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Chapter 1

Introduction

1.1 Laplacian matrices

Let G be a connected simple graph with vertex set V =.{1,2, oo ,n}, edge set F
and let each edge be associated with a positive number, the weight of the edge. The
above graph is called a weighted graph. An unweighted graph is just a. weighted graph
with each of the edges b'earing weight 1. All the graphs considered are weighted and

simple, unless specified ctherwise; all the matrices considered are real. The adjacency

mairiz A(G) related to this graph.is defined as A(G) = (ai;) , where

{ g, iffi, 7] € P and the weight of the edge is @,
i =

0, otherwise .

Let D be the diagonal matrix with the i-th diagonal entry equal to the sum of
the weights of the edges 'ha,ving the vertex ¢ as an end vertex in G. We will call such
a matrix as the degree matriz of G or simply the degree matrix, when there is no
scope of confusion. The Lapim:iﬁn mairiz of G, denoted by L(G), is defined by the
equation L{G) = D = A(G). In case there is no scope of confusion we will write L
instead of L{G). Let 2| < Ag S ..« < An be the eigénv.a.lues of L. Let s > 1 and
suppose that A; > /\3_1.' An eigenveb!;or correspﬂnding to the eigenvalue A, of L w_i_ll
be called a Fiedler s-vector of L(G). The term Fiedler vector will mean a Fiedler
2-ve.ct0r. .. | |

In the year 1847, Kirchoff proved the following result involving the Laplahian
matrix which put the study of the Laplacian matrix as an Interesting subject in

- front of many researchers. The result is popularly known as the Kirchoff’s matriz

3



CHAPTER 1. INTRODUCTION

iree theorem. See [26] to collect some more references on this theorem.

Theorem Let G be an unweighted graph. Denote by L(ilf) the (n—1) x (n— 1) sub-
matriz of I obtained by deleting its i-th row and j-th column. Then (—1)'*7 det L(i|7)
is the number of spanning trees in G.

In the above theorem det L(i|j) means the determinant of the matrix L{il7). -
It is understood that if G is disconnected then the number gf spanning trees in
G is zero. Since then several authors from different disciplines have enriched the
subject. The fact that two graphs G and H are isomorphic if and only if there 1s
a permuiation matriz P such thal PTL(G)P = L(H), and hence the fact that fwo
graphs are isomorphic only if they have unimodularly congruent Laplacian matrices,
do motivate the reader to know more about the Laplacian matrices. '

Among the studies of different properties and uses of Laplacian matrices the study
of Laplacian spectrum and it’s relation with the structural properties of graphs has
been one of the most attracting features of the sub ject. To begin with, we can get
from the matrix-tree theorem that the rank of L(G) is n — w(G), where w(G) is the
numbefﬂf connected components of G. Thus, assuming that the eigenvalues of L(G)
are arrdnged in nondecreasing order: 0=X1 < Ay < --+ € )\, we see that Ay =
if and only if G is connected. Thus the graph structure is already reflected in the
spectrum. This observation led M, Fiedler to define the dlgebmic connectivity of G
by u(G) = M(G), viewing it as a quantitative measure of connectivity. Fiedler was
the first to show that, for a connected graph, further information about the graph
structure can be extracted from an eigenvector corresponding to the algebraic con-
nectivity by proving some remarkable results;_ Subsequent observations were made '
by different authors. We refer the interested readérs to (26] for knowing more about
the Laplacian matrix and for some references. | .

The reader at this place might note that there eiist results (thﬂugh, very few) for
adjacency matrices which are very similar to a few of Fiedler’s results for Laplaciari
matrices (see for example, [10}, ‘he only difference is that for adjacency fnatrices the
second largest eigenvalue and the carres;mndmg e:genuector.s— are considered whereas
for Laplamﬂn mumces the second smallest eigenvalue and the corresponding eigen-
veclors are considered. This gives a hope for proving some more results for adjacency
matrlces 51mllar to those proved for the Lap]acna.n madtrices. Our initial apprcra.ch will
be in this direction. Given any dlagonal matrlx D the perturbed Laplacian matriz
? of a graph G is defined by ﬁ D - A(G’) Thus the class of perturbed Laplacian
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matrices is large enough to cover the Laplacian matrices and the adjacency matrices
and some others. We will prove some intereésting results for this class. (Some of these
results sound similar to some known results for l.aplacian matrices whereas the rest
are new. Not to mention, most of these results are new for thie adjacency matrix

itself.) The thesis is organized as follows.

In Chapter 2 we introduce the cnncept”of a. characteristic set and take a closer
view of the relationship between the characteristic set and nonnegative matrix theory.
We prove several preliminary results including some interesting results about the
multiplicity of the algebraic connectivity. Other topics like Perron branches and
support of a Fiedler vector are also discussed here. Many of the well-known results
related to characteristic vertices and edges may be deduced as corollaries to the
results presented here.

The description of a Fiedler vector of a Laplacian matrix for an arbitrary con-
nected graph is usually hard to conceive unlike that of a tree. The primary reason
to this is the number of elements in the characteristic set. In Chapter 3, Section
1, we give bounds for the cardinality of the characteristic set. It is shown that if
G is a connected graph with n vertices and m edges and Y is a Fiedler vector of
any perturbed Laplacian matrix of G then the characteristic set of G with respect
to Y has at most m — n + 2 elements. We will call, sometimes, an element of the
characteristic set a characteristic element. As a very specific corollary, follows the
well-known result that a tree possesses only one characteristic element which s e1-
ther a vertez or an edge, when Fiedler vector of a Laplacian mairiz is considered,
The next section is a discussion regarding the location of the characteristic set. We
prove that if we take a connected graph G, any perturbed Laplacian matrix £ of G,
any two Fiedler vectors Y and Y’ of £ and assume that S, S’ are the characteristic

sets respectively, then “either § = 8’ = a singleton vertez” or “both S,5S' lie in one

parttcular block of G.”

‘In Chapter 4 we use a new technique to prove a result which generalizes a classical
result of Fiedler to the class of perturbed Laplacian matrices. As a corollary follows
the result which unifies the result of Fiedler and a striking convexity/concavity result
of [22] for a tree, in the case of Laplacian matrices. Do the other eigenvectors tend
to bear this increasing/decreasing and convexity/concavity nature ? The answer is
“partially.” One can easily see the reason when he/she goes thrciugh the complele

description of any eigenvector corresponding to the third smallest eigenvalue of a
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Laplacign matriz, when the algebraic connectivity has multiplicity one, which Is also
supplied in this chapter.

In Chapter 5 we obtain a formula for the Moore-Penrose inverse of the oriented
vertex-edge incidence matrix of a unicyclic graph G and give a complete "description
of the Fiedler vectors of the Laplacian L(G). A recent reference concerning formu-
lae for the Moore-Penrose inverse of the Laplacian is [23]. A sequence of numbers

a,ag, +,0n is called unimodal if there exists £ such that a; < a9 < -« L ag—1 £

@y > Ggp1 2 -+ 2> ay. It is shown that the coordinates of a Fiedler vector of L are uni-

modal along the cycle in the unicyclic graph if we begin with a vertex corresponding
to the smallest coordinate. |

In Chapter 6 we consider the following graph &. Consider a tree T on n vertices
1,2,--,n. The graph G constitutes a set of complete graphs {K; : i = 1,---,n}
such that vertices i and j are adjacent in T if and only if K;[VK; # (. Label the
vertices of the graph G. Such a graph will be referred to 7. The graph F is called an
interval graph if T is a path alnd' the labelling of the vertices is done in a particular
fashion. In this chapter we prove some interesting results concerning these graphs.
We note here that given a tree 7', if each of the complete graphs is on two vertices,
then ¥ = T, thus noting that this small class of graphs under consideration contains
all trees, |

In Chapter 7 we have tried to show some relationship among the two known
graph invariants £(G) (the symbol u{G) in this chapter does not mean the algebraic
connectivity) and A{G) and the pertmbpd Lapl&c:a.n matrtces Much remains to be
~explored here, | |

Most of the results proved in Chapter 2 and Section 1 of Chapter 3 are prnveci in
[3], for the case of Laplacian matrices. Results in Chapter 5 are also proved in [3).

Laplacmn mactrices find applications in many areas; see for example 1,7, 16 18, 30, 33, 34]

to get more information.

1.2 Notation and terrﬁinologies

By Y(u), we denote the coordinate of Y corresponding to the vertex v. By B(i, 7)
we mean the (i, §)-th entry of a matrix B. The notation / represents the identity
matrix of an appropriate order. An edge between two vertices v and w in a- gra.ph G
is denoted by [v,) and if the graph is directed, the orientation of the edge will be
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assumed to be from v to w. By [v;,va,- -+, ;] we denote the path joining v, and v,
via the vertices va,- -, v,_1. A vector means a column vector, If S is a set. of vertices
and edges in G, by G — 5 we mean the graph obtained by deleting all the elements
of § from G It i1s understood that when a vertex is deleted, all edges incident with
it are deleted as well, but when an edge is deleted, the vertices incident with it are
not. If U is a set of vertices in G, then the subgraph H induced by U is defined
as follows: H has vertex set U and for u,w € U, the edge [u,w] € H if {v,w} € G.
The subgraph induced by a set of edges F' in (7 is defined as follows: the vertex
set is the set of all vertices of G which are incident with at least one edge in ¥
and the edge set being F itself. By a nonnegative (positive) matrix we mean an
entrywise nonnegative (positive) matrix. By 7(B5) we denote the smallest eigenvalue
of a square symmetric matrix B. The number of negative (positive) eigenvalues of

a matrix B is denoted by A_(B)} (A4 (B)). The vector of all ones of an appropriate
order is denoted by é (it should not create any confusion with e, which sometimes,

is used to denote an edge of G). Inertia of a square symmetric matrix B, denoted by
In(B), is the triplet (p, g, z), where p,q and z are the number of positive, negative
and zero eigenvalues of B, respectively. For a matrix B, BT denotes the transpose
of B. By a nonzero (zero, uegative, positive) vertex of G we mean a vertex of G such
that Y(v) £ 0 (Y(v) =0, Y(v) < 0, Y{v) > 0, respectively), where ¥ is a vector
(which will be clear from the context; usually Y will be an eigenvector of P). A
subgraph H of G containing a nonzero vertex of G is called a nonzero subgraph of
G. A subgraph H of G is called positive if each vertex of H is positive. Negative
subgraph is defined similarly. Given any graph (not necessarily connected) G define
a. binary relation on the set of vertices as: u ~ v, if either u = v or there is a path in
G joining u and v. This is an equivalence relation. Let {V;} be the equivalence class
defined by this relation. The graphs induced by each of the elements of {V;} are
called components. In oither words a component of a graph is a maximal connected
subgraph. |

A few words about the labels: the label of theorems, lemmas, propositions, corol-
laries, notes, definitions and examples are made like c.s.n; where ¢ is the chapter

number, s is the section number and n is the item number. Thus Lemma 2.1.2

should be found in Section 1 of Chapter 2.
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Chapter 2

Fiedler s-vectors

2.1 Preliminaries

We will write °A instead of A\¢(G) to denote the s-th smallest eigenvalue of . It is
assumed that s > 2. If Y is a Fiedler s~vector of £ then by the eigen condition at

a vertex v we mean the equation

Y B,y () = [SA - B(v,0)| Y (v).
(i,zv)eFE
With respect to a vector Z, the vertex v of G is called a characteristic vertexzof G if

Z(v) = 0 and if there is a vertex w, adjacent to v, such that Z(w) # G,

Note 2.1,1 Ifv is a characteristic vertex of G with respect to the Fiedler s—vector

Y then the eigen condition at v itmplies that there are at least lwo vertices u, w in G,

adjacent to v such that Y(u) > 0 and Y{w) < 0. | " »

With respect to a vector Z, an edge e with end vertices u, w is called a characteristic
edge of G if Z(u)Z(w) < 0. By C(G,Z) we denote the characteristic set of G with

respect to a vector Z, which is defined as the collection of all characteristic vertices

and characteristic edges of G with respect to Z.

Proposition 2.1.2 Let P be an irreducible nonnegative matriz, D any diagonal
matriz and Q = D — P. Then the smallest eigenvalue of Q@ has multiplicily one
and the corresponding efgenvector is positive and unique up to o scalar multiple. An

eigenvector corresponding to any other eigenvalue has a positive entry and a negative

entry.
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Proof Consider the matrix M = Q — k, where & is a scalar matrix large enough
to make M nonpositive. Since M is irreducible we know from Perron-Frobenius
theory (see, for example, {20]) that the smallest eigenvalue of M ( and hence the
smallest eigenvalue of () has multiplicity one and the corresponding eigenvector
say X, is positive and unique up to a scalar multiple. We know that eigenvectors
corresponding to different eigenvalues of 2 symmetric matrix are orthogonal to each
other. Thus, if Z is an eigenvector of () corresponding to any other eigenvalue then
ZTX = 0. Thus Z must have a positive entry and a negative entry. | u

The following notes are useful.

Note 2.1.3 Let G be a connected graph. Then the smallest eigenvalue of the Lapla-

cian matriz L 15 0 and the corresponding eigenvector ts €.

Proof See that é is an eigenvector corresponding to the eigenvalue 0. Since € is &

positive eigenvector by Proposition 2.1.2, 0 is the smallest eigenvalue. "

Note 2.1.4 Let G be a connected graph on more than one vertices, I be any diagonal
matriz, Y be a Fiedler s—vector of £ and S be the corresponding characteristic set.

Then G -~ S is disconnected with at least two nonzero components.

Proof By Proposition 2.1.2, Y has a negative and one positive entry. If G — S has
exactly one nonzero component then there must be a path joining these two vertices
and this path is bound to contain a characteristic element, which, according to our
hypothesis, is impossible. ’ .

Let us explain the emphasigs the word “at least two” in the above note. One
may frequently encounter the examples where s > 2 and the number of nonzero

- components is strictly greater than 2, but there are some examples where this number

is exactly two. The following is one of those.

Example 2.1.5 The graph in Figure 2.1 is an unweighted tree. We consider the
Laplacian matrix L. The vector A containing the eigenvalues (sorted) of L and the
eigenvector Y cmrrespcjnding to the third smallest eigenvalue are given below. One
can see that the characteristic set consists of only one vertex 5 and G — {5} has
exactly two nonzero components {6} and {7}. |

- Also we supply another eigenvector 2 corresponding to this eigenvalue. One can
- see thal the characteristic set corresponding to this vector has two elements.

A=[0 02254 1 1 21850 3.3604 4.2283 ]
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¢ [
1 2 3 4 G 6

Figufe 2.1: A Fiedler 3-vector for which we get exactly twu nonzero components

. T
Y=|0000 0 ~1 1]
- T
Z=| 1175 0 —=.1175 —.1176 0 .7485 —.-6310] | .

At times, we will use the following lemma which is a well-known result in nonnegative

matrix theory.

Lemma 2.1.6 Let C be an irreducible, symmetric, nonnegative matriz and B be a
principal submatriz of C. Then the largest eigenvalue of C' is strictly larger than the
largest eigenvalue of B. Thus if A= D — C, where D is a diagonal malriz and Ay 15
a principal submalriz of A then T(A) < 7(A1). n

Below we state a result due to Fiedler [13], which shall be used.

Lemma 2.1.7 [Lel

B C
A=
: CT d
be a symmetric matriz, where C is a vector and d 1s real. Let there exist a vector U
such that BU =0 and CTU # 0. Then In{A) = In(B) + (1,1, -1). "

As a corollary one can prove the following. We will use this corollary to prove Lemma
2,2.13, which is one of the crucial results for further development of the thesis.

| B ¢ | |
Corollary 2.1.8 Let A = be a symmelric matriz, where B E are

¢t B
square, Let U be a vector .such-that BU =0 and CTU % 0. Then A_(A) > A_(B)+1,

Proof Since CTU # 0, there exists a column C, of C such that CT U # 0. Let d

3 - | B G
be the diagonal entry of E corresponding to C). The matrix A, = oT g is
| T d

a principal submatrix of A. Thus by Cauchy interlacing theorem A_(A4) > «\...(;}11);
By Lemma 2.1.7, we know that I'n(A,) = In(B) + (1,1, ~1}. Hence the proof. =~ =
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2.2 About the graph structure

The following resuit reveals a nice relationship between a Fiedler vector of ¥ and

the graph structure.

Lemma 2.2.9 Let G be a connecled graph and D be any diagonal matriz. Let Y
be a Fiedler s—vector of £. Then the subgraph induced by the vertices v in G for
which Y{(v) > 0 has af most s — 1 components (similarly the subgraph induced by the

vertices v in G for which Y(v) < 0 has at most s — 1 componerits).

Proof Let L = £ — 7(£)I and A = *A — 7(£). Suppose that the subgraph induced
by the set of vertices » for which Y (v) > 0 has more than s — 1 components. By

performing a permutation similarity transformation if necessary, we can assume that

LY =)Y = \ , (2.2.1)

where Y and Y. are the subvectors of Y containing all the nonnegative and negative

entries, respectively. The matrix L can be partitioned as

Ly 0 - 0 Ljsn
0 Lyg v 0 La |
L= E K , (2.2.2)
0 0 H '. Ls,s Ls,s-i—l
| Lsrin Lsirz o0 o Legredn

_-Lll g ... 0
0

; 0 ng | -
where L' = | corresponds to Y and L4 541 corresponds to
¢ o0 . 0
0 0 - Ly, |
Y_. Partitioning ¥ conformally, let ¥ = [ Y_,{T Y_ET o YT YT ] . Since a
- zero vertex is either adjacent to a zero vertex or is a characteristic vertex (h_erice,
~adjacent to a positive vertex, by Note 2.1.1), none of Y_,ET, YET, e ,YjT is zero.

- From Equation 2.2.1 and Equation 2.2.2, we have L, Y} Lign Y. = AY_}_'. So
we get that | |
' (Lo = M)Y} = = Ly Y = 2, ( say ),
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Note that each entry of L ;4 is nonpositive and each entry of Y_ is negative. So
each entry of z is nonpositive. We know that at least one entry of L ¢ is negative

(since (& is connected). So at least one entry of z is nonzero. Because z is nonpositive
we get that |
(YO (L - a0yl = (¥HTz <0 (2.2.3)
So at least one eigenvalue of Ly — A7 is Iiegative (If not, let all the eigenvalues of
L1 — Al be nonnegative. Then Ly; — AJ is positive semidefinite. Thus (Y.)? (Ly; —
MDY} > 0. Using Equation 2.2.3, we get that (Y)¥ (Li; —AI)Y} = 0. Let Ly; — A =
K'K, for some matrix K. So we have (Y})TK? KY! = 0 and hence KY.! = 0. So
z=KTK Y,; =0, a cantradictidn to the earlier statement that z has at least one
entry nonzero.) Similarly, one can prove that at least one eigenvalue of L — A, 1 =
2,-++,8 is negative. Thus, we see that at least s eigenvalues of L' — Al are negative.
Using Cauchy interlacing theorem of eigenvalues for L — A7 and L' — )/, we get that
at east s eigenvalues of L — A\ are negative. But this is not possible because only
s — 1 eigenvalues of I are less than A. Thus the subgraph induced by the vertices v

such that Y (v) > 0 has at most s — 1 components,
Now considering —Y in place of Y as a Fiedler s-vector of £ we conclude that the

subgraph induced by the vertices v such that ¥ (v) < 0 has at most s—1 components.

Remark 2.2.10 The above resull is well known for the Laplacian mairiz and 1is
known for negative adjacency matriz (see for example [10] ). Below we give an

example to illustrate the above lemr:a.

Corollary 2.2.11 Let G be a connected graph and D be any diagonal matriz. Lel
Y be a Fiedler vector of ¥. Then the subgraph induced by the posilive vertices v

in G is connected (similarly the subgraph induced by the negative vertices v in G is

connected). -

Example 2.2.12 In :F-igurle 2.2,' the-graph is unweighted. We consider the perturbed
Laplacian matrix £ with D = diag(2,3,4,-1,0,-1,0,0,0). The sorted eigenvalues

are
[ -2.8362 —1.2434 —0.4080 —0.2047 0.5053 0.7856 19909 34994 49112 |.

Note here that the ﬁ'fth smallest eigenvalue is strictly larger than the fourth smallest

eigenvalue, Hence we can talk of the Fiedler 5-vector(s) of £. (We can always tg,lk
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-

Figure 2.2: Fiedler s-vectors of perturbed Laplacian matrices.

of Fiedler 2-vectors, since by Proposition 2.1.2, the second smallest eigenvalue of 2,
for a connected graph, is strictly larger than the smallest eigenvalue of £.)

A Fiedler vector is

| | T
[.1033 0060 —.0826 —.4393 —.2703 .5993 .4820 .0048 -—.3534] .

See that the nonnegative (nonpositive) vertices of G with respect to the given Fiedler
vector induce a connected graph.

The Fiedler 5-vector 1s
. | ' T
[-.0279 ~0173 —~.(497 —.1562 .3643 ~—.3886 .7691 .0343 .3091] .

Here the nonnegative vertices induce a graph with four components whereas the

nongositive vertices induce a connected graph. n

‘The following result discloses another nice relationship between some eigenvalues.

and some principal submatrices of £ and has various applications.

Lemma 2.2.13 Let G be a connected graph and D be any diagonal matriz. Let W
be a set of vertices of G such that G —~ W is disconnected with al least s (s > 1)
ca}rlpﬂnents. Let_.Gl,Gbg, +»yGm be the components of G—W aend Ly, Lo, -+, Ly, be
t):_e'ca_rresﬁsnding -prim:ipﬂf'mématﬁces of B..Suppose thﬁt (L) < 1{lp) € «- <
| (L ). Then either f(Ls) > SA"ior-T(L,;.’l-)- = 7(Ls) = °A, where ) is the s-th smallest
eigenvalue of B. Thus, it is always true that 7(Lg) > °\. B
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]
o
-]
)

Figure 2.3:

Before proceeding for the proof let us have a look at the following example.

Example 2.2.14 In Figure 2.3, we have an unweighted graph and we consider the
Laplacian matrix L. The eigenvalues (sorted) are givén by the vector A. Let W =
{2,3}. Consider the components of G — {2,3}. Let G; be the graph induced by
(4,7,9,10}, G2 = {5}, G = {6}, G4 = {8}, G5 = {11}, Gg = {12}, G7 = {1}. Let
L; be the principal submatrix of L corresponding to the branch G, ¢ = 1,--+,7. The

smallest eigenvalues of L;’s are given below.
7(L1) = 0.1729 < 7(L2) = 7(L3) = 7(L4) = 7(L5) = 7(Lg) = 7(L7) = 1.

Consider 2\. By the above lemma, we should either have v{L2) > 2\ or 7(Lg) =
7(Ly) = 2\. One can see that 1 = 7(Lg) > %A = 0.1876, for this example. Consider

- 6\, By the above lemma, we should either have 7(Lg) > & or 7(Lg) = 7(Ls) = .

One can see that 1 = 7(Ls) = 7(Lg), for this example.

.A=[_0 1876 4146 6770 1 1 1 1 2.1755 3.6338 4.4808 6.4217] .

Proof of Lemma 2213 It is sufficient to show that 7(L,) < 9 = 7{(L;) =
7(Ls—1) = *A. So, let 7(L;) £ *A and first suppose that 7(Ls-1) < T(Ls}. Let

W ={1,2,---,k}and d; = L(i,1), ¢ = 1,2, , k. Let Ly be the principal submatrix
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4

of & corresponding to the graph G — W. After a permutation similarity operation we

have ) | .
Ly 0
0 Lo -+« O
N O G
E: U 0 " Lm 1
G? dl *
: ¥ . K
_ Cy # o dy

where the upper left block diagonal matrix in the above representation is Ly . Let U

he the positive vector associated with 7(L,) (refer to Proposition 2.1.2). Consider the

vector [/ = [ o --. T 0 .. 0 ]T, where the zeros are added so that Ly U' =
r(L,) U’. Since at least one vertex in W is adjacent to one of the vertices in G, there
exists £, 1 <1 < k, such that G}”U’ # 0, Note that A.[Lw —7(Ls)I] 2 s—1, because
of the hypothesis. Now, applying Corollary 2.1.8, we see that A_[L — 7(Ls)1I] > s,
and hence 7(L,) > *\. This is a contradiction to the hypothesis that 7(L;s) < A,

Next, let 7(Ls) = 7(Ls-1). Since Lw is a principal submatrix of £, using Cauchy
mteﬂaemg theorem we get that the s-th smallest mgenvalue of £ is less than or equal
to 7(Lg). But (L) < ‘A, by the hypothesis. So, we get that 7(Ls) = 7(Lg~1) = ‘Am

 As one of the applications of Lemma 2.2,13, we prove the follc}wiﬁg result.

Lemma 2.2.15 Let G' be a connected graph and D be any diagonal mairiz. Let Y
be a Fi.edler s-veclor of B, s > 1 and *\ be the corresponding eigenvalue. Let W
 be a nonemply set of vertices of G such that Y{u) =0, for all u € W and suppose
thal G — W is disconnected with t nonzero components, G, Gy, -+, Gy, t > 5. Let
| L; and Y; be the principal submatriz of P and the subvector of Y corresponding to

G..i=1,2,.-.,t. Then the following occurs.

(i, The multiplicity of °) is al least t —s+ 1. { The multiplicity can be strictly larger
than t — s+ 1, sece Ezample 2.2.17.)

(i) For af least t — s+ 2 indices i, i € {1,2,--- t} 7(L;) = °A; for these indices i
the eniries of each Y; are nonzero and of the same sign. Thus the number of .
cﬂmponent.s containing both positive and negatt'ue vertices is at most s —2 and.
1fF is such a component then the corres;mndmg pnnc:pa! submatriz of £ has

- smallest eigenvalue less than °\.
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Proof Let ]
Ly Q0 -+ 0

0 Ly 0

0 - 0 L]
Foreachi =1, ... ¢, L;Y; = S\ So we have %(Li) < *A. So the {-th smallest eigenvalue
of L is less than or equal to *A. With a permutation similarity operation, we can
assume that L is a principal submatrix of £. Thus applying Cauchy interlacing
theorem we get that the t-th smallest eigenvalue of %, that is %A, is also Jess than or

equal to ‘A. But since £ > s, we get that
B =),

Thus the multiplicity of *X is at least t — s + 1,
To prove (i7), suppose that 7({L1) < 7(Lg): -+ < 7(L¢). Then using Lemma 2.2.13,
we get that 7(L;) =\, t =s5-1,s,---,%. By Proposition 2.1.2, the vectors Y;, i =

s —~1,s,- -, are positive and unigue up to a scalar multiple. .

Remark 2.2.16 From the proof of the above lemma, it is clear that under the as-
sumptions of the lemma, if we have a nonzero component H then 7(Ly) < \. Can
we compare T(Ly) and A when H is a zero component ¢ In general if we are given
that H is a zero component then we don't have any clue about the comparison be-
fween A and 7(Ly). See Ezample 2.2.19 for this. But if the value of s is two, that
is if we are considering a Fiedler vecvor Y then we can say that 7(Lg) > 2\ with

the help of Lemma 2.2.9. See Ezample 2.2.18, where each of the comparison fypes

OCCUr.

Example 2.2.17 Consider the Laplacian matrix of the unweighted cycle on six ver-
tices and let s = 2. There is a Fiedler vector ¥ such that C{G, Y} consists of exactly

two vertices and no edges. Also G—C(G,Y') has exactly two nonzero components. S0

by Lemma 2.2.15, the multiplicity of 2\ is at least 1. One can see that the multiplicity
ofz}uis2whichisgreaterthant~3+l==1 T "

Example 2.2. 18 The gra.ph in Flgure 2.4 i3 unwexghted We consider the negatwe

adjacency matrix —A, One Fiedler vector i8

Yf—‘[l I 0 -1 =1 O 0 U]T
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Figure 2.4:

Let W = {3}. There are two nonzero components {1,2} and {4,5} of G — W, thus
meeting the assumption of Lemma 2.2.15. There are two zero components {6, 7}
and {8}. The second smallest eigenvalue of —A is ~1; multiplicity is 2. One can
check that the smallest eigenvalue of the principal submatrix of —A corresponding
to {6,7} is the same as *\ and the smallest eigenvalue of the principal submatrix of

—A cﬁrresponding to {8} is 0 > 2\

Example 2.2.19 With reference to Lemma 2.2.15 and Remark 2.2.16, the three
comparison cases are shown below. In Figure 2.5, the graph ( is a weighted tree.
Weight of the edge [2,7] is 0.7, weight of the edge [5,9] is 1.1 and weight of any
other edge is 1. The Laplacian matrix L is considered. The vector A contains the
eigenvaiues of L, sorted and rounded to four decimal places. The fourth smallest
eigenvﬁlue of L, “\ = 1. The vector Y is a Fiedler 4-vector., Let W = {2,5}. See that
Y( 2) = y(5) = 0. Also see that T'— W has 4 nonzero components (thus meetmg the
assumption of the Lemma 2.2.15) and three zero components H; = {7} H, = {9}
- and Hj3 = {10}. One can sec that

T(Lg,) =.7<1, (Ly,) = 11> 1, r(Ly,) = 1.

. o
Y=[-1011010-200].
A=[0 .1493 7929 1 1 1 1075 256189 3.8901 61738 | . m

The fnllowmg result generahzes a part of Theorem 1 in [17] and a part of Theorem
1 in {21).

‘Theorem 2.2.20 Let G be a cannected graph and D be any diegonal matriz. Let

Y be a Fiedler vector of E. Let W be o nonempty set of vertices of G such that
Y(u) = 0, forallu € W and suppose that G — W is disconnected with t nonzero
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9 10
Figure 2.5:

campaﬁents, G1,Goy -, Gy, t 2 2. Let L; and Y; be the principal submairiz of 4

r

and the subvector of Y corresponding to G;, 1 = 1,2,--+, 1.

(1) Then each of G;, © € {1, ,t} is either positive or negative and 7(L;) = p and
the corresponding eigenvector of L; is Y;. No nonzero component contains both

positive and negative vertices. So C{(G,Y ) does nol contain an edge,

(ii) Further, the multiplicity of u is at least t — 1. (See Ezample 2.2.18, where the
multiplicity of 1t is strictly more thant —1.) We can get that t — 1 independent
Fiedler vectors X1, Xz, -+, X1-1 of B such that for each vector X;, X;(w) =0,

for all w c W and exactly one of the components G, 1 € {1,---,1} is positive
and ezxactly one of the components G;, i € {1,---,1t} is negative with respect o
. Xj . *

Proof Item (i) follows from Lemma 2.2.15. To prove item (ii), let __

it

Ly 0 - 0
i 0 Ly O
L= 7

0 - 0 Ly

By item (i), the ¢-th smallest eigenvalue of L is ¢, With a permutation similarity
operation, we can assume that L is a principal submatrix of #. Thus applying Cauchy
inter_laéing theorem we get that the -th smallest eigenvalue of & is less than or equal
to p. But since ¢ > 2 and the second smallest eigenvalue of P is 4, we get that the

t-th smallest eigenvalue of £ = p. Thus the muitiplicity of u is at least { — 1.
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Now we construct a Fiedler vector of the form described in the statement. Con-

sider the vectors Y, and Y5, Let

2, & (v)Yi (v}

vEGh

T Z{v)Ya(v)

ve(2

k =

where Z is the eigenvector of & corresponding to the eigenvalue 7(Z). Observe that

in the above definition of k we use the fact that the entries of Y3 agree in sign. With

a permutation similarity operation we can write

[L1 0 Ing |
f’ - 0 LZ_ L23 )
- L31 L3z L3z

where [ cﬂrresponds' to Gy, Lo corresponds to Gy. Let

T
—kYs
X = 0.
0 -
One can see that
2T X, =0 and
XT8x, = uxTXx,. ' (2.2.4)

Recall that Z is the eigenvector of £ corresponding to the smallest eigenvalue 7(P)

and £ is a symmetric matrix. Thus from the above equation one can easily show
that |

BX ] = pX 1-
Construction of other independent vectors is similar. | . .

R_emark 2.2.21 The technique used for this construction is taken from [36).

QUESTION |
‘We will prove later that if we have a tree and a Fiedler vector Y of £ such that we
have a characteristic vertex, then for every Figdler-x.vegtor{ the same vertex a.ppeﬁrs
to be characteristic and no more vertex or edge is chﬁr'aé:fé.ris.ti.c. '
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In the case of a Laplacian matrix of an even cycle one can see that the above
statement does not hold except for the fact thas if Y is a Fiedler vector inducing no
characteristic edge on the cycle then the number of characteristic veriices is 2. The

same example also shows that there exists Fiedler vectors Y,Y’ of £ satisfying the

following;:
I. C{(G,Y) and C(G,Y’) comprise of vertices only,
II. cardinality of C(G,Y) is the same as the cardinality of C(G, Y.

O_ur question is whether item I implies item II. If we consider Fiedler s-vectors, s > 2,

then a counterexample is Example 2.1.5.

2.3 Multiplicity of the algebraic connectivity

Let G be a connected graph, D be any diagonal matrix. Let ¥ be a Fiedler vector
of 2. Let W be any proper subset of vertices of G. By a branch at W of G we mean
a component of G — W. A branch at W Iis called a Perron branch if the principal
submatrix of £, corresponding to the branch, has an eigenvalue less than or equal

to 1. In the following few results we will discuss more about the multiplicity of of

the perturbed Laplacian matrices.

Lemma 2.3.22 Let G be a connected graph, D be any diagonal matriz. Let Y be a
Fiedler vector of £. Suppose that W -= C(G,Y) contains vertices only. Suppose tha!
G has p(> 2) Perron branches G1,G2, - ~,Gp at W. Then the multiplicity of u is at
least p — 1. There exists a Fiedler vector X such that W = C(G,X) and G — W has

p nonzero components, G1, G, -, Gy.

Proof Let L, and Ly be the principal submatrices of £ corresponding to Gy and
G4, respectively. Thus we have T(Ll),-T(Lg) < p. Applying Lemma 2.2.13. we get
that 7(L;) = 7(Lg) = p. By Proposition 2.1.2, for each 1 € {1,2}, the eigenvector
Y; of L; corresponding to 7(L;) is pnsitive. We can now proceed in a similar way as
in the proof of item (ii) of Theorem 2.2.20, to construct a Fiedler vector X)p of &
such that G is positive and G, is negative with respect to X1 and C (G, X12) = W.
| Suppose that X 1; be the Fiedler vector constructed, considering the branches B, and
B i =2, 3,.- .., p. It is easy to see that X,;’s are independent. Thus the multiplicity
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of it is at least p — 1. The rest of the proof follows easily by taking a suitahle linear
combination X of Xy;’s. ' '

The above lemma, though looks very similar to item (ii) of Theorem 2.2.20, can
extract relatively better information. Consider a very simple case, an unweighted
star on 5 vertices, center is the vertex 1. Let L be_'iéﬂhe corresponding Laplacian
matrix and Y be the Fiedler vector [ 01 -1 0 0 | - Let W = {1} Applicatiqn
of Theorem 2.2.20 will tell us that the multiplicity of the algebraic connectivity ic at
least 1. But an application of Lemma 2.3.22 will tell that the multiplicity is at least

3, because of the presence of four perron branches of G at W,
The following result givés another interesting information about the multiplicity

of algebraic connectivity of £.

Theorem 2.3.23 Let G be a connected graph, D be any diagonal matriz. Let S be
a sel of vertices such that for every Piedler vector X of £, C(G,X) = S. Suppose
that G has p Perron branches at S. Then the multiplicity of u is ezactly p — 1.

Proof Let G1,G9,-+-,Gp be the Perron branches at S. Let L; be the principal
submatrix of £ corresponding to G; and Y; be the positive eigenvector of L; corre-

sponding to 7(L;). By Lemma 2.3.22, the multiplicity of y is at least p— 1. Construct
the p—1 Fiedler vectors Xi;, 1 = 2, ---,pas in Theorem 2.2.20. Let Y’ be any Fiedler

vector. We want to show that Y' is a. linear combination of X,;'s. We proceed by

induction on the number r of nonzero components of G — S with respect to a Fiedler
vector Y/ We know that there exist no Fiedler vector Y/ of Z such that G — & has

exactly one nonzero component. {In fact, if G is connected then G — £(G,Y) is
always disconnected with at least two nonzero components.) Thus the statement is
valld vacuously for r = 1. Assume that every Fiedler vector Y’ with the number of
nonzero components of G — S less than r, is a linear combination of X;;’s.

Let Y’ be any Fiedler vector such that G — S has r nonzero components, Hy,

Hy, -+, Hy. It is easy to see that

o

(H, Hyy o H)C{GLGy -, Gp). © (235)

~ In fact, if H is a nonzero component then 7(Ly) = u, by item (i) of Theorem 2.2.20,
~ implying that H is a Perron compﬂﬁént of G at S. In view of the above equation we
 can assume that

H; - Gy, 1=1," .71 f‘lgp. |
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6
Figure 2.6: If the characteristic set consists of vertices only and does not change with

Fiedler vectors then multiplicity of y is exactly one less than the number of Perron
branches of G at C(G,Y).

We know, from the discussion in the proof of item (i) of Theorem 2.2.20 that
Y(G)x Z;, t=1,-,T.

Thus we can get a suitable linear combination Y of the vector X5 and Y such that
Y"(G,) = 0. Clearly Y is a Fiedler vector and C(G,Y") = 8. It is evident that the

number of nonzero components G — S, with respect to Y is at most r — 1. By the

induction hypothesis Y* is a linear combination of the vectors Xi;'s. Thus we get
that Y’ is also a linear combination of X1;'s. -

We explain the above result by giving an example.

Example 2.3.24 The graph in Figure 2.6 is unweighted. We consider the perturbed
Laplacian Matrix £, where D = diag{2,2,1,1, 1,1). The space of Fiedler vectors is

spanned by the following three vectors:

" 0.0000 " 0.0000 [ —-0.0000
0.0000 0.0000 | | .—0.0000
~0.3863 0.5625 0.5333
—0.4206 | ~0.0156 | —0.7569
0.8208 0.2432 —0.1308

- —0.0139 L ~0.7901 _ | 0.3544

For each Fiedler vector Y, one can see that C(G,Y) = {1,2}. The algebraic
connectivity u is 1 for 2. Also notice that G — C(G,Y) has 4 Perron components,
namely {3}, {4}, {5}, {6}. Thus by Theorem 2.3.23, the multiplicity of ¢ must be
exactly 3. This is true as the eigenvalues of P, are —1.3723, 1.0000, 1.0000, 1.0000,

2.0000 and 4.3723. | ' "
Theorem 2.3.23 has an interesting corollary (Corollary 3.2.39) but that will be proved

later.
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2.4 Perron branches

In the last section we have defined a Perron branch of a graph. In this section we will

try to prove some more results using this concept. The following is an application

of Lemma 2.2.13 and a generalization of Corollary 1.1 of [22}.

Theorem 2.4.25 Let G be a connected graph and D be any diagonal matriz. Let Y
be a Fiedler vector of P. Suppose that Y has no zero entry. Let F = {e; = [ui, wi], :
Y{u;) > 0,Y{w;) < 0,1 = 1,2,--,7;r > 1} be the set of edges in C(G,Y). Let
U= {uy, ,u} and W = {wy, -, wr}. Let Gy and Gy be the two campo.nents of
G — F such that u; € Gy, 1 = 1,2,--+,r. Then Gy s the only Perron branch at W

and (G7 is the only Perron branch at U,

Proof Let Lp be the matrix obtained from £ corresponding to G ~ F, that is
the matrix obtained from £ by replacing the (u;, w;)—th and (w;, u;)—th entries
by 0 for each edge e; = [u;,w;) € F. Let Ly and Ly be the two submatrices of

Lp carrespﬂnding to the components GGy and (3, respectively. By performing a
L] -0

~-BT L
B is a nonnegative matrix with at least one entrjr nonzerg. Since G 2arﬁ:l (7o are
connected, L, and Ly are irreducible. Partitioning ¥ conformally and using 2Y =
pY we get that InY) < pY; and Ly(-Ys) < p(—Y2). So (L1 — 7(L1) 1Y) < [i2 —
7(L1)]Y1. Since [Ly ~ 7(L1)1] is positive semidefinite, it follows, by left multiplying
Y7, that p — 7{L;) > 0. Together with a similar argument applied to Lo, we obtain

permutation similarity operation, if necessary, we have & = . where

7(L;i.< pand (o) < p. - (2.4.6)

By Corollary 2.2.11, Gg is a cumpunent of G~V Usmg Lemma 2.2.13 and the fact
that 7(Lq} < p, we get that Gy is the only Perron branch at U. Similarly Gy is the

~only Perron branch at W, n
Before pruceeding, let us see an example. We will p;rove an interesting result

(Theorem 3.1.31) in the next section, related to the hlghhghted statement in the

~ example.

Example 2.4.26 The gra.ph in Flgure 2.7, Case 1, is a welghted gra.ph Weight of
an edge [z, j] is i + 7, We cona:der the Laplacian matrix. The Fiedler vector is

Y = [ 2141 8333 -.1763 -1024 0123 1036 -.1284 —.2486 2629 -2447]
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Case 1 Case 2

Figure 2.7:

Looking at the Fiedler vector the positive and negative vertices are grouped below.
Positive: 1,2,5,6.

Negative: 3,4,7,8,%,10. |

The characteristic set consists of two edges, [1, 3] and [4, 5]. Both of them lie on a
simple cycle. Let U = {3,4} and W = {1,5}. Then B is the only Perron branch
at U and By is the only Perron branch at W.

The graph in Figure 2.7, Case 2, is an unweighted graph. We consider the
negative adjacency matrix. The Fiedler vector is

: | ' | . T
Y=[—.2512 —.15456 .1470 -.25012 -.4011 -.4011 -.1640 .3707 .4999 .3?0?] :

Looking at the Fiedler vector the positive and negative vertices are grouped below.
Positive: 3,8,9,10.

Negative: 1,2,4,5,8,7.

The characteristic set consists of two edges, (3,1} and [3,4]. Both of them lie on |
a simple cycle. Let U = {1,4} and W = {3}. Then B, is the only Perron branch
~at U and B, is the only Perron branch at W. | | __ "
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We already know from Corollary 2.2.11 that for a Fiedler vector Y of the perturbed
Laplacian matrix of a connected graph G the nonnegative vertices induce a connected
subgraph. Thus, if Y has no zero entry ( that is, if we have characteristic edges and
no characteristic vertices ) then the positive vertices and the negative vertices induce
ronnected graphs, respectively. Below we show that the presence of one characteristic
edge ( no condition on the presence of characteristic vertices) is enough to prove that

the positive vertices and the negative vertices induce connected graphs, respectively.

Before that we put the following note.

Note 2.4.27 Let G be a connected graph and D be any diagonal mairiz and Y be a
Fiedler vector of £. Let U be the set of characteristic vertices. If C(G,Y) contains

an edge then by Theorem 2.2.20, G ~ U has ezacily one nonzero component.

Lemma 2.4.28 Let G be o connected graph and DD be any diagonal matriz. Let Y
be & Fiedler vector of B. Let U (may be empty) be the set of characteristic vertices
of G. Suppose that there is only one component, say G', of G — U is nonzero. Let I/
be the principal submatriz of £ corresponding to G'. Then the following are valid.

(1) The eigenvalue 1 is the second smallest eigenvalue of L',

(ii) The positive (negative) vertices of G induce a connected subgraph of G. Let
the subgraph of G induced by the positive vertices be G.. and the subgraph of

G induced by the negative vertices be G_. Let L, and L_ be the principal

- submatrices of £ corresponding to G4 and G- respectively. Then 7(L)) < u

and 7(L_) < p.

(21i) Given a poir of distinct elements in C(G,Y) there ezists a simple cycle con-

tarning both of them and this cycle contains no more elements of C(G,Y).

Proof If U is empty then (i) follows immediately, (i) follows from Corollary 2.2.11
and Lemma 2.4.25. To prove (iii) let ¢; = [w;,vi], .Y(wi) <0, Y{(w)>0,i=1,2"
he two e'dges in C(G,Y). By (ii), theré exists a path consisting of negative vertices |
between w; and ws. Similarly there is path t:onsist.ing of positive vertices betwéen vy
~ and v3. These two patlls along with the two edges e; and e give us the simple cycle'
- we were looking for. |

Let U = {uy,usy,-- ‘,up}, p 2 1. First we prove (i), Smce G is cannected L'
is irreducible. The gra.ph G" contains an edge €, say, of C(G Y) ThlS is because,



2.4. PERRON BRANCHES . 27

G’ being the only nonzero component must contain a positive vertex and a negative
vertex, by Note 2.1.1. Hence G' must contain a path P joining these two vertices.
But this path must contain a characteristic edge or vertex of G. In case C(G.Y) does
not contain an edge, the path P (hence G'} must contain a characteristic vertex.
This is a contradiction to the hypothesis that U/ is the collection of all characteristic
vertices. |

~ Let G} be the only component of G — w;, which is nonzero (guaranteed by the
statement of the lemma). By the discussion in the above paragraph, € € G';. Let I,
be the principal submatrix of £ corresponding to Gy and ¥; be the corresponding
subvector of Y. 5o Y} contains both positive and negative entries. Since Y (1) = 0,
(¢ is an eigenvalue of L; and the corresponding eigenvector is Y). Since the matrix
L, is irreducible, we can use Proposition 2.1.2 to deduce that u is not the smallest
eigenvalue of L;. Let Al < Al be the two smallest eigenvalues of L. Since L, is
a principal submatrix of £, using Cauchy interlacing theorem we get that A} > .
Thus AS = p.

Let G5 be the only component of G| — ug, which is nonzero (guaranteed by the
statement of the lemma). Let Ly be the principal submatrix of £ corresponding to
G2 and Y3 be the corresponding subvector of Y. Let A < A2 be the two smallest
eigenvalues of Ly. Now one can proceed in a similar way as above to show that
A% = p. The rest of the proof of (1) is similar.

To prove (ii) suppose that the subgraph induced by the positive vertices is not
connected. Then one can proceed in a similar way as in the proof of Lemma 2.2.9
to show that L' — ul has at least two negative eigenvalues, But this is impassibie by
Proposition 2.1.2 and item (i) above. The rest of the proof is similar to the proof of
Lemma 2.4.25. |

Proof of (iii) is similar to the first paragraph of this proof in view of item (ii) and

Note 2.1.1. .

Fixample 2,4.29 The graph G in Figure 2.8 is unweighted, D = 0, that is £ = — A,
One can check with the help of a mathematical package that g = —1.6751 (rounded
to the fourth decimal place). There is a Fiedler vector Y of % of the form

YT=[000 -+ -+ + + + - - -]

where + or — sign or 0 at i-th place means that the ¢-th entry is positive or negative

or 0, respectively. Here 3 is the only characteristic vertex, Since G — {3} has only
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one nonzero component, Lemma 2.4.28 can be applied. One can see that the positive
vertices induce a connected subgraph, the negative vertices induce a connected sub-
graph, C(G,Y) = {3,[4,5), {6, 7]}. Also notice that for any two elements in C(G,Y)
there is a simple cycle in G containing these two elements and not containing any

other characteristic element. =

Definition: Let G be graph. For any vector X, the suppbrt of X, denoted by
supp(X), is the subgraph of G induced by the set of vertices v such that X (v) # 0.
The pasiﬁue suppart, denoted by supp®(X), of X is the subgraph of G induced by
the vertices v such that X (v) > 0. The negative support, denoted by supp_(X), is

defined similarly.

Definition: Let G be gi'a.ph and ) be a vector space. A vector X € V js said to
have a minimal support if X is nonzero and for all nonzero vectors X' € V, supp(X’)

is a subgraph of supp(X) implies that supp(X) is the same as supp{X’). A vector
X € V is said to have a mazimal support if for all vectors X' € V, supp({X) is a

subgraph of supp(X’) implies that supp(X) is the same as supp(X‘).

Lemma 2.4.30 Let G be any graph end D be any diagonal mairiz. Let V' be
o Fiedler vector of ¥ with minimal support among all the Fiedler vectors. Then

suppT(Y') and supp™(Y) are connected subgraphs of G.
Proof If C(G,Y) cdntain_s an e_dge then the result follows by Lemma 2.4.28.

- Claim If C{G,Y') contains vertices only then we cannot have more than two nonzero

branches of G at C(G,Y).
To see this let By, By, -+, By, 7 > 2 be the NoONzero branches Thus by Thenrem-
2.2.20, supp(Y) is the subgraph U B;. Let Yy and Y; be the subvectors of Y cor-

:respnndmg to I3, and B, res;;ectwely Then by Theorem 2.2.20, we know that we



2.4, PERRON BRANCHES 29

can construct a Fiedler vector X such that supp¥{X) = B, and supp ™ (X) = Bs.
Clearly supp(X) is a proper subgraph of supp(Y'), which contradicts the fact that ¥
is a Fiedler vector with minimal support. Thus the claim is justified.

Now, if we have only two nonzero branches of G at C(G,Y) then by Theorem
2.2.20, one branch is positive and one is negative, in which case the positive support

and the negative support are connected. .

- Remark: The above lemma was first proved by van der Holst [36]. We have presented
the result here because it tries lo establish a relationship between the Fiedler vectors
and the “minor monotone graph tnvariants” [37,35]. We will discuss some more on

this relationship in Chapter 7.
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Chapter 3
The characteristic set

3.1 Cardinality of the characteristic set

Let G be a connected graph. Define a binary relation on the set of edges of (& as
follows: edges e; and ey are equivalent, e; ~ eg, if either ¢; = e5 or there is a simple
cycle containing both of them. It is easy to see that this defines an equivalence-
relation. Let {G;} be the collection of subzraphs of G induced by the equivalence
classes. Call each of these graphs G; a block of G. The following is one of our main

results and reveals a nice property satisfied by the elements of a characteristic set.

Denote by [5], the number of elements in the set S.

Theorem 3.1.31 Let G be a connected graph and D be any diagonal mairiz. LetY
be a Fiedler vector of £. Let S = C(G,Y) and suppose that |S| > 2. Then for each

pair of characteristic elements there exists a simple cycle which contains them and

contains no more characteristic elements.

Proof First suppose that S contains vertices only, let v1,v9 € S. Let us delete all
characteristic vérti;ces from G except for v;. Applying item (i) of Theorem 2.2.20,
we get that there is only one nonzero component, say H, of the resulting graph.
Let u be a positive vertex adjacent to vy and w be a negative vertex adjacent to vy
(guaranteed by Note 2.1.1). Since both u,w are in H, there is a path, say P, joining
them in H. Since G has no characteristic edge, at least one vertex on £ has to be a
-zero vertex. Thus P contains a ché.racteristic vertex. Since all characteristic vertices
except for v; have been deleted, v is the only characteristic vertex on P. Thus v;

is the only zero vertex on P. Note that the edges [w, ‘L"g] and [vg,u] along with the

31
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path F form a simple cycle. This is the cycle we were locking for.

In case S contains at least one edge, the proof follows from Note 2.4.27 and item

(iii) of Lemma 2.4.28. | - .

Remark 3.1.32 It is clear from the proof of Lemma 2.4.28 and Theorem 3.1.81,
that if 3y and sp are two characteristic elements in C(G,Y) then the simple cycle we

were talking of in Theorem 9.1.81 has the structure shown in Figure 3.1.

As an immediate corollary we have the following which generalizes a part of the

Theorem (3,12), of Fiedler [14].

Corollary 3.1.33 Let G be a connected graph and D be any .diagnnal matriz, Letl
Y be a Fiedler vector of £ and S = C(G,Y). Then either |S| = 1 and § contains a

veriex or S is contained in a block of G.

Proof Suppose that S # {v}, for some vertex v. If § = {e} for some edge e, then
we have nothing to prove, since e itself is a block. Suppose that S has at least two
elements, Then by Theorem 3.1.31, we see that for any two elements in S, there
exists a simple cycle in G' containing both of them. Thus a block which contains one
element of § must contain every element of §. -
Let B be a block of a connected graph G, IfT is a spanning tree of G then a
chord of G with respect to T is an edge of &, not in T It is well-known that the
‘number of chords of a Connec_ted graph ism ~n+1, where mm and n are the number

~ of edges and vertices in the graph. The next theorém, in which we obtain a bound

on the cardinality of the characteristic set, is another main result of this chapter,
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Theorem 3.1.34 Let G be o connected graph and D be any diagonal matriz. Let Y
be a Fiedler vector of B and S = C(G,Y). Suppose that S lies in the block B. Then
1 < |8| < N+ 1, where N is the number of chords in B (visualizing B as a graph

itself).

Proof If |S| = 1, there is nothing to prove. Let S = {s1,82,"~+,8:}, r > 1. By
Theorem 3.1.31, we know that for any two elements of S there is a simple cycle in G
which contains these two elements and contains no more elements of 5. Denote by T'; -
a cycle of the above type which contains s;,5,; ¢ = 1,--+,r — 1. From the definition

of a block it is clear that these cycles are contained in B. For i =1,2-..,r—1, define

8, | if s; is an edge,

€; the edge on I'; ., joining

s; and a positive vertex, if s; is a vertex.

Observe that e; is well defined in view of Remark 3.1.32. Let us delete the edge e
from B to obtain B;. Note that none of the cycles Cipy = 2,--+,7 — 1 contain e,
" because otherwise, they have to contain sy, which is not possible (by Theorem 3.1.31).
Let us delete the edge eq from B, to ﬂbté,in Bs. None of thecycles I, 1 =3, ,r—1
contain eg, because 'otherwise,_ they have to contain s2, which is not possible (by
Theorem 3.1.31). Thus repeating this process some more times, we conclude that
the deletion of e;,---,e,—; will result in the graph, say B,.;, which is connected
(because each time ‘we é._re dele_ting an edge from a cycle only). Let T,y be a
spanning tree of B,_1, thus of B. The edges e}, -+ ,¢r—1 are chords of B with respect
to T,;__l. Hence r — 1 < N and the _prodf is complete., | . -
One can see some int'erésting consequences of the above result. |

Corollary 3.1.35 Let G be a connected graph with n vertices and m edges and
D be a diagonal matriz. Let Y be a Fiedler vector of £ and S = C(G,Y). Then
1 < 18| € m —n+ 2. In particular if G is ¢ tree then |S| =1 and if G is unicychc
then |S] is eather 1or2 . o

Proof By Corollary 3. 1 33 ‘either |S \ = 1 or S is contained in a block B of G. Slnoe
Ng < Ng = m —n+2,-the result follows from Theorem 3.1.34. The rest of the proof

1S trivial, - .

‘As one can notice from Corollary 3.1.35 that, m case of a tree the bound m—n. +2

is achieved. But this is not a t{ypical example in the sense that the cardinality of the
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- characteristic set is 1, a small number. Let us put the following question. Given a
natural number p, is it possible to find a connected graph G and a diagonal matriz
D such that the cam’mahty of the characteristic set ism — n + 2 = p, where m and

n are the number of edges and veriices in G, respectively ? In the following example

we show that the answer is “yes”.

Example 3.1.36 The graph G in Figure 3.2 is univéightéd-a;nd"ﬁé cc}nmderthe

Laplaczan matrix L of G. Let U = {3 4. p+ 2} Let Y.be a Fiedler vector for &. )

Let § = C(G,Y). By Note 2.1.1, the vertices’ 1 and p + 4 cannot be characteristic
vertices. We claim that 2 ¢ S If possible, let S cantam the vertex 2. Let G = { 1}, Gy
~ be the two components of G {2} and Ll, Lo be the two prmmpal submatrices of L

corresponding to them, respectwely. Observe that 7(L;) = 1 and L9 has a diagonal
entr_y'l. Thus_ T(Lg) < 1, by Lemma 2.1.6. Thus by Lemma 2,2.13,

F_J

1=7(Ly) > p > 7(La). : | - (3.1.1)

We have the fo]la.wing two cases.
| Case 1: Y(I) # (. Bj.Nﬂte 2.1.1, the components G; and G are nanzefo. By
.' Thgﬂfem 2.2.20, 7(Ly) = 7(Lq), a contradiction to'Equation 3.1.1.

Case 2: Y( 1) = {, Thus the only nonzero component of G—{2} is G, Thus § contains
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at least one more element. By Note 2.1.4, G — S has at least two nonzero components
say, C1 and C53. Clearly these two components are two nonzero components of Gy —
[S—{2}]. Note that (3 is nothing but Kp4.,1, the star on p+ 2 vertices. So one of C
and Cy must constitute of only one vertex, say C) = {z}. Then applying Theorem
2.2.20 and Lemma 2.4.28 and using the fact that the degree of z is at least one, we
get that g > 7(L(C})) > 1, a contradiction to Equation 3.1.1. Thus the claim is
justified.

Similarly, one can show that p + 3 ¢ S. Showing S # {e;}, ¢+ = 1,2 is trivial in
;.riew of Theorem 2.4.25 and Equation 3.1.1.
By Corollary 3.1.33, S lies in the block B, where B is the subgraph induced by
the vertices 2,3,---,p+ 3. Let 8’ = {[2,¢],[i,p+3] : i € UJU. So § C §'. One
can see that we have to delete at least p elements of ' from G to make the resulting
graph disconnected. So in view of Note 2.1.4, we conclude that the cardinality of

the characteristic set must be p. "

In the above example, we could have proved the same by computing the Fiedler

vector of L. We preferred to do it in the way it is presented, because it illustrates an

application of the previous results.
Let us put another question. Let S; and 53 be two characteristic sels of a graph

P, with respect to two Fiedler vectors. Is it necessary that both the sets have the same |

cardinality ¢ The answer is no even if the graph is regular. This can be seen from

the following example.

Example 3.1.37 Here we consider the Laplacian matrix of the complete unweighted
graph on four vertices (see Figure 3.3). Two Fiedler vectors ¥; and Y, are given
with entries having value correct up to four decimal places. One can see that the

characteristic sets are not of the same cardinahty. .

3.2"' IL.ocation of the characteristic set

It has been shown by Merris ({25), Theorem 2) that in the case of a tree, for the
Laplacian case that if Fiedler vectors Y and Y’ give rise to characteristic vertices

u and o/ respectively, then u = v'. The generalization of this result to connected

graphs, for the Laplacian case was done in ([21], Theorem 1). Below we give a

more general version of the same result which is valid for the perturbed Laplacian

matrices.
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Lemma 3.2.38 Let G be a connected graph and D be any diagonal matriz. Let Y
be o Fiedler vector of B and suppose that C(G,Y) = {u}, for some verter u. Then
for any Fiedler vector Y' of £, C(G,Y) {u}

Proof Let 5 = C(G, Y) and 8 = C(G,Y"). CDIlSldEI' the Fiedler vector Y, By
Note 2.1.4, G — u is disconnected. Let G1,Gg,'+, Gy be the branches at u and
Ly, La, ++, Ly, be the respective principal submatrices of £. We have the following

cases.

Case 1. §' contains u as a characteristic vertex and S' — {u} +* qfa

Step 1 W1thﬁu_t_lﬁss of generality we can assume, S — {u} C Gl If not, let
81 € G‘; and g9 € G, where 31,82 € S'—{u}. Then by Theorem 3.1.31, there is
a simple cycle containing s and s9. But then this cycle must contain u. Thus

(7 — u cannot be disconnected, which is not true.

Step 2: Applying Theorem 2.2.20 we get that G is the only hon_ﬂem t:ﬂlmponent

of G—~u with respect to Y. Bj,r Note 2.1.4, Theorem 2.2.20, Lemma 2.4.28 there
| exist at least two Perron branches of G at .5" So eé.ch' of these Perrﬂn branches
are. proper subgraphs of (1. Let H be one of these Perrnn branches and Ly
" be the cnrrespondmg prmmpal submatrlx of . Then 'r(LH) < K, since H 13
"a Perron branch. Thus T(L1) (LH) -r:: p,, by Lemma 2.1.6. But this is
. contradiction to Theorem 2.2.20, if we con51der the Fiedler vector Y.

.._..
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Case 2. S contains v as the end vertex of a characteristic edge [u, 2]

Let z € (1. Then arguing as in the first paragraph of Case 1, we get that
S’ — [u, z] € G1. Thus we have a Perron component H of G at §' such that H is
a subgraph of G. Let Ly be the principal submatrix of £ corresponding to H.
S50 by Lemma 2.4.28 and Lemma 2.1.6, we conclude that 7(L,) < 7(Ly) < p.

But this is a contradiction to Theorem 2.2.20, if we consider the Fiedler vector
Y.

Case 3. S! does not contain u at all.

This case is similar to the above cases.

So we conclude that S’ = {u}. "

The following is an immediate corollary to Lemma 3.2.38 and Theorem 2.3.23.

Corollary 3.2.39 Let G be a connected graph, D be any diagonal mairiz. Lel Y
be a Fiedler vector of B. Suppose that C(G,Y) = {u}, where u is any vertex of G.
Suppose that G — u has p Perron branches. Then the multiplicity of the algebrasc

connectinly is p — 1. _

Note 3.2.40 Let G be a connected graph and D be a diagonal mairiz. Let Y be
a Fiedler vector of £. Then, except for the block containing the characleristic sef,
each of the other blocks are either zero blocks or positive blocks or negative blocks

(otherwise some other block will contain a characteristic element, thus contradicting

Corollary 8.1.33).

The following theorem which gives us further information about the location of the

characteristic set was also proved in [21], in the case of Laplacian matrices.

Theorem 3.2.41 Let G be a connected graph and D be a diagonal mairiz.- Let /4
be the perturbed Laplacian matriz of G and Y, Y’ be two independent Fiedler vectors
of B. Let S = C(G,Y), §' =C(G,Y') and S # {u} for some vertez u. Then S and
S’ lie in the same block of G. | | |

Proof By Lemma 3.2.38, S’ cannot comprise of a single vertex and no edges. Suppose
that S and §' lie in two different blocks B and B, respectively, If H is a subgraph
of G then Yy will denote the subvector of ¥ corresponding to the vertices in H. We

consider the fc}llowi'ng cases.
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Case 1: Y =0 and Yé > 0,
- Note that Y5 has a nonzero entry. So we can take a linear combination of ¥ and

Y’ to get a vector Z such that Zz has a zero entry. Since Zg = Y}, so by Corollary

- 3.1.33, we conclude that C{G, Z) lies in B', Thus Zg = 0, by Note 3.2.40. Thus Yz
is a scalar multlple of Y5 > 0, which is a contradiction to the fact that B contains

C(G,Y). So this case is not possible.
Case 2: Yp =0,Y5 =0,

This case is clearly not possible, because if Z = oY +8Y', af # 0, then C(G, Z) =
S S’, which obviously does not lie in one black, contradicting Corollary 3.1.33.
Case 3: Y > 0,Y% > 0. ' '

We have two subcases.

Subcase 1: The set S has vertices only. |
In this case consider G ~ S. Since Yg > 0, the deletion of § form G will make

no change to the block B'. Thus B’ being connected must be contained in one of the
connected components of G_ — S. By Thénrem 2.2'.2'{], there exists a component Gy
of G — S containing B' such that (L) = p, where L, is the principal submatrix
of & corresponding to G;. Again by Theorem 2.2.20 and by Lemma 2.4.28; there
exists a camponen.t Gy of G — 5, which does not coittain any vertex of B, such that
7(La) < u, where Lq is the principal submatrix of 2 cnrreSponding to Gp. Thus
(2 is a subgraph of (7; with at least one vertex less (since G5 does not contain the
vertices in S’ and the pomtlve end vertices of the edges in S’). Now, by Note 2.1. 4
(L) < 7(L3g) and thus we get a contradiction to the fact that 7{ 1) =

Subcase 2: Both S and S’ contain edges.
~ Delete S from G to obtain two connected compﬂﬁents G and G2 of negative and

positive vertices, respectively (by Lemma 2.4.28). Let L, and L be the principal .
submatrices of £ corresponding to G, and (2, respectively, By Lemma 2.4.28,
7{L1) <t and 7(Lg) < p. Note that we have deleted vertices and edges from block

B and Ypr > 0. So one of G| and G4 contains B, say Gb.
Now delete from G all positive end vertices of the characteristic edges of S and

‘all characteristic vertices of S to get the graph-G*, Clearly one connected component
- of G" is Gy. There must be another component which intersects with ', say G'3 Let

| L'] be the principal submatrix of £ corresponding to G3. Since we already know that

7(L;) < p, so by Lemma 2.2.13,
r(L3) > . - O (3.2.2)
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Now, we can proceed as in paragraph one of this Subcase, to show that there exists
a connected component (G4 (the one which does not contain B) of G — ', which is a
subgraph of G3. Let Ly be the principal submatrix of & corresponding to G4. Then

we have
T(L3} < 7(Ly). | (3.2.3)

But by Lemma 2.4.28, .
T(Lq) < M. {3.2.4)

Equations 3.2.2, 3.2.3, 3.2.4, together lead to a contradiction. That completes the

proof of the theorem,. .

As an immediate corollary we have the following.

Corollary 3.2.42 Let G be a connected graph and D be a diagonal mailriz. Let Y
be a Fiedler vector of £ such that C(G,Y) = {[u,v]}, for some edge [u,v] of G. Then
the multiplicity of 1 is one.

Proof If not, let Y/ be another Fiedler vector of G. Assume without loss that Y’
has a zero entry ( otherwise take a suitable linear combination of Y and Y'). By
Theorem 3.2.41, there 1s one block containing both these characteristic sets. From
the fact that C(G,Y) = {{u,v]} we can conclude that the characteristic block is the
characteristic edge itself, because, if this block contains a cycle then it must contain
at least one more characteristic element, which is not the case. Thus we get that

C(G,Y’) = {[u,v]}. But Y’ certainly contains a characteristic vertex, a contradiction,

.
A further corollary to Corollary 3.2.42 can be the well-known fact (see for exam-

| ple,. [13],) that if G is a tree and if Y is a Fiedler vector of the Laplacian matrix of

G containing no zero entry, then the multiplicity of x4 as an eigenvalue of L is one.
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Chapter 4

Eigenvectors of a tree

4.1 Fiedler vectors

In this section we use a new technique for proving the monotony and convex-
ity /concavity property satisfied by the coordinates of a Fiedler vector of a perturbed
Laplacian matrix related to a tree. We illustrate the application of the technique by
proving some well-known results for trees. |

Let T be a directed tree on n vertices 1,2,-:-,n and n— 1 edges ey, e, +,€p1.
If e = [u,v] is an edge of the tree, then the graph T — e, obtained by removing ¢
from T' has two components. Denote by G (e, T'), the component which contains the

head (that is the terminating vertex, which is v} of e.
The next result has been observed in [22], in the case of algebraic connectivity of

a Laplacian matrix. Here we use the technique and the result is applicable for any

eigenvalue of a perturbed Laplacian matrix,

Lemma 4.1,43 Let T be a direcled tree, D any diagun&! matriz. Let U be an
eigenvector of £ corresponding to the eigenvalue v (not the smallest). Let Z be the

eigenvector of B corresponding to the smallest eigenvalue. Lel eij = [4, 7] be an edge

of T with weight 0;;, Then

05ZGIUG) - ZOUG) =B =1 Y Z)Us). 411)
seCnle,T) '

Proof Recall that the edge e;; = [¢,j] has j as its teri‘ningt.ing vertex. Put L =
#. — 7(£)I. So Z is the vector corresponding to the eigenvalue 0 of the matrix L. By

. Proposition 2.1.2, Z is positive and unique up to a scalar multiple. Let P.be thg

"



42 CHAPTER 4. EIGENVECTORS OF A TREE

vector such that P(s) = Z(s), if 8 € Gp(eij, T') and P(s) = 0, else. Thus we have
PTru =PTpu) = v - 7(B)|PTU. (4.1.2)
Let X = PTL. Then

X(5)

n

2_[P(k)L(k, )]

k=1
S [2(k)E(k, 7))
keGr(ei;d) | | |
>, [Z(k)Lk, D} + ZG)L( ) - Z6)LG,5)
 keGh(eij T}
= _Z(I)L(tlj)l

1

1

as Y, [Z(k)L(k,j)}+ Z(i)L(i, ) = the j-th entry of ZL which is 0.
keGhlei; T) | |

Thus X(j) = —L(5,4)2(i). Similarly, we can show that X (i) = L(1,7)Z(j) and
X(u) =0, ifu ¢ {i,5}. Note that —L(i,j) is the weight of the edge [, j]. Thus, = °

PTLU = (PTL)U = 4{2G)U(J) - Z(HUG).  (4..3)
Note also that - | | |
PTU=%"Z(s)Uis)= Y  2Z(s)U(s).  (4.1.4)
| 5 1€Gp (e4;,T) |
Thus the proof is complete in view of Equations 4.1.2, 4.1.3 and 4.1.4. - .

To illustrate an application of Lemtha. 4.1.43, we now deduce one of our main
results, which generalizes a classical result of Fiedler (Theorem (3,14} of [14]} to the

class of perturbed Laplacian matrices.

Theorem 4.1.44 Let T be a tree with vertices 1,2,---,n and D be any diagonal

matrz‘m_. Let Y be a Fiedier vecior of £ and Z be the eigenvector of B corresponding

to T(E). Let v |
| T
7=z 73 - ¥

Then one of the following cases occur.

(q) No entry of Y is zero. In this case, there is a unique pair of vertices 1 and j
such that © and j are adjacent in T with Y (i) > 0 end Y(j) < 0. Further,
the entries of % increase along any path in T which starts at i and does nol

contain j, while the eniries of '12."' decrease along any paih in T which siarts af

7 and does not contain .
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(b) Some eniry of Y is zero. In this case the subgraph of T induced by the sel
{v=: Y{(v) = 0} is connected, Morrover, there is a unique vertex k such thal
Y (k) = 0 and k is adjacent to a vertex m such that Y (m) # 0. Along any path
in T which starts at k, fhe entries of % satisfy one of the following:
(i) positive and increasing,
(1) newtive and decreasing,

(111) identically zero.

Proof First we prove the case (a). In view of Corollary 3.1.35, we know that C{T",Y")

has cardinality 1. So there is only one characteristic edge, e = [, §] with, say, Y (2) >
0. Consider a path PP which starts from 4 and does not contain j. By Lemma 2.2.9,
this path lies in the positive component of T — e. Let €' = [u,v] be any edge on P.
Assume that the distance of the vertex v from ¢ is one plus the distance of the vertex
1 from z. Get a directed tree by orienting each edge such that the head of the edge

(u,v] is v. Note here that the matrix £ does not change if the orientations of the

edges change. By Lemma 4.1.43, we get that

Bl Z(W)Y (v) - Z0)Y ()] = u-7(B)] T Z(5)Y(s).

S Gh (E’ |T}

Since G, (e, T) is positive with respect to Y, we have

Z Z(S)Y(S) > (.
| s€Gr{e'\T)
Thus
Z(u)Y (v) - Z(v)¥(u) > 0.

Rest of the proof of the case (a) is 'muti:ne* |
Next we prove the case (b). In view of Corollary 3.1.35, C(T,Y) has cardinality

1. So there is only one characterlstm vertex, say, k. The graph T — k, obtained by
deleting k from T has at least two nonzero components An application of Tllemem.
2.2,20 gives that the zero vertices induce a connected subgraph. Again in view of
Theorem 2.2.20, a path startmg from k is either a zero path or a positive path (except |

for the starting vertex) or a negative path (except for the starting vertex). Rest of

thé proof of the case (b) is similar to that of the case (a). i .
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Example 4,1.45 Here we give two illustrations of Theorem 4.1.44.
Case 1: Negative adjacency matrix and characteristic edge.
See Figure 4.1 (Case 1). Labels of vertices are written near the vertices. The
weights are given according to the following description : |
bor =4,037 =1, 07, = 7912—-6923"—-‘3 924-'“-7 929=1925 9 and
Bs6 =5 Here B = - A, 7(~A) = ~15.7994, p = —7.6442
Z=| 3255 6765 .3426 .2997 .4283 .1355 .1547 .0098 .0428 0392 |".
Vo= (5241 1219 —.1276 -.117 -2509 -.1641 G769 .0886 —.0160 .3542 )T
Y = 16104 —.1803 —3726 —3726 —-5850 —12110 43744 90412 -.3726 9.0412 7.

Case 2: Negative adjacency matrix and characteristic vertex.

This tree ( Flgure 4. 1 Case 2) is unweighted. The labels of vertices are written
near the vertices. The vertex 5 is the eheracterletle vertex Here P=_A, 'r( —A) =
-2, 0743 and p = —1.618. The veetere Z, }’ and % 7 ‘are glven beln::awr | |

H_=[ ~2629. 4253 - 4263 -.2620 n 2629 4253 4253 2620 O u]
7 = [0337 1735 2763 3996 5525 3996 2763 1?35 eea'r 3470 15?3]

%=[-—31423 ~2.4611 :-—~15394 g5 0 65?8 1534 24511 31423 0 u] "

~ As a corollary to Theorem 4.1_-._44 one ge_tslthe umﬁeatlen'ef the result of Fiedler and
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a convexity/concavity statement obtained in ([22], Theorem 6), for the Laplacian

matrix.

Corollary 4.1.46 Let T be a tree with vertices 1,2,---,n. Let L be the Laplacian

matriz of T and Y a Fiedler vector. Then one of the following cases occur.

{a) No entry of Y s zero. In this case, there is a unique pair of vertices 1 and j
stuch that 1 and j are adjacent in T with Y (i) > 0 and Y (j) < 0. Further, the
eniries of Y increase and are concave down along any path in T which staris at
i and does not contain 7, while the entries decrease and are concave up along

any path in T which starts at § and does not contain 1.

(b) Some entry of Y is zero. In this case the subgraph of T' induced by the set
of vertices corresponding to the 0's in Y 1is connected. Moreover, there is a
um’qué vertez k such that V(k) = 0 and k is adjacent to a vertex m such that
Y(m) # 0. The entries of Y either increase and are concave down, decrease
and are concave up or are identically zero along any path in T which starts at
k.

Proof In view of Theorem 4.1.44, we only prove the concavity/convexity part of
the statement of the case (a). Note that the smallest eigenvalue of L is zero and
the corresponding eigenvector has each entry equal to one. Let e = [u,v] be any
edge on a path P which starts from i and does not contain j. Thus, assuming that
the distance between vertices v and 7 is more than the distance between u and %, it
follows from Theorem 4.1.44 that |
Y()-Y@)=p ), Y(s) (4.1.5)
seGn(e,T)
Let e = [v,w] be another edge on that path and assume that the distance between
| the vertices w and.i is more than the distance between the vertices v and 1. Then In
a similar manner as above we can show that
Y(w) —Y(v) = 1 Z Y{(s) > 0. “ {4.1.6)
| s€Gn(e”sT) - | |
Since all the vertices of Gh,(e”', T) are vertices in Gp(e’,T) and since G (e, T) has at

. least one extra vertex, namely v, we conclude from Equations 4.1.5 and 4.1.6, that
Y(v) - Y (1) > Y(w) - Y ()

Proof of the case (b) is similar.
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Figure 4.2:

Remark 4.1.47 The concavily/convezily part of the statement of the above corol-

lary 1s false for some of the perturbed Laplacian matrices. In Figure {.1, Case I,

one can verify this considering the path [1,7,8).

~ Using Lemma 4.1.43, we can get- the following result concerning eigenvectors corre-
sponding to any eigenvalue (not necessarily the algebraic connectivity but not the

smallest) of the Laplacian of a tree. The proof being similar to the proof of Theorem

4.1.44, is omitted.

Proposition 4,1.48 Lel T be a tree with vertices 1,2,---,n. Let L be the Lapla-
cian matriz of T, A an eigenvalue (not the smallest) of L, and Z an eigenvector
corresponding to . Let e = [, 7] be an edge of T' and T; be the component of T — e
containing i, Suppose that Z{k) > 0 for every k € T;. Then along any path starting

from j and containing 1, the coordinates of Z increase and concave down. n

We illustrate this fact by an ejcample._

Example 4.1.49 Let T be the unweighted path on 20 vertices. Then A = .0979
(rounded to four decimal places) is the third smallest eigenvalue of the Laplacian.

The coordinates of the corresponding eigenvector are shown in Figure 4.2. .

4.2 Fiedler 3-vectors

In this section, we give a complete description of a Fiedler 3-vector of the Lapla-
t:ign for an unweighted tree. To prove the main result we need to have some more
“information on the Fiedler s-vectors, s > 1.

“An n xn matrix A will be called acyclic if it is symmetric and if for any mutually
- distinct indices kykoyoo o ky (82 3) in {12, *. ,n} the equality

A(ky ko) A(ky k3) oo Alky k1) =0
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is fulfilled. Thus one can see that the Laplacian matrix of a tree is acyclic.

Suppose that Y is a Fiedler s-vector of L(T"), s > 1, where T' is an unweighted
tree. Let us put the following question. How many characteristic elements can
C(T,Y) have ? The following proposition which is due to Fiedler (a part of theorem
(2,3) of [13]), helps us to get an answer to it.

Proposition 4.2.50 Let A be a n X n acyclic mailriz. Let Y be an eigenvector of
A corresponding to an eigenvalue A\. Denote by wy and w_, respectively, the number
of eiyenvalues of A greater than and less than ). Let there be no *“isolated” zero
coordinate of Y, that is coordinate Y(k) = O such that Alk,5)Y{J) = 0 for all ;.
Then |

wy=at+7r,  w.=a +r, (4.2.7)
where r is the number of zero courdinates of Y, at s the number of those unordered
pairs (i, k) for which

AL, k)Y ()Y (k) <0

and a” 1s the number of those unordered pairs (i,k), i # k, for which

AG, k)Y ()Y (k) > 0.

The following is an immediate corollary.

Corollary 4.2. 51 Suppose that T 15 an unwemghted tree and L its Laplacion malriz.
LetY be a erdler s-vector (s > 1) and A be the corresponding eigenvalue. Then the

number of characteristic elements in C(T,Y) is af most s — 1.

Pmof. We know that L is an. acyclic matrix. In this context it is clear that an
“isolated” zero coordinate of ¥ means a zero vertex of T which is not a characteristic
vertex. Here w_ = s — 1. Let T be the graph obtained from T by deleting those
zero vertices of 7' which are not characteristic vertices. Let L and Y be the principal

submatrix of L and Ithe subvector of Y, respectively, corresponding to T. It is clear
that | | | -
| C(T,Y) =C(T,Y). : o (4.2.8)
Also note that L is an acyclic matrix and A is an eigenva.lile corresponding to the
eigenvector Y. Si'n.t:e Lisa principal submatrix of L,

7o Sw.=8—-1, (4.2.9)
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where @.. is the number of eigenvalues of L less than A. By Proposition 4.2.50,
w_=a +T1, - (4.2.10)

where r is the number of zero coordinates of Y, that is the number of characteris_tic
vertices in C(T,}';') and ¢ is the number of those unordered pairs (i,k), ¢ # &k,
for which L(i, k)Y ()Y (k) > 0, that is a~ is the number of characteristic edges in
C(T, 17). The result now follows in view of the above iﬁhree equations. "

We have already seen in Example 2,1.5, a tree T and a Fiedler 3-vector Y of the
Laplacian matrix such that the number of characteristic elements in C{T,Y) = 1,
which is strictly less than s ~ 1 = 2, since 5 = 3 in that example. In that example
the multiplicity of the 3rd smallest eigenvalue was 2. It has been proved by Fiedler
(Corollary (2,5), [13],) that “if T is an unweighfed tree, I, the Laplacian mairiz and
Y an eigenvector corresponding to the s-th smallest eigenvalue such that each eniry
of V is different from zero, then the 'number'of chamctérisii& élements inC(T,Y) is
s — 1 and the corresponding eigenvalue is simple”. Thus one might get curious to
know whether “the cardinality of C(T,Y) = s — 1" is implied by *Y is a Fiedler
s-vector corresponding lo a simple eigenvalue.” The following example shows that
there exist a tree T and a Fiedler 7-vector ¥ corresponding to a simple eigenvalue

- such that C(T,Y) =5< s -1 = 6. Obviously, Y contains a zero entry.”

Example 4.2.52 Here the grziph (Figure 43) is unweighted, Consider the Laplacian
matrix. Look at the 7-th smallest eigenvalue. It is simple. But the corresponding

‘eigenvector Y has only 5 characteristic elements. The entries of Y are rounded to

four decimal pla._ces.. The eigenvalues of I, are given by the vector A.

A=[0 0810 .2545 .6903 .7987 1.5089 1.7154 2.5366 2.8308 3.5200 3.6825 4.3813 ]T.

Y=[~328 2305 3879 -.1201 -4221 0 4221 .1201 -.3879 -2305 3228 0 ]
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Now we are In a position to state the main result of this section.

Theorem 4.2.53 Let T be an unweighted iree, L the Laplacian matriz of T Suppose
that the algebraic connectivity of T' has multiplicity one. Let A be the third smallest
eigenvalue of L. Let Z be a Fiedler 3-vector. Then ef#her?af the following eccurs.

I. The cardinality of C(T, Z) is 1. In this case C(T,Z) contains a vertex say, k and
the subgraph of T induced by the set of vertices corresponding to the 0's in Z is
connected. The eniries of Z either increase and are concave down or decrease and
are concave up or are identically zero along any path in T which starts at k.

II. The cardinality of C(T,;Z) is 2. Then one of the following cases GECHT..

o a. C(T, Z) = {u,v}.
Let P be the path joining v and v. Along any path in T which starts ot u or v

and does not pass through any more vertez of P, the entries of Z either increase
and are concave down or decrease and are concave up or are identically zero.
The entries of Z along the path P satisfy one of the following three descriptions.

1. BEniries are identically zero. Along any path in T’ which starts at a verter
on P (not u or v) and does not pass through any more vertex of P, the

entries of Z are identically zero.

2. Entries are positive (except for u and v) and unimodal, Along any path in
T which starts at ¢ vertez on P (not « or.v) and does not pass through

any more vertez of P, the entries of Z increase and are concave down.,

3. Entries are negative (except for u and v) and eniries of —Z along the path
P are unimodal. Along any path in T which starts at a vertez on P (not

u or v) and does not pass through any more vertez of P, the enir.es of 2

decrease and are concave up.

b. C(T, Z) = {u, [v,w]}
Assume, without loss, that the distance between v and u 13 less than the distance
between u and w and Z{w) < 0. Let P be the path joining u and v. Along any
path in T which starts at u and does not pass through any more vertex of P, the

entries of Z either increase and are concave down or decrease and are concave

up or are identically zero. Along any path in T which staris al w and does not
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pass through any verlex of P, the eniries of 4 decrease and are concave up.
The entries of Z along the path P are positive {ezcept for w) and unimodal.
Along any path in T which starts at a vertex on P (not u) and does not pass

through any more vertex of P, the eniries of Z increase and are concave down.

c. C(T,2) = {[z,u], [v, w]}.
Let the distance belween v and u be less than the distance belween w and xz by
2 units. Let Z(z) > 0. Let P be the path joining v and v. Along any path in T
which starls at £ or w and does not pass through any vertex of P, the enlries
of Z increase and are concave dﬂ'wn._ The entries of Z along the path P are
negative and the entriés of —Z elong the path P are unimodal. Along any path
in T which starts at a vertez on P and does not pass through any more verlez

of P, the entries of Z decrease and are concave up.

Proof First note that since Z is a Fiédler 3-vector, the cardinality of C(T', Z) is less
~ than 3 (by Corollary 4.2.51).

Proof of I Let the cardinality of C(T, Z) be 1. We claim that Z has a charac-
teristic vertex. It is sufficient to show that Z has a zero vertex. Suppose that Z has
- no zero vertex. Then by Proposition 4.2.50, we get that the number of eigenvalues
of L which are less than ) is the same as the number of unordered pairs (i, k) such
that L(t,k)Z(:1)Z(k) > 0. But there are exactly two eigenﬁalues of L ,les.s than A.
Thus C(T, Z) must contain two edges, and this is a contra.di_tétiﬁn to the hypothesis. :
Since the cardinality of the characteristic set is 1, T' — {k} is disconnected with at
least two nonzero components (by Note 2.1.4) and each of the compﬂneﬁts'is _eit.hér |
positive or negative or zero, Thus the subgraph of T" induced by the zero vertices is

connected. The rest of the proof of this item follows by Propaosition 4.1.48.

Proof of II We only prove item {(a). The proof of other items are similar. Note
that any nonzero component of T' — {u} is either positive or negative or contains a
characteristic element and the only possible characteristic element is ». Thus cach of
the components, except for the one which contains v, of 7' — {u} is either positive or
negative or zero. Also note that the component which contains v contains P — {u}
as a subgraph. Thus by Proposition 4.1.48, it follows that along any path in T which

starts at u and does not pass through any more vertex of P, the entries of Z either
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increase and are concave down, decrease and are concave up or are identically zero.
The same is true for paths starting at v and not passing through any more vertex of
P.

If v and v are adjacent then we have nothing more to prove. So let P =
[¢, 21, -, up,v]. Observe that each of the nongero components of T' — {u,v} has
to be either paositive or negative, otherwise, it will lead to the presence of another
characteristic element. Suppose that H is the component of T — {u, v} which con-
tains the vertex u;. If H is a zero component we have nothing to prove. So, let
H be positive. If P’ is any path starting at u;, ¢ € {1,2,--.,7} and not passing
through any more vertex of P, then by Proposition 4.1.48, entries of Z increase and

are concave down along F/,
It remains to show that along the path P the entries of Z are unimodal. Towards

this note that if Z{u;) < Z(u;-)) then the eigen condition at the vertex u; implies
that there must be a vertex z adjacent to u; such that Z(z) < Z{u;). As Z(u;) <
Z(ui—1) and along any path starting at u; and not passing through any more vertex
of P the entries of Z ihcrease, we get that 7 is u;41. In the same way one can conclude

that Z(¢i12) < Z(uiy1) and so on. Thus the proof of item (a) of (ii) is complete. =

Remark 4.2.54 Though, Theorem 4.2.53 is stated for unweighted trees only, it is

valid for weighted trees also. A similar result for the perturbed Laplacian matriz can

be proved without the concavity/convezity property.

Below we give some examples to show the occurrence of each of the cases described

in the above theorem,

Example 4.2.55 The graph in Figure 4.4 is an unweighted tree. The third smallest
eigenvalue of the Laplacian matrix is 0,1981 (rounded to four decimal places) and
has multiplicity 3. The eigenvector Y] corresponds to the case I, eigenvector Yo
corresponds to the case II-(a)-{1) and eigenvector Y3 corresponds to the case II-(a)-

(2). The occurrence of II-(a)-(3) can be seen by considering —Y2. The occurrence of
case (ii)-(b) is shown in the Example 4.2.56. One can notice the occurrence of case

(ii)-(¢c) in Example 4.1.49. The entries of each of the vectors below are rounded to

four decimal places.

Yi=[00 00000000
0 2638 4754 5929 0 0 0 -.2638 -—.4754 ~5929 | .
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Yw{.goga 7996 4049 0 0 0 0 0 O O
' T
0 —.0490 —.0884 —.1102 —.4049 —.7296 -.0008 .0490 .0884 .1102] .

}’73:[—-.{]434 _.0348 —.0193 0 .0880 .1586 .1978 .1978 .1586 .0880
T
0 1509 2880 3502 —.0687 —.1238 —.1544 —.2479. —.4466 —.5569 | .

Example 4.2.56 In this example we. will show the occurrence of the case (ii)-(b)
- described in Theorem 4.2.53. Consider the weighted path on four vertices whose
Laplacian matrix is given by L. The vector Y corresponding to the third smallest

eigenvalue of L is given below.

1 —1 " 0 1
I = -1 2 -1 0 v —-'b-/:125
S S = I V. 0
3+v8 345 145

L 0 0 2 'iﬁ!/__- | 345

The third smallest eigenvalue is 312\/—5



Chapter 5
Unicyclic graphs

In this chapter, G denotes a connected unicyclic unweighted graph on vertices
1,2,:+-,n with edges e1,eg, -, en. The unique cycle in G is assumed to be I’ =
(1,2, k,1]; k> 2. Fori=1,--- k-1, let & = [i,7 + 1], and let e = (k,1].

Sometimes we put an orientation on &, in which case the orientation is such that for

each i = 1,--+,k — 1 the edge e; has the terminating vertex i + 1 and the edge e
has the terminating vertex 1, Also the edges which are not on the cycle are oriented

away from the cycle. We will refer to this as the unicyclic graph with the standard

orientation.
The graph G —{e;, €2, +*,ex} has exactly k components By, By, - - -, By, contain-

ing the vertices 1,2, --,k, respectively. For i = 1,2,;~-,k, let b; be the number of
. k | : .
vertices in B;. Thus Zo; = n. Let e = [u,v] be an edge which does not lie cn the

i=1 | ' |
cycle. Then by Gy (e, G) we mean the component of the graph G — e, which contains

v {recall that the assumed orientation of an edge [u, v} is such that v is the terminat-
ing vertex). Let ap(e,G) denote the number of vertices in Gyle, G'). ‘The function
Pale, §) is defined to be 1 or 0 according as j € Gh(E,_G) or not, respectively.
| Recall that the Moore-Penrose inverse of a real matrix A is the matrix AT sat-
“isfying the equations AATA = A, ATAAT = AT, (AAY)T = AA* and (ATA)T =
AT A, L.et G be a directed graph on n vertices 1,2,+--,n and m edges €1,€2, ', én.
The oriented vertex-edge incidence matrix of G, denoted by A, is a » X m matrix
defined as fOilOWS. The (i, )-entry of A is 0 if vertex ¢ and edge €; are not incident
and otherwise it is 1 or —1 acdording as e; originates or terminates at i, respec-

tively. Note that the Laplacian matrix L= AAT does not depend on the orientation

_ 53
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of the edges. Let A be an eigenvalue of L with the corresponding cigenvector Z.
Thus AATZ = MZ and hence ATAATZ = AA*YZ. Since AT A is symmetric and

(AT)T = (AT}t we have
ATAAT = (AT A)T AT = AT(ATYT AT = (AATA)T =

T'hus
AT7Z = \A*Z. (5.0.1)

~ We now abtain a formula for the Moore-Penrose inverse of the vertex-edge incidence
matrix of a directed unicyclic graph. It has been proved in [2] that, if H is any
directed connected graph on n vertices 1,2,....n, and edges ey, ez, -, e, and A is

the oriented vertez-edge incidence matriz of H, then the Moore-Penrose inverse of

A is given by
' AT, ) = -—-Z{a’h ei, T) ~ npr(ei 1)},

where the summation is taken over all spanning trees T containing e; and x is the

number of spanning trees of H.
‘We apply this result to our umcychc graph G. Slnce G has precisely k spanning

t;rees, obtained by deleting a single edge in [1,:-,k, 1), there will be k£ terms in the
summation in the above formula. The fo]luwmg result is obtained simply by carefully
writing the & terms in the summation. If @ and b (b 7# 0) are two integers then by

amodb we mean the least nonnegative integer of the form a — bk, where k is an

iﬁteger.

Lemma 5.0.57 Let G be o untcyclic graph with standard orientation and A be the
oriented vertez-edge tncidence malriz of G. Then the Moore-Penrose inverse of A is

gtven by the following.

. [ * [on(ei, G) ~ nygles, )] - el

S (k= Dl 4 (k= 2 oo+
F(2—1)by + (5 — 2)by -

A.‘i‘(glj) = < - |
- +bi-1 —n[(i - )mod K]} - | ife; €'y je Byt #k,

l e (k= 1)by + (k- 2by + -+
..+bk'_.1 —n(k-—-[)} . | | | if%:k, jEBi;
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We now obtain the following result using Lemma 5.0.57.

Lemma 5.0.58 Let G be a unicyclic graph. Lei L be the Laplacian mairiz of G, X

an eigenvalue of L and Z a corresponding eigenvector. Let e = [u,v] be an edge of
GG. Then

[ —2 i i —Fymod k)] = Z(s)| if[u,v] =[5, +1]

j=1 _ s€B;
| =1,k —1.
Z(u) — Z(v} = N
B P> (( J) 2 Z(S)) if [u,v] = [k, 1],
I=1 s€B;
-A 2 Z(s) | | if [u,v] € T.
3€Gh(e,G) *

Proof Without loss of generality, we assume G to be the unicyclic graph with the
standard orientation. From Equation 5.0.1, which says ATZ = AA1Z and from the
n
fact that > Z(i) = 0, we get, using Lemma 5.0.57,
i=1

Z@)-Z({i+1)
= the ith row of AT Z
= the ith row of M1 Z

S (A+ ii) S Z(s) )
1=1 SEE
2

k [
= —2 ¥ |[(i - j)mod K] 7(s)] ,
-1 se B, _
fore=1,..-,k—1,
Similarly, | -
Z(k) — Z(1)
= the kth row of ATZ
= the kth row of AA1TZ
; |
=AY (A’f(k,j) 2 Z(s})
| 7=1 se B;
K
= —2 3 |[(k—j)mod k] T Z(s )]
j—1 L SEBJ | |
k x
= % > (k—-3) & Z(s)|.
-1 $€ By | |
For any edge e = [u,v] ¢ I', we have s

-]

- | RN _ o) - .Z
2= 20) = T |0 3, ) +ie) i 2 )
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s ——,\ E Z(S}

S€ Gﬁ (EiG)

That completes the proof. "

Let G be a unicyclic graph, Let u,v and w be vertices such that {u, »]-and (v, w]
are cdges on I'. From Lemma 5.0.58, we get that

Z(u) + Z(w) - 2Z(w) = -2 Y Z( | (5.0.2)
sel},

We now prove an analog of Fiedler’s result for a unicyclic graph.

Theorem 5.0.58 Lel G be a unicyclic graph. Let L be the Laplacian malriz of G,
it the algebraic connectivily of G and Y @ Fiedler vector. Then one of the following

CASES OCCur.

(a) No entry of Y is zero and there is ezactly one characleristic edge e = [v, w]
in C(G,Y). This edge does not lie on the cycle. Let Y{v) > 0 and Y (w) < 0.
Then there exisls an edge el € I', such that along any path in G which staris
at v and does not contain w or el, the entries of Y increase. Along any path

in G which starts at w and does not contain v or €', the entries of Y decrease.

(b) No enlry of Y is zero and there are two characteristic edges 1 = [z1,¥1] and
= [z9,y2). In this case both the characteristic edges lie on the cycle. Let
Y(z:) >0 and Y{y;) < 0; 1=1,2. Then,

(1) along any path in G that starts at x| and does not contain y, or ye, the

eniries of Y increase, if z) = 29 and

(i) there exists an edge ¢! on I such that along any path that starts at z
or T3 and does not contein y; or yy or €', the entries of Y increase, if

£ i'é Lo,

: A Path starting from y; or o have a similar property except for the fact that
the entries of Y decrease along this path-and in (i) we get a different edge e

(c) Some eniries of Y are zero and there are tﬁ:d cﬁam.ctﬂrisﬁc verlices 1u, u.. In
this case both U, v lic on the cycle. The graph induced by the zero vertices has
cxactly lwo connecled components. There exist two edges el and e? on the cycle
I such that along any path that starts from u or v and does not cuntum e! or

e’ the eniries of Y eather increase or decrease or are identically zem



(d) Some entries of Y are zero and there is only one characteristic vertex v and
no characteristic edge. In this case the zero vertices of G tnduce o connected
graph. There exists an edge ¢! on T’ such that along any path starting from v

which does not contain e, the entries of Y either increase or decrease or are

identically zero.

~ (e) Some entries of Y are zero and there are one characteristic edge e = [£, 7] and
one characteristic vertex v. In this case both of these e and v lie on the cycle
and the zero vertices of G induce a connected graph. Let Y (i) > 0. Then there
ezists an edge e! on ' such that along any path that starts from i and does not
contain § or e, the entries of Y increase. There ezists an edge e? on ' such
that along any path that starts from j and does not contain 1 or e?, the eniries
of Y decrease. Along any path that starts at v and does not conlain €' or €*.

the entries of Y either increase or decrease or are tdentically zero.

Proof By Corollary 3.1.35, G has either 1 or 2 characteristic elements. Thus the

following cases are possible. Let o, dencte the number of characteristic edges
~and chara.cﬁteristic vertices respectively. Then the pair (a, 8) can take the possi-
ble values (1,0),(0,1),(1,1),(2,0) and (0,2). These possibilities are described in
(), (d), (e), (b), (¢) Tespectively. |
We consider (a) first. Let G denote the positive component of (¢ - e. Without
loss of genera-'lity, Suppose that T is in G, and let 1 be the vertex on I such thal
d{v, ') = d(v, 1). |
| We first claim that the sequence Y(l]', Y(2), -,Y(k),Y{l) is unimodal. This is
seen as follows. For 1 = 1,---,k — 2, applying Equation (5.0.2) to vertices i, + 1
and 7 4+ 2, we see thé.t | |

YE) +Y(E+2) -2 +1)=-A 3 Y(s).
sEBi+1

Thus Y{i)+ Y (i+2) < 2Y (i+1), since all the vertices in B;41 are positive. Similarly.
applying Equation (5.0.2) to the vertices k—1,k and 1, we get that Y{k-1)+Y(1) <
2Y (k). Thus we see that the sequence Y (1), -+, Y(k),Y (1) is concave. In particular.
the sequence is log concave and it is well-known, (see, for example, [4], p.184), that
such a sequence must be unimodal. | |

Let i € {2,3,--+,k} and let P = [i,4),--+,%;] be a path in B; starting at 1. We

now claim that the entries of Y increase along P. Applying Lemma 5.0.58 to the
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vertices © and 47 we gel that
Y(@)-Y@)=-r 2. V() (6.0.3)
€ Gy {{5,i1],G)

Note that B; contains positive vertices for all i = 2,3, , k. Since Y (s} > 0 for all

s € Gi([i,11},G), we get that Y (i) < Y (i1). The rest of the proof of the claim is

trivial.
Similarly, we can show that along any path in B, starting from 1 the entries of

Y decrease,
Let 7 be a vertex on I' such that Y (5) is the maximum coordinate of Y restricted

to . Let e! be the edge [7,7 + 1] if 5 # k-or [5,1] if 7 = k. Let ' be a path whicl
~ starts at v and does not contain w,e’. Write P’ as a union of three paths P, P, P,
where P, and P; do not lie on the cycle and P lies on the cycle. 1t is clear from
the above discussion that along P, and P; the entries of Y’ increase. From the fact
that the sequence Y(1),Y(2),--,Y(%),Y (1) is unimodal and observing the way we
- selected e!, it is also clear that along P, the entries of ¥ increase,

Next we prove (b). From Corollary 3.1.33, it is clear that both the characteristic

- edges will lie on the cycle. Now we claim that there exists a vertex £ on I" such
that the sequence Y (€),Y (£ T 1),-++,Y(k),Y(1),Y(2),---,Y(€) is unimodal. This
is seen as follows, From Lemma 2.2.9, we know that the positive vertices of G are
connected. Thus let [:rl =4t 411420, = z7] be the positive half part of T.
Applying Equatimi 5.0.2 to the above sequence in a similar way as in the proof of

~ (a), we can see that for some vertex s € {i,i+1,---, )
YD SYE+1) S SV (8) 2V (5 41) 2 > V().
Cnnéidering —Y in place of ¥ we can. get, iln ﬁSimil.ﬁr way, that
Yu+maY@+%zmzvmgrw+ns~«wwmn

where £ is the vertex such that Y (¢) is the lTllIlll’Il‘llIl’l over Y I’ES&IC(’.E(] to I'. So the
- proof of the elaim. o |
Let m e {1,2,-.,k} and let. P= [m my, - ,m,.] be a path in B; starting at m.
We can show, in a similar way as in the proof of (a), that the entrles of Y increase
along P. Tlm rest of the proof of (B) is trivial. |
“To prove (c), one has to note tha,t smce we already lmvc two charactonstw cle-

ments in C(G,Y), a path sta,rtmg from u and not passing t]:rough v can cither be
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a zero path or a positive path (except for the starting vertex) or a negative path
{except for the starting vertex). Let P = [u,2),u9,- -+ ,v] be a path joining u and .
where u; € T,

We claim that P is not a zero path, for otherwise, since u is a characteristic vertex
there must be two nonzero adjacent vertices w; and wy to u. Obviously at least one
of them (say, wy) will not liec on T'. So the graph G — u has at least two nonzero
minpqnents (because, if we have only one nonzero component, then there is path 7
joining w; and wy in G — u. Thus the path P, along with «# form a cycle. Thus )
lies on the cycle I'.). But now applying Corollary 2.2.15, we get that C(G,Y) = {u},
a contradiction.

We know that a zero vertex other than the two characteristic vertices is adjacent
to zero vertices only (otherwise we will have more characteristic vertices). Note that
the graph G is connected. Thus, if z a zero vertex then there exists either a zero
path joining z and u or a zero path joining z and v. Thus by the above claim, the
graph induced by the zero vertices has.exactly two components,

By the above claim, both the paths on I" joining u and v are nonzero paths. So
by Corollary 2.2.15, each vertex, except for the two characteristic vertices on I' is a
nonzero vertex. In view of the proof of (b), it is now easy to prove that therc exists a
vertex £ on I such that the sequence Y{&), Y(£+1),---, Y{k),Y (1), Y{(2},---.Y(¥)
is unimodal. The rest of the proof is similar to the proof of {a) and (b).

Proof of (d) is sir;iilar to the proof of (c).

Next we prove {(e). From Corollary 2.1.33, it is clear that both the characteristic
elements will lie in one block. Since the only nontrivial block is the cycle. s0 both
of them will lie on the cycle. Also note that since we already have two clements in
C(G,Y), so a path starting from v and not passing through e can either be a zero
path or a positive path (except for the starting vertex) or a negative path (except

for the starting vertex), for otherwise we will have more elements in C(G,Y). The

rest of the proof is similar to the proof of {a), (b) and {c). .

Example 5.0.60 Here we give some examples (sce Figure 5.1) to show that cach
of the cases deseribed in Theorem 5.0.59 can occur. The values writteu near each

vertex is the value of the corresponding coordinate of an eigenvector associated with

~the algebraic connectivity, rounded to four decimal places.
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| (a)
5138 4399 3020 1223
- - * 4

—~.3379 —.20632
e i .
-.0759
i
—.36G40 -.3379
1305 —.1305 —.3342 - .595?
T =i —'T . )
. ‘- — |
5952  .3342  ,130% ~.1305
- () (54)
3473 3473
—9
| 2 - !
2146 2146
(d)
&~ .
—. 4293 —.6946

Figuré 5.1:
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2560 .4375
& . |
(b)(1}
% . . ]
~81156 -.1380 .2560
(c) |
0 - -=2700 —.6533
t- -+ .
- ¢ 4
6533 . .2706 0
1217 1217
’ —e
'y -— ' .
~.6277 —.3020 0  .3020 6277
(e



Chapter 6
A tree type graph

Consider a tree 1" on n vertices 1,2,.. ., n. Consider a set of complete graphs {K; :
i =1,.++,n} such that vertices © and j are adjacent in T if and only if K;NK; #
0, K;NK; # K;, K;i(NK; # K;. The graph obtained by the union of all these
complete graphs will be referred to as 7. It may be noted here that given a tree 7', if
cach of the complete graphs is on two vertices then ¥ = T. If F has r vertices then .
we assume that the vertices are labelled 1,2, -+, 7. The letters ¢, 7, k are reserved for
‘vertices of T\ We assume the graph 7 is unweighted.

Definitions: Consider a tree T' and consider 7. Suppose that [z, 7] is an edge in 7.

Then the overlapping O;; is defined as K;[) Kj; in ¥.1fi € T is a vertex then the
mid-part M; is defined as K; - {v : v € Kj, [, € T}.

Example 6.0.61 Sece Figure 6.1. The tree T is on 5 vertices. The complete graphs
are the following:
K\ is on {1,2,3,4}, K is on {2, 3,5}, K3 is on {5,6,7,8}, K4 is on {7,10} and Kj
is on {6,9}.
The overlappings are the following:
O12 = K| Ky = the complete graph induced by {2, 3}
Oy3 = K9 K3 = the complete graph induced by {5}.
O34 = K3 Ky = the complete graph induced by {7.
Oss = K3z(1Ks = the cgmplete graph induced by {6}.
The mid-parts are the .fnllewing: |
M, = {1,4}.
My = ).

61
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Figure 6,1: T and ¥
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Ms = {8}
Mi = {10}.
My = {9} "

Henceforth, we_fc-llow the following notation. If-S is a set or a graph'ur a subgraph,
by 5| we mean the number of points or vertices contained in S, By N, we mean the
neighbours of the vertex v in the graph under consideration, that is the set of vertices
adjacent to v. Given a graph ¥, by the degree matriz D, we mean the diagonal matrix

such that the u-th diagonal entry of D is the degree of the vertex « in .

Note 6.0.62 Let T be given and 0 < o < 1. Let D be the d*egree matriz and P =
aD — A. Let u,v € Oy and z,y € M;, for so_me t,5. Thus Nu - {v} =N, — {u} and
so &= PEPT, where P is the permutation malriz which interchanges the u-th row
and the v-th row. Similarly Ny ~ {y} = N, — {z} and s0 & = QEQ7, where Q is

- the permutation malriz which interchanges the z-th row and the y-th row. "

Lemma 6.0.63 Let T be given and 0 < o« < 1. Let D be the degree matriz and

P =D~ A. Let Z be the eigenvector corresponding to the smallest eigenvalue of
B. Let u,v € O;5. Then Z(u) = Z(v). If z,y € M; then Z(z) = Z(y).

Proof If Z(u) # Z(v) then interchange the values Z(u) and Z(v), to obtain Z'. By
Note 6.0.62, we see that 22’ = r(£)Z’. Thus 7(L) has multiplicity more than one;

a contradiction to Proposition 2.1.2. Thus Z(u) = Z(v). A similar argument shows

that Z(z) = Z(y). | | ‘ : .

Lemma 6.0.64 Let T be given and 0 < o < 1. Let D be the uegree matriz and
B=aD — A. LetY be a Fiedler vector of £. Let u,v € Oyj. Then ¥ {u) =Y (v).

Proof If Y (u) s Y (v) then by Note 6.0.62, we can get another Fiedler vector Y’ of
£, independent of Y, by interchanging the values Y (u) and Y (v). Then

&t- i,

at | U,

F

Y (u)

YI-Y =¢ Y{u)-Y(v)
-0 abt other vertices.
Let ¥; = Y’ — Y. The u-th entry of £Y1 is
5 2(u, z)Y:(z)
4 .

® BluwYi () + B, 0)Yi(v)
= B(u,u)Yi(u) - Yi(v)  (since B(w,v) = ~1)
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Since BY; = uY), it follows that g, the algebraic connectivity is equal to ad(u) + 1,

where d{u) is the degree of the vertex u. We note down this by the following equation,
1= od{u) + 1. (6.0.1)

Consider the graphs Gy and Gy obtained from T by deleting Oy;; Gy is thé part
which has nonempty intersection with K; (say). Let L; and Ls be the principal

submatrices of £ corresponding to G) and Gy, respectively. Let D; be the diagonal

matrix defined as the following;

D'(m) _ 101:1', if T K{ —_ OI_?]
' 0 if z€G)—K;

Let U = [Ly + {1 — a)(D; - Dy;)]é, where D; is the principal submatrix of D corre-
sponding to G;. Let A; be the adjacency matrix of Gy. Thus U

= | [&Dl — A1+ - Dy —-aDy + &D{]é
(Dy - D; — Ay} + aDj]é

|

= aDiE (since Dy — D; — Ay is the Laplacian matrix of G}
< afOy5lé
= - (L + (1 -a)(D1 - D)} £ o0y

Since (1 — a)(Dy — D;) is a nonnegative diagonal matrix with at least one entry

positive, we have
(L) < 7L+ (1 — a)(D - Dy)] £ |0y (6.0.2)
Similarly, one can show that
- 1{Lg) < ad(u).
It is easy to see from the graph that |0;;] < d(u). Now a.pp]ying Lemma 2.2.13, we
get that p < ad(u), which is a contradiction to Equation 6.0.1. Thus the proof. =

Lemma 6.0.65 Let T be given and 0 < o < 1. Let D be the degree matriz and
P=aD - A LetY be a Fiedler vector of P. Let u,v € M;. ThenY(u) = Y (v).

Proof Suppose that ¥(u) # ¥ (v). Then arguing in a similar way as in the proof of
the above lemma, one can get a Fiedler vector Y of the following form. :
Y(v)~Y(u) at B
V'=¢ Y(u)~Y(v) at ' v,
| | 0 at other vertices.
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Thus ¢ = ad(u) + 1. An application of Lemma 2.2.13 tells that if H is any zero
component of ¥ obtained by deleting some zero vertices then 7(L ) g'p. Here in
this case, we consider Y’ and delete the vertices in O;4, for some 7 such that 3, j €T
and take the component having nonempty intersection with K, as the subgraph H.

Thus one gets the following equation.
T(Ly) 2> p = ad{u) +1, (6.0.3)

where d{u) is the degree of the vertex u in%". But we already know from the discussion
in the proof of the previous lemma (Equation 6.0.2) that in this case 7(L y) < o|0;;].
It is easy to see from the graph structure that |O;;] < d(u), but then we have got a

contradiction to Equation 6.0.3. .

The following is the main result of this chapter.

Theorem 6.0.66 Consider the graph . Let D be the degree matriz of . Let 0 <
a <1 and B = aD — A, Let Y be Fiedler vector of B. Let Z be the eigenvector
corresponding to the smallest eigenvalue of £. With respect to Y, suppose that Oj;
is positive and the component containing K; — Oz of G — Oy; is posilive. Then the
following hold.

(i) Let v € Oi; and v € M;. Then %3} < 714
(ii) Let u € M; and v € Ojx, k #1i, [j,k] € T. Then 74 < Zl.

Proof Let 7 = 7(£) and M = [B — 7]diag(Z), where diag(Z) is the diagon~. ma-
trix with Z () as the ¢-th diagonal entry. Then Mé = 0 and the second small-

est eigenvalue of M is i/ = u — 7 and the corresponding eigenvector is Y’/ =

! - T

} } ’ | o - S
[ zéi} zg)l %L - ] . We may recall at this point that Z is a positive eigen-
vector. | |

First we prove item (i). Suppose that %—E} > %—E} From MY' = u'Y", we get
that | .

N;L'_'Y"(w) = M(v,ﬂ)Y’(.u)+ > M, z)Y'(z).
| TE N, |
= 3 M@oY (0)+ Y M(@,z)Y'(z)  Since Mé =40
TEN, TENy

> =M, z)[Y'(v) - Y'(z)]

IE’Dij | .

-
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Y L M)V ) - V()]

[ HET 1#i z€0;

+ Y, =M@a)[Y'(v) -Y(z)]. (6.0.4)
:I:E[Mj-—ﬂl

By Lemma 6.0.63, 6.0.65, we know that Y'{v) = Y/(z) for each z € M; and thus
the third summand in the right hand side of the above equation is zero. Also, by
the hypothesis for each = € O;; the difference [Y'(v) — Y/(z)] < 0. Thus the first
summand in the right hand side of the above equation is negative. Since p'Y'(v) > 0,
we conclude that there must exist a k, (k # 4, k # j) such that,
S =M{y,z)[Y'(v) - Y'(z)] > 0. (6.0.5)
r€0; |

By Lemma 6.0.63, 6.0.65, we know that for any pair s,t € Oy, Y'(s) = Y'(t). Also
it is easy to see that M(v,s) = M(v,t}. Let w € Oj. Thus Equation 6.0.5 reduces
tﬂ . | . . .
= M(0,w)0p|[Y'(v) - Y(w)] > 0.
Thus Y'(v) > Y'(w), since M tv, w) < 0. So we have got a k such that Y/(v) > Y'(z)
holds for all z € Oy. | -

Now we have v € M;,w € Oj; and Y'(v) > Y'(w). From MY’ = 'Y’ we get
that | |

pWY'(w) = Mw,w)Y'(w)+ ) M({u,m)Y’(m).
- TENy
= Y -Mwaz)Y(w)+ Y M(w,z)Y'(z) Since Mé=0
reNy B reNy |
= ), ~M(wz)[Y'(v) - Y'(z)
wEM; - .
+ Y ~M(w,g)Y (w) - V()
$€0;; | -

+ Y Y ~Mw,z)Y'(w) - Y(z)]

(k€T z€0

tY Y -Mwa) Y (w) - V)

- [5.l)eT, I#i z€0; - 5

+ ) "M(w,ﬂ:)[Y"(w)~-Y;'(ﬂ:)]- - ~ {6.0.6)
zEMy | | o |

By Lemma 6.0.63, 6.0.64, 6.0.6.5, we know that

(1) Fd_r.ea.ch pair of vertices z,2 € Oy or Oy, Y'(z) = Y'(z).
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(2) For each [, for each pair of vertices z,z € M;, Y'(z) = Y'(2).

Since Y'(w) < Y'(v) < Y'(u), for each z € M; the difference [Y'(w) — Y'(z)] < O
and >, —M{w,2)[Y'(w)-Y'(z)] <0

TE€0k,

Thus the first two summands in the right hand side of the above equation are

negative. Since u'Y'(w) > 0, we conclude, in view of Lemma 6.0.63, 6.0.64 and

6.0.65 that either

. (1) there exists [k,m] € T such that Y'(w) > Y'(z) for all z € Oy, or
(2) there exists [§,m] € T such that Y'(w) > Y'(z) for all z € Ojm or
(3) Y'(fw) > Y'(k) for all z € M.

Repeated application of the above argument will then result in a sequence of nonempty
- sets of vertices (IS;), Sy is either M, or O,g, such that if x; € S, and 23 € Sy;1 then
Y/(z)) > Y'(zq). One can see that, this is an infinite sequence of pairwise disjoint
sets. This is not possible, because we have a finite graph.

The proof of item (ii} is similar to the proof of item (i). | "

Remark 6.0.67 Since T = T, if all the complete graphs under consideration are
complete graphs on two vertices, Theoremn 6.0.66 also proves the increasing/decreasing

property of the Fiedler vector of a perturbed Laplecian malriz for a iree, as a special

CaseE.

Definition: Let T = [1,2,--,n] be a path. Consider the graph 7 with labelling of

“the vertices satisfying the following property { in addition to those in the definition
~ of T): the vertices in M; have labels less than the vertices in O; 41, Miy and the
vertices in O; i+1 have labels less than the vertices in M;11, Ois1,i42. The graph thus
described will be referred to an interval graph.

The following is an interesting application of Theorem 6.0.66.

Corollary 8.0.68 Let T be an interval graph on vertices 1,2,---,m. Let D be any
diegonal matriz, £ = aD — A and Y be a Fiedler vector with Y (1) < 0 and Z be the

positive eigenvector corresponding to the smallest eigenvalue of £. Then

Y ¥@) . Ym

Z(m)

Z2(1) = Z(2) ©

~_ Proof Follows immediately from Theorem 6.0.66. . .
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Remark 6.0.69 A4 more general version of the above corollary and some more re-

sults about interval graphs can be found in [1].

We conclude the chapter b:} illustrating the above fact by some examples.

Example 6.0.70 In this example we consider an unweighted interval graph, In Case
1, we consider the Laplacian matrix of the graph and in Case 2, we consider the ad-
jacency matrix of the graph. For our graph, T 1s the path on 5 vertices. The graph
T is constructed with K, K2, K3, K1, K%; where each of them are complete graph
on vertices {1,2,3,4,5}, {3,4,5,6,7,8}, {7,8,9}, {9,10,11,12}, {11,12, 13,14}, re-
spectively, Drawing so many lines would not look nice. That is the reason we have

not supplied the figure.
Case 1 The Laplacian matrix. The algebraic connectivity is 0.3279 and has multi-

plicity one. The Fiedler vector is the following,.
¥ = [ —. 2636 —.2036 -.2348 -—.2348 -—.2348 2246 -.1726 -.17260 .1228 .2836

T
3176 .31756 .3798 3798 ] .
It ts well known that the eigenvector corresponding to the smallest eigenvalue of

the Laplacian matrix of a connected graph is é&. One can see the reflection of the

behavior of the Fiedler vector noticed in Corollary 6.0.68. |
Case 2 The negative adjacency matrix. The algebraic connectivity is —4.8509 with
multiplicity one. The Fiedler vector and the eigenvector for the smallest eigenvalue

are given below.
Y = [ —.0802  —.0802 —.0762 —.0762 —.0762 —.0431 .0312 .0312 .3607 .3479

T
4894 4894 3433 3433 | .
z=| 2524 2524 4041 4041 4041 3209 3510 3510 1441 0409

1T
0466 0466 .0104 0194 ] _.
§~=[-—-.317? ~.8177 -.1886 -—.1886 —.1886 -—.1308 .0890 .0890 2.5035 8.5080

- T
10,6049 10.5049 17.6986 17.6986] .



Chapter 7

On two minor-monotone graph

invariants

In this chapter, our main aim is to establish a relationship betwéen two minor-
monotone graph invariants and the Laplacian matrices or the perturbed Laplacian
matrices.

Definition: Let G be an undirected graph. A minor of G is a graph obtained from
G by a series of deletions and contractions of edges and deletions of isolated vertices,
suppressing any multiple edges and loops that may arise, |

Definition: Let G be an undirected graph. A function ¢(() is called minor-

monotone if for any minor H of G the inequality

#(H) < ¢(G)

holds.
A few reasons which raise the interest of the reader to study the minor-monotone

- graph parameters, are given in [35). The following graph parameter u(G) was intro-

duced by Colin de Verdiere {9].
Definition: The corank of a matrix M is the dimension of it's null space. It is

denoted by corank(M).

Definition 7.0.71 Let G be an undirected graph with the vertex set {1,2, ++,n}.

~ Then p(G) is the largest corank of any symmetric real-valued nxn matrix M = (m; )

such that:
(i) M has exactly one negative eigenvalue,

68
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(i) for all 4,5 with i # j, m; ; < 0 if 1 and j are adjacent and m;; = 0 if { and j
are nonadjacent, |

(iii) there is no nonzero symmetric matrix X = {z; ;) such that M X = 0 and such

that z;; = 0, whenever § = § or m; ; # 0.
There is no condition on the diagonal entries m; ;.

Throughout this chapter ;(G) will denote the above graph invariant. It is known

(see for example, [35]} that p(@) is minor-monotone, |
One immediately recognizes that the matrix M defined by (i) and (ii) of the above

definition is nothing but a perturbed Laplacian matrix of G with some suitable
weights on the edges. On the other hand if L is a perturbed Laplacian matrix
of G and %\ is the second smallest eigenvalue of it, then L — 2\I behaves like a

matrix satisfying the first two conditions of the above definition. Thus an equivalent
definition of u(G) is the following.
Definition 7.0.72 The parameter u{G) is the largest multiplicity of the second

smallest eigenvalue of a perturbed Laplacian matrix M satisfying the following con-

dition: there is no nonzero symmetric matrix X = (z;;) such that MX = X and |

suc_h that z; ; = 0 whenever i = 4 or mi; # 0.

Let G be any graph and M be any matrix satisfying the above definition. Let Y be
an eigenvector in the null space of M. Since M is a perturbed Laplacian matrix and

Y is a Fiedler vector, many relevant results form the previous chapters remain valid.

It is well-known that
(i) #(G) < 1 if and only if G is a disjoint union of paths,
(ii) p(G’) < 2 if and bnly if G is outerplanar,
(iii) p(G) < 3if and only if G is planar and
(iv) #(G) < 4 if and only if G is linklessly embeddable.

van der Holst {36] gave a proof of item (iii) of the above listed prupertres of u(G)

_using the following lemma.

.Lemma 7.0.73 (van der Holst) Let M be any matriz satisfying the cand:tmm
gtven in Dﬁﬁn:tioﬂ 7.0.71 and let X be a vector in the null space of M with mm:mu! |

support. Then supp+(X ) and supp” (X ) are cannerzted
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The proof of this lemma directly follows from the Lemma 2.4.30.
Motivated by the above lemma van der Holst, Laurent and Schrijver [37] intro-

duced a graph parameter AG).

Definition 7.0.74 Let G be a graph on n vertices. Call a subspace X’ of IR™ repre-
sentative for G if for each nonzero vector X € X, supp™(X) is nonempty and con-
nected. (Thus supp™(~X), that is supp~(X), is nonempty and connected.}) Then

A{G) is defined as the maximum dimension of a representative subspace of IR".

It is known that A(G) is minﬂr-rﬁnmtone. (see {35].) Henceforth, by saying X is a

maz-representative space for G, we will mean the following:

(i) X is a representative subspace of /R", where n is the number of vertices of G

and
(ii} the dimension of A is A{G).

Suppose that G is a connected graph. Let X be a nonzero vector in the max-
representative space for G. Then we know that supp (X} and supp~(X) are nonempty
and connected. Thus supp(X) has exactly two nonzero components, Let M be a
matrix satisfying the conditions in Definition 7.0.71 such that u(G') = corank(Af).
Let ¥ be a nonzero Fiedler vector of M. At this point we put the following funda-
mental question: how many nonzero components can supp(Y’) have ¢ The following

result supplies an answer to the above question.

Lemma 7.0.75 Let G be a connected graph and M a matriz satisfying all conditions
of Definition 7.0.71. Let Y be a nonzero Fiedler vector of M. Then supp(Y) has at

most three nonzero components.

Proof Suppose that supp(Y) has (> 4) components. Let W be the set of vertices
u in G such that Y (u) = 0. Since supp(Y) is disconnected, W is nonempty. So, by
Theorem 2.2.20, we see that there is no edge in the characteristic set § = C{G,Y).

'Thus with a permutation similarity operation we can write

] M 0 0 0 g Mys
0 My 0, 0 0 Moy
0 0 Max 0 0 M;ss
M= 0 0 0 Mg 0 My,
0 0 0 t v Mpr Meg
 Msy Ms; Msa Msqg -0 Mg Mgs |
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Let Z be the eigenvector of M corresponding to the smallest eigenvalue. Let Y;, Z;
be the subvector of Y and Z, respectively, corresponding to My, ¢ = 1, -, r. We

know that Z is positive and Y;'s are either negative or positive. Thus, there is no

“p——
T —

chance of Z!'Y; being zero. Let

2T - 72Ty

& = %‘E },31 ﬁ il ?]j 4_'

Consider the vectors _ ]
0 Y
aYs 0
U s U )

1 = 0 y U2 — Y4 y
o) | o

where the ¢-th zero eniry stands for t;hé zero vector of the order as that of M;;, 1 =
1,-++,4 and more zeros are added so that the order of the vectors are the same as
the order of M. It is evident from the proof of item (ii) of Theorem 2.2.20 that the
above two vectors are Piedler vectors of M. Thus MU, = MU, = 0. Consider the

matrix
0 ani¥F wYS o0 | ]
[ oYY 0 0 §YY] )
X=[ vyl o 0 FYaY{ »
0 Y, znyl 0
. 0 0 -

where the order of X is the same as that of M. One can easily check that MX = 0 and
X is of the form described in Definition 7.0.71. The previous statement contradicts
the hypothesis that M satisfies all conditions given in Definition 7.0.71. "

Below, we give an example of a very simple graph G, a matrix M satisfying

~ all conditions of Definition 7.0.71 and a nonzero Fiedler vector Y of M such that

supp(Y') has exactly three nonzero components.

Example 7.0.76 The grﬁph in Figure 7.1 is the unweighted star on 4 vertices, that
18 K 3. Let L be the Laplacian matrix of . We know that the second smallest
eigenvalue of L is 1, Let M = L — I. The matrix M and a Fiedler vector Y are given



73

® J
9- & ®
4 1 2
Figure 7.1:
below. . ) -
2 -1 -1 -1 0
A = —1 . 0 0 O v — ~2
-1 0 0 90 1
-1 0 0 0 1

One can see that M satisfies the first two conditions given in Definition 7.0.71.
Suppose that there is a nonzero symmetric matrix X = (z;;) such that MX = 0

and such that z; ; = 0, whenever i = j or m; ; # 0. Thus

0 0 0 O
x=|2%% % abecem
0 ¢ 0 ¢|
0 b ¢ O
From the condition MX =0 we get that
a=—b, a=~cand b= —c - (7.0.1)

and one can notice that the first two equalities contradict the third, unless ¢ = b =

¢ = 0. Thus the matrix M satisfies all conditions given in Definition 7.0.71. One can

see that supp(Y’) has three nonzero components. n

Definition 7.0.77 Let G be a graph and X be a max-representative space for G.
We say; A has full support if there exists a vector ¥ € A such that supp(Y) = G.

We will show that if G is a connected graph then there exists a max-representative

space for G with full support. For this purpose we need the following lemma. -

Lemma 7.0.78 Let G be a connected graph and X be a masz-representative space
Jor G. Let u and v be two vertices in G. Consider the space X' obtained from A by
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replacing the value Y (v) by Y{(u), { denoted by, Y{v) + Y(u) ) for allY € X, Then
the dimension of X' is AG).

Proof Let {Z; : ¢ = I,--+, AM(G)} be a basis for X, Let {Z] : i = 1,---,A(G)]} be
the set obtained from the above set by performing the operation Z;{v) « Z;(u), for
all 4. If the dimension of A” is less than A(G) then the set {2/} will be a linearly

dependent set. Thus we can get a natural number k (> 1) and & — 1 constants

o, t=1, -,k — 1 such that
k-1
Zp= Y o;Z!.
t=1

Recall that Z;’s are linearly iﬁdel)endent. Thus we conclude that the vector

k-1
Z = Zk — za,-Z,-
=1

has only one nonzero entry fhat is the v-th entry. But this is a contradiction to the
fact that A’ is a representative space for G (since Z € X, supp™(Z) and supp™(2)
- should be nonempty). Thus the dimension of A’ > A(G). On the other hand, since
A" is isomorphic to a subspace of X, we get that the dimension of X' < A(G@). Thus

the proof is complete. "

Theorem 7.0.79 Let G be a connected graph. Then there ezists a maz-representative

space X' of G with full support.

Proof Let A be a-max-representative space for G. If X is of full support then we
~ have nothing to do. Otherwise, let S be the maximal (with respect to set inclusion)
set of vertices of G such that Y(8) = 0, for all ¥ € X. Choose a vertex u € §
which is adjacent to a vertex v ¢ §. Consider the vector space X' obtained from
A by perfufming t_hé operation Y(u) < Y{v), for all Y € X. By Lemma 7‘0.78,
the dimension of &' is A(G). To show that X' is a max-representative space, let
X'e X' and let X be the vector obtained from X’ by putting X(u) = 0. We know
that X € X. Since 3upp+(X) # 0, Supp X" # 0. Note that if v ¢ supp™(X) then
supp™ (X' ) is the same as suppt(X ), thus, in this case suppt(X') is connected. If
’ Esu;:ap"‘(X ) then u,v Gsupp+(.X '} and since the vertices u and v are adjacent,
- supp'*’(X ) is connected.. A sumlar argument shows that supp™(X') is connected.
Thus X' isalso a max~r¢apres&ntatwe space for G’ The pronf is complete by induction

on the cardinality GfS S | - - "
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The above theorem shows a way to get a max-representative space for G of full

support, starting with any max-representative space. Let us see an example.

Example 7.0.80 Here the graph & is the path on b vertices; Figure 7.2, It is known

that A(G) = 1. We start with the max-representative space

s p—

—1

0
0
0
1...

iy

, € R},

r

With reference to the above theorem we see that here § = {1,5}. Let u = 1 and

v = 2. Then proceeding in the way as described in the proof of the above theorem,

we get the new max-representative space

r ad

\ -

-1
-1
0

1

syl

, a € R

/

. Here S =1{1,2,5}. Let « = § and v = 4. Then we get the new max-representative

space

, @€ R
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Here § = {1,2,4,5}. Let u = 2 and v = 3. Then we get the new max-representative

space

which has full support. .

Recall the definition of a block from Chapter 3, Section 2. A vertex is called a point

of articulation if it is common to more than one blocks. Two points of articulation
are called neighboring if both of them belong to the same block. The following result

is well-known. (See, for example, [19].)

. Propaosition 7.0.81 Let G be a connected graph and By, By be two different blocks
of G. Then there is a unigue sequence vy, V2, , 9 (r > 1) of points of articulation

such that v, € By v, € By and Vi, Viy1 Ore neighboring fori=1,..+ 1 — 1.

With reference to the above proposition, call a block B an intermediate block of By
-and By if B contains the points v;, vi41, for some i € {1,.-.,r — 1}. The following

lemma. will be used in the sequel,

Lemma 7.0.82 Let G be a connected graph and X be a representative space. Let
Y € A be a vector with full support. Then there is exactly one block B of G with both
positive and negative vertices with respect to Y and any other block is either positive

or negalive.

Proof Since &' is a representative spuce, supp* (Y} and supp~ (Y} are nonempty
and connected. Since Y is of full support, C(G,Y) contains edges only. If C(G,Y)
is a singleton set then we ‘have nothmg to prove So, assume ¢; = [u4,vi), ¢ = 1,2
are two edges in C(G,Y) such that Y(u,) > 0 and Y(ﬁ,) < 0. Since supp™{Y') and
supp (Y) are nonempty and connected there are paths P, and P, joining u, ug and
v, v2 respectively. These two paths along with the two edges form ‘a simple cycle,
- Thus, for any pair of distinct element in C(G,Y), there is a simple cycle containing
" them. This shows that all of the edges in C(G,Y) are contained in one block, say B.
If there is any other block which contains both positive and negative vertices then
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that block must contain an edge of C((,Y'), which is a contradiction to the previous

statement. i - n
The following is a crucial result in establishing the relationship between the

Fiedler vectors of the perturbed Laplacian matrices and the vectors in some max-

representative space.

Lemma 7.0.83 Let G be a connected graph ond X be o representative space (not
necessarily a maz-representative space). Let Y, Y' € X be vectors with full support.

Suppose that B and B’ are the bfocks-of G with both positive and negative vertices
with respect to Y and Y, respectively. Then B = B,

Proof Assume B # B'. Let u be a point of articulation, in the unique sequence of
points articulation between the two blocks. (Refer to the Proposition 7.0.81.) By
considering scalar multiples, we can assume Y'(u) = Y(u) < 0.

Let (7 be the component of G — u containing B — u. It follows from Lemma

7.0.82 that Y'(G,} < 0. Let

Y (v)|
Y{v)

&zmin{ c v € O, Y(v)>0}

and suppose that the minimum occurs at a vertex w that is
Y{w)+ Y (w) =0 - (7.0.2)

The number o is well deﬁned' because we 'kn{)w that Y (5B) contains one positive

entry. Also, let o' == o + ¢, € very small, pﬂﬂ:twe Let X =o'Y +Y". Then X(Gy)

has a paswwe entry. In fact it follows from Equation 7.0.2 that .
X(w) = dY(w) +Y'(w) = oY (w) + Y'(w) + ¥ (w) = ¥ {w) > 0.

Note that X (u) < 0 and X is a vector in thé representative space X, Since suppt{X)
is connected, we see that each component of G—u, except for Gy, is nonpositive
- with respect to X, The above statement is true for all positive e. Thus we conclude,
by continuity that if X = aY + Y’, then each {:ﬂmpﬁn'ent of G~ u, except for Gy, is
nonpositive with respect to X. But note here that G is also nnnpﬁsitive with fesﬁect

- to-X and X (u) < 0. In fact, if v € G1 then

|Y'(v)]
Y (v)

ﬂ’(l'

= oY (v) — IY’(fu)l <0 = aY(v)+ Y"(-.u) <0,
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since Y'(G,) < 0. Thus we see that the whole graph (' is nonpositive with respect

to X. This is impossible for X is a representative space and every nonzero vector in

A must have a nonempty positive support. "

Let G be a connected graph and Y be any nonzero vector. Call a block of G,
a ¢-block of Y if the block contains both positive and negative vertices with respect
to Y. The following theorem which is similar to the Corollary 3.1.33 and Theorem
3.241 is the main result of this chapter. The result shows that, given a connected
graph G, we can get a max-representative space A for &, with full support where
we can talk of c-blocks of vectors in X and then we can see the similarity in the
behavior between the vectors in A and the Fiedler vectors of perturbed Laplacian

matrices of G.

Theorem 7.0.84 Let & be a connecled graph and X be a representatlive space. Let
Y € X and suppose that Y has full support. Let B be the c-block for Y. Let Y' € X

be any nonzero vector. Then there exists a c-block for Y' and it is B.
Proof Let B be a block of G satisfying the following conditions:

(i} &' is neither positive nor negative with respect to Y‘.' :

(i) B’ is nok zefo with respect to Y’:

For exam_ple, B’ might be'a block with some zero vertices and some negative vertices
only. Choose {one can easily do s0) a very small real number, not necessarily positive,
o such that the vector X = ¥/ 4 aY is of full support and X(5'}) contains both
positive and negative entry. Now applying Lemma 7.0.83 to Y and X ~we get that

B=8 " (7.0.3)

It follows from the above equation that given any nonzerd veclor Y’ € &, there
ts only one block B of G which satisfies the conditions (:')I and (i) given above.
- Thus each other block of G ig either positive or negabive or ﬁero with respect to
Y. ( Otherwise, there are two blocks, one containing some pnsﬂ;we and some zero
~ vertices and the other cnntammg some negative and some zero vertices. But this is
1ot pﬂSSiblc by the above discussion. } And hence it follows that the block B contains
both positive and negative vertices with respect to Y. Thus B is the c-blﬁck for Y'm
The reader might, at thls stage, wonder about the difference between a c-block of
a vectc}r in a ma.xurepteaent;atwe spa.{;a w1th fuli 3upp0rt and the characteristic block
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Figure 7.3:

of a Fiedl(;r vector of a perturbed Laplacian matrix. There is only one difierence.
~ For a Fiedler vector we have the notion of a characteristic vertex. For example we
 know that a characteristic vertex with respect to a Fiedler vector, has at least two
nonzero adjacent vertices, one positive and one negative. But for a vector in a max-
- representative sbace with full support we cannot say the same thing. If o verlez in
the characteristic block is adjacent to a nonzero vertex then it must be adjacent to af
least two nonzero vertices, one negalive and one positive whereas the same is not

necessarily true for a c-block. Below we give an exaniple to show this.

Example 7.0.85 Here the graph G is a cycle on 8 vertices; Figuré 7.3. It is well-
known that MG) is two. A max-representative space with full support X is given
~ by the basis. Basis of & = {Z,Y}, where

Z=[-11111 -1 -1 -1],edY=[1 100 -1 -1 0 0].

It is not difficult to check that X is actually a representative space. Due to symmetry

‘we only have to check the linear combination X = Z + oY, a 2 0.

| supp*(X) | supp™(X) |
a>1 | {1,2,3,4) | {56,7,8} |
0<a<1]{234,5) |{6781} |

ThECycle it self is the c-block for each nonzero vector in A. One can see that
with TESPéCtjé;;;I:Q the vector Y, we have a zero vertex adjacent to only one nonzero
vertex, | o | | »
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