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Abstract

The two stage clonal expansion model of carcinogenesis provides a convenient bio-
logically based framework for the description of toxicologic and epidemiologic data on
carcinogenesis. Under this model, a cancer cell is generated following the occurrence of
two critical mutations in a single stem cell. Initiated cells that have sustained the first
mutation undergo a stochastic birth-death process resulting in clonal expansion of the
initiated cell population. In this article, we consider the analysis of longitudinal data on
the number and size of premalignant clones, formed by clonal expansion of initiated
cells. In particular, the joint distribution of the number of premalignant clones observed
at different points in time in the same subject is derived. The application of these results
in the statistical analysis of longitudinal data on the number and size of premalignant
clones observed in initiation-promotion experiments is indicated.
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1. Introduction

Armitage and Doll [1] pioneered the development of muliistage models of
carcinogenesis, in which a cancer cell is formed following the occurrence, in
sequence, of a number of mutations considered to represent different stages of
the process of malignant transformation. Subsequently, Kendall [9], Moo-
lgavkar and Venzon [22] and Moolgavkar and Knudson [18] developed mul-
tistage models that exphcitly considered cell proliferation kinetics.
Moolgavkar-Venzon-Knudson noted that, providing cell proliferation was
explicitly incorporated, a model postulating two rate limiting events on the
pathway to malignancy was consistent with a wide range of toxicologic and
epidemiologic data. This two stage model has been successfully used to des-
cribe both toxicologic and epidemiologic data on carcinogenesis [20,13). For
some variations of this model, see Refs. [23,11].

The mathematical aspects of the two stage model are described by Moo-
lgavkar and Luebeck [20] and Tan [25]. Briefly, let X' {¢) denote the number of
susceptible stem cells in the tissue of interest at time . The number of inter-
mediate cells {{r) that have sustained the first mutation by tme ¢ follows a
Poisson process with intensity v{fLY (#), where v(r) denotes the first stage mu-
tation rate. Initiated cells undergo a stochastic birth—death process, with x(r)
and fi{f) denoting the bhirth and death (or differentiation) rates at time ¢ A
malignant cancer cell is formed following the occurrence of a second mutation
in one of the intermediate cells. Denes and Krewski [3] have recently developed
an exact expression for the probability generating function of this two stage
model allowing for stochastic stem cell growth. In practice, however, X (1) is
usually taken to be deterministic because the number of normal cells in a tissue
is under tight homeostatic control.

The two stage model provides a rich biologically based framework for de-
scribing the process of carcinogenesis. In this paper, we use this model to
describe the number and size of premalignant clones of intermediate cells [7].
Premalignant clones appear as enzyme altered liver foci in rodent hepatocar-
cinogenesis experiments [24] and as skin papillomas in initiation-promotion
experiments on the mouse skin [4,2,17].

In the mouse skin model, it is possible to obtain information on the evo-
lution of papillomas in the same subject over time. This article focuses on the
use of the two stage model to describe longitudinal data on the number and size
of premalignant lesions. Kopp-Schneider and Portier [10,12] have earlier used
the two stage model and some modifications of it to analyze data on mouse
skin papillomas; however, they ignored the inherent dependence present in the
longitudinal observations made on the same subject over time. The purpose of
this article is to express this dependence quantitatively within the framework of
two stage model and indicate how to incorporate it in analyses. This article
presents the mathematical resulis required for analyses of data on premalig-
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nant clones only. In Section 2, we derive the distributional resulis for the
number of premalignant clones observed in the same subject at different points
in time. Section 3 considers extension of the results for the case in which ob-
servations on the sizes of the premalignant clones, in addition to the numbers,
are available. The use of these results in the statistical analysis of longitudinal
data on premalignant lesions is described in Section 4. Potential applications
and further developments are discussed in Section 3.

2. The number of premalignant clones

Following Dewanji et al. [7], we define a premalignant clone as the collection
of all cells descended from a single progenitor intermediate cell that has risen
from mutation of a normal cell. Note that because such cells can die or dif-
ferentiate, a premalignant clone can regress or even become extinct. Suppose
that observations on the same subject are taken at times (=
fp < f) < --- < g < fgye) =00, where K = 2. Let N; denote the number of
clones appearing in the interval (¢,_,,#] and observed as non-extinet at time f;,
fori=1,...,K. In addition, suppose we also observe at time r;, by some la-
belling technique, &y, the number of clones appearing in (f,_,.4| and still
observed (non-extinct) at time £, for f = 1,..., i — 1. Thus, the total number of
premalignant clones observed at time £ is given by N = N, + ---+ N, for
i=1,... & Notethat for fixed /. Ny is non-increasing in { because of possible
extinction of one or more clones.

We transform the counts {Ny;/=1,....i i=1 ... K} as follows. At any
time f;, we observe Nj; and subsequently Mj;, where Af; denotes the number of
clones appearing in (f;_;. ;] and becoming extinct in (t;, ¢;] for j =i, ... K.
Note that My is the number of clones appearing in (f;_.#] and possibly be-
coming extinct only after ry, the last observation time. Note also that
N;= Zj":‘ M;;. Although we do not directly observe the M s at time 1, we define
Ci = {Ni. My /= 1,..., K} as the transformed event at time f;. Note that the
sets C; are ordered naturally in time in the sense that C; contain no observations
made before time #;. The Cs are also independent and collectively describe the
whole of the count data. So it is enough to derive the probability of the Cis and
then take the product over them to construct the likelihood function.

In order the derive the probability of Ci, note that A; follows a Poisson
distribution with mean

&

A1) = [ #(s) ds, (1)

Tl

where

A(s) = v{s)X(s)(1 — plt,s)),
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for £,y < s= ¢, where p(t, s) denotes the probability that a clone appearing at
time s becomes extinct by time f and is equal to 1 — [g{t. s) +D‘{r,.¢]|]'] (see
Eq. (10) in Section 3) with g{t,5) = exp — [ {a(u) — Blu)} du], and (it 5) =
f: alu)g(n, s) du (see Refs. [7.16]). Given N =n;, it is easily seen that
(Miy...,d My ) follows a multinomial distribution Multinomial{n; pm, . . ., Pl
with parameters

1 .
Pi= m f v(s)X (s)(plti,5) —plt;,s) ds, (2)

&1

(T K —1), and
= #‘frv{ﬂf’f{ﬁlil — plix,s)) ds (3)
P ﬂﬁt“]':ﬂ:' ) ; Pl g
&1
Consider now the case in which clones were not labelled at each observation
time so that only the total counts N; are available at time 1. For j = i, note that
Ny, the number of clones appearing in (1;,_y, +;] and still non-extinct at time ¢;, is
equal to EL,- M. Hence, given Ny = ny, Ny follows a binomial distribution
Binomial (ms,q;;), where

K | o
a= =150 fl{ijmu — plt;,5)) ds. )

j=
4 &1

Hence, the unconditional distribution of N; is Poisson with mean A"(t)q,;.
Since, for fixed j, the Nj;, for i = 1,..., j, are independent and N; = ¥",_, Nj;, N,
follows a Poisson distribution with mean

(Zﬂ"" ':fa:"‘fu) (5)

with g;; =1, for = 1,... K_ Note that
i _ @
> A g, = fr{s:IX{.r:I{ 1 — plt;,s)) ds.
=]

[

Although Eq. (5)is a known result (Ref. [7]), the approach used here to derive
it will be useful for calculating covariances as will be seen later.

Since the NV, fori=1,..., K, are not independent, their joint distribution
can be derived inductively. Consider first the simplest case of K = 2. In this
case, Ny =N ~ Poisson(A(r)) and Na=Np+Nn with Ny~
Poisson{A'(12]). Since the conditional distribution of N> given V| is Bino-
mial(N),g2), we have
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mimfag aa} _ gl% 23, o S _
e e W

x=(}
This approach can be extended for any & > 2, although the expressions quickly
become so complex as to be impractical for application. However, the first two
moments of the Ms can be obtained with less difficulty.
Specifically, for i < j, we have

i ¥ i
cov(V, N;) = cov (ZN.«.. ZNU) = Z covi V. Ny (6]

=1 i=1 i=]

since cov(Ny;, Ny;) = 0 for [ # I'. Now,

K K
cov(N,, Ny) = cov (ZM"“'- ZM,,.)

a=i r=y

= ZZ covi My, M), (7

=i r=j

Using Eq. (1) and the multinomial distribution in Eq. (2) and Eq. (3), we have
cov{Mu, M) = E[-Nupuwpn| + V[Nelpupn =0
forw # v. When v = v,

coviM,, M) = V(M) = E[Nrrj:'m{l —Pr.u:l] =+ F[a""i'r.'rji".'.u| =Pru¢"'tm{fr:|-
It follows, from Eq. (7) that

.
cov(Nu, Ny) = D pud(t) = gy (1),
and, from Eq. (6),

coV(N.N,) = g (0) = [H(s X1 = pls.)) ds

i

= ¥j; (say). (8)

3. The number and size of premalignant clones

Let Wl " denote the size of the jth clone at time 4 arising from an interme-
diate oﬁll generated during  the interval (f_),g], for j=1... Ny
f=1,...,& i=1,...,K Since premalignant clones may become extinet, |t is

pmmhle lh&t some of the H’l”f-: are zero. Clearlj, if !r!r::E-J = 0 for some i, then
w[ "= 0for all ¥ > i. For f-f: i, define H’[ '(5) as the size of the clone at time &,
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arising from an intermediate cell generated at time S € (f,_;.1]. Note that
Hr:f’{ ] follows a birth-death process with birth and death rates x(-) and
B0+, respectively. Dewaniji et al. [7,8] and Luebeck and Moolgavkar [16] show
that

Pr{ H’”‘ (sl=m}= U{rl,.vj .51 — Hi s, (9
form = 1, and
Pr{#,"(s) = 0} = = plt;,s), (10)

gk, 5) + Gk, s5)
where g1, -r]l and i+, s) are 3% defined in Section 2 following Eq. (1) and
H(t,s) = g(t,s)[g(t.s) + G(1,5)] . They also noted that the conditional distri-
bution of W' '(s), given that the clone is non-extinet (that is, W' (s) > 0), is
geometric mth

Pe{#;" (s) = m|W;"(s) > 0} = H(t;,5){1 — H{t,,5)}""", (11)
frommz= 1.
Let £; denote the event {N;, H'fl“j l,...,] No, I=1,..., i} at time t;. Note
that the sequence of events {E}_l forms a Markov process. Hence, the
probability of the observation from a single subject Pr{E,, ..., Ex} is derived

by ‘successive conditioning” as follows.
For the first event £, at time £, NV follows a Poisson d:qtnbumn with mean
[”{nj as in Eq. (1). Given Ny, = n)y, the clone sizes Hr’, Jor j=1,--- nyy,
are independent and identically distributed with

W m =—1 As i1 — 51" ds
Pr{w, =m) Aua{,ﬂ,[{*'”'if]--?“ H(n, )" ds, (12)

for m =1 (see Ref. [7]). The probability of the event £, is now given by
Pr{Ny = nyy} multiplied by a product of ny; terms.

In general, for i = 1, we want to find Pr{E|E|,..., Ei 1} = Pr{E|E_}.
Mote that &;; follows, as in Eq. {1} !-"'mwun distribution with mean A[”{rj
As in Eq. (12), given Nj; = ng, the W, I‘ﬂr; sl ny; are independent and
identically distributed with

f A(H (6,5) (1 — H (6,5 ds, (13)

41

for m = 1. Note that this part of E, namely N; and H"” for j=1,...,] N,
independent of £,_;. However, for [=1,..., i—1, the sizes W' 3 l‘ﬂr
=1L Ny, at time £, depend on the corresponding sizes H"_’ji at tun& i

which is a part of E;_,. Given E;_;, note that Hfj” is a birth—death process m[h
birth and death rates «(-) and §{-), respectively, starting at time f,_; with initial

1

P H’“J = —
I"{ H‘!_} ﬂlﬂj{!,‘:l
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- i) f
stze Wii=w 'y

time f is then

The probahility generating function of Hfj_,'”. given £, at

5 5
ik e e e ey
= [W(x;t,1,0)]" v, say, (14)

where W{x:f;,4;_y) is the probability generating function of a birth-death
process with rates =(-) and #{-), respectively, starting at time ¢,_; with initial size
1 (see Ref. [8]), leading to the probability mass function p(-) of the form (9) and
(10). It is now routine, at least in theory, from Eq. (14), to obtain the condi-
tional probability mass function of Hﬁ"" given E;_, for I=1,...,i—1.

In particular, fori 2 2,/ =1,..., i-1, note that, given PP:.E'}J. = W}:i]u which
[

is a part of £, W, can be written as Z::;f‘ W, where the W s are indepen-
dent and identically distributed with probability generating function
Wix:i;, 6;-1). Then, we have Eq. (1)

Wiy il ()
it e I | s HJ”Z(M;U)

. u=1 r=[
e .....w‘:'"I Zmn m
=1y

Xc'{m,w"f]__f— ) x (l_gTIG) (éH) il (15)

for m = 0, where the arguments of g, & and # are 1, and 1_,, respectively, and

c{m,n) = #{{m] ..... my,): m; =0, for all r‘,i = m} = (m B 1) (16)

e n—1

form = n with (0,07 = 1, and 0 for m < n. Putting Eq. (16) into Eq. (135) gives
the probability mass function of Hji”‘ as a sum of {w,'i‘,_j + 1) terms. For large
w}i’]_ -+ one can try some approximation for this sum. However, the probability
Pr{£&]|E;_} can be calculated by multiplying Pr{N; = n;} (see (1)) by a product

of n; terms like Eq. (13) and that of E:: ny probahility terms like Eq. (15).

4. Statistical considerations

The distributional results given in Sections 2 and 3 provide a statistical basis
for fitting the two stage model to experimental data. When the distribution of
the observations is completely specified, estimates of the unknown model pa-
rameters may be obtained by maximizing the likelihood of the data. Suppose
first that full information on the number and sizes of premalignant clones is
available through £, ..., Eg (Section 3). The contribution to the likelihood by
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a single subject is then proportional to Pr{£} = Pr{f|E} =x---x
Pr{Eg|Ex_1}. The full likelihood is proportional to the product of the likeli-
hood contributions from all experimental subjects.

The likelihood function for the case, in which only the number of clones,
but not their sizes, is observed (Section 2) along with some labelling so as to
identify them regarding which time interval they appeared in and became
extinct, if so, can be constructed using Pr{N; = n;} from Eq. (1) and the
multinomial structure (2) and (3). In the absence of such labelling, when at
each time point only the total number of clones is observed, the likelihood
function can be written down in theory, although the expressions are un-
manageable for £ > 2. To circumvent this problem, model fitting methods
that require specification only of the first two moments of the data may be
employed.

Specifically Eq. (3) and Eq. (8) can now be used as the basis for an iterat-
ively reweighted least squares method in which the sum of squares

SS = (N—m)' V"' (N—p)
is minimized with respect to the model parameters, where the sum is over all
subjects. Here N' = (N, ..., Ne), and o' = (,..., 1) with

L)

w= > 0 ) = [oxX(6)(1 ) ds.

L

and Fy, the (7, fith entry of V, the variance (weight) matrix, is defined in Eq. (8)
fori < jwith ¥; = ¥5; and ¥; = p,.

In fitting the two stage model to experimental data, it is necessary to specify
the manner in which the model parameters vary over time. In typical appl-
cation, the first stage mutation rate vX" and the birth and death rates » and f# of
intermediate cells are allowed to vary as functions of dose (see Refs. [19,21]). In
the simplest case in which the dose is held constant over time, the expressions
derived in Sections 2 and 3 reduce to simple forms. For example, Dewangji et al.
[7] show that

. fi — pexp — (a— B)(r —s)
pg,sj=1_ﬂﬂp_.;:_ﬁj{f'_.qj' (17)

It follows that

[# LEgd | D:_JH
A ‘“j“’f.[:—ﬂexp—{:—ﬁ:l{n—s:ld*

fi-l

=%[lag(“’“’{“_f:'f‘ﬁ_"”’:'_ﬂ)], (18)
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and
. ' x— B
qf‘ﬂ"m (£)= 1'Xf ds
J J a=Fexp ~(a =)l =)
I
WX [lﬂ ( vexp(x — Bt —ti) — ﬁ)]
: aexplax— )4 —6)—F /|
Noting that py = ga and p; =g — g, Tor j=1i,..., K -1, we obtain
simple forms of the expressions necessary for analyzing count data.
Simplification of the expression needed in the analysis of data on clone sizes
also occurs in the case of time-homogeneous model parameters. Following
Moolgavkar et al. [19], Eq. (13) reduces to

= fi— g
Pe{W) =m} = [t ) ; (20)
m Ir.}g( F—= plg—4 ) )
for m = 1. The preceding results apply in the case » # f§. Similar results for the
case x = [ are readily obtained, but are omitted for brevity.

Similar results can be obtained when the parameter values are not constant
over time, but remain constant within specified time intervals. Computable
forms of Eqs (17){20) can also be obtained in this case, although the ex-
pressions are somewhat lengthy.

In deriving the distributional results given in Sections 2 and 3, it was tacitly
assumed that a (non-extinct) premalignant clone remains visible regardless of
its size. In reality, a clone may not be detectable unless it exceeds a certain
threshold, involving a minimum of ng = 0 intermediate cells. If a threshold for
the identification of premalignant clones is considered, the distribution of the
observed number of clones N, at time #; is again Poisson, but with the function
plts) in the expression for the mean of this distribution replaced by p*(#; 5), the
probability of non—detection Ref. [7]. Other distributional resulis are more
complex, because non-detection, unlike extinction, is not an absorbing state.
Since a clone can oscillate between detectable and non-detectable states, the
multinomial structure in Eq. (2) and Eq. (3) no longer holds.

Since this oscillation occurs with low probability, it is reasonable to assume, as
a first approximation, that after a once-detectable clone has become non-de-
tectable, it does not return back to a detectable state again. Under this as-
sumption, the multinomial structure in Eq. (2) and Eq. (3) holds, with cell
probabilities p;; reflecting the probability of a clone being non-detectable in
{#;1;+1] given that it was detected in (f;_). ;| for j =i,..., K. ltcan then be shown
that the covariance function cov(N;, N;) for detectable clones is approximately
of the form (8), but with p(t;, s) replaced by p* (1, 5). With these approximate
covariances, generalized estimating equations (GEEs) can be used for model
fitting, with parameter estimates obtained by solving the estimating equations

(19)
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Cp

> (@).I.""]{N -m=0

{see Ref. [13]) for @, the vector of parameters of interest, where V' now denotes
the approximate variance matrix. GEEs have been used in fitting dose response
maodels to data from experiments on mutagenicity (Ref. [14]) and develop-
mental toxicity (Ref. [26]).

In initiation-promotion experiments involving the mouse skin system, there
can be appreciable variation in response among individual animals, as noticed
by Burnett et al. [3]. They propose the use of non-linear random-effects re-
eression modelling techniques to describe such inter-individual variation.
These techniques can be applied in fitting the two stage model to experimental
data involving multiple subjects by allowing for variations in the model pa-
rameters among individuals.

5. Concluding remarks

In this article, we have discussed the use of the two stage clonal expansion
model of carcinogenesis to describe the number and size of premalignant dones
in experiments in which such clones are observable. A novel feature of our
analysis is the provision for repeated observations on the same individual over
time. Assuming that even very small clones are detectable, the joint distribution
of the number and size of clones observed on a single subject at different poinis
in time can be derived. Approximate distributional results can also be obtained
when clones can be observed only when they achieve a specified size.

These distributional results (Sections 2 and 3) provide a basis for fitting the
two stage model to longitudinal data on premalignant clones derived from
laboratory experiments. When the joint distribution of the observations is fully
specified, estimates of the model parameters can be obtained by the method of
maximum likelihood. When only the first two moments of the observations are
specified, iteratively weighted least squares method or generalized estimating
equations can be used for parameter estimation. Random effects modelling
techniques can be used to allow for heterogeneity in the values of the model
parameters among individuals.

Kopp-Schneider and Portier [12] consider a modification of the two stage
model in which, at iniation, one of two types of initiated cells is produced, one
type 15 terminally benign or premalignant and never progresses towards car-
anoma or malignancy, and the other may progress to become malignant. This
inclusion of two pathways may explain some observed heterogeneity in the
population of papillomas (see also Ref. [4]). The distributional resulis under
this modified model will be more difficult; however, some efforts in this di-
rection are under way. Extensions of the resulis presented in this paper to
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permit a joint analysis of data on premalignant and malignant lesions may be
possible. However, because of the presence of serial correlation in longitudinal
data of the type considered here, this analysis will be more complicated than
previous analysis of cross-sectional data given by Dewanji et al. [8] and de
Gunst and Luebeck [6].
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