36 42 61| 65| 70| 70| 0.2816 [ 0.0233
| H2 39 52 55| 58 65| 69| 1.5282 | 0.0866
H3 40 70 0] 70 70| 70 0.0085 | 0.0003

A

Remark 4.3.9 : On comparison of the heuristics H1, H2 and H3, we have the

following points :

(a) H3 is the best under any basis of comparison possible from the Tables 4.2.1

and 4.2.2,

(b) H1 and H3 exhibit decreasing trends (refer to Table 4.2.1) in average per-
{formance index values, that is, the average performance of these heuristics

become better for larger problem sizes,

(c) Itis iﬂteresting to note that H3 solves over 57% of the prqbléms optimally.
For all the problem instances, the percentage relative error. Eyz < 0.0085%

and the averall mean of Ey3 is only 0.0003%,
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(d) All the three heuristics perform almost equally well if 1% deviation is al-

lowed,

(¢) When no deviation is allowed, both H2 as well as FI3 are marginally better
than H1,

(f) Let v4 denote the conditional mean of the distribution of Ej, given E} > Q.
vy, provides an idea on the performance of the heuristic A when the heuristic

does not give an optimal solution for a problem. It is of interest to note
thﬂ.t Viga = 0.0008% < V1 = 0.0479% < Vypq == 01956%.

We now evaluate and compare the effectiveness of the improvement heuristics
H4 and HS as follows. Given any problem instance, we apply a basic heuristic
h (h = H1, H2, H3) to obtain a solution which, in turn, is taken as input for an
improvement heuristic A’ (A’ = H4, H5) to derive a final solution for the original
problem. Subsequently, we measure the extent of deviation of this solution from
the optimal one by E, for A/ = H4, HS5.

For this purpose, we have taken the same problem set used for the comparison

of the basic heuristics. The results are summarized separately for H4 and H5 in
the Tables 4.3.3 and 4.3.4 respectively.

Table 4.3.3 : Distribution of Ey4

Basic Number of Problems Solved with Ey, Max | Mean
Heuristic | =0 | <0.01 [ < 0.05] <0.10] <0.50 | <1.00| Exs | Enus
H1 | 37 16 68| 70| 70! 70 0.0750 [ 0.0105
H2 | 40 53 55| 58| 65 69 | 1.4157 | 0.0798
H3 [ 40] 70 70 70] 70|  70]0.0085 [ 0.0003
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Table 4.3.4 : Distribution of Egg

mic - Number of PmbEms Solved with Fys I Max | Mean
Heuristic | = <001 [<0051<0.10<0501<1.00]| Eys Es
) I i { R B - | A9 ]
| H1 | 4| e | 70 70} 70 70[0.0172]0.0032 |
H?2 40 5T 63 64 65 70 1 0.9055 | 0.0351 |
H3 l 40 | 70 70 70 70 7( |0.0012 0.0001 ?i

Remark 4.3.10 : In order to study the performances of H4 and H5, we refer
to the Tables 4.3.2, 4.3.3 and 4.3.4 and observe that :

(a) H4 is effective when the input sequence is obtained from H1 or H2,

(b) H5 can effect improvement on input sequence obtained from H1, H2 or
H3,

(c¢) H5 is superior to H4,

(d) The effectiveness of H5 is low for input from H2 when compared that from
H1 or Ha3.

4.4 HEURISTIC FOR STOCHASTIC CTV PROBLEM

We know that the stochastic CTV problem is also NP-hard (see Remark 3.2.3
of Chapter 3). In fact, it is more difficult compared to its deterministic version.
Thus, it becomes all the more important to study special cases, and develop
heuristic procedures which work satisfactorily. In Chapter 3, we have presented

several results to characterize some special cases of the problem.

In this section, we propose a heuristic procedure for the stochastic CTV

problem with general processing times and study its performance by numerical

experimentation,
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From the Lemma 3.2.1 of Chapter 3, it is known that, for any sequence & =

(ﬂ'llﬂlii KN ,7!'“),

EV(m) = Vu(m)+ -T(om)

where
V.(w) = Variance of the expected job completion
times for
1 Ti
and T'(o,7) = ~ > (r=D{n—r+1)ai.
r=l

The heuristic, initially, makes use of the Remark 3.3.2 (of Chapter 3) in order
to derive an approximate solution, and then attempts to ellect improvement on

the same by a straightforward adaptation of the heuristic H4 developed by Vani
and Raghavachari [1987] {refer to Section 4.3).

In order to describe the heuristic, we consider the two problems P1 and P2

defined as follows :
P1: Find a sequénce 7 3 V,(7r) is minimum.
P2 : Find a sequence 7 3 7'(o, w) is minimum.

We know that optimal sequence for P1 (P2) is V-shaped in mean (variance).
It is also known that although P2 is very casy to solve, P1 is NP-hard. However,
we can generate good heuristic solution for P1 using the methods for the deter-

ministic CTV problem which are discussed in Section 4.3, We take the heuristic
H3 of Manna and Prasad [1994] for this purpose.

We propose below the heuristic prﬁcedure. for the stochastic CTV-prob.lem

with general processing times.

Obtain a heuristic solution (sequence) 7! for P1 using H3.
~ Obtain an optimal solution (sequence) w(? for P2,

It E[V( 7)) < E[V( #™)) then 7 — (M,
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Table 4.4.1 ;: Performance of the Heuristic

Problem Value of
No. Data | Expected CTV
it 1 2 3 4 5 6 7 8 9 10| Optimal | Heuristic
Llpj: 90 82 80 66 63 58 13588.43 | 13588.43
o 2 14 26 1 10 20
2(p;: 28 23 21 17 17 14 931.72 |  931.72
o;: 4 7 3 5 1 4
3{u;: 93 71 69 43 42 17 5884.38 | 5884.38
o;: 15 20 10 13 5 1 |
4 |p;: 84 81 61 53 48 4l 8690.25 | 8690.25
o;: 3 18 14 8 6 12 |
5| u;: 97 97 88 87 76 64 60 57 27447.18 | 27447.18
o;j: 30 11 18 26 5 17 3 15
6 |pu;: 99 87 84 81 73 63 57 53 24498,13 | 24498.13
g;: 19 10 1 19 23 12 5 14
7 u;: 76 69 56 43 42 17 12 10 5008.01 [ 5008.01
g;: 10 10 5 183 5 1 7 3
8 p;: 99 91 84 81 61 53 41 34 | 18288.64 | 18288.64
o;: 33 30 3 18 14 8 12 2
9| pu;: 95 83 68 57 53 50 44 44 26 19 16426.96 | 16428.63
g;: 9 23 13 4 6 11 13 8 8 T
10| p;: 70 68 68 65 63 62 59 46 41 36 | 23943.82 | 23943.82
o;: 3 6 131 19 14 9 12 5 6
11 |pu;: 46 31 27 26 23 22 17 12 12 11| 2776.83 [ 2776.83
o;: 10 4 10 5 6 5 1 7 3 1 | I
12| pu;: 99 87 85 84 82 63 56 46 24 10 23605.22 | 23606.02
o;: 19 30 11 3 18 14 8 5 2 2 ]
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Else 7 « 73,
ke—0, g0 me1l,
Repeat
Obtain a sequence ' from =
by interchanging the jobs mx;41 and m,.,,
If E[V(n")] < E{V(r)) thenk —k+1, m —m+1,
Elsemr e—n!, ge—g+1, me—m+ 1.

Until m = n.

We now present the results of a limited numerical experimentation on the

performance of the above heuristic procedure,

Four random problem instances are generated for each n, n = 6,8,10 (see
Table 4.4.1). The heuristic is applied to each of the twelve problem instances
and the solutions are obtained, Besides the heuristic expected CTV values, the
Table 4.4.1, also, contains the values of the optimal expected CTV for all the

problem in order to facilitate comparisons.

Remark 4.4.1 : Using the Table 4.4.1, we note that the proposed heuristic
(a) has produced optimal solution in 10 out of 12 problems, and () the solutions

for the other problems (No. 9 and 12) are near-optimal,
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CHAPTER 5

SOME CONJECTURES RELATED TO
DETERMINISTIC CTV PROBLEM

5.1 INTRODUCTION

In this chapter, we pose two conjectures based on the behaviour of the determin-
istic CTV problem observed during a numerical experimentation, and provide

some results derived in an attempt to prove them,

The organization of this chapter is as follows. Section 5.2 contains the pre-
liminary results, We derive here a necessary condition for optimality involving
the completion time of the smallest job (C,) and the average of job completion
times (C). This result shows that C, and C must be close enough for any op-
timal sequence. We deduce the V-shaped property (refer to Theorem 2.2.5 of
Chapter 2) from this result. Some new definitions and concepts are Igiven In Sec-
tion 5.3. The conjectures are described in Section 5.4. In Subsection 5.4.1, we
attempt to build a framework to prove a conjecture on the functional behaviour
of the CTV where the CTV function is defined as the minimum CTYV value for
a given position of the smallest job. The second conjecture, given 1n Subsection
5.4.2, is on optimal sequence for the CTV problem when the processing times

are in arithmetic progression..

5.2 PRELIMINARY RESULTS

The following result evaluates the change in CTV value due to interchange of

any two jobs in a sequence.

Lemma 5.2.1 : Let v = (m,73,...,7,) be any sequence. Let ' be a sequence

obtained from 7 by interchanging the two jobs 7, and =, (s < {) only. Then
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%[V(w’)-—V(ﬂ)l = (Pr ~Pr.) 5{01"1("")“@(“)}

rs=a

R L p,.)] - (52)

Proof : We have

Clrj(7)

C[,.](ﬂ') forr=1,2,...,8s—-1,4Lt+1,...,n (5.2.2)
Cirf{m) + (Pry ~pr,) forr=3,8+1,...,¢~1 (5.23)

and therefore

(Px: — Pn,)- (5'2*4)

Now, we can write
n(V(x) - V(x)]
=3 [Cla(x) - C(x")]" = 3 [Cra(m) ~ O(m)

=3 [0px) - Giym)] = n 07w - G

L

= 2 [Chw) = Gy(m)] = n [07() - O*(m)

r=2:

( using the equation (5.2.2) ) -

{—1

= (Pr, = Pra) 3 201 (%) + (Pr — Pn)]

r==s

~(t = 8)(pr, = pe.) [20(m) + (b, ~ 1)
( using the equations (5._2.3) and (5.2.4) )

= (pry = Pr) |2 {Cpi(m) = C(m))

[ — s

{—~si{n—C+s |
+"'(' )( " )(Pm - P‘H'l )] . (5'2'5)
Hence the lemma follows from the equation (5.2.5). _
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Corollary 5.2,2 : Let # = (m,73,...,m,) be any sequence. Let n’ be a

sequence obtained from # by interchanging the two jobs 7; and 741 (1 £1 < n)_

only. Then
n i,
E[V(ﬂ") - V(ﬂ')] = (pwi+1 _"P:n') [C[,-](‘?T‘) = C(ﬂ')
n -1
+ - (Prisy —p,i)] . (5.2.6)
Proof : The proof is immediate from Lemma 5.2.1. o

Theorem 5.2.3 : Let r = (m;,m9,...,7n) be an optimal sequence. Then

(¢) forany g,2 < g < m,

. n— 1
Pﬂ’g < Pﬂ'g-—l = C('ﬂ') 2 O[g_ll(ﬂ') + 2n

(Pry = Pryoy )s (5.2.7)

(1) forany h, 1 £ h < n,

n

- — 1
Pry < Prpys = C(ﬂ') < C[h](r) t o (pﬂ'h+1 - P‘A‘h)"" (5'2'8)

Proof : Let pr, < py,_, for some g,2 £ g <1, Obtain the sequence n’ from =
by interchanging the two jobs x,_; and =, only. Using Corollary 5.2.2, we get

-2-[V(1r") - V()|

n -1

= (Prg - pﬂ';-q) C‘[g-l](ﬂ') = C’(ﬂ') + on (pfrg - pﬂ'p—-l) ' (5'2'9)

Since 7 is optimal, V(') — V(=) > 0. Therefore, from the equation (5.2.9),

we have
Clg-1)(7) = C(0) + 57 (pr; = Pr,prs) S0

or, C'("'T) 2 Clg-1){m) + E{;}(P:r, ~ Py )
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Hence the part {2) of the theorem holds.

The part (1t) can be proved by similar arguments, o

We have the jobset N = {1,2,...,n} and py 2 p; 2 ++» 2 pn. Let k be the
index such that

PL 2" 2 Pnok > Pn—k4l ="' = Pn.

Define @ (Q C N)by Q@ = {n—k+1,n—k+2,...,n}. Obviously, |@| =%k 2 1.
Let ) = N\Q =1{1,2,...,n—k}. Note that Q can be empty, that is, all the p;’s
have the same magnitude. However, in such case the CTV problem 1s trivially
solved. We assume that @ is non-empty. Note that for i € Q and 7 € Q, we

have p; < p;.

Il k = 1, we say that the smallest job is unique. For k 2 2, smallest job is
said to be of multiplicity &.

The following result describes the positions of the jobs in ¢ in any optimal

sequence,

Lemma 5.2.4 : Let m be an optimal sequence. Then

w = {(a,mg,B)

. L | (5.2,10)
where g = a permutation of jobs in
and (a,8) = a permutation of jobs in Q.
Proof : If k=1, the result is obvious.
Let £ > 1 and 7 = (7, 73,..., ™). Suppose, if possible, 7 is not of the form

given by (5.2.10). Then there exist two indices r and s satisfying the following :
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(i) s—r>2,
(11) w7, € ¢
and (tfl) Tedlyso oy Mol € Q.

With such r and s, we have p;, < py,,, a0nd px, < py,_;.

Nuvé, using Theorem 5.2.3, we have

_ — 1
C(x) < Cpy(m) + -

I (p“'r-H —Pl’r) (5'2'11)

- — 1
and  C(m) 2 Clmn(®) + —(pr, = Prrma):  (5212)

Cambinihg the jnequalities (5.2.11) and (5.2.12), we get

n — 1 n—1

G["_l](?r) + 2n (pﬂ'; - P“l—l) S O[r](ﬂ.) + 2” (pﬂ'r-}l “pﬂ'r)
n—1 n — 1
Or! [p'-'rr-l-l + T + pﬂ':-l] 2” pﬂ'r-l-l - gn P:r,..l
F— Lpy < 0. (5.2.13)

Since s ~r 2> 2 and p; > p, for j € {?r41,...,Ts-1}, the left-hand-side of the

inequality (5.2.13) is strictly positive, Thus, we arrive at a contradiction.

Hence the theorem holds. | |

Remark 5.2.5 : The above result shows that in any optimal sequence, all

the smallest jobs must be adjacent. The same also follows from the V-shaped

property of optimal sequence (refer to Theorem 2.2.5 of Chapter 2).
We use Lemma 5.2.4 to state the following result,

Theorem 5.2.6 : Let 7 = (7, 73,...,7,) be an optimal sequence with ; € Q
where i € {s+1,...,8+ k} for some 5,1 < s < n—k. Then

-k k—1

2?1 .(P“.-_p‘ﬂ'l)-- 2 Pm

n—k, k—1

omn (P'l+k+1 o Pn) D _‘Pn-

(3) C(m) 2 Cr(m) + -

| (21) é(ﬂ') < C[,+k]('ﬂf) +
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Proof : Let n’ be the sequence obtained from 7r by interchanging the two jobs

7, and 7,4, only. Using Lemma 5.2,1, we have

n k-1 _
SV =V = (s =) [ 2 {Clatm) - O}
¥ (HQ; a2 (Drrer — 2| - (5.2.14)

Note that ps,,, = pn < px,, and because 7 is optimal, V(#') -~ V(&) > 0.

Therefore, we can get from the equation (5.2.14),

gl i k(n — k '
Z {G{"](ﬂ-) o C(ﬂ')} + (ngn )(Pn "Pwr..) < 0
E—1 ; L(n — k
or, k[C[.,](arH 5 P ---I:C'(srr)+—(ﬂ21r1 U(p"—p,,) < 0
—k, k-1 i
- (Pn _Prr,)'l" 5 Pn S G(‘ﬂ')

or, .C{,](r)+ o

Hence the part (1) of the theorem holds.

Next, let 7" be the sequence obtained from = by interchanging the two jobs

Tot1 and m4xqq only. Again note that pe,., = pn < pa,,,,, and V(") — V(r)
2 0. We can argue similarly as in the case of part (¢) to prove the part (ii). B

Corollary 5.2.7 : Suppose the smallest job is uﬁique... Let 7 = (w1, 72,.. ., %)
be an optimal sequence with x, = n, Then

() C(m) 2 Conlm) = “o~ o,y = pa)
() C(7) < Gpam) + o (prsys = pi)

~ Proof : The proof is immediate from Theorem 5.2.6. | H

Remark 5.2.8 : From Theorem 5.2.6 or Corollary 5.2.7, we know that for any
optimal sequence w, the average of job completion times, C(=), must be located

in the neighborhood of the completion time of the smallest job, C,, ().
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In the following, we prove the V-shaped property of optimal sequence (refer
to Theorem 2.2.5 of Chapter 2) using the Lemma 5.2.4 and Theorem 5,2.6.

Proof of V-shaped Property : Let o be an optimal sequence, We know, from
Lemma 5.2.4, that  must have the form 7 = (a, wg,3). In order to prove that
7 is V-shaped, it is enough to show that & (8) is in LPT (SPT) order.

Let a = (‘ﬂ'l,‘ﬂ'g,+ .o ,:'r,,), wo = (?T;+1, g2y 0oy ?F.a+k) and [ = (?T.:+k+1: Tetk+29
ooy W)

Suppose « is not in LPT order. Then there exists an index ¢, 1 < i < s, such
that p; < px;,,. With such an ¢, obtain a sequence =’ from # by interchanging

the two jobs m; and w4 only. Using Corollary 5.2.2, we have

V() = V(E)] = (prgy — pe) [Cla(m) — Clor)

n—1
+ on (PH.‘+1 Hp#i)] : (5'2'15)
Now,
= n—1
C[,'](‘?T) — C('ﬂ') -+ ™ (prr.'+1 - p'ﬂ‘i)
n—=k k—1 n-—1
S C[I'l(ﬂ-) — 0[.1‘](4”:) - 2]’1 (pﬂ T pﬂ': )' 2 pﬂ l‘ 271- (Pri'-f] - pﬂ'l')
(using Theorem 5.2.6(1))
n—k n— |
< - [P‘H’i-l-l + e +pﬂ'.] + - o "Px, + " 9n Pﬂ'i-ﬂ

< 0.

Therefore, we get from the equation (5;2.15) that V(') < V(=) which is a

contradiction to the optimality of «. Hence o must be in LPT order.

Next, suppose, if possible, 8 is not in SPT order. This implies that there are
two jobs 7; and 7,41, s+ k41 < j < nwith py, > pyy,,. By interchanging o

and 7;4 in mw, we get a new sequence «".

Using Theorem 5.2.6(ii) and by similar arguments as in the previous case, we
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arrive at the contradiction that o is strictly better than the optimal sequence .
Hence B must be in SPT order.

This completes the proof. - o

Remark 5,2.9 : Note that the necessary condition for optimality of a sequence
given by Theorem 5.2.6 is stronger than the V-shaped property given by Eilon

and Chowdhury [1977].

We now evaluate the change in CTV value for a sequence when a job is moved

to a new position, but the relative order of the remaining jobs is not disturbed.

Lemma 5.2.10 : Let v = (m,...,7,) be any sequence and n' = (7},...,#’) be
the sequence obtained from 7 such that () 7l ==, forr=1,...,s—1,1+1,...,n,

(21) 7! = m and (232) 7] = w,q forr = s+ 1,...,{. Then

t—1

S V()= V(m)} = X(pw — pry) [Clyl) = ()

7=3
1 1 &t |
+"2"’(Pﬂ*: ™ Prrj) — '2'; E(Pw: - P:rr) ’ (5'2'16)
Proof : It can be observed that
Cif{r’) = Cyr) forr=1,...,s-1,¢t,t+1,...,n (5.2.17)

= Ci(7) + (P, = P,) forr=s,s+1,...,t—1 (52.18)

and therefore
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Now, we have

—_ i(pm —_ p!j) 20(7'[') + ;ll'g(pm prr)]

(using the equations (5.2.17), (5.2.18) and (5.2.19))
11

= Z(pﬂ:_Pﬂ; [20{11 ™)~ QC( ) + (Pr, "‘-Pw_f)

j=a
| {1
—_ E (Pr, = Pr,) ] (5.2.20)
and hence the lemma follows from the equé.tic.:-n (5.2.20), I

Lemma 5.2.11 : Let # = (my,...,7,) be a V-shaped sequence with », = n for |

some 1 € 8 < n and

n—1

C'(ﬂ') < C[a](ﬂ)'*' zn*(Pn.H"Pr.): (5'2-21)

and ' = (7r’, .,7h) be the sequence derived {rom = such that (i) m, = =, for
r=1,..,8=1Lt+1,...,n, (i) m, = mpand (33) 7, = mpey forr=s+41,...,1
Then V "} > V(). Strict inequality holds if ps, > pr,,.

Proof : Using Lemma 5.2.10, we get

_ 1 1 {—1
where X; = Cpj(m) — C(m) + 5 (e, ~ Pr;) = 5= 2_ (P — Px,).  (5.2.23)



Since w is V-shaped and 7, = n, we know that p,, > p,, forallj = s,...,1-1.
Therefore, it is enough to prove that X; > 0 for all § = s,...,f — 1. Now,

] .
Xl = C[-I](ﬂ.) - C'(W) + E(Pﬂ'l = p'ﬂ'l) 211 Z(pﬂ'l p'ﬂ'r)
r=i1
- n—1 n—1
= [Cla(m) = O(m) + "= (peuss = pu)| = T (Perss — e
1 1 1 =
+'§(P#: ""'phﬂ) + "2'(?!;-_;1 ~ Pr,) — o ;(Pm - Prx,)
1 [l — 3
> (Pw.ﬂ Pn) + E(Pn‘: Pr.+1) i) Px
1 1 i-1
+§;p!l + “2-;1-,..___;*,1 p#r
(using the equation (5.2.21))
n—1—3s n—1 .
— 9y Dry — o Pr,q + %rmz-{-lprr
n—171—3 n -1 {—-8—1
2 zn Dre — 2”- pﬂ';-i.l 21’1 Prl-'i'l
n—t—g
= 21’1 (p'-'ft — pﬂ'l-lrl)
2> 0,
_ 1 1 i—1
Xt = Clap)(m) ~ C(m) + (Pr, = Prons) = 5 Z_}(pn Pr,)
- n—1 nml
= [C[,](ﬂ') - C_('ﬂ') + M (Pw.“ - PH‘;)] + Prosn | (pll-lrl pll)
1 .
+'§(pn‘t Pﬂ'..|.1 Z(pm - p:r.-
1 n—1 n—1—3g 1 &
- Ep_r.+1 + 2;1 Prr. + 2”- Pr, + P l;pﬂ'r
(using the equation (5.2..21))
> 0 ' |
and for s +2 <3 <i~-1, .
= | f— 8 B .
X; = Cpm) = C(m) + (s = Pr;) = 5 —Pn + 5 ;pn,
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= n—1 J n— 1
— [C[l](ﬂ) - C(ﬂ-) + M (pﬂ'ﬂl _p!n)] + Z Prx. on (PK,H "'“'"'p,;_)

r=s+41
n-—%—s 1 ] -l
+ 2” p'ﬂ'l - Epﬂj + 5; ;pﬂ'r

> 0 (using the equation (5.2.21) and on simplification).

This completes the proof, - |

5.3 DEFINITIONS

Definition 5.3.1 : Let 7 = (:':'1,'I ...,Ty) be a V-shaped sequence with 7, = n.
The sequence 7 is said to be saturated if C(m) < Cy(7) + 2L (pr,,, — Pr). We

call a sequence unsaturated if it is not saturated,

Definition 5.3.2 : Let * = (m,...,7,) be a V-shaped sequence with 7, = n.
The sequence &' = (71, .y Thety Tjy Mhy ooy Wiy M5y o0y Ty ) 18 called a first-order
descendant (FOD) of « if 7' is V-shaped. We denote this relationship by = = #".

For V-shaped sequences w(® & #() & 7@ 4 ... & () that is, #0) ig
an FOD of w0~ for j = 1,...,r, then #(? is said to a descendant of 7(® for
1=1,...,r.

Definition 5.3.3 : A V-shaped sequence 7 = (m,...,7,) with 7, = n is called

an end sequence if T =n — 1.

An end sequence does not have any descendant,

Definition 5.3.4 : Let w = (my,...,m,) and 7’ = (#{,..., ;) be two V-shaped
sequences with 7z = 7, = n for some k < [?] + 1. The sequence #' is a

descendant-dual (DD) of m if {fr;,rrf,, o ,frf,_l} C {Thity Thg2yeesy T )

A DD of = is dual of a descendant of w. For example, with n = 10 the
sequence o« = (1,3, 5,7, 10,9, 8, 6, 4, 2) isaDDof # = (1, 2,4, 6,10, 9, 8, 7,
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5, 3). It can be seen that o = (1, 2, 4, 6, 8, 9, 10, 7, 5, 3) is dual of e and a

descendant of .
5.4 CONJECTURES
5.4.1 A Conjecture on New V-shaped Property
We now present some results which are derived in an attempt to prove a

conjecture regarding the property of CTV function.

Lemma 5.4.1 : If = is saturated and o/ is a descendant of , then
() V() > V(x)

and (17) ' is also saturated,

Proof : Let 7’ be obtained from = through the following chain of FODs

Using Lemma 5.2.11, we know that V(7)) <'V(={h) < V(x®) < ... <
V(m(M) < V(n'). Thus, we have V(x') > V().

It can be algebraically verified that if « is saturated, any FOD of = is also

saturated. This is because, the increase in completion time of job n is larger

than the increase in average completion time. It implies that #(1), #(3) ()
and 7’ are also saturated. N
Theorem 5.4.2 : If # = (m,...,n,) is unsaturated with m; = n, then for the
sequence 7' = (My,. .., Mh1, Tktl, Thy Tht2y+ o+, T ), V(7)) < V(m).

Proof : The proof is immediate from Corollary 5.2.2. .

Lemma 5.4.3 : Let 7 be satlurated and o be a déscen_dant-dual of . Then

Via) 2 V(n).
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Proof : Since « is a descendant-dual of #, its dual o? is a descendant of .
We have V{a) = V(aP) from Theorem 2.2.4 (of Chapter 2) and V(7) < V(aP)
using Lemma 5.4.1. It means that V(x) < V(). |

Let S, = the set of all V-shaped sequences with
smallest job (n) in Ath position,
Ay = the set of all saturated Sequences in Sy,
B, = the set of all end sequences in S
and T} = minges, V()

for k=12,...,n,
Theorem 5.4.4 : T} =Ty, for & > 2.

Proof : It follows directly from the duality theorem (see Theorem 2.2.4 of
Chapter 2). | 1 I

By this result, we can confine ourself to the set 5, US; U -U S, only where

m = [%] + 1 in order to find an optimal sequence.

" Theorem 5.4.5 : Forany 1 < & < n,

Sk+1 = Umes,\g, D(7)
where D(7) is the set of all FODs of .

Proof : Consider an arbitrary V-shaped sequence m = (71,...,mn) in Skys. If
e < N {Tppgye ooy Mk let o = (71,00 Tooty Tag1y o - o, Moy Ty), otherwise find

3UCh tlhatl ﬂ.j > ﬂ'k > ﬂj-'-t ﬂnd letl ﬂr = (ﬂ']_, 210y 7[];..1, ﬂ-k.‘.l, 10 !';TJ., ﬂ'k,ﬂj.l.l, "y ﬂ'n)!

It ig obvious that = belongs to Sk \ Ex and = is an FOD of #'. Therefore,
Sk+1 © Umes,\g, D(7). Now, the result holds because any FOD of a sequence in

Sk \ E‘, belongs to Sk.|.1. | ||
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Theorem 5.4.6 : For each m € 5S¢\ (AU E,), if every FOD of 7r i3 a descendant-
dual of some o € Ay, then T < T} ,.

Proof : Let T, ; = V(w")}, that is, w* is optimal. By Lemma 5.4.5, w* is an
FOD of some sequence in Si \ Fx. If w* is an FOD of some sequence in A,
we know from Lemma 5§.4.1 that T, > T¢. Suppose w* is an FOD of some
w € S \ (Ar U E). Therefore, 7 is a descendant-dual of some o € A;,. By

applying Lemma 5.4.3, we note again that Ty < T,,. |
Theorem 5.4.7 : Let Ty = V(w"). If w" is unléatura'ted; Ty 2 Ty,

Proof : Since w* is unsaturated, we have V(w') < V(w*) by Theorem 5.4.2,
where w' = (wy,..., wi_,, Wiy, Wi, Wigy. .. W) € Sky, that is, Ty, < T¢. W

We now present the conjecture which involves 7}’s, the minimum value of
CTYV f{or the fixed position of the smallest job.

Conjecture 5.4.8 : T, ; # min {T;,T;,,_?} forany 1 <k<m-2.

The above cmnjeﬁ:t'ure implies that

wTa2Ty2>2--2T: | - (5.4.24)
or
T 2T}> 2T STy S < T
forsomer, ] <r<m-1 (5.4.25)

Uﬁing Theorem 5.4.4, we note that (aj_i[ (5.4.24) holds, T; STp <0 <
Tz, (b) if (5.4.25) holds, T, 2+ 2 T5_, 42 S+« < T, It means that T’s are
either V-shaped or W-shaped. |
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5.4.2 A Conjecture on Optimal Sequence

In this subsection, we describe a conjecture on optimal sequence for the CTV

problem when the job processing times are in arithmetic progression (AP).

It can be seen that an optimal sequence remains optimal when all the p;’s
are multiplied by a positive constant. However, it is not true for the addition of

positive number to all the p,’s.

Let us denote the CTV problem (with p;'s as the processing times) by P1
| and consider the CTV problem (P2) with processing times as ¢; = a 4 bp; for
J=1,...,n, where a 2 0, b > 0. Note that, if p;’s are the natural numbers, ¢;'s

are in AP,

For any sequence x, let V/(7r) be the CTV value of P2.

The following result gives the relationship between the CTV values of P1
and P2,

Theorem 5.4.9 : For any sequence & = (my,..., ),
| 1 b2
Viim) = @0 =) +8V(m) + =5 (r = 1)(n -1+ )pe,. (54.26)
r=1

Proof : Let Cy,(m) and C'(m) be the completion time of rth job in  and the

average of the completion times respectively for P2, Then, we have

Cig(m) = ra+bCpy(m) forr=1,...,n
and C'(x) = k ;- la + bC(m).
Therefore,
| n ) .
Vi) = =3 [Cly(m) — C'(m)]

{
)= B3|
)=
o
-3

l

-

+

s
M

o .
+ _

?

i,

2
2

l
Q

A
Mg’
S
——
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L+ B G- ). 41
Now,
> r {Cia(m) - C(m))
- gr(}"[r](w) - on(n+ 1)C(x)
= G4 )(m =4 Dpe, = 2+ 1o =+ Do,
- %—Zﬂ:(r —1)(n - r+1)p,.. (5.4.28)

r=1

Hence, using the equations (5.4.27) and (5.4.28), we get the relationship given
by the equation (5.4.26). B

Conjecture 5.4.10 : For p; = (n - j 4 1) for j = 1,...,n, only optimal
sequences for this problem are #* = (1, 2, 5, 6,...,8, 7, 4, 3} and its dual (1, 3,
4,7,8,...,6, 5, 2).

That is, optimal sequence for different values of n are givén as follows ;

1,2,...,n=-3,n-2,n,n-1,...,4,3) ifnmodd =0
(,2,....n—4n-3n,n—-1,n—2...,4,3} if nmod4 =1
(1,2,...,n-5,n—-4,n—-1,n,n—2,n-3,...,4,3) if n mod 4 =2
(1,2,...,n=-2,n-1,n,n—-3,n—4,...,4,3) if n mod 4 = 3,

We can observe that «* (as given in Conjecture 5.4,10) minimizes the last
term on the right-hand-side of the equation (5.4.26). It then follows from Lemma

5.4.9 that if the above conjecture is true, * is optimal for P2,
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