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CHAPTER 1

INTRODUCTION

In this thesis we define a class of self maps of connected compact polyhedra
— those which preserve expanding directions — and define the fixed
point indices of such maps at an isolated set of fixed points of the map as a
local Lefschetz number. Our definition uses simplicial approximations of

the given map in the spirit of O'Neill ([19] and Fournier [7]) and is intrinsic

so that it is "computable".

Let X be a connected compact polyhedron and f: X — X be a map on
X. The Lefschetz number L{f) of f is then defined to be {[13]),
L(f) = )_ (1Y Trace {f, : H;(X,Q) — H;(X,Q)}
j20 .
By a Lefschetz number we will always mean the alternating sum of the
traces of a chain (cochain) map on a chain (cochain) complex and not just
the corresponding number of a graded endomorphism.

The fixed point set of f is,

Fixfi{:ueX:f(qJ)=§;}.

Theorem {The Lefschetz Fixed Point Theorem, '[14], [15]]

If L(f) # 0 the fired point set of any map /wmotopz'c to f 18 nonempty.
Let U be an open subset of X such that U N Fix f = 0, where 9U is the
frontier of U in X. Then,

Theorem It is possible to canonically associate an integer i(f,U)
with U called the fized point index of f at U, which can be character-

tzed by a sct of simple axioms, (sece Brown [4], or Dold [5), [6]).



Definition A set of fixed points ' C Fix f is called an isolated set of

fixed points if C is compact and open in Fix f.

Let C be an isolated set of fixed points of f and W be any open neigh-
bourhood of C in {K| such that, W N Fixf = W n Fix f = C. Then the
fized point index i(f,C), of f at C is defined to be, i(f, C) = i(f, W) (see
Jiang [12]). This definition of i(f, C) is independant of the choice of the

open neighbourhood of C.

Since Fix f is a compact subset of X, it is clear that any collection of

distinct isolated sets of fixed points of f is finite.
Theorem LetCy,...,C) be a collection of isolated sets of fized points

| k
of f such that Fizf =) C;. Then,
=1

J:
k

LUF) =Y 4(£,05) e oeine e ()

If one can express i{ f, C) explicitly in terms of local data concerning
f in a neighbourhood of C, then (x) is called a Lefschetz Fived Point
Formula or LFPF for short. Of particular interest is the case when the
map f has finitely many isolated fixed points, say {p;}: then i(f, {ps}) is
thought of as the algebraic multiplicity of the fixed point py.

For a smooth map f : X — X which is transverse to the diagonal,

the index at a transversal fixed point is the sign of det(1 — f,(p)), (see [1])
where f,(p) : X, — X, is the derivative of f at the fixed point p and 1
is the identity map. (This is the simplest and oldest example of a LFPF),

This formula can be easily reorganized so as to exhibit the index i(f,p) as

a local Lefschetz Number.

Observation ([2]) Let A : V — V be any linear map of a finite di-

mensional linear space and A4 : X'V — X'V the induced map on the ¢

exterior power of V. Then,



det(1ly — A) = ;00 Trace (A'A)

Proof: The result is trivial for diagonalizable endomorphisms; the result
follows since both sides of the equation are continuous functions of 4 and

since diagonalizable endomorphisms form a dense subset of End V. -

Hence (x) may be rewritten in the form,
1

'i(f;P) = |det(1 — f'(p))gl(f')

that is, the fixed point index at a transversal fixed point p is, modulo the

change in “volume” arising from the map 1 — f, the Lefschetz number of
the cochain transformation induced by f on the sheaf of germs of differ-

ential forms at p. In other words, i(f,p) is a “normalized local Lefschetz

number?.

Over the past thirty years much attention has been devoted to obtaining

Lefschetz Fixed Point Formulas, ([1], [2],{8], [9], [23]) particularly expres-

sions of the fixed point index as a local Lefschetz Number, in studying the

Lefschetz Fixed Point Theorem in its analytic and geometric avatars, but
topological variants of such results have been lacking except for a few sim-

ple cases such as the following result which we show in Section 2 of Chapter

9,

the fixed point indezx of a simplicial map f: K — K at an

wsolated set of fized points C is the Buler characteristic of

C.

The best approach to obtaining an intrinsic and computable definition of
‘the fixed point index at an isolated set of fixed points as a local Lefschetz
number which yields the LFPF for maps on compact connected polyhedra

seems to be to consider the simplicial approximations of a given map. Un-
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fortunately, simplicial approximations are quite "coarse" in the sense that
given a map ¢ : |K| — |K| on a compact connected polyhedron K|, the
fixed point set of ¢ may differ drastically from the fixed point set of any
of its simplicial approximations. Thus in general, computation of the fixed
point index at an isolated set of fixed points (in contrast with the fixed
point index on an open set) may not be posssible by looking at simplicial

approximations. Nevertheless this approach proves profitable for a large

class of maps .

In Chapter 2 of the thesis, we discuss a few classical definitions of the fixed

point index and recall its properties.

A finite simplicial complex K such that |K| is connected, will be referred
to as a finite connected simplicial complex K.

The notations used in this thesis including those used in this chapter are
listed in Section 2 of Chapter 3.

It is a well known fact that barycentric subdivision is a covariant functor on
the category of finite simplicial complexes and simplicial maps, We study
the effect of this functor on the fixed point set of simplicial maps in Chapter
3 : the results discussed in this chapter might be well known to experts but
we were unable to find them in the literature. We observe the following

interesting fact about the fixed point set of a simplicial map,

Proposition 1.1 Fach path component of the fixed point set of a sim-
plictal map ¢ : sd"]f — K,n >0, is an isolated set of fized points of
| K|. Moreover, if n > (0 then the fized point set of g is a finite set of
points of |K|.

This is clearly not true in general. For example, it is possible to define

a map on the closed unit interval in R whose fixed point set is precisely,

{0} U{-}; . n € N}, ([21]). Then 0 is a path component of the fixed point



set of the map but is clearly not an isolated fixed point.

Let o be a simplex of a finite connected simplicial complex K and oy,
be a simplex of 8d™X such that dim oy, = dimoy and (o} C (o)). In

Chapter 4 we define a radial retraction,
p:sd™ {8t (op), K)} — 8t (0}m),sd"K),

which depends only on the simplicial structure of K near oy,

In Chapter 5 we discuss the problem of establishing the LFPF for simplicial
maps f : sd®*K — K,n > 0 on a hnite connected simplicial complex
K. As mentioned earlier the case of simplicial maps f : K — K is
the simplest. More for motivational reasons than because of any actual

difficulty involved, we prove the LFPF for this case.

The case of simplicial maps, f: sd™K — K, m > 0, is more complicated.
Since f is simplicial, Fix f is a set of isolated points of [ K|. Let ¢ € Fix f
and let the carrier of o in sd?K,p > 0 be :::r[p].l Then,
f: _s?(a[m],sd"'ff) — 8t (o), K). |
Also, Hy(s% (o, K)) > H,(5% (Ofm], 3d™K)), the isomorphism being in-
duced by a retraction,
5% (10, K)| = [SF (01, 8d " K.

Since Fix (6o f) need not be equal to Fix f, L(8o f) does not necessarily de-
fine i(f, z), even though, f = fo f, on IH(UIm+1i1 sd "t K)|. If @' is another
retraction then at the homology level, 8, = 8, so, the Lefschetz number

of the map 8 o f is independant of 6. We choose & to be the retraction p

defined in Chapter 4.

We define a class of simplicial maps, those which preserve expanding di-

rections,

e X



Definition 1.2 Let f : sd"X — K,n 2> 1 be a simplicial map and
r € Fix f. Let the carrier of x in sd?K,p > 0 be o). Then f pre-

serves expanding directions at z if there is a subcomplex M(z) = M of

Lk (o, 8d " K) * oy, satisfying,

(a) 7 € Lk (o, sd"K) * oy, such that, (o, UT) C (o U f(7)), implies
that 7 € M,

(b) 7 € M and f(r) < oy implies that 7 < gy,

(¢) 7 € M implies that,
sd "’{Eflgl * f(T)} NLk ({T[ﬂ|, sd"K) * {5’[”] C M.

A subcomplex of Lk (o1,, sd"K) * oy, is a subcomplex at © expanded by
the map f if it satisfies (a),(b) and {c).
The map f preserves expanding directions if it preserves expanding di-

rections at each of its fixed points.

We show,

Theorem 1.8 Let f : sd”K ' K,n > 1, preserve expanding direc-
tions and ¢ € Fiz f. Let the carrier of x in sd?K,p > 0 be o and
the subcomplex at x ezpanded by f be M. Then the relative Lefschetz
number of the map |p||f| on the pair (5%t (op),sd"K), M) is the fized
point index i(f, x) off at . Also, L(f) = Z i(f,z).
%€ Piz |

Goresky and MacPherson ([9]) have defined the fixed point indices at iso-
lated sets of fixed points of a map on a compact stratified space as local

Lefschetz numbers provided the map is weakly hyperbolic.

Definition A map f: X — X on a compact stratified space is weakly

hyperbolic if for every isolated set of fixed points C of f there is an open



neighbourhood W of C in X and an "indicator map",
t: W — Rog xRy
such that, t~1((0,0)) = C and for all points z of W n f~1(W),
H(F() > bi(z), t(f() < ).
where, t;(z) is the j** coordinate of t(z).
The notion of weakly hyperbolic maps extends immedietly to maps on

compact, connected polyhedra. We show that,

Theorem 1.4 A weakly hyperbolic simplicial map preserves expanding

directions.

We compute the local indices for a few continuous maps using our methods

and show by examples that,

o a simplicial map which preserves ezpanding directions need not

be weakly hyperbolic.

o not all simplicial maps preserve expanding directions.

Helga Schirmer ([21]) has shown that for any closed set C' of |K| it is
possible to define a map on [K| whose fixed point set is precisely C. We

avoid this generality in what follows and consider only those maps whose

fixed point set is a subpolyhedron of | K.

In Chapter 6 we introduce the notion of fp-equivalent simplicial approxi-

mations.

Definition 1.5 Let f: [K| — |K| be a map. A simplicial approximation
g:8d™K — K to fis fp-equivalent to f if Fixg C Fix f and for any
fixed point component ¢ of f.

i(f,C)= ), ig=).

ce& Fix gNC



Definition 1.6 A map f: |K| — |K| preserves expanding directions
if there is an fp-equivalent simplicial approximation to f which preserves

expanding directions at each of its fixed points which is also a fixed point

of f,
We show by an example that,

not all maps have a fp-equivalent simplicial approximation.

Let L be a subcomplex of a simplicial complex X. We denote the regular

neighbourhood of L in K by N(L, K).
Let f : |X| — |K| be a map on a compact connected polyhedron |K].

The proximity set, ([4]) of f is the set of all points z of | K|, such that f(z)

belongs to the star of the carrier of z in |K|.

Let f : |K| — |K| be a map on a compact connected polyhedron |K|
whose fixed point set is a subpolyhedron |F| of |K|. Let C' be a component
of F. If for all m > 0 such that =z € N(sd™C,sd™K), f(z) also does not
belong to N(sd™C,sd™K), then z is said to define a direction expanded

by f with respect to C. The set of all points in N (C, K) which define a
direction expanded by f with respect to C will be denoted by F(f,C). We

prove the following result,

Theorem 1.7 Let F be contained in the interior of the proximity set

of f. Suppose that for any component C of F and for any simpler ¢
of N(C, K), the following holds :

(o) N B(£,C) # b= {l5| - [Fn C|} C B(f,0)

Then f preserves expanding directions.

This result justifies the nomenclature of such maps as those which preserve
expanding directions.

As an immediete consequence we have,

8



Corollary 1.8 An "expanding” or "contracting” map on a connected
compact polyhedron, whose fized point set is a subpolyhedron con-

tained in the interior of the proximity sei of the map, preserves ex-

nanding directions.
We also show the following,

Theorem 1.9 Let f : |K| — |K| be a map on a compact connected
polyhedron |K| whose fized point set is a subpolyhedron |F'| of |K|. Let
for all simplex (o) C N(F, K), 0’ =cNF, Let the prozimity set of f be
precisely F. If for all simplex (o) C N (F, K), f({o))N{o'*Lk (o', K)} =
0,

then f preserves expanding directions.

Theorems 1.7 and 1.9 show that a large class of self maps on connected
compact polyhedra preserve expanding directions. However, this pi.iperty

of maps on connected compact polyhedra is not invariant under homotopy.



CHAPTER 2

THE FIXED POINT INDEX

2.1 INTRODUCTION

We discuss a few classical definitions of the fixed point index to appreciate
the difficulties involved in arriving at a LFPF through most of them, We

also recall the properties of the fixed point index in this chapter. Full details

are given in [4], [5], (6], [10], [11] and [19].

2.2 CLASSICAL DEFINITIONS OF THE FIXED POINT INDEX

The frontier of an open subset U of X in X will be denoted by 8U.

One of the most general procedures for evaluating local indices is the degree

formula described by Dold ([5], [6]). Let X bean ENR, f: X — X
and W be an open subset of X such that 8W N Fix f = @, There is an
embedding ¢ : X — V of X in an open subset V of K" as a retract.
Let » : V — X be a retraction and r"'(W) = U,»"1(C) = G and,
g =1ifr U - V. Then i(f, W), the index of f on W is the degree of
the map ( —g) : (U, U - G) — (R",R?) where j is the inclusion map and
R* = R" — (.

Let C be an isolated set of fixed points of f and W be any open neighbour-
hood of € in X such that, Wn Fix f = Wn Fix f = C. Recall then that
the fixed point index i(f, C), of f at C is defined to be, i(f, C) = i(f, W),
(see Jiang [12]). This definition of i( f, C) is independant, of the choice of

the open neighbourhood of C.
Dold’s beautiful characterization of the fixed point index is not a LFPF

— the need to imbed X in a FEuclidean space and the choice of retract
renders it “non-local” and less than satisfactory if one is trying to compute

an index at a fixed point component,

10



A simple illustration of the disadvantages of Dold’s procedure can be

seen from the following example; an "ancient war-horse" of topological fixed

point theory, (see {4],[12]).

Example 2.1 Let X = AV B,A=B=8§8"and, f: X — X be defined
by f(z) = 27,z € A, f(z) = 25,z € B. Let w=1¢€ A C C be the
wedge point and a be the antipode of w in A, Then Fix f = {w,a} and
L(f) = 0. Since there is a neighbourhood of a isomorphic to R, applying
degree formula, it is easy to compute i(f,a) = 1.

The fixed point at w is more interesting but no topological formula is
readily available for dealing with "non-manifold-like" points and to compute
i(f,w) using the degree formula is clearly troublesome. So both Brown

and Jiang use the additivity property of the local index ([5]}, to compute
i(f,w) = L(f) - i(f,0) = 1

As a contrast to this generality we consider the situation when X is a closed
connected oriented n-manifold and f; X — X is a map on X (see Vick,
(24]). Let 6X = {(z,z) : x € X}. Let T € H*(X x X, X x X — 6X)
be the Thom class of X and z € H,{X) be the fundamental class of
X. Let W be an open subset of X such that 8W N Fixf = 0 and V
be an open subset of X such that Fix fN W ¢ V ¢ V ¢ W. Then
H,(X x X, X x X — 6X) is isomorphic to Q, the isomorphism given by
at— {T,a), wherea € H, (X x X, X x X ~6X) and (T, a) is the Kronecker

pairing ({22]). Then, (i, f, W) is the integer defined by the image of z under

the composition,

H(X) — HJ(X,X = V) H(W,W - V) =&
H::(-X X X,X X X “SX)

When considering simplicial maps on a compact polyhedron, using Hopf's
construction, ([10], {11]) it is possible to homotope the map to a simplicial

map whose fixed point set is a set of isolated points and each fixed pdi nt lies

11



in the interior of a principal simplex. We first need to recall the notion of the
barycentric subdivision of a stmplicial complezr modulo a subcomplex.
The notations used in this chapter are listed in Section 2 of Chapter 3.
Let K be a finite connected simplicial complex and L be a subcomplex of
K. The barycentric subdivision of X modulo L is a simplicial complex
(K, L)’ such that the vertex set of (K, L)’ is,

V((K,L))=V(L)U{bo) :c € K,o0 & L}
and a p-simplex of (K,L)’ is a p+ 1 tuple, {vg,..., 05 6(Ts1)s. .., 0{7p)}
where o = [vp,...,v,] isa simplexof Land 0 < 141 <+« <7, € K.
Let K be a finite connected simplicial complex and K be a subdivision of
K. Let ¥ : K — K be a simplicial map. Let 7 be a simplex of X such
that Fixy N {7) # 0 and 7 is not principal. Let ¢(7) = 0. Clearly ¢ is not
a principal simplex of K. Let u be a principal simplex of K such that T < 4
and v be the principal simplex of K such that (z) C {v). Then ¢ < v, (for
details see [4, Chanter VIII] for instance). '
Let L = K — st (r, K ) and consider the simplicial complex (K,L)". Define
a simplicial map %' : (¥,L)’ — K induced by the map on the vertex set

of (K,L)" as follows :
v'(v) = v for all v e L

' (b(r')) € o ifr! <7, 7' #T

Y(b(r)) € v—o
Then 7'(x) # = for all z € (v) U L.

Repeating this process a finite number of times we obtain a simplicial map
homotopic to ¢ whose fixed point set is a set of isolated points and each
fixed point lies in the interior of a principal simplex. | | |

The index of a simplicial map at an isolated fixed point which lies in the
interior of a principal simplex is given by the degree of the map on the
princilﬁal simplex. This s an inkrinsic and comput'able definition of deter-

mining fixed point indices though a problem remains since the number of

12



isolated fixed points may increase arbitrarily by Hopf’s construction. The

"war-horse" gives an illustration of this as well,

Example 2.2 Let f : X — X be the map defined in Example 2.1, Con-
sider the vertex assignments g: V(K') — V(K) shown in Figure 1, where
K' =K,V K, The image g(v} = w of any vertex v of K’ is shown as (w)

in Figure 1. The assignments v — g(v) indicated in Figure 1 is a simplicial
map such that
45 ='=g K;[ . 1{1 -'-—+I(,
and g =q| Ky K3 — K
are simplicial approximations to
{fA ifi=1,
f|B ifi =2
Also Fixg = {0,12} and i(f,w) = i(g,0) and i(f,a) = i(g,12). In Hopf’s

respectively.

4(3) 04(a) 0(0) 02(01) 2(1) i 02 2
K’ K

Figure 1: A simplicial approximation of 22V z=! on §! v §!

construction there is a choice involved. One of the choices could lead to the
simplicial approximation g’ ; I{" — K to f, see Figure 2, where K" is a
subdivisioh of K'. As above, the image g'(v) = w of any vertex v of K" is
shown as (w) in the figure. The fixed points of ¢’ are =, vy, z and v. Also,
i(g,12) = i(g’,v) and i(g,0) =i(g', =) +i(g',y) +i(g’,z). Thus we need to
compute four integers instead of two. O}le can show in this example that

all possible choices in Hopf’s construction for g lead to an increase in the

number of fixed points.

13



(1]

02 2
K

Kﬂ
Figure 2: Hopf’s construction applied to 2>V z~! on S! v §!

Barrat O’Neill ([19]) used simplicial approximations of a given map on a

connected compact polyhedron to give an axiomatic definition of the fixed
point indices. Briefly his definition is as follows : let [K| be a triangula-

tion of a connected compact polyhedron X. For any simplex o of K the

elementary cochain with respect to ¢ is the cochain s, given by,
Sa(0) =1,8,(7) =0,if T # o
An inner product on the vector space of oriented cochains C*(X) is de-

fined by,

(85,8;) = 1 ifo=T

($g187) = 0 fo#T
Let f: X — X be a map on a connected compact polyhedron and U be

an open subset of X such that 83U N Fix f = §. Choose a triangulation | K|
of X and let g : sd™K — K be a simplicial approximation to_f.
Let A: C*(sd™K) — C*(K) be the subdivision operator. Then f* = Ag*

is a class of cochain transformations on C'*(X). The fixed point index of
f on U is the integer,

L U0) =) (=1 Y {(sa, f1(s0)) 1 @ is a p-simplex, (¢) N U # 0}.

P
This definition is independent of the simplicial approximation chosen.
A simplicial complex may have an unmanageable number of simplices and
any hopefully practical simplicial result ought to involve the homology

groups. The above definition of fixed point indices cannot be realised as

14



the Lefschetz number of even a graded endomorphism generally.

2.3 THE PROPERTIES OF THE FIXED POINT INDEX
A triple (X, f, W) is admissible ({4]) if,

¢ X is a connected compact polyhedron.

o f: X — X is amap.

e W isopenin X.

¢ there are no fixed points of f on the frontier of W in X.

It is possible to associate with any admissible triple (X, f, W), the fized
point index of f on W denoted by i(f, W) (see [4], [5], {6], [19] or abave).

The fixed point index satisfies the following properties :

Property 1 (Localization) : Let (X, f,U) and (X, ¢,U) be admissible
triples such that for all z € U, g(z) = f(z). Then i(f,U) =i(g,U).

Property 2 (Homotopy) : Let H : X x [0,1] — X be a homotopy and
define f; : X — X,t €[0,1] by, fi(z) = H(z,t). If (X, f;,U) is admissible
for all t € [0,1], then i(fo,U) =1i(fi,U). |

Property 3 (Additivity) : Let U}, .. U be a set of mutually d1530111t open
subsets of U such that Fix fnU C UU Then i(f,U) = Z‘I (f, U)

j=

Property 4 (Normalization) : i(f, X) = L(f).

Property 5 (Commutativity) : Let f: X — Y and g :' Y — X be
maps and let (X, gf, U) be admissible. Then (Y, fg,97'(U)) is admissible

and ?,(gf U) = i(fg,97(U)).

15



CHAPTER 3

THE FIXED POINT SET OF A SIMPLICIAL MAP

3.1 INTRODUCTION

The number of path components of the fixed point set of a continuous map
on a compact, cannected polyhedron may not be finite. As H. Schirmer
([11]} has shown : given any closed subset C of the polyhedron, it is possible
to define a map on the polyhedron, whose fixed point set is precisely C.,

The situation simplifies when we consider simplicial maps on finite con-
nected simplicial complexes. Let g : sd®"K — K,n > 0, be a simplicial
map. We show (Remark 3.14) that if n > 0, then the fixed point set of g is
a finite set of isolated points. Therefore, the number of path components
of the fixed point set of g is finite. Also, if n = 0 by Lemma 3.19, there is
a subcomplex of sd X' whose geometric realization is ﬁrecisely Fix g. Thus
the subdivision of all the distinct path components of Fix g are disjoint
subcomplexes of sd K. Hence, Fixg has finitely many path components

and each path component is closed in Fix g, This shows that,

each path component of the fized point set of a simplicial

map g:sd"K — K,n > 0, is compact and open in Fixg,.

We study the subdivision of a simplicial map and show that this process

does not alter the fixed point set of the map and also that subdivision of a
simplicial map is homotopic to the original simplicial map.

The results discussed in this chapter will be used throughout the thesis.

3.2 NOTATIONS

Throughout the thesis, we will be interested only in finite simplicial com-

pPlexes whose geometric realization is connected. Such simplicial complexes
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will be referred to as finite connected simplicial complexes or sometimes
only as simplicial complexes. This need not lead to any confusion since we
will work only with finite connected simplicial complexes.

We shall denote the p** barycentric subdivision of a simplicial complex
K by 8dPK,p > 0 and the simplices of a simplicial complex by lower case
Greek letters : o, 1,.... The notation o € K will mean that o is a simplex
of the simplicial complex X.
The geometric realization of a simplicial complex K will be denoted by | K|.
By a simplicial map f : X — L we will either mean the combinatorial
map on the abstract simplicial complex K induced by a vertex assignment,
f: V(XK) — V(L) so that, whenever ¢ is a simplex of X, f(o) is a simplex

of L or its geometric realization | f] : | K| — |Z|, ([18]).

The dimension of a simplex 7 of a simplicial complex X will be denoted by

dim 7.
Let v be a vertex of a simplicial complex K. The barycentric coordinate of

a point x € | K| with respect to v will be denoted by z(v).
The set of all vertices of a simplicial complex K will be denoted by V(X).

The metric d on | K| is given by,

!
V]

d(z,y) = | ¥ (a(v)-y@)*| , =y€|K|
t veV{X)

If o, 7 are simplices of X, then :

o (0) (resp. & C |K|) will denote the open (resp. closed) simplex

corresponding to o,

o st (o, K) (resb. st (o, K)) will denote the star (resp. closed star) of

gin K,
e 7 < o will mean that 7 is a face of o,
o it 7 < o, we will write {7 : ¢} for dimo ~ dim .
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o if ¢ = [uy,...,u,| we shall sometimes write b(c) = ug- - u,, for the

barycenter of o,

e o will denote the boundary of 0. Thus, 0 =U{F: 17 < o, but, 7 # o}

The join of two subcomplexes M and P of K will be denoted by M * P.
Recall that, 8% (0, K) — st (0, K) = Lk (0, K) * ¢.

Definition 3.1 Let K’ be a subdivision of X. A p-simplex ¢’ of K' is
primitive with respect to K, if there is a p-simplex ¢ of X such that
(') C (o).

We shall also say that o' is a primitive simplex of K' with respect to o

if o' is primitive with respect to K and {¢’) C (o).

A primitive simplex of sd™X with respect to v € K will be denoted by

Nm). 1f more than one such primitive simplex is being discussed, then we

shall denote them as 7y, (1), 7jmi(2),. . ..
We shall denote the carrier of a point x of [sd?X| by o,(z). Recall that

this means that ¢ € {o,(z)). If the carrier of a point = of |gd?K| is a

primitive simplex then we will denote it by o ().

Let L be a subcomplex of K. The regular neighbourhood of L in K will be

denoted by N (L, X). Thus,
N(L,K) = U{st(o,K): 0 € L}
N(L,K) = U{st(0,K): 0 € L}
Lk (L, K) = N(L,K)-N(L, K)

Let C be a subset of |K]. The smallest subcomplexlof K containing C is,
Kle ={r € K :17 <0a;{c)NC # b}.

Let (K, L) be a simplicial pair. Then C,(K, L) will denote the chain com-
plex of oriented simplicial chains of (X, L).

Homology will always be with coefficients in Q.
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Let (X, L) be a simplicial pair and
o,  H/(K,L) — H,(K,L)
be a sequence of homomorphisms. The Lefschetz number of ¢, is,
L{p, K, L) = ¥i59(—1) Trace {p; : H;(K, L) — H;(K, L)}.
Whenever K, L are clear from the context, we will write L{i) to mean

L{p, K, L). We recall a classical result.

Lemma 3.2 (Hopf) Let (K,L) be a simplicial pair. For all i > 0,
let ©f , o, and QD(K’L) be homomorphisms such that the following di-

.i

agram commauies,

e Hy(L) —— H(K) — HyK,I) — Hpa(l) — ---

Je '
KL L
;{ ( 1 } 'lpp—l

L

— H(L) — H(K) T H(K,I) —— Hy\(I) —

Diagram 3.2

where the horizontal rows are the exact sequence of the pair (K, L),

Then, L(¢fH) = L(pX) — L(¥").

Proof: The homology exact sequence of the pair (X, L) is an acyclic chain

complex. The lemma now follows by Hopf Trace Theorem ([22]).

3.3 DEPICTION OF SIMPLICIAL MAPS THROUGH FIGURES

We shall use figures to describe simplicial maps. To define a simplicial map
g:sd"K — K,n 2> 0, we will draw the figures showing the geometric
realizations of X and g(sd"K). A vertex shown as v on g(sd”XK) will thus
be the image of a vertex‘u of sd"K by the. map g. For example let X be
the standard 2-simplex with vertex set, V(K) = {1,2,3}. Let us denote
the vertex b([1,2,3]) = 123 of sd K by 3. Let g: sd K — K be the

simplicial map given on the vertices by,
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9(1) =1, ¢(12) = 1, g(2) = 2
g9(28) = 2, g(8) = 3, g(18) = 1, ¢g(3) = 1
Then the figure would be,
3 3 3
13 23 ]
1 1 12 2 1 1 2

Figure 3: S'implicial Maps described through Figures

Thus in Figure 3, the vertex description of g(sd K) is as follows : the
vertices labelled by 1 are the images of the vertices 1,12,13 and 3 of sd X,
the vertices labelled by 2 are the images of the vertices 2 and 23 of sd X,
the vertex {abelled by 3 is the image of the vertex 3 of sd K.

In actual practice we will omit the figure showing the geometric realization

of sd X' and draw only the figures showing the geometric realization of K

and g(sd K).

3.4 PRELIMINARY RESULTS ON SIMPLICIAL COMPLEXES

Let L be a simplicial complex. For m > 1, there is a partial order ( f’._).
defined on V(sd™L) as follows : for all b(or).,b('r) € V(sd™L),b(o) < b(7)
if and only if ¢ < 7. Then, any S € V(sd™L),m > 1 is a simplex of sd™L
if and only if it is linearly ordered. We assume from now on that X' = sd L

for some simplicial complex L. Thus we can talk of the "largest" vertex of

a simplex,

Lemma 3.3 Let o = oy be a simplex of K and o be a primitive
simplex of sd K with respect to oy, A vertex b(p) of sd K is a verter
of Lk (o1, 8d KX) if and only if (1) C st (ap), K).
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Proof: Let oy = [b(m),...,b(7p)], where, 7y < +++ < 1, = 0yg and for
all 0 < ¢ # j < p,7 # 7;. Let b(p) be a vertex of Lk {0y, 8d K). Then
opny U b(p) is a simplex and hence, there is a §,0 < § < p such that,
T; < 1< Ti41

Since oy is a primitive simplex, dim oy = p = dimg(g) = dim 7,. Therefore,
- each 75 is a j-simplex. Hence oy < pi.e. (1) C st (o, K).

On the other hand, (i) C st (op), K) implies that o < ¢ and hence that
op) U b(p) is a simplex of sd K. So b(p) € Lk (o, 8d K). _

Observation 3.4 Let M and P be two subcomplexes of K. Then,
sdMNsdP =sd(MNP), and, sdMUsd P = sd (M U P).

Lemma 3.5 Let Cy and Cs be two disjoint closed subsets of K. Then

there is a m 2 0 such that,
N([sd™K]¢,,sd™K) NN ([ed™K]g,, sd™K) = {).

Proof: For any m > 0 and for i = 1 or 2,N([sd™K]¢,,sd™K) is an open
neighbourhood of C; in |K|. Since C; and (s are disjoint closed subsets
of | K|, there are open neighbourhoods U;,U; in |K| of C), Cs respectively
such that, U; N U, = 0. Choose m > 0 such that N ([sd™K]¢, sd™K) C U;

for 1 = 1 and 2. The result follows, n

Lemma 3.6 Let o = gy be a stmplex of K and for any m 2 0 let oy,
be a primitive simplex of sd™K with respect to oyg. Then,
ETt-(O‘[m], sd™K) C Bd'"{gf(alg],'f{)}.
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Proof: Let for all 1 < 5 < m, op; be a primitive simplex of sd/K with
respect to opj-y. Let 0 < 7 < n and p = [b{j),...,b(s,)] be a simplex of
st (05,1, 8477 K) such that (i) C st (0(;,4), 8477 K). Then ay;,y) < pi.
Let oy = [0(sig)s . -+ 0(13,)]. Then (oy;4) C (p;,) and hence, p;, = oy
Also (p) C (pq) and p;, < p,. Therefore p, is a simplex of 8% (o;, 8d 7 K)
and hence, p is a simplex of sd7; which in its turn is a subcomplex of
sd {st (0y;;,8d7K)}. Thus, forall 0 <5< m—1,

8t (0(j41), sd M K) C sd {5t (0, 847 K)}.
Now by Observation 3.4,
5% (o), 8d™K) C sd {5t (opp-y,8d ™ K)} C - -- C 5d™{SE (0, K)}. =

Lemma 3.7 Let g : KX — L be a simplicial map, and let M be a
subcomplex of K, P be a subcomplex of L, such that, g(M) C P. Then,
g(N (M, K)) CN(P,L)

Proof: Let ¢ be a simplex of K such that (o) C N(M,K). Then there
is a simplex 7 of M such that 7 < &. Since g(7) is a simplex of P and

g(7) =g(a), it follows that (g{o)) C N(P, L). Therefore,
g(N(M,K)) CN(P,L).

The result follows,

Lemma 3.8 Let v € K and 0 € sd?K,p > 0 be such that {¢) C (7).

Then the largest vertex of o belongs to (7).

Proof: Let 7 € K and ¢ € sd K be such that (o) C (7).
Let o = [b(m),...,b(1)] where, 79 < -+ < 7. are simplices of K. So
the largest vertex of ¢ is b(r,) and (o) C (7). Therefore 7. = 7. Hence

b(7,.) € (7).
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Thus, for any simplicial complex L and any simplex o of L, if v € sd L is
such that {v) C (p), then the largest vertex of v belongs to ().

Let ¢ € sd ""K,k > 2 such that (o) C {r). There is a simplex p of sd * 'K,
such that (o) C (i) C (r). Then the largest vertex of o belongs to {u}

by applying what we have just now proved to sd *"1X, Hence the largest

vertex of o belongs to (7). _

3.5 THE FIXED POINT SET OF A SIMPLICIAL MAP

Let K ' be a subdivision of X and g : K’ — K be a simplicial map. Let

o be a p-simplex of X',

Lemma 3.9 Fixgn (o) # 0 implies that (o) C {g(c)).

Proof: Let z € FixgnN (o) and r € K such that (¢) C (1). Then z € {7}
and z = g(z) € {g(¢)). Hence g(o) = 7. n

Remark 3.10 It is clear that if X' = K, then, Fixg N (g) # @ implies

that o = g(a). Of course, if o = g{o) and w is a vertex of ¢ then g{w) may

not be equal to w.

Lemma 3.11 Letz € Fizg and o'(x) be the carrier of ¢ in KX'. Then,

o'(x) is a primitive simplex.

Proof: The carrier of @ in K is ﬁrivially a primitive simplex. We de-
note it by oyg(z). Since (¢'(x)) C (opi(z)),dimo () < dimf.:r[g](:n). Also,
z € Fixg, implies by Lemma 3.9 that g(o'(z)) = ojg(x). Therefore
dim oy (z) £ dimeo’(z). Hence dimoyy(z) = dimo'(z) and so o'(z) is a

primitive simplex. "
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Lemma 3.12 Let {(¢) C (g(0)). Then Fizgn || # 0.

Proof: The degree of the map g : (G, ¢) ~— (g(7),g( ¢)) is non zcro.
Since the inclusion map ¢ : & —+ ¢(7) is inessential, g has a coincidence

with 7 ([17, Theorem 2.2]). This is a generalisation of Brouwer's fixed point

theorem (also see [3], [20]).

We prove this result independently as follows. Assume that ¢ has no coinci-

dence with <. For any point x of |7 let &’ be the intersection of the straight
line path from i(z) to g(z) with g( o). Define a map ¢ : 7] — g( o)
by ¢(z) = z’. Clearly ¢ is continuous and is an extension of gl . But
this contradicts the fact that g| & has non zero degree. Therefore g has a

coincidence with ¢. In other words, Fixgn || # 0. _

Proposition 3.13 Let K’ be fine enough subdivision of K such that,
for any o € K' and v € K, if (o) C {7), then diameter & < d(b(r), 7).
Then Firg is a finite set of points of |K|.

Proof: Let ¢ be a simplex of K’ such that {¢) C (g{c)}. Then for any
z,y € |7, d(z,y) < d(g(x),g(y)) ([12, Chapter III, Lemma 3.5(i)]). This
cal be seen also as follows by considering the barycentric coordinate rep-
resentation of the points,

Let o = [ug < -+ < up) and

P
Let u; = ) s;;9(u;). Thenforall 1 <i<pand0<j<p0<s; <1,
j=0
Now, o
p (P p (P *
T = Z {Ztisij} g(v;), y= Z {Z”"isij  g{v;)
j=0 \i=0 - j=0 \i=0 )
Therefore,
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So g{7) has at most one fixed point of g. Therefore if ¢ is a simplex of K’

such that Fixgn (o) = {z}, then st (0, X'} N Fixg = {z}. -

Remark 3.14 If X' = sd™K,n > 0, then the hypothesis in Proposi-
tion 3.13 holds. Hence for n > 0, the fixed point set of a simplicial map

g:8d"K — K is a finite set of points of [K].

3.6 SUBDIVISION OF A SIMPLICIAL MAP

Let X' be a subdivision of i{ and ¢ : X' —— X be a simplicial map. The

1% subdivision of g is the simplicial map,
sdg:sd K’ — sd K

defined on the vertices by,
sd g(b(o)) = b(g(0)), for all ¢ € K",
The n'* subdivision of g for n > 1 is defined inductively to be,

sd"g =sd(sd"'g):8d"K' ~— sd"K.
Let K’ be a subdivision of X and ¢ : k' — X be a simplicial map. Let
o be a p-simplex of K.

Lemma 3.15 Let g(o) be a p-stmplex of K. Then for all z € |7,
9(z) = sdg(z). '



Proof: Since g(o) is a p-simplex of X, for all 7 < o, g(b(7)) = b{g(r)) and
by definition, sd g(b(7)) = b(g(r)). Therefore, g : sd7T — g(sd7) is also
simplicial and for all vertex w of sd@, g(w) = sdg(w). Hence the result

follows. N

Remark 3.16 The result is not true if g(o) is not a p-simplex of X. This

can be seen from the following example. Let o = [uy, ... u,] be a simplex

such that g(up) = g(ul) and g([ug, pi) is a (p — 2)-simplex. Then,

2
On the other hand, sd g(b(c) = b(g = Zg ;).
1=1

Lemma 3.17 Let XK'= K., Then Fizg= Firsdg.

Proof: Letz € Fixg and the carrier of z in X be oy, Then by Lemma 3.9,
o] = g(oy) and hence by Lemma 3.15, g(z) = sd g(z) =

Conversely let © € Fixsdg. Let the carrier of ® in K be o9 = [ug, ..., up].
Let 7; = [ty ..., u;, ], and 79 < -+ < 7, = of). Let the carrier of z in sd K
be oy = [b(7), ..., b(7,)).

By Lemma 3.9, sdg(op)) = op. Let sdg(b(7)) = b(n). Then g(n) =
This implies that [ < k. Therefore g{7) = 7. If possible, let g(n) = n.
Then sd g(oyy)) is a proper face of oy, a contradiction. |

Therefore g(m) = 71. Proceeding similarly, we see that g(7) = 7, i.e.

g(a}) = o). Therefore by Lemma 3.15, g(z) = sd g(z) = =. | -

Remark 3.18 From the above proof it is clear that if K’ = K then for all
vertices b(7;) of ayy, sd g(b(7;)) = b(7;).

L_emma'3.19 Let K' =K. Then Fizsdg 15 a su(,r»;:o*m.plem of sd (.
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Proof: Let FF = {p€ sd X :pu <7, {r)N Fixadg # 0}. It follows by Re-
mark 3.18 that if ()N Fixsdg # 0, then for all vertex w of 7, sd g(w) = w.
Therefore 7 C Fixsdg. So F = Fixsdy. _

Thus when X' = K, the path components of Fix g are precisely the geomet-
ric realizations of the distinct subcomplexes of sd X whose union is | Fix g|.

Hence the following result follows from Proposition 3,13 and Lemma 3.19,

Proposition 3.20 FEach path component of the fivred point set of a

simplictal map f:sd"K — K,n 2 0, 18 compact and open in Fix f.

Lemma 3.21 Let K’ be finer than sd K, Then Fizg= Firsdg.

Proof: Let x € Fixg. Then the carrier of z in X' is a primitive simplex.
Let opy be the carrier of # in K. Then by Lemma 3.9,
(o0} C {glog))
and hence by Lemma 3.15 g(z) = sdg(z) = 2. Thus =z € Fixsdy.
Conversely let £ € Fixsdg. Then by Lemma 3.11, the carrier of  in sd X’
is a primitive simplex, say, o|; with respect to sd K. So dimoy, = dimoy)
where the carrier of z in sd K is op). Since K’ is finer than sd X,
dim cri'll < dim .fri'ul < dimoay).
Therefore dimojy = dimajy. Let dimojy = oj = p. If g(ojy) is not a p-
simplex of K, there are two vertices ug # u; of oy such that g(uo) = g(u,).
Let Jfﬂl = [tg,...,U) and 79 < +++ < T, = ﬁfn] be such that,
_ ofy = [b(m), ..., (7).
Then 7; is a j-simplex of I{’. Let for some i, where 0 < ¢ < p, 71 be such
that only one of ug or u, is a vertex of v; and both ug and w; are vertices of
Ti+1. Then g(7;) = g(r41) and hence sd g(ah]) is not a p-simplex of sd K,
a contradiction. Hence g(s) is a p-simplex of K. Then by Lemma 3.15,

g(z) = sdg(w) = x. Thus ¢ € Fixg. _

27



Lemma 3.22 For any subcompler L of K, sd g(sd L) = sd (g(L)).

Proof: Let 7 be a simplex of sd L and let ¢ be a simplex of L such that
() C (o). Then 7 is a simplex of sdF. Let ¢ = |ug,...,u,) and for all
0<7<plet p=lu,...,u) and p = [b(pg),...,b(p,)]. Without loss
of generality we can assume that r < u. Then sdg(r) < sdg(u) and
sd g(u) € sd{g(7)} C sd(g(L)). Therefore sd g(sd L) C sd (g(L)).

Conversely let T € sd (g(L)). Then thereis a o € L such that 7 is a simplex
of sd {g(7)}. Let ¢ = [ug,...,u,), forall 0< 75 < p, p; = [g(uwo),...,g{1;)]
and p = [b(uo), ..., b(up)]. Without loss of generality we can assume that.
T < p. Let for all0 £ j < pyo; = [up,...,u;] and v = [bog), ..., b(a;)].
Then, v € sdL and y = sdg(v). So p is a simplex of sdg(sd L). Hence,
sd (g(L)) C sdg(sd L). "

Lemma 3.23 sdg is homotopic to g.

Proof: Consider the map f =lsd gl : {K'| — K. Then g is a simpliciai
approximation to f. This can be seen by verifying the star condition. Let v
be a vertex of K/, We wish to show that f(st (v, K')) C st (g(v), K). Let
(o) C st (v,K') and let 7 € sd K’ such that {r) C {¢). By the definition of
sd g, (sdg(7)) C {g(0)) C st {g(v), X). Since this is true for all 7 € sd K’

such that {r) C (¢), it follows that,
f{{e)) C {g(a)) C st (g(v), K).

Since g is a simplicial approximation to sd g, it follows that sd g is homo-
topic to g ([22)). -

Let the homotopy be H : |K| x I — |K|. If L is a subcomplex of X' and
g(L) = M, then, H :|L] x I — |M]|. | .

Remark 3.24 sd g is not a simplicial approximation to g. This can be seen
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by an example. Let K be the standard 2-simplex with V(I) = {0, 1,2}.
Define a simplicial map g : K — K with values on the vertices :
g(0) = g(1) =1 and ¢({2) = 2.
Let 2 be the point z = 12+ 2012, Then = € st (2,8d K). Also,
t=1(0+1)+32.
Therefore g(z) = 3(1 +2) = 12 ¢ st (2,84 K). Thus, sdg(2) = 2, but
g(st (2,8d K) ¢ st (2,8d K).

Remark 3.25 Let f: |K| — [K|beamapandlet g:sd”K — K bea
simplicial approximation to f. Then sd ¢ need not be a simplicial approx-
imation to f. This can be seen from an example. Let g: 8d K —+ K be
the simplicial approximation to identity defined by,
9(b(lug <+ - <)) = uy,

for all simplex [ug,...,u,] of K, where, < is the ordering on V(K) men-
tioned in Section 4 of this chapter: Then for any simplex 7 of K such that,
dim T > 0, sd g(b(7)) # b(r) and hence sd ¢ is not a simplicial approxima-
tion to the identity map on | X].

Remark 3.26 The choice of a collection of isolated sets of fixed points is
clearly not unique as can be seen from a simple example. It is possible
to define a map on the closed unit interval in R whose fixed point set is
precisely, {0} U {2 :n € N}. Then for any m > 1 a class of isolated sets of

fixed points could be defined to be, | .
Co ={.O}U{,—11- :neN,n>m+1}, C;= {%},1 <7 <m.

For simplicial maps we choose the class of isolated sets of fixed points of

the map to be the distinct path components of the fixed point set.
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CHAPTER 4

A RETRACTION OF STAR NEIGHBOURHOODS

4.1 INTRODUCTION

Let K be a simplicial complex and oy be a simplex of K. Let oy, be
a primitive simplex of sd"K with respect to oy. Then st (of,), sd"K) is

a subcomplex of sd"(st(op), X)) (Lemma 3.6) and [st (o}, 8d"K)| is a

deformation retract of |8t (oyg, K)|.

In this chapter we define a simplicial map,
Poa(0)) : 84" (5T (o), K)) ~— 5% (o},), 8d"K)

which is a deformation retraction and discuss a few properties of this re-

traction which will be relevant to us. This retraction plays a major role

in the remainder of the thesis. The results of this chapter are technical to

state but the ideas involved are quite geometric.

4.2 DEFINITION OF THE DEFORMATION RETRACTION

Let X be a simplicial complex and gy be a simplex of K. Let o, be a
primitive simplex of sd "X with respect to o). Let for all 1 < 7 < n, o
be a primitive simplex of sd 7K with respect to oj;_y). Clearly then for all
0 £ j £ n,oy is a primitive simplex of sd’ K with respect to oy .

Let s > 0. Let o) = [vo,..., %), and o4y = [b{io), .- ,b(1i,)], where,

pi = [vgy ..., v;]. Define,

ps : 8d {EE ({T[s], Edsff)} — Eﬁ'(alﬁ.ll, sds'HK')
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ps(b(T)) = blogUT) ifp; <7= pyy <7, forall0<j<p—1
ps(b(T)) = b(u;) ifp; <7 and piy A 7 for some0 < j<p—1

This definition can be best understood by an example. Let K be the
standard 2-simplex with V(K) = {1,2, 3} and let ojg be the 1-simplex [1, 2]
of K{ and oy be the 1-simplex (1,12} of sd K. Let us denote the vertex
b([1,2,8]) =123 of sd K by 3.

Figure 4 depicts the map p, : sd{st (o), K)} — st (oy),sd K}, (see
Section 3 of Chapter 3 for the convention regarding the description of a

simplicial map through figures).

1 1
T} <
o0l 12 1
2 3 12 3 3
st (ap), K) p(sd {8t (o], K)})

Figure 4: The retraction p,

We fix the notations as above unless stated otherwise.

Lemma 4.1 p, 8 a simplicial map.

Proof: Let T = [b(ry) < -+ < b(7,)] be a simplex of sd {5t (o[, sd *K)}.
Let {b(r,) < - < b(ry)} be the set of vertices of r such that, for all
0 <r £k <t<Lyq, there exist a vertex b(p;,) of os41), such that,

i, < Tk and, p 1 £ T |

Since forall0 <r <k <t< q, b(p;, ) are vertices of O(s+1), €ibher gz ~< 5
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OF fbje., =< Mj,. Let if possible pu; < p;,. Again b(p;,) and b(ys;, 1) are ver-
tices of o(s+1], hence either pj, < g1 41 0r 5,41 < ptj,. Since {p; 1 pjr} =1
for all 0 € 5 < p, it follows that,
Hivor 41 < fj = T = Thyd

This is a contradiction, since ;.1 A Ty Therefore, p; < -0 < p;,.
Also, for all t+ 1 < k < g, oy, is a face of 7. Thus,

i, =<0 < IU’J’:(* U[H]) = ToUo < <X Ty Uop <7gp <000 X7y
and hence,

pg(‘T) = [b(’?‘{] U 0‘[5]), 24ty b(Tr-—l L ﬂ'lsl), b(ﬂj})1 veouy b([.lrjt), b(TH-l)i vory b(Tq)]

is a simplex of 8% {o},4.1), 8d*T' K).

Let o = 0(s41) =, a vertex of sd°K. Thenforall 0 <j<p—-1,

| H; = Hijp) = V.
Thus for any simplex 7 of st (v,sd *K), if p; < 7, then y;4y < 7. Thus, the
map p, : 8d {8t (v,sd*K)} — 5% (v, 8d“H K is defined by

ps(b(T)) = b(T U )

for all simplex 7 of st (v, sd *X).

Thus, if o, = 0,4y = v, the map p, is radial i.e. for any vertex w # v
of sd {st (v,8d°K)}, p.(w) is the point of intersection of the line segment
joining w and v with Lk (v, sd*H K). This can be seen as follows. Let
T = [up,..., Uy be a p-simplex of Ef(v,sd *K) and consider the vertex
b(r) of sd {8t (v,sd°K)}. If (v) C st (v,8d°K), then v is a vertex of 7
and hence p,(b(7)) = b(r). Thus trivially p;(b(r)) lies on the line segment
joining v and b(7). If 7 € Lk (v,8d *K), then p,(b(7)) = b(r U v). Hence,

p+1 1
b .
IJ+2(T)+P 5

ps(b(T}) tl

So, 'ps(b('r)) lies on the line segment joining » and b(7).
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Lemma 4.2 (i) p,|8t (0},41}, 84V K) is the identity map.

(ii) p,:sd{Lk (o), 8d°K)} — Lk (0}41, 8d°H K) i3 a simplicial home-

- omorphism.

(i) pa(sd o1s)) C Olery
(iv) ps(sd (Lk (0,84 °K) % 0y)) C Lk (0]s41), 84 *7 K) % 61,4y

Proof: (i) Let b(t) be a vertex of sd (st (oy,, 8d“K)). Then 7 is a simplex
of 8t (0}y), 8d°K). By Lemma 3.3, b(7) is a vertex of Lk (0,14, 8d *" K) if
and only if, oy < 7. Therefore, if b(7) is a vertex of Lk (0,1, 8d ** K),
then p,(6(7)) = b(T U o) = b(7). If b(r) is a vertex of os,y), then r = p;
for some 0 £ 7 £ p. Hence p,(b(7)) = ps(b(p1;)) = b(1;) = b{7). Thus,
Ps|8% (0541, 8d *T 1K) is the identity map.

(i) If r € Lk (o), 8d°K), then TN G}, = 0. So p,(b(7}) = b(T U 0}y). Since

T U ays has oy as a proper face, b(7 U ayy) € Lk (07,4, 83d " H K).

Let p = [b(rp) < - -+ < b(7,)] be a simplex of sd {Lk (g5, 8d*K}}. Then,
Ty X T U oy < <7 U oy

and hence, p,(p1) is a simplex of Lk (0544, 8d*" K). Thus,
ps(sd {Lk (o(y,8d °K)}) C Lk (0741, sd *H' K).

We show that p,{sd {Lk (o}, sd°K) } is a simplicial homeomorphism.
It is enough to show that p, is a one to one correspondence. Let b(7)

and b(7’) be vertices of sd {Lk (04, sd *K) } such that p,(b()) = p(b(T")). .
This implies that b(r U ayy) = b1 ' Uayy) le. U0 = 7' U oy, Since
TOGT, = @ = 7' 07, it follows that v = ', Hence b(r) = b(r').
Thus p,|sd {Lk (), sd*K)} is one ta one. Let b(7) € Lk(a(s4y),sd*H K),
Then oy is a proper face of . Let 7 — oy = v. Then v is a simplex of

Lk (o), sd*K) and py(b(v)) = b(). Hence p, is onto.
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Therefore for any subcomplex L of Lk (o, sd *K), ps|sd L is a simplicial

homeomorphism,.

(iii) Let 7 be a simplex of (4. Then 7 < oy, If there is a p;,0 < j <p-—1,
such that p; < 7 and pj1, £ 7, then, p,(b(7)) = b(p;) € o(s41). If there
is no such p; then, p,(b(r)) = b(7 U oy,)) = b(opy). Hence, in either case,
ps(b(7)) is a vertex of gy,

Let v be a simplex of sd o). Since T4y is a full subcomplex and all
vertices of p,(v) belong to o4y, it follows that p,(v) is a face of oy
Also, v € sd o, implies that dimv < p— 1. Therefore p,(v) is a proper

face of o1y, In other words, p,(v) is a simplex of .1, Hence,
Pe(8d 01y) C Oty

(iv) Let v = [b(mp) < -+ < b(7,)] be a simplex of sd {Lk (o,8d *K) * o4}
Then o1y is not a face of 7,. Therefore, if v < g5, then it is a proper face
of opgyy. Let 1, <+« < 7,0 <t < qbesuch that, for all t <k < g,
Wi, < Ty and g1 A T
Then,
ps(V) = [bro U ayg))y . ..\ DM Uayg), b(ps, ) - ., b5, )]

We show that oy, is not a face of p,(v).
- Let for some k,0 < k € p— 1, there exist a yu; such that for any 7,y < 7
implies that pe+y < 7. Then b(uy) does not belong to p(v).
On the other hand, if there does not exist such a iy, then ¢g—¢ =p—1 and
[V, + +« s Upey] < Ty If v, is a vertex of 7; for some t € j £ g then oy < 7, 8
contradiction. Therefore, for all t<i<qu, €71y Alsoy € 1. |
Let if possible v, € 1}', forsome 1 <k <p—1, Then forall 5 > ¢,

Vg, « .., Vk_1] < 7; implies that, [vg, ..., v] < 7.
Hence b(p-1) € ps(v), a contradiction. Therefore for all 1 <k < p, v € 7.
Let t > 0. Since for all 0 £ j <t - 1,75 < 7 it follows that, for all

0 < k < p,v & 75. Therefore 7; € Lk (gy,,8d°K), for all 0 < k < p and
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hence b(o,)) & ps(1t).
If t = 0 then, ps(p) = gs41) — b(o]4). So in any case oy is not a face of

ps(1t) and hence, p,(s2) is a simplex of Lk (o1, 8d " K) ¥ Gppp1)-
Therefore, p,(sd (Lk (JIE], sd EK) X é‘lal)) C Lk (f’[s+1]: sd E“I() % &15+1|. |

Let j : 8% (0s41), 8d " K) — sd {8t (0};),8d°K)} be the inclusion map.

- Lemma 4.3 jp, is homotopic to the identity map.

Proof: It follows from above that for any vertex b(r) of sd (st (o), sd *K}),
7ps(b(7)) € |T * Tigy|. Thus for any = € [8% (04, 8d*K)|, there is a simplex
p of st (oy),8d*K) such that, z,7p;(z) € |FE]. Hence we can define the

straight line homotopy,
H . ‘ﬁ(ﬂ'la],sdsff” X I — ‘E(G‘ls],sdsff)l
such that, H(z,0) = z, H(z,1) = jp,(z), for all x € |3t (o, sd *K)|.

Hence, p, is a deformation retraction.

Lemma 4.4 sdp, i3 a deformation retraction.

FProof: By Lemma 3.22,
sd p,lsd {st (0{s+1|1 sd*+K)}|

= sd [pg{a ("I{s+1]1 sd iE-I‘l“‘!l'{)}]

= 8d {8t (0}s41), 8d T K)}.
So sd p,|sd (8% (os41, 8d T K)) is the identity map. Also, |sd p,| is homo-

topic to p, by Lemma 3,23. Hence |j| o |sd p,| is homotopic to |fp,| which

is homotopic to the identity maﬁ on |st (o), sd " K)I. o n



Let the composition,

ffn-10 sd Pp-20'-0 Ed""lﬁu
| sd"{8% (o0, K)} — 5% (0, 8d"K).

be denoted by po,.(op).

For any m < n we define similarly,

pmi“(a'[ﬂ]) :8d" " {st (o, sd"K)} — st (o, sd"K).

Since the composition of deformation retractions is a deformation retraction

([22]), pma(ap) is a deformation retraction.

This is one of the several deformation retractions that can be defined on the

star neighbourhoods, When there is no point of confusion we shall simply

write pp, for pma(ow).

4.3 SOME SPECIAL PROPERTIES OF p

We let the notations be as in the previous section.

Lemma 4.5 Let p € Lk (0(s41),8d V' K} % 054y, There is a simplex v’

of Lk (o5, sd°K) * oy such that, p € ps(sdP') and (p) C (o5 Uv').

Proof: Let p be a simplex of Lk (gs41), 84 ¥ K) % gyesyy. Then there exist

simplices To <+ < 7, of st (o), sd *K) such that, '
= [b(To)s - s BT, BTty o BT

Assume that b(m),...,b(7.) are vertices of o,4.;; and oy, is a proper face of

Trg] < v v < Tq..Then Ty < Oy

Let 7, be a proper face of oy, Let for all7+1 < k < ¢, = 1. — 0y Since

vy is a .simplex of Lk (oys), sd*K), for all r +1 < k < q, 00 Uy is a simplex

of st (of,,8d“K) and since for all0 < j g v, T U vy < o U b, it follows

that, for all 0 < j < r, 7; Uy, is a simplex of st (o},),sd *K) . Also,

30



Vpp1 <= Yy <mpUy, <+ <1, Uy,
where 7, U v € Lk (0y, 8d°K) * 0lsj- Therefore,
v=[b(vega)y ooy b(vg), o B U ), . BT U )]
is a simplex of sd {Lk (o, 84 °K) * oy} and p,(v) = p.
Let v' = 7.,Uvy,. Then v € 8d(7'). Now (i) C (1,), and, g Uv' = 7,
Therefore, (1) C (g Uv’)
Next, let 7. = o). Since g4y £ p, for some 0 < k& < p and for some

0 < ! <, Hi 7’-‘ Tl Let T4 =< My = T5i+1 Deﬁne,

Vi = Tj— O forallr4+1<73<¢q
vi = lmp]UyUr 0<75< 5

vi = v UTy yitlsyj<r—1
vy = VU v

Then,
Vpgl <o SV S Vp <Y <0 V5 < V41 < = e
Also, oy, is not a face of v,_;. Therefore,
Vo= [b(tri1)y oo B(Kg), B(1r), b(10), + oy B(15) s B(B5i41)s - o s B(Pp- )]
is a simplex of sd {Lk (o,8d°K) * 0[5} and p,(v) = p.
Let v’ = v,.;. Then v € sd(P’'). Now (u) C (7)), and o Uv' = 7,
Therefore (11) C (o Uv’). _

Lemma 4.6 The dimension of a simplezx 7 € Lk (o5, K) ¥ 0y5) 18 greater

than the dimension of p,(sd7) if and only if either of the following

two conditions hold :
(1) there i3 a I, for some 0 <1< p—1 such that ;g <7 and s A7

and dim{(7 N o) — i} 2 1.
(it) for all0 <I<p-1,u A7, 7 &€Lk(oy,sd’K) and dim7TN oy 2> 1.

Proof: Let there be a j; < 7 such that, 4 -74 7 and assume that

dim{ (v N o)) — i} < 1.
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Let dim{ (T M &Is[) = M} = and 7 =y U ['u;+,-] U |ug, ... u,.] where,
7' = [ug,...u,] € Lk(0}s,8d°K) and i > 1. Then dimT =1+ r + 2. Let
Vo= [b(‘l];+,-), b([’u{], 'U;H]), Ve b(T’U‘U;.H), b(T"U*U,'.;.,'U ‘Uﬁ), Ve ey b(T"U‘UrHUﬂ;)].

Then v € sd7 and,
ps(v) = (b{ayy)), b(o) U ), ..., b(age U "), b(vo), .. ., b))

Clearly dim p,(v) =147+ 2 = dim .
Let dim{(v N o)) —pu} = —1ie (rNay) —m=0and 7= Uuy,... u,
where, 7’ = [u,...u,] € Lk (o, 8d*K). Then dim7 =1{+r + 1. Let

v = [b(lw]),...,b(r'},b(r' Uwg),...,b(7" U ).
Then, v € sd T and,

ps(¥) = [b(ojg Ung),..., b{ogg UT "), b(v), ..., b(m)].

Clearly dim p;(¢v) =147+ 1 =dimr.
Next, let yy A 7 forall 0 <1 <p-1and 7 € Lk (0}, 84 °K).

Since, p,|Lk (0(,], sd*K) is a simplicial homeomorphism, it follows that

dim p,(sd¥) = dim .
On the other hand, let py £ T forall0 < I < p-—1butdimtn o =0.
Let 7 = [v;,up,..., %], where, ¢ > 0 and, 7' = {ug,...u,] € Lk(oyy, sd °K).
Then dimT = r + 1. Let v = [v;,b([v;,ug)),...,b(v; UT’)]. Then v is a
simplex of sd 7 and, |

ps(v) = [blayy), b(of U tio), ..., blagg U 7" ).
Clearly, dim p,(v) = dim 7.

Conversely let there is a y; < 7 such that g4y £ 7,0 <1 < p—1 and
dim{(r N o1y) — tu} 2 1. Let v be a simplex of sd7 whose dimension is the

same as the dimension of 7. Then there are vertices b(t" ), (7" ) of v such
that 7/ is a face of 7" and, 7" — 7' € (7N 0py) — . Also v'N opy # .
Then pg(b{(r')) = ps(b(7")). Therefore dim p;(sd7) < dim .

If oy A7 forall0 <1< p—1,7 & Lk(o}y,8d°K) and, dim{r N o} > 1,

then again let, v € sd7 be such that dimv = dimr. There are ver-
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tices b(7'),b(r" ) of v such that 7' < 7" and, 7" — 7’ € 7N oy Then

pe(b(7")) = ps(b{7")). Therefore, dim p,(8d7) < dim . »

For any point z of st (oyg, X), po(2) is an interior point of the carrier of

z in K and,
Pon + [8% (010, K)| -8t (o), 8" K) — [3E (01, 8d "K) — 8% (o), 8" K.

Precisely speaking we have the following technical lemma,

Lemma 4.7 For all T & st (op), K),
(1) C st (o) K) = po{sd"(F)} C sd"(7) N 8% (0}, 84" K)

T € Lk (010, K)* a9 = pon{sd™(T)} C 8d"(7*7)N{Lk (0,84 "K) ¥ o1}

Proof: Let for all 1 < J £ n,0); be a primitive simplex of sd’K with
respect to of;_y;. Then for all 0 < 7 < n,oy; is a primitive simplex of sd/K

with respect to oy .
Let s > 0. Let oy = [vg,..., v, and, o4y = [b(po), ..., b(pp)], where
i = [vg,...,v;]. We show that for all {7) C st (o}, sd°K),

Ps(8d7) = 8d T N 8t (o4, sd *H1K) (1)

Let 7 € sd*K be such that (r) C st(oy),sd°K). Then &[,] < 1. Let
v € sd7 and let v = [b(1g),...,b(¥)].
Then for all0 < § € ¢,v; < 7. Assume that v, < -+ < v, are such that
forallt <k <7,

ﬂj; < Vg B4l R Vi
Then, |
ps(v) = [b{p,), . .., b(p;,), b(ro U o), - .. Db(vimy Uag), (Ve ), - o 0(1g)]
The following holds : ' '
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v; <1 forallr+1<3 <gq,

viUop <7 forall0<f<t—1,

i < <1 forallt <k <
Therefore each vertex of p,(1t) belongs to sd 7. Also sd7 is a full subcom-

plex of sd**' K ([S]). So p,(n) € sd7.

Also py(1t) € 8% (0(g41), 8d ** K). Hence for all (r) C st (0}, 8d °K),
p:(8dT) C 8d TN 8% (0(4q), 8d ' K}

If b(v) € sd 7 N8t (044, 8d *T1K), then p,(b(v)) = b(r) and hence, b(v) is

a vertex of p,(sd 7). Thus Equation 1 holds.

We next show that for ail 7 € Lk (o), 84 °K) * oy,

ps (84 7) C 8d (0 * T) N Lk (011, 8d T K) % 0754 (2)

Let T be a simplex of Lk (o, sd*I{) + o)y and v € sd7. Then p,(v) is a
simplex of Lk (0}s41), 84 "1 K) % oyqpyy.

Let v = [b(wp),...,b(r;)]. Then forall0 <j < q,v; <7 < TUo0), and
hence, forall 0 <k <p,0<7 <q,v; U <7TUo0p. Thus every vertex of
ps(v) belongs to sd (7, *7) and sd (G, *7) is a full subcomplex of sd **' K.
Thus p,(v) € sd (G * 7). Also if b(y) is a vertex of ps(v), then either,

p < v; <1, for some 0 < 7 < gor, py = ofy. Therefore,

ps(8dT) C 8d (T * 7) N Lk (0fs1), 88 “H K) % { Gy N (8d T U b(o1e))) }-

Conversely let 7' € sd (F(sj*T) MLk (0541, 84 T K )% { 751 N{sd TUb(0(4)) }.
By Lemma 4.5, thereis a 7" € Lk (o), sd K )* oy such that, 7' € p(sdT")
and (7') C (7" U o). Then 7" Uy <TU o(]. From the proof of Lemma
4.5, it is clear that 7" < 7. Hence for all 7 € Lk (o), sd *K) * a1y,

ps(8dT) = sd (F(5 # T) N Lk (0441}, 8d "‘”K) ¥ { o1y N (8dT U b(0y5)) } (3)

Therefore Equation 2 holds.

Now if L is a subcomplex of Lk (4, sd*K) # f}[s],
ps(8d L) = po(Urer(8dT)) = Uperps(sd 7)
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C Urer{8d (G * ) NLK (0(y4), 84 1K) * Glai))

by Equation 2. Theretore,
ps(8d L) C {Urer8d (Ty * T)} N Lk (041, 8d M K) % Oy y
Thus, if L is a subcomplex of Lk (ay,, 8d°K) * i,

ps(sd L) C sd (7}, * L) N Lk (011, 8d 1K) % 04y (4)
If L is a subcomplex of s% (o), sd *K) but not of Lk (gy,), 8d *K) * oy, then,
sd L = sd{L NLk(oy),8d°K) *x 0y U{T: 7€ L, (1) C st {o},, 8d*K}} }

So,
ps(sdL) = pylsa {LNLk(o}), 8d"K) % opy}]

U{ps(sd7T): 1 € L, (1) C st (o}),sd°K)}
Therefore by Equations 1 and 4, |

ps(sd L) C sd{(L N Lk (o), 8d°K) * a(g) *T,)} N Lk (011, 84 HEK) * Oy

Ul(U{sd (F) : T € L, () C st (a},), 3d°K)}) N 5T (0541}, 8 *H K],
and hence,
ps(sd L) C {SdLI"'lLk (0'[54_1], sd 'E"HK') * &ESHI} U{sd LNst (als+1]: sd SHK) }

Hence, if L is a subcomplex of 8% (g}4, sd °K) but not of Lk (o, 8d *K) * o4

then, |
pe(sd L) C sd LN 8% (041, 8d °T K)) (8)

Now let (r) C st(op,K). Then sd"! m(sd"7) = sd” '[pp(sd7)]; by
Lemma 3.22. So sd™ ! py(sd7) C 8d™'{(sdT) N st (op3}, 8d K)} by Equa-
tion 1 and hence by Observation 3.4

sd™! py(sd"F) C sd"(F) Nad" ' {sF ('5’[.1]: sd X)}.
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Let forany 0 € r < g1,

ad ™ ro-l P, 0 Gsd"_l P[]{Ed n(-,—r-—)} C
sd"7 Ned" ™" (8% (0}.4y, 8d "M K)) (6)

Then,
Edn—vs—l PsO v 0 sd n-1 pﬂ{Sd n(:i.-)}

C sd" ! p,{sd "F N 8d " *{st (0, 8d *K)}}
by Equation 6. Again, by Observation 3.4,

sd"* 1 p 0. 0sd™ ! po{sd (7))
C sd"* ! p,{sd"*[sd °T N 5t (0}, sd *K)]}

and by Lemma 3.22,

gd 5! Ps O 0 sd "1 pg{sd"(?)}
C sd" " [p,{sd [sd °FT N 5% (o, 5d *K)]}]

Hence by Equation § it follows that,

sd™ 1 p, 0. 0sd™ ! pp{sd™(F)}
C sd" ! [sd {sd T NSt (0(y, 84 K)} N ST (01541, sd*H K]
sd T N sd" " ![sd {s% (a(y), sd *K)} N 8T (0541, 8 *H K]
sd"™F N 8d"*"H{58% (0541, sd T K) }.

1

Thus for all s > 0 and for all 7 such that {r) C st {0y, X),

Sdﬂe—sﬂ-l PO+ 0 Bd"ﬁl {J{){Sd"(?)} -

sd"FNsd™ st (07541), 5d H K} (7)

Let 7 € Lk (o), K)* ap. Then sd™ ! py(sd"7) = sd"~'[po(sd 7)] by Lemma
3.22. Therefore,

sdu—-lpﬂ(sdﬂ“f) C gd”! [sd (‘5[{]] * "'.F) M Lk (c:r“], sd K) * ‘-'5”|I|]
o sdf‘(ﬁ’ln' ¥7T) N Sd"_l(Lk (U|l|a sd /() * {}[”)s
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by Equation 2 and Observation 3.4, Let forall 0 < r < g -1,

Sdu--r—] P, O+ 0 sd -1 p[}{Bd n(?)} C
sd"’{?flg] * ?} M Sd"_rql{Lk (Jlr+!lr Ed"HK’) X ff"[r+1]}
Then,

Ed:rl-—s—l Pg 00 Sd"hl pg{sd"('ﬁ")}
C ad """'E‘Ips[sd"{'c—r[g] *T} Ned™ *{Lk (ﬂ]s], sd °K() * tfrlgi}]

by Eiquation 8. Again,

Sduﬂs-l fls O+ 0 gd 1] ﬂg{Sd“(?)}
C sd H_E_lps[Sd ”_E{Sds{ﬁig] * “"a""} MLk (0"3!, sd EI{) ¥ &[s]}]

Hence by Lemma 3.22,

sd""*"! p; 01 08d" po{sd *(7)}
C sd"*![p,{sd {sd *(Tpp) * T) N Lk (o}, 8d°K) * o1 }}]

Now by Equation 4,

Sdﬂ——s—-l PsO et 0 Sdu_l pﬂ{sdﬂ(?)}

C sd"*"sd {(8d°(T(o) * T) N Lk (0}, 5d °K) % 1) * Ty }]

N sd"'s‘lka (a[3+1],sds+lff) * iir[s+1|]

- Let M be a subcomplex of st (o, 8d °K),s > 0 such that oy € M. Let 7
be a simplex of M NLk (o, sd*K) * oy. Then T+ 7y C M % 7 C M,
since, ojy € M. Also T * G C st(of,8d°K). Therefore the following

holds,

{M N Lk (0}, 8d °K) * o} % Ty C M N8t (0}, 8d°K)

Also oy € sd®ay € sd *(Tg * T).
Hence for all s > 0 and for all 7 € Lk (o1g, K) * o),

(Sd"_sﬁl Ps) OO (Bd"_l pg){ﬁd“("‘f)} C
Sd"{ﬁlﬂl X ?} N Sd"_s_l{Lk (ﬂ'[s+ll1 sd S“I()} * &[s-i-l]
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Taking s =n — 1 in Equations 7 and 9, the result follows. .

Remark 4.8 Let oy = §). Then oy = v is a vertex of K and,
pon : 8d"{st (v, K)} — 5% (v, sd"K).
It follows that,
(7Y C st {v,K) = pp,{8d™()} = sd™(F) N5t (v,sd"K)

7 € Lk (v, K) = pon{sd™(T)} = sd" (v *7) NLk (v, sd " K)

Proof: In this case, for all0 < § < n,0p; = v, For all s > 0,
ps : 8d {8t (v,5d°K)} — 8t (v,sd "' K)

is defined as follows :
ps(b(1T)) = b{v U 7), for all v € st (v,8d°K)
Then for all s > 0 Equation 1 reduces to,
ps(sd {7}) = sd ¥ N 5% (v, sd *M K) (10)
Since v = 0, it follows from Equal:.iﬁn 3 that,

ps(sdT) = 5d (T * 7) N Lk (v, sd *T' K) (11)

Now proceeding on similar lines as in the proof of Lemma 4.7, we get the

desired result. | | »
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CHAPTER 5

LEPEF FOR SIMPLICIAL MAPS

5.1 INTRODUCTION

Let f: sd"K — K,n > 0 be a simplicial map. A path component of
Fix f will be called a fized point component of f. We have noted in
Chapter 3 that the number of fixed point components of f is finite and the
fixed point components form a class of isolated sets of fixed points of f.
In this chapter, we discuss the problem of defining the fixed point index of
a simplicial map f:s8d"K — K,n > 0 at a fixed point component of f
as a local Lefschetz number and establish the Lefschetz fixed point formula
(LFPF). We show that the fixed point index of f : K — K at a fixed
point component is the Fuler characteristic of the fixed point component.
For n > 1 we define a class of simplicial maps f : sd"K —— K — those
which preserve expanding directions — and define the fixed point index
of such maps at a fixed point as a local Lefschetz number and establish the
LFPF for this case.

We extend the definition of weakly hyperbolic maps to polyhedra and show

that a weakly hyperbolic simplicial map preserves expanding directions.

5.2 THE FIXED POINT INDEX OF f: K — K

Let f: K — K be a simplicial map. Let C),...,C, be the distinct fixed
point components of f. We shall denote the subcomplex of K associated
with C; by [K]; for brevity.
Let

st ([K);, &) = U{st (o, K) : (o) NC; # B},

S ([K)j K) = U{E (0. K): (o) N C; # 0},
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Clearly, st ([K];, K) is an open set of | K| and, 5% ([K];, K) is a subcomplex
of N ([K];, K). We show that if i # 4, then,

st ([K)i, K) st ([K);, K) = 0.

Let if possible for some ¢ # 4, ¢ be a simplex of K such that, (e} N C; # @
and (o) NC; # 0. Let ¢ € {o)NC; and y € {¢) N C;. Then for all
t € [0,1)tz+ (1 -t)y € (o) N Fixfand, tz+ (1 —t)y € C;NCy, a
contradiction to the fact that these are distinct components of Fix f.

Now let 7 be a simplex of K such that, there are faces u, v of T such that
(p) N C; # 0, and {v) N C; % B, where, i # j. Again, if z € (u) N G
and y € {v) N C;, then for all t € [0,1],4x + (1 —t)y € FN Fix f and
tr + (1 — )y € C; N}, a contradiction to the fact that these are distinct

compouents of Fix f. Thus,
st ((K);, K) N st ([K];, K) = 0.

Take any o € K such that, (o) N C; #®. Then clearly (f{c)} N C; # 0 and
hence, f: [K]; — [K];. So, by Lemma 3.7,
FR (K], K)) € ()5 K,
It in fact follows from the proof of Lemma 3.7 that,
f1sE([K);, K) — 5% ([K];, K).
For all 1 € 4 < r, we define,

I(f,Cy) = L{f[st ([K];, K))

Lemma 5.1 For all 1 <3 < r,I{(f,C;) = I(sd f,C}).

Proof : Let [sd K], be the smallest subcomplex of sd K containing C;. Let
o be a simplex of sd K such that, (¢) N C; # 0. Let T be a simplex of K

such that (o) C (7). Then (r) NC; # 0.
Hence, ¢ is a simplex of sd ([K];) and hence, [sd K|; C sd {{K];).
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We can show as above that,
sd f : 8t ([sd K;, sd K') — 5% ([sd K];,8d K).
Let i : 8t ([sd K|;,8d K) ~ sd {5% ([K];, K)} be the inclusion map. Then

the following diagram is commutative,

s (5% ([K;, K)) S 5t ((sd K;, s K)

8d f 8d f

sd {8t ([K];, K)} «~—— 5t ([sd K];,sd K)
Diagram §.1
Let o be a simplex of sd {st {[K];, K)} such that ¢ ¢ 5% ([sd K];,sd K).

Then, &N Fixsd f = (), by Lemma 3.17. By Brouwer’s fixed point theorem,
¢ # sd f(o). Hence for all p > 0, '

Trace[sd f : Gp(sd {s¥ ([K];, K)}) — Cp(sd {s%([K];, K)})]
= Trace[sd f : Cp(st ([sd K];, sd K)) — Cy(st([sd K];,sd K))]

Therefore by Hopf Trace Theorem ([22]),
L(sd f|sd {st ([K];, K)}) = L(sd f[s% ([sd K};,sd K).
Since f and sd f are homotopic maps,
L(f[st([K];, K)) = L(=d f|sa {5% {[K];, K)}).

Therefore I(f, C;) = I(sd f,C;), n

Theorem 5.2 L(f) = SI(f, 0.
= |

j= .
Proof: Let sd™K = P be such that, st ([P);, P)Nst ([P];, P) = 0,ifi # j
where for all 1 < ¢ < r, [P); is the smallest subcomplex of P containing

C;. Let sd™f = g. By Lemma 3.17, Fix f = Fixg. Also by Lemma 5.1,
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for any 1 < j < r, I(f,C;) = I(g,C;). Since f and g are homotopic maps,
L(f) = L(g) and hence to prove the result it is enough to establish that,

=S 1(g,C))

j=1

Let [P]rpixg = [Pl Then clearly [P], = U} [P]; and,
5E [Py, P) — 5E((P)y, P).
Also by the relative Mayer-Vietoris sequence,
H,(st ([P, P)) & &j- H,(s ([P];, P))-

Therefore, L{g, st ([P],, P) ZI (g,C;). The theorem follows if we can
1=1

show that L(g) = L(g,g'f([P]g,P), ). Let i :8t([P],P) — P be the

inclusion map. The following diagram is commutative,

P - P

S (Pl P) —— ([P, P)

Diagram 5.2
The result follows as in Lemma 5.1; If o € P is not a simplex of 5% ([P}, P),
then Fix gN& = () which implies by Lemma 3.17 that, o # g(c). Therefore,

for all p 2 0,

Tra{:e {g,: Co(P) — Co(P)}
= Trace {g : Cp(st ([Plg, P)) — Cy(st ([P, P))}-

Hence by Hopf Trace Theorem, L(g) = L{g, 5% ([Plg, P), ). =

Remark 5.3 For all 1 < 7 £ r, st ([X];, K) is an open neighbourhood of
C; in | K| such that st ([K];, K) N Fix f = C} and,
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8t ([K]; K) — st([K];, K).
Let us denote the fixed point index of f on st ([K];, K) as defined by the
degree formula, ([5], [6]) by ¢(f, st ([K];, K)). Then by the localization
and normalization property of the fixed point index, (see Chapter 2 of this
thesis)
L(flst (K5, K)) = i(f, o6 ((K];, K).
Also we have seen that, L(f|st ([K];, K)) = L(f|st {[K];, K)). Therefore,

I(f,C;) = L(flst(|K];,K)) = L(flst([K]; K))
= i(f,st([K];,K)) = i(f,C) |
Remark 5.4 We noted in Lemma 3.19 that Fix f is the geometric reali-
sation of a subcomplex of sd K. From the proof of Lemma 3.19 it is clear
that for all 1 < § <, the geometric realisation of [P); is Cj. Then,
I(f,Cj) = I(g, [P];) = L{glst ([P];, P)).

Now it is clear from Remark 3.9 that any simplex of 8t ([P};, ) contributes
to the trace of g only if it is a simplex of [P);. Also g|{P]; is the identity
map. Hence, I{f, C;) is the Euler characteristic of [P}; i.e. of Cj.

53 SIMPLICIAL MAPS WHICH PRESERVE EXPANDING DIRECTIONS

Let f:sd"K — K,n > 1be a simplicial map. Then Fix f is a finite set
of points of |K| (Remark 3.14). Let = € Fix f.

Proposition 5.5 The carrier of z insd?K,p 2 0 s a primitive simplex

with respect to K.

Proof: Let us a priori denote the carrier of x in sd?K,p 2 0 by oy
Since z is a fixed point of f, it follows by Lemma 3.11 that the carrier of 2
in sd?K,0 < p < n is a primitive simplex with respect to XK. Assume that
Oy is a primitive simplex with respect to gy for all 0 < p < mn,m 2 1.

For all 0 € g < n, consider the map,

<d (m—-l)n+qf . ad mn-l—qI{ — ad (m--l)n+qI{
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By Lemma 3.21, = is a fixed point of sd ™ -+ f  Thys Olmniq 1S @ Prim-

itive simplex with respect to O((m-1)n+q DY Lemma 3.11. By the induction
hypothesis o|m-1)ntq iS @ primitive simplex with respect to op- Hence
Olmntq) 18 & Primitive simplex with respect to ajg. Thus oy is a primitive
simplex with respect to K for all 0 < p < (m+1)n. The claim now holds

by mathematical induction. "

Since x is a fixed point.of fy fop) = o). It casily follows that,
f: 8% (o), 84" K) — 5F (oy0), K).
Also there is a deformation retraction (see Chapter 4 of this thesis),
pos = p:8d”(st (o, K)) — st (op,sd"K).

Let Ay : Gy(st (o), K)) — C,p(sd"{st (oy, K)}) be the subdivision oper-

ator. The following is a chain map,

C,(5E (a1, 84" K)) B C, (5% (00, K)) 3 Cp(sd(5E (o), K)))
2 C, (5% (o, 54" K))

Let,

Fhr

fr=ppoX,0f: Cu(st(op,sd"K)) — Cp(st (o, sd"K)).

It is clear that Lefschetz number of f, is the Lefschetz number of the map
|p| © | f]. The retraction p might produce new fixed points of the map |p| o] f|
on Lk (o, sd"K) * o). Therefore as mentioned earlier, the Letschetz
number of f, does not give the index of the map f at . If there is a
subcomplex M of Lk (oy,), 8d" K ) # a, which contains all the fixed points of

the map |p] o |f| on Lk (o), 84" K) * oy, and which maps into itself by the

map |p|| f|, then, the map £, is a chain map on the relative homology groups



of (8% (o), sd"K), M). The relative Lefschetz number of ﬁ for the pair
(st (o), sd"K), M) then gives the index of f at z by a principle analogous
to the additivity property of fixed point indices ([5], [6]).

We now formalize these ideas.

Let f: 8d"K — K,n > 1 be a simplicial map and z € Fix f. Let the

carrier of z in 8d”X,p > 0 be o7,.

Definition 5.6 The map f preserves expanding directions at = if there

is a subcomplex M (x) = M of Lk (o), sd" K} * ap| satisfying,

(a) T € Lk(ay,), sd"K) * o},), such that, (o) UT) C (o U f(7)), implies
that 7 € M.

(b) 7€ M and f(7) < oy implies that T < oy

(¢} 7 € M implies that,
sd™{To * f(T)} N Lk (0, sd"K) % oy C M.

A subcomplex of Lk (ay,), sd"K) * 0y, is a subcompler at x expanded by
the map f if it satisfies (a),(b) and {c).
The map f preserves expanding directions if it preserves expanding di-

rections at each of its fixed points.

In the following discussion, unless the contrary is stated,

fi8d®K — K,n>1
will be a simplicial map which preserves expanding directions, # will be a
fixed point of f and the subcomplex at © expanded by f will be M. The

carrier of @ in sd?K,p > 0 will be denoted by oy,. The retraction,
po.. ¢ 84" (8% (op), X)) — 5% (0, 84" K)

will be denoted by p.
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Observation 5.7 f: M NLk (J[“|,Ed"ff) — Lk ({T[g],I().

Proof: Let 7 € M. If possible let oy < f(7). Let p < 7 such that,
f{u) = o9 Since p € M, by property (b) of M it follows that j is a face

of 0},). Also gy, is a primitive simplex. Therefore, it follows that j = oy,

a contradiction to the fact that p is a simplex of M C Lk (o), sd "K) * opy).

Therefore, f : M ~— Lk(oyg, K) * oy It is also clear from this that,
f: MNLk ({TIH], sd"K) — Lk (Jlg},f{), n

Lemma 5.8 A simplex 7 of Lk (o), 8d"K) * oy, 13 such that,
(o U T) C (o U f(r))

if and only if T € sd"{Tp] * f(T)} N Lk (op), sd"K) * o).

Proof: Let, (op UT) C (o U f(7)). Then, o Ut € 8d™{Fp) * f(7)}.
Since T < o, U T, the result follows.

Conversely, let T be a simplex of sd *{ig* f(T) }NLk (o[, 8d "K' ) * 0[,. Now
o € 8d"Fjg C sd ™ {Fg * f(7}}. Since sd"{Fjg* f(7)} is a full subcomplex,
o U T € sd™{Fpg * f(T)}. Then dim{ap,) U} < dim{ay U f(7)}. But,

dim{a*["] LJ T} = dim O] + dmr+1 = dim o) T dim7 + 1
> dimaoy) +dim f(r)+1 = dim{og U f(7)}.

Therefore, dim{opg U f(7)} = dim{ey,) U7}. Now, let p be a simplex of K
such that, (c:r[,,' UTY C {it). Then, p < o U f(7).
Also, dim{op U7} Sdimp < dim{oj U f(7)}. Hence, p=opU f(r). =

Observation 5.9 If the support of a chain ¢ € C,(st (o, 84" K)) is con-

tained in M, then the support ||f,(c)|| of the chain f,(c) is contained in

M,



Proof: Let ¢ = ZHTT. Then, n, # 0 implies that T € M. Also,

1fo()ll € Un, olpon(sd"(f(F)))
C Uﬂr?éﬂﬂd H{HJGJ ¥ f(?)} N Lk (ﬂ'l"], sd "I{) % &[”J

by Lemma 5.7 and Lemma 4.7. It now follows by property (c) of M that,
1 £-(c)]] is contained in M. -

Hence there is a chain homomorphism,
fo : Cp(BE (o, 54" K), M) — Cy(5% (01, 84" K), M).

Define,

I(f,x) = L(f,"s'f(a,"!, sd"K), M).

Lemma 5.10 I(f,z) is independant of the choice of the subcomplex

M at © expanded by f.

Proof: Let M’ be another subcomplex at z which is expanded by f. Let

M" = Mn M’ Weshow that M " is also a subcomplex at = expanded by

f.
Let 7 € Lk (o}, sd "K) * o}, be such that, {oy,) UT) C (o U f(7)). Then

re€Mandre M’ So,reM". .
On the other hand, if » € M”, then 7 € M and, v € M'. Therefore

f(7) < oyg if and only if 7 < oy,). Also,

sd " {&g * f(F)} N Lk (opy, 8d"K) * opy C M

and, | |
Sd"{?{gl X f('-?'")} N Lk (-‘J[”], sd "X} % (5'[“] c M.

Therefore,
sd"{@jg * f(7)} N Lk (o}, 8d"K) % oy C M ",
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Hence M " is a subcomplex at @ expanded by f. Let,
it M — M,
k:M" — M
be the inclusion maps. As above, there are chain homomorphisms,
Fo: Co(8E (01, 84" K), M) — Cy(E (o1, 84" K), M ")
f; ! C,,(EE ("-T[n]a Ed"[f), M") — CF(EE (0‘[“], Sd"K), M ”)

The following diagram is commutative,

i kp ,

Cp(M) — Co(M ") —— (M)
17 |7 |7
Cp(M) T CP(A’IJ;)T Ca(M ')

Diagram 5,10

Let 7 € M (respectively M') be such that, |7] C || £,(7)]]. Then 7 is a
simplex of p[sd™{f(7)}]. By Lemma 5.7 and Lemma 4.7,

plsd"{f(T)}] C sd" (G * f(7)} N {Lk(opy, sa"K) % o1}
Therefore,
T &€ Sd"{'ﬁ‘"lu] * f("i"')} N {Lk (U|H], sd"K) * 6'1,4}.

Hence by Lemma 5.8, (o}, U T) C (o U f(7)). Thus by property (a) of
M’ (respectively M), it follows that, T € M’ (respectively M). Therefore,

rec M”,

Hence, -
Trace {f, : C,(M) — C,(M))

= Trace{ﬁ, : Cp(M ") — Cp(M )]
= Trace{J,  Cp(M') — Cp(M )},

The lemma now follows from Hopf Trace Theorem ([22]) and Lemma 3.2.
| "



By Lemma 3.21, = is a fixed point of sd f.

Lemma 5.11 : Let p, : sd {st (o), 8d"K)} — 5F (opuqqp, sd" M K) be
the retraction defined in Chapter 4. Let M = p,(sd M ). Then M is a

subcomplex at © expanded by sd f.

Proof: We first show that M satisfies property (a) of Definition 5.6. Let

7 be a simplex of Lk (a4, 84" K) ¥ 7, such that,

(O‘[”“] U 'T) C (Jm U sd f('r))

By Lemma 5.8, this implies that,
T € Sd"{ﬁ"“]  8d f(7)} N Lk (g|"+1li Sd"’“ff) * &IH'HI (12)

Also, it follows from Lemma 4.5, that there is g € Lk {oy,], sd " K) % o}, such
that, 7 € p,(sd ) and, () C (o} U g). This in turn implies by Equation 2
that,

T € 8d {Tpy * B} O Lk (041, 84" K) % 6,41 C 8d {Fppy * .

Therefore, sd f(r) is a simplex of sd f(sd {7,)*/7}) and hence by Lemma 3.22,
sd f(7) is a simplex of sd {@jq * f(}£)}. Also, |

o) € 8da(g C sd {Elg) * f(71)}.

Since sd {7y * f(7)} is a full subcomplex, this implies that o1y U sd f(7) is
a simplex of sd {7y * f()}. Therefore by Equation 12, 7 is a simplex of
sd " & * f(7)}. Also, (1) C (&IHI U u). Therefore op U i is a simplex of
sd™{& * f(7M)}. Hence, p € sd & * f(7T)}. Thus,

Iy E sd™ {'Ef[g] x f(7)} NLk (J["], sd"K) * f}lnl-

This implies from Lemma 5.8 that, {op U p) C (o U F(1)). Thus by
property (a) of M, p € M. Since 7 € po(sd7), this implies that 7 € M.
Hence, M satisfies property (a) of Definition 5.6. | |
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We next show that M satisfies property (b) of Definition 5.6.

Let 1 € M. Let v € M be such that, 7 € p,(sd?). Let v’ be a simplex of
sd 7 such that p,(v') = 7. Let Twr1] = [0(10), ..., b(pp)], where, p1, = oy
and, v’ = [b(wp),...,b(1;)] € 8d D, where, b(,),...,b(y,), for 0< s <r < g

are such that, there is a p;, < v and, ti+1 A V. Then,

T = [b(f/ﬂ U Cr[ﬂl)! ¢ vy b(UE*I U J[HI)! b("'!’j.)"l i aony b(p:jr)*l
b(v,.+1 U JIHI)' Ve b(uq LJ t:r|"|)].

and,

sd f(r) = [o(f(v) Uap),....b(Ff(vs1) Uaig), b(F(15,)), - - bLf(1,))s
b(f(""’r-!—l) U J[DI)i vy b(f(yq) U g[ﬂ])]

Note that for 0 < j<s—1lorr+1 <7 <q if b(f(v;) Uayp) is a vertex of
o then, f(v;) Uoyy is a face of gy which implies that f(v;) is a face of oy,
Since v; < v € M it follows by property (b) of M that v; < oy, contrary to
our assumption, Thus for 0 5 j<s—lorr+l <7 <q, b(f(¥;)Uop) is not
a vertex of oyj. Let sd f(7) < . Then by the above discussion it follows
that s = 0 and r = ¢, which implies that, T = [b(uz), ..., (1, )] < Tpe.
Thus M satisfies property (b) of Definition §.6.
Finally we show_ that M satisfies property (¢) of Definition 5.6.
Let + € M. Let v € M be such that 7 € pn(sd 7). Let 7' be a simplex of
sd {7} * sd f(7)} N Lk (T4, 84" K) % Opy41). By Lemma 4.5, there is a
7" € sd {Lk (op), 84" K) * 01}, such that, p,(r") = 7' and,
(') C (o ur".

Since 7' is a simplex of sd™ {7y * sd f(7)}, it follows that,

" € sd"{F xsd f(T)} C sd "t & * f(7)].
Therefore, |

" € sd {sd™{Tg * F(B)} N Lk (0p), 54" K) % a1 ).

Also v is a simplex of M, so, by property (c) of M,

sd"{F * f(7)} NLk (o}, 8d"K) * a1, C M.

“—
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50 7" is a simplex of sd M and hence, 7' € mi{sd M) = M. Thus,
sd " {F) + sd f(T)} N Lk (0, 84" K) % 004y C M.

Hence M satisfies property (c) of Definition 5.6 and thus M is a subcom-
plex at z expanded by sd f. | N

Lemma 5.12 I(f,z) = I(sd f, ).

Proof: Let p': sd"{s¥ (oy),8d K}} —+ 8t (o4, 8d™ K) be the com-

position, p' = p,o0s8dp,_10--  08d™ !p; and let,

Al

p CP(E (6‘[1},SdK)) —3 Op(sd"{'fs"f'(a[]],sdff)})

be the subdivision operator. The following is a chain map,
Cy(5E (e 57 K)) 4" C,(5E (01, sd K))
25 C,(sd"(5E (o, 84 K))) 23 Co(SE (0pusy) sd " K))
Then,

s?fp =ploA o(sdf),:
Cp(é_ﬁ- (U|u+1|r- Bd“HI{)) - CP(ETE (U'H“}'l]! sd "+II{))'

Let M = pu(8d M), Then by Lemma 5.11, M is expanded by sd f and,

[ e ™ L ™ el

sd f,: Cp(M) — Cpo(M).

—_

We show that the following diagram is commutative, |

sd {Lk (o), K) * 610} —— Lk (op), sd K) * o1y

sd f gd f

At

sd M — - M

Diagram 5.12(q)
o7



Let o) = [vo,...,4] and for all 0 < 5 < p), jt; = {vg,...,v;] so that,

Tlet-1] = [b(ﬂﬂ): ‘o :b(ﬂp)].
Then op) = [f(vo),..., f(v)] and, oy = [b( f(110)), . L b(F ()]
Let b{r) € sa M.

First let for some 0 < &k <p—~1, pp < 7, and pppy A 7 . Then,
sd f 0 pu(b{7)) = sd f(b(pe)} = b(f (1)),

Also, po o sd f(b(r)) = po(b(f(7)).
Now f(u) < f(7). Let if possible, f{pz,1) < f{7). Then, there is a face 7
of T, such that, f(7') = f(pe1)—f (i) < o9 Since, 7' € M, 7' < o},. But

then, 7' = pgy — g, which contradicts the fact that, .y # 7. Therefore,

F(par1) A £(r). Hence,
po o 5d F(b(7)) = po(b(f()) = b(f()) = 84 f 0 pu(b(r)).
Now let for all 0 < k < p—1, e < 7 imply that, 114, < 7. Then,
54 f 0 pu(b(r)) = sd f(b(7 Uoy)) = b(F(r) U o).
Also, if there is a k, 0 < & ép - 1 such that,
Flu) < £(r), and, f(un) & F(7),

then there is a v < 7 such that, f(r") = f(ux) < op). Since, 77 is a
simplex of M, 7" < o). But then, 7" = iy, which implies by the hypothesis

on 7 that, je; < 7 a contradiction to the fact that, f (k1) £ F(7). Hence

there is no such py, and, so,
oo 5 £(b(r)) = po(b(F (7)) = W () U ) = 54 £ 0 pu(b(7))

Thus Diagram 5.12(a) is commutative.

Let |
XY C,(5E (o), 84" K)) — Cp(sd {5E (03, 54" K)}),
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be the subdivision operator. The following diagram commutes,

. (sd /) .
Cp(M) — Cp(M)
(Pn)p}“g Pakpdp

Cp(M) = Cp(M)
P
Diagram 5.12(b)
Let 7 € M. To show that Diagram 5.12(b) commutes, it is enough to show

that,
pulsd {p(sa™(f(7)))}] = p'[sd"{sd f o pu(sd (7))}] (13)

The left hand side of Equation 13 is,

pnlsd p{sd™(f(7))}] =
pnosdp,_108d%p, g0 08d"pglsd™ {f(F}}]

Therefore by Lemma 3.22,

pulsd p{sd™ (f(T))}] = p’'osd”p[sd™ {f(T)}]
= p'[sd"{pe(sd (F(T)))}]
= p'[sd™{ppsd f(sdT)}
= p'{sd"{sd fp.(sd7T)}

by Diagram 5.12(a). Therefore Equation 13 holds.

A basis of C,(M) consists of all oriented p-simplices of M. Let 7 be a
p-simplex of M. Then (p.)pA,(7) = 0 implies that, dimp,(sd7) < p.
Therefore by Lemma 4.6, 7 £ oy, and 7N oy, is a simplex of dimension at
least one. Since 7 € M, this implies that, f(7) 4 o) and f(F) N o}, is a
simplex of dimension at least one. Again, by Lemma 4.6, this implies that,
dim pg . (sd"{f(F)}) < p and hence, T does not contribute to the trace of f£,.

This implies that, any element in the kernel of (p,),A ; does not contribute

to the trace of f;r



it then foliows that,

Trace f,: Cp(M) — Co(M)
= Trace s?fp : Co(M) — C,(M).

Therefore, by Hopf Trace Theorem {[22)),

Trace (fy), + Hy(M) — Hy(M)
= Trace(s?fp)., : H,(M) — H,(M).

Hence, L(f, M) = L{sd f, M).

As in the proof of Lemma 5.1 it can be shown that,
L(f,5% (0}, 84" K)) = L(sd f, 5% (041}, 84 "H K)).

Now the result follows from Lemma 3;2. »

Theorem 5.13 L(f) = »_ I(f, )

zeFicf
Proof: Let Fixf = {z1,...,2x}. Let the carrier of z; in sd?K,p > 0 be
o) (x;) and the subcomplex at z; expanded by f be M {z;) forall 1 < j < k.
Let m > 0 be such that,

8% (Opy (), 8d™K) N 8T (gpmy(z;),8d™K) =0, forall 1 <i# 5 <k

Let P =sd™K and g = sd™ f. Since f and ¢ are homotopic, L{f) = L(g)
and also, Fix f = Fixyg.
For all 1 <1 <k, and for all p > 0 denote,

Tb-;,l (z:) = Oppim)(Ti).

Let papim ¢ 8d™{st (op)(z;), 84" K)} — st (Opsn(2;), 8d " K) be the

retraction defined in Chapter 4. For any z; € Fix f, we choose a subcom-

plex at @; which is expanded by g to be M (z;) = puprmlsd ™{M(z;)}].

-
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By Lemma 5.12 we see that, /(g, z;) = I(f,z;), for all 1 < j < r. There-

fore, to establish the result it is enough to show that,
k
L{g) = >_I(g, ;).
=1

}i;
Let C,(P) = C,(sd™P) be the subdivision operator. Then by Hopf Trace
Theorem ([22}),

L(g) = " (~1)*Trace {C(sd"P) % G,(P) 53 Cy(sd"P)}.

q20

For all g-simplex p of sd" P, let, A g,(u) = ¥ n,,»v where the sum is ovef
all g-simplex v € sd™P, Then,
L(g) = Z("'l)q( Z ”’p,u)-
g0 pesd" P

Let,

F = Uf_l"f"["](iﬂj) Hﬂd, B o= ?211_'10](33_;)4

=1

Now, ||Alg.(1}]] C |9(7)| and by Lemma 3.12, if 4 is a simplex of sd™P —
N(F,sd"P), then |f1| & |g(7Z)|. So p € sd"P — N(F,sd"P) implies that,

N, = 0. Hence,

L(g) = Y (~1)"(T{ry : p € sd"P; (u) €N (F,5d"P)})  (14)

q20

Also, 8% (1g(z;), P) N8t (noy(=;), P) =0 if 1 < i # j < k. Therefore,
N(F', P) = Uj.,s% (nq(x;), P).
So, we can define,

 prad"(N(F',P)) — N(F,sd"P)

to be, ST (79(2;), P) = Pmyutm(Opuim) (7)) = p(3):
Let M = Ui—*’:lﬂ (w;), There is a chain homomorphism,

Gt Co(W(F, 84" P), M) — C,(W(F,sd"P), M).
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By relative Mayer-Vietoris sequence,
Hy(W (F, 54" P), M) = ®f, H,(5 (n)(s;), 84" P), M(x;))

Therefore,

k
L(§, N (F,sd"P),M) =) I(g,7;) (15)
j=1
It follows from Lemma 3.2 that,
L(g,N(F,sd"P), M) = L(§,N(F,sd"P},0) — L(§, M, ) (16)

Let for all g-simplex u of N (F,sd"P); §.(11) = Y, m,,v, where the sum is
over all p-simplices v of N(F, sd" P}, Then,

Trace {g, : C,(V(F,sd"P)) — C,(N(F,sd"P))}
z:{mw cp € N(F,sd"P)}.
Now p|N(F,sd"P) is the identity map, and,

sd"{N(F', P)} — N(F,sd"P) - U;_ Lk (n,y(z;), 84" P) * 7(=;).

Also,
Ga(1) = pAge(p) = ps O nuur) = D nuup(v),

So for all i1 such that, (u) C N(F, ed"P); n,, = m,,. Hence,

Trace {g, : C'q('N'.(F, sd"P)) — C(N(F,sd"P))} =
T {nu.: (n) CN(F,sd"P)} -
T Z{mﬂn ] E Uf=1Lk (Tlnl(fnj)a sd " P) * ﬁr:l(mf)i 2. C |G ()} (17)

Let p € Lk (7p(®;), 8d "P) x 7y(z;). Suppose that (g(n)) C st (rg(z;), P)
and |7z C ||g,(#)l]. Let v be a simplex of P such that (u) C (v). Then,
dim ¢ < dimy. Now, {|g.(u)l] C |p(5){sd"(g(7))}| and by Lerama 4.7,

o(7) {5a (g} C lg(@)| 1 5T (nu(zs), 50" P)|.
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This implies that v < g(;2) and hence, (i) ¢ {(g{zt)). Thus by Lemma 3.12
Z N Fixg # B, which is a contradiction.

S0, p € Lk (71)(;), 8d"P) * (), and [fI] C |G,(11)|| implies that g(s) is
a simplex of Lk (7g)(z;), P) * g {=;). This implies by Lemma 4.7 that,

p(3){sd™ (9@} C |moi(w;) * 9(m)] N ILk (m(25), 5d " P) % 70y (z;)].
Also, [|g, ()]l C |p(5){sd™(g(m))}|. Thus,
,-ﬁl C Iﬂﬂl(mj) * g(ﬁ)l M ILk (7'[:;](%')1 Ed"P) * {—lnl(mj)'

which implies that, (1,(z;) U p) C {ng(x;) Ug(1)), by Lemma 5.8.
It now follows by the property (a) of Hj that, p € Hj C M. Thus,

Any simplez T of Ui_ {Lk (n,(x;), sd " P)* T|(2;)}, such that
7| C )13,()]l, is a simplex of M.

k
Now, by Equations 14, 15, 16, and 17, it follows that, L(g) = > I(g,x;).
i=1

Remark 5.14 It is also clear from the above discussion that,

I(g,2;) = > (1)) {n,: (u) C st () (25), 84" P), p a g-simplex}

q20

This reduces to the definition given by O'Neill ([19]) for the fixed point
index of g on the open neighbourhood st (n,(z;),sd"P) of =, |

5.4 WEAKLY HYPERBOLIC SIMPLICIAL MAPS

Definition 5.15 A map f : |[K| — |K]| on a connected compact poly-
hedron is weakly hyperbolic if for every fixed point component C of f
there is an open neighbourhood W of C in |K| and an indicator map,

t: W — Rsg xRy such that, t71((0,0)) = C and for all t € W f~1(W),

L]
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t(f(z)) 2 tilz), L2 f(z)) £ ta(m).

where t;(z) is the j** coordinate of {(zx).

Let f : X — X be a map on a connected compact polyhedron. Let
A ¢ X and W be a neighbourhood of A in X. Define,

[A]T:'I,? . {?] S W : a{yu}nzﬂ C W! Where: Yo = Y, g(yn) = Yn-1
and, limy, C A}.

n—0G

We need the following lemma. (Compare ([8, Proposition on Page 12,

Section 3)).

Lemma 5.16 : Let ¢ : X — X be a weakly hyperbolic map on a
polyhedron and F be a fixed point component of . Let for any open
neighbourhood W of F' in X,

[Fliy = {z € W :p"(z) € W, for all n > 1, and lim " (z) € F}

n—eo

Let t: W — Ry x Ryg be an tndicator map. Then, [Fljy 0 [Fly = F.

Proof: Let © € [Fl{y N [F]. Then, limy"(z) € F. Since £,{F) = 0,

it follows that, "lrLIEl (" (x)) = 0. Nm: bc; the property of the indicator
function, 0 < #1(z) < t(w(z)) < t1(9*(x)) < -+ Therefore, t,(z) = 0.

Also, there is a sequence, {z,} in W such that, zy = z, ¢(z,) = z,-1 and,
?E_rg} ©, € F. Again, since t3(F) = 0, it follows that, r]ﬁgtz(mﬂ) = () and by

the property of the indicator function, 0 < ty(mg) < ta(x1) < fa(mg) <

Therefore, to(xp) = to(x) = 0. Hence, z € ¥, n

Remark 5.17 It is not generally true that [F]f N[F]x = F. For instance,
consider the map ¢ : 8 — §', defined by,



Then, Fixy = {1}. The map is expanding in a neighbourhood of 1 and
hence is weakly hyperbolic. But any e'#,n € N, belongs to (1]d N (1]q -

Proposition 5.18 Let g : sd™¥i{ — K,n > 1 be a simplicial map. If
for all fized points x of g, there is a neighbourhood W of z in |K| such

that, (2] N g~ (z) = {z}, then g preserves expanding directions.

Proof: Let x be a fixed point of g. We show that there is a subcomplex
M at z which is expanded by g, We denote the carrier of £ in sd?X by
T (p} |

We assume without loss of generality thﬁt, W C st (opy,sd"K). Let
y be a point of |st{oy,,sd"K)| such that, there is a sequence {ym} in
5% (opy, sdK)| with, yo = ¥, 9(¥m) = Ym-1 and, wlll_!r‘r{:}‘:l ym = @. Also assume
that, g(y) = @. Now g is a piecewise linear map. Therefore there is a
sequence {2y} C W such that, z,, lies on the line segment joining x and yu,
and g(#m) = Zm-1 and, lim z, = z. Therefore, 2 € [z],,. Also, since z lies

m-—0o0
on the line segment joining = and y,, g(2p) = =, a contradiction. Hence,

552 (o mamiy 9 (2) = {2) (18)

Let 7 € Lk (o), sd"K) * gy, be such that, (o U T) C (o U g(r)). Take
any y € | * 9(T)| N'5% (o}, 84" K). Then there is a point y; of oy U 7,
such that, g{y) = ». It can be shown inductively that for all m > 1, there
i$ & Y € 5t (Opnn)y 8™ K), such that, g(ynm) = ym-1. Clearly then, the

sequence {y,} converges to z. Thus,

IEIU] * g(?)] N ]EE (ﬂ-lﬂ]‘l Sd"I{)I C [ﬂ;]gi(alnliadﬂj'{)‘ (19)

Let w be a vertex of |ajg U g(7)| NLk (o, sd*K). Let if possible g(w) map

£ G‘f[m- Considef the simplex, |
p={ow—g o) Ufw)

Then, || C {7 * g(7)| N [T (o}, 8d"K)|. Clearly @ & |7



Also g(j1) = ayp) implies that there is a point y € |71} such that

g(y) = z. This is a contradiction to Equations 18 and 19. Thus,
g : lopg Y g{T)) NLk (o7, 88" K) ~— Lk (o), K)
and hence,
g : |51 * g(7)] N Lk (o}, sd"K) * apy| — |Lk (00}, K) * o)l

Let
MI(T) = U{'ﬁ : ]FI C I'Elﬂ] *g("T_)I N ILk (ﬂ'l“l, Sd"K) * &[rtll}'

Then M'(r) satisfies property (b) of Definition 5.6.

If for all v € MY 7);9(v) < g(r), then M(7) satisfies property (c) of
Definition 5.6.

Let for some v € M(7), g(v) £ g(r) and 7' € Lk (o, sd"K) * 0y, be such
that, |7'] C [F * 9(7)|. Now,

T * g(P)| T (ay,y, sa"K) < |Gy * 9(7)| N5t (o), sd"K)

C %l (o 0am k)

Therefore, for all y € |G * g(T)|; if y # = then, g{y) # z. Let.

Mr) = U{F": 7| ClogUgw)l, _
for all v € Lk {o},), sd"K) * ), such that |p) C o * 9(7)|}-

Again, M*(7) satisfies property (b) of Definition 5.6.
Since Lk (cq,,,,ad"K) * Oy is a finite simplicial complex, repeating this
process a finite number of times, it is possible to get a subcomplex M (1)

of Lk (o, sd"K) ¥ oy, satisfying property (c) of Definition .6, Let,
M = U{M(T) T € Lk (0‘]”], Sd“ff) * c}[ﬂl, I'ﬁ"l,,i * 'T_"I C 'E{nl *g(ﬁ’)l}.

Then M is a subcomplex at ¢ which is expanded by g. B =
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Definition 5.19 A simplicial map g : sd*K — K,n > 1 will be called
simplicially weakly hyperbolic if for all fixed points = of ¢, there is a

neighbourhood W of x in |K| such that, [z];; N g7 (z) = {z}.

Remark 5.20 The converse of Proposition 5.18 does not hold as can be
seen from the following example :

Let K be a simplicial complex and g: sd X ~— K be a simplicial map as
shown in Figure 6. Then Fixg = {1} and M(1) = @. But for any neigh-
bourhood W of 1 in K, there is a point = # 1 of {[1,12]) which belongs to

(1w N g~ (1).

1 ]
3
4
3 2 1 1
K g(sd K)

Figure 5: A map which preserves expanding directions but is not simpli-

cially weakly hyperbolic

A weakly hyperbolic simplicial map is clearly simplicially weakly hyper-
bolic by Lemma 5.16, Thus, the following is an immediate consequence of

Proposition 5.18,

Theorem 5.21 : A weakly hyperbolic stmplicial map preserves ex-

panding directions.

5.6 EXAMPLES

Example 5.22 A simplicial map which preserves expanding directions

need not be weakly hyperbolic. Let X be the simplicial complex shown in
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Figure 6 and g : sd X — K be a simplicial map as described in Figure 6.
Then, Fixg = {1,3} and, M(1) = 13, M(3) = 0, but for any neighbour-
hood W of 1in |K|, thereis az ¢ Wn ([1,15]), such that, = € [1}}, N{1];;.

r'

K

Figure 6: A map which preserves expanding directions but is not weakly

hyperbolic

Example 5,28 With notations as above, if for some z € Fixg,
9 : Lk (op)(x), 8d"K) ~— Lk (op)(z), K),
then, a choice of M(z) could be, M(z) = Lk (op,(x), sd*K) * &yy().
On the other extreme, if for some © € Fix g,
g : Lk (op(z), sd*K) * opy(z) — T (x),
then, M(z) = opy(2).

Example 5.24 Let X =8'vS§' and f: X — X be the map 2° v 27!
defined in Example 2.1. A simplicial approximation g : sd X — K to

f is shown in Figure 7, Then Fixg = {0,12}. The maps f and g are

3 4 01 01 01 1

¢(sd K)
Figure 7: A simplicial approximation to the map z* v z'on S'Vv§
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homotopic by a homotopy which has no fixed points on the boundary of an
open neighbourhood of Fix f. So,
i(f,a) =1(g,12) and, i(f, w) =1(g, 0).

The map g preserves expanding directions. Since M(12) = @, it fol-
lows that i(g,12) = 1. Also, M(0) = Lk(0,sd X). The generators of
H, (st (0, 8d K), M(0)) are, ¢, = (0,001} — [0,002], ¢; = {0,03] — [0, 04] and,
cs = [0,03] — [0,002). Then [0,03] — [0,001] = ¢; ~ ¢; and, §. maps [c;] to
[—¢y), lea) to [co] and [cs) to [cs) — [c)]. Hence, i(g,0) = ~1.

Example 5,25 Let X = AVB,A= B =§? where, we think of §2 as the
suspension S(S'). Let the wedge point be (w,}) and the antipode of (w, 3)
in B beb Let f: X — X be the map, f((2,1)) = (2%,t) for all (2,¢) € A
and f((z,t)) = (27',1~¢) for all {2,¢) € B. Then, L{f) = 4 and,

Fix f={(w,f) € 4: 0 <t < 1} U{b}.
A triangulation of X = |K| = | K|V [Kj| is shown in Figure 8. Fix f is the
subcomplex, [0,2]U[0,v]U[2]). A simplicial approximation, g : sd K — K

Figure 8: A triangulation of §° V §?

to f is shown in Figure 9. It is clear from Figure 9 that Fix g = _{O,fu,v, 2}
and one can take, M{u) = M(v) = M(2) = 0. Heﬁce,_ '

I(g,u) = I{g,v) =1{g,2) = 1.
Also, M(0) = Lk(0,8d K;). So, H;(8%(0,8d K, M,(0)) = 0,2 # 2 and
H,(8% (0, sd K, M;(0)) 2 Q with the generator being a sum c of all 2 sim-
plices of 5% (0,sd K) such that ¢ = 0 in C,(5% (0, sd K),M (U)) Since,

g, (c) = ¢ I{g.0) = 1.
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Figure 9: A simplicial approximation to [2%,¢|V{27!,1 —¢] on §? v §’

Note that here again, f and g are homotopic maps such that the homotopy
has no fixed points on the boundary of a neighbourhood of Fix f.
Hence, i(f,b) =i(g,2) =1 and,

i(f,{(w,t) € At €[0,1)}) =1i{g,u) + i{g,v) + i(g,0) = .

3 1
] ]
1 2 I 2 3
K g(sd K)

Figure 10: A map which does not preserve expanding directions

Example 5,26 Not all simplicial maps preserve expanding directions. Let,
K be the standard 2-simplex with V(K) = {1,2,3} and define a simplicial
map, ¢ : sd X — K as shown in Figure 10. Then, Fixg = {1}. Let if
possible, M(1) exists. Then, by property (a) of M(1), the simplex {12,123
must belong to M (1). Then by property (c) of M (1), the simplex (13,123
must also belong to M (1). This violates property (b) of M (1) since,

g(13) = 1. Thercfore, g does not preserve expanding directions.
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CHAPTER 6

FP-EQUIVALENT SIMPLICIAL APPROXIMATIONS

6.1 INTRODUCTION

Examples §5.24 and 5.25, show that for some continuous maps f on a con-
nected compact polyhedron it is possible to obtain a simplicial approxima-

tion g to f such that Fixg ¢ Fixf and for any fixed point component C
of £, i(f,C)= > i(g,z)

z€ Fix gNC
In this chapter we establish sufficient conditions on continuous maps on

connected compact polyhedra so that it has a simplicial approximation
which satisfies the above properties and also preserves expanding directions.
Clearly for such maps one could use the tools developed so far to compute

the local indices.

3.2 DEFINITION AND A COUNTEREXAMPLE

Definition 6.1 A simplicial approximation g : sd"K — K,n > 0 to
f i |K| — |K| will be fized point equivalent or in short fp-equivalent
to f if, there is a neighbourhood W of Fix f such that, Fixgn'W C Fix f
and for any fixed point component C of f,

i(f,C)= )  ilg2).

xe B'ix gNd'

It is not always possible to get an fp-equivalent simplicial approximation

to f. This can be seen from the following example:

Example 6.2 Let X be the region enclosed by the x axis, ¥ axis and the
line 4+ = 1in R?, see Figure 11, Let ¢ be the curve p(z) = =%,z € [0, 1].
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P s
|I

(016.} (5‘:!: 0) (2,0) -

Figure 11: A map with no fp-equivalent simplicial approximation

Let f: X — X be the map defined as follows

( (0, 0) fr'<y<l—g
e o
(%(1__1:)%0) £ y=1tx*,0<t <1,
D<oz <2 = E;—l

f((IIJ, y)) —

Jt{x — o 3 = {(1 — <t <L
( (% — 7)) t —(l-t)m,o) )Y (1-2),0<¢t<1,

l (1,0) f0<y<l-2,3<s<1

Then f: X — {(2,0):0< 2 < 1}and, Fixf = {(1,0)}uU{(0,0)}. Also f
18 constant in a neighbourhood of (1,0). So i(f, (1,0)) = 1. Since L{f) = 1,
by the additive property of fixed point indices, (£, (0,0)) = 0.

I

Let K be the standard 2-simplex with V{(X) = {0, 1, 2}. Then a triangu-
lation of X is the geometric realization of X and the induced triangulation
of Fix f is [0} U [1] where, (0,0) corresponds to the geometric realization of

(0] and (1, 0) to the geometric realization of {1).

-
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Let f: |sd"K| — |K]| satisfy the star condition, Let w be the vertex
of Lk (0,8d"K) such that w € ([0,1]). Then the curve @(t) = #? inter-
sects st (w, sd"K) and hence any simplicial approximation to f necessarily
maps w to 0. Thus any simplicial approximation to f necessarily maps
Lk (0,sd"K) to 0. Hence the index of any simplicial approximation to f at

0 has to be 1. Thus no simplicial approximation to f can be fp-equivalent

to f.

We will denote the carrier of any point = of sd”K,p > 0 by o,(z). Recall

that if the carrier is a primitive simplex then we denote it be o).

Definition 6.3 ([4]) Let f : |K| — |K| be a map. The prozimity set of
f is defined to be,

P(f) ={=z € [K|: f(z) € st (00(), K))
A point z € P(f) will be called a prozimity point of f.

Remark 6.4 It is possible to use the relative simplicial approximation

theorem (see Maunder (16}, or Zeeman [25]) to deform the map in the above

example to obtain one which has a fp-equivalent simplicial approximation.
A map g: |K| — |K] is a fp-deformation of a map f:|K| — |K|ifg
is homotopic to f and Fixg = Fix f and the fixed point indices of f and ¢
are the same, .

We recall the first step in the construction of the relative simplicial approx-
imation of a map on a polyhedron (see [16] or [25] for full generality and
details). Let f : |K| — |K| be a map on a connected compact polyhe-
dron |X| and let L be a subcomplex of K such that f|, is simplicial. Let
(X, L)' be the barycentric subdivision of K module L (see the discussion on
Hopf’s construction in Section 2 of Chapter 2 of this thesis). Let L be the
subcomplex of (K,L)’ disjoint from L i.e. L is the subcomplex of (K, L)’

consisting of all simplices of (X, L)’ which have no face in common with a
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simplex of L. Let Kt = ((K,L),LUL)’. Then a vertex of K is either a
vertex of L U L or the barycenter of a simplex of (K, L)’ which has a face
in L and a face in L. Define a simplicial approximation h : K* — K as

follows .
h(v) = v ifvisavertexof LUL

h(b(e)) € &FNL otherwise
The next step is to look at a simplicial approximation of the map

fh i |KY| — |K}

We use this idea in Example 6.2. As above a triangulation of X is.the
geometric realization of the standard 2-simplex, K, where, V(K) = {0, 1,2}
with Fix f = [0]U[1], where (0, 0) corresponds to the geometric realization
of [0] and (1,0) to the geometric realization of [1].

Let L = [K]pyy. Then, L = [0,1]). Note that f] is not simplicial. Even
then we consider the simplicial approximation A : k¥ — K as defined

above and described explicitly as follows :
h(v) = v ifvisavertexof LUL

hib(ad)) = 1 ifleo

hib(c})) = 0 ifl¢€oand0 €0
Consider the map f’ = fh: |K| — |K|. Note that f: [K| — |L| and

also f': |K| — |L|. Moreover f = f' on |L| and Fix f = Fix f’. The
maps f and f' are homotopic by the straight line homotopy and for all |
points @ of |K|— Fix f, tf(z) + 1 —¢t)f'(z) # =, forall 0 < ¢ < 1. Thus by
the homotopy property of the fixed point indices, ({5]) f' is a fp-deformation
of f. Note that no point of st ({0, 1], K*) maps to the vertex 0 by the map
f!. Thus it is possible to get a fp-equivalent simplicial approximation to
£ in fact, we can get such a simplicial approximation with the additional

property that it preserves expanding directions.

It is not clear whether this is possible generally or not.
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6.3 STARLE SIMPLICIAL APPROXIMATIONS

We give a criterion for a simplicial approximation to be fp-equivalent to a

given map.

Definition 6.5 A simplicial approximation ¢ ; sd"KX — K ,n > 0 to
fi K} — | K] is stable if, for all component C C |K| of Fix f, there is a
neighbourhood W of C in |K|, such that, for all z € W -~ C,

tf(x) + (1~ t)g(z) # «,t € [0, 1).
The neighbourhood W will be called a stable neighbourhood of f.

Proposition 6.6 A simplicial approzimation g :sd™"J — K,n > 0
to f: K| — |K| is stable if and only if, for all component C' of Fiz f,
there s a netghbourhood W of C in |K| such that, for all points x of
(W — C)YN P(f) there is a vertex v of K satisfying the condition

0(e)(v) = 3(0) # TN (5(0) = F(a)(o) (20

Proof: Let, ¢ : sd"K — K,n > 0 be a simplicial approximation to
f which does not satisfy Equation 20 for any neighbourhood of a fixed
point component C of f. Then for any neighborhood W of C, there is a
v € (W — C)N P(f) such that, for all v € V(K),

o(a)0) - o(0) = =42 a() - F(e)o)

© — g(z)] 1 t—1 .
bt o= 1 - . Then £ = —¢{z) ¢). Hence, g is not a
Let - o= f(2) ien tg(*n) t f(z) nce, g

stable simplicial approximation to f.

Conversely, let g not be a stable simplicial approximation to f. Then, there
is a fixed point component C of f such that, for all neighbowhood W of
C, there is a @ € W — C such that, z = tf(z) + (1 — t)g(z).t € [0, 1),
This necessarily implies that @ € P(f). If f(z) = g{z), then, z = f(z),
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A —
a contradiction. So, f(x) # g(z). Therefore, —— = z — 9(z) . For all

=1~ o= (o)
v € V(K), z(v) = tf(z)(v) + (1 - t)g{z)(v) which implies that,
v) — z(v) = ® = 9(z) z(v) — f(z
o(a)(©) - a0) = =0 Eat) - f(a)(0). .

Corollary 6.7 Let g: sd"K — K be a stable simplicial approzima-
tton to f. Then g is fp-equivalent to f. |

Proof: Let W be a stable neighbourhood of Fix f. It is clear from the
homotopy property of the local fixed point index ([5]) I:hat, it is enough to
show that, FixgNW C Fix f.

Let € FixgN'W and if possible, let z € Fix f. Then, for all v € V(K),

LY —L\) = =|5'3“‘g(113) T\V) — 11T NY
o(=)(v) - o) = 0 = T2 a(o) ~ f(a)(0)

This is a contradiction to Proposition 6.6. "

Remark 6.8 The converse of this result is not true as the following exam-

ple shows :
Let f:D? — D? be the map,
flre?) = (r—eg)e”
f0) = 0
3
1 K

g(sd K)

Figure 12: An fp-equivalent simplicial approximation which is not stable
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where € > 0 is sufficiently small, and Fix f = {0}. A triangulation X of D2
is shown in Figure 12. The vertex 0 is the geometric realization of Q. Let
g : sd K — K be a simplicial approximation to f as shown in Figure 12,
It is clear from Figure 12 that Fixg = {0,1,2,3}. If W = st (0,8d K),
then FixgNW = {0} and also i(f,0) = i(g,0) = 1, But ¢ is not a stable
approximation to f. In fact all points of {[0,0k])}:;k = 1,2, are fixed by
the homotopy between f and g.

Let, g : 8d"K — K be a simplicial approximation to f : |K| — |K].
Let = be a fixed point of g. Since there is a simplex 7 of K such that
f(z) € () and g(z) € 7, it follows that f(z) € st (ao(z), K), ie. = is a

proximity point of f.

We have the following sufficient condition on a map to have an fp-equivalent

simplicial approximation.

Lemma 6.9 Let f : |K| — |K| be a map such that P(f) = Fizf.

Then any stmplicial approzimation to f is fp-equivalent to f.

Proof: Let n > 0 be such that for any two distinct fixed point components
C and C' of f,
N([sd"K]¢,8d™"K) NN ([sd"K]gr, 8d"K) = B

and f:[sd"K| — |K| satisfies the star condition.

Let g : sd®K — K,n 2> 0 be a simplicial approximation to f and let
C be a fixed point component of f. Let @ € N([sd" K¢, 84" K). Suppose
that there is a t € [0,1] such that z = $g(z) + (1 — t) f(x). This implies
that, © € &y f(x)) or in other words, f(z) € st (oo(z), K) ie. ¢ € P(f).
Since # € N([sd"K]¢, sd*K), it follows that © € C. Therefore, g is a stable

simplicial approximation to f. Hence, by Corollary 6.7, it follows that g is

an fp-equivalent simplicial approximation to f. -
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Remark 6.10 Let f : |K| — |K| be a map such that Fix f is a set of
isolated points, Fix f = {z,...,2,} and let P(f) = Fix f. Assume that
for any 1 <4 # 5 < m, st (o (z;), K) N st (o (z;), K) = 0.

Let g: sd"K — K be a simplicial approximation to f. Then for all z;,
a subcomplex expanded by ¢ is the empty subcomplex. This follows from
the following fact : Let 7 be a simplex of Lk (o1,(z;), 8d"K) * &,(z;) such
that (o (z;) U T) C (o1{z;) U g(r)) for some 1 < § < m. Let y be a
point of (o1, (z;) Ur). Then y as well as g(y) are points of (o) (z;) U g(T)).
Hence, ao(y) = op(z;) U g(7) and f(y) € st (0o(y), K). Thus any point of
(ami(z;) UT) is a proximity point of f. By hypothesis this implies that any
point of {oy(z;) UT) is a fixed point of f which leads to a contradiction
since Fix f N st (opy(x;),8d" K) = {z,}. Thus if we take M(z;) = @ then
it satisties all the properties (a), (b) and (c¢) of Definition 5.6. Therefore it

is clear in this case that i(f,z;) =1 forall 1 < 5 <m.

Remark 6.11 An fp-equivalent simplicial approximation to f need not
preserve expanding directions. An example to this is given by Example 5.26.
Clearly in that example g is an fp-equivalent simplicial approximation to g

but it does not preserve expanding directions,

We wish to find conditions on a map on a polyhedron such that it has an p-
equivalent simplicial approximation which preserves expanding directions.

This would enable us to compute the local indices of the map.

From now on we restrict our attention to maps on |X|, whose fixed point
set is a subpolyhedron of | K]|.

6.4 A WEAKLY HYPERBOLIC SIMPLICIAL APPROXIMATION TO IDENTITY

Any simplicial approximation to the identity map on | K| is stable, the sta-

ble neighbourhood being, |K|. Therefore, by Corollary 6.7, any simplicial
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approximation to the identity map 1f 4 on [K|is an fp-equivalent simplicial

approximation.

Proposition 6.12 For alln > 1, there are simplicial approrimations

@ :8d"K — K to the identity map on |K| such that Fizep = V{(K).

Proof : For all simplices o of K, choose a vertex v, of 7. Define,
@{w) = v,, for all vertex w € sd” K, such that w &€ {o)

The map ¢ : V(sd"K) — V(K), clearly extends to a simplicial approxi-
mation to 1j ).

Let u be a vertex of K. Then v, = u, and hence, ¢(u) = u. Therefore,
V(K) C Fixe.

Let © € K| be a fixed point of . Then, the carrier of & in sd *K is a prim-
itive simplex with respect to K by Lemma 3.11. Let ayg(z) = [ug,.. ., up)
and, opy(z) = [wy, ..., wy], where, w; € (73}, and, 7, < o(2),0 < i < p.
If possible let there exist a 4,1 < 1 < p such that {r;_; : 1} # 1. Since

Tp = oyg)(®@), it follows that there is a j,0 < § < p—1 such that 7; = 7j4;.

But this implies that ¢(w;) = ¢(w;4,) a contradiction.
Hence for all 1 € 7 < p, {71 : ;} = 1. Then, it follows that each ; is an
t-simplex of K. But then 1 is a O-simplex. Therefore, by Proposition 3.13,

it follows that p = 0 and z = 7.
Therefore, Fixyp ¢ V(K). Hence, Fixp = V{K). m

Remark 6.18 This fp-equivalent simplicial approximation need not pre-

serve expanding directions, A counterexample is as follows :
Let X be the standard 2—simplex with V(X) = {1,2, 3} and define,
wi:sd K — K

as shown in Figure 13, Then, Fix¢y = {1,2,3}. As in Example 5.26,

there is no subcomplex expanded by ¢ at 1. Therefore, g does not preserve

expanding directions.
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1 f 1 2 2
K - p(sd K)

Figure 13: An fp-equivalent simplicial approximation to identity which does

not preserve expanding directions

We show that it is possible to get fp-equivalent simplicial approximations,

sd"K — K,n > 1 to 1| which preserve expanding directions.

Let K be any simplicial complex and 8 > 0,
Let < be the order on V{K) mentioned in Section 4 of Chapter3.
For any simplex 7 = [ug < +++ < up] of sd*" K define,

‘lﬁm(b(ff)) = Up
Then 1,4y @ V(sd*MK) — V(sd'K) extends to a simplicial approxi-
mation to identity, ,.; : sd '*ifé — sd®K., Clearly ¥,4 is a partic-
ular case of the simplicial maps defined in Proposition 6.12 and hence
Fix e = V(sd*K).
Note that for any simplex 7 of 8d** K, if o € sd *K is such that (1} C (o},
then, 1.4.1(7) < o. |

Definition 6.14 Define a simplicial approximation to the identity map on

| K| to be,
W(n)y =100t sd"K — K.

It is clear from the definition of ¢(n) that V(K) C Fix¢(n). If we can

show that 1(n) is a particular case of maps defined in Proposition 6.12 then

we will have shown that Fixe(n) = V(K).
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Lemma 6.15 Let w be a verter of sd"K,n > 0. Then y¥(n){(w) 13 the

largest vertex of ao(w).

Proof: Let n = 1. In this case, w = b{ay{w)).
Hence, ¥(1)(w) = ¥1(b{oo(w))) = the largest vertex of oo{w) by defini-
tion. Let the result be true for 1 < p < n and for all simplicial complexes.
Let w be a vertex of sd"K. Then 9, (w) = largest vertex ofo,,_(w). By
Lemma 3.8, ¥, (w) € (oo(w)) and hence by the induction hypothesis,

Y(n — L{¢n((w))} = largest vertex of op(w)

i.e. ¥(n)(w) = largest vertex of oy (w). -

Thus for all simplices o of K if v, is the largest vertex of o,
P(n)(w) = v,, ¥ vertex w € sd"K,w € (o)
Hence, Fix¥(n) = V(K).

Lemma 6.16 Let v be a vertex of K and a be a vertex of Lk (v,8dPK).
Let op(a) = [v,w),...,w,]. Assume that there exist vertices u; of

Lk (v, 8dPK) such that ¥(p)(u;) = w;. Then, ¥(p)(a) # v.

Proof: By the given hypothesis and Lemma 6.15, it follows that each
w;, 1 < ¢ £ q is the largest vertex of og(u;). Since u; € Lk(v,sd?K), v is
a vertex of og(u;) for all 1 <1 < q. Therefore each vertex w;,1 £ < q is

larger than v and hence again by Lemma 6.15 it follows that ¥(p)(a) # v. =

Proposition 6.17 Let p > 0. Then (p) 1s weakly hyperbolic.

Proof: Let v € V(X). Define,

Hw) = (1,0) ifyp(p)(w) # v,w € Lk (v,8d?K)
Hw) = (0,1) ifyp(p)(w) =v,w € Lk(v,sd?K)
t(v) = (0,0) | |
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Extend this linearly over all simplices of 8t (v, 8d?K) to get a map,
t: st (v,8dPK)| — Ryo x Ryo.
Let = be a point of 8t (v,847K). Let o,(z) = [v,wy,...,w,] and,

q q
x = rgV + Zcr,-wi, where for all <1< g, 0<r< 1,21‘,‘ = 1,1y 75 0.
- =0

Let Y{w;) = - = (w,) = v,u < g and for all ¢ > j > u,(w;) # v.
Then, |
q u
t{x) = (,Z T, er)
=14 ] Jz]
So, t(z) = (0,0) implies that, = v.
Also,

P(z) = if‘j v + i rip(w;).

| 7=0 | j=u+tl

Let ¥(z) € st (v,8d?K) and let, op(¢(2)) = [v,a1,...,a,). Let

y y
Y(z) = rav+2r}a}-, where for all 0 < j <y,0 <7} < I,Zr;— = 1,7y # 0.
=1 j=0

Each a; € [v,¥(wu41), - -+, ¥(w,)]. Hence by Lemma 6.16, 9(a;) # v for all
1 < 3 < y. Therefore,

Hp(a)) = (i]r; | 0).

Thus #(¢(z)) = 0 < t(z). To show that ¢ is an indicator map on

st (v, sd”K), all we now need to show is that ,

Y q
Z?’; 2 Z T‘}*,

F=1 j=u+l
q
Let a; = ¢c;v + }: cij(w;). Then,
j=u+1 | - |
Y A q ¥ ;
1'{;(:3) — {TJ{]+§:T;C£G > UV + Z {Zric,-j}fgb(wj).
i=] 4 j=utl \i=]

‘Thus,
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¥ I q
! !
Tn"i‘zfiﬂin:ZTi: 1 - Z TP

i=ut]
Therefore,
v q y g
— f '
ZTiCiU“‘l”Tn" Z "“i*‘“‘-z?";“ Z T
1=1 i=u+] j=1 i=u+tl
y
. b f

The result now follows since Y ricy > 0. ;|

1=1

By Theorem 5.21 it follows that (p) preserves expanding directions.

6.5 CONTINUOUS MAPS WHICH PRESERVE EXPANDING DIRECTIONS

Definition 6.18 Amap f: [K| — | K|, will be said to preserve ezpand-
ing directions if there is an fp-equivalent simplicial approximation to f
which preserves expanding directions at each of its fixed points which is

also a fixed point of f.

Theorem 6.19 Let the proximity set of a map f : (K| — |K| be
precisely Fix f = F and let for all simplex o of N(F,K), ¢’ =0 NF,
If for all simplex o of N(F, K),

flleYYn{o'xLk(c', K)} = 0,
then f preserves expanding divections.
Proof: By Lemma 6.9, any simplicial approximation to f is a stable sim-
plicial spproximation to f. |

Let f:|sd"K| — |K| satisfy the star condition. Let w be a vertex of

sd"F and 7 be the maximal simplex of oy(w) such that,
f(st (w,sd"K)) C st (r, K).

If 7 # og(w), then there is a point y in st (og(w), K) such that f(y) belongs

to 7 % Lk (og(w), K). This contradicts the assumption on f. Therefore for

any vertex w of sd™F,

flst (w,sd"K)) C st (ap(w), K} | (21)
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We know that the restriction of any simplicial approximation to f to |F|
is a simplicial approximation to identity on |F|, ([22]). By Equation 21,
it follows that we can choose a simplicial approximation to f, such that
its restriction to |F] is any simplicial approximation to identity. Hence we
can choose a simplicial approximation g : sd"K — K to f such that
glsd™F = 1(n) where ¢(n) is the simplicial approximation to identity
defined in Definition 6.14. Then in a stable neighbourhood of F,

Fixg = V(F)
which implies that Fixg =V (F) on |K].
Let v be a vertex of F. Suppose that, 7 is a simplex of Lk (v,8d"K) such
that, (vUT) C (vUg(r)). Then any point of (v U ) is a proximity point of
f which implies that r is a simplex of sd"F'

‘i%*:! Pors E-ﬂgiﬁ i b F
-Weus-aw-innzlaeﬁmﬁiﬂﬂ-ﬁ?ml\that g|sd™F preserves expanding directions and

hence there is a subcomplex M{v) at v expanded by g|sd"F. By the above
discussion it is clear that M(v) is expanded by g also. Thus f preserves

expanding directions, =

Let f:|K| — |K|be a map whose fixed point set is a subpolyhedron |F|

of |X|. It is clear then that the number of path components of Fix f in
this case is finite, Let C be a path component of F. '
Let © € N(C,K) — |C|. If for all m > 0 such that z € N(sd™C,sd™K),
f(x) also does not belong to N(sd™C,sd ™K}, then x defines a direction
expanding by f with respect to C. The map f is ezpanding if for all
components C of F, all points of [N (C, K )\-—|O | define a direction expanding
by f with respect to C.

On the other hand, let z € N{(C, K) —{C|. Then there is a m > 1 such that
z & N(sd™C,sd™K), but z € N(sd™C, sd™ 1K), If for such a m, f(=)
is a point of N (sd™C,sd™K), then  defines a direction contracting by

f with respect to C. The map f is contracting if for all components C

anp
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of I, all points of [N (C, K)| — |C| define a direction contracting by f with
respect to C.

The set of all points in N(C, X) which define a direction expanding by f
with respect to C' will be denoted by E(f,C).

For brevity we shall say that a point @ of N(C, K) — |C| is an expanding

point (contracting point respectively} if = defines a direction expanding

(contracting respectively) by f with respect to C.

Theorem 6.20 Let F' be contained in the interior of the prozimity set

of f. Suppose that for any component C' of F and for any simplex o
of N(C, K), the following holds : |

(o) NE(f,C) # 0= {[7| - [#n C|} C E(f,C).

Then f preserves expanding directions.

Proof: Choose n > 0 such that, f : [sd"K| — |X| has a.simplicial

approximation and,

N (N (sd"F,sd"K), sd"K) C interior P(f).

Let w be a vertex of N (sd*F,sd"K). Then w is a proximity point of f.
Let 4 € st (w,8d"K). Then y is a also a proximity point of f and ¥ is a
point of st (eg(w), K). Therefore, ap(w) < oo(y). Hence,

f(y) € st (Jg(y),ff) C st (op(w), K).
Therefore, for all vel*ﬁices w of N (sd"F,8d"K),
f(st (w,8d"K)) C st (op(w}), K).
We choose a simplicial approximation g : sd"K — .I{ to f .such that,
. g|lsd"F = (n): sd"F — F
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is the simplicial approximation to identity defined in Definition 6.14 and,
for any vertex w of Lk (sd"F, 8d"K), g(w) € Lk (F, K), if w is an expanding
point of f and g(w) is a vertex of F if w is not an expanding point of f.

We also ensure that for all expanding vertices w, g(w) is a vertex of ap(w).

A point x of | K| can lie on the line segment joining g(z) and f(z) only if
r is a proximity point of f. Let # be a proximity point of f belonging to
Lk (sd™F,8d"K).

Let = be an expanding point of f. Then by the hypothesis on f all points
in the interior of oo(z) which do not belong to F' are expanding points of £.
It then follows by the continuity of f that any vertex of Lk (sd™F,8d"K)

which lies on @(z) has to be an expanding point of f. All vertices of o, (x}

belong to &(x). Thus by the given hypothesis on f, all vertices of a,(z)
are expanding points of f and hence by the choice of g, g(z) is a point of

Lk (F, K). Hence, ¢ does not lie on the line segment joining f(x) and g(z).

Now let = not an expanding point of f. Then again no point of ¢,,(x) which
lies in the interior of g¢(x) is an expanding point of f by the hypothesis on
f. Since f is continuous this implies that no vertex of ¢, (z) is an expanding
point of f. So, f(z) lies in N (sd*F,sd"K) and g(z) is a point of |F|. Thus

again, « does not lie on the line segment joining f(z) and g(z).

Thus by the homotopy property of the fixed point indices ([5]), for any

component C of F, it follows that,
i(f,N(sd"C,8d"K)) = i(g,N(sd"C, sd"K)).
We now show that for any component (' of Fix f,.
FixgNN(sd"C,sd"K) = V(C).

Let o be a simplex of N (sd"C, sd"K) such that (o) C {(g(o)).
Let o Nsd"C =o' |
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Assume that o' does not belong to st (v, 8d"K) for any vertex v of F. Let
T = g(o) (respectively 7') be the carrier of ¢ (respectively ¢’) in K. Let if
possible, dimeo’ = dim 7', Then, there are two distinct vertices of ¢’ which
belong to the interior of a face of 7'. By definition of ¢(n) this implies that
o' collapses by g, a contradiction to the fact that (o) C (g(c)).
Therefore, dimo’ < dim r’. This implies that,

dim(c - ¢') > dim(t — 7') > dim ",
where 77 = T N Lk{C, K). Since at least one vertex of ¢ — ¢’ maps to a
vertex of r” by the map g, it follows that all the vertices of ¢ — o ’ necessarily
map to vertices of 7" by the map g, by the hypothesis on f and the choice
of g. This implies that o collapses by g, again a contradiction. |
Thus, (o) C (g{o)) implies that ¢’ belongs to st (v, sd"K) for some vertex
v of F, This implies that the only fixed point of g on & can be the vertex

v, by Proposition 3.13.

Hence g is an fp-equivalent .simplicial approximation to f such that,
FixgNN(sd"F,sd"K) = V(F).
Let C' be a component of #. Then,

i(f,0)= ¥ ilg.)

veV{C)

Finally we show that g preserves expanding directions at each vertex v of
Fix f. |

Let v be a vertex of C and let a subcomplex at v expanded by g|sd"C be
M’ (v). Let,

M(v) = U{F:0€Lk(v,sd"K),0 € M'(v),
or{g) N E(f,C) £ and v ¢ g(o)}.

We show that M is a subcomplex expanded by g at v.
Let o be a simplex of Lk (v,sd"K) such that, (v Ua) C (v U g(o)). If

o € 8d"C, then, ¢ € M'(v) and hence ¢ is a simplex of M (v). Let o not
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a simplex of sd"C. If possible let there be a vertex of o — (o N C) which
maps to a vertex of C. Then, by the hypothesis on f and by the choice of
g, it follows that no vertex of ¢ can be an expanding point of f and hence,
g(o) is a simplex of C. But this implies that ¢ is a simplex of 8d"C, a
contradiction. Therefore all vertices of o — (¢ N C) map to Lk (C, K) and
hence {0} N B(f,C) # 0. If a vertex of o maps to v by the map g, then,
dim(v U ) > dim(v U g(o)), which is a contradiction. So, no vertex of o
maps to v. Thus, o is a simplex of M(v). Hence, M(v) satisfies property
(a) of Definition 5.6.

Let w be a vertex of M{v). If it is a vertex of M '(v), then it does not map
to v by g. If it is not a vertex of M ’(v) then by the condition on M (v}, it
does not map to v by g. So, M(v) satisfies property (b) of Definition 5.6
Finally let ¢ be a simplex of M(v). If ¢ is a simplex of M '(v) then,

v U g(o)| N |Lk (v, 8d™K)| C |[M(v)|.

Assume that o is not a simplex of M ‘(v). Then, (¢)NE(f,C) # 0. Let the
carrier of ¢ in K be 7 and 1NC = 7'. Then all vertices of r—7' are expand-
ing points of f and by the choice of g, g : |7 — 7| N |Lk (v,8d* K)| — T.
It is clear that, |v U g(e)| N |Lk (v, sd*K)| C |M(v)[. Hence, M (v) satisfies
property {c) of Definition 5.6 also and thus M(v) is a subcomplex at v

expanded by ¢. Thus, g preserves expanding directions and hence, f pre-

serves expanding directions. .

Corollary 6.21 An expanding or contracting map on a connected com-
pact polyhedron, whose fized point set is a subpolyhedron contained

in the interior of the prozimity set of the map, preserves expanding

directions.

Note : The above theorem justifies the nomenclature of such maps as those
which preserve expanding directions.

—wr
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