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PREFACE

We consider estimating the total Y of a variable y defined on a
survey population, The survey 1is complex only in the sense that we

admit sample selection with arbitrary probabllities. Our ‘analysis’

consistg In examining efflcacles of confidence intervals for the

total. For this we need point estimators and the corresponding
or mean square error (MSE) ‘
varlance {estimators, respectively say, e and v. The distribution,

resulting from repeated sampling, of the pivotal quantity d =

(e-Y)/¥'v 1is supposed to approximate that of standard normal deviate
T or of Student’'s t with (n-1) degrees of freedom, assuming large
sample size n. We will consider three general situations, namely when
we presume that (i) ‘'direct responses’ (DR} are available from sampled
individuals, (ii) no direct but only ‘randomized respnhses’ (RR} may
be gathered and (1il) there may be positive probability of nonresponse
(NR) from at least some individuals sampled, In such cases we
consider deriving new cholces of (e,v)'s as alternatives to those

existing in the current literature.

L

The thesis consists of eight chapters. Throughout the first
seven of them we postulate a 'super—population mocdel envisaging a
linear regression of y on an auxillary variable x, Our plan is to
make use of the model in choosing apprupriate'v’s, thuugh e's may or
may ﬁnt be model-assisted. For a chosen e we consider the
design-based MSE or an approximation of it. Every e we consider is
either design-unblased or asymptotically design-unbiased (ADU) in the
sense of Brewer (1979) and Sérndal (1980). The asymptotic approach of
Fuller and Isakl (1981) and Isaki and Fuller (1982), however is
nowhere followed in thls thesis. Discussion will not be complete
unless we refer to the recent text by Wolter (1985) that deals with
variance estimati.n ' which aisa forms a principal endeavour on our part

in this thesis.

To utilize both the design and the model in the choice of v we
draw inspiration from the works of Brewer and Hanif (1983), Kunar,
Gupta and Agarwal (1985), Brewer (1990) and Kott (1990a).  Thelr

approach is to consider the "model-based ‘expectation”  of (i) the
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design-based expectation of (e-Y)2 and we intend first to extend it by
permitting approximation of (1). Denoting tnh expectation by,
say M, their procedures give a v such that the 'model-expecistion’ of
the ’'deslign-expectation’ of v equals M, Kott’s procedure goes a step
~ further in that the " "model-expectation’  of .v‘ equals the
'model-expectation' of (E-Y]z. Novelty In our approach is that we
find it ’'necessary’ and 'useful' to replace 'design-expectation’ Iin
this context by 'asymptotic design-expectation’ in Brewer's sense,
This modificatlon leads to a series of alternative choices. This
necessitates investigation of thelr efficacies ralative to thelir
predecessors. In particular we also conslder estlmators for totals of

y for specific domains. Necessary adjustments are made to cover (a)

randomized responses and (b) ‘non-responses’.

Realt.ive performances of alternatlve confidence inter-vals are
dificult to examine thenreticﬁlly. So we resort to numerical
exerclses, 'Forr this we undertake simulation studies, Through
simulation~based studies we demonstrate that most of our newly
propogsed (e,v)'s yleld competitively viable confldence intervals as
assessed in terms of several well-known and a few new criterla for

comparison, though in case of partial non-response gituation we cannot

be so assertlve.

In the last chapter we evaluate relative efficacies of two
well-known model-free but design-based {e,v)’s and utilize models

exclusively for simulations in drawing conclusions.

| For direct response surveys we cover only the ratio estimator,
Horvitz-Thompson (1952) estimator (HTE), Sirndal’s (1980) generalized
regression (Greg) predictor and Rao-~Hartley-Cochran (RHC, 1962)
estimator., Only sampling schemes employed are simple random sampling
without repl-acement (SRSWOR), Hartley and Rao’s (HR, 1962) sampling

scheme and Rao-Hartley-Cochran sampling (RHC) scheme.

The table below briefly highlights our coverage of topics In
brief, -
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‘Table of toplcs at a glance

Chap. Estimators Data Use of models ~ Sampling
set~-up - Scheme
1 HTE DR For v only HR
2 Greg DR For both e and v HR
3 Ratlio DR For v only SRSWOR
4 -Domain DR For both e and v HR
5 Ratlo RR For v only SRSWOR
6 Greg RR For both e and v HR
7 (1) HTE NR no model for e or v HR
(11) Greg NR For both e and v HR
8 RHC DR no model for e or v RHC
Note : DR = Direct Response HR = Hartley and Rao
RR = Randomized Response RHC = Rao, Hartley and Cochran

=
~
M

Partial Non-response
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INTRODUCTION

In this thesis we conslider estimating the total Y of a real
varlable y defined on a survey populatlon of a known number N of
identiflable units labelied i=1,...,N. For this, sampling schemes are
considered that are complex in the sense of differing from simple
random sampling (SRS) with replacement (WR). For Y, confidence
intervals (CI) are constructed invelvling a point estimator e of Y and

of mean square error (MSE)

a variance estimator v for e. The size n of a sample is supposed

large. The distribution over repeated sampling of the pivotal quantity

d = (e-Y}/Y v 1s supposed approximately to be close to that of the
standard normal deviate T or of Student's t-~statistic with (n-1)

degrees of freedom. From this, e * kV' v provides a desired CI with
k chosen from T- or t- table for a pre-assigned nominal confidence
coefficlent. In the first seven chapters of thls thesis, contalnling
elght chapters iﬂ all, we shall concentrate on choice of v from
considerations of both design and a model pnstulated connecting y and
an auxiliary related varlable x withkzn;;sitive Xy~ values, For e we
shall consider well-known estimators elther model-free or model
assisted. We draw inspirations from Brewer and Hanif (1983), Kumar,
Gupta and Agarwal (1985) and Brewer (1990) to obtain v not just as an
estimator of the design mean-square errnr.(MSE) of e but of the model
expectation of the design MSE. Consequently v derives model-cum—-design
based properties. One cannot be sure if a postulated model 1s correct
or wrong. But our intention is to get an improved variance estimator
and hence a better CI if a postulated model may in fact hﬁppenvtu be
correct and take advantage of that. Kott (1990a,b) also employs
variance estimators studded simultaneously with model~ as well as
design- properties. As a generalization over these approaches we
consider it "useful" as well as "necessary" to cc}ns}der model-cum
exac

‘asymptotic-design’ -based properties rather than [ ‘deslign-based’

properties.
Performances of variance or MSE estimalors and CI's are evaluated from consideralions of behaviours in hypothotically repealable
sampling. Improvement is of course not asaured by invoking & model. By almulation we examine if a model-assisied pracedure may fare

better thap 8 model-{ree procedure and if so to what extent,

Through the first seven chapters we adapt Brewer's {1979)
‘asymptotic-design-based’ approach. This requires mainly the use not:
of the design expectation nperatur' Ep but of the ‘1imiting design
expectation' operator limEp.and'applicatiﬂn of Slutzky's {cf. Cramer

(1966)]'-lim1tiﬁg theorem for convenience. The details will be



explained in chapter one. To briefly indicate how we may derive a
series of alternative choices of v for any fixed well-known e, let us
note the fallowing, wlth Em as the model expectation operator. For e
the deslign MSE s Ep(e-Y)z, which is the Variance-vp(e) if e is design
unblased for Y. If e 1s not design unbiased we will always take it as

o ‘agymptotic design unblased’ (ADU) estimator in Brewer’s sense,
Sometimes we shall use only an approximation for the above MSE or
variance. The model expectation of any of these design parameters or
of limEp[E—Y]z will be denoted as M, Our principal approach 1is to
employ a v satsfying

1imE E (v) = M.
P M

We shall throughout assume that Em commutes with Ep and 1imEp. A
considerably large series of such v's will be derived for the standard
choice of e as the well-known {1) ratio estimator, {(i1)
Horvitz~Thompson (HT, 1952) estimator and quite a few also for (111)
Sdrndal’'s (1980) generalized regression (greg] predictor for Y. Our
purpose is then to examine the efficacies of the resulting Cl's
relative to the traditianal ones. Theoretical comparison seéms
difficult. So, wWe resort to numerical cnmpariénns. For this we adopt
simulation-based studies. In these studles we consider only
deslign-based performances of the CI’s. The role of model is only in
vielding alternatlive choices of v. Thelr efficacles are examlned via
repeated sampling. For assessing the relative performances of the Cl's

we employ well-known criteria adding to them a few of our own.

Since we are not aiming at deriving any optimal varlance or MSE estimator and the above model-cum-asymptotic design based approach
obviously ylields infinitely many alternatives, we find 1 imperative to resort only to numerical exercises through simulations.

In the first four chapters we restrict to simulations where
values y, of y are supposed avallable as direct responses (DR) from
any individual 1 selected In a sample s taken from the population
U=(1,...,1,...,N). In chapters five and six we allow y to relate to
sensitive and stigmatizing chaf_acteristics and hence instead of DR
only ‘randomized responses’ (RR) are suPpﬁséd to be avalilable thrDUgh
suitably implemented devices from sampled persﬁhs. So, nééesaary
ad justments are employed in choosing the combination (e,v}. In chapter
seven we allow positlve probabilities of non-responses at least for
snme. members of the population. So, further modifications are
introduced for our ‘analysis’. In chapter four we conslder adjustments
needed in analysis for estimating npt Y but totals of Yy for units
within a part called ‘domain’ of U though sample is drawn from U



itself when a postulated model may apply either to the ‘specific’

domaln or to the entire population.

In chapters three and five we consider ratio estimator and its
RR-based modificatlion, both based on simple random sampling wlthout
replacement (SRSWOR). In numerical 1illustrations concerning the
Horvitz and Thompson's estimator and the generallized regression
predictor the only scheme of sampling we use 1s that due to Hartley
and Rao (1962). The size-measures needed for applying the sampling
scheme are supposed avallable as the values of a third variable, say
z, well- and positively- assoclated with y. However we take care "not"

to keep the Iincluslon~probabilities mn, of the units proportional to

i

Xy i € U, The sampling schemes with n, proportional to X4 called

schemes with ‘inclusion probabllity prop;itianal to slze’ (IPPS or nps
in brief) yield simplifications in analysis. But we avoid then,
treating them as too restrictive because large-scale surveys cover
many items or varlables and so a particular z ylelding ni's cannot be
supposed to ‘meet this IPPS requirement’ for every y of our interest

to which an x {s related permitting postulation of a linear regression
the
of v on x, Our stress 1s mainly on data analysis after sample is drawn,

only taking care that a design may not be too bad to lead to poor

analysis.

In chapter eight we consider the estimater given by Rao, Hartley
and Cochran (1962) based on their own scheme of sampling and two
variance estimators for it, one of which is given by themselves and
another t;-y Ohlsson {1989). Ohlsson’'s investigation seems to 1imply
superlority. of hls estimator. We take up here a design-based
comparison of the CI's respectively wusing these two variance
estimators and report a simulation study which indicates a conclusion
essentially to the contrary. Here we use a model only for generating
the vectors XF(yl,..;,yi,...,yN] and 5=(x1;...,x1,...,xN].
Modiflcations here are not attempted to cover situations permitting RR

and partlial non-response,

The detailed findings are reported in the following

chapters.

We may modestly add that through this thesls we do not intend to



propagate any particular dogmatic view of our own aboul aptness of
model-based or model-cum—-design-based or classical apprecaches in
sampling or of asymptotic theory in finite population inference. For
our ideas about these we simply fall back upon well-known text books
on sampling and on review papers one of which 1s the one by Bellhouée
(1988). ' '



CHAPTER ONE

A SIMULATION STUDY OF CONFIDENCE INTERVALS FOR SURVEY
THROUGH HORVITZ - THOMPSON  STRATEGIES

1.0 SUMMARY.

In order to construct appropriate confidence intervals for a
finlte population total with the Horvitz - Thompson estimator, (HTE,
say) as a polnt estimator at the base we derive alternative variance
estimators postulating the correctness of a linear regression model
with a zero intercept. Permitting the use of sampling designs not
“necessarily with inclusiﬂn.prﬂbabilities proportional to size-measures
we find it convenient to aim at estimating the model expectation of
the desi'gn—variance of HTE, We find a large number of variance
estimators with limiting deslgn - expectatlons of their model -
expectations required ‘to match the above aimed-at value. Analytic
comparlison of the resultling confldence Intervals ls difficult. So, we
resort to a numerical comparison through a simulation study, We find
the newly constructed varlance estimators to yleld confidence
intervals promisingly competitive against the traditional Yates -

Grundy variance estimator which does not utilize any model at all.

1.1 INTRODUCTION.

We consider a survey population U=(1,....i,“.,N) on which are
defined two real variables x and y with values X4 (>0, known) and Yo
i=1,...,N, with totals X and Y. The  problem is to estimate Y, A
super-~population model M, say, 1s postulated permitting one to write

yi = ﬁ}{i + _Bi, i € U. o o | (1-1-1)

Here B 1s an unknown constant; -si's are random variables wilth



means Em(zi}mﬂ, variances Vm(si) s

A sample s from U is supposed to be drawn with probability p(s)

and covariances Cm(ﬂi,eJ)=O,i¢j.

according to a design p admitting positive incluslon-probabilities My

for each 1 in U and n,, for each distinect pair i,j in U, Each unit In

1]
s 1s supposed to be distinct and the size of s a fixed integer n. By

%, IX we shall denote sums over i in U and 1,3 (i<}) in U; 2/, E/E/
by Lo we mean sum over { in U outside s

will mean the corresponding sums for units in s; A design for which

/X {(<1), 1 € U, is called an IPPS or mps (inclusion probabllity

n,=Nnx

p:‘npaitional to slze) deslign. Any other deslgn ls a non-IPPS design.
By Ep-(Vp) we shall mean expectation (variance) over design p. From
Godambe and Joshi (1965), Godambe and Thompscn {(1977), Cassel, Sirndal
and Wretman (CSW, say, 1977) among others it is well-known that based

on an IPPS design the classical Horvitz-Thompson (HT, say, 1952)
estimator (HTE, say), namely

- y
-1
1

is a good point estimator for Y. For t the value of

M=EE (t-Y)°
. mp |
is sultably controlled vis-a-vis
EE (e-Y)®
m p
for a rival estlmator e for Y satlisfyling deslgn-unblasedness condition

Ep(e) = Y for every Y = (yl""’yi""’yN)f

The value of M is further controlled if ‘e, is proportional to x

'
i i’

In large scale sample surveys, however, 1in practice one can
hardly employ an IPPS design. This is because {a) they involve many
varlables for each of which the survey population total or mean \is
requiréd to be estimated, (b) a single design ls adopted for the
entire survey and as such (c¢) even though for every varlable y of
interest one may find an auxiliary varilable x for which (1.%1.1) |is
plausible, the IPPS requirement cannot be met for each such pair

(v,x). Yet, HTE is traditionally ‘an oft employed estimatﬁr' and is



believed to perform well whether (1.1.1) is tenable or not, in the

sense that
- 2
V=EF (t-Y
p( )

is sultably under control if p is so deslgned that yi's and ni’s may
be poslitively well-correlated.

In this cuwper we (1) rule out IPPS designs, (ii) consider HTE
alone as a point estimator for Y, (iil) believe the model M of (1.1.1)

as appropriate, propose to (iv) derive estimators say, v, for a
sultably defined measure of error of f, ag done below and (v) examine
the performances of conflidence lntervals (CI,say) for Y based on (E.V]

as competitors against a standard one, namely, (E.VYG). Here

}:/E:/ Y. Yi 2
v = A [..._.l_._.. ‘j ]
YG i]j m nj

= (ninj - “ij] / LR is the well-known estimator of V given

with ﬂij
by Yates and Grundy (YG, say, 1953).

Our intentlon is to demonstrate, if poasible, 1hal a variance estimator shat uniike vy uses M Is preferable io vy g when M s plausible.

With any point estimator e for Y, linear in Yy 1 In s, admitting

a posltive~valued variance estimator v, for large samples, it is usual
to regard
(e-Y)

Vv | |
as- a variable 'tn-i following Student's t-distribution with (n-1)

d =

degrees of freedom (d.f.) or as a standardized normal deviate T with
N(O,1) distribution. From thlis one justifiably sets up 100{1-«)

percent confidence Interval (CI) as
i e ’
e * Cm/zv v, azin (0,1), for Y,

,, s the upper 100a/2 percent point of the distribution of t

or T. Since v

where C&

G does not use (1.1.1), we consider it of interest to

try alternatlve varlance estimators v for t 1n mnstructing CI’ s,

namely, t * C_,,V v , which utilize (1.1.1). For t ‘based on IPPS

designs’ model-based varlance estimators exist in the Iliterature,.



Brewer and Hanif  (1983), Kumar, Gupta and Agarwal (1985) and Brewer

{1990) approve of such a variance estimator, namely,

_ E:’}:‘ SUNRAR
T [ T T ] '
i J

This is proposed by them to rectify the alleged deficiency of Yva in
the latter’'s possibility of ylelding negative values. To fix the
constant K. in it Kumar et al (1985) 3

O
(i) assume, following Smith (1938) and Brewer, Foreman, Mellor

and Trewin (1979) among others, that

c, = o X, = a~f1, say, o {>0) unknown o (1.1.2)

but g 1s a known constant within [0,2]; In thlis case the model

occassionally will be denoted by M(f);

(i1) note that for an IPPS deslgn M equals
| 2

oy
Z T (1—1:1] = MO’ say, and

2
(11i) equate EmEp(VKGA) to MO' with-a*1 subject to (1.1.,2).
Nezdless to mention, since Ep{vyg) = Ep(i - }’)2,' Em Ep(vy g) equals Mg too. .
Of course EprGA] # V i.e. vp., 1s not ‘design-unpiud ’ and
Em(VKGA) # Em(V) i.e, VA is not ‘model-unbiased’ for V. For

definition of model- unbiasedness we follow Royall (1970). Encouraged

by this we seek 'mndelﬁbased’ variance estimators for t without
insisting on requirements of (a) design-unblasedness or (b)
model-unbiasedness, But taking our main o¢object as construction of CI

for Y wvalid under large samples we  seek ‘Asymptotically

design-cum-model~unbiased’ variance estimators for t. Explicitly,

permitting the use "exclusively of non-IPPS designs" we seek variance

estimators, say, m, satisfying
1imE E (m) = EE (t=Y)% = M = M_ + B°V(x) (1.1.3)
p m mp | 0 | | |

say, writing

Vix) = Vp[ Z/

. . x, %, ‘2
J=2 by [m =)

Xy
)



| % 2 _ Zy(e) = Y]
Noting Em (¥ ~ }"}2 = Ea*?(-%— —1)"2 4 I}Gr.r'? + ﬁﬁ(ﬂf-ﬁi.-— X)2 it follows also that EpEm{i—Y)* = My + A V(z) = EmEBp(f—Y)

We assume throughout that Ep and Em commute as operators and by

limEp we mean the following, adopting Brewer’s (1979) approach,

According to this approach, we suppose that U=(1,,..,1,...,N),
1=(y1,...,y1,...,yN]. §=(x1,‘..,x?,...,xN) and simllarly other related
vectors __H_=(w1, T IR ,wN), Wy being values of a real variable w,

reproduce themselves T(>1) times in a way to yield the following

entities:

U(J)=( (J_1]N+1I“‘l(J_I)N+1l“‘I(J-1)N+N )r
X(J]=(Y(J_1)N+1i'--:Y(J__I)N_l_il-'*rY(J_llN_'_N): J=1,..,T,
Up=C UC1), ..., U(d), .., U(T) ), Xo=(X010, .0 X 00D, 0, X(T) D,

such that for each fixed I (=1,..,N), {(j-1)N+i represents the same 1}
for each j=1,..,T. From each U(]j), samples s(j) of the form as s are
selected, ‘independently’ across j=1,..T, according to the same desigﬂ
as p and these T samples are pocled Into an amalgamated sample
sT=(s(1),...,s(T}). The selection probability of S is then
pT(sT)=p(s(1))--'p(s(T)). the resulting sampling design belng P If
corresponding to an estimater e=e(s) for Y one conslders the estimator

'e(sT} for TY, then

lim E [ 1 e(sT)]
T—0 pT T

is abbreviated ' as limEp(e). If this equals Y, then e 1is
‘Asymptotically design unbiased’” (ADU) for Y. Employing Slutzky's
theorem (ref,Cramér(1966)) applicable for continuous, especially
raticnal functions, several simple and convenient ‘asymptotic’ results
are avallable with this approach as wlll be 1llustrated in later

sections.

Under the model M, an ADU estimatnr, namely the well-known

generalized regression (Greg, say) predictor
Yy ' - ) U'i¥y
% =) w. 8y gsf“[ R - Z/T] I (1.1.4)
S R T K/ Z Qkxk. o

for Y, with Qi as any asslignable positive constants, is available

r



[ref. Sdrndal (1980) and S&rndal, Swensson and Wretman (1989)] with
its properties elaborately described in the recent book by
Sdrndal, Swensson and Wretman (SSW,1n brief, 1992). For this tG’

Sdrndal (1982) gave an approximate variance formula

E 2
S Ty (-2 )
Zij 1 [n‘i rrJ

| _ B | - 2
where E1 = yi xiBQ' EQ Z yixiQiﬂi / Z 31Qini, along with two

estimators, to be briefly called Tay and Tay-Z2 respectively given by

e | € 2
oL o (2]
n, Hj
8. ei gsjej 2
nd, Vg ZZ sy (-t
where, ey =Yy - 1% Z/Yi 19 / ZJ 19

Checking that,

2 "%
lil‘l‘lEpEm(tG"Y) = Z—&T[l-ﬁi] = MD’

in estimating M in (1.1.3) for the component MD in M we propose VGJ,

J=1,2 as two possible estimators — detalls discussed in sectlion 1.2,

Following Kott (1990a,b)},asa model~based estimator for ‘a measure of

error of t' one may take

.(:
1

v E (t-v)? ' (1.1.5)
Emﬂv) m |

with v as any varlance estimator for t to start with, taken, say, as
VYG or VGJ - j=1,2, provided VK.iS free of unknown ‘model parameters’.,
Unfortunately, in each of these three cases Vg is ‘not model-free’ and

hence unavallable. In the next section we propose various cholces of

m subject to (1.1.3) and other alternative variance estimators for t.
Since analytic study of their propertles is not easy, we consic_ler

varlous perfurmance characterlstics of CIl's based on various cholces

of (t,v) through a numerical exercise carried out by simulations,

10



1.2 MODEL-BASED VARIANCE ESTIMATORS.

We throughout assume that M in (1.1.1) is tenable, To estimate M

in (1.1.3) we need to estimate Bz and MO but V(x) may be used itself

or may be estimated by

A A X X 2
V(X) = Z/Z/ 1J [ -'--—1- e ——-"1 ] or by V*(=]={Bf§ﬁ%"3)2-
3 T o

For Bz the following three estimators are proposed, namely,

A Yy ¥
2 i J
=) L L)
s ” /YL
"1J nij
| A Yy Yy ~

Exccp{ simplicity these have no other known properties, Many other choicea are possible, For illustration we restrici only to these three,

"
Bz

To estimate MD we proceed as follows. Let mi’s be weights tc be
~appropriately chosen and t(w) = E’o:i(ri-;)z, where ri=yi/xi, r =
E/ri/n. Two sets of mi’s are suggested, namely, mi(l) and a:.l(z)

respectively obtalned on (i) equating limEpEm[t(m)] to MO and (i1) on
equating Em[t(m)] to wai(l—n )/ni as

mi(l].

n(n—lT

XE Xz
n i 1 1 -
“(2) =35 [ 2 " n(n-1) E 2 1 “1)]'
Ty "

From these we suggest estimating MD by any of the following:

|
-
i
AR
—
<
Fe 1O | e RO

A A - |
o gy I Y
Mo(l) = Eai(l)(ri r), HU(ZJ E:mi(ZJ(fl r}-,

A ' Ep[E/ai(IJ] A
ﬂG(SJ Mo(l)

/.
Epmi(l)

11



(n~2) i
MO(].) (n_lj ni (1"7'[1]
= 2 s
X X
i 1 i
Z > (1—111)“ —:T Z fl-—‘l‘[ )
1 i
2
|
A E [E’ei(ZJJ A E: m, (i—ui) A
My (4) = £ y M,(2) = M, (2)
S, (2) x°
pi L (4em,)
2 i
5

Alternatively, writing =z =y1/1t “z_=>.“.’fz /n, welghts «

1 1’ 1

determined as «, (3) and «, (4) so as to estimate M

;  may he

L/ 2
0 by z(a)=Z 4:::1(2“,L z)

such that limE E [z (e) ] ec[uals M +ﬁC with C as a known constant.
This approach yields

_ 1
mi(SJ = = [(1 -7, ) ~

1) (n-Zn )]

_ n _ 1 _
and, mi(4) = 5 [(1 ni] NS (n-Z ni)]

for which C respectively equals

X 2
. i X
Cl—Zo:i(B)ni[ - X ]
i )
X )24 2
and, C,=) a, (4)n L 1 X .
2 i i ni nk

~

-

Hence we propose two more estimators of MO as
A -2 Az
MO(S-). = Eai(S)(zi—z) -R Cl-
A -2 Aa
and, MD(6) ='Ea1{4](zi—z) -B'Cz
Aa - hz o | ' |
with 87 as one of Bj’ J=1,2,3. In using TAY as an estimator for MO we
| -1
consider only 4 alternative cholices of (Q, as L , i_, 1/:«'.2 and
| o i “ixi Kixi 1
1/}(1 for which we write le respectively a8 VH, B' vS, vsf to

assoclate the names of Hajek (1971) and Brewer (1979) with the first

12



two as they adopted these cholices and with the last two we associate

the name of Sdrndal (1980) who first proposed the Greg predictor. For

TAY-2 we use only one choice of Qi for simplicity as nlx for which
| f X | I
one may check that v = Vg = Vp (say). Writing ¢ for

G2 /
k pX xi/ni

B,H,S,S/,T we propose then the following 66 cholces of m namely,

A A A

., B
5 + Bj Vix), mJ(i) = Mﬂ(i) + B

2

] Vix),

m

J(¢) = v

fa A A
and mj(cp), mj(i) with V(x) in place of V(x) in mJ(fﬁ), mj(i}, for

J=1,2,3 and 1i=1,..,6& respectlvely. To these we add a few more,
constraining (1.1.1) by (1.1.2). Writing A{f)=£fi(1—ni)/ni, then Mﬂ
equals o°A(f). For any choice of (Qi.mi). writing

N
t(Q, )= Z/ml(yl—xlﬁa)z we work out
(1) Em[t(Q,m)]mza(Q,a), (11) 11mEpEm{t(Q,a)]=o~3A(Q,m, _

' Z/ [ 20, X
B.(Q:ar) = X f 1 -
i_ i Z’Q x

k

where,

3 > Q
and,

y

- el SN W

A(Q, «) limEp[a(Q.m)]

2 2
1f1n1]/[ZQkxknk]

Zooy fymy = 2(ZeyQyx

2 2 2 2 2
+ (o, xpm )(EQixifini)/(EQkxkﬂkl :

1 1

Then we propose

A A

- t(Q,«a) 2
Ml(f) ® 70 ) A(f) + BB
A A

as alternative choices of m subject to (1.1.3) with B as either V(x)
A A A | L - -
or V(x) and Bz as Bj, J=1,2, 3.

Moredver, starting ﬁlth v, = E/(zi—zdz and noting that

13



(1) Em(vz') = ¢°a + B°b, say, with

£ | X, )
a = n-1 . and, b =E [ L _ —l-E . J
n s n I T
T | 1 k

and, (ii) limEpEm(vz] = ¢°a’ + ﬁzb/,'where,

X 2
and, bf= Zﬂ: [ : —-)S-—] )
i T, I

we propose further alternative forms of m as

i eee———

Fa A h.z
M, (z) = A(f](vz—ﬁzb]/a + B°B

d :i (z) = A(f) —hzb’ /a’ + hzs
and,, > Z (vz 3 ) a B B.

In our simulation studies reported in Appendix—A, at the end of

A A A
this chapter, we do not cover Mz(f) and M (z) but treat Ml(f] with 8
alternative choices of (Q.,,x,) as (—x 1 .1). ( 1 , 1 ) ; , - ),
2 R | f f f f Tt

- i i ' i1

1 i
( ; ’112)' ( ; ' 21)' ( nlx ' ; P nlx ’ z) and nlx ’ z—)'

1 =@ i = i1 i i1 = il =

i h:l 1 A
These 8 forms of Ml(f) will be denoted by mij with B as V(x) and mij
A A A -

with B as V(x), i=1,..,8, and j=1,2,3 for ﬁz as Bz; The 3 cholces of
A A, A, J A
Mltz) with BJ 8° will be denoted by mg‘j with B as V(x) and by Mg 4

with B as V(x).

Inﬂnilely mahy more choices of m subject to (1.1.8) are obviously posstble. We canalder the above cholces only to try for alternatives to
vy which may fare better than it when M {s appropriate. Any general quadralic form in the sampled g;'s or Do (y; —ﬂq:t‘)2 inslead

of t{a) or r(a) might be tried applying the constraint (1.1.8) and V?(z) in Heu of V{x) and V(:) Since our exercise is numerical we
illustrate only a few, -

1.3 SIMULATION AND CRITERIA MEASURE FOR COMPARISON OF
COMPETITIVE CONFIDENCE INTERVALS.
We take N=150; o=1, B=1, a few cholces of g 1In [0,2], zi's as
independent N(D,xi] variables and draw .xi‘s independently from the
density |

i -%/8.93
e

f(x) = , x>0

o
w

14



to generate 1=(y1,...,yi,...,yN)f; ;§=(x1,...,x1,...,xNJ/' subject to

(1.1.1). Also we take a few choices of h in [0,2] to obtain
size-measures wi=x]£ to be used in drawing samples of size n=32 from
U=(1,...,150}) adopting the well-known sampling scheme due to Hartley

taken proportional to w;

and Rao (HR, in brief, 1962),. For this, "1AFill correlate well and

pogsltively with Yy 1 € U To calculate d=(e-Y)/¥ v for varlous

choices of v and e taken as E, we replicate sampling R=1000 times. By

Er we denote sum over these R replicates. To discriminate among the

Cl's given by e % Cmfzv v we consider the following criteria heedling

Rao and Wu’'s (1983) works. In our numerical illustrations we show

only «=0.05 and C as T, and write

A= R Z (e-Y)2 and, P = —-;-1{-* Z V.
. r

(1) ACP {Actual coverage percentage} : The percentage of the R
replicates for which CI covers Y. The closer this is to

100(1-a) the better.
(2) ACV (Average coefficlent of variation) : The average over R

replicates, of vV v /e reflecting the length of CI relative to
e. The smaller it is the better. |

(3) PB (Pseudo relative bias of v) : B(v) = A (——L Z v ~— A}.
A R r |

| | 1 1 5 1/2
(4) PS (Pseudo relative stability of v} : S(v) = [ z (v - A) ] :

(5) PL (Pseudo standardized length) : L(v) =-rl~§: vv /VA .

(6) B(-) (Bias of d) : B(d) = 1 E: d
R r

(7) M(+) (Mean square error (MSE) of d) : M(d) = —i—?EE:(dmﬂ(d))z.
r

| 1 a-B(d) )°
(8) 1/61(-) (Root beta one) :v‘ﬁl(dJ = — Z[ ] :
| | - "R v M(d)

S | d-B(d) )%
(9) E(+) (Excess measure) : E(d) = B, (d)-3 = — E:[ ] -3,

| | | v M(d)

| 172
(10) PCV (pseuda coefficient of variation) : [ E: (v - P} ] .

15



The smaller these (3)-(10), the better,

To use {(e,v) with (1.1.2) assumed to hold good we take 4 cholces
of g as 0.4, 0.8, 1.2 and 1.6 and compare the CI's in terms of
(1)-(10) above. If the discrepancies over these 4 choices of g are
small then we claim ‘robustness’ of the procedures. To make the
procedures still more robust we add an intercept 8 in the model M of
(1.1.1). We numerically lllustrate only one cholice of 8 as 10.0. We
write 'go for this g to distinguish it from g in N(O,xg] ‘used in
generating Y,

" Besides the global empirical studles as above where the criterion
measures relate to all the R replicates, followlng Royall and
Cumberland (1985) and Wu and Deng (1983) among others, a conditional
empirical study 1is also made. Following Godambe (1989) we take

f

b :
Z/ 1 as an ‘anclllary’ statistic and split the R samples into 10

n

| | |
equal groups. The r-th group is so formed that the set of 100
X |
replicates for which the values of E:/ - are the least, constltute
| _ )

the first group, the second group consisting of the next 100
" |

i

s

each of the measures formed from the respective groups are calculated

consecutive higher values of Z/ and so on. Then, G=10 sets of

and compared group-wise. Writing vr, Ar and Pr for v, A and F

respectively as calculated from the r-th group of 100 replicates we

wrlte

[ V’E: ) V’E: ]2 ]1/2

d(v) = [ _l_
G 1

a1

to denote an over-all measure of performance of CI based on (E,v].

The smaller d(v) thé bettér is v. Further, we take Z/—--:é——- and
i

()T

same study. Numerical illustrations are not reported for these. For

>as additional ‘ancillary’ statistics and repeat the

discussions on such criteria one may consult among others, Rao and Wu

(1983), Chaudhuri and Stenger (1992),

The findings are illustrated in Tables A.1-A.6 in Appendix-A
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at the end of this chapter and some remarks are made in section

1.4,

1.4 REMARKS ON ILLUSTRATED FINDINGS.

Numerical values are Lllustrated selectively to highlight better
performances of the newly propnsed variance estimators, Inferior
performances are generally omitted but even the lInferior variahce
estimators whnse performances we do not show are never worse than.vYG
except occaslonally in respect of d{v). Even the otherwise good ones
turn out worse than Vyva and v(T}) 1n terms of d{v). To emphasize
better performances of some of our proposed procedures some favourable

values are ‘underscored’ while the unfavourable ones are ‘starred’.The
A A | |
variance estimators mJ(S), mJ(GJ, mj(S), mj(ﬁ), j=1,2,3 turn ocut less

impressive as improvements over Vyg The cholce of g in [0,2] is not
A

very érucial in yleldlng variance estimators mij;i

1,..,9;J=1,2,3, but
smaller values of g seem to be better choices, |

More commente follow at the bottom of each table below. A mesaage that seems to emerge from our numerical findings is that if the
model M is correctly pestulated, then some of our newly proposed model-based variance estimalors may be profitably employed as better
alternatives to the traditional Yales-Grundy variance estimator which uses no model. Our findings displayed in the tables below may
ansist in making a judicious cholce in a given ailuation depending on the Imporlance one may aitach to bhe various performance criteria
we mention. Of colirse our findings have limitalions because real life slluations may-not match the simplifylng postulations we have made.
" 8ince we believe that if 8 model [s correctly pastulated then {1 should be used in analysls expecting better reaults than without using it
but we have no theory 4o prove that this muat be so, we preaent our numerical findings to provide evidence which seems to support what
we anlicipate though not In a very pronounced or obvious manner. We believe this exercise is warth reporting.
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Appendix A

The tables below uae the {ollowing abbreviations described on p.15: ACP = Actual coverage percentage; ACV = Average coefficient of
variation (CV); PB = Pseudo relative blas of v; PS = Pieudo relative stability of v; PL = Pacudo standardized length; B(.) = blas;

M(.) = MSE, r—ﬂl m Rool beta onej B(.) = Excess measure and PCV = Paeudo CV. Further [ = Horvitz-Thompson estimator and v
= estimator of Em Ep(l - F)E.

Table A. 1}

Performances of (t,v) under M. g=1.2, 8=1.0, h=1.6.

Especially good (bad) values are underscored (starred).

v 10%Pcv AP 10%Acv PB PS PL 10°B(d)  M(d) VB (d) E(d)

* * * ¥ »* * ¥*

vyo 1768 94,1 4930 0012 .1772 .9808 17.73 1.097 .13 .21
W, (B) 1493 94,1 4906 .0128 1457 .9768 .57 1.083 .06 .09
ﬁl(H) 1493  94.1 4905 .0131 .1456 .9767 .54 1,083 .06 .09
ﬁ}(s) 1493 94,1 4906 .0128 .1457 .9768 57 1,083 .06 .09
_ﬁits’) 1491 94,1 4903 .0142 .1451 9762 .44 1.085 .06 .09
m,(1) 1467 94.3 4899 .0158 .1423 .9756  1.04 1.085 .05 .09
‘ﬁé(zl 1467 94.3 4899 .0158 .1424 .9756  1.01 1.085 .05 .09
7,(3) 1483 94.2 4904 .0138 .1444 9764 .03 1.058 .06 .08
‘35(4) 1483 94,2 4904 .0138 ,1444 9764 .03 1.084 .06 .08
‘ﬁlts) 1756° 94.2 4930 ,0008 .1759 .9808 15.?1*| 1,098 .13 .21
m,(6) 1478 94,2 4932" .0016 .1754 .9812" 16.28 1.095 .12 .21
®,(T) 1550 94.3 4908 .0112 .1517 .9771  3.14 1.085 .08 .09

| .
Commenia: Poaslbly because of postulated normalily of errars each ACP i1 so good; each model-based v except m(5} has s vasily

superior
In other respecis also vy

—— ——
PCV to that of model-free vy ;i except my{5), m1{B) each has much betfer AG‘\’ than vy ¢ glving CI's with shorier iengths,
G 18 outperformed by others except in terms of pseude relative bias, Since vy ¢z is design unblased white others

are not, PB for vy ¢hould naturally be small as it turns out $o be,

Table A.?2

Conditional performances of (E,V} under M. g=1.2, B=2.0, h=1.6,

Ancillary=£%xl/ni. Parentheses glve values of (1U4PCV,ACP,1DDACV,E[d)].
Group-wise values glven consecutively for 10 groups.
v ( 10%PCY, ACP, 100ACV, B(d) )
vge (1303, 92, 2,63, .07) (1708, 92, 2.65, .10) (1665, 95, 2.66, .18)
(1490, 93, 2.65, .02) (1974, 95, 2.59, .06) (1289, 92, 2.57, .14)
(1307, 96, 2.64, .02) (1823, 98, 2,69, .14) (1778, 92, 2.63, .10)
(1725, 97, 2.75, .07) o
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Table A.2 ( continued)

v ( 10%PCV, ACP, 100ACY, B(d) )

™ (B) (965, 91, 2.60, .05) (1246, 94, 2.61, .08) (1123, 96, 266, . 14)
(1029, 94, 2.62, .01) (1425, 94, 2.55, .08) ( 849, 92, 2.56, .11)
( 989, 95, 2.60, .07) (1262, 97, 2.67, .16) (1177, 94, 2.60, .O7T)
(1098, 98, 2,73, .10)

™, (1) ( 951, 91, 2.60, .05) (1228, 94, 2.61, .08) (1090, 96, 2.65, .14)
(1985, 94, 2.62, .02) (1394, 94, 2.55, .08) ( 826, 92, 2.55 .11)
( 964, 95, 2.60, .01) (1235, 97, 2.66,~.17) (1146, 94, 2.61, .06)
(1094, 98, 2.73,-.10)

A "

m3(2) ( 950, 91, 2.60, .05) (1227, 94, 2.61, .08) (1089, 96, 2,65, .14)

| (1984, 94, 2.62. .02) (1393, 94, 2.55, .08) ( 825, 92, 2.55, .11)
( 964, 95, 2.60, .01) (1233, 97, 2.66,~.17) (1144, 94, 2,61, .06)
(1091, 98, 2.73,-.10) |

N.(T) ( 993, 90, 2.60, .06) (1284, 94, 2.61, .08) (1185, 95, 2.65, .15)

(1113, 94, 2.62, .01) (1481, 95, 2.56, .07) ( 892, 92, 2.56, .12)
(1043, 95, 2.60, .00) (1313, 97, 2.67,-.16) (1230, 94, 2.60, .07)

(1099, 98, 2,74,-.10)

Comments: Poasibly because of reduced group-wise numbers of replicates we notice fluctuations In ACP.values in the range 90-98 per
cent. Though the smallest and the largest ACP values correspond more or less respectively to the least and the higheat values of Lhe
ancillary for évery v, no definite linear trend 1s discernible. Similar {s for PCV and ACYV bul B(d) behaves quite irregularly. But in

vindication of our approach, vy o is outperiormed by the four aliernatives illustrated In this table.

Table A.3

Condlitional perfnrmances of (E,v) under M, g=1.2, 3=1.0, h=1,6,

Anclllary=2<x /n,. Parentheses give values of (104PCV,ACP,1DUACV,B(d)).

S |
Group-wise values given consecutively for 10 groups.

\ ( 1G4PCV, ACP, 100ACY, B(d) )}

(1467, 93, 4.88, .06) (1870, 93, 4.92, .06) (1761, 95, 4.97, .15)
(1571, 96, 4.95,-.01) (2219, 93, 4.79, .07) (1395, 94, 4.77, .15)
(1466, 93, 4.90,-.01) (1972, 98, 5.05,-.13) (1923, S0, 4.90, .0S5)
(1791, 96, 5.17, .07)

YG

ml(s’) (1287, 94, 4.85, .05) (1604, 94, 4.88, .04) (1445, 95, 4,95, .13)
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Table A.3 (continued)

v ( 10°Pcv, ACP, 100ACV, B(d) )
(1291, 95, 4.92,-.03) (1905, 93, 4.77, .08) (1146, 94, 4.75, .14}
(1296, 92, 4.85, .03) (1655, 98, 5.02,-.15) (1582, 90, 4.87, .03)
(1438, 97, 5.16, .09)

m,(1) (1271, 94, 4.85, .05) (1584, 96, 4.89, .04) (1436, 95, 4.96, .13)
(1237, 95, 4.92, .03) (1867, 93, 4.76, .08) (1122, 94, 4.75, .13)
(1266, 92, 4.85, ,03) (1628, 98, 5.02,-.15) (1551, 90, 4.87, .03)
(1436, 97. 5; 151_;09]

my(2) (1271, 94, 4.85, .05) (1585, 96, 4.89, .04) (1440, 95, 4.96, .13)
(1239, 95, 4.92,-.03) (1868, 93, 4.76, .08) (1123, 94, 4.75, .13)
(1267, 92, 4.85,-.03) (1628, 98, 5.02,~-,03) (1552, 90, 4.87, .03)
(1436, 97, 5.15,-.09)

m,(T) (1316, 94, 4.86, .05) (1651, 94, 4.88, .04) (1521, 95, 4.96, .13
(1400, 96, 4.93,-.03) (1974, 93, 4.78,-.08) (1200, 94, 4.76, .14)
(1363, 92, 4.85,-.26) (1723, 98, 5.04,-.15) (1653, 90, 4.87, .03)
(1440, 97, 5.16,-.09) |

P's range from 90 1o 98 per ceni posslbly again becanse of smnall replication sizes bul thelr pattern {8 qufte

Comments: Here also AC the poorest performer among the five dlaplayed.

irregular. Similar Is wilh the other criteria, Bul lo our sabisfaction vy g turne oud

Table A. 4

Robustness of (?.v). g=1.2. B=1,0, h=1.6, 6=10.0. Parentheses glve

values for four cholces uf'g0 as .4, .8, 1.2, 1.6. The first rows for a

particular v give values of (104PCV,ACP,PB) in this order and second

rows glve vélues for 100ACY and -10B(d) respectively. .

R |

| &g o

v (.4 .8 1.2 1& ( .4 .8 12 1.6) (.4 .8 1.2 1.6)
?”311 (388, 402, 421, 444)  (97.8, 97.8, 97.3, 97.0) (.45, .39, .35, .31)
5 (3.70, 3.63, 3.57, 3.52) (.69, .73, .77, .82)
,, (390, 406, 426, 451) (97.8, 97.8, 97.8, 97.6) (.47, .44, .43, .43)
(3.73, 3.69, 3,68, 3.68) (.68, .72, .75, .77)

(407, 420, 434, 450) (97.8, 97.8, 97.8, 97.6) (.56, .52, .47, .43)

zif_ 31
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Table A.4 (continued)

g, B
v (.4 .8 1.2 1,6) { .4 .8 1.2 1.6) (.4 .8 1.2 1.6)
(3.85, 3.79, 3.73, 3.68) (.67, .70, .74, .77)
~ |
m,, (460, 478, 495, 512) (98.6, 98.3, 98.2, 98.1) (.74, .71, .67, .64)
(4.05, 4.01, 3.97, 3.84) (.63, .66, .69, .71)
N J
me, (475, 494, 513, 530) (98.6, 98.5, 98.2, 98.2) (.78, .75, .72, .69)
(4.10, 4.06, 4,03, 3.99) (.62, .65, .67, .70)
fQéa (453, 473, 493, 513) (98.4, 98.2, 98.1, 98,1) (.65. .61, .57, .53)
(3.94, 3.90, 3.85, 3.80) (.69, .73, .76, .80)
fﬁ%z (417, 440, 464, 489) (98.2, 98.1, 98.1, 98.1) (.62, .61, .60, .59)
(3.91, 3.91, 3.89, 3.88) (.60, .63, .67, .70)
A
My, (421, 443, 468, 494) (98,3, 98.2, 98.0, 98.1) (.62, .62, .62, .62)
(3.91, 3.91, 3.91, 3.91) (.57, .61, .64, .68)
,‘ﬁga (552, 564, 578, 594) (93.0, 92.9, 92.6, 92.6) (.46, .51, .56, .60)
(3.00, 2.99, 2.99, 2.98) (.58, .62, .67, .71}

L
Commenid; Except for mga, the ACP exceeds
also there is undoubted robustness, In termd o
© Inp terms of PB the varlace estimators mia and m52

seem to be robust.

95 per cen) but in every case there i lillle ﬂrutiﬂ-n wilh changing g9o. In reipect of ACV

F Py
{ PH the robust procedures are my9, myg and '“Bl None seems robust in terms of PCV.

fgfd :

Table A.5 |
d-values for v with ancillary'ifxi/ni and various (g,B,h)
I. g=1.2, B=1.0, h=1,6 S
. ‘ Vo N\ A A y, A A A A |
“d: 5.43 5.45 5.45 §5.45 5.45 5.46  5.46 5. 45 5,42
 II. g=1.6, B=1.0, h=1.6 N
A A A oSy A A A A A
SV vy mB) W (S) W () (1) m(2) o (3) o, (4) A s, a) m, (T)
d: 8,07 806 B8.06 806 8,07 8.07 8.06 8.06 8 08 8.03
}f{;l. g=1.2, B=2.0, h=1.6 | |
. / | |
v ovee m(B) m (H) m(S) m(S) m1(1,2,3;4) m, (5) m (6) m,y(6) m (T)
6.17 6.18 6.18 6,19 6.19 6.20 6.18 6.16 6,16 5_15

Comment: Each varlance estimater is nearly at par.
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Table A.6

Performances of (t,v) under M(f). 6=0,0;, g=1.2, B=1.0, h=1.6.

Parentheses give values for four cholces of go as .4, .8,

YYG’

rows for a particular v (only one entry of course for v

and -10B{d) in succession.

1.2, 1.6. For

however, only one entry is relevant with g equal to 1.2. The first

YG) give values of

'(104PCV, ACP, 105ACV) in this order and the second rows give values of PB

( .01, .01, ,00, .01)

&0
v ( .4 .8 1.2 1.6) ( .4 .8 1.2 1.6) ( .4 .8 1,2 1.6)
Voo ( — » — 4 1768, — )  (—, —,94.1, — ) (—, — ,4930, — )
(#I—I'UO:'—_) ("_'r""'_llozr""']
m,, ( 6333, 6292, 6275, 6280)  (95.9,95.2,94.8,94.2)  (5104,4989, 4878, 4773)
( .05, .01, .04, .08) (-.04, .04, .03, .03)
m,, ( 6756, 7218, 7812, 8549) (95.9,95.1,94.9,94.7) (5084, 4947, 4892, 4833)
( .05, .00, .03, .05) ( .03, .03, .03, .02)
m,, ( 8568, 8519, 8507, 8526) (95.2,95.1,94.9,94.8) (5030, 4963, 4899, 4837)
| ( .03, .00, .03, .05) ( .03, .02, .02, .02)
n,, (12731,12647,12615,12630) (94.6,94.6,94.6,94.7) (4993, 4918, 4903, 4889)
( .00, .01, .02, .02) ( .01, .01, .01, .01)
me (14126, 14032, 13995, 14008)  (94.5,94,5,94.6,94.6) (4907, 4905, 4903, 4902)
( .01, .01, .01, .02) ( .01, .01, .01, .01)
m., ( 8618, 8559, 8530, 8563) (95.3,95.1,94.9,94.7) (5028, 4963, 4898, 4886)
( .03, .00, .03, .05) ( .03, .02, .02, .02)
m,, (12705,12617,12571,12616) (94.6,94.6,94.6,94.7) (4940, 4925, 4909, 4893)
| ( .oo, .01, .02, .02) ( .01, .01, .01, .01)
no, (14065,13969,13918, 13965) (94, 4,94.5,94.5,94,6) (4917, 4914, 4910, 4808)
( .00, .01, .01, .01) ( .01, .01, .01, .01}
mg, (15223,15144,15119,15143)  (94.4,94.3,94.3,94.0)  (4969,4952, 4936, 4921)

( .00, .00, .01, .01)

Comments: All the m;;'s are poorer than vy g in terma of PCV bul have belter

. feast when go Is not less than g. In terms of B(d) aleo they cutperform for most choices of gg-

2.2

ACY for every g and are better in lerma of ACYV at



CHAPTER TWO

CONFIDENCE INTERVAL ESTIMATION USING GENERALIZED REGRESSION
PREDICTOR AND ITS MODEL-CUM-DESIGN-BASED
VARIANCE ESTIMATORS

2.0 SUMMARY.

In this follow-up of Chapter One we pursue with the same model M,
but conslder instead of the Horvitz-Thompson estimator the generalized
regression (greg) predictor as the basic point estimator for the
survey population total Y. To construct confldence intervals for Y we
derive variance estimators for it adopting Brewer’s asymptntic
approach as In Chapter One. Working out the asymptotic 1limlting
design expectatlon of the model expectation M of the squared
difference between the greg predictor and Y, estimators m for 1t
called varlance estimators are derlved. Such an m is required to be
asymptotically design-~cum—-model-~unblased for M. Theoretlical
comparison among the new and traditional variance estimators of the
greg predlctor iIs again found dificult, So, deslgn-based efflcacies
of the confidence intervals based on them are numerically compared
through simulations according to various criteria, Granting
correctness of a postulated regresslion model some of the newly derived
varlance estimators are demonstrated to perform as good competitors

against the ({raditional ones in yielding serviceable confidence

intervals.

2.1 INTRODUCTION.

Pursuing with the same model and notations as in Chapter One we
conslder here for Y the generalized regression (greg) predictor as the

basic estimator, given by
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Z‘yi
t = g
g “1 si ’

X x. Q.
E i
g51=1+[}{_ T] iii : | (2.1.1)
1 & x.Q

It follows that,

1—m

2_ 2 1) _
limEpEm(tg— Y) Zcri ( T, ] = M, say, (2.1.2)

For tg we seek a varlance estimator m satisfying

limEpEm(m] = M, (2.1.3)

Treating the distribution of
d = (tg-— Y) /7 ¥V m

for large n as close to that of T or of Student’s t with (n-1) degrees
of freedom, we _fﬁllﬂw up the work in Chapter One to construct
confidence intervals (CI) for Y in terms of..[tg,m). Failing to
analytically dlscriminate among the Cl's based on various m's and
varlious tg’s changing with Qi's, we resort to simulation studies to

attempt at numerlcal comparisons among them. The findings are

~ tabularly displayed later in the chapter. Encouraging competitlveness

of some of the newly proposed ones agalnst the traditlonal ones is

well demonstrated there.

- wWith «

. of course, as noted in section 1.2 we might use many others. 5

2.2 MODEL-CUM-DESIGN-BASED VARIANCE ESTIMATORS, CONFIDENCE

INTERVALS AND THEIR ASSESSMENT.

To derive m satlsfying (2.1.3) we consider the statistic

| y y 2
) = Z/a'i[ xi | 12/ Xk ] __
B Kk

's as constants to be so chosen that limEpEm[t(m)] equals M,

1

2
- o, o |
_E n-2 1 1 E T k |
Noting Em[t(m)]-_ mi[ — + — - ] it is possible to
i T xk | -
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choose the following sets of such «,’'s, namely,

1
2 2
X X
_ I | B 1 Koo
o, (1)= — [-—;—2-(1 T, ) nTh=1) Z —(1 nk]] and
i T !
2 2
'y D .. 1 K. .
ﬂ.'.i (ZJ- 'ﬁ':_"j [—'—-—2-(1 Tl.'i) nfn-—iT Z/—-—z-(l Hk)]
- Ty Ty

ylelding two alternative forms of m as

Y y 2
= Y e - AT )T e
1 k

m
Yy 1 Yk Y2
m, = o (2][ e s ] ., Two more alternative
2 1 X n pod
] k
choices of m subject to (2.1.3) also follow as
), n-g2 Xa 1_Fk
E e, (1) n—~1 k =
m. = P - m, = K m
3 2 q (1) 2 1M 1 2 Myt
i X — —— X
i 2 n-1 k i
B | 4 k
i
, XE 1~nk
EPE mi(ZJ k T
and, m, = m, = ~ m,.
4 z’ai(z) 2 5:/2 1 ni 2
xi 2
n

For analytical simplicity next we restrict to the situations

where
2 _ 2 g
o = w'fi where fi—xi with ¢ in [0,2], (2.2.1)
but otherwise unknown and ¢{>0) unknown. If f, is  arbitrarily

assigned, then, one may note that

- - 1-m | Y — Y 2
i i 1 k
(1) M=o~2§f . (1111;(1)-—-5[-—-——-—-5 }
i ni | xi n xk

2 n-1 £y '
(111) E_[£(1)] = o® 2 E ~_ and
H) | % 7 |

i

N
i

| f
2 n-1 )
(1) 1nEE [£(1)] = 0®-22 Z
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Hence resqlt the following two more choices of m as

Z 1—*1'[1

fi 1 2

_ g Yy 1 "

Mg = .1 % 1 X and
n-1 i1 i k

n Xz
i
E: 1—ni
fi n y 2
I 026
6 E:l fi xi n xk
n xa
i

Kott's (1990a,b) variance estimators Vi corresponding to v as Vj’

to be denoted as KJ' J=1,2, are avallable, though not generally, but

only under (2.2.1) with fi pre-assigned and may be seen to equal

F v F vz
K,= - and, K_.= where,

1 2V

F=_1 g (t-v)2-= E:/[ s 1] £+ 3 f, .
tT2 m g ni 1 c i

‘Here zc = sum over i not in s,

' £ f
.1 _ ' 1 J
¥y = L Byl _X/Z/ﬁi‘j[mni - ]

2 X X
~ Z“Z/ﬂu[ﬁ - nj]
2 i J
D

2 2 |
Z/xifiqi X, X2
e Ll b
2 ijl m. n
(L% -
k 7k

1 Z Z giifi 32ij
V2 - 2 Em(vz) - ﬁij[ 2 ¥ 2 ]
a {4 T[j
2 1“[ 85174 gijj]

- A
20 Z/Z/ ijh . "3
K7k

Bsi%ifidy 85574t 505
n 14

1 J

b

b



2 2
X.1,Q
LEE gy ey
- . 2 ijl m, “j
X, Q
[ )

In our simulation studies that follow we illustrate only four

choices of Q, namely equal to (l—ni}/nix 1/n,X, respectively adopted

1’ 171
by Brewer (1979) and Hajek (1971), 1/xi and 1/xi. Corresponding tg
will be denoted respectively as tB' tH' tS and tsf.

- The slmulation study here 1ls similar to that in section 3 of

chapter one, the central interest shifting from t to tg, everything

else remalning same.

Slnce for the calculations of m-, m, Kl and K2 one has to fix
fi=xi i.e. know the value of g, it lg of interest to allow a chosen g
5ay, &g, to be different from the true g in o°=0"x7 of the model M(g)

and examine the consequences. For this we c;lcul;te CI wlth various’
g in {0,2])] and 1f the characteristics above remain more or less
stable then we regard the procedures as robust; to extend this study
of robustness we allow a non—zero intercept term 8 in (1.1.1) and in

that case denote the model by HE' Ffurther, regarding

b4 p 4
mZJ L and (2) Z/ Ny Z/ L
i i i

as anclllarles it is of interest to see how the CI’s behave across

samples with the values of (1) and (2) respectively fixed at certain

levels, Numerical findings are not reported for (2).

Numerical findings are summarized in tables below in Appendix-C.

We give ACP for Tt and also for t with o=0.05, the latter within

31
parentheses,

2.3 CONCLUDING. REMARKS,

When a model (1.1.1) seems plausible so that one may legitimately
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employ a greg predictor to estimate Y it seems useful to reckon with a
variance estimator that also takes considefatinn of the model. Thus
model~asslsted variance estimators m,, m, in particular turn out quite
effective competitors against the traditional ones namely VJ, KJ
(j=1,2) even irrespective of the assignment of Qi’s. If one intends
to employ a more restrictive variance estimator like Ki' Kz, m5. m
that require preassigned go"s, there 1is not much risk of
mis-gspeclfication — procedures remain rather robust, If there
underlies, however, a non-zero intercept term in the model which 1is
unsuspected to begin with the situation 1s not so secure. If we
consider group-wlse comparison to take account of a reasonable
'ancillary statistlc, even then model-based variance estimators 1like
ml, mz, ma, l'ﬂtl remain qulte competitlve against vl and even better

than Vo Kl, K2 though the same cannot be said about me.

For further comments we refler o Vi Ifj'(j = 1,2) as 'tradlilonal’ and the other variance estimators as 'new'. From the comments at the
~ bottom of each table below one may nole ihat -lhe balance of relatlive advantages favours the ‘new’ rather than the “traditional’ varielies

of variance estimators {rrespective of choice of Q;'s.

2.8



Summary of numerical findings by simulation.
The tables B.1-B.5 presenied below use the following abbreviations explained on p.15. ACP, ACV, PR, PS5, PL, B(d), M(d),

By — 3 relate respectively to coverage probability, coefficient of variation; bias, elabilily of variance estimator, length of CI; bias,

Appendix B

‘root beta one' and 'excess measure’ of the standardized statistlc d = (& = Y}/ /u.

Table B.

Performances of (e,v} by several criteria, under M, Especially good

1

A=1.0

lﬁll
ﬁsm;

(bad) values are under-scored (starred).jg=1.1,h=1.6,N=150,n=32, R=1000

for the model M of (1.1.1), p-5.

i

e v 10°pPCV ACP 10°ACY  -10°PB PS PL
ty v, 4192 93.8(94. 8) 4258 .54 42 , 98

b v, 4268 93.8(94.7) 4261 .31 .43 . 98
ty K, 4239 93, 8(94. 6) 4258 .49 42 .98
ty K, 4241 93.8(94.6) 4258 48 42 .98
ty my 4150 93, 8(94. 8) 4255 .75 .41 .98
ty m, 4151 93.8(94. 8) 4255 .75 .41 .98
to mg 4178 93.8(94.7) 4256 . 66 . 42 .98
tp m, 4178 93.8(94.7) 4256 .66 42 .98
t, m 4282 94.0(95.2) 4280 .58 .43 98

B 5 > .. " »

b mg 4390 93.9(94. 9) 4281 77 . 44 .98
ty vy 4190 93.8(94.7) 4257 .58 42 .98
b v, 4263 93.8(94. 6) 4260 . 36 , 42 .98
te Kl' 4236 - 93,8(94.6) 4258 .49 A2 .98
ty X, 4236 93,8(94. 6) 4258 49 42 .98
ty, my 4150 93.8(94.8) 4255 .75 .41 .98
ty m, 4151 93.8(94. 8) 4255 75 .41 .98
ty Mo 4178" 93.8(94. 8) 4256 .66 .41 .98

tem, 4178 93.8(94. 8) 4256 . 66 .42 .98

by mg 4282 94.0(95.2) 4280 .59, .43 .98
t, mg 4290 93.0(94. 8) 4280 77 . 44 .98
tg v, 4192 93.8(94. 8) 4258 .55 . 42 .98
te v, 4268 93.8(94. 7} 4261 .31 .43 .98
to K, 4240 93.8(94. 6) 4258 .49 42 .98
to K, 4241 93.8(94.6} 4258 48 . 42 .98
tg m 4150 93.9(94. 8) 4255 75 L4l .98
te m, 4151 93,8(94. 8) 4255 75" .41 .98

tg m, 4178. 93.8(94.7) 4256 .66 L 42 .98
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Table B,1 (continued)

4 5 2

10™PCV ACP 10°ACV  -10°PB PS PL
4178 93, 8(94.7) 4256 .66 .42 .98
4282 94, 0(95, 2) 4280 .58 ;43 , 98
4390 93.9(94. 9) 4280 76 .44 .98
v, 4188 93, 8(94.7) 4255 .67 .42 .98
v, 4247 93, 8(94. 5) 4257 .50 .42 .98
K, 4228 93, 8(94. 6) 4258 .48 , A2 .98
K, 4221 93.8(94. 6) 4258 .49 . 42 .98
m, 4150 93. 8(94. 8) 4255 .73 .41 .98
m, 4151 93.8(94. 9) 4256 .72 .41 .98
m, 4178 93. 8(94. 8) 4256 .63 L A2 .98
m, 4178 93, 8(94. 8) 4256 .63 .42 .98
me 4282 = 94.0(95.2) 4280 .61 .43 .98
m, 4390" 93.9(94. 8) 4280 79" . 44 .98
Table B.1 (continued)
10° 10° 0* 10’ 10° 10° 10t 10°
B(d)  M(d) VB, (d) E(d) e v B(d) M) ¥B(d) E(d)
tp v, 638 1093 815 57 ty v, 646 1094 814 58
tp v, 629 1093 824 51 t, v, 637 1094 823 52
ty K, 635 1094 819 53 t, K, 643 1094 818 53
tp K, 635 1094 819 52 t, K, 643 1094 818 53
ty m 661 1094 802 61 t,m 665 1094 802 62
tp, m, 661 1094 802 61 ty m, 665 1094 802 62
t, my 662 1094 802 58 t, m, 665 1094 802 58
tpm, 662 1094 802 58 t, m, 666 1094 ggg* 58
tp mg 286 1089 946* 106 tyms 290 1089 946* 106
t, mg 304 1089 936 78 t, mg 308 1089 936 78
tg vy 640 1093 815 58 'tsxvl 666 1095 810 59
“?tS v, 630 1093 - 824 51 tS/vz 660 1096 819 54
ot K 636 1094 819 53 toK, 663 1095 812 . 55
to K, 636 1094 819 53 toK, 666 1095 813 56
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ap.e . . L cont . nuec.

- R

"D 3 4 3

10° 10> 1 10 i

_ 10 10° 10
e Vv B(d) M(d) VBilif E(c) e v B(d) M(d) Vﬁl(d} E(d)
tS m, 662 | 1094 8137 6z, tS/m1 673 1094 813 62
tS m, 662 1094 803 6e, tS/.m2 673 1094 802 62
tS m.. 663 1094 802 58 tsfm3 675 1094 802 S8
t. m 663 1094 8(12 58 t./m 675 1094 802 58
5 4 * » S 4 " »
tS M 287 1089 9elb 106 tS/mS 297 1039 946 106
L ' *
tS M 305 1089 936 &l tsfm6 317 1089 936 78
Commenis: For every @ in terms of criteri: AQP, AQV PB, PS5, PL the procedures compete keenly but by criterion PGV aach
ms(f=1y...,4) 12 better than the Jraditiona) ;nes ampng vihich vy is the beat, bul my, mg are poorer. But myg, mg are best by B(d),
Mzd} criteria for each q;,
Table B.Z2
Robustness of Cl's by some criteria, under EG' B=1.0, g=1.2, h=1,9,
g
N=150, =32, R=1000, Consecutive values for f{fx 0 given for
gD=.4,.8,1.2. ACP values for v and tSl separated by slashes,
e v 10% pey ACP 10> ACY
tB Kl 4397, 4416, 4438 93.1/94.1, 93.1/93.9, 93.0/93.8 4799, 4797, 4796
tB K2 4397, 4417, 4438 93.1/94.1, 93.1.93.9, 93.0/93.8 = 4799, 4797, 4796
tE Mg 4055, 4067, 4106 93.6/94.4, 93.5/94.5, 93.1/94. 4 4825, 4797, 4772
tB me 4235, 4235, 4235 93,1/94,.2, 93.1/94.0, 92.8/93.9 4807, 4788, 4768
tH K1 4395, 4415, 4437 93.1/94.1, 93,1/93.9, 93.0/93.8 4799, A797, 4796
tH Kz 4395, 4415, 4437 93.1/94.1, 93.1/93.9, 93.0/93.8 A799, 4797, 4796
tH M. 4055, 4067, 4106 93.6/94.4, 93.5/94.4, 93.1/94.4 4825, 4797, 4772
tH me 4235, 4235, 4235 93.1/94.2, 93.1/94.0, 92.8/93.9 4807, 4788, 47638
tS Kl 4396, 4415, 4437 93.1/94.1, 63,.1/93.9, 93.0/93.8 4799, 4797, 4796
tS Kz 4396, 4415, 4437 93.1/94.1, 93,1/93.9, 93,0/93.8 4799, 4797, 4796
tS Mg 4055, 4067, 4106 93.6/94.4, 93,5/94.5, 93.1/94.4 4825, 4797, 4772
tS Me 4235, 4235, 4235 93.1/94.2, 93.1/94.0, 92.8/93.9 4807, 4788, 476%
tS/Kl 4391, 4411, 4434 93.1/94.1, 93.1/94,1, 93.1/93.8 4799, 4797, 4796
toK, 4390, 4410, 4431 93.1/94.1, 93.1/94.1, 93.1/93.8 4799, 4797, 4796
tems 4055, 4067, 4106  93.6/94.4, 93.6/94.4, 93.1/94.4 4825, 4797, 4771
tS/m5 4235, 4235, 4235 93.1/94.2, 93,1/94.2, 92,.8/93.9 4807, 4788, A768
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Table B.2 (continued)
e v ~10PB PS PL
ty K, .69, ,70,.70 .42, .42, , 42 .94, .94, .94
ty K, .69, .70, .70 A2, .42, . 42 .94, .94, .94
ty Mg .63, .74, .84 .39,.38,.39 . 95,.94, .94
ty M .68, .76, .83 .40, , 40, . 40 . 95,.94, .94
ty K, .69, .70, .70 .41, .42, 42 . 94,,94, .94
a1 K, .69, .70, .70 41, .42, .42 . 94,.94, .94
g Me .63, .74, .84 .39, .38, .39 ,95,.94, .94
g M .68, .76, .83 . 40, . 40, . 40 . 95,.94, .94
Table B.2 (continued)
v -10PB PS PL
< K, .69, .70, .70 41, .42, .42 .94, .94, .94
< K, .69, .70, .70 A1, .42,.42 .94, .94, .94
g Mg .63,.74, .84 .38, .38, .39 .95, .94, .94
g Mg .68, .76, .83 . 40, . 40, . 40 ,95,.,94, .94
to/K, .69, .70, .70 41, .42, .42 .94, .94, .94
<K, .69, .70, .70 41, .42, .42 .94,.94, , 94
/Mg .63, .74, .83 . 39, .38, .39 . 95,.94, .94
tormg .68, .76, .83 . 40, . 40, . 40 . 95,.94, .94
Table B.2 (continued)
Wy 10%8(d) 10°M(d) 10% B (D) 10°E(d)
g K, 171,173,174 115,115, 115 122,114, 105 221,220,219
;;h K, 171,173, 175 115,115, 115 122,114, 105 222,220,210
g Mg 125, 131, 137 113,114, 116 324,298, 266 271,248, 231
g Mg 149, 150, 150 114,115,116 194,194, 194 210,210, 210
ﬂ:;#Kl 171, 173, 174 115,115,115 122,114,105 222,220,219
K 171,172, 174 115,115, 115 122,114, 105 222,220,219
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Table B.2 (continued)
4

e v 10”B(d) 10°M (d) 10V B (@) 10°E (d)
tH e 125,130, 137 113,114,116 323, 298, 265 271,248,231
b, Mg 149, 150, 150 114, 115,116 193, 193, 193 210,210, 210
tS K1 171,172,174 115,115,115 122,114,102 222,220,219
ts K2 171,172,174 115,115,115 122,114,105 222,220,219
tS m 125,130, 137 113,115,116 323, 298, 266 271,248, 231
tS me 149, 150, 150 114, 115,116 193, 193, 193 210,210, 210 .
thKl 170,172,174 115,115, 115 132,115, 106 223,221,220
.tSXKZ 170,171,173 115,115,115 124,115,107 223,221,220
tSf‘m5 125,130,137 113,115,116 321,115,263 271,248, 231
tsxm6 149,149,150 114,115,116 191,115,191 211,211, 211

Comments: In rupaﬂ of PCV only myg i1 robust and there iz litile variation with respect bo Q. Every procedure is robuat in terms of
“ACP, In lermi of ACV the traditional estimators are belier and bhey are anly robust. By other criteria mg,mg 212 preferable. Variation
wilh Q; is negligible,

Table B.3
Performance of (e,v) by d-criterion.
B=1.0, g=1.1, h=1.6, G=10, R=1000, N=150, n=32.
e Yy D K 5 m, m,, m, My M M
t, 3.582 3.659 3.615 3.616 3.600 3.599 3.578 3.578 3.985 3,610
tH 3.582 3.661 3.618 3.618 3.996 3.595 3.978 3.578 3.969 3.610
t. 3.583 3.660 3.616 3.616 3.600 3.599 3.579 3.579 3.984  3.610
tS/ 3.585 3,668 3.626 3.623 3.584 3.584  3.577 3.577 3,918 3.612
. Commenl: The best ﬁerfnrmerl ate mg,my, the warst {s mg and among the traditional ones vy is the hﬁll.
Table B.4

Robustness of CI's under HB by several criteria, B8=1.0, g=1.3, h=1.7,
6=5,0 and 10.0, R=1000, N=150, n=32, Values for 6=5.0, 10.0 given

consecutively. ACP for T and t31

separated by slashes.

e v 10%pcy ACP 10°ACY _10PB
o v, 2993 2648 92.3/93.6, 91, 9/92. 8 1054, 3955 .50, .34
ty v, 3071, 2739 92.3/93. 4, 91. 7/92. 8 1056, 3956 .48, . 32
ty K, 3042, 2709 92.3/93.6,91.8/92.9 4054, 3555 .49, .33
ty K, 3044, 2711 92.3/93.6, 91. 8/92. 8 4054, 3955 49, .33
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Table B.4 (continued)
) 5
e v 10 PCVY ACP 10°ACY -10PB
ty m 2946, 2586 92.1/93.6,91.9/92.7 4049, 3944 .53, .41
ty M, 2947, 2587 92.1/93.6,91.9/92.7 4049, 3944 .53, .41
ty Mo 2965, 2616 92.1/93.6,91.9/92. 6 4049, 3945 .53, .40
ty M, 2965, 2616 92.1/93.6,91.9/92. 6 4049, 3945 .53, ., 40
to me 2843, 2444 92,2/93.7,92.1/93. 8 4072, 3983 44, .24
ty M 3003, 2641 92, 3/93.8,91.9/93. 1 4073, 3985 .41, .20
by vy 2996, 2641 92.3/93.6,91.9/92. 8 4050, 3946 .50, .35
ty v, 3069, 2728 92, 3/93.4,91.7/92. 8 4052, 3947 .48, . 33
t, K, 3043, 2700 92.3/93.6,91.8/92. 8 4051, 3946 .49, .34
t K, 3043, 2700 92.3/93.6,91.8/92. 8 4051, 3946 .49, .34
ty my 2946, 2586 92.1/93.6,91.9/92.9 4049, 3944 .52, .37
| ty m, 2947, 2587 92,1/93.6,91.9/92, 9 4049, 3944 .52,.37
t, m, 2965, 2616 92.1/93.6,91.9/92.8 4049, 3945 .51, .36
tH m, 2965, 2616 92.1/93.6,91,9/92, 8 4049, 3945 .51, .36
ty me 2863, 2440 92.3/93.7,92.3/92, 8 4072, 3984 41, .21
by m 3003, 2641 92, 3/93.8,91.9/92. 1 4073, 3985 .40, .16
te v, 2993, 2648 92.3/93.6,91.9/92.8 4053, 3952 .50, .34
tg v, 3071, 2793 92.3/93. 4, 91,7/92. 8 4054, 3953 .48, . 32,
te K, 3042, 2709 92,3/93.6,91.8/92, 9 4053, 3952 .49, .33
ts K, 3044, 2711 92,.3/93.6, 91.8/92. 8 4053, 3952 .49, .33
tg my 2946, 2586 92,1/93.6, 91.9/92. 8 4049, 3944 .53, . 40
tg m, 2947, 2587 92,1/93.6,91.9/92.8 4049, 3944 .53, . 40
tg My 2965, 2616 92.1/93.6, 91.9/92.6 4049, 3945 .52..39
tgm, 2965, 2616 92.1/93.6, 91.9/92.6 4049, 3945 .52, .39
tg mg 2863, 2440 92,2/93.7, 92.1/93. 8 4072, 3983 43, .23
tg mg 3003, 2641 92.3/93.8,91.9/93.1 . 4073, 3985 L 41,.19
'tsfvl 2996, 2641 92.3/93.6,91.7/92.6 4037, 3916 .52, .37
tsfvz 3069, 2728 92.3/93.6,91.6/92,7 4038, 3918 .50, .35
tK, 3043, 2700 92.4/93.7,91.7/92.7 4039, 3919 .50, . 35
/K, 3043, 2700 92,4/93.7,91.7/92.8 4039, 3919 .50, ., 35
tg/m, 2946, 2586 92,1/93.6, 91.9/93. 1 4049, 3944 (A7, .24
“tgm, 2947, 2587 92.1/93.6,91.9/93.1  4049,3944 .47, . 24
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Table B.4 (continued)
4 5
e Vv 10" PCY ACP 107 ACY ~10PB
to/m, 2965, 2616 92.2/93. 6,91.9/93. 1 4050, 3945 .46, .23
tg/m, 2965, 2616 92.2/93. 6,91.9/93. 1 4050, 3945 46, .23
to/me 2863, 2440 92.4/93.9,92.5/94.0 4072, 3984 .38, .28
te/m, 3003, 2641 92.,4/93.9,92.0/93. 4 4073, 3985 . 35,.24
Table B.4 (continued)
e v PS PL ~10B(d)  10°M(d) ~vV B (d) E(d)
ty v, .29, .26 .96, . 97 L 69/1. 02 115/117 .19/.36 .12/, 06
ty Vv, .30, .27 .96, .97 .73/1.09 115/117 .21/.39 .11/.09
ty K, .29, .26 .96, .97 . 72/1. 07 115/117 .21/.38 . 12/.08
ty K, .29, .26 .96, , 97 . 72/1. 07 115/117 .21/.38 .12/, 08
tn m, .28, .25 .96, . 97 .66/ .97 115/117 .18/.33 .12/.03
g My .28, .25 .96, .97 66/ .97 115/117 . 18/.33 .12/.03
5 Mo .29, .25 .96, .97 .67/ .99 115/117 .18/.34 .12/.04
My .29, .25 .96, .97 67/ .99 115/117 .18/.24 .12/.04
g M .28, .24 .97, .98 .55/ .82 114/114 .13/.25 .13/.01
n Mg .29, .26 .97, .98 .66/ .98 114/115 .18/.34 .12/.05
v Yy .29, .26 .96, .97 .69/1,02 115/117 . 19/. 36 .12/.06
Yo .30, .27 .96, .97 ,73/1, 08 116/117 .21/.39 . 11/.09
u Ky .29,.26  .96,.97 72/1.06 1157117 .21/, 38 .12/.08
u K .29, .26 .96, .97 . 72/1, 06 115/117 .21/, 38 .12/.08
g My .28, .25 .96, .97 66/ .97 115/117 . 18/.33 .127.04
g M .28, .25 .96, .97 .66/ .98 115/117 ., 18/.33 .12/.04
b My .29,.25  .96,.97 .67/ .99  115/117  .18/.34  .12/.04
H My .29,.25 . .96,.97 67/ .99 115/117 ,18/.34 .12/.04
g Me .28, .24 .97, .98 .55/ .82 114/114 . 13/.26 .127.01
i Mo .29, .26 .97, .98 .66/ ,98 114/115 . 18/.34 . 12/.05
s V4 .29, .26 .96, .97 L69/1,02  115/117 .19/. 36 .12/.06
tgv,  .30,.29  .96,.97  .73/1.09  116/117  .21/.39  .11/.09
s X, .29, .26 .96, .97 . 7271, 06 115/117 .21/, 38 .12/.08
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Table B.4 (continued)

e v PS PL. -10B(d)  10°M(d) v B () E(d)
tg K, .29, , 26 .96, . 97 72/1.07 115/117 21/.38 12/.08
tg m, .28, .25 ,96, . 97 .66/ .97 115/117 .18/.33 . 12/.03
tg m, . 28,.25 .96, .97 66/ .97 115/117 .18/. 33 12/.03
te m., .29, .25 .96, , 98 67/ .99 115/117 .18/.34  .12/.04
tg m, . 29. .25 .96, . 97 L 67/1.00 115/117 . 18/.34 . 12/.04
te Mg ,28. .24 .97, . 98 .55/ .82 114/114 .13/7.26 12/.01
te M, .29, .26 .97, .98 66/ .98 1147115 .18/.34 127,05
tarv, .29, .25 .96, .97 .69/1. 02 116/117 .19/.35 . 127.06
terv,, .30, .26 .96, .97 .72/1.07 116/117 ,21/. 38 .11/.08
tg/K, .29, .26 .96, .97 .71/1. 05 116/117 .20/, 37 .11/, 08
<K, .29, .26 .96, . 97 7171, 05 116/117  .20/.37T J11/.07
tg/m, .28, .25 .97, .98 L 67/1. 05 115/115 . 18/.34 .12/.04
torm, .28, .25 .97, .98 &7/ .98 115/115  .18/.34 .12/.05
~torm, .29, .26 .97, .98 ,68/1.00  115/115 . 19/. 35 ,12/.05
torm, .29,.26 .97, .98 L 68/1.00 115/115 .19/.35 .12/.05
tg/me .28, .24 .97, .99 .56/ .83  113/112 . 13/.26 12/.04
tesm 29, .26 .97, .99 67/ .99 114/113 .18/.35 .12/.06

Comments: Performance of every procedure is clearly affecied by varialion In 8 In reapect of each criterion except ponslbly PS and PL.

Table B.5

Conditional perfnrmances'of the CI's under ﬂh

with ancillary s's. /m, .

it

8=1,0, g=1.1, h=1.6,R=1000, Number of grouPs=1U,N=1SU,n=32. For (tg,vg],

5 4

(ACP, 107ACV, 10 'PCVY) values given for successive groups

93,4723, 4416
93, 4295, 4595

93, 4821, 4451
93, 4296, 4593

93, 4784, 7735
93, 4294, 4591

97, 4343, 3577
92, 4259, 3976

97, 4385, 3576
92, 4239, 4012

97, 4369, 3575
92, 4244, 4002

96, 4339, 3831
94, 4133, 3788

96, 4382, 3836
94, 4092, 3782

96, 4365, 3831

94, 4105, 3786

93, 4251, 4586
96,4188, 4039

93, 4264, 4572
96, 4079, 4037

93, 4258, 4575
96, 4691, 4041

91, 4232, 3470
93, 3888, 3920

91, 4233, 3471

- 93,3815,3953

91, 4230, 3472
93, 3839, 3947

b
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Table B.5

(continued)

93, 4786, 4441
93,4294, 4591

93,4670, 4401
93,4293, 4584

93,4671, 4401
93, 4293, 4584

93,4712, 4413
93, 4293, 4578

93,4712, 4413
93, 4293, 4578

91, 4540, 4531
94, 4331, 4862

93, 4750, 4577

94,4327, 4826

93, 4722, 4466
93, 4295, 4593

93, 4816, 4444
93, 4295, 4591

93, 4782, 4434
93, 4294, 4589

93, 4782, 4434
93, 4294, 4589

a3, 4670, 4401
93, 4293, 4584

93, 4671, 4404
93, 4293, 4584

93,4712, 4413

93, 4293, 4578

93, 4712, 4413

93, 4293, 4578

97, 4369, 3577
92,4244, 4002

97, 4319, 3574
92, 4267, 3950

97, 4320, 3575
92, 4267, 3951

97,4338, 3574
92, 4259, 3969

97, 4338, 3574
92, 4259, 3969

96, 4259, 3760
94, 4329, 4108

97,4357, 3751
92,4281, 4199

97, 4343, 3576
92, 4258, 3976

97, 4383, 3572
92, 4239, 4012

97,4368, 3574
92,4245, 4008

97,4368, 3574
92, 4245, 4001

97,4319, 3574
92, 4267, 3950

97, 4320, 3575
92, 4267, 3951

97,4338, 3574
92, 4259, 3969

97, 4338, 3574
92, 4259, 3969

96, 4355, 3835
94, 4104, 3786

96, 4313, 3826
94, 4153, 3776

96, 4313, 3826
94,4152, 3776

96,4332, 3825
94,4135,3773

96, 4332, 3825
94,4135,3773

96, 4258, 4030
94, 4255, 4054

96, 4357, 4020
94,4156, 4031

96, 4338, 3831
94, 41232, 3787

96, 4380, 3832
94,4093, 3786

96, 4364, 3831
94,4106, 3785

96, 4364, 3831
94, 4106, 3785

96,4313, 3826
94, 4153, 3777

96,4313, 3826
94,4152, 3776

96, 4332, 3825
94, 4135, 3773

96,4332, 3825
94,4135, 3773

93, 4258, 4576
96, 4090, 4041

93, 4242, 4587
96,4137, 4030

93, 4242, 4587
96,4137, 4030

93, 4248, 4578
96, 4120, 4034

93, 4248, 4578
96, 4120 4034

92, 4242, 4875
96, 4242, 4229

93,4272, 4817
96, 4143, 4236

93, 4250, 4586

96, 4118, 4037

93,4263, 4571
96, 4080, 4040

93, 4258, 4575
96, 4092, 4040

93, 4258, 4575
96, 4092, 4040

93, 4242, 4587
96, 4138, 4030

93, 4242, 4587
96, 4137, 4030

93, 4248, 4576
96, 4120, 4034

93, 4248, 4578

96, 4120, 4034

91, 4230, 3472
93, 3838, 3947

91, 4228, 3465
93, 3930, 3889

91, 4558, 3465
93, 3929, 3890

91, 4229 3469
93, 3897, 3910

91, 4229, 3469
93, 3897, 3910

91, 4248, 3660
96, 4097, 3995

91, 4250, 3673
93, 3908, 4095

91, 4231, 3469
93, 3888, 3918

91, 4232, 3470
93, 3817, 3956

91, 4233, 3472
93,3841, 3944

91, 4230, 3472
93, 3841, 3944

91, 4228, 3465
93, 3930, 3890

91, 4228, 3465
93, 3929, 3890

91, 4229, 3469
93, 3897, 3910

91, 4229, 3469
93, 3897, 3910
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Table

B.5

(continued)

91, 4540, 4531
94,4331, 4862

93, 4750, 4577
94, 4327, 4826

93,4723, 4416
93, 4296, 4595

93, 4821, 4451
93,4296, 4593

93,4784, 4435
93, 4294, 4591

93,4786, 4441
93, 4294, 4591

93, 4670, 4401
93, 4293, 4584

93,4671, 4401

93, 4293, 4584

93,4712, 4413
93, 4293, 4578

93,4712, 4423
93, 4293, 4578

91, 4540, 4531
94,4331, 4862

93, 4750, 4577
94,4327, 4826

93,4719, 4414
93, 4292, 4588

93, 4798, 4418

93, 4292, 4587

93, 4773, 4430
93, 4293, 4584

96, 4259, 3760
94, 4329, 4108

97, 4357, 3751
92, 4281,4199

97,4343,3577
92,4259, 3977

97, 4385, 3576
92,4239, 4012

97, 4369, 3575
92,4244, 4002

97, 4369, 3578
92,4244, 4001

97, 4319, 3574
92, 4267, 3950

97, 4320, 3575
92, 4267, 3951

97,4338, 3574
92, 4259, 3969

97, 4338, 3574
92, 4259, 3969

96, 4259, 3760
94, 4329, 4108

97, 4357, 3751
92, 4281, 4199

97,4341, 3571

92, 4256, 3976

97,4375, 3558
92,4239, 4012

97, 4365, 3570
92, 4247, 3998

i —

96, 4258, 4030
94, 4255, 4254

96, 4357, 4020
94, 4156, 4031

96, 4339, 3832
94,4133, 3788

96, 4382, 3836
94, 4092, 3782

96, 4365, 3831
94, 4105, 3786

96, 4365, 3835
94,4104, 3781

96, 4313, 3826
94,4153, 3776

96, 4313, 3826
94, 4152, 3776

96, 4332, 3825
94, 4135, 3773

96, 4332, 3825
94, 4135, 3773

96, 4258, 4030
94, 4255, 4054

96, 4357, 4020
94, 4156, 4031

96, 4335, 3829
94, 4129, 3785

96, 4372, 3818
94, 4096, 3799

96, 4361, 3829
94,4109, 3783

92,4242, 4875
96,4242, 4229

93,4272,4817
96,4243, 4236

93, 4251, 4586
96,4118, 4039

93, 4264, 4573
96, 4079, 4037

93, 4258, 4575
96, 4091, 4041

93, 4258, 4277
96, 4091, 4038

93, 4242, 4587
96, 4137, 4030

93,4242, 4587
96, 4237, 4030

93, 4248, 4578
96, 4120, 4034

93, 4248, 4878
96,4120, 4030

92,4242, 4875
96, 4242, 4229

93, 4272, 1817
96, 4143, 4236

93, 4248, 4583
96,4116, 4034

93, 4259, 4267

96, 4083, 4048

93, 4275, 4574
96, 4095, 4037

91, 4248, 3660
96, 4097, 3995

91, 4250, 3673
93, 3908 4095

91,4323, 3470
93, 3889, 3920

91,4232 3471
93, 3815, 3953

91, 4230,3472
93, 3839, 3947

a1, 4230, 3472
93, 3839, 3941

91, 4228, 3465
94,3930, 3890

91,4228, 3465
93, 3929, 3890

91, 4229, 3469
93, 3897, 3910

a1, 4229,3469
93, 3897, 3910

91, 4248, 3660
96, 4097, 3995

91, 4259, 3673
93, 3908, 4095

91, 4229, 3468
93, 3887, 3910

91, 4229, 3468
93, 3824, 3963

91, 4231, 3470

93, 3847, 3935
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Table

B.5

(continued)

93, 4767, 4409
93, 4293, 4585

93, 4669, 4401
93, 4293, 4584

93,4671, 4401
93, 4293, 4584

93,4711, 4413

93,4293, 4578

93,4711, 4413
93, 4293, 4578

91, 4540, 4531
94, 4331, 4862

93, 4749, 4579
94, 4327, 4826

97, 4364, 3560
92,4247, 4002

97,4319, 3574
92, 4267, 3950

97,4320, 3575
92, 4267, 3951

97,4338, 3574
92, 4259, 3969

97,4338, 3574
92,4259, 3969

96, 4259, 3760
94,4329, 4108

97,4357, 3751
92,4281, 4199

96, 4359, 3817
94, 4111, 3797

96,4313, 3826

94, 4153, 3776

96, 4313, 3826
94, 41382, 3776

96, 4332, 3825
94,4135,37173

96, 4332, 3825
94,4135, 3773

96, 4258, 4030
94, 4255, 4054

96,4357, 4020
94,4156, 4031

93, 4256, 4371
96, 4098, 4048

93, 4241, 4587
96, 4138, 4030

93, 4242, 4587
96, 4137, 4030

93, 4248, 4578
96, 4120, 4034

93, 4248, 4578
96, 4120, 4034

92, 4242, 4875
96, 4242, 4229

93, 4272, 4817
96, 4144, 4236

91, 4231, 3469
96, 6850, 3452

91, 4228, 3465
93, 3930, 3890

91, 4228, 3465
93, 3929, 3890

91, 4229, 3469
93, 3898, 3910

91, 4229, 3469
93, 3898, 3910

91, 4248, 3660

96, 4098, 3995

91, 4049, 3673
93, 3909, 4095

Comments; Irrespeciive of Q, every procedvte seems o be affecied by changes in the ancillary atatiatic in reapect of the three critefa
chosen. Bul no clear pattern {» discernible.
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CHAPTER THREE

INTERYAL ESTIMATION BY RATIO ESTIMATOR
AND MODEL-CUM-DESIGN-BASED VYARIANCE ESTIMATORS

3.0 SUMMARY.

For the speclal case of super-population linear regression model
with the model-varlance proportional to the regressor variable the
ratio estimator is known to be appropriate. With the ratio estimator
~as the polnt estimator, confidence intervals for Y are constructed
- deriving model-cum-asymptotic design-based varliance estlimators. The
varlance estimators themselves however are derived postulating the
;'general model and not the above speclal case. Simulation studles are
; resorted to for comparing the confidence intervals. The ﬁewly emergéd
i variance estimators are demonstrated to fare as good competltors
':: agalnst those well-known in the literature. We restrict to simple

| random sampling without replacement.

3.1 INTRODUCTION.

We consgider the model M of (1.1.1) in Chapter One. Usually with

g = 1, the ratio estimator is taken as the point estimator for Y,
- given by

t = X(y/x)
::'.-.I-Iere ;, 3_1 are sample means of X, VY. Various alternative variance

pstimators v of ¢ are well-—known, _mcluding'thosé studied by Royall
and Eberhardt (1975), Royall and Cumberland (197Ba,b; 1981a,b, 1985},
_tﬁmberland and Royall (1988), Wu (1982), Wu and Deng (1983), Sﬁrndal
1982, 1984), Sdrndal, Swensson and Wretman (1989,1992), Kott (1990a,b)

 1m0ng others, some of which are motivated by conslderation of
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super-population modelling as pointed out above. We shall derive a
few more alternative variance estimators for t. Here we shall
consider both model (1.1.1) and an asymptotic approach of Brewer
(1979} to hit upon a few more alternative variance etimators for t'
utilizing the model (1.1.1}) of Chapter One and Brewer’s asymptotic
deslign-based approach explained in Chapter One. Since it is difficult
to have a reasonable comparative evaiuation, analytically, of these
varilance estlimators and of assoclated CI's, we attempt at a numerical
evaluatlion on taking observations through simulations. Details of
theory are given in section 3.2, numerical findings are summarized by

tables in Appendix-C at the end of this chapter and comments and

remarks in section 3.3.

3,2 VARIANCE ESTIMATORS,

We throughout assume that the sample-size is large and the mode 1

M of Chapter One is tenable. For the ratio estimator t, well-~known

Cochran’s (1977) approximate variance formula is

v = Nz 1-f 1.

2
a n N-1 2 (yi-in)

admitting two well-known estimators

2 1-f 1 2
VU—N ?ﬁz(yirxi)
R
2 » 0

| X

Here R=Y/X, r=§/§,-f=n/N. Kott's (1990a,b) variance estimator is

taken as

E (t-Y)
K{v) = m — v,
| E:m(v)

F

with v as VJ denoted by'vKJ'(J=D,2), H‘ritingiC as the mean of x's
2

- ' 2 2 -2
for units outside s, 8, = E/(xi-x]Z/(n—l)..cx = 8 / x7 1t may be
nnteﬁ that

2 Nz(l—f) A Xe
n Wrlak
¥

| ,
Em(t-Y) =
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2 cz
2 N (1-f) - X

Em(vo) = @ Xx (1- ~H—] leading to
E EC ci -1
Vkg = =3 (1~ hﬁh] Vo = Vko which happens teo colncide
with the one earlier given by Royall and Eberhardt (1975), denoted by
Vi

Two other variance estimators for t avallable in the literature

already mentioned are

- e
v = NP(1-f) *%c 1 Z/ (y,-rx, ]
D n x> 0 (1-x, /nx)>

i
2
_NQ(-f) T2 /0 T2
and, v, = - (n-1) X~ T (di d)-,
the Jack-knife estimator, where d, = (n?-yi}/(nﬁ—xi). i in s, d =
/
z di/n.

To derive new variance estimators utilizing the model and

adopting Brewer’s {1979) asymptotic approach we proceed as follows.

First we conslder estimating

2
2 C
_ 2N g 0

Em(Va) = O — X (1 = M(x), say,

where, |
2 _ &2 , 32 2 _ 1 _ 2

CD—SX/X, Sx—ﬁ-_—TE(yi R}{i].
by a statistic v, say, for whlch

1imE E (v) = M(x). (3.2.1)

pm -

A few such alternative cholces of v satisfying (3.2.1) follow as :

| 2
E (V) (1 - CZ/N)
Vo1 * - Yo < 2 Yo
llmEpEm(vU] (1 - CD/n)
2
2 C
2 NQ(1-f) 3 ., O
noting that limEpEm(VU) = 0" —— X (1- — ),
{ .
S I
21 | - 01
\.XJ :
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E_(V vl - C?

. m( a) % (1 CO /N)

02 Yo T = 5 Mk
Em(vﬂ) x J (1~ C,, /n)

noting that Em(voz~va}=0.
Also, incidentally, one may note that,

E (V)

Voo = ——2 v =y K(v.) = K{v..) = K(v._)

22 - L7y 2 Yozr “Yo 02 Yoo
m d

K(vz) = K(VU),

so that Kott’s (1990a,b) method does not yleld any new varlance

estimator,

A second use of Brewer’'s (1979) approach is to first note that

1204 _
e 5 (1-f)

' 2 _ S
limEpEm(t Y)© = - X =M (x). say,

and then seek a statistic v such that

limEpEm{v)=H/{x].

This appreach easilylyields the following alternatives; namely,

/ C -1
M (x}) ( 0 ]
Vi = v, = |1 v
03 | 0 n 0
limEpEm(vU)
MU ¢ ) [_E_]z,,,
23 JIME E (v.) ° x/ 03
pm 2
/ = c2 -1
vV = M (X) V. o= ._i.. 1 — _h_.}:{. v
04 E (v.) 0 ” n g’
m 0
on observing that
/ .
Em[v04-M (x])—D.
Further one may note that
/
M (%) _
Vog = Va = Yoa
E (v,)
“m' 2 |
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and, K(v

form

LinE B, (t(a)) = M (x). (3.2.2)

~ As mentioned In seciion 1.2 many other cholces might be tried.

Two sets of ai’s that result from this turn out to be
| 2

«, (1) = Ng(qu] X — Exk
i n(n-2) i  N(n-1)
/ 2
2 3, X
: - _ N (1-f) 2 K
and, “12) = T2 [ "1 7 n(n-1) ]*
leading to the following four variance estimators :
2 S y y 14
m = N (1-f) w2 k __1__ 1 __Eil
1 n{n-2) 1 N(n-1) X n X,
i _ kK
2 E/xz 2
o NO(1-f) 2k 1 177 %
2 ni{n-2) i ni(n-1) X n X
i k
S - 1 2
o Ep[Z u:iflJ] - n-2 Tixk _
3 / 1 n-1 1 7/ 2 1 1 2 1
) u:l(lJ TE Xk — n—-1 N E}Ck
L/ | 2
o Ep[E m1(2]] o _n Zxk i
4 E/mi(z)' 2 N E/xi 2

n = NZ{i—f)i Z/[ Zi ::11 __z_l-g }2 / (_1%1 __};{__]

. i k . 1

2 = ' 2 -
T T

i k | i

Obviously, it is quite difficult to discriminate among S0 many

alternative variance estimaturs purely on theoretical conslderations,

especlially _bebause many of them are proposed because of their
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asymptotle properties, 50 we resort to simulations to study
performances of Cl's based on t and these alternative varlance

estimators.

3.3 SIMULATION STUDY.

For simulations we proceed essentially as in Chapters One and
Two. But we repeal the process to help the readership, We take

N=150, draw xi’s as random samples from the density

f(x) = —— e X%, x50, a=8.5,
take o¢=1.0, draw ei’s randomly from the normal distribution N(0,1),
take B=1.0, g=1.0, and y1=Bxl+¢xigxzsi, gsample-size n is taken as 32
and a as 0.05. We use tables of both normal distribution and
Student’'s distribution of t-statistic t,-q %ith (n-1) degrees of
freedom. Number of 'replicates F' Is taken as 1000. ~ Sum over
replication is denoted as Er. We write A = . Erv and P =
| F
1 5 (t-Y)%,
F

To discriminate among the CI's we consider the following criterla

in accordance wlth usual practices, vide Rao and Wu (1983)

I ACP (Actual cnvérage pércéntageJ = the percent of F replléates

for which the CI covers Y — the closer it is to the

i

nominal eonfidenée coefficlent ,95, the better.

I ACV (Average coeffiecient of variation) = the average of v v (t
over the replicates — this reflects the length of CI

relative to t.

111 Pseudo relative bias (PB) = PB{v) = ! [ Er(v-P]]
P LF

| 1 1 o 1/2
IV Pseudo relative stability (PS) = PS(v) = - [ Er(va) ] |
. P LF
v Pseudo standardized length (PL) = PL(v) = [ ——-ZrV Y% ] YV P
F
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VI Bias of d = B(d) =

PR
F
VII Mean square error {MSE) of d = M(d) = ns T (dnB(d})z
g T
3
VIII Root beta one of d = Vrﬁl(d] = _lﬂlz ['[d—B[d))]
F L vH@

I

q
(d-B(d)}] 4

IX Excess = Bz(d]-ﬂ - L Er [
F v M{d)

| >

11 21172
Pseudo coefficlent of variation (PCV) = [ Er (v=A) ] .
A F

The smaller the magnitudes of Il — z the better the pair (t,v].

In some of the cholces of v, knowledge of 2 in

g
1|

2

wiﬁw.x 0, i in U, g, in [0,2]

is required. But if the choice is wrong and true form of ﬂ? is

2 28 |
¢,="%; , L in U, g in 10,2), g = g4’
then the procedure may or may not remain good — if it remains good

‘then the procedure is robust, otherwise not. To examine robustness by
simulation we examine the above criteria allowlng variﬁtian in g4
‘around g.Further we also examine robustness allowing change in model M
to EB' where for ge everything else in M remainsg intact except that

yi = 8 + Bxi + wxffzci; iell with 8 # O, | (3.3.1)

Choosing such yi’s subject to (3.3.1) we examine the CI in terms of
‘the above ten criterla. Finally we note that x may be regarded as an
‘ancillary statistic and, to see how the CI's behave with variation in
IE. we make a conditlonal study as mentioned in Chaudhuri and Stenger
(1992). For this we divide the F = 1000 replicates into 10 equal

groups of F =100, (k=1,...,10) sub-replicates taking the first group

‘as one cnns;;ting of the replicates with the lowest 100 x-values, the
‘next group conslsts of those 100 replicates with the next higher X's
and so on. Then we calculate CI’s within respective groups and
examine the above ten criteria group-wise. As an over-all measure of

comparison we consider the new d-criterion, namely,
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= | .1 /1 1
d [ 10[; [ T Er M "_'V/;?; Er

. 2 ~1/2
(t-Y) ] ]
k Kk

K

where Ek is sum over the groups and Er the sum over the units in the
k

k-th group of Fk replicates. Findlings are summarized and tabulated in

Appendix-C,

3.4 COMMENTS AND CONCLUSIONS.

In this chapter we have proposed 12 alternative variance
estimators for the ratio estimator of a finite population total as
possible competltors against 5 traditional ones. The former group we
denote by A and the latter by B, Our plan is to numerically compare
the sultabilities of CI's based respectively on them when values are
generated according to a postulated model tha£ suits the use of a
ratio estimator. From Table 1 we see that better performances are
more in evidence when we use one from A rather than from B, though
very bad performances also follow with use of me and m. From Table 2

we see that there is not much robustness in allowing varlation in g4

especlally when it is very large, From Table 3 we.see of course that
there 1s robustness In respect of 8 for all criterla except for ACY
- but there 1is little robustness in respect of 8. So, if there is a
:;'.surreptitiaus intercept term then 1t may not be wise to use ratio
_'estimatnr at all and there is hardly any clue from the presented data
about how to choose among procedures in A or In B. But if blindly a
‘ratio estimator is used even 1f 6#0, _then for each fixed 8, bet_t_er
- results are expected for those in A, From Table 4 we first see that X
in fact serves as a useful ﬁncillary, performances showing appreciable
- changes across X, Here also better results are discernible with the
. use of those In A though thé best d-values are produced by those in B,
:_fTaklng.everything into consideration we would rather recommend that m,
-~ and m. should serve as the varlance estimators with the highest

2

~ potentials, use of ms and ms;may'nften become unsafe but the nriginal

Cochran’s (1977) Vo may yet be taken as one with enough strength to

- continue as a challenging competitor against every one else,

- 47



APPENDIX C

SUMMARY OF FINDINGS.

The abbreviated symbolsa ACP, ACV, PB, PS, PL, B(d), M(d), +/81(d), E(d) are as explained on pages 45.48, relate reapectively to

coverage probabllily, coefficient of variation, bias, stability of varlance estimator, length of Cl, bias, MSE, 'toot beta one’ and 'excess
measure’ of the standardized siatistic d = (e - ¥}/ /7.

Table (.1

Performances of CI by several criteria A=8,5, B=1,0, o=1.0,

g=1.0, N=150, n=32, F=1000, «=0.05. ACP values for T and t31 are

separated by slashes. Especially good (bad) values are

under-scored(starred).

105 104 102 102 102 —103 102 -10
v ACP ACY  PCV PB. PS PL B(d) M(d) VB,(d) E(d)
vy 93.7/94.7 3697 2922 384 31 101 .02 106 27 .20
v, 94,.0/94.9 3701 3110 430 33 101 .15 105 2T . 19
v, 94.2/95.2 3709 3171 485 34 101 .19 105 28 .19
Vi 94,.2/95. 2 3704 3160 4154 33 101 . 16 105 .31 .19
&, 94,0/95.0 37D6 3088 457 33 101 1.30 105 . 34 .19
Vo; 93.8/94.7 3703 2922 417 31 101 .02 106 27 .20
Vo1 94.0/95.0Q 3707 3110 463 33 101 v 13 105 2T .19
ng 94.0/94.7 3704 2956 425 31 101 07 105 27 .19
vDB 93.8/94.8 3704 2922 426 31 101 .02 106 2T , 20
V23 94.,0/95.0 3708 3110 472 33 101 . 15 105 2T .19
Voa 94.0/94.7 3705 2956 434 31 101 .07 105 27 .19
m1 93.8/794.9 3687 2903 331 30 101 1,65 107 . 38 .20
mz 93.9/94.9 3688 2900 333 30 101 1.63 106 . 38 20
m, 94,3/94.7 3698 3092 413 32 101 1.75 1035 .37 .19
m4 94,3/94.8 3699 3100 416 33 101 1.74 105 37 .19
- O * * ok t
wms 95.3/96.1. 3986 4321* 230 581 108 3.49iIII 94 1.51ﬂ .38*
:ms 95.4/96.°2 3981 4371 228 58 108 3. 45 94 1,48 , 38
Comments: The new procedures and the traditional ones have similar ACP values. Better ACY is yfelded by mi(s = 1,...,4) and vq ;

betler PCV is realized by my, ma, vg and vg). Better PB ia oblained for my,mg,my, mg and vg. Betler B(d) is ensured by vg, vp1.vgy.

In reapect of P‘G?, P3, B(d),

vg compelea well against them,

18

B4 (4), perl’nrrﬁincu of mg and mg are poor, The balance a¢cems to favour Lie new prh:tﬂutel though



Table C.2

Model yi = : + xig/zai, Ei is

Robustness of CI’s under ﬁﬂ : X
distributed as N(0,1). Values for 8,= .4, .8, 1.2, 1.6 given

consecutively downwards, Values for T and t are separated by

31
s]ashes.
5
10 10% 10 10% 102 -10° 102 -10

ACP ACY  PCV PB PS PL B(d) M(d) VB, (d) E(d)
93.9/95.3 1853 3241 361 34 100 19 106 .54 14
93.8/94.9 2928 3010 377 31 101 6 106 .00 .18
93.8/94.7 4681 2854 389 30 101 - 106 - 56 , 22
94.0/94.8 7587 2782 395 29 101 -18 108 -1.14 27
94.4/95.6 1857 3524 444 37 101 19 104 56 14
94.1/95,1 2933 3235 436 30 101 6 105 , 00 .12
94,3/94.8 4685 3001 23 32 101 -6 105 .56 .21
94.4/94.9 7589 2835 401 30 101 -18 107 -1.14 24
94.4/95.7 1861 13593 504 38 101 19 104 .56 14
94,2/95.2 2939 3299 493 35 101 6 104 .01 17
94.2/95.1 4696 3057 476 32 101 -6 105 -, 56 _.21
94.3/94.9 7605 2881 451 30 101 ~18 106 -1.14 24
94.2/95.7 1857 3578 448 38 101 18 104 .53 14
94.1/95.1 2934 3286 453 35 101 5 105 -, 02 A7
94.2/95.0 4691 3048 453 32 101 -7 105 ~, 60 21
94.3/94.9 7603 2876 445 30 101 -18 106 -1.18 24
4.1/95.7 1856 3493 422 37 101 18 104 50 .14
94.2/95.2 2934 3209 446 34 101 5 104 ~. 05 AT
94.4/94.9 4695 2983 466 32 101 -7 105 -. 63 21
94.4/94.9 7617 2826 479 30 101 -19 106 -1,21 24
94.3/95.4 1856 3211 393 34 101 19 105 .54 .14
93.9/94.9 2933 3010 410 32 101 6 105 .01 .18
93.8/94.8 4689 2854 422 30 101 ~6 106 -.56 , 22
94,0/94.9 7599 2782 427 29 10t ~18 107 -1.14 .27
94.4/95.8 1860 3524 477 37 101 19 104 56 .14
94.1/95.1 2937 3235 469 34 101 6 104 .01 17
94.3/94.8 4693 3001 456 32 101 -6 105 -.56

.21
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Table C.2 {continued)
10> - 102 104 10° 10% -10°  10%  -~10

v ACP ACY PCY PB PS5 PL B{d) M(d) VBlidJ E(d)
94, 4/94.9 7601 2835 A34 30 101 ~18 106 -1.13 24

vy, 94.2/95.4 1858 3329 420 35 101 19 104 .56 .13
94,0/94.9 2934 3064 425 32 101 6 105 .01 17
94.0/94.5 4689 2866 424 30 101 -6 105 ~.56 .21
94.2/94.8 7598 2744 416 39 101 ~18 107 -1.14 .25

Vo, 94.3/95.4 1857 3241 402 34 101 19 105 .54 .14
93,9/94.9 2934 3010 419 32 101 6 105 .01 .18
93,8/94.8 4691 2854 431 30 101 -6 106 -.56 22

94, 0/95.0 7602 2782 436 29 101 -18 107 -1.14 27

Vo, 94.5/95.8 1861 3524 48 37 101 19 104 .56 14
94,1/95.1 2938 3235 478 34 10t 6 104 .01 17
94.3/94.8 4695 3001 464 32 101 -6 105 -.56 .21

94, 4/94.9 7604 2835 443 30 101 ~18 106 ~1.14 24

Vos 94.2/95.4 1858 3329 429 35 101 19 104 .56 13
94,0/94.9 2935 3064 434 32 101 6 104 L 01 17
94.0/94.5 4691 2866 A33 30 101 = -6 105  -.56 21
92.4/94.8 7601 2744 425 29 101 -18 106 -1.13 , 25

m,  93.9/95.4 1844 3200 249 33 100 17 106 41 12
93.8/94.9 2918 2983 304 31 100 5 106 - 11 18
93,9/94.8 4674 2842 355 30 101 -8 107 ~. 66 .23
93,9/94.9 7588 2783 399 29 101 -19 108 -1.23 .28

m, 93.9/95.4 1844 3203 253 33 100 17 106 42 12
93,9/95.0 2919 2982 307 31 100 5 106 -.10 17
93.9/94.8 4674 2837 352 30 101 -8 107  -.66 .23
94,0/94.8 7589 2775 400 29 101 ~19 108 -1.23 27

m, 94.2/95.8 1851 3484 367 36 100 17 104 L 44 12
94.1/94.8 2928 3210 399 34 101 4 105 -,09 .17
94,3/94.8 4686 2990 425 31 101 -8 105 - 66 .21
94.4/94.8 7603 2835 442 30 101 -19 106 -1.23 .25

m, 94,2/95.7 1851 3497 371 36 100 17 104 .44 .12
: 94,1/94,9 2928 3219 402 24 101 4 105 -. 09 AT
94.3/94.8 4686 2996 427 32 101 -§ 105  -.66 .21
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Table C.2 (continued)
5
10 10% 10° 10 107 -10°  10% -10
ACP ACY PCY PB PS PL B{d) M(d) VBl(dJ E(d)
94.4/94. 8 7603 2838 443 30 101 -19 106 -1,23 .25
96, 0/97.1 2129 4854 404 79 115 49 84 .22 . 40
95.7/96. 4 3226 4499 287 65 111 39 91 1,74 . 39
95,2795, 7 4938 4145 174 52 106 30 98 1,28 . 37
94.6/95.3 7653 3807 668 41 101 20 108 . 81 , 35
96,4/97.3 2128 4922 404 80 115 48 84 . 22 .41
95.8/96.7 3223 4556 286 65 111 39 91 1. 71 , 39
95,1/95, 8 4931 4187 172 52 106 30 98 1.25 . 37
94, 7/95.1 7641 3827 636 41 101 19 107 AT 39
Commentez: ACP's are good throughout with livile varlatlon for differences in 9g. The ACV's increase and PGV decrease along with
go and vo do respeciively FB and PS. The procedulcs mj(j = 1,... 4) oulpeeform the traditlonat ones except vy, -
Table (C.3
-'RubustnESS-af Cl under ﬁﬂ. Model : y1=9 + Bxi + wxig/z. A=8, 5,
g=1.0, o=1.0, o=0.05. Values for (6=0, p=1), (8=2.5, fB=1), (8=5,
B=1), (8=2.5, PB=2) and (6=5, PB=2) respectively successively
downwards, ACP for T and talseparated by slashes.
10°  10° 10° 10° 10° ~10° 102 -10
ACP ACY  PCV PB PS PL B(d) M(d) VB, (d} E(d)
93.7/94, 7 3697 2922 384 31 101 02 106 2T . 20
93.2/94. 5 3146 2482 162 25 100 -2.95 107 ~, 57 , 06
_93 S5/94. 4 3063 2156 6 22 99 -3.76 107 -, 86 , 02
93.2/94,5 1734 2482 162 25 100 =2.95 107 -, 96 . 06
393.5/94. 4 1821 2156 6 22 a9 -3.75 107 -. 86 .02
94.0/94, 9 3701 3110 430 33 101 .15 105 2T .19
93.6/94. 4 3149 2707 216 28 100 17.45 106 . 51 .07
93.4/94.8 3065 2456 76 25 100 31,17 107 1.03 .01
93.6/94.4 1735 2707 216 28 100 17. 45 '106 , 51 .07
93.4/94,8 1823 2456 76 25 100 31.18 107 1.03 . 01
94,2/95,2 3709 3171 485 34 101 .19 105 , 28 . 19
93,6/94. 2 3156 2776 271 29 100 20,22 106 , 66 . Q7
93.4/94.8 3072 2537 133 26 100 35,90 107 1.29 .02

51



Table C,3 (continued)

10° 10% 10 10 102 102 102 -10
v ACP ACV  PCV PB PS PL B(d) M(d) VB, (d) E(d}
93.6/94, 2 1?39 2776 271 29 100 20,22 106 .66 .g;
93,4/94.8 1827 2537 133 26 100  35.91 107 1.29 .02
vy 94.2/95.2 3704 3160 454 33 101 76 105 .31 .19
93.6/94.3 3152 2770 244 28 100  20.73 106 .68 .07
93.4/94.8 3069 2543 117 26 100  36.36 107  1.31 . 02
93.6/94.3 1737 2770 244 28 100 20.74 106 .68 .07
93.4/94.8 1825 2543 117 26 100  36.37 107  1.31 .02
v, 94.0/95.0 3706 3088 457 33 101 1.29 105 .34 .19
93.6/94.4 3155 2697 250 28 100  18.46 106 .56 .07
93.4/94.9 3073 2471 131 25 100  32.05 106  1.07 .0t
93.6/94.4 1738 2697 250 28 100  18.46 106 .56 .07
93.4/94.9 1827 2471 131 25 100 32.06 106 1.07 .01
0y 93-8/94.7 3703 2922 417 31 10t .02 106 27 .20
93.3/94.5 3151 2489 194 25 100 2.94 106 -.57 .06
93.5/94.4 3067 2156 38 22 100 3.75 107 -.86 .02
93.3/94.5 1736 2482 194 25 100 2.94 106  ~.57 .06
93.5/94.4 1823 2156 38 22 100 3.74 107 -.86 .02
- 94.0/95.0 3707 3110 463 33 101 .15 105 .27 .19
93.6/94.4 3154 2707 248 28 100  17.43 106 .51 .07
93.4/94.9 3070 2456 108 25 100 31.12 106 1.03 .01
93.6/94.4 1728 2707 248 28 100  17.43 106 .51 .07
93.4/94.9 1826 2456 108 25 100 31.13 106 1.03 .0t
op 9%.0794.7 3704 2956 425 31 101 .07 105 .27 .19
93.0/94.5 3152 2529 207 26 100 7.27 106 -.30 .05
93.5/94.8 3068 2239 59 23 100 13.75 106 .09 -.0l
93.0/94,5 1737 2529 207 26 100 7,28 106 -.30 .05
93.5/94.8 1824 2239 59 23 100 13,76 106 , 09 .01
Vo, 93.8/94.8 3704 2922 - 426 31 101 .02 106 .27 .20
‘ 93.3/94.5 3153 2482 202 25 100 -2.94 106  -.57 .06
33.5/94.5 3069 2156 46 22 100 -3.75 107 -.8 .02
93.3/94,5 1737 2482 202 25 100 -2.94 106  ~-.57 .06
1 93.5/94.5 1824 2156 46 22 100 -3.74 107 -.86 .02
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Table C.3 (continued)

10°  10% 10 10% 10% 2108 102 -10
v ACP ACV  PCv PB. PS PL B(d) M(d) vB,(d) E(d]
v,y 94.0/95.0 3708 3110 472 33 101 .15 105 27 .19
93.6/94.4 3155 2707 257 28 100  17.42 106 51 .07
93.4/94.9 3071 2456 116 25 100 31.11 106  1.03 .01
93,6/94.4 1739 2707 257 28 100  17.42 106 51 .07
93.4/94.9 1826 2456 116 25 100 31.11 106  1.03 .0l
os 94.0/94.7 3705 2956 434 31 101 .07 105 27 .19
93.0/94,5 3153 2529 215 26 100 7.27 106 -.03 .05
93,5/94.8 3069 2239 68 23 100  13.75 106 .09 ~.01
93.0/94.5 1738 2529 215 26 100 7.27 106 -.03 .05
93.5/94.8 1825 2239 68 23 100  13.76 106 .09 -.01
m, 93.8/94.8 3687 2903 330 30 101 1.65 107 .38 .20
93,9/94.8 3218 2427 623 27 102 2.32 102  -.36 .08
94.6/95.9 3295 2369 1611 32 107 1.55 94 ~.61 .08
93.9/94.8 1773 2427 623 27 102 2,32 102 -.36 .08
94.6/95.9 1959 2369 1611 32 107 1.56 94  -,61 .08
m, 93.9/94.9 3688 2900 333 30 101 1.63 106 .38 .20
93.9/94.8 3218 2423 626 26 102 3.25 102 -.31 .08
94.6/95.9 3295 2366 1611 32 107 3.02 94 ~-.52 .07
93,9/94.8 1773 2423 626 26 102 3.25 102 ~-.31 .08
94.6/95.9 1959 2366 1611 32 107  3.03 94 -.52 07
m, 94.3/94.7 3698 3092 413 32 101 1.75 105 .37 .19
94.0/95.2 3226 2628 713 29 103  22.11 101 73 .08
95.3/96.0 13302 2563 1711 35 107 33.94 93  1.32 .06
94,0/95.2 1778 2628 713 29 103  22.11 101 73 .08
95.3/96.0 1964 2563 1711 35 107  33.95 93  1.32 .06
m, 94.3/94.8 3699 3100 416 33 101 1.74 105 .37 »+ .19
 94.0/95.1 3226 2635 715 29 103  22.39 10t 75 .08
95.3/96.0 3302 2568 1712 35 107  34.35 93  1.35 .06
94,0/95.1 1778 2635 715 29 103  22.39 101 75 .08
| 95.3/96.0 1964 2568 1712 35 107 34,35 93  1.35 .06
:fms 95.3/96.1 3985 4321 2300 58 108  34.91 94 -1.51 .38
95.1/96.6 3445 3384 2301 48 109~ -28.11 91 -1.81 .07
95.9/97.3 3401 2472 2366 39 110 -20.57 87 -1.74 ~-.01
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Table C.3 (continued)
5 4 2 2
| 10 10 10° 10 102 -10° 102 -10
v ACP ACY  PCV PB PS PL B(d) M(d) VB (d) E(d)
95.1/96. 6 1897 3384 2301 48 109 -28. 11 g1 -1.81 07
95.9/97.3 2021 2472 2366 39 110 -20. 56 87 ~1.74 ~-.01
m, 95.4/96.2 3981 4371 2283 58 108 34. 55 94 ~1.48 . 38
95.2/96.3 3440 3476 2295 49 109 -18.57 91 -1.26 . 08
96.1/96.5 | 3397 2625 2371 40 110 ~4. 90 28 -, 79 -. 02
95.2/96.3 1895 3476 2295 49 109 -18.57 91 ~1.26 . 08
96,1/96.5 2019 2625 2371 40 110 -4, 90 88 -.79 -.02
Commentia: ECF remains good Lhraughout and bes) for mg, mg showing Nisle varistion with changing psrameters. Since enly non.
negative 8 1s {llustrated ACV' naturally decrease with positive 8 without showing a patlern. Fluclualions are also pronounced in reipect
of other criterla. The procedures my,...,my stem to cutperform the traditiona) ones except posiibly vy,
Table C.4
Conditional comparison of CI under ﬁﬂ
N=150, n=32, A=8.5, g=1.0, «=0.05, B=1.0, F=1000, Ancillary : x.
Normal ACP, IDSACV and 1G4PCV'values glven downwards in successlon.
Eroups
_ e - 102
\ 1 2 3 4 5 6 7 8 9 10 d~value
94 97 94 86 94 94 92 93 95 98 6153
3704 3624 3609 3608 3663 3730 3706 3763 3818 3742
3073 3393 2786 3212 2880 2726 2925 2812 2675 2545
96 98 95 86 94 94 92 93 94 99 4909
4110 13845 13740 13682 3688 3702 3621 3618 3603 3400
3097 3397 2786 3201 2884 2733 2920 2816 2668 2597
97 99 95 86 94 94 92 93 94 98 4921
4174 3883 3766 3700 3699 3707 3617 3606 3580 3359
3106 3396 2785 23199 2885 2733 2919 2817 2667 2612
97 99 95 86 94 94 92 93 94 98 4893
4168 13877 3760 3696 3694 3701 3612 3599 3576 3355
3096 13384 2776 3187 2871 2726 2908 2805 2651 2597
96 98 95 86 94 94 92 93 94 98 4926
4117 3849 3744 3690 3694 3707 3625 3621 3608 3405
3076 3370 2766 3176 2855 2716 2897 2793 2636 2569
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Table C.4 (continued)
groups
P 4
1 2 < 4 10
\ 5 6 T 8 9 10 d-value
Yo1 94 97 95 86 94 94 g2 93 95 98 6175
3710 3630 3615 3614 3669 3736 3712 3769 13824 3742
3073 3393 2786 3212 2880 2726 2925 2812 2675 2545
V. 96 98 95 86 94 94 92 93 94 98 4937
4117 3851 3746 3688 3694 3708 3627 3624 3608 3405
3097 3397 2785 3201 2884 2733 2920 2816 2668 2597
Voo 95 98 95 86 94 94 92 93 95 98 5323
3908 3739 3681 3651 3682 3722 3669 3696 3714 3572
3071 3393 2785 3206 2881 2727 2922 2814 2670 2563
Yoq 94 97 g5 86 94 94 92 93 95 98 6181
3711 3631 3616 3616 3670 3737 3714 3770 3825 3750
3073 3393 2786 3212 2880 2726 2925 2812 2675 2545
Von 96 98 95 86 94 94 92 93 94 98 4944
4119 13853 3747 3690 3696 3710 3628 3625 3610 3406
3097 3397 2785 3201 2884 2733 2920 2816 2669 2597
Voa 95 98 95 86 94 94 92 93 95 98 5330
3910 3741 3682 3653 3683 3724 3671 3697 3716 3574
3071 13393 2785 3206 2881 2727 2922 2814 2670 2563
m, 93 97 95 8 94 94 93 93 95 98 6225
3675 3601 3592 3597 3657 3721 3698 3758 3825 3750
3073 3367 2728 3211 2874 2719 2891 2784 2604 2545
m, 94 97 95 86 94 94 93 93 95 98 6131
3695 3612 3599 3601 3659 3720 3695 3751 3815 3735
3079 3372 . 2731 3212 2876 2721 2889 2781 2599 2533
| m., 97 98 95 86 95 94 92 93 95 98 4957
4093 13827 3720 3675 3691 3697 3621 3620 3620 3418
. 3124 73421 2753 3210 2900 2782 2889 2788 2622 2575
‘m, 97 98 95 8 9 94 92 93 95 98 4954
: 4100 3832 3722 3676 3692 3697 3620 3617 3817 3413
3132 3425 1212 2901 2783 2888 2785 2617 2565
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Table C.4 (continued)
groups )
. 1 04
) 2 3 4 5 6 7 8 9 10 d-value
. 96 99 95 89 95 g6 92 a5 97 99 8473
4101 4042 4009 38B46 3932 4005 3992 4083 4003 3846
4131 4517 4027 4551 4233 3862 4461 4282 4534 4389
6 96 99 95 90 95 96 92 95 97 99 8027
4295 4152 4078 3880 3937 3986 | 3942 4000 3881 3659
4104 A527 4028 4556 4209 3836 4472 4279 4512 4393

Commenta: 1t i3 wetl-known that vy, vp, vy which approximaste vg sre better in Sracking the conditional variance given ¥ thanbs vo.
This ia confirmed with the d-values [or the former lurning oul less than that for vg. Amang the new procedures my, m2, Mg, Mg, va1» ¥0)
are alao poor like vy in this respect while the others appear to compete well with vy, v, vy, Since the intercept lerm ia absent, the
ACP's turn out good throughout. ACY and PCV values show constderable Aluciuations without displaying any clear pattern. In these

{wo respetis the new procedures my, mq and the traditional vg seem [0 fare better than the others.
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CHAPTER FOUR

CONFIDENCE INTERVAL ESTIMATION FOR DOMAIN TOTALS
IN COMPLEX SURVEYS

4.0 SUMMARY.

We consider the pnpulatiﬂn divisible into non-overlappling domains
of known sizes and every unit assignable on inspection to the domain
te which it belongs. The problem is to estimate the respective domain
totals on drawlng a sample from the entire population. Agalin an
auxiliafy variable with known values is avallable to which the
variable of interest bears a super-population linear regression
relation through the origin. Since the regression may vary across the
domains separate generalized regression predictors may be appropriate
for respectilve damairi totals. For them we consider traditlional
variance estimators and also derive new alternatives using linear
regression models and applying Brewer's asymptotic design-based
approach. Pastulating again that the domalns of differing sizes may
be alike to the extent of permitting the slopes to be identical in the
regression model alternative greg predictors and cnrrespunding
varlance estimators are also conslidered. The latter that borrow
strength across the domains are really ‘synthetic’ versions in
contrast with thé former which may be called ‘non~synthetic’,
Confidence intervals for domain totals are then constructed as usual.
Analytic comparison among them is rather impracticable. So, we resort
to simulations for a numerical evaluation. The non-synthetic approach
“here should naturally be infructuous for many domains with small sizes
_bécause sample~slzes for them should also be qulite small In practice.
'So, only the ‘'synthetic’ approach seems reasonable unless the
f‘assumptinn' of a common regression slope is grossly untenable. For
 31mu1at1ons we postulate a ‘common’ slope and compare the above two
féets of confidence intervals employing both the synthetic' and
Hnon—synthetlc "estimators, variance estlmaters“' comblnatians. In
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additicon we also conslder composite estimators combining these two

types of greg predictors and derlving thelr varlance estimators.

4.1 INTRODUCTION.

Suppose the population U=(1,...,%,...,N) 1s divisible into a

D
" number D of disjoint domains Uci of slzes Nd' d§1Nd=N. For y, x let
the domaln totals be Yd' Xd, d=1,...,D. We persist with the model M

of earller chapters taking
Yy = Bx1 t ey, 1eU, (4.1.1}

and cunsider the problem to estimate Yd‘ d=1,...,D, on surveyling a

sample s of size n taken from U with probability p(s), admitting as
{ nij of the first two
orders. We shall need the indicator variable I valued 1 for 1 in U

di d
and 0, else, for simpliflied analysis. 1In case B8 is permitted to vary

usual positive Inclusion probabilities n

across the domalins, say, taken as ﬂd for 1 in Ud then M will be

written as M,, and M(f) as M, (£).

_-_dl'

Unassisted by model M a traditional estimator for Yd is the
direct Horvitz-Thompson’s (HT,1952) estimator

- Yy
t=z/ni Idi’
i

to be denoted in tables by HTE, admitting Yates and Grundy's (YG,

1953) variance estimator, to be dencted in tables by YGE,

NS, (e o YTy ]2
Vv 14 T, n )

writing,

)/

ﬂij = (niuj-nij {

With Q-i's (>0) as assignable constants let,
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7
A
A 2 Yy%Q 14, e =y x b
Qd / 2 R | SR e od
2 X0 Ty
By = : y €, = ¥y, . -X.B
¢ E’xiQi 1 1 17Q

Following Sarndal (1980, 1992), agssisted by faith in model ﬂd one
gets for Yd the greg predictor

A e,,l
— di“d}
tgd(l) XdBQd + E 3

T
<
H
= I
- L
-
+
T —
o
(o R
-
>
P
o |
|
‘i-"
f SS——_
mn >
O
=

_ Z/ Yy [ _ [ . _Z/ “elak Y X1 %™ las
T, dl d nk EXXEQ T
_ k k" dk

:writing,

N (U R 5 U3 P e MW
sdi = “di d B x '
k 2 % Q

kldk

Following Sirndal (1982) two variance estimators for tlﬂtgd[-l)

g ,.€4.1 g .., 1,2
v (t.) = Z :ﬁ [ sdidi'di  ®"sdj dj dj
2 1 . 1) T, nj

:I-'a.ncl v (ty) from v,(t,) by.puttlng 8.4y = gy 1n it, to be denoted
‘respectively by Tay2 and Tay. |

follow as

Motivated by faith in M one gets the alternative greg predictor,

“‘borrowing’ strength across the domains, as
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{i
>

t. =t (2 A | Eirdi
2 “gd ) dBQ +‘§:/ T

fl
<
[Wre
=}
Lo gl § o B
[
+
p——
o
.
!
P
" i
Lol § * 5
S
o >
&

_ 4! X lak 1 %14y
m, Idi ¥ xd“ m "zf 3 ]
%9

ﬂriting,

g/ = T + X . xkldk x1[31“1
sd i di d mk Ef zq
| “Kk

it is reasonable to call t1 a ‘non-synthetic' greg predictor and

tz a ‘synthetic’ greg prdictor. For tz, ‘Sirndal's two varlance

estimators follow as

Ll 2
(t)_z“z/ 8ea1®tLas o Bsay®y dJ]
1J T, HJ

and vy (t ) follows from Vs [t ) replacing g/di s by Idi

Kott's (1990 a,b) variance estimators for t1 follow under Mﬂ(f)
- as
E (t,-Y,)°

1 'd
K. (L,) = - v (t,), J=t,2,
ERRS! Emf§j(t1)] it

respectively to be denoted In tables by KT and KTZ, and for t2 under
M(f) as

| Em(tz--yd)2
K. (t,) = - v, (t,) , J=1,2,
J2 E v 0T 732

again to be denoted in tables by KT and KT2 réép&ctlvely.'
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2
Under ﬂd(f) w: work out Em(tl-—Yd) , Em[vjttl)] and under M{f) we
work out Em(tz*YdJ : Em[V'(tZ)] , J=1,2 as followus

J
1 2 1 2
2 E (t.-Y,)° = 1
o n 1Y) Z/( o Tt “51‘11"1] filay
’ Zfildi ) Z/fildi
where, |
_ / / 2
1B tv.(t)]
2 m 2 1
a
| , ,
8aifilas  Bsaylylay )
= A +
i} 2 2 |
! J
E Q% £l Z/Zlﬁ [ Bsa1¥1dt  Bsas*y'd ]
/. 2 2 ij 1§ n
i
(2 Q% Tyy) J
e Z/Sﬂ [gsdixlldi ) gsdJXJIdJm]
T 2 i3l m, T,
(Z Qixildl] J

o n
n i

[gsdlqixlflxdi gsdlqjxjfjlt;lj]

Ny 1 | ' ’
and, 1 Emlvl(tl)] follows from —5 Em[vz(tl}] by replacing g.4; S by Idi 5.

0‘2 ﬂ'z

Similarly,

| | 2
1 v 1% = [Iti—-1]+c Qx]f[
”"E'Em(tz Yg) E:/ di” r, “s2 1 1  1°di

' z fylay "Z/filcu

where,
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and,

1
‘*E'Em[vz(tz)}
o

fi g/
sdl i d4di . sd J
} :} : iJ 2
1 4

/ 2 2
i 1 1

. Z/Z" Beqi *lag B;dJ"‘JIdJ <
(= Qi 1J my " ]
;;“é;“' [' sdi 1'dy Bea %13 ]
(E:Q 1J T, . HJ

/ /
[ Bsa1ti®ifitar  8saqi 9% yf 414 ]]

3id3 ]

— N ™

n (4

1 J

1 | \ | |
and, —= Em[vl(tz)l follaws from ”;f Emlvz(t }] on replacing g <d1 's by

In order to derive further varlance estimators for tj’ j=1,2, we

restrict only to models __M_(.f) or lj_d(f} and follow Brewer's (1979)

asymptotic design - based approach, Noting limEpgsdj = Idi
/7 _ .
limEpngi, it follows that tJ {) },2) are both ADU for Yd'

First, postulating either ﬂd(f) or M{(f) we find

2 2 1'-“1.
1imEpEm[t1*Yd) = ¢ §: [ ni ] flIdi

= llmEpEm(t ’Y J d: an

So, for either t1 or tz we deem 1t reasonable to seek a varlance

estimator md, say, which satisflies

'limEpEm(md] = M. (4.1.2)

For this, we consider assigning constants «, in t{ae) = E/oclirihl_") )

i ( —
where rl—yi/xi, r=2 ri/nl,r s.o as Lo equate lmEpEmt[u] Hd‘ TWwo sets
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of @, as ai(l) and ai(Z) given below are available, on noting

Yo w
= = g° _
tz(a) limEtht(aJ = a*}j[ n-2 o+ — k k J .

2 ]
nxi i nzxi i1
hence solving
y
[ n_2 v 4 E aknk ] . f 1"""“1 I 1
2 i 2 2 1t1 T 1€,
nxi n xi i Ri d}
and noting
o
tl(cr,] = FE t(a) = crzz/ -2 o, + K f
m nxz i 2 2
1 |
hence solving
7
[_ﬂn-z " + E:mk _ 1_n1
2 1 22 177z gy Les as
i { "1
2
X
i 1
o« (1) = 1 [ [__._... 1] I
2 , n, di
1 2
" n{n-1) Zxk [ 1] Idk]
/ and.
xz
. n i i
@ (2) = — [ T, [T;""] Lay

Keeping M(f) or ﬂd(f} and (1.2) throughout in mind, we then get
the following six new variance estimators for tJ {J=1,2) |

2

X: 1
. n i 1
mo o= . - 1|1
dl n-2 m,o “1 | di

i

- n(n*l)z [ ] "ﬂk](r -

3
Q.
o
|
.':Sl -
1{2
DY
oy
::l X
(W
=1-~
H
|
[
T T—
g
3.
[
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) |
1 "k (1 -
n(n-liz/ My [ T - I]Idk][ri-r) ,

E (2, (1)]
m,, = —F& 1 m
d3 Efai(l) di
2 1
Z "k [’“ﬁ'; B 1] L
) 2 2 d1
"k (1 1 “k [ 1
N T L [ *"1]1
k k n M UMy dk
| 2 1
EP[E/ml(Z)] Z "k ['"i'f; ” 1] Idk
m = ' m = - m
d4 Efc-:i(ZJ d2 XE 1 dZ
Z/ n [ n t] Idk
k K
. _ n Z (I‘i-r‘) Z 1"‘1'[1( £
d5 n-1 s/f /w2 n, k “dk
i" 71
and,
' ({r,-r) 1-n
I = Z k_ f Idk
d6 n-i I K
Efini/xi _ 'k
For simplicity de will be denoted in tables by m‘j (Jj=1 (1) 6).
For t,, t2. we then have ten variance estimators each namely
vylt)), k(b)) 1=1,2, J=1,2 and mg, k=1,..,6. Another estimator for

Y{:1 may be taken as t9=8t1+[1-91t2, pe(0,1). The optimum chioce of @

o == - + - - C t | 'y
1s ofcourse 6 [Vp(tz) Cp(trtz” / [Vp{tl} :p(tz] 2 p[tl’ 2)]
“which being unknown, 8 Iin t may be taken as 6 with each unknown

_'_.parameter in @ being replaced by a sultable estimator for It. To

| R
‘avoid @ from ranging beyﬂnd [0,1] we drop. following Schaible (1979)

‘and Schalble (1992),

! A

Gl ) in 6 and take © as 8 with C () dropped and V (*) terms
rfeplaced by their estimators and dennta the resulting Ly b}' ta - The

;f_g'ariance estimators for tﬁ are taken as
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" A2 A 5 A A
Vv ﬁ) . v(tl) + (1-9) v(t2) + 29(1-—ﬂ)cttt,t2)

with v(tJJ as variance estimators for tj (J=1,2) and c(t,,t.) as an
estimator for Cp(tl,tz) of the form b

a . I
c(t,,t,)) = ) > A [ sLdb aSJ.IdJ_ | b?"'-iIdi bEJIdJ=
1" "2 1) ty n n, T,

b .} as (

(gsdiedi’gsdiel) ylelding 4 alternative forms of c(tl,tzl denoted
respectlvely as ¢

/7
edi.ei). (Edl.gsﬁiel}. (ngledi'el] or

1t G0 Cg and Cy» The corresponding predictors are
denoted respectively by TH11, TH12, TH21 and TH22 and the
corresponding varlance estimatorg by ¥T11, VT12, ¥T21 and VT22 in the
tables. |

Writing e, for an estimator for ‘x’d based on s of a large size n
with v, as its non-negative variance estimator it is usual to regard

as dlscussed in the earlier chapters too, the distribution of & =

- (ed—‘{d)/v Vq 8s apprnxlmat'ﬁsly that of the standard normal deviate Tt
or Student's t ., distribution with [n-1) degrees of freedom (df).

Consequently (ed t Ca,/z‘/ vd) 1s taken as a 100{1-a) percent
confidence interval for Yd with ¢, p 88 the 10002 percent point on
the right tail of the distribution of T or tn-*l' with « in (0,1),

recognizing 100(1-«) as the nominal conflidence coefflicient of CI.

Taking e, as t, tl’ tz, tg and v, as thelr varlous alternatlve
varlance estimators noted above, our plan 1s to study the performances
of the respective Cl's. As it is very difficult, obviously, to study
their relative efficacies theoretically, we then proceed to undertake
a simulation study as In the éarlier chapterg, to examine their
efficacles numerically. The simulation study in detail, is given Iln
the next section presenting the numerical findings'ln the tables and

conclusions in a series of comments and remarks.

4.2 SIMULATION STUDY.

He take N=?52, D=33, . Domain UI c.ans_ists of the first Nl units of
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The domains and
their respective slzes are (U,,2) U |
2 Wy2), (U, 3), (U, 3), (Ug, 3},

U, domain U2 consists of the next Nz units and so on.

(Ug: )y (Ug,4), (UG, 5), (Ug,s), U050 (Uy,,8), (u,,,8), (U, ,.9),
(U149 (Uy5:10), (U} ,10), (U, 12), Ujgr 130, (U,4,13), (U, 14),
(Upg 1725 {U55,19), (U, 5,19), (U, 20), U,5:25), (U,,,30), (U,,,32),
(Uyg:49), (Uyq,55), (Uy),65), (U,,,83), (Uy,,91), (U4, 105).

Domains are divided into G = 4 groups, group 1 consiting of
domalns (4, 5, 9, 21, 22, 26 and 33), group 2 consists of domalins (3,
6, 10, 15, 20, 23, 27 and 32), group 3 consists of domains (2, 7, 11,

14, 19, 24, 28 and 31) and group 4 consists of domalns (1, 8, 12, 13,
16, 17, 18, 25, 29 and 30). |

First we consider the model connecting y and x as :

_ ' h/2
Yy S e(g) + g(d) Xy * O X, £, 1EUd‘

for U'__‘1 in g~th group, g =1 (1) G. We generate ci's. 1 =1 (1) 752,

from the standard normal distribution. The auxlliary Xy L = 1 (1)
752, are generated from the distribution with density
1

f(x) = exp[—(x—S.O)/B.S].xts.D.
8.5 |

We throughout take ¢ = 1.0 and B(d) = B = 2.0 for each d, choose h =
0.8, 1.4 and two sets of values of 8{(g) namely (i) 6{(g) = 0, g =1 (1)
4 and (ii) 6(i) = 0.4, 8(2) = 1.0, 6(3) = 1.5 and B6(4) = 2.9. The
parameters relating to the four different Y -vectors thus obtained are

given in table 4.1 below :

Table 4.1

Model parameters of Y-populations

.
iy ey o el ek

——

Pop. B

1d, 6(1) e(2) o{(3) e{4) ¢o B h

I 0.0 0.0 0.0 0.0 1.0 20 0.8
I1 0,0 0.0 0.0 00 1.0 2,0 1.4
111 0.4 1.0 1.5 2.9 1.0 2.0 0.8
1v 0.4 1.0 1.5 29 1.0 2.0 1.4
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Samples from U = (1,.,,,N) employing Hartléy-ﬁaa (1962) sampling

gscheme are drawn using size-measures W, (i1=1,...,N}) with wvalues

generated from

1 .
f{w) = exp [- (w - 20.0) / 15.(]] , W= 20.0.
15.0

Samples of three sizes n
R=1000 times.

38, 105, 150 are drawn each replicated

The following measures are considered for evaluations of
comparatlive performances of confidence intervals of nominal confidence
coefficlents 100(i-a) percent based on (e,v) taking « = .01,.05,.10.

(1) R(d,e,v} = number of replicated samples admitting values of both

e and v,
(2) Pseudo Mean Square Error of e f‘ﬂr'Ud when v is the variance

estimator :

| \ ,
PMSE(d,e,v) = — Z (e - ‘:’d}
R(d,E.V] r

where, Z = the sum over samples admitting both e and v.
I"" .

(3) Pseudo Relative Blas of v corresponding to e for U, :

. 1 Y
PRB(d,e,v)} = z ' - 1.
R{d,E,V] r PMSE(d,e, V]

(4) Pseudo Relative Stability of v corresponding to e for Ud

- ' Y 1/2
PRS(d,e, V) = ' Z 1 :
R(d,e,v) &r PMSE(d, e, v)

(5) Pseudo Standardized Length of confidence interval using (e,v]) for
U

d :

PSL{(d,e,v) = Z / // PHSE(d e, v)

R{d, e, \!]

s (EJ Pseudo Average Coefficient of Variatlon :
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1 v !
ACY, (d,e,v) = Z Y
H(d;E,\F] r e

(7) Average Coefficient of Variation :

1 a2
ACVZ(d.e,v) = Zr ‘
R{d, e, v) Y

(8) Absolute Relative Blas of e :

_ 1
| - e | - Y Y. .
[ R(d,e,v) zr‘ ] d / d

(9) Absolute Relative Error of e :

| i |le - Y |
ARE(d,e,v) = Z d
R{d, e, v) r

d

ARB(d,e,v) =

(10) Actual Coverage Percentage :

1 |
ACP(x,d,e,v) = Z I{e,d, e, v),
R(d,e,v) &r
= +
where, I(a,d,e,v) =1 iIf Yd € (ed + zm/zw/ vy )
= 0 else, |

(10a) Paseudo Coefficient of varlatlon (PCV) : PCV{d, e, v) = [m’-mﬂr[z-(h). s 1]1}}  Ald, e, v} = mﬂrv-
1% ¥ (R |

Several overall measures averaged across the domalins are :

D
(11) EE"E{E,.V) ='——}- Z PMSE(d, e, v) .
D &1
1 -
(12)  PRB(e,v) = "’Z PRB(d, e, V) .
D &=1
LA _
(13) PRS(e,v) = —- Z PRS{d,e,v) .
D g=1
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D

1
(14) PSL(e,v) = —— }: PSL(d,e,v) ,
=
1 D
(15)  AGYi(ev) = — ) AV (d,ev)
D 1
d=1
1 D
(16) ACVz(e,v) 2 e E: ACYV_{d,e,v) .
D 2
d=

1

(17) Average Absolute Relative Bias :
D

1
AARB(e,v) = ~——-§: ARB(d, e, v) .,
D d=1

(18) Average Absolute Relative Error :

1 D
AARE(e,v) = — Z ARE(d,e,v) .
D d=1
1 D _
(19) ACP(a,e,v) = —— Z ACP(a,d,e,v) .
4 d=1

— 11/2
— MSE ( HTE, YGE )
(20) EFF(e,v) =

—rr—r—yrawwa

MSE (e, v ) |

The greg predictors are calculated for four ‘choices of Q1 as
| 2

B not differ much
(1-w ) /myx., 1/mx,, 1/x] and 1/x, but since they do not |
among themselves we show in tables in Appendix-D those only for l/ﬁixl
due to HAjek (1971) and hence denoted by H, |

For a good palr (e,v) we desire
(a) _H(d,e,v) to be high,

(b) | ACP(x,e,v) - 100(1-a) | to be small and,

(c) measures (11) — (19) to be smalll.a_nd (20) to be high.
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4.3 RESULTS OF SIMULATION STUDY.

(1) The non-synthetic greg predictor, dencted by ‘NSY' in tables

below, 1s practically useless for Ud with very small Nd - the
value of R(d,e,v) ltself belng too small and as low as 2 in many
cases though R=1000. When it 1s bad, the composite predictor
need not be tried. Calculations concerning the NSY and composite
predictors are not shown in tables in case R(d,e,v) is less than
S50. The corresponding synthetic greg predictor, marked ‘SY' in

tables, however is found quite serviceable even in such cases.

(2) Our main observation is that the newly proposed varlance
estimators 'ml, s My (denoted respectively by M1, .. ,HB' in tablesg)
perform as impressively good competitors against the traditional
ones even in domain estimation as in estimating population totals

and especlally so even when N.'s are small and synthetlc greg

d
predictors are employed and also when composite ones are used In
case N,’s are not too small. |

A few less important observatlions are also worth noting, e.g.,

(3) The observation (2) persists when 8{g) = 0, g=1,..,4 and
h=0.8,1.4. In particular, M1,..,M4 perform better when Hd's are
pretty small while M5 and M6 seenm preferable for larger Nd's.' |

(4) - For o(g) # 0,but h=0.8, ML,..,M6 do well but when h=1.4, no

clear picture is discernible.

We present in the Appedix D below five tables : Table D. 1 shawl_ng_
the R(d,e,v) values, Table D.2, D.3 and D.4 showlng domainwlse {figures

only for N,=9, 49 and 105 and Table D.5 presents over—-all flgures

d
averaging over all the 33 domains.
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[ A

Domsinne. * 1 2 3

Domain Size : 2 2. 3
gV

HIE YGE 229 256 356 321 289

NSY TAY
NSY TAYZ
NSY KI
NSY KI2

14
14
14
14

13 37

13 37
13 37

NSY
NSY
NSY
HSY

NSY

il
2
3
4
)]

228
226
228
226
229

256
256
256
256
256

336
356
356
336

356

. N5Y M6
C8Y  TAY
St IAY2
5Y KI
§Y K12

229
225

236
256

234
236

236

356
336
336
356

Nl
H2 3
N3

4
NS

6 16
26 336
993 1000 1000
2 206 6

SY
SY
SY
- 5Y
SY

By HEH

SY ¥

THI1 V11
THIZ VTIZ
TH2L Y121
TH2Z V122

13 37
13 3
13 &
13 37

13 37

ﬁs .

32
32
32
32

269
231
269
131
321

321
321
321
121
32}

269
231
N3

231

32
32
N
32

APPENDIX 0

ITahle D.1

lomain sizes and the domain~wise R(d,e,v)- values

R(d, e, v) = Humhfr of rtpli:*ted samples yielding values of hath ¢ and v related 1o a domain U,

5 6 7 8 9 10 il 12 13 14 10 16 17 18 19 20 21 22 23 24
3 4 4 5 5 § 8 8 9 9 10 10 12 13 13 14 17 19 19 20

23
23

742
367
367
367
367

729
341
341
341
3l

378
68
68
68
68

360
83
33
23
33

66
173
173
173
173

301 446
120 95
120 9B
120 9
120 9

711
31l
311
311
311

§20
463
463
463
463

768
410
410
410
410

808
438
439
439
439

813
449
449
449
449

864
552
322
552
552

833
469
469
409
46%

915
569
689
689
689

939
787
787
787
787

936
750
730
730
750

936
698
698
698
698

951 991
802 960

802 960
602 960
802 960

35
33
35
3B

733
772
733
772
813

360
333
360
330
360

264
244
264
248
289

333
330
333
330
378

362
382
362
382
366

72
345
72
345
146

685
688
685
688
711

437
441
437
441
301

33
27%
393
379
729

678
733
678
735
808

635
689
635
689
768

768
§14
768
814
820

655
713
633
713
742

754
844
754
844
864

200
821
800
821
833

B24
870
824
870
913

893
938
913
338
ESP,

873
911
878
911
956

883
922
Bg3
922
936

919
934
913
934
931

894
9635
898
963
%1

378
378
378
378
378

360
360
360
360
360

289
289
289
289
289

566
366
366
566
366

711
711
711
711
711

768
768
768
768
768

808
808
803
808
808

723
729
729
723
723

301
301
30t
301
301

446
446
445
446
446

g20
820
820
830
820

742
742
T42
742
742

815
815
815
813
- 813

864
8h4
Bb4
864
864

833
833
833
833
833

915
913
Bl
913
913

95%
239
359
939
939

956
956
956
95b
93k

936
336
936
336
936

951
951
951
951
33l

21
%9

991
991
11
763
814
948
814

635
713
913
713

933
379
824
379

362
382
796
382

264 3T 360
248 350 3N
975 977 1000

248 30 333

437
441
936
44]

683
588
974
688

272
343

826
34

633
689

g67
689

733
773
918
772

678
H
870
735

754
844
g30
844

300
821
9b7
821

24
g7
309
870

§93
338
906
338

878
911
922
911

383
932
947
g22

919
934
968
934

894
965
907
965

33 68
3 68

33 173 120 95 311 341 439 410 463 367 449 352 469 689 787 790
93 173 120 95 311 341 439 410 463 367 449 352 469 689 787 730
3 88 33 173 120 9 311 34 439 410 463 367 A49 D52 465 689 7B7 750 898 802 960
I/ 68 53 173 120 95 311 341 4393 410 463 367 449 J32 469 689 787 730 698 802 960

HTE = H‘fﬂ“'mmv“ﬂ estimater; YGE = _Yatﬂ-ﬂrundy sstimator; NSY = nnﬁqynlhﬂic estimator; SY = synthesic catimater, TH
= Composite estimator; TAY and TAY2 ate Sirndal’s Taylor series based estimators; KT, KT2 o Koti's estimalors.

Comments: To enaure shat 70% of maore replicates may yield a CI, domain-size should not be too small if a ron.synibelic entimnator ik
employed. The situation is betier if & synthetic estimator or the HTE is used.

36
30

984
911
9il
911
911

933
939
933
939
984

984
984
984
G84
984

933
939
949
959

91l
911

27 28 29 30 31
3 049 8 85 83

32 33
1100

989 1000 1000 1000 1000 1000 1000
952 993 999 1000 1000 1000 1000
332 983 993 1000 1000 1000 1000
932 993 999 1000 1000 1000 1000
232 993 999 1000 1000 1000 1000

969
%80

990
9949

289 1000 999 1000 1000
933 1000 1000 1000 1000
969 931 989 1000 999 1000 1000
980 99% 999 1000 1000 1000 1000
989 1000 1000 1000 1000 1000 1000

283 1000 1090 1000 1000 1000 1000
989 1000 1000 1000 1000 1000 1000
989 1000 1000 1000 1000 1000 1000
989 1000 1000 1000 1000 1000 1000

989 1000 1000 1000 1000 1000 1000

269 990 989 1000 999 1000 1000
980 999 999 1000 1000 1000 1000
980 991 989 1000 999 1000 1000
980 993 933 1000 1000 1000 10008 .

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

698 802 960 911 952 993 999 1000 1000 1000 1000 |
598 802 960 911 952 993 999 1000 1000 1000 1000

952 993 999 1000 1000 1000 1000
932 993 993 1000 1000 1000 1000



¢l

rLx T Xx L

&L X X x X

-

e Vv

HTE YGE
NSY TAY
NSY TAY2
NSY KT

HSY M1
NSY M2
NSY M2
NSY M4
NSY M

LI I X

NSY H#€
5Y I&Y
SY TAYZ
SY KU
SY K12

SY MU
Y MY
SY Hi" l
SY M

TR XX I

H 8Y i

CHOTHLII VL
CHOTHYZ (Tl

H TH21 Wla)
H TH22 2

Airiplained on pp €765, PRD, PRS, PSL mediure respectively bins and stability of v and length of confidence intervai 1 CI) based o0
ey ACV{1), ACV(2) snd PCV 1elate to coefficiens of variation; ARB, ARE reiate to bias and error of ¢ and ACP deaster coverage

NSY  KI2

5Y M.

PRE

0.2100
~-0.0776
-0.39391

0.3327

0.3327

~0.6297
~0.6417
0.3594
0.2567
$.3939

0.3799
0.0077
~0.0129
0.1034
0.1034

-0.,00190
~0.0182
3.9589
2.4430
3.6028

3.35%7
~0.1197
-0.1380
-0.4017

-0.4029

PRS

1.3294
1.101D
0.9009
2.2336

2.2336

0.7174
0.7343
2.9271
2.61790
0.4673

0.4352
1.0676
1.0311
1.1480
1.1480

¢.9272
0.9782
9.6627
7.5423
3.5974

3.6512
1.0239

1.0007

0.3097
0.92088

PSL

0.8958
0.7794
0.5212
0.8725

0.8725

0.5255
0.35081
0.79848
0.8001
1.1758

1.1699
0.83635
0.8298
0.3831
0.8831

0.8637
0.8410
1.6915
1.3243
2.1367

2.1256

0.7701
0.7630
0.6119
0.6112

iecn iiage. For other acronyms please see page T1.

vamriints: Since the domain size ia small the ‘dirsct’ =atimators have poor coverage probability except when our zewly proposed
I'€,;: i1’ Mg, are used along with » non-synthetic greg predictor. The indirect iynthetic satiymator ia better but the composiie eatimatar

] I

TABLE D.2
Domain-wise Statistics for each pair (e,v)

DOMAIN NO. = 13

ACY(1)

0.7779
0.0599
0¢.0390
0.0635

0.0635

0.0722
0.0674
0.1002
0.0981
0.1498

0.1490
0.0668
0.0662
0.0701
0.0701

0.0749
0.0700
0.1261
0.1059
0.1534

0.152%
0.05%%
0.0592
0.0406
0.0407

ACV(2)

0.9444
0.0610
0.0408
0.0683
0.0683

0.0741
0.0693
0.1126
0.1092
0.1533

0.1525
0.06863
0.06358
0.0700
0.0700

0.0731
0.0693
0.1288

0.1092
0.1531

0.1523
0.0606

0.0602

'G:°419

0.0419

DOMAIN SIZE : 9

PECV

1.2220
1.1906
1.39639
1.6572

1.6572

0.928]
0.9961

2.1364

2.0725
0.1803

0.1817
1.0534
1.0445
1.0362
1.0362

0.9281
0.9961
2.0725
0.1805

.1820

- 1.1552

1.1498

1.3641
1.3643

ACF

84.901
72.893
64.920
83.399
83.399

£8.289

63.170
93.9533
97.279
33.317

93.317
89.851
49.480
291.832
91.832

89.086
91.020
88.966
88.980

100.000

100.000

68.793
68.965

63.376
£3.376

ARRE

0.2961
0.0137
0.0157
0.0157
0.0157

0.0407
0.0390
0.0407
0.0390
0.0363

- 0.0363

0.0052
0.0052
0.0002
0.0052

0.0040
0. 0040
0.0027

0.003Y

0.0039
0.014%5

0.0145

0.0117
0.0117

ARE

0.79351
0.0546
0.0346
0.0546
0.0346

0.0898
0.0873
0.0898
0.0873
0.081S

0.0813
0.0633
0.0633
0.0633
$.0633

0.0712
0.06606
G.0085
0.0666
0.0338

0.0538
0.0607
G.060Y
0.0522
0.0323



A

[ra

e v

HIE YGE
- NSY IAY
NSY TAY2
NSY KI

NSY KIZ

TT I T

NSY M1
NSY M2
NSY M3
NSY M4
NSY S

rX x XL X

NSY M6
SY TAY
SY TIAY2
SY KI
SY K12

TErTXITET

SY Ml
SY M2
SY M3
5Y A
8Y NS

T E XXX

H oY M6
H TH11 V111
H TH12 VIld

H TH2) VT21

H TH22 VId2

PRE

0.0475

-0.4246

~0.4206
-0.1083
~(.1085

-0.,2432
“{} - 2461

- 0.1711
-0.0620
-0.2344

~(.2423
0.0083
-0.0232
0.0059
0.00%29

0.0449
0.0437
0.6166
0.2986
0.0597

0.0489
~0.3403
"'0 » 3583

-0.3392
-¢.3301

RS

0.9701

0.7300
0.7323
1.0721
1.0721

0.8337

0.8342
6.5862
0.9349

0.2721

0.2788

1.0370

0.9763
0.2689
G.9689

1.1018
1.1044
9.35233
1.326%9
0.2004

0.1971
¢.7671

0.7491

0.7012
¢.69%0

PSL

¢.9396
0.6684
0.6878
0.8404
0.8404

0.7676
0.7654
0.8946

0.8783

0.8714

0.8669
0.8903
0.8822

0.9024
¢.9024

0.9020
0.9006
1.0511
1.0334
1.0252

1.0199
(0.7148
0.7072
0.7468

0.7469

¥or the acsonyms piease see the previous page 74,

Commenta: The domaln size is moderate, 3o, the HTE and the nnn-synt}mti: greg predicio
My, My or Ms the latter yields good coverage probabilities, The synthetic greg

inadequate, bocause Lhe mon-synthetic component is poot.

TABLE 0.3
Domain-wise Statistics for each pair (e,v)

DOMAIN NO. : 28

ALV{1)

0.4358
0.0524
0.0533

0.0631
0.0631

0.0628
0.0624
0.0718
0.0704

0.0697

0.0694
0.0623

.UtOﬁly'

0.0631

0.0631

0.0635
¢.0631
0.0728

0.0713

0.0703

0.0700
0.0541
0.0538

OIGSQ?'

0.0510

ALV(2)

$.4230
0.0321
Q.0336
0.0633

0.06355

6.0619

0.0616 -

0.0721
0.0706
0.0701

0 .0697
0.0608
0.0603
0.0617
0.0617

0.0619
0.0616
0.0721
0.0706

0.0701

0.0697
0.053%
0.03532
0.0504
0.0307

DOMAIN SIZE : 49

PLV

0.9230

1.0319

1.Q347
1.1964
1.1964

1.0337
1.0573
3.8785
0.9936
0.1805

¢.1820
1.0284
0.9982
0.9632

0.9632

1.0537
1.0573
3.878B3
0.9956
0.18035

0.1820
1.0423
1.0251
0.9229
0.9198

¢y are no lonker guite bad; combined with
predicsor is quite good dut the composise one is atifl

ACP

89.200
73.011
80.765
87.613
87.613

81.212
81._782

- 96.165

93.696
92.300

92.400
92.4090
92.800
94,500
94.900

92.121
92.693
95.257
94.695
96.300

96.200
77.341
77.4423
8l.6723
81.873

ARB

0.0130
0.0096
0.0096
0.0096
Q.00%

0.0101
0.6102
0.0101
0.0102
0.0102

0.0102
0.0007
G.00407
0.0007

¢.0007

0.0006
0.0007
0.0007
0.0007
0.0007

0.0007
0.0063
0.0063
0.0031
0.0051

ARE

0.35358
0.06396
0.0596
0.0396
0.0596

0.0605
0.0604
0.0605
0.0604
0.0603

0.0603
0.0541

0.0541
0.0541
(.0541

0.0543
0.0541
0.0044

0.0541
0.0541

0.0541
0.0385
0.0588
0.03534
0.0537



L

B e v PRB
H HIE YRE -0.0296
H NSY TAY -0.1632
H NSY TAY2 -0.2479
H NSY KT -0.0931
H NSY KTI2 -0.0951
H NSY Ml 0.0481
H NGY M2 0.0478
H NSY M3 - =(3.0434 .
H NSY 4 -().043]
H NSY M5 -0.3671
H NSY M6 -0.3736
H SY TAY 0.0377
H S5Y TAY2 -0 . 0082
H 8Y K[ 0.0062
H MY  KI2 0.0062
H SY Ml 0.0804
H SY 2 0.0800
H 8Y M3 -0.013%
H SY M4 -0.0136
H SY M5 -0.3477
H SY MG -0.3543
H THiY VTi1 . ~(.1083
H TH12 U112 -(.1389
H TH21 V12l -(.185%9
H TH2? V122 -0.1887

DOMAIN NO.
PRS FSL

0.4906 0.9528
0.7924 0.8281
0.5985 0.8161
0.7444  0.8887
0.7444  0.8887
1.0138  0.9147
1.0105 0.91%%
0.6703  0.9167
0.6672 0.9173
0.3845  0.7923
0.3906 0.7882
0.9737 0.9166
0.8792  0.9043
0.8737  0.9147
0.8737 0.9147
1.0469  0.9287
1.0435  0.929%
0.6896  0.9307
0.6864 0.9313
0.3671  0.8044
0.3733 0.8002
0.8367 0.8535
0.7833  0.8431
0.6462  ©0.8396
0.6379  0.8398

For the acronyms please see pp 80-85 and alio pp 71-72,

Comments: Bven though the demain size is quite large the non-synthetic greg predictor except when combined with My, M,
quite terviceable and io is the synthetic freg combined with My, :

covariance term is indiscriminately ignoted,

TABLE D.4
Domain-wise Statistics for each pair (e,v)

r 33

ACV{1)

0.2992
0.0501
0.0494
0.0538
0.0538

0.0556
0.0356
0.0357
0.0337
0.0476

0.0474
0.0549
0.0042
0.0248
0.0348

0.0557
0.0558
0.0557
0.0357
0.0476

0.0474
0.0514
0.0510
0.0489
0.0491

ACV(2)

¢.2977
0.0496
0.0489
0.0332
0.0332

0.0548

0.0549
0.0349
0.0930
0.0475

0.0472
0.0541
0.0534

0.0940
0.0540

0.0548
0.0549

0.0549
0.0530
0.0475

0.0472
0.0008
0.0504

0.,0484
0.0486

DOMAIN SIZE @ 1035

PeV

(.5046
0.9296
0.7243
0.8159
0.8139

0.9662
0.9633
0.6992

0.6957
0.1805

(.1820

0.9376
0.8864

0.8683
(0.8683

0.39662
0.9633
0.6992
0.6857
0.1805

0.1840
0.9305
0.8952
0.7602
0.7512

ALY

9G.600
83.200
87.300

89.80¢
49.800

87.900
g88.200
92.600
92.600
89.200

88.800G
91.800
92.804¢

192.900

92.900

92.100
92.200
92.700
92.700
88.900

88.600
86.700
96.800
88.300
88.600Q

ARKE

0.0173
0.001¢
G¢.0010
0.00190
0.0010

0.0010
0.0010
0.0010

0.0010
0.0010

0.0010
0.6008
0.0008
0.0008
0.0008

0.0008

$.0008

0.0008
0.00408
0.0008

0.0008
0.0009
0.0007
0.0019
¢.0018

. : Mc is not
The combined estimator turns sut Gquite poor probably be-c;iu the

ARE

0.2499
0.0480
0.0480
0.0480
¢.0480

0.0480
0.0480
0.0480
0.0480
0.0480

0.0480
0.0474
0.0474
0.0474
0.0474

0.0474
0.0474
0.0474

0.0474
0.0474

0.0474
0.0478
0.048]
0.0462
0.0464
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H HIE

NSY
NSY
NSY
NSY
NSY

b e G i 3 W

NSY
- SY
Y

XX xxrx T

SY

SY
SY
SY
oY
SY

X N X L

oY

=

H THIL

H THi1z2

"H TH21

H TH22

v
1GE

ML
M2
M3
M4
MS

MG
TAY

TAY2
K1
K12

K1
N2
M3
L
M5

"6
VT1l
UT12
UT31
V122

PRB
0.2081

6.3947
5.4068
1.8663
1.6181
1.4920

1.4674
0.0392
0.011%
$.0119
0.011%

0.0661
0.0549
1.3660
0.4993
{}.9886

0.90683

1.2814
1.2036

16.7477
16.7604

TABLE

Qver-all performances

PRS
1.1471

9.7413
8.4886
3.8419
3.3033
1.8202

1.8020
1.2122
1.1599

1.1273

1.1273

1.1737
1.1849%
3.8023
2..2378
1.3529

2.6467
2.3434

17.8151
17.8329

PSL
0.9679

1.5729
1.4987
1.2636
1.2279
1.3662

1.3593
0.8351
0.38372
G.9304
0.8364

0.8654
0.8546
1.1771
0.9264
1.2422

1.2358
1.1637
1.1489
1.6857
1.6867

ACU(1)

0.7023

¢ .2097
0.2077
0.2106
0.2054
0.1654

0.1646
1.33297
1.3:19
1.3756
1.27356

1.3634
1.3696
0.4388
0.9338
0.2781

0.2769
0.1774
0.1766

- 0.0636

0.0697

D.5
for each pair (e,v)

ACU(2)

1.2296

0.1923
0.1897
0.1686
0.1639
0.1566

0.1358
0.1776
0.1753
0.1725
0.1725

0.1923
0.1897
0.16568
0.163Y9
0.1363

0.1555
0.1670
0.1661
0.0629
G.0626

PCV

0.9280

1.0945
1.1187
1.3376
1.1769

0.1805

0.1820
1.1622
1.1432
1.1118
1.1118

1.0945
1.1187
1.2557
1.1769
0.1803

0.1820
1.0985
1.0867
1.0039
1.0040

ACP

89.863

81.327
80.322
91.935
92.434
94.133

94.054
83.648
B89.682

87.326
87.326

BB.333
87.786
90.35381
B4.618
92.985

92.903

80.260
30.274

74.315
74.497

ARARE
0.6361

0.0199
0.0219
0.0199
0.0219
0.0192

0.0192
0.0627
0.0627
0.0627
0.0627

0.0754
0.0731
0.0046
0.0731
0.0028

0.0028
0.0362
0.0367
0.0114
0.0114

RARE
0.92803

0.1003
0.1001
0.1004
0.1001
0.0983

0.0983
0.1685
0.1685
(.1685
0.1685

0.1787
0.1773
0.1106
0.1773
0.1476

0.1076
0.0286
0.0996
0.0667
G.06G8

. The acronyms are as explained on pp 8065, HTE, YGFE denote Horviiz - Thompson’s and Yates - Grundy's estimators: NSY and SY
deapre non-synthetic and synthetic greg prediciors and TH the composite predictor, TAY, TAY?2 sre Siradals variance estimators: KT,
KT2 are Kott's variance eitimators; PRB, PRS denote bias and stability of v, ARB and ARE the bias and error of e: PCV, ACV{1) and
ACV(2) relate to cocfficients of variation; AGP the coverage percentages of confidence intervals and EFF the efficiency of {e, v} relative
to (HTE, YGE).

Comments: The direct HTE cnsures a good coverage probability but needs a too wide CI. The direct NSY combined with My, M, M., M,
seems seiviceable and even better than the synthetic combined with 5Sirndal's and Kott's variance estimators. But the syntheiic greg

coupled with My, M, , M, My seem better. The camposite 14 poor and may be kept out of reckoning,.

Eff
1.0000

6.3768
6.4092
6.3821
6.4092
6.4358

6.4338
6.5857
6.2857
6.3857
6.9837

6.4393
6.3106
6.8969
6.3106
6.9699

6.9699
6.9713
6.9374
7.4917
7 .4653



CHAPTER FIVE

RATIO ESTIMATION BY RANDOMIZED RESPONSE

5.0 SUMMARY.,

Supposing that only randomized response (RR) instead of direct
response (DR) 1s avalilable, modiflcations are considered on the ratlo
estimator for a survey population total of a sensitlve varlable based
on a simple random sample taken without replaeement (GRSWOR) and on
lts DR~based varlance estimators, A simulatlon-based numerical
comparison 1is presented on the relative efficacles of confidence

intervals involving the respective modified varlance estimators.

5.1 INTRODUCTION AND THE MAIN RESULTS.

The variable of interest y | is supposed to relate to
stigmatizing matters like the amount lost in gambling or spent on drug
etc. An SRSWOR of size n 1s taken to estimate Y, Since y 1is
sensitive we suPpnée values ¥y for i in a sample s are unavallable.
Instead, following Chaudhuri (198.?). we suppose that RR's, say, z, are

avallable for any sampled individual as

{§.1.1)

Here out of a vector _A_:{ai,...,a\!,..”ajl of pre-assigned real numbers

is chosen at random 'b}' a sampled _respandent when

a number _aJ
out of another pre-assigned

interviewed in a survey, and so ls _bk
vector -Bf[bi'* ."bk’ , ..,bk).- Though A :ith mean 8_ and varlance u~:,
say, and B with mean Eb and varliance i say, are known both to the
respondent and the interviewer, the three elements on .the right hand
side of (5.1.1) are known only to the former but not to the latter to
whom only the value z, 1s reported. Writing Ep __(VR)_ as operalor of

expectation (variance) with respect to th_ls- ‘randomization’ experiment
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done independently by each respondent and a being chosen

independently of b , it follows that J
E = _ 22
r(Zy) = 8,y, + 6, and VRzy) = o y) + cr;. (5.1.2)
We shall write ri:tzi-ﬂb)fﬁa and VH(F1]=V1. Then
2 2 5
A 8
v = [ a rs b ] satisfies E (3 }
: 8% + g° g2 1 g2 s Egl¥y) = ¥y
a a a a

If DR were avallable, then a commonly employed estimator for Y 1s
the ratlo estimator
Ly Ly
t = X 1 = X+r with r = . ,

4 /
E.Xi ) xi

/
denoting by 3 the sum over i in s. The following variance estimators

for t are well~known, vide Chaudhuri and Stenger (1992), Cochran
(1977), Royall and Eberhardt (1975) and Royall and Cumberland {1978

a), namely,

2
_ _N*(1-f) _
Yo = RtaT) 0y vy S ["‘;‘“‘] Yo’

writing i, X as population and sample means of ¥,

H -2
X
2 X x_ (y -rx, )%
N'(1-f) ¢c 1 Z/ I 1
and, D T -2 N ~
| n Ve _ (1-X1/HX]
o . . . Ef(x -x)>
writing x as the mean of non-sampled values of X and ¢_ =
< | | % (n-1)x°

These are purported ta provide estlmators'fur V = E (t- Y) , Wwriting Ep
fOr expectation  operator with respect to sampling design p. This V¥V in

practice is approximated by v, = n&—ﬁ E(yi-Fx )%, f=n/N, F=Y/X,
Since y, is not available we assume r1 for 1 € s are avallable and we
take e=X‘£ r /E/xi = Xr with r/= X ri/E/xl. as a natural substitute

for t with which we may proceed to estimate Y recognizing V =
EpER(e ~Y)? as a measure of its error. We shall assume that Ep and Ep
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commute and consider estimatorg for V/, to be called variance

estimators for e, as quantities v/ which satisfy the condition

/
Eglvi) = v+ a (5.1.3)

writing v as a partlcular variance estimator for t, like v

| s Vs Vory V
above or any other, and a;(fvi][}{/ka)a, 0" 2" W'D
Let, e, = y ~rx, and e’f =rT -r/x ¢+ th
i i i i i {? en
/e _ e - -2/
ER(Ei ) = ei + (l_le/n}()vi + (}{i/HK) 3, Vk.
So, |
r /2 /. - _ - A
Ep [ 2™ - 201 - (2x,/n%) + (z’x;)/(nx)z ) v, ]
=E (b ) =E (b ) = ¥
R si ER 5 !
where, b = E/b | nd
s si’ %
/ 2
b = efz - {1 ~ in + : xk 3 sS4,
si i - z p r 54y
nx  {(nx)" 7/
- o/ ; .2 A o A /.2
Let a, = (% vi)(}{/z xk) and a, = { V1](X/E xk] : Then
corresponding to vﬂ, vz, vH, _‘VD above, we propose the following 4

variance estimators v/ for e which may be checked to satisfy (5.1.3),

namely
o | . /2
;N NR(Lf) /2 Z/[ Ky X ]““ ]
V. =a + e - 1 - + - v
0. s n(n-1) i na (n%) i
A | A _.

+ (X /7 %)% (vga)

v/ = 8
2 ‘s
- - 2
A X x c ~1 A
/ | C X /o
Vg = a3 + — [ 1 — = } [vo as) and
w®
. . | b
V/ _ A Ngtl“f) X XC 1 Z/ si
D g n e B (1-x i/n§)

Then we postulate the linear regression model of Chapter Three
with error variance prupnrtional to the regressor as ls appropriate

for the choice of the ratio estimator. Also we adopt Brewef's (1979)

asymptotic approach,
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Writing IM(X]=E (V ), bi[x) 1imE E (t-Y)=
pm

following alternative fnrms of v, namely

we propose first the

2

f
Vol _ M(x) vD _ (1- CU/N)
UmE E_ (v,) | Gcim)
on writing ¥ for sum over { in U, c? = g? 2 . 1 - 2
0 =S,/ X, 8l = o Zly,-Fx,)%
e 2 . 2
v = [X M (x) X (1—CU/N)
21 — V J v — - S — —teppitrt V
" 01 02 P 0 - 2 0
m(vo) ¥ (l-cxfn)
2
_ Hf{x) CU -1
Yoz = . Yo T I Yo
mEpEm[vG]
v = M) V__[?{)z\,
23 2 - T 031
limEpEm(vG] »
/ — -
M (%) I X “x 1
Yoa T Yo Tl ] Yo
Em(vol X

For each of these new v's, limEpEm(v) equals elither M(x) or
/
M (x),

Further we conslder a few more v’s of the form

y Yy, \2
w a2 - Y )
i kK /

with a,'s chnsen to satisfy llmE E [t({x)] = H/(x) and they turn out as

1
2. - EXE | 2
oo NTef) k BTSSR N4'S
1 ni{n-1) "N(n-1) X n X
i ¥
/2
_ M- N L2 Xy Y1 T %)
"2 T Tn(n-1) 1 n(n-1) Xy n Xy
n¥2 1 2 | |
I n—-1 N & X N
3 1 /2 1 1 2 1
n 2 Xy n—-1 “ﬁ"'z *x
_-_:_!'__Exz--
and = N K m
o My = =1 _,=2 "2
— & X
n k
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From these, v °
N 2 .
vgl = agt h o (?X-g }, vi. = : ¥
g 2 0 '
| (1-C /n) 21 s
;N R A ) A
Yoo = a5+( ""] 5 - (voﬂas]. vag =
X (1~cx/h) J
’ X / / X
x X
1 2
" h: . N“(1-f) 2 X,
= ) "
1 s ni{n-1) i N(n-1)
h,
/D
o/ =: N N®(1-1) <2 _Z K
2 8 nin-1) i n{n-1}
N | A
A V ' y
writing a, = n-2 L P E:/ K
i n Xa na Xz
| i k
and,
n-2 1 2
;A n-1 "
m, = a_ + — -
3 S _lﬂ E’xz B 1 .1 5
n k n-1 N k
1 2
. : . &fﬂr‘z:xk [m’—: \
4 g 1 / 2 2
— XX
n k
As the variance estimators

and,

for e are pretty complicated a

theoretical comparison of their relative efficacies 1is difficult to

carry out.

of the form e % ’J’a/z‘/"j with the postulation

- S0 we conslder setting up confidence intervals (Cl) for Y

that d=(e~Y)/¢/ v’

is distributed as elther a standard normal deviate or as Student'’s t

statistic with (n-1) degrees of freedom with “’a/z as the 100a/2

percent on the right tail area of

distribution,

confidence coefficient.

polnt

Taking for v/ each

80
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alternative forms we consider corresponding Ci's and compare the
relative efflcacles of the latter. For this we resort to a numerical
exercise through a simulation study reported next. With (t,v) in
place of (e,v/] a parallel exercise was done earlier, among others, by

Royall and Cumberland (1978 b) and Wu and Deng (1983).

5.2 SIMULATION.

We take N=150, o=1, B=1, a=0.05, take xi’s as a random sample
1 ~-u/A

from the density fh(u) =~ , u>»0, A=8.5, take Ti’s as a random

sample from standard normal distributicn N(Q,1), E:i=1:1\/_x_: and Y=
X1+Ei, 1=1,..,150. Then we draw a replicate of R=1000 SRSWOR's from U
of size n=32 each, write Er as sum over replicates, A = némzrv’ and P
= _%ﬂﬂr(e~Y)2. Next we take J=20, K=25_and consider arbitrary cholces

of A and B denoted respectively '&J’ EJ. (J=1,..,5) given after the

tables that follow.To discriminate among the CI's we consider the

following criteria, following Rao and Wu's (1983) well-known

convention.
(1) ACP (Actual coverage percentage) = the percentage of replicates
for which CI covers Y — the closer it is to the nominal

confidence coefficlent 954 the betiter, The ACP’s calculated
referring to Student’s t-table are given In the table after a

slash following those by normal table.

(2) ACV (Average coeffliclient of variation) = the average of V/rvf /e
over the replicates — this reflects the length of CI relative to

e.
{3) Pseudo relative blas = PB(V”) = J]; ~é Er_(v'!-P]

1/2
1 1 /
{4) Pseudo relative stabllity = PS(VK} = 5 [ R El_(v-*P]2 ]

) | .
(5} Pseudo standardized length = PL{VX) = R Erv/rvf /Y P

_ 1
(6) Bias of d = B{d) = —ﬁ—.Erd.

(7) Mean square error of d = M(d) = _%_ Er(d-B(d))E
| | ;
-B{d
(8) Root beta one of d = vV B,(d) = __%__ X [ d-B(d) ]
' r\ vV H{d)
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(9) Excess = E(d) = Bg(d) - 3= -%—- Z [ d-B{d) ]4_ 3.
| | rv. v M{d)

(10) PCV (Pseudo coefflicient of variation) =z _t_ [ 1 Y (v -A)°
r

1/2
A R ]

The smaller the magnitudes of (2) — (10) the better the CI and
better the choice (e,vf).

The numerical findings are presented in the table below. The

five sections I-V of the table relate respectively to five choices of

A.,, B,, j=1,..5,
By 24 J

Finally, to make the notatlons In the table easler, we represent

v/ by v throughout for all v”’s.

5.3 CONCLUSION.

From the five sections of the table presented in Appendix-E at
- the end of this chapter we find that compared to the last section
which duplicates the DR situation the first three do not fare too

badly and the performances deteriorat@  across the sections as ai and

w; increase, For the preservation of confidentiality, only high wi,'

u*; will be acceptable to the respondents. An RR situation as in

section IV with too large ::ra, ¢ may be unsuitable to the survey

A B
designer but the first three sltuations seem quite effective if RR’'s
could be procured with restrlcted mi, FE as contalned therein. Among
the 14 alternative variance estimators it is difficult to identify the

most effective ones but m;, m; seem to beat most of the others.
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APPENDIX  E

The acronyma used are as explained on pp 81-82, ACP denctes Coverage petcentage af confidence interval (CI), ACV, PCV relate to

coefficients of variation; PB, PS relate to bias and slability of v, PL the len
glhufﬂlundﬂ.,M‘,\/ i
skewneas and excost of d = (e~ ¥)/ /7 (M) 1) and EC) the bias, MSE,
a Table

Performances of CI by several criteria, Especlally good

(bad) values are under-scored (marked by asterisks).

5 | -
f 10 10°  -10* 10 102 -10% 102 10
ACP ACY  PCV P PS PL B(d) M(d) VB {d) E(d)
Section I
v, 93.0/93.8 3686 3127 644 30 95 2.4 122 .50 .78
v,  92.8/93.8 3691 3312 598 32 96 3.1 121 .32 .77
vy  93.0/93.8 3699 3371 547 32 96 3.2 120 .30 .77
vy 93.0/93.7 3693 3363 576 32 96 3,8 120 .34 .77
voy  93.0/93.8 3692 3127 615 30 96 2,4 121 .50 .78
Voy  92.8/93.8 3696 3312 568 32 96 3.1 120 .32 .77
Vo,  93.0/93.7 3693 3162 605 30 96 2.7 121 A1 .77
3
Vo3 93.0/93.8 3693 3127 607 30 96 2.4 121 .50 .78
v,  92.8/93.8 3698 3312 560 32 96 3.1 120 .32 .77
Voa ~ 93.0/93.7 3695 3162 597 30 96 2,7 120 .41 .77
% .
m,  93.0/93.7 3677 3121 691 30 95 4.4 122 .64 .80
T T e
m,  92.9/93.8 3677 3119 689 30 95 4.4 122 .63 .80
m,  92.8/93.7 3688 3302 613 32 96 4.9 121 .41 .79
m,  92.8/93.7 3688 3309 611 32 96 4.9 121 .41 .79
Section II
vy  89.1/90.1 3633 3587 2653 37 84 27.1 164 =-.07 1.77
v,  88.9/90.2 3688 3745 2615 38 84 26.8 163 -.59 1.78
*
vy  89.0/90.1 3676 379 2575 38 85 26.7 162 -.65 1.78
\ 20 0
vy 89.0/90.2 3671 3795 2597 38 84 27.4 163 -.60 1.79
V;  89.1/90.1 3669 3587 2630 37 84 27.1 163 ~-.07 1.77
v,,  89.0/90.3 3674 G745 2591 38 8 267 162 -.59 1.78
Vop  89.5/90.2 3670 3616 2621 37 84 26.9 162 -.33 1.76
Vga ~ 89.1/90.1 3670 3587 2623 37 84 27.1 163 -.07 1.77
89.0/90,3 3675 3745 2585 38 85 26.7 162 -.59 1.78
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Section II (continued)

You 89,5/90.3 3672 3616 2615 37 84 26.9 162 ~-.33 1.76
W

m, 89.1/30.0 3653 3590 2691 38 84 29.3 165 .17 1.79
. 217

m, 89,1/90.0 3654 3588 2689 38 84 29,2 165 .14 1.17S

n, 89.0/90.2 3665 3742 2627 38 84 28.7 163 -.43 1.84

m, 89.0/90.2 3665 3749 2626 38 84 28.7 163 -.44 1.84

Section III
v,  75.6/77.4 3616 5227 5678 61 63 105 424 23.6 37
v,  76.3/78.0 3619 5317 5661 61 63 107 426 24.1 38
. *

v, 76.6/78.0 3627 5354 5638 61 63 107 425 24.2 39

vy  76.4/78.0 3620 5376 5652 61 63 112 460 35.8 61
Vo1 75.7/77.4 3621 5227 5665 61 63 104 423 23.7 37
Yo, 76.4/78.0 3625 5317 5647 61 63 107 425 24.2 39
Voo 76, 1/77.4 3622 5230 5662 61 63 105 423 24.0 38
Vog  75.7/77.4 3623 5227 5661 61 63 104 422 23.7 37

o
v,  76.4/78.0 3627 5317 5644 61 63 107 424 24.2 39

0 76.3/77.4 3623 5230 5659 61 63 105 423 24.0 38
m, 75.2/77.1 3604 5285 5702 61 63 67 412 -7.2 12
m, 75.3/77.0 3605 5283 5701 61 63 67 410 ~7.0 12

3605 . 67 410 -7.0 12

m, 75.8/77.9 3615 5377 5668 61 63 69 407 ~7.2 12

. | ‘ 69 407 7.2 12
m, 75.8/77.9 3615 5380 5667 61 63 69 407 -7.1 12
Section 1V

Y 56.5/58.4 4623 6908 8004 81 42 296 2156 -32.2 44.7

v, 56.6/58.3 4623 6899 8005 81 42 276 2333 -44.4 62.8

|l

v, 56.5/58.3 4633 6918 7996 81 42 268 2419 -50.0 72.7

. »

v,  56.5/58.5 4635 6950 7991 81 42 436 2122 -13.8 52.3
Yo 56.8/58.4 4630 6909 7999 81 42 294 2158 -32.5 45.2
Vo1 56.6/58.3 4631 6899 7999 81 42 274 2343 -45.3 64.3
Voo 56.5/58.4 4629 6871 8002 81 42 287 2211 -36.6 0O50.4
Vog  56.8/58.4 4632 6909 7997 81 42 294 2159 -32.6 45.4
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Section IV (continued)

5.11, 5.69, 5.

85

86, 4.60, 6.36, 4.98, 6.29, 5.71, 4.85, 4.

. »
Vg 96.6/58.3 4633 6899 7997 81 42 273 2346 -45.5 64.7
Vo4 56.5/58.5 4631 6871 8000 81 42 286 2212 -16.7 50.6
m, 56.4/57.8 4594 7087 8009 81 41 305 1778 -9.5 11.2
m) 56.4/57.8 .4601 7065 8008 81 42 339 1687 -7.8 11.0
m, 55.8/58.0 4603 7069 8003 81 42 314 1706 -8.9 11.4
m 55.8/57.8 4604 7065 8002 81 42 309 1711 -9.2 11.2
Hectlion V'
Yy 93.7/94.7 3697 2922 384 31 101 .02 106 .27 . 20
v, 94,0/94,.9 3701 3110 430 33 101 .15 105 .27 .19
' i
v 94,2/95,2 3709 3171 485 34 101 .19 105 .28 .19
vy 94,.2/95.2 3704 3160 454 33 101 76 105 .31 .19
Vo 93.8/94.7 3703 2922 417 31 101 .02 106 .27 .20
- 94.0/95.0 3707 3110 463 33 101 15 105 .27 19
Voo 94,0/94,7 3704 2956 425 31 101 .07 105 .27 .19
*
03 93.8/94.8 3704 2922 426 31 101 .02 106 .27 .20
- 94.0/95.0 3708 3110 472 33 101 .15 105 .27 .19
o1 94.0/94.7 3705 2956 434 31 101 . 07 105 .27 .19
m, 93.8/94.9 3687 2903 330 30 101 1,65 107 .38 .20
m, 93.9/94.9 3688 2900 233 30 101 1. 63 106 .38 . 20
S088 <V dning | .
m. 94.3/94,7 3698 3093 413 32 1o 1,75 105 .37 .19
- »
", 94.3/94.8 3699 3100 416 33 101 1.74 105 .37 .19
N.B, Five sets of cholices of A and B are as follows :
A, = (5.02, 4,99, 4.65, 5.44, 5.10, 5.06, 4,90, 5.04, 5.50, 5.35,
5,35, 4,85, 5.30, 4.51, 5.45, 4.80, 5.37, 4.68, 4.77, 4.56)
B, = (-0.66, ~0.76, -1,74, -0.58, -0.63, -0,41, -1,17, -0.93, -0.43,
~1.30, -0.18, -0.06, -0.74, -1.77, -0.54, -0.44, ~0.36, -1.94,
2 _ .
o = 5.03, ¢, = .09 6 = .94, o = .32,
A, = (5.90, 6.40, 5.26, 5.60, 6.42, 4.57, 5.45, 4,53, 5.53, 5.42,
| 59)



~2

As

— 1. e,

= (0.60, 0.55, -1.04, -1.95, -1,78, 0.56, 0.01, 1.24. 1.78, 0.98,
~0.38, 1.58, -1.09, 0.56, 1.66, -1.61, 1.36, -1.56, 1.51, 0.21,
0.23, 0.19, ~0.85, 0.13, 0.09)

— 2 oy "
6, S, 46, o= .38; 6

= .12, wz = 1.25.

b b

(9.21, 7.31, 8,83, 7.42, 10.49, 8.60, 5.59, 9.91, 7.39, 5.20,
8.74, 4.50, 8.67, 4.98, 7.34, 5,56, 7.72, 6.58, 5.08, 7.19)
(0.58, -0.27, 1,88, -1.08, -0,32, -0,54, -1,79, 0.90, 1,58, -1.22,
~1.40, 0.36, -0.18, ~1.21, 0.01, -1.23, 1,87, 0.09, -1.26, O.38.
1.46, 1.17, 0.69, -1.59, -1.01)

2 2

Ba = 7,32, wa = 2,89; Bb = -, 09, o

"

= 1.25,

(0.28, 5.15, 8.68, 8.05, 0.60, 3.63, 9.35, 0.96, 9.16, 3,45,
4,49, 7.51, 6.40, 2,13, 8.48, 2.20, 4.30, 8.70, 1,96, 3.06)
-0.22, -1.62, -1,17, -1.32, -1.66, -1,13 -1.84)

(~3.46, -4.43, -4.43, ~2.10, 1.77, -2.49, 4.60, 0.19, 3.44, ~2.77.
2,41, -1.80, ~2.31, 0.27, 3.28, 3.57, 3.67, 3.72, -2.50, =-2.22,
2.94, -3.69, 4,24, -2,32, -2.86)

8 = 5.13, wz = 8.15: 6 -, 13, wz = 9, 42,
a a b b

consists of all entriles as 1.00 and 35_0ﬂnsists of all entries as 0.00
this set corresponds to DR rather than RR and is consldered for

comparison with RR.

Commenta: On applying badly designed RR techniques, for example with choices of A3, By or Ay, By one cannel get results comparable
{o those avajlable with DR if applicable. But if RR is properly implemented, for example, if Ay, By ar A3, By may be employed, the
RR technique ylelds serviceable reaults. At any rate my,mg tuin oul the best in all the five situationa illusirated,
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CHAPTER SIX

INFERENCE IN RANDOMIZED RESPONSE SURVEYS WITH COMPLEX STRATEGIES

6.1 SUMMARY.

Modifications on the generalized regression predictor for Y and
on its variance estimators discussed in Chapter Two are presented here
when 1Instead of direct responses only randomized responses are
avallable essentially in the manners described in Chapter Five |
Comparative efflcacles of competing confidence intervals based on
these modified estimators and variance estimators are examined

numerically through simulation studies,

6.1 INTRODUCTION.

| In this chapter also we regard y as a sensitive varlable and
consequently Y, values are unavailable but instead RR's are avallable
as, say, r, from each sampled indlvldual adopting a sultable device as
dliscussed In Chapter Five, Suppose, more generally than reported Iin

Chapter Five, r, be avallable satisfying

i
ER(riJ =¥y
- 2 o
and,. VB(ri] = o,y Biyi + Bi = Vi’ say, 1L € U, (6.1.1)

with @, Bi’ 91 known, One possibility to get such an ry as
illustrated in Chaudhuri and Mukerjee (1988) is as follows. Each
sampled individual i may be requested to report the true value Yy with
a pre-assigned probability ¢ (0<c<1) and with a probablility (i-c) to
.repart 2 value chosen out of a large number, say, K of given real

values (zl,.”,zK]. Then the randomized response, say, W, would

satisfy
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K
_ (1-c)
EH(wi) © ¥y 7 K sz —eYf Q, say.
Jj=1

Then r, = th - Q)/ ¢ would meet the requirements (6.1.1). 1t will then
follow that

satisfles, ER(Vi) = ? ieU.

11

If DR were available, an appropriate estimator for Y under model

M of the earller chaprters would be the well-known greg predictor of
Sarndal (1980), namely,

Yy
t = g
g }:/ T, si

| X x. Q.m
where, gsi'=_1+ [X_Z/nk ] i;i
L K % X

k Ak

taking Qi as sultable positive numbers as mentioned in chapters Gne,

Tﬁo and Four.

In the next sectlon we consider a version of té.when Yy is

replaced by r, and variance estimators of the latter in terms of r , 1

i | {
€ s on adjusting the variance estimators of tg_in terms of Yy given in

Chapter Two., Next we derive confidence lntervals of Y and examine
their relative efficacies through a simulation study. Agaln linear

regression model and Brewer's (1979) asymptotlc approach are used,

6.2 ESTIMATORS AND VARIANCE ESTIMATORS IN RR SET-UP,

Replacling Yy by re throughout in tg our proposed obvious
modification on tg is | |

| Ty
tg(r) - “1 gsi'

| 2 2
- = - = ~Y +
Naturally, .ER[tg(r)] = tg.Notlng that, _ER[tg(r] Y] _{tg _?
ER(t (r)-t )% = (t ~v)® + E' Vi(%4F | and writing Ec'for the
g g° B ' | | v
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Xpectation
exp operator as Ep or limEp or limEpE which 1s used to choose

a measure of error of tg for Y as E (t ~Y)* ,» We naturally take

= EgEp(t, (r)-~y)?

as a measure of error of tg(r) as an estimatuf of Y.I

- v
We note that 1im Epz/‘v’1 (i)’ | == Z ﬂ: and so take
A . y A
— — LXTRY:
vir) Vy/my and v (r) = Z/ v,
vy
as estimators for Z = because we have
i

| o Vi /
limEpER[v(r)] = Z —E-j:m == limEpER[v (r)].

Next in each of__vj, Kj (j=1,2) and m, (j=1,..,6}) we replace Y,

throughout by ry and make adjustments on them so as to derive a

formula v/, say, for which we may have ER(V"] = v where v stands for

these 10 variance estimators in turn. For variance estimators of
tg(r) then we take m'=v'+v(r) and m =v’+ v (). Denot.ing v
rfspectl‘:ely corresponding to Vi vz,, Kl'- Kz. ml....m6 by v;,
VoreesVog We have then the followlng 20 alternative varlance
estimators for tg(r]. namely, mj-va[rJ J=1,..,10 and mjijw"[r).
J=1,..,10. These vj, J=1,..10 work out respectively, wri_ting ei(r)

for e, replacing Yy in latter by ry, as

i
, S ei(r) | eJ(r) 2
v1=z‘ ﬂij[[ “1 — HJ ] —-.—aiJ], where

A A
a =[_V£+3_J_]+[“i _’fi]?‘ '
1] ni Hj. Ty s ] (E"xi Qi]z
. A A
2 [ Xg X ] { SN U A ]
.2 M, om, n "
2%y Qy i J ] J
(r) g e.lr) \2
o = A B51°1 _-8J J ] - b ] , where
2 1] ni nj 1
A A - /2 2 A
2 Y
by - | a2 %)) - Bs1%1  &ss ]2 [ 27Xy Q) Y, }
= !/ 2 2
1) n'i “’j L n‘j (Ei}_{-iQ]
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| | t=—n
o
7]
b
o
x|
w
2
A

i
E: . 1M
xk e
v/ - K Vf
8 xz _1_"1 6
1 2

i
; Efi(l/fri—l) o ,
— 2 /X
n-1 11 1
o, (1i/n,.-1) |
/ i i =32 /
and, Vio = TR > ) [(wi-w) ~—ai],
—_—n . /X
n—1 1" i

Since obviously it is not easy to choose from among the mj and
'mjf, J=1,..,10 by analytical considerations, we consider examining

their efficacies in yielding confidence intervals (CI) for Y of the

A A
/ | / ’/
form tg(rli:ra/z v o, where v stands for one of these mJ, -mj ,
J=1,..,10, Here, ~for large n, the distribution of d =

— | |
[tg(FJ-Y]// v 1s supposed to be approximately that of the standard
normal variable Tt and ta/Z’ for a chosen « in (0,1) 1is supposed to be

the 100a/2 percent point on the right tail area of the N(O,1)
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distribution, Performances of the respective CI’s are examined by us
through a simulation study described below,

6.3 SIMULATION STUDY.

As in earlier chapters, we take N=150, ':rf = n:raxg o=1, g=1.2,
f=1, draw x,’s at random from the density

f(t) = .i e't/a, t>0, A=8.5,

draw -rl"a at random from N(0,1), take €y xiwz-ci and then generate

Y3 subjJect to M(f) with these stipulations. We take 5 sets of A,

1

B
denoted I—Y and given below, with means G.a' Bb and variances r.ri. ”%

and apply RR device of Chapter Five.

A = (5.90, 6.40, 5.26, 5.60, 6,42, 4,57, 5.45, 4.53, 5.53, 5.42,
_ 5.11, 5.69, 5.86, 4.60, 6,36, 4,98, 6.29, 5.71, 4.85, 4.59)
B, = (0.60, 0.55, -1,04, ~1,95, -1,78, 0.56, 0.01, 1.24, 1.78,

1 0.98, -0.38, 1.58, -1.09, 0.56, 1.66, -1.61, 1.36, -1.56,
1.51, 0.21, 0.23, 0.19, -0.85, 0.13, 0.09)
0 = 5.4, wi = .38; 8, = .12, wi = 1,25,

A, = (0.28, 5.15, 8.68, 8.05, 0.60, 3.63, 9.35, 0.96, 9.16, 3.45,

4,49, 7.51, 6.40, 2.13, 8.48, 2.20, 4.30, 8.70, 1.96, 3.06)
/ ~0.22, -1.62, -1.17, -1.32, -1.66, -1.13 ~1.84)

B, = (-3.46, -4.43, -4.43, -2.10, 1.77, -2.49, 4.60, 0.19, 3.44,
-2.77, 2.41, -1.80, -2.31, 0,27, 3.28, 3.57, 3.67, 3.72,
-2.50. -2.22, 2.94, -3.69, 4.24, -2.32, -2,86) '

6, = 5.1, 0% = 8.15; 8, = -.13, 0 = 9.42.
A, = (5.02, 4.99, 4.65, 5.44, 5.10, 5.06, 4.90, 5.04, 5.50, 5.35,
5.35 4.85, 5.30, 4.51, 5.45, 4.80, 5.37, 4.68, 4.77, 4.56)

B, = (-0.66, -0.76, ~1.74, -0.58, -0.63, -0.41, -1.17, -0.93,
-0.43, ~-1.30, -0.18, -0.06, -0.74, -1.77, -0.54, -0.44,
-0.36, -1.94, 6_=5.03, ¢§ = .09; 8, = -.94, wi = .32,

ﬂs - (9.21, 7.31, 8.83, 7.42, 10.49, 8.60, 5.59, 9.91, 7.39,

5,20, 8.74, 4.50, 8.67, 4.98, 7.34, 5,56, 7.72, 6.58, 35.08,
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7.19)
By = (0.58, -0.27, 1.88, -1.08, -0.32, -0.54, -1.79, 0.90, 1.58,

-1.22, -1.40, 0.36, -0.18, -1.21, 0.01, -1.23, 1.87, 0.09,
~1.26, 0.38, 1.46, 1.17, 0.69, -1.59, -1.01)
2 2

Ba = 7,32, Gy = 2. 89; Bb = -, ()9, ¢ = 1,25.

,ga consists of all entries as 1.00 and EB conslsts of all entries

as 0,00 — 1i.e. this set corresponds to DR rather than RR and is

consldered for comparison wlth RR.

Next, taking n=32, adopting Hartley and Rao's (HR, 1362) scheme
of sampli_rig using slze measures as x g, R=1000 replicates of samples

are chosen, For each sample, values of d are calculated, Cl's as

/A
tg(r) + 1,96 v , choosing «=0.05, 1i.e. with nominal confidence
coefficients of 95% are computed. To discriminate among the Cl's we
conslder the similar criteria following Rac and Wu (1983) among

others, as in earlier chapters. We shall denote by El_ the 'sum over

. - _ A ..
the R=1000 repllcates of samples, —%ﬁ Erv by A and pseudc mean square
| B 1 _ ) . . :
error by P = nﬁf-zr[tg(r] Y],

(1) ACP (Actual coverage percentage) = the number of samples out of R
for which CI's cover Y — the closer it is to 95 the better

the procedure,
the average of

i

(2) ACV (Average coefficient of variation)

/A
v /tg(r] over the R replicates — this reflects the

length of CI relative to tg(r].

A
To choose among the v 's we further consider the criteria
A

' 1
(3) PB {Pseudo relative blas) : B(v) = ( —— Er v — P}/P.
R

1

92



' | A 1/2
(4) PS (Pseudo relative stability) : s(v) = [—-}-— Z v-—P]z] /
' I

/P.
A
(5) PL (Pseudo standardized length) : L(v) = 1 s / v NP,
(6) B(d) (Bias of d) = -~ 54,
r
R
(7) M(d) (Mean square error (MSE) of d) =L £ _[d~B{d)]°
R T
| 3
(8) Root beta one :v Bl[dj = -—%—- [d—B(d) ] ,
v M(d)

r

4
(9) Excess measure ; E(d) = Bz(d)-—ﬂ = —%——Z [ d-B(d) )" _ 3.
| | v M(d)

(10) PCY (Pseudo coefficlent of variation)

. 1/2
2] /A.

PCV(v) = [——-L Y (v-A)
R T |

‘The smaller the magnitudes of criteria 2 — 10, the better. The

values are presented in the table below separately for 4 choices of Q,
|  _1fni
as :

— respectively suggested by Brewer (1979) and H&jek
i'i

11 D¢
i1

(1971), 1/x?l and 1/% denoted respectively by B, H, S and S/ in

1!
‘table. Noting that both \/ﬁlm and E(d) often differ from O,

'indic_ating deviation from normality of d, we alsc calculate (I as

A
j’“ .
Cl --tg(r) + t{].95, (n-—l)/ v to calcglate the ACP. Here _t0.95, (n-1)
denotes the 95% point on the right tall area of the Student's t

distribution with (n-1) degrees of. freedom which may approximate the

distribution of d better than N(0,1). In the table below in

74
. Appendix-F, we give values for mjf, j=1,..,10 and those for m‘j \

/s
J=1,..,10, are similar but not shown. And, in the tables m\,j 8 are

‘represented by mJ’s.

6.4 CONCLUDING REMARKS.

vaiau.sly all the procedures fare best in case III, i.e. when DR

| 2
is avallable. Among the RR’s, the case II and IV with smaller c, fare -

better than olthers. In each case I - V¥, the variance estimators rns

and me fare best ﬁmong the other competitors in our numeric:gl

illustrations.
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Appendix F

The acrnr}yml used in the tables are as explained on pp 92-93. To avoid monotony and save space we do na'l.reput them here. However,
B, H, 5, 5 correapond respeclively lo choice of Q; aa (1 —»p)/moxg, 1 /mix,, ];':? and 1/x;
i i

TABLE
- Relative performances of confidence intervals.
5 sections I-V represent respectively 5 choices I-V of A, B, gliven belovw.
4 sub-sections marked 1-4 in each section respectively corregpond to 4 cholces

/ |
of Qi as B, H, 5 and 5 .ACP for Student’s t~table are given after a slash
following those for N(O0,1}.

5 4 3 2 2 4

A 10> 10 10° 10 10° 10 10
v ACP ACV  PCV PB. PS PL  B(d) M(d) v’ﬁ; E(d)
Section I : Sub-section 1
m, 94.8/95.2 5575 5140 -74 48 94 37 1.12 .80 -.29
n, 97.0/97.6 6219 5185 15 62 104 51 .89 .93  -.33
m, 94.7/95.1 5575 5211 73 49 94 41 1.12 .84 ~-.30
m, 97.0/97.6 6215 5184 15 62 104 51 .89 .93 ~-.33
n, 94.8/95.3 S569 5107 =77 48 93 33 112 .78 .29
n, 94.8/95.3 5569 5109  -77 48 93 33 1.12 78  -.29
n, 94.7/95.1 SST1 5158 <75 48 94 37 112 .81 -.30
ng 94.7/95.1 S571 5158 <75 48 94 37 112 .81 -.30
ng 97.2/97.7 6324 5679 50 71 106 108 .87 1.14 ~-.26
n, 97.2/97.8 6323 5749 20 72 106 112 .87 1.18 -.27
Section I : Sub-sectlon 2

m, o01.8/95.2 S574 5138  -75 48 94 37 1.12 .80 .29
n, 97.0/97.6 6218 5181 s 62 104 51 .89 .93 ~-.33
m, 94.7/95.1 5575 5209 <73 49 %4 a1 112 .84 -.30
n, 97.0/97.6 6216 5181 15 61, 104 51 .89 .93 -.33
n. 94.8/95.3 5569 5107 77 48 99 4 1.12 .78 -.29
m,  94.7/95.3 5569 5109  ~T7 48 95 34 1.12 .78 ~-.29
n, 94.7/95.1 5571 5158 75 48 93 37 1.12 ia1 -.30
n, 94.7/95.1 5571 5158 <75 48 93 37 112 .81 =30
n, 97.2/97.7 6324 5679 20 71 106 108 .87 1.15 =26
n, 97.2/97.8 6323 5749 20 72 106 112 .87 118 ~.27
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_Sectinn I :

Sub-~section 3

m, 94.8/95.2 5576 5142 -74 48 94 36 1.11 .80 -.29
m, 97.1/97.6 6220 5191 15 62 104 51 .89 .93 -.33
m, 94.7/95.1 5575 5214 ~73 49 94 42  1.12 .84 ~.29
m, 97f1/97+6 6215 5191 15 62 104 52 .89 .93 .33
me 94.8/95.3 5569 5107 77 48 93 33 1.12 .78 -~.29
n, 94.8/95.3 5569 5109 =77 48 93 33 1.12 .78 -.29
m, 94.7/95.1 5571 5158 -75 48 94 37 1.12 .81 . 30
m8 94, 7/95.1 5571 5158 ~T75 48 94 37 1.12 81 130
ng 97.2/97.7 6324 5679 20 71 106 107 .87 1.14 -, 26
n, 97.2/97.8 6323 5749 20 72 106 112 .87 1.18 27
Section I : Sub-section 4
m,  94.7/95.2 5571 5135 -76 48 93 37 t.12 .80 -,29
m, 97.0/97.6 6214 5167 15 61 104 52 .89 .93 .33
n, 94.7/95.1 5576 5203 74 49 94 42 112 .83 . 30
m, 97.0/97.6 6217 5168 15 61 104 52 .89 .93 .33
ne 94.7/95.3 5569 5107 -77 A8 . 93 35  1.12 .79 .29
‘mﬁl 94,7/95.2 5569 5109 -77 48 93 35 1,12 .79 .29
m,  94.6/95.1 5571 5158 -76 48 93 39 1,12 .81 -.30
m, 94.6/95.1 5571 5158 ~76 48 93 39 1.12 .82 .30
mg 97.1/97.8 6323 5679 20 71 106 109 .87 1,15 .27
no 97.2/97.8 6323 5749 20 72 106 113, .88 1.18 27T
Section II : Sub-section 1
m, 94.5/95.5 4708 3688 -56 35 96 -87 1.12 .14 . 06
m, 94.7/95.7 4723 . 3821 -8 37 96  -81 1,12 .15 .07
m, 94.6/95.6 4708 3824 -54 37 9% -81 1.12 .15 .07
m, 94.7/95.7 4720 3821 -s0 37 96  =-81 1.12 .15 .07
m.  94.3/95.5 4701 3645 -0 35 9 -92 1.13 .14 -.06
'm_ 94.3/95.5 4701 3648  -59 35 9% -9z 113 .14 -.06
m,  94.6/95.5 4703 3739 -57 36 96 -87 1.12 .15 .07 .
Mg 94.6/95.5 4703 3740 -57 .36 96 -87 1,12 .;5 .07
m, 94.8/96.0 4820 4228 f4 | 42 98 17 1.99 .19 .02
m, 94.8/95.8 4819 4333 -3 43 98 19 109 .20 .00

95



Section I .

Sub-section 2

4707

n, 94.5/95.6 3687 ~57 35 9% -87 1.12 .14 -.06
m, 94.7/95.7 4722 3816 -49 37 9 -81 1,12 .15 -.07
My 94.5/95.6 4708 3821 ~54 . 37 96 -81 1,12 1% 07
m, 94.7/95.7 4720 3816 -50 37 96 -81 1,12 .15 .07
M 94.3/795.5 4701 3645 ~60 35 96 -91  1.13 .14 06
m, 94.3/95.5 4701 3648 ~60 35 96 -91 1,13 .14 -.06
m, 94.6/95.5 4703 3739 -57 36 . 96 -87  1.13 .15 -, 07
me 94.6/95.5 4703 3740 -57 36 96 -87 1.13 .15 -.07
mg 94.8/96.0 4820 4228 -4 42 98 17 1.09 .19 .02
mo 94.8/95.8 4819 4333 -2.6 43 98 19 1.09 .20 .00
Section II : Sﬁbﬂsectian 3
n, 94.5/95.5 4710 3690  -55 35 96 -87 1.12 .14 -.06
m, 94.8/95.7 4725 3830 -47 37 96 -80 1,12 .15 .07
my,  94.6/95.5 4708 3828 -54 37 96 -81  1.12 .15 - 07
m, 94.6/95.7 4720 3830 -49 37 96 -81 1,12 .15 -, 07
me  94.3/95.5 4701 3645 -59 35 96 ~92  1.13 .14 . 06
m. 94.3/95.5 4701 3648 -59 35 96 -92  1.12 .14  -.06
n,  94.6/95.5 4703 3739 -57 36 96 -87  1.12 .14 .07
n, 94.6/95.5 4703 3740 -57 36 96 -87 1.12 .14 - 07
m, 94.8/96.0 4820 4228 -3.8 42 98 16 1,09 .19 , 02
m, 94.9/95.8 4819 4333 ~2.4 43 98 19 1.08 ,20 . 00
Section II : Sub-section 4
m, 94.5/95.5 4703 3685 -59 35 96 -86 1.13 .14 . 06
n, 94.6/95.6 4717 3797 -51 36 96 -81 1.12 .15 -,07
m, 94.5/95.6 4708 3813 -55 36 96 81 1.13 .15 .07
m, 94.6/95.7 4720 3798 -50 36 96 81 112 .15 , 06
m 94.3/95.5 4701 3645 -60 35 95 -90 1.13 .14 . 06
'm6 94.3/95:5 4701 3648 -60 35 95 -90  1.13 .14 -, 07
m,  94.5/95.5 4703 3739 -58 36 96 -85 1,13 .1§ N
ne 94.5/95.5 4703 3740  -58 36 96 -85  1.13 .15 .07
" 94.8/95.9 4820 4228 -42 42 98 19  1.09 .19 16
m, 95.0/95.7 4819 4333 -28 43 98 21 . 1.09 .20 .49
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Section IIT

: oub-section |

m,  94.0/95.2 4703 3638 ~61 35 95 -28 1.13 .14 . 07
m, 94.0/95.2 4707 3776 -58 36 95 ~22 1.13 .14 . 07
m, 94.0/95.2 4703 3773 -59 36 95 -22  1.13 .14 -.07
m, 94.0/95.2 4703 3776 -59 36 95 -22  1.13 .14 07
Mg 93.9/95.1 4696 3596 -65 34 95 32 1.13 .11 07
me 93.9/95.1 4696 3598 ;65 34 95 -32 1,13 .13 .07
m,, 94.1/95.2 4699 3688 -62 35 95 -28  1.13 .14 .07
mg  94.1/95.2 4699 3689 -62 35 95 -28 1,13 .14 . 07
my 94.6/95.8 4805 4197 -13 41 97 7 1,10 .19 , 02
mo 94.7/95.6 4804 4299 ~12 42 97 79 1,10 19 . 01
Section III : Sub-section 2
mg  94.0/95.2 4702 3637 -62 35 95 -28 1.13 .14 .07
m, 94.0/95.2 4705 3771 ~-59 36 95 -22 1.13 .14 .07
m, 94.0/95.2 4703 3770 ~59 36 95 -22 1,13 .14 -,07
m, 94.0/95.2 4703 3770 -59 36 95 -22 1.13 .14 -,07
mg  93.9/95.1 4696 3596 -65 34 95 ~32  1.13 .13 . 07
m,  93.9/95.1 4696 3598 ~-65 34 95 -32 1.13 .13 .07
m, 94.1/95.2 4699 3688 -62 35 95 -28 1.13 .14 .07
me 94.1/95.2 4699 3689 -62 35 95 -29  1.13 .14 .07
my 94.6/95.8 4805 4197 -13 41 97 78 1,10 .19 .02
no 94.7/95.6 4804 4299 ~12 42 97 80 1.10 .19 .01
Section III : Sub-section 3
m,  94.0/95.2 4705 3640 ~60 35 95 -28 1.13 .14 .07
m, 94.0/95.3 4709 3784 -57 36 96 -22  1.13 .14 .07
n, 94.0/95.2 4703 3777 -59 36 95 -22  1.13 .14 .07
m, 94.0/95.2 4703 3784 ~59 36 95 -22 1.13 .14 .07
m,  93.9/95.1 4696 359 -65 34 95 -33 113 .13 .07
. 93.9/95.1 4696 3598 -61 34 95 -33 1,13 .13 -.07
m, 94.1/95.3 4699 3688 -62 35 95 -29 1,13 .14 .07
m, 94.1/95.3 4699 3689  -62 35 95 -29 .13 .14 -.07
ng  94.6/95.8 4805 4197 -13 41 97 77 1.10 .19 . 02
Mo 94.7/95.6 4804 4299 - 12 43 97 79 1,10 . .19 .01
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Section III

: Sub-~secticn 4

4698

m  94.0/95.1 3635 -63 35 95 =27 1.13 .14 -, 06
m, 94,0/95.2 4701 3752 -61 - 36 95 23 1,13 .14 07
Mo 94.0/95.2 4703 3762 ~60 36 95 ~22  1.13 .14 07
m, 94.0/95.2 4703 3753 -60 36 95 -23  1.13 .14 -.07
me  93.9/95.1 4696 359 -65 34 95 -30 1,13 .13 -, 07
mg  93.9/95.1 4696 3598 -65 34 95 -30  1.13 .13 -, 07
m, 94.0/95.2 4699 3688 -63 35 95 -26 1,13 .14 -, 07
me  94.0/95.2 4699 3689 -62 35 95 -26  1.13 .14 -, 07
mg 94.6/95.8 4804 4197 -13 41 97 80 1.10 ,19 .02
m, 94.8/95.6 4803 4299 ~12 42 97 81 1.10 ,19 .01
Section IV : Sub-section 1
m  94.5/95.4 4740 3737 -52 36 96 4.63 1.12 .13 ~,08
m, 94.5/95.7 4784 3855 -32 37 97  10.07 1.10 .14 -.09
m, 94.2/95.3 4739 3868 -50 37 96 9.81 1.12 .14 -.09
m, 94.5/95.7 4780 3855 -3¢ 37 97 10.12 1.t0 .14 -.09
me  94.5/95.4 4733 3695 -55 35 96 -.06 1.12 .13 -,08
m,  94.5/95.4 4733 3698 -55 35 9 10 1.12 .13 -.08
m, 94.3/95.4 4735 3786 -53 36 96 4.10 1.12 .13 -.09
ng  94.3/95.4 4735 3786 -53 36 96 4.13 1.12 .13 -,09
mg  95.0/96.1 4881 4272 12 43 99 106,24 1.07 .19 .00
o 95-0/96.0 4880 4376 14 44 99 108.24 1.07 .19 -.01
Section IV : Sub-section 2
m, 94.5/95.4 4739 3736 -52 36 96 4.58 1.12 .13 -.08
m, 94.5/95.7 4782 3850 ~33 37 97 9.85 1.10 .14 -.10
m, 94,2/95.3 4740 3866 -850 37 96 9.63 1.12 .14 -.09
m, 94.3/95.7 4780 3849 -3¢ 37 9T 9,87 1.10 .14 -.10
m, 94.5/95.4 4733 3695 -55 35 9 22 112 .13 -.08
mg 94.5/95.4 4733 3698 -55 35 9 .37 1.12. .13 -.08
m,  94.3/95.4 A735 3786 -53 36 96 4.34 1.12 _.13 ~ ~.09
mg  94.3/95.4 4735 3786 -53 36 96 4.36 1.1z .13 -.09
m, 95.0/96.1 4881 4272 12 43 99 106.51 1.07 .19 .00
n,, 95.0/96.0 4880 4376 14 44 99 108.46 1.07 .19 ~-.01
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Section IV :

Sub-section 3

m, 94.5/95.4 4741 3739 -51 36 96 4,87 1.12 .13 -.08
n, 94.6/95.8 4786 3864 =31 38 97 10,57 1.10 .14 -, 10
my, 94.2/95.3 4739 3872 ~-50 37 96 10.26 1,12 .14 -,09
m, 94.5/95.8 4780 3863 ~33 37 97 10.67 1,10 .14 -.10
m. 94.5/95.4 4733 3695 -55 35 96 -.32 1.12 .13 ~.08
me  94.5/95.4 4733 3698 =55 35 96  -.16 1.12 .13 -.08
m, 94.3/95.4 4735 3786 -52 36 96 390 1,12 ,13 -.09
m, 94.3/95.4 4735 3786 -52 36 96 3.92 1,12 .13 -,09
mg  95.0/96.1 4881 4272 13 43 99 105.98 1.07 .19 .00
mo 95.0/96.0 4880 4376 14 44 99 108,06 1,07 .19 -.01
Section IV.: Sub~sectlnnf4
m,  94.4/95.3 4735 3733 -54 36 96  4.72 1.12 .13 -.08
m, 94.3/95.7 4778 3831 -35 37 97 9.26 1,10 .14 ~-.09
my 94.2/95.3 4740 3858 -50 37 96 9.35 1.12 .14 -.09
m, - 94.3/95.7 4780 3831 ~-34 37 97 9,22 1,10 .14 -,09
ne  94.5/95.4 4733 3695 -55 35 96 1.44 1,12 .13 -,08
m,  94.5/95.3 4733 3698 -55 35 96 1,59 1.12 .13 -,08
m, 94.2/95.4 4735 3786 -53 36 96 5.42 1.12 .13 -.09
m, 94.2/95.4 4735 3786 -53 36 96 5.44 1.12 .13 -.09
mn, 95.0/96.1 4881 4272 12 43 9% 107.71 1.07 .19 .00
m, 95.1/96.0 4880 4376 14 44 99 109.47 1.07 .19 -0l
Section V : Sub-section 1
n, 94.1/95.3 4822 3966 -37 38 96 41 1.11 .14 . 02
m, 95.1/95.7 4949 4060 16 41 99 46 1.05 .15 ~-.01
n, 94.2/95.2 4822 4077 -35 39 96 46 1.1t .15 .00
m, 95.0/95.7 4946 4060 15 41 99 46  1.05 .15 -.01
m,  94.0/95.1 4815 3928 -40 38 96 37 111 .14 .02
m, 94.0/795.1 4815 3930 -40 38 96 37 111 .14 . 02
m, 94.2/95.2 4817 4005 -38 39 96 a1 1,11 .14 .01
n, 94.2/95.2 4818 4006  -38 39 9 41 111 .14 .01
n, 95.2/95.7 5046 4500 62 48 101 134 1,02 .19 , 07
n, 95.2/95.8 5044 4582 63 49 101 136 1.02 .19 .04
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Section V

. Sub-section 2

m,  94.1/95.3 4821 3965 “37 38 9% 41 111 14 o2
m, 94,9/95,7 49.48 4055 15 41 99 46 1.05 .15 -, 01
my 94.2/95.2 4822 4075 35 39 96 46  1.11 .15 .00
m, 94.9/95.7 4946 4055 15 41 99 46 1.05 .15 -.0
ne 94.0/95.1 4815 3928 -40 38 96 37 1.11 .14 .02
mg 94,0/95.1 4815 3930 —40 38 . 9g 37 111 .14 oo
m, 94.2/95.2 4817 4005 -38 39 9% 4t 1,11 .14 .0t
mg 94.2/95.2 4817 4006  -38 39 96 41  1.11 .14 .01
mg  95.2/95.7 5046 4500 62 48 101 134 1,02 .19 .07
no 95.2/95.8 5044 4582 63 49 101 136  1.02 .19 .04
Section V : Sub-section 3
m, 94.2/95.3 4824 3967 -3 38 96 41  1.10 .14 .02
m, 95.1/95.7 4951 4067 17 41 99 46  1.05 .15 ~-.01
n, 94.2/95.2 4821 4081 -35 40 96 47 111 .15 .00
m, 95.1/95.7 4945 4067 15 41 99 46 1,05 .15 ~01
mg  94.0/95.1 4815 3928 -40 38 96 3 1.11 .13 .02
n, 94.0/95.1 4815 3930  -40 38 96 37 111 .14 .02
m, 94.2/95.2 4818 4005 -38 39 96 41 111 .14 - .01
ng, 94.2/95.2 4818 4006 -38 39 96 41 111 .14 .0l
ny, 95.2/95.7 5046 4500 62 48 101 133  1.02 ,19 .07
n,, 95.2/95.8 5044 4582 63 49 101 135 1,02 .19 .04
Section V : Sub-sectlion 4
m,  94.1/95.2 4817 3962 -39 38 9 42 1.1} .14 .02
m, 94.9/95.6 4944 4040 13 41 99 46 1,05 .15 .00
n, 94.3/95.2 4822 4068 -36 39 9 47 111 .15 .01
m, 94.9/95.6 4946 4040 14 41 99 % 105 .15 .00
ne  94.0/95.2 4815 3928 -40 38 9% 39 111 .14 .02
'mﬁ 94.0/95.2 4815 3930 -40 38 9% 39 111 .14 - .02
", 04.2/95 5 4817 4005 -38 39 96 43 111 .14 .01
n,  94.2/95.2 4817 4006 38 39 9% 43 111 .14 .01
my  95.2/95.7 5046 4500 61 48 101 14 1,02 .19 .07
Mo 95.2/95.8 5044 4582 62 49 101 14 1,02 ,09 .04

Comments: Varfation in @; hardly aftacts the results.

and Ay, B9 the methods perform badly compated to DR,

results. Also, m_'-(j = {,...;8) which are good for DR are also so
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9 and #“TH} which in both cases are poor.



CHAPTER SEVEN

ADJUSTMENTS FOR INCOMPLETE DATA BECAUSE OF
- PARTIAL NON-RESPONSE ,

7.0 SUMMARY.

The population U 1s supposed to conslst of one part UR of known
individuals who willl give required Iinformation on request and a
complementary;part Uc'whﬁse members wiil do so only with unknown and
varying positive prnbabilities less than unity, Taking an initial
sample from U first the prnbabilitles of responses are estimated. A
final sample is then taken from U to estimate the population total nf
‘a variable of interest, As in earlier chapters a super-population
linear regression model is postulated connecting this variab_le of
interest with another variable for which values are known.
Generalized regression predictor is then amended to take account of
this partial non-response, Variance estimators for it are then
derived wutllizing a model-cum-asymptotic-design-based approach as
adopted throughout so far in this thesis, The main problem is then to
construct appropriate confidence intervals wlth a right cholce of a
variance estimator for the point estimator of the total. To achieve
this a simulation study 1is undertaken to compare the relative

performances of the confidence intervals through numerical exercises,

7.1 INTRODUCTION.

Let U be dichotomized into UR of size NH and UC of size NC of
known individuals. Let each unit of UR be prepared te divulge facts
demanded by the investigator but each member of LIC have an unknown
probability aqy (O<q1<1,'iEUC) of response, First a preliminary sample

5 of size N (<NC) is supposed to be drawn from Ucto estimate qi’s
A final sample s of size n is then drawn as in earlier chapters from U
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with a-prﬂbability p(s) admitting positive inclusion-probabilities L
Hij for units in singles and in pairs. The model M and its special
cases are again postulated concerning the variable y of Iinterest and
the auxillary .variablé X as 1n earlier chapters, The use of thé
generallized fegressiun (greg]_ predictor for Y is agaln contemplated

but adjustments on it are required because of partial non-response

possibllities as indicated above,

To estimate q, for ieUC we consider two alternative me thods, on

choosling an SRSWOR 5 from UC' In one, we make repeated attempts

following the first fallure and estlimate qy by S ‘which 1is the
reciprocal of the number of attempts at whlch a response ls procured.
In the other, which is due to Politz and Simmons (1949, 1950), on the
date of first s’uccéss in response gatheriﬁg, information 1is noted
about nﬁmber (say, J=0(1)6) of immediately preceding six days on which
thE' r_espﬂndent- was avalilable for response. Then q; is estimated by
dyy _=[\j+1.)/7,*if 1 In s, reported one of the numbers j above. We
shall write ql for elther of qQyyr Doy i € 80 In gorder to estimate
q for ieUC , we fit a logistlic regression model.

Writing

q
lugE [ 1* ] =a + b Xl + ni, iEUC :

1~qi
with a, b as unknown constants and and ni’s as rifdﬂmue;rnrs, a, b are
estimated by ordinary least squares methods as a and b using q: for
q,» i e S Theg, smoothed estimates of q, for ieUC are taken as
AA
A exp ( a + b xi)
d = AA 1€ UC '
1 +exp (a +b xi)
\ A
For simplicity we shall write these qi's also as true qi's, iEUC and

N
take q,= d4 equal to 1 for every 1 in UH'

For analytical purpose we shall use the indicator

Iri = 1 if 1 responds when i 1s selected in the final sample s,

= {}, else,
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Denoting by E{1 the operator of expectation with respect to this

‘random’ response-system, we have
Eq (Iri) =4, i e U,

Keeping these in mind, follﬂwing Sirndal and Hui (1981) we consider a
modification of the greg predictor for Y as |

| Y I A - x, I
t(RJ=Z/ﬁi-ri+f3[X—-z/ni' ri].
g LY (O i 9

where,

| x, I X, Q,m
o | | 1 94/ £'x%q [_,/d,

Also, we shall write,

As in earlier chapters, here also we shall apply Brewer's (1979)
In particular, Iin addition to the limiting

we shall also use the limiting symbol lim

w0

I
~\
W&

asymptotic approach.
expectation operator lim Ep

E corresponding to E .
q P 8 q

et us write

lim E. 1im E_E_ (t_(R) - V)% = M(R) C(7.1.1)
p q°m g

and take it as a measure of error of tg(ﬁ) as an estimator for Y. For

M(R) we seek an estimator m(R) which satisfies

lim E_ lim E_E [ m(R) ] = M(R) (7.1.2)
P q m

Next, as 1in earllier chapters we construct for Y conflidence

intervals using tg(R] and m(R).

Next, to compare their relative performances we again resort to

simulation studies for numerical comparisons because analytic

comparisons turn out dificult.
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7.2 VARIANCE ESTIMATORS.

Using model M of earller chapters we work out

E (t (R)-Y)? = a2 (& x Q 2 ri 2
m g %sq . 7

q; 1
| / 2 | Iri
+ 2Za T 1) ¢
Sq Q1 qi ( qi ) i
T .1
+ 5 ( siri 1 )2 wz
qi ' 1

Then, noting

‘Then,

because,

| . Irl 2 Iri
lim Ep (asq) = [ X - Z xi-_a-i— ] Z xiQini‘"—E{I

Iri
+ 23 E x.Q,m, —— [ _
q 1™l qi niqi

a

J I
. E: [ ri ., ri : ] 2
2 a, |
94

y Say,

1
. 2 2

= t (R)-Y)" = - 1 ,
M(R) = 1im E_ 1im E_ E_ (t_(R)-Y) E [ T ] N

I » |
| E 'l ; 2
lim Eq {aq) = Eq[ X — Xl —a; ] Eq[ Xiaiﬁi qi

with «.'s as assignable constants, Let,

i

tl(a) = Em [ t{e) ]
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* [Z/“ilriJ [ _ ;ri]z *

lim Eq [ tl(u] ]

tz(m) =
- - / o
L Z“/ %19 [ . 2 J &gy 2
| - _ _ + o2
| | x° nd, nzxzq 1
| o i i9
and, | |
_ta(a) = 1im Ep [ t,(a) ]
. Z ‘xiqi [ 2 ] b> U’iqini 5
= S + o |, .
2 - nq, naxzq 1i
L 1 i*y

Then, m1=t(a(1)) is a choice of m(R) subject to (1.2) if t(w(1)) is
t(a) with . equal to ai(l], where the latter are the sclutions for

mi's from the equations

miqi 2 B 1 1
2 [1 T ] ¥ 2 2 T Tn [ T.q, 1} » 1 e,
Xy 9 nx,q, i 194

writing B = & o, q,m, which yields

xq, o, 1 ' 1 oy
B=z L1 [- -1] 1+__.__Z —
(q1—2/n] m.d, nz (qi-Z/n)

b

Another choice of m(R) subject to (1.2) is m, = t(a(2)), where

t(x(2)) is t(e) with o, equal to mi(Z) where ai(ZJ’s are solutions for

oy form the equatlons
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wdy 2y Feq 1 1
) e e ] e
X, S n“x{q, 1 VY

Then, writing

_ 2 |
A = [ - 1] 1+ — E
. n,(q,-2/n) Mg, 02 (q,~2/n) | °

| 1 | xiqi I A
we gel ﬂ.’.i (2) - - [ -1 ] 5
q; (q,~2/n) i SRS n“
For t_ based on the compiete sample, variance estimators glven

by Si&irr:.'::lalg .(_1982) and further discussed by Sirndal, Swensson and
Wretman (SSW, 1992) are already available in the literature.
Mudify_ing them we get two varlance estimators as fallﬂ#s for tg(R].
Before finding them we consider a model-free estimator for Y based on

incamplete sample as a modification of the well-known Horvitz -

Thompson estimator HTE, namely,

_ Yy, I
t (R} ==§£i Hi ri
i 9

Its variance is

— 5 Yy yJ 2 Y, lﬂql
EE (ER) - V) ZZ& n [________________] Z
P.q 1j 1] ni nj ni qi

where,

ﬂij = “inj ~ nij ) /I“ij :

Two variance estimators for t(R) then readily emerge as

2
Vi Iri YJ Irj 2 Y3 : 94 Iri
vl(R] = A i + - 5 5
JUT 44 Ty 95 i 1 94

2
i Y; ]2 'rilry | Eif vy Ty 1y
T, M. qy 9 - 2 q; 4y

| .and, VZ(R) = Z/ZJAU[
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uisng Yates and Grundy_’s (YG, 1953) variance -estimator for original
HTE, namely

- y
2
1

Note that, _Ep Eq (vl(R)] =Y = Ep Eq (VZ(H]].

. Let us write |
’ A | A
Ei = yi - }{18: Ei = Y - }{qu ' Ej. - Yi - xj.BQ’ and

By = z YyXQ:my /Z Xy Qmy

Then, it follows with a 1little algebra that we suppress, from SSW
(1992) that,

For tg, Sdarndal’s (1982) two variance estimators are
T )

Y = A [ — ]

1 ij ni HJ .

| 4 312
and, v52 - ﬂij[ Esi U B gsj nj ] '

Nﬁting vsj' j=1,2, it follows that two reasonable variance
estimators, following Yates and Grundy (YG, 1953), Sidrndal (1982) and

- GSW (1992), for tg(R) are

S/ g I, da Iy a2
vsg(l) =Z>4&1j( moq B T 9y ]
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. E:/ g 1-q, i
o LT ST €1

We consider Cl's for Y based on (I(R),vJ(R)), 3=1,2 and
(tg(R)..v(R))ﬂwlth #(RJ as mj and vsg(J), j=1,2, To assess their

relative performances we consider simulation study.

7.3 SIMULATION STUDY.

We take N = 150, generate X = (xl,...,xN) as a random sample from
the exponential density
f (x) = L e~(x—a0l/ﬁ , X > a,=T7.0, A= 8.5,
A,ao N 0

take ei's as random samples from N(0,1), take ¢ = 1.0, B = 2.0, h

il

0.8, 1.4, 6 = 0.0, 2.5 and generate four sets of Y = (yl,...,yN) as

_ h/2
yi =8 + 8 X, + ¢ X, le,

where, the value 8 = 0,0 represents the model (1.1).and the value 8 =
2.5 is used to study the robustness of the varlous pairs f(e,v) for a
possible super-population intercept term in the model (1,1).
Population I 1is generated with (6=0.0, h=0.8), population II with
(6=0.0, h=1,4), population III with (0=2.5, h=0.8) and population IV
with (6=2.5, h=1,4),

We first let UR be the subset of U consisting of its last NR = 50

units, The values of Qg 9oy for 1eUC and arbltrarily assigned to

iEUC are as follows :
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dyy = 1/2, 1/3, 1(4, and, d, 4 =_j/7, j=1{(1)8.

We then take a simple random sample (SRS) S without replacement

¥ _ »
(WOR) of size D, —.20. Writing qi-far dy4r 9oy and using q; for 1 e
Sc We it a logistic regression model

1
log [ ] =a + b Xy + My s ieU

— C'
1 q,
Using this for 1EsC, Wwe fit 1t by least sqguares principle to obtain a
A o |
and b — the estimates of g and t and derive g, for 1EUIC from
qy A A
' = exp [ a+bx ]., ieU. ...
1-q i C
1 | ,
Of course we take‘qi = 1 for % in UR' Then we draw H = (Hl""‘wHJ as
a random sample from the density fh . (x) with a, = 20.0 and A = 15.0,

O
which we use as slize-measures to draw a sample 8 of size n=32 from U.

For this we apply the scheme given by Hartley and Rac (HR, 1962). The

sampling is replicated R=1000 times, We write Er as sum over these

replicates and write

A= 1 £ v, and, P = A Sf (e—YJz
R R
for an estimator e for Y and an estimator v for MSE of e. - For

comparative study of the choices (e,v) we consider the following
criteria

1. ACP (Actual coverage percentage) : the percentage of samples for

which CI's cover Y — the closer it is to 100(1-a) the
better the (e, v).

2. ACV (Average coefficient of variation) : the average, over the

replicates of the values of vV v /e — this reflects the
length of CI relative to e.

3. PCY (Pseudo coefficient of variation) :
| /2
PCV(v) = 1 [ A Er(v—A)2 ]
A R
1 e-Y

4. ° AARE (Average absolute relatlive error) : — Er | L
- R B Y

S, B(v) (Pseudo relative bias) : = (—1-zrv ~ P)/P.

R
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6. S(v) (Pseudo relative stability) : = — [.___.g (v-P) ]

7. L(v) (Pseudo standardized length) : = L Er'v v /V P,

8. B(d) (Blas of d) : = -1_ 5§ 4.
R I

9, -M(d) (Mean square error (MSE) of d) : = h—-z (d—B(d))
lo. VBT o d-B(d)
: ﬁl d) (Root beta one) : = ——
- | - v H(d)

11. E(d) (Excess measure) : E.thd} - 3 {beta two minus three)
| ﬂ___l___z [d——B(d) ]4_3
| R & VY M)

The smaller the numerical values of the measures 2 - 11, the

better the pair (e,v).

The numerical findings based on simulations are summarized in the
tables below In Appendix given at the end of this report and

concluding remarks are summarized in the next section.

7.4 CONCLUDING REMARKS,

Unlike in the previous studies in DR {direct response) or RR
(randomized response} set-up here our newly proposed variance

estimators do not show impressive performances compared to

sirndals (1982), Moreover, almost with every variance estimator,
- Also,

'-ll'ith. gl

ACP highly falls below the nominal confidence coefficient.

normality of the plvotal function used to construct the confidence

.intervals 1s often SUSDECt For gp¢, cur newly proposed satimalars yield highly promising reaulss,
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Appendix @G

SUMMARY OF FINDINGS.

Values relating to only cne choice of Q namely Q = 1/'(11: ) (due to
Ha jek, 1971) are presented in tha tables because Dthar chnicas of Q =

(lﬂnil/Tn X,) (Brewer, 1979}, 1/k and l/k have been found on calculatiana to
vield similar results.

- The q1 stands far q11 in tables G.1 and G.2, and for 9y In tables G, 3

and G.4, for 1 e UC .

The level of significance a is taken to be 5% and tha. ACP walues are

shown for T only.

In the tables. we specify only the variance estimators used and not the

predictors for Y, recalling that the variance estimators vl(H) and VZIRJ are

used if the predictor for Y is t(R) and the rest are used when the predictor
is t (R).

M.B. The scranyms used in Tablesa G.1-Gd are as deacribed on pp.108.310. AARE relates to error of &, ACP to caoverage prahahillllu
associaled with confidence intervals (Cl), ACV to coeflicient of variation; PB, PS 1o blas and atabjlity of v; PL to length of CI; B(.),

M(.) +/81(.) and B(.) to bias, MSE, skewness and excess of d = (e —~ Y)/\ /v, For 44; and q9; one may consult page 102.

Table G.1

Comparative statistics of different strategles in case of

Population II ( 8 =0.0, h=1,4) and q: =y
4 4 3 2 . 2 2 .2 10°
10 10 -10 10 10 -10 10 |
v AARE  ACP  ACY PB PS PL  B(d) M(d) VB (d) E(d)
vl(H) 2217 88.9 2586 5 93 93 -36 156 -93 1.31
v, (R) 2217 87.1 2532 2 94 92 ° ~-44 192 -148 1,38
vsg(l) 364 85.7 401 -136 67 87 -9 201 -8 1,75
vsg(ZJ 364 89.5 411 -122 60 89 -6 151 -1  0.58
m, 364 86.0 421 5 97 91 -12 204 -17  2.59
™, 364 86.8 423 7 95 92 -12 199 22 2.29

Fa—

Commenis! uj{H),j = 1,2 are too bad '::amparad to others which seem adequate.
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Table G.2
Comparative statistics of different strategies in case of

¥
Population IV ( 8 = 2.5, h=1.4) and Q= dy.

2

10% 10° -10° 10 10° -10° 102 19

v  AARE  ACP ACV PB  PS PL B(d) M(d) VBI(d] E(d)

vl(RJ 2140  89.4 2523 2 86 94 -33 151 ~-90 1.27
VZ(R} - 2140 87.2 2470 -2 87 93 ~241 185 ~-148 3,88

usg(1) 330 - 86.5 362 159 - 58 B7 4 211 61 3.10

Sg(2) 330 88.9 -132 55 89 -8 160 30 1,52

m, 330  86.4 =78 66 91 -5 215 76 4,14

m, 330 8.9 379 -70 65 91 -3 204 62 3.56

Comments: v;(R),5 = 1,2 are loo bad compared to others which seem good enough,
Tahle G.3
Comparative statistics of different strategies in case of
»*
Population 11 { 8 = 0,0, h=1,4 ) and q; = d,4
4 2 3 2 > > 2 10°
10 10 -10 10 10 -10 10

v AARE ACP ACY PB PG PL B{d} M(d) V%l(dl E(d)

vl(ﬁ) 4847 82.8 2310 ~611 68 57 124 68 -89 2.65

vztﬁ) 4847 90.4 2496 -539 64 64 111 54 =143 5.14

_vsg{1J 297  96.4 523 1137 169 140 -4 69 ~30 1.04

Sgtz) 297 91,8 364 16 56 97 0 121 -6 0.32

m, 297  96.3 558 1524 236 150 -6 67 -3 1,26

m, 297  96.7 560 1519 232 150 -5 65 ~35 1.18

Comments: Agaln uJ'(R),J' = 1,2 turn out too poor compared to others which setm adequate,
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Table G. 4

Comparative statistics of different strategies in case of

*

Population IV'f 86 =2.5, h=1.4) and q; = 9,
4 4 3 2 2 2 .2  10°
10 10 ~10 10 10¢ ~-10° 10 -

v AARE  ACP  ACV PB PSS PL  B(d) M(d) VB (d) E(d)
v, (R) 4748 81.3 2238 -627 68 58 128 69 -80 2.24
v, (R) 4748 89.6 2421 -556 64 67 114 53 -134  4.48
(1) 267 97.5 470 1090 149 140 -9 66 26 1.36
o (2) 267 92.7 328 19 50 98 -14 119 8 0.54
m, 267 97.3 493 1315 177 147 -9 64 33  1.67
m, 267 97.5 493 1310 174 147 -9 62 27 1.51

Comments: Again uj(R},j = 1,2 tutn out too bad compared 1o ovhers which saeem qulle serviceable,
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CHAPTER EIGHT

RAO-HARTLEY-COCHRAN STRATEGY -- CONFIDENCE INTERVALS
BY TWO VARIANCE ESTIMATOR ‘S

8.0 SUMMARY., F

In this final chépter we consider estimating the population total
Y employing the Rao~Hartley-Cochran (RHC) (1962) strategy. RHC scheme

of sampling consists 1n randomly splitting the population U into n
n

groups of sizes Ng (g =1,...,n, ElNg = N). For every unit there is a
_knﬂwn positive normed sizeﬁmeaséie, gay, p‘j (0<pj<1, Epj=1) , J o€ W,
From within each group thus formed, one unit is chosen with a
probability proportional to 1ts slze-measure. This 1is repeated |
independently across each group. We shall write Qg for the sum of the
PJ'ValUES Say Py (J=1.-.~,Ng. g=1l,...,n) of the units falling in the
g-th group and En for the sum over the units chosen in the sample of

‘size n so drawn. Writing y as the y-value y, tor the unit falling in

gl J
g-th group, The RHC estimatar for Y is

'R T *n Ygj U 7 Pgy:
For this, two varlance estimators are available — one given by RHC
themselves and the other by Ohlsson (1989)., In his 1989 paper Ohlsson
demonstirated by numerical calculations that his variance estimator has
a smaller variance than the other. in many situations and hence is to
be preferred, Chaudhuri and Mitra (1991) however demonstrated
contrary results in more realistlic situations. A major portion of
their work 1s reproduced below, Besides, further comparison is made
here between these two variance estimators on examining their relative
efflcaclies in producing conflidence intervals for the population total,
 Analytic comparison being difficult, in this chapter also simulation
étudies are resorted to in attempting only numerical evaluations. For
this purpose bnth.live data from published results are utilized and

observations are generated postulating linear regression models
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oo oo s vsec 0 Tmpleme o che HC O anplirg rchere. Thos
i lee. fincings ilsc sugires: a1 over-all bkalin:: of aciantage i

favenr ¢ RHC' 5 varing: est: ma or sver (hlsson s

8.1 INTRDDUCT ION.

We consider the problem of esfimating the total Y of the wvalues

yi for the units i of a population U=(1,. yN} when the normed

size measures Py (0<pi<1) are available,. ‘The values yi though unknown

are supposed to be well -assoclated with the Kknown pi ‘ So, 1t is

usual to -utilize 1.::11i s both ln choosing a sample and in empluying an
efficient estimator. The simplest way to do so following Hansen and
Hurwitz (1943} is to make n (<N) independent draws out of U assigning
_'selecti_ﬂn-_prebability py to i on each draw and estimate Y by the

| average of yi/;:.-:L values over the units drawn. Though this procedure

. is simple, selection with replacement 1s a shmftcnming. This defect

is overcome by ‘the more efficient alternative procedure given by Rao,

Hartley and Cochran (1962} briefly described below. First U Iis

divided into n disjoint random groups of sizes Ng (EnNg=HJ. g=1, ...

Let ng (j=1,..,Ng, g=1,.,,n}) be the Py values for the units falling

N
2

in the g-th group and Q = 2 P
& =1 gJ

group with a probability ng/Qg and this is repeated independentily

over the n groups. Denoting by ng the value of y for the unit, say

j, so chosen from the g-th group but suppressing the subscript } for

A unit is chosen from the g-th

simplicity from pJ and ng , the unblased estimator for Y based on

this sampling scheme, as proposed by RHC, lis

t —
R n[yg pg)Qg

Its variance is

2
V{tR) =V { 2n Ng N ) /7 [ N{N-1) ]
" where,
N 2
V=Zp (y,/p;, -~ Y )
| j.=1i i'hi
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For simplicity we shall wurite T-_-"'-En Ng(Ng--i).

non-negative unbiased estimator for V(tﬁ) as

RHC gave the

and Ohlsson (1989) recommended in preference to it the alternative

.nmn—negative unbiased estimator for V(tR) as

Pg Py

- T g Ym )% %
v, = i X NN

-0 2n(n-1) g#m g m

Both v, and v are members of the general class of variance

1 Q
estimators given by Chlsson namely

1 Ogm [ Yo Yn 2
vV, = — £ % Qg Q
b z'gim NgNm' Pg Py &M
=% 5a d
gsm SN 8N

where b 's are non-negative constants such that b =b
m gm mg

and,

2 L b m = T,
gzm ©

agm = bgmﬂ/-NgNm ,  EEM

r Yg Ym 2
d —
Q;Qm

1
gm 2 | P, Py

If N
n
=1, .

for all g#m

is an integer, then V(tﬁ) is the minimum for the choice Ng

2 , g=1,...,n, and Ohlsson noted that in this case V=V

If g— is not an linteger then we shall write o =['21, the largest
N In this case, to be called the "case

positive integer less than — .
A",'V(tR) is the least for the choice

N =op for k (1<k<n) of the g's, and

g
= o+1 for the remaining {n-k) of the g's,

with k so chosen that Zn”g = N = ke+(n—k)(etl).
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In the above two cases RHC themselves showed that V(tﬂ] ls less

than the variance equal to V/n of Hansen and Hurwitz (1943) estimator.

In "case A", T reduces to (N-k)o. Other possible but

uninteresting choices of Ng are ruled out from our discussions to

follow. In fact from now on we shall consider only the "case A" which

is really of practical interest in choosing between v and v,.

0 1

Writing

B= £Z d ., B,= L d , B,= L X d_ .-B -B
1 1sg#msk g 2 K+1sgzm=sn gl 1 =g#m=n gl 1

T | T T T
d= . d: 'd-___- 'C-—-
I n(n—-l]ta2 2 <

ZI'

" nln+l)(e+1) 3 n{n+1)e(e+1) #N(N+1)—Tl

we have Yo d181+d282+d383 and v, = c(B1+Bz~_+B ), with T as above.

Observing that

= =[0-F( + P12 + o) = 1 + oZFY)

we may expect Vo (V(vo)] not to differ much from v

(V(vl)] for a
given Y = (yl.--.yl,.-.yN)’;

1

Recalling that the formula for V(vb] given by Ohlsson is quite
complicated we find it difficult to compare the magnitudes of VTvlJ
and V(VG). But defining

V[VI)*V(vOJ

G = 100 V(vlj

~as the percent gain in efficiency of v
that |
(1) the magnitude of G should be "quite small" in most of the

over v,, we intuitively feel

0 1’

cases of interest and that
- (i11) the sign of G should be ‘both positive and negative' over

variations in Y for alternative cholices of N and n,

So we carrliled out a numerical exerclise in order to confirm or

invalidate these hunches and some of our findings are reported Iin
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Section 8.2 below,

8.2 SIMULATION STUDIES 1.

Restricting to the "case A" we present in this section some

numerical values of G,

(a) First we treat the natural population illustrated by Horvitz
and Thompson (1952, p-682) also referred to by Ohlsson (1989). Here
N=20 and for thls population we have the following values :

N.B. In the tables T » 11(B), G.values denole valuep of Q = lnﬂ—-(—b)z—-)!—n—” hd -;'P' o)
. 1

TABLE 1

G~values for several n but N fixed at 20

n: 6 7 8 g 11 12 13
G: 0,1157 -0.0039 0.0240 0.0354 -0, 4945 -0.6931 -0.7261

Comment: Since G can be both positive and negative nelther vy nar ¥y is uniformly superier to the other.

(b) Next we conslder another natural population occurring in
Cochran (1977,p-152) also covered by Ohlsson (1989). Here N=49 and

for this population we have the following values :

TABLE II

G-values for several n but N fixed at 49

n : 4 5 6 8 9 10 11

G : 0,0657 0.1241 0. 1671 00,2874 0.9274 0. 4846 1.5898

n 12 13 14 15 16 17 18

G : 0.5850 1.9070 3.0920 2.7941 0.9722 2.5123 5.3826
Comment: Though G is throughoul Fulilt'ﬂ'; suggeating superiority of vy over vy its magnitude is quite small.

(c) It is well known, for example, from Chaudhuri and Arnab
(1979) among many other snurces,that if ¥ -values are amenable to the

following model then the RHC stfategy is often approprilate,.

The model
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=

with Xy (>0) as known size-measures, X = I
i=1 |
are uncorrelated random variables with a common mean zero and

Xy Py = xi/ X and ei’s

: 2 2 h
variances o,=c X, (conditionally on xi] with o (>0} and h (Oshsl) as

unknown constants,

As we note that for Y generated subject to this model, vy and s

are independent of B8, we take B=0 and since thé value of G, under this
model, 1s free of o, we take ¢=1. In order to generate a Y subject to

this model, for simpliclty, we further assume that

h/2
lxi , wWhere u1 5 are

independently and ldentically distributed (i.1.d.) as
(xf—l)/v’z

where xf ls a chi-square variable with 1 degree of freedom and
(1) xi’s are independently identically distributed (i.i.d.) with

(1) ci's_are distributed as the variables u

a common probability density

| i -X/8.5
— S > .
f(x] gE € X 0
For the purpose of numerical illustration we take N=18 and n=4
and S. With these stipulations, for N=18.we first generate X =

(% ,xN)K, then u = {u ,;.,ui...,uN)f, then Separately for the

N S
AL B 1

choice of h as 0.4, 0.5, 0.6, 0.8, 0.9 and 1.0, generate £ =
Y

/
= (Yls-—-Yif--.YN]
samples of sizes n=4 and 3, applylng RHC scheme in each case we obtain
the values of G, calculating V(vo).and V(vll using Chlsson’'s (1989)

formulae. Some of the values of G thus found are 111u5trated below In

the tables I1I(A) and ITI(B).

(81,..,21,..,9H)Kand finally Then considering

From these we may conclude that in the realistlc "case A", the

new variance estimator Vg may not appreciably beat the classical
variance estimator vy and may even sometimes fare worse. 50 before

opting for v, in preference to v, as is apparently' recommended by

O
Ohlsson (1989) further care seems necessary 1n view of what we

numerically lllustrate above. Also, it s not evident from Ohlsson's.
(1989) paper why one should have V(vl] greater than V{vo) in general

excluding the case when Vy equals 0 if Ng=N/n for every g = 1,..n,

" Since in "case A" there lis a
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TABLE III(A)

G-values for several values of g when N=18 and n=4

g

0.4 0.5 0.6 0.8 0.9 1.0
0.5569 0.4652 0.3594 0.1361 0.0378 -0.0426
0.9834 0.9778 0.9661 0,8820 0.7616 0.5622
0.5251 0.5190 0.5153 0.5126 0.5127 0.5134
0.9751 0.9710 0.9642 0.9350 0.9070 0.8675
0.9873 0.9870 0.9865 0.9838 ©.9792 0.9662
0.7134 0.6864 0.6625 0.6278 0.6165 0.6083
0.8280 0.7329 0.5728 0.0923 -0.1166 ~0.2515
0.5310 0.4499 0,3564 0.1480 0.0473 -0.0416
0.4340 0.2404 0.0567 -0.1828 -0.2418 ~0.2767
0.9380° 0.9202 0.8907 Q.7655 0.5250

0.6563

Commenis: The magnitude of G i» quite amall and ft can be
vy or vice versa is incanclusive.

TABLE I1I(B)

G-values for several values of g when N=18 and n=5

e

hath posilive and negative snd henee the question of auperiority of v OVEr

—

g
0.4 0.5 0.6 0.8 0.9 1.0

1,0234 0.8187 0.5940 0.1530 -0.0289 -0.1730 "
2.1163 2.1004 2.0675 1.8428 1.5406 1.0745
0.9545 0.9455 0.9418 0.9446 0.9489 0. 9541
2.0967 2.0838 2.0630 1.9750 1.8927 1. T8Ol
2.1327 2.1319 2.1307 2,123t 2.1101 2.,0734
1.3702 1.3057 1.2508 1.175% 1.1524 1.1368
1.7039 1,4659 1,0909 0.0964 -0.2904 -0.5288
0.9560 O0.7768 0.5774 0,1621 -0,0258 -0.1858
0.7869 0.3815 0.0270 -0.4065 ~0.5090 -0.5691
1.9911 1.9386 1.8535 1,2386  0.9309

1.5132

Comments: Since both posltive and negative bul numerically small values emerge for G, neither of vy and vy can beat the obher,

should

g0 as to turn out more

minimal variation among Ng’s we were led to conjecture that Yo

not deviate in this case substantially from vy

efficient than the latter for every realistic Y. Our conjecture seems

sensible in the 1light of our numerical findings briefly reported

above.

8.3 FURTHER STUDIES.

To pursue with the investigation of relative merits of v, and v,
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let us next conslder the properties of confidence intervals for Y
| For this we

follow the  works relating to simulation-based comparative

based on tR respectively associated with Vg and v

investigations of performances of several estimators of mean square
errors (MSE) or variances of different estimators for Y as are
reported by our predecessors, namely Royall and Cumberland (1981,
1985), Rao and Wu (1983) and Deng and Wu (1987) among others.

As 1s customary with inference making for finite populations,
employing suitable estimators v for V(tR), we may regard as in the
earlier chapters of this thesis, the standardized error (SZE, say)

tR-Y

e = -
e
as a varlable distributed at least for moderately large n, over

hypothetically repeated sampllng by RHC method, as a Student’s
t-statistic with (n-1) degrees of freedom (df, in brief), which for

still larger n may also be treated as a standardized normal deviate <.

Then 1f l:‘x/,2 and T,/ are such that a = F‘r.[ltl‘:rlc.m/'2 ] and « =

Pr.[['r|>-ra/2], for a pre-assigned « in the open interval (0,1);, a

100{1-a)% confidence interval for Y based on tH and v is'prn?idéd by

(tR + tm/z/ v ) or by (tR + Taf’z/ v ) to be denoted respectively as
t-interval and <T-interval. In order to Investigate how well this

confidence interval performs with v chosen as elther Vg OF V), Wwe

proceed with a simulation~based study in a manner narrated in Section

8.4 below.

8.4 SIMULATION STUDY II.

For reasons noted by Chaudhuri and Mitra (1991) we postulate a

model under which we may write

where B8 is an unknown parameter and el's are independent random

variables ditributed, conditionally given X = (xi...,xi,.,.}cﬁ] , With

a common zero mean and variances cri_ = a*z}(ih. with o (>0) and h (0shs1)
)’ so modelled, ty 1

‘as unknown constants. For a Y = [yl’.”’yi""yﬂ
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well-known to be an appropriate estimator based on RHC scheme. So we
conslider it appropriate to generate several X, Y vectors as modelled
above, draw several samples s by RHC scheme of various sizes n,
calculate tR(s}, VU(S), vl[s], e(s) based on s and examine the

performances of e and vy from the undernoted considerations.

Choosing o« = .01, .05 and .10, we consider the ACP (Actual
Coverage Probability ) values associated with vy and v, to see how
close they are to the nominal conflidence coefficients 100(1-a)Z4. If

they are closer for v, than for v, then v_ 1s to be preferred to v

0 1 0 1
and vice versa, In order to sharpen our preference criterion
conerning Vo and v, we identify two ancillary statistics namely (1) Ay

):n_Qz and (2) AZ = ):n Qg/pg whose variation may affect the
varlation in t v. and v,. So we consider ‘condltional confidence

R" 0 1
intervals' fixing the magnitudes of (1) and (2). To do this we dlvide

the realized samples into a few equal sized groups such that the
samples with the lowest values of (1) go to the first group, the
samples with a next higher set of values of (1) 80 to the second group

and so on. MWe do likewlise with_values of (2). ACP values are then

calculated group-wise.

It is easy to check that the expectations of Al -and A2 with

respect to RHC sampling scheme, respectively are

2 T "o b Ng N
E(A,) = E{ Q) = + ¥ p., = C (say)
1 ):n & N{N-1)  N{N-1) i=1

and, E(Azl = E{ En Qg/Pg

So if Al (A] differs appr'iciably from C (N) for realized
samples, then fullnwing Deng and Wu (1987) one may consider employing
alternative variance estimators, namely

A d
/ 1 75 2 |
v = [-——-—C ] \' and, v —[—-—N] v,

choosing appropriate values for d. These variance estimators will of
course be design-blased and criterion for dlscrimlnatlng among them

should be formulated in terms of -thelr MSE's. In our numerical

illustrations with conditional performances of \ and 2 with sample
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variation of Al, Az Wwe do not notice much effects of the ancillaries.

So we did not deal further with

/7
vfanciv .

In order to carry out our simulation we first draw a random

sample of xi-values, 1=1,...,N, from the exponential distribution with
a probabllity density function (pdf)

f(x)=%e"xa,x>ﬂ.

Then we draw random samples Ui, 1i=1,,..,N where,
(1) U1 = /12  ( u{0,1)~0.5 ) where u(0,1) is distributed
uniformly over the interval (0,1), |
(2) Ui is distributed as N(O,1), and ,

2 2 |
(3) Ui = (;1:1 - 1)/ / 2 where ;;1 is a chi-sgare variable with
one degree of freedom, and,

then we take g, ,=U X h/2

1715 . chansihg several values of h.in (G, 1].

Noticing that v, and v, are free of B and e is free of o, we take
B=0 and o=1. Also we take N-—50 and n=11, for 4 populations and N=150
and n=32 for a Sth population. described below, and draw 1000 samples.
Consistently with standard conventions we consider the following

measures of criteria for performance characteristics of Vg and v,

_ 1 YIS |

V = —555 ) (tﬂ(s) Y)", the pseudo.varlance of _tR for the
simulated samples,

RB = IDDD ); v\[{s] 1, . a measure of relative bias of v as

an estimator for V(tR).

1 f v(s) 2 1172 |
= — - - a measure of relatlive
o = [ £ (1 =1 )] s e ot

stability of v as an estimator if Vitp), |
SL. = 13}00 ): /v(s)//— the standardized length of the
confldence interval,
, 172 o
PCV = — [IUUD E (vis) - A]] 3 pseudo coefficlent of
. variation , where A =7 v{(s} / 1000.

Q-

Further we calculate. the (a) mean, (b}. variance, {(c) measure of
coefficient - and (d) measure of kurtosis,

skewness, namely / By .
-namely B -3 cneffic:ient for the statistic e based on the 1000 samples
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to check the departure in the nature of the distribution of e from the
two postulated ones, For the treatment of conditional confidence
intervals, we form 10 groups of 100 Samples each and calculate the

following statistics; writing Eﬁ as the sum over the 100 samples s

1 ' hy
for the hl-th group, h1=1,.. , 10, namely,
| _ 1

(1) Ajhl = 160 ): J(Sh ), J=1,2

1
(ii] Vh = m I“h (t.R(Sh )"Y)

1 1 1
_ 1

As an over-all measure of efficiency of v we alsc calculate the
statistic

P, 10 2 1172

= lw IV

and use its magnitude as a criterion of comparison in the efflclencies

qf vo and vl, the smaller the maghltude of D the better for v. The

detailed findings are reported through the tables presented below. To

-put it In a nutshell, the important message conveyed by them is this

that (1) there is little dlscernlible qualitative differences in the

merits of My and Vq from the point of view of their capabilities ﬂf_._
ylelding confidence statements, the ACP’s corresponding to both being
close to pronounced nominal confidence ceceffliclents, but that (ii) in

this respect the balance tilts In favour of v, even though it {s quite

slight though (iii) in terms of the criteriluil G as demonstrated by
Chaudhuri and Mitra (1991), the preference might be attached to )
because the positive values of G far out-numbered the negative ones in
their numerical illustrations and this is the main reason why this

work reported here was undertaken.

We present numerical findings relating to unconditional

- performances for the five populations labelled 1 = 1 (1) 5, described

below ;
(1) Ui distributed as N(0,1), A = 2.3, g = 0.4..
(2) u, distributed as N(0,1), A =2.5, g = 0.9,
(3) Ui distributed as {;J;; - 1)/\/—- = 13,59, g = 0.5,
(4) U, distributed as {,z -1)//2 , A =13.59, g = 0.6,
(5) Ui distributed as N(U 1), ?t-B 5, but 10 is added to samples draun from
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fA(XJ to get X,'S, g=0. 4.

In the tables, we show the ACP-values and in all the tables, the

values relating to VO are shown underlined.

Conditlonal performances are numericlly shown for population 5 only.

Finally, we present belmu, in Section B.5, the tables relevant to this
section of the text,

B.5 NUMERICAL FINDINGS.

Acronyms used in Tabies 8.1-6.3 are a5 ;’ifén on pp.122.123. V dencles preudn vatlance of tre oy V{tg)ls true varlance of 1 p; RB, RS

denote bias and "lhu,ﬂf of varisnce estimators Yo, v and '.,/ B1, B3 <3 give skewness and excess measutes of siandardized statistic or
plvot. Agp and Ay, are ancillaties, vide p.122 for A-th group, b =1,...,10. -

Table 8.1
Detailed performances of vy and Vo

P?g' V(tH) ' RB RS Sl Mean' Var VfEI ﬁ2—3
1 71,11  68.82 0.00 O0.71 0.94 -0.54 1.99  -1.54 4.80
0.00 0.70 0.94 -0.53 1.98 -1.54 A4.80

2 48,98 48,58 -0.02 0.59 0,95 =~0.52 1.75 1.31 3.8
-0.02 0.59 0.95 =-0.51 1.74  1.30 3.83

3 357.82 386.92 -0.07 1.94 0,75 =0.76 2.33  ~1.15 2,26
-0.07 1.94 0.76 -0.76 2.30 -1,14 2.25

4 360.95 390.99 -0.07 1.81 077 ~0.72 2.28 ~1.11 2,12
-0.07 1.81 0.77 -0.72 2.19 -1.10 2.11

5 7285.19 7339.11 -0.05 2.16 0.83 0.55 0.96  0.19 =-0.28

-0.06 2.10 Q.83 0. 54 0.96  0.18 -0,27

p—

Comment: As V {a close to V(tp) the simulation seems adequate. Both vy and vy seem keenly competitive.
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Table 8;2 |

Coverage Probabilities of the t- and t-intervals using v

1 and “g
Pop, T-interval t~interval
Id. 99% 952 907, 99% 95% 90% ey
1 92. 8 86. 1 80,7 96, 0 90. 0 83.8 0.7115
' 92.8 8.9  81.0 95,9  90.0  84.4 0.7039
2 93.9 B7.8 81.9 96. 5 90, 85. 0. 6070
94.0 87.8  82.2 96.4  90.9  84.9 0. 6004
3 87,9 80. 9 75. 3 92,2 84. 78. 2.0871
87.8  80.9  175.0 92.4  85.1  78.6 2. 0790
4 88.8  81.6 76. 92.6 85, 80. 0 1.9503
88.7  81.8  76.7 93.0  86.0  79.8 1.9416
5 99,2  96.3 91,7 99, 96, 92. 2,2671
99.3 9 91.8 99.6 96.8 93.0 2.2022

Comments: As (82 —3) from Table 8.1 §s far {tom zerp except for populabion 5, the ACP's fall ahort of the nominal confidente coeficient,

Bul for populatlon 5 wilh negligible (83 — 3), the ACPF" are adequate. Bui uy and vy ace closely comnpetitive.

Table 8.3

Conditional performances of v

and v

0

using ancillary Al

for the population 35,

—

G?ﬁ?pf | A RB RS SL. Mean  Var /B B,-3
1 0,03584 -0, 07 . 84 0. 80 ~-0. 03 1. 00 0.32 -0.13
-0.22 2.06 0.81 -0.03 0.99 0.33 -0.11

2 0.03675 0.06 .24 .92 0.08 0.91  -0.19 -0.64
Q.06 1.23  0.92 0.08 0.91 -0.17 -0.64.

3  0.03735 0.10 1,33 .93  -0.02 0.75 0.21  0.02

| 0.08  1.27 0.33 -0, 02 0.76 0,19 0.07
4  0.03787 -0.07 0.77  0.90 0.01  0.99 0.37 -0.28
-0.08 0.74  0.83 0.00 1.01 .37 -0.24

5  0,03829 0.13 2.59  0.86 0.06  0.82 0.17 -0.21
‘011 2.46 0.8  0.07 0.83  0.16 =-0.23

6 0.03870 -0.29  2.70  0.66 -0.16 - 0.97 .21 -0.66
- | -0.29 2.60 0.66  -0.15  0.99 0.22 -0.62

7 0.03912 -0. 20 1.09 0.78 0.02 1.04 .29 -D.60
o -0.20 1.08 0.78  0.02 1.04 0.26 -0.58
8  0.03971 0.04 2.72  0.78 0.28  0.88  -0.15 -0.22
0, 02 55 79 0,27 0.87 -0.19 ~-0.23

gy
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Table 8.3 {continued)

Gfﬁ?p Ay, RB RS SL. Mean  Var /B, B,-3
g 0.04041 0.11  0.99  0.97 0.23 .95 0.12  -0.40
0.10 0.97 ©0.97  0.24 0.95  0.12 -0.38

10 0.04168 ~0.03  1.45  0.86 0.06 10 0.47  0.38
-0.03  1.51  0.86 0. 06 09 0.46  0.38

e el

—— e S

Comments: With changing values of the ancillary Ay, the criteria measures change showing no discernible pattern. Byt within esch

group vp and vy perform almost similarly.

Table 8.1

Conditional coverage probabilities of the - and t-intervals using

for

vy and Ya and PC%<pupulatinn 5, using ancillary Ai.
Group T-interval t-interval pev

(h) 99Y% 95% 90% 99% 95, 90% *
1 99, 0 98. 0 20. 0 99. 0 99. 90.0 1. 9695
99.0 95. 0 93.0 99, 0 97.0 93.0 2. 1109
2 100.0  97.0  94.0 100.0  97. 9.0 1.1731
100.0 97.0 94.0 100. 0 97.0 96.0 - 1.1644
3 9.0 980 97 100.0  98. 98.0 1,2105
99.0 = 98.0 97.0 1100. 0 98.0 98.0  1.1651
4 99.0 96 89, 100. 0 96, 91,0 0. 8243
99.0 96. 0 89.0 100. 0 96.0 90.0 - 0. 8047
5 99.0  98.0  95. 99,0  98. 95,0 2. 2967
99, 0 98.0 94.0 99. 0 98.0  95.0 2.2122
6 100.0 96. 0 92, 100. 0 97.0 93.0 3, 7645
100. 0 96.0 92.0 100. 0 96.0 93,0 3. 6597
7 100, 0 96. 0 86. 0 100. 0 96. 87.0 1.3294
100. 0 95.0 85.0 100. 0 97.0 88.0 1. 3162
] 99, 0 97 93. 100. 0 97. 93. 0 2. 6275
100. 0 96.0 93.0 100. 0 97.0 94.0 2. 5090
9 99.0 96. 0 90. 0 99. 0 97. 93.0 0. 8892
99.0 96.0 92.0 99, 0 97.0 93.0 0. 8729
10 98. 0 95 88. 99. 0 95. 89.0 1.4819
' 98.0  95.0  89.0 29.0 25.0 90.0  1.5189

Comments: For every group formed in terms of the ancillary Ay, both vg and vy perform closely.



Table 8.5

Condltional performances of v, and VYo for the population 5,

using ancillary A

)
Gfﬁ?p Asr RB RS SL Mean Var ffEI‘ B,~3
1 0.59393 0.33 0.94 1,11 0.23 0.89 -0,18 -0.05
0.33 0.95  1.11 0.23 0.8 -0.19 =-0.03
2 0.67812 0.29 1.13 1,06 0.22  0.80 0.22 -0, 47
0.31 1.17 1.07 0.22 0,80 0.25 -0.45
3 0.73719 0.18  1.05 1,01 0.10  0.77 0.33 -0.33
0.21 1.07 1.02 .10 0.76 0.33 ~0.33
4  0.80221 0.51 1.22 1.17  0.14 0.57  0.06 ~0.58
0.50 1.18 1.17 0.14 Q.57 0.07 =0.61
5  0,86822 0.09  0.94 97 0.03 1.03  0.28 -~0.29
0.11 0. 98 0.98 0.02 .02 0.28 -=0.29
6  0.94703 0.15  1.11  0.99 0.22  1.04 0.60 0,13
0.15 1.14 0.99 0.22 1.03 0.8 0.039
7 1,02617 ~0.28  0.75 77 -0.10  1.13 0.27 ~0.80
o -0.28 0.75 0.77 -0.10  1.13 0.25 =0.79

8  1.14125 0.12  1.10 98  -0.04  0.95 0.17 -0.19
0.14 1.07 0.99 -0.04 0.94 0.13 =-0.17
9  1,32708 0.08  1.31 .93 0.01  1.05 0.36 -0.08
0.09 1.40 0. 93 0.0 1,06 0.37 =0.05
10 1.87295 ~0.22  1.41 73 -0.26  1.11 0.17 -0.97
-0.23 1.35 0.72 -0.27  1.13 0.16 —0.98

Comments: For the ancillary Ao also the criteria measures vary with Jittle discernible pattern. But vg and vy perform quite competitively.
Table 8.6

Conditional coverage probabilities of the 7~ and t-intervals using

for

v, and v. and PC%(poﬁulatian 5, using anclllary A,.

1 0
Group- T-interval t*interval o pCV
(h) 99% 95% 90% 997 95% 90% -
1 99.0 97.0 90. 0 100.0  97.0 92.0 - 0.6657
99, 0 96, 0 92.0 100. 0 98.0  92.0 - 0.6686
2  100,0 94, 0 92.0 100.0 95.0 92.0 0. 8492
100.0 95.0  92.0 100, 0 95. 0 92. 0 - 0.8605
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Table 8.6 (continued)

Group

T—-interval

t-interval

(h) 99% 95% 90% 99% 95% 90% FCY
3 100.0 97.0 94, 0 100, 0 98, 94, 0.8764
100. 0 97. 0 94. 0 100. O 97.0 94. 0 0. 8700
A 100.0 99. 0 97.0 100, 0 99, 0 98, 0.7288
100.0 99,0 97.0 100. 0 99. 0 98.0 0.7129
5 98.0 96. 1 92.0 99, 0 96. 0 93, 0. 8593
98.0 96. 0 92, 0 99, 0 97.0  94.0 0.8761
6 98, 0 95, 91,0 99, 0 95,0 92, 0. 9582
98. 0 g5, 0 91.0 99, 0 5.0 92. 0 0. 9756
7 100. 0 96,0 87.0 100.0 97, 90, 0.9704
100, 0 96. 0 88.0 100. 0 7.0 92.0 0, 9589
8 99.0 96,0 93,0 100, 0 96. 0 93, 0. 9760
100. 0 96. 0 92.0 100.0 96, 0 93.0 0.9328
9 98. 0 95, 0 92,0 98. 0 96. 0 93, 1.2091
- 98.0 95.0 - 92.0 98. 0 96.0 . 93. 0 1. 2800
10 100.0 98. 0 89,0 100, 0 98, 0 91, 1.7798
100.0  97.0 88.0 100. 0 98. 0 90. 0 1.7387
Commenls: Conditional performances in terms of the ancillary Aq are also quite close for bath wy and vy.
Table 8.7
d-values for several populations using ancillary A
.Descriptiuh of Population d
-yaiuves
Distribution of Ui A - g 1% o
(1) N(O, 1) 2.50 0. 4 5,1803 5.3724
(11) N(O, 1) 2.50 0.5 - 4.1939 4. 3729
(111) N(O,1) 2. 50 0.6 3,3013  3,4690
(iv) N(O, 1) 2.50 0.8 1.8317 1.9823
(v) N(0O,1) 2.50 0.9 1,3572 1.4941
. 2 '
(vi) (x] - 1)/ /27 13.59 0.4 6. 7395 6, 7278
| o o |
__(-;1_1;_ (27 = 1)// 2 13.59 0.5 7. 2?34_ 7, 2560
o . . | |
(viii{;¢.__ (xl'—.ll/}/'é'_ 13.59 0.9 11.1124 11,0695
g * e .
(ix) ... . N[O, 1) 8, 50 0.4 - 6.6736 6,6717

1 . _ R A pare—pr | v — -
x; 1s obtained by adding 10 to samples from fg s(xJ

Commenta: With varying populations vy heals vg and ﬂecq versa in lerms of the d-criterion of p-124 in stapecs of Aj.
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Table

8.8

d-values for several populations using ancillary Az

Description of Population

Distributlon of U, A g d-values
Vg 2o
(x) N(0,1) 2. 50 0.5 7.2355 7.3437
(x1) N(0, 1) 2.50 0.6 6.2217  6.3160 ‘
(x1ii) N(0, 1) 2.50 0.8 4. 4450 4.5113
(xi11) N(0,1) 2.50 0.9 3.7094 3. 7606
z .
(xiv} (2] ~ 1}/}/_2 13. 59 0.4 8.3362 8.3113
2
(xv) (x; - 1)// 2" 13. 59 0.5 8. 6655 8. 6337
2
(xvi) (x, - 1)// 2 13.59 0.6 9.1356 9. 0962
. |
(xvii) (x] - 1)/ /2 13.59 0.8 10. 6162 10. 5593
*
(xviii) N(0, 1) 8., 50 0.4 9.5597  10.0103

* | |
Xy 1s obtained by adding 10 to samples from fg . (x)

Comments: With changing populstions vy besta vg and vice versa In sexms of the d-criterion of p 124 alao in reapect 41 Az.

Results for Cochran's dataq:

N =49, n = 11,

Table 8,9
Detalled performances of \f and \fs for Cochran's data.
V(tp) v RB RS SL. Mean Var VB, B,-3
585392.5 606282.7 -0.07 9.21 0.52 -0.32 1.50 -0.73  0.24
-0.06 9.5 0.52 ~-0.32 1.51 -0, 73 0.23
Commenis: As in Table 8.1, in Vhis real population case also vy and vy periorm quite closely.
| Table 8.10
Coverage Probabilities of the T~ and t-intervals
using vy and Vo and PCV for Cochran’s data.
'. T-interval | tﬂinterval o PCV
- 99%. 95% 90% g% Q5% - 904
95.4  88.6 81.5 97.8 92.0 85.5 9.9290
0s.3 &, 81,7 97. 7 91,8 85. 7 10. 1006

Comments: As in Tlhl; #.!, with 1his reat population case alio v snd v .mmpﬂ: quite closely.
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