ASYMPTOTIC PROPERTIES OF

- POSTERIOR DISTRIBUTIONS

"AND STUDY OF SOME
NONREGULAR CASES

SUBHASHIS GHOSAL

“Thesis submitted to the Indian Statistical Institute
in partfal fulfilment of the requirements
. for the award of the degree c-.rfl
Doctor of Philosophy
. CALCUTTA

1994



Contents

A_cknnwled gements

Basic Notations

Introductiqn

Chapter 1 .
General Theory

1.

o o o

The Set Up

Examples

Behaviour of Posterior Distributions

Investigation of Posterior Convergence in Examples
Some Further Properties of the MLE

Convergence of Experiments, Efficiency and

Asymptotic Independence

Chapter 2
Multiparameter Densities with Discontinuities

1.
. Set up and Assumptions
. Properties of Likelihood Ratio Process

2
3
4,
5
6

Introduction

Convergence of Posterior Distributions and Bayes Estimates

. A Convolution Theorem
. Asymptotic Independence

Chapter 3
Multiparameter Densities with Singularities

1.
2.
3.
4,

Introduction |
Singularities of the First and Third Type
Singularities of the Second Type

Discussions

Chapter 4
Expansion of Entropy Risk: Reference Prior

1.
2,

Introduction
Expansion of Bayes Risk for Entropy Loss

12
17
30
37

39

42

42
43
o0
63
65
69

71

71
72
85

89

91

91
92



3. Reference Prior
Appendix A
Appendix B
References

Index

102

104

107
110
117



Acknowledgements

The present work has been done under the guidance of Professor J. K.

Ghosh. It is extremely difficult for me to express my sense of gratitude to-
wards him in words. He has played a very significant role in my academic
work during the last few years. I learnt a lot from his way of thinking and
approach to a problem. In spite of his heavy burden of work, I had the priv-
ilege of occupying much of his precious time, even in his busiest moments.
The great pleasure of working under him will always be remembered. Also,
. I would like to thank him for allowing me to include our joint works in my
thesis. |

Dr. T. Samanta was a co-worker throughout the present work. I must
thank him for allowing me to include our joint works in this thesis. But I owe
him much more for sharing the ups and downs as a friend and co-researcher.

At various stages, I received encouragement and co-operation from most
of the faculty members in the Stat-Math Unit. I have benefitted substan-
~ tially from the discussions with Professor B, V. Rao. Professor T. K. Chan-
dra always showed interest in my work. It is a pleasure to record my thanks
to all of them., |

I have been fortunate to have a number of good friends whose constant
encouragement inspired me to continue my work., My friend Mr, M, Mitra
provided many useful suggestions regarding the presentation of the thesis.
Also, I am indebted to my fellow research scholars for sharing our common
problems.

I had the opportunity to work in the pleasant atmosphere of the Indian
Statistical Institute. My work has been funded by the National Board of
Higher Mathematics, Department of Atomic Energy of the Government of
India. I record my sincere thanks to these organizations.

I would be failing in my duties if I do not mention the role of non-scientific
workers of the institute. It would have been a difficult job to continue the
work without the co-operation from the staff of the Stat-Math Unit, library,



reprography unit, Dean's office and other parts of the institute.
I have benefitted much from the advantages of the [EX-group software
typing systems. I thank the Stat-Math Unit once more for making these

‘available.
Finally, the role of my family in my academic career can never be denied.

Even though I spent a considerable amount of family-time in my work, my
parents and brothers were always patient with me. Without their encour-
agement, this work would never have been materialized.

Calcutta, April 1994 . Subhashis Ghosal



Basic Notations

R real line

R? d-dimensional Fuclidean space
B Borel o-field on R

B¢ Borel o-field on RY

X indicator function

A¢ - complement of a set A

KRR Euclidean norm | |
/ transpose of a vector, derivative of a function
e ~ convergence in probability

5;- mm?ergence in distribution

d

equality in distribution

arn = o(by) an/bp — 0

an, = O(b,)  ayn/b, is bounded

Gy, ~ by a*n/ by, — 1

Xy = 0p(tn) Xnfan 50

Xp = 0p(a,) Xn/a, is stochastically bounded

L(X) distribution of X
X~ F X has distribution £
0 | end of a proof

I

equality in definition
Result £.y.z (which could be a theorem, lemma, etc.) means Result z of Section

y of Chapter z. Result 3.z means Result z of Section ¥ of the same chapter. Result
A.z means Result z of Appendix A.



Introducﬁon

The asymptotic approach to statistical estimation is frequently adopted be-
cause of its general applicability and relative simplicity. The modern study of
asymptotic theory, initiated in Le Cam (1953), has undergone a vigorous devel-
opment through the classic works of Le Cam, H&jek, Bahadur, Ibragimov and
Has'minskii (Khas’minskii), Bickel, Pfanzagl, Millar and many other scholars; see
Le Cam (1986), Le Cam and Yang (1990), Ibragimov and Has'minskii (1981} and
the review article by Ghosh (1985} for an account of this development.

Most of the results in asymptotic theory of estimation are obtained under the
clasgical Cramér-Rao type regularity conditions or their substantial generalizations
like LAN, LAMN etc, While undoubtably these are the most important cases,
they are by no means the only cases of interest. It is well known that quite dif-
ferent and interesting phenomena occur when regularity conditions are violated.
For example, in the case of a family of discontinuous densities, the best rate of
convergence is n~! instead of,n~1/2 in the regular cases, Also in contrast to the
regular cases, the MLE is not efficient (but Bayes estimates are) and actually the
notion of efficiency depends on the loss function involved. These “ﬁunregula-.r” cases
attracted the attention of researchers from an early period and often were used to
produce counterexamples, Convergence rates of estimates (particularly the MLE)
were considered in several papaers, see Polfeldt (1970) and Woodroofe (1972, 1974)
for instance. In Polfeldt (1970a,b), the questions related to the order of variance
of minimum variance unbiased estimators were investigated. A general theory of
nonregular (as well 'as regular) cases was first attempted in Weiss and Wolfowitz
(1974) who showed that the MLE may not be efficient, but maximum probabilty
estimators (which are basically Bayes estimators dependiﬁg on the chosen loss func-
| tion) are always efficient. In fact, in general, the posterior distribution and Bayes
procedures may behave well even if the MLE in not well behaved, see Schwartz
(1965) in this context. A modern treatment of both regular and nonregular cases
appeared in the works of Ibragimov and Has'minskii (1970, 1971, 1972a, b, 1973a,
b, 1974, 1975a, b, 1976, 1977) which are now collectively available in Ibragimoy and
Has’minskii (1981). Since this will be the main reference throughout the present
work, it is convenient to abbreviate the above as IH. The general formulation of
TH vie}vs the (normalized) likelihood ratios as a stochastic pm.cess in the following

way:



Fix a point 8 in the parameter space and define the “likelihood ratio process”

(LRP) parametrized by u by
Zn(u) = p ("8 + pnu)/p"(z"; 6),

where p™(-) stands for the joint density and ¢, for appropriate normalizing con-
stants. It is assumed in I[H that the LRP satisfies the following three conditions

(these are stated more formally in Section 1 of Chapter 1):
(1) The map u +» 7Y *(u) into L?(Py) is Lipschitz continuous and the growth of

the Lipschitz constant is at most like a polynomial, -
(2) For some sequence gn(-) of nonnegative functions which increase to infinity

for every n > 1 and satisfy lim yco ¥ exp[—gn(y)] = O for every N, EZY ?(u) <

n—oo
expl~ga([[u]})].

(3) The finite dimensional distributions of Z,,(u) converge to those of a stochastic
process Z(u).

Under this general set up, the asymptotic properties of the MLE and Bayes
estimates are derived in IH. This formulation is suitable for handling both the
regular and nonregular cases. The likelihood ratio pmcess was used earlier by
Rubin (1961) and Prakasa Rao (1968), and also occured in Hoeffding’s lecture notes
at Chapel Hill. To be more specific, in Prakasa Rao (1968}, the problem of finding
the asymptotic distribution of the MLE was reduced to the problem of finding
the distribution of maxima of a Gaussian process in the case of densities with
singularities of the second type (see Section 1.2). In a part of the present work,
we show that these three properties of the LRP provide useful informations
on the asymptotic properties of the pﬂstefior distributions as well,

~ The present work can be divided into two major portions, In Chapter 1, the
asymptotic properties of the posterior distributions (and some related results) are
treated in the general set up of IH. The conditions of TH stated above are more
formally described in Section 1 of Chapter 1. It can be noted that the version of
the conditions are somewhat weaker than those that actually appeared in IH;
this relaxzation is __cmci-ally used in Chapters 2 and 3. Several examples of dif-
ferent kinds fall in the set up of TH; they are briefly reviewed in Section 1,2 for
convenience in later developments, For ready references, the results of TH on Bayes
estimates and the MLE are presented in Appendix B. The main résulté of Chapter 1
consist of the results on the asymptotic properties of posterior'distrib_utiaﬂs, which
are discussed in the following paragraphs. Some new results u:in_ Bayes estimates
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and- the MLE are also presented. In particular, it is shown that under a very
general “reqular” situation, the MLE and Bayes estimates are asymptotically
equivalent (Corollary 1.5.1). While this result is quite well known in many par-
ticular cases or under conditions much stronger than ours, it seems to be new in
this general form. In the last gection of this chapter (Section 1.8), relations with
- convergence of statistical experiments, efficiency, regularity property of Bayes esti-
mates and MLE are discussed. A notion of asymptotic independence of estimation
problems of components of the parameter is also introduced here. This means that
the limit of posterior distributions, the limiting experiment associated with the de-
cision problem and the asymptotic distribution of Bayes estimates and the ML.E are
all of product type. Such a phenomenon occurs whenever the limiting LRP can be
factorized into two independent processes parametrized by different components. It
will be seen later that the estimation problems for the “regular” and “nonregular”
components for the cases in Chapters 2 and 3 are asymptotically independent,

In Bayesian analysis, one starts with a prior and the resultant analysis is based
on the posterior, given data. Since this involves a prior, naturally we are interested
to know to what extent the -Bayesian analysis is sensitive to the choice of a prior.
In Theorem 1.3.1, we show that posterior consistency implies that the total
. variation distance between the posterior distributions corresponding to any
two “reasonable” priors converges to zero whereas Proposition 3.1 shows that
posterior consistency always holds under the conditions df I[H. Thus under mild
conditions, the prior has little or no effect if the sample size is large, so almost the
same conclusion will follow from any reasonable prior, i.e., we have almost complete
prior robustness for large sample sizes.

The next natural question is whether the posterior converges to a limit as the
sample size increases indefinitely, In this case, the inference stabilizes and the
Bayesian analysis can be remarkably simplified. The approximate computations
based on the much simpler limiting form is often quite accurate, even for moderately
large sample sizes. (For an example, see Berger (1985, p. 225).) '

We observe that a weak limit of posterior probability that the normalized
parameter u belongs to a given Borel set always exists under the general set
up of IH (Theorem 1.3.2). Indeed, it is shown in Theorem 1.3.3 that the posterior
densities of the normalized pammcter u, as random densities, converge weakly
and the limit is also identified. Although theoretically interesting (these results are
used as important theoretical tools in later developments), the weak limit itself is not



| qﬁite useful, and so we want to improve the mode of convergence by making a data-
dependent transformation of the pa.raméter; In the “regular” cases, it is well known
that for a wide variety of priors, the posterior normalized and centered at the MLE,
converges to a normal distribution. This fact is referred to as the Bernstein-von
Mises theorem or Bayesian central limit theorem. A rigorous prbof of this fact
in case ofi.i.d. observations first appeared in Le Cam (1953). Various modifications

and extensions of this result have been made by several authors; see Section 3 of

Chapter 1 for a more detailed discussion.
So far, the asymptotic behaviour of posterior distributions has not been studied

in nonregular cases except in Samanta (1988), where a non-normal limit of a pos-
terior has been obtained for a particular type of discontinuous densities. (A refined
version of this result including asymptotic expansions will appear in a subsequent
work.) This suggests the possibility of finding a posterior limit (not necessarily a
normal distribution) in a stronger sense (either almost surely or in probability) by a
suitable centering (not necessarily at the MLE). Under the general set up of 1H, we
try to find out the necessary and sufficient condition for this phenomenon to occur.
The reason for considering the possibilty of a constant limit can be justifed in the
i.i.d. case; we show in Proposition 1.3.2 that a limét of normalized and centered
posterior probabilities, if it exists, must be constant almost surely. The main
theorem in this context (Theorem 134) can be stated as follows:

If the limat of suitably centered and normalized posterior distributions ex-
tsts, then the limiting LRP Z(u) must satisfy the relation .

2(w)/ [2(u)au’ = g(u+W)

for some random variable W and a fized probability density g(.).
| Using this criterion, we investigate in Section 1.4 the possibility of the existence

of a limiting posterior in many cases that appeared in the literature. We conclude
that in most of the nonregular cases, there cannot be a posterior cbnvergence. Also
it is of importance to see that the necessary condition described in Theorem 1.3.4 is
also sufficient to imply a posterior convergence. In fact, we show in Theorem 1.3.6
that if Z(u) s of the stated form, then, centering with a Bayes estimate, the
posterior distribution converges in probability to a constant limet, This result
appears to be'a very general posterior limit theorem. For example, it implies a-
version of the Bernstein-von Mises theorem (here we interpret the convergence
in prdbability sense) in a very general regular sttuation, Under a little more



restriction, the Bayes estimate can be replaced by the MLLE in the above result; see
the discussion following Corollary 1.5.1 in this context.

In Chapter 2, we treat a very important multiparameter nonregular case. We
consider i.i.d. observations with a common density on R such that the densities
are discontinuous in one component of the parameter (say, §) but the problem is
“smooth” with respect to the other components (say, ). We state the set up
and assumptions formally in Section 2.2 where several possible examples from the
literature are also described. Such examples were treated earlier in Smith (1985)
and Cheng and Iles (1987) who considered the problem of finding the asymptotic
distribution of the MLE or its alternatives using the methods of extreme value
theory. In contrast, we study the whole estimation prdblem using methods similar
- to that of IH (Ch. V) who treated the case of one-parameter discontinuous dengities.
More specifically, in Section 2.3, we show that the likelihood ratios satisfy certain
properties similar to the conditions of IH described in Chapter 1 and consequently
derive asymptotic properties of Bayes estimates and posterior distributions (Section
2.4). A version of the first two conditions of IH are satisfied because the squared
Hellinger distance r3((6, ), (8 + u, @ + v)) between the densities corresponding to
two paramter points (8, ) and (6 + u, v + v) is shown to be bounded (see Section
1.5 of IH) | |

e(lul + [[o]]*) < r3((8,40), (@ +u, 10 +)) < C(lul +- |Jo]|*)

for some constants C > ¢ > 0, and the dependence of C on (8, ) satisfies certain
growth conditions. The key idea of proving these inequalities is to show that the
densities satisfy a property very similar to quadratic mean differentiablity if a suit-
able neighbourhood of the points of discontinuities is excluded (see Lemma 2.3.1).
To show the convergence of finite dimensional distributions of the LRP Z,, (u,v), we
first derive an approximation Zn(u,v) of Z, (u,v) which is much simpler to deal with
than the original LRP (see Theorem 2.3.1). Here we use techniques very similar to
those in Chapter V of IH, but we need a judicious combination of the techniques of
regular and nonregular cases. (For example, Lemma 2.3.1 has been crucially used.)
Now using a simple weak convergence result (Lemma 2.3.5), we derive in Theorem
2.3.2 the following result: |

The finite dimensional distributions of Zn(u,v) converge to those of the
pmceas Z(u,v) = Z0(u) 2 (v) where ZW(u) is an explicitly stated function of
at most 2r independent homogeneous Poisson processes, Z\¥(v) = exp[v/A —
(1/2)v'Iv) where A 1s o N(0, 1) random vector, I is a positive definite matriz

J



and the processes ZW (u) and Z(?(v) are independent. (Here, r is the number
of points of discontinuity of the density as a function of 6.)

Using the above facts, the asymptotic distribution of the Bayes estimates is (al-
most) immediately obtained from the results of Il in terms of the limiting LRP.
The results of Chapter 1 on posterior distributions can now also be utilized to show
posterior consistency, asymptotic prior robustness and to investigate the possible
existence of a posterior limit. When the likelihood ratios have a particular expan-
sion, which is, roughly speaking, locally asymptotically normal in ¥ and locally .
asymptotically exponential (see Section V.5 of IH) in u, we derive a convolution
theorem in Theorem 2.5.1 along the lines of Millar (1983). This result can be stated

as follows:
If the likelihood ratios satisfy

Znlu,v) = expluc + v Ay, — (1/ 2V I xfu < on} + 0,(1)

where ¢ > 0, I is positive definite, L((An,00)) = L((A,0)), A ~ N(0,1), ¢ has
an exponential distribution with mean 1/c and A and o are independent, then
the limiting distribution of any regular estirnator of (8, ) can be written as a
convolution of the product of an exponential distribution with mean 1/¢ and
an N(0,I) with some probability measure. | .

As mentioned in the context of Theorem 2.3.2, Z(u,v) can be factored into
two independent processes Z{2(u) and Z(2)(v). It is also worthnoting that Z()(u)
would have been the limiting LRP had ¢ been known and Z(v) would have been
-the limiting LRP had 6 been known. The fact that Z(u,v) is factored into two
independent processes parametrized by » and v respectively implies the asymptotic
independence of the estimation problems of # and ¢ in the sense of Section 1.8.

In Chapter 3, we study another important multiparameter nonregular case where
the problem is smooth for ¢ but has singularity (instead of discontinuity as in
Chapter 2) in . The idea of the solution of this problem is very similar to that
of Chapter 2, but there are certain differences as well. The case is more complex
than that of Chapter 2 and we derive results for the particular case when 0 is
a location parameter and there is only one point of singularity; a more general
case can be treated fﬂllowing. similar lines but does not lead to substantially new
phenomena. Here also, we establish certain prt::perties of the LRP similar to those
in the conditions of IH. The method of proof, however, is somewhat different from



that of Chapter 2. We first split log Z,(u,v) into two terms as follows:
("0 + kathp) | ﬂé P*(z"; 0 + knu, p + n %)
. p™(z"; 6, ) p(z™; 0 + kau, @)
where k, = n~1/(1+2) and o is the order of the singularity. An approximation of
the first term is immediately obtained from the results of Chapter VI of IH on
the corresponding nne—parameter case, We then show that the second term has
an appropriate expansion under certain assumptions on the pointwise behaviour
of the density function and its derivatives. (It can be noted that the approach in
Chapter 2 needs less assumptions, but here it does not apply because an analogoue
of Lemma 2.3.1 fails to be true.) This implies (Thédrem 321) that log Z,,(u,v) is
approximately the sum of two processes, one pafametrized by u and the other by v.
These two terms are asymptotically independent and thus we conclude in Theorem
3.2.2 that the following result holds:

The limiting LRP Z{u,v) is given by

log Z(w,v) = Y{u) + v'A ~ (1/2)v'Iv,

log Zn{u,v) = log

where Y{u) 13 an explicit function two independent nonhomogeneous Poisson
processes (or a Gausstan process if the singularity is of the second type) and
A is an N(0,I) random vector independent of Y{u).

- It can be noted that ¥{u) would have been the limiting log-LRP if ¢ were known
whereas VA —(1/2)v v would have been the limiting log-LRP if 8 were known. The
asymptotic properties of Bayes estimates and posterior distributions are obtained
in terms of the limiting LRP Z(u,v) in view of the results of IH and Chapter 1. As
in Chapter 2, the estimation problems for # and ¢ are asymptotically independent,

Results of Chapter 4 are of somewhat different spirit and are not derived as a
consequence of the results on Cha.tpér 1, although occasionally the facts in Chapter
1 and Chapter V of IH are used. Here we derive the asymptotic expansion of the
expected Kullback-Leibler distance between the posterior and the prior for a claas
of one-parameter discontinuous densities. We consider a class of one-parameter
discontinuous densities which are supported on an interval (finite or infinite) which
increases or decreases with §. The main result of this section (Theorem 4.2.1) can
be stated as follows: |
. Under certain assumptions, for any prior n(8) positive, continuous and
supported on a compact set K C R, we have as n — oo , | |

I(m; X*) = log(n/e) + [ 7(6)log(1e(6)|/x(6))d8 + o(1)

Y



where I(m; X™) is the expected Kullback-Leibler distance between the posterior

and the prior and c(0) = Eq¢((8/56)log f(X1;9)).

This expansion is then used to define and find out the reference prior in the
sense of Bernardo (1979). We thus Iféa.ch the following conclusion:

The reference prior for the problem s given by m(8) « |e(6)].
Importance of the study of reference priors in nonregular cases was mentioned in
Bernardo (1979), but the present results seem to be the first rigorous treatment
of reference priors in nonregular cases. It will also be of interest to get similar
results for the multiparameter case treated in Chapter 2. This is currently under
investigation, | | |

For many reasons, it is als'o_impﬂrtant to study the higher order asymptotic prop-
erties which we have not attempted here. For an account of higher order asymptotié
- properties under regularity conditions, one can see the recent monograph by Ghosh
(1993). It is of importance to study the higher order asymptotic properties of pos-
terior distributions, Bayes estimates and the MLE under a suitable modification of

‘the conditions of IH.



Chapter 1
General Theory

1 The Set Up

We shall .investigate asymptotic properties in finite dimensional parametric prob-
lems. The underlying set up is same as that considered by IH which w€ shall
describe first, Let {X™, A", P}’ : @ € O} be a sequence of statistical experiments
generated by observations X™ € ", where @ C R% is a nonempty open set, (Actu-
ally TH considered a more general real indexing variable than the integer variable n
considered here. The difference however is very nominal, and all the claims made
here will be valid for real indexing variable also whenever it is meaningful.) For
example, in the very important case of i.i.d. observations Xj, Xb,..., the sample
size plays the role of indexing variable and X* = (X;i,...,X,,). We shall assume
that for each n > 1, the family of probability measures { P} : 8 € B} is dominated, -
i.e., there exists a o-finite measure v™ on (X%, A") such that for each 8 € O, P} is

absolutely continuous with respect to v™. We denote the Radon-Nikodym derivative

by p™(2™;6), i.e., |
’ Rl Y dP; ny. n n
p"(z"; ) T ("); 2" €X%, n 21

We fix a point 8y € 8 which we regard as the “true” parameter; all the asymp-
totic properties will be established under the model & = 8. Let {¢,} be a sequence
of d x d positive definite matrices which converges to zero as n — oo (entrywise).
The sequence {y,} is regarded as the sequence of nnrmé.lizing' constants and the
asymptotic properties are understood after scaling by this factor. The choice of
this sequence depends on the particular problem concerned. For example, in the
familiar ii.d. case of “smooth” densities, it is well known that ¢, = n~12], is
the appropriate normalizing factor, some further exampléé will soon appear, The
(local) likelihood ratio process (LRP) Z, 4 (u) = Zy(u) is defined by

_ p"(z"; 0 + p,u)
T e 0 YETm
where Uy, = U4, stands for the set ¢ 1(0 — %). Since t,o.,; converges to zero, {U, }
finally fills up the whole of R? | | | |

The general theory of IH has been developed under certain assumptions on
the LRP {Z,(u) : u € U,} described below. In what follows, all the_pmbabi]i"t.y

Zy(u)

9



statements refer to the true parameter fp unless otherwise explicitly mentioned.

Also-we uge the following notations:
By Pol(z), we mean any function of the form B(1 + %) where B,b > 0. Any

function of the form Bexp{b|z|] will be denoted by Exp(z). If f(z) is a function, by
f(z) < Pol(z), we mean that flz) £ B(1+ z|*) for some B,b > 0. When we write
a limiting relation involving Pol(z) (for example, lim,_, e™*Pol(z) = 0), we mean
that the relation is satisfied by every function of the form B(1 + |2{°) with B,b > 0.
A similar convention is adopted for Exp(m) also. | -

Conditions.

(IH 1) FOI' Eﬂmﬁﬂfl, yoe o ,cﬁd :>'01, With ‘l&ﬂ (u'lll' ' 'ju.'d)j V= (1‘,1!." "'Jﬂd)‘l

| | d d
E\ZY2(u) - ZY/*(v) ] < [] Pol(Rs) ) lus —]™
i=1 i=1
for all u,v € U,, with |u;| < By, [v] < Ry, i=1,...,d.
(IH 2) For every v = (u),...,u%qd) € Up,

BZ*(w) < expl-gn(fual, - [ual)],

‘where {g,.(")} is a sequence of nonnegative real valued functions on [0, 00)? satisfying
the following conditions: |
(a) For any n > 1, g,(') is increasing to infinity in each of its arguments.

(b) With ¥y = (yli ¢ o0y yd)}

ﬂllfllleaH PG] y:) exp[—gn(yli X yd)] =0. .

ﬂ——lm 1=

(IH 3) The finite dimensiﬂnal distributions of the stochastic process {Z, (u) :
u € U,} converge to those of a stochastic process {Z{u) : u € R%}.

Conditions (IH 1), (IH 2) and (TH 3) together will be referred to as Conditions
(IH). However, we must say that there is a little difference between the conditions
assumed by IH and those stated above. Firstly, IH assumed that the conditions

 are satisfied uniformly over compact subsets of ©, and as a consequence, their
conclusions are valid uniformly over compact subsets also. Secondly, we have
relazed the first two conditions to allow different dependence on different
components in contrast to IH. This generalization, although not a significant
improvement, gtves usg additional flexibility so that the__p'roofs can be -easily

10



adapted to some gimélar situations. For example, one can replce in (IH 1)
the factor Pol(R;) by Exp(R;), provided Pol(y;) in (IH 2). 48 also replaced by
Exp(y:), 4 =1,...,d. It s easily verified that all the asymptotic results then
go through in an exactly same manner. This observation, although simple, 43

erucially used in Chapters 2 and 3. |
A lot of results regarding the asymptotic behaviour of posterior distribution

and Bayes estimates can be derived from the above conditions. Also the general
theory based on these conditions has a wide applicabilty because, under a variety

of situations, Conditions (IH) are satisfied. (See Section 2 for a brief review.) In
the i.i.d. case, easy sufficient conditions are available for Conditions (IH 1) and (IH

2) in terms of the Hellinger distance between the true and neighbouring densities.
For two probabilities P and @ on some measurable space, recall that the Hellinger

distance r3( P, Q) between P and Q is defined by
HRQ) = [(1(a) - ¢/}(z)u(da)

= (1~ /flfﬂ@)glfﬂ(m)v(ds)),

where f = dP/dv and g = dQ/dv are the Radon-Nikodym derivatives of P and @
regpectively with respect to a common dominating o-finite measure . Abbreviating
Py as 6, fz(ﬂ,ﬁ + h) denﬂtéﬂ the Hellinger distance between Fy and Fyi,. Assume
that for all # € © and for all A with 8 +h € 8, we have

(i) 73(6,6 + k) < A(B)IR|",
where A(6) has a polynomial growth,

(i) r3(6,0 + h) > a(B)||]l*/(1 + R]|°),
- where a(f) > 0 (If uniformity is required, we assume that the left hand side is

positive uniformly in compact sets),

(iii) For some 7 > 0, . _
[Pr@of @+ ) <C@IRlT (L)

for some constant C(#). (This condition is Vacuou.ély_satiﬁed if © is bounded, If
uniformity is reqired, we need boundedness of C{8) on compact subsets of 9, )
Then Conditions (IH 1) and (IH 2) are satisfied with Pp =1 ~ljer, (F'DI' a proof

and more details, see Sec. 1.5 of IH, pp. 51-57.)
In case of location families f(z;0) = f(z — ) (densities are with respect to
Lebesgue measure), Condition (iii) above holds if the mild moment condition

ﬁ|m|\ﬁf(m)dm < oo forsome >0 - (1.2)

11



is satisfied (see, e.g., p. 189 of IH). However, outside the location and scale families,

Condition (iii) may not be always a mild requirement, see Example 3 in Chapter 2

in this context.

2 Examples

In this section, we present some examples for which Conditions (IH) are satisfied;

further details are available from IH.

EXAMPLE 1. INDEPENDENT HOMOGENEOUS OBSERVATIONS WITH A SMOOTH
DensITY. Let X, X, ... be ii.d. observations with a distribution P, & € ©.
Assume that each Py has a density f(:;6) with respect to some o-finite measure
v. Suppose { f(-;ﬂ) : § € 8} is quadratic mean differentiable (QMD) with Fisher’s
information I(8) which is positive definite, continuous and bounded away from zero
and infinity in the sense of (II1.3.1) of p. 185 of IH. Suppose further that the
identifiability type condition (II1.3.2) of p. 185 of IH and (1.1) are satisfied. Then
the sequence of experiments generated by {Xi,..., X,} satisfies Conditions (IH)
with @, = n~1/2I,. Also here the local asymptotic normality (LAN) condition is

satisfied, i.e., | | _L -
Z(u) = explu'A — (1/2)u'I(6p)u], (2.1)

where A ~ Ny(0, I{6;)). Particularly, for location families, the conditions reduces
to a much simpler form. For sufficient conditions of QMD, see, e.g., Theorem 11.2,1

of IH, |
However, one may have to repara.metrizé 8 to satisfy Conditions (IH). For ex-

ample, consider the estimation of the scale parameter in a regular family

(z;0) =07 f(z/8), 0<6<oo,

on the basis of i.i.d, observations X1,Xa,.... Xy, where f is sufficiently smooth.
Clearly Condition (3.1) in Theorem IIL.3.1 of IH does not hold since the Fisher
information, being proportional to 7, is unbounded. Indeed, for such examples,
Condition (IH 1) also fails. To see this, take the simple example of normal distri-

bution with mean zero and unknown variance 62, For 6y = 1 and —nl/? < u < o0

Zu() = (L4 2P0 el {(L+ 0P - X, (22

=1
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So we have

2(1 + n~Y2y )(1+n"1/2u2) n/2y
B2 () ~ 2 ) =21 = [y it 1 eyt

whenever —n/? < uy, 1y < 0o. Using the fact that 1 — 7 > 1 —rif 0 < r < 1, we

have

2(1 + n~Y2u3)(1 + n~1uy) N
(14 n-12u)2 + (1 + n~12uy)?
(2/n)(u1 — u2)? o
(1+n~12u1)% + (1 + n~1/2u5)?

2{1 -

v

B\ Z*(wy) — ZY*(ug)|?

il

Now taking u; = —nl/2(1 — &), u; = ~n!3(1 - 2),e >0, we have for any a > 0,
fur ~ ug| B\ ZY (1) — ZY () 2 (2/ (5%, (2.3)

The right hand side of (2.3) can be made arbitrarily large by choosing € > 0 suffi-
ciently small, Consequently Condition (IH 1) cannot be satisfied. Similar calcula-
tions show that (IH 1) fails also for the exponential distribution with scale parameter

0.

| This difficulty, however, is not so serious since a reparametrization ¢ = log#
overcomes this problem. More generally, let f(-;8) be a QMD family of densities

with a finite, continuous and positive definite Figher's information I(8), consider a

reparametrization o of 6 which satisfies the differential equation |

do = I'/%(9)d9, (2.4)

- where IV/2(6) is the positive definite square root of (8). By results of Section 1113
of IH, Conditions (IH) are satisfied with ¢ as the parameter. -

EXAMPLE 2 INDEPENDENT NONHOMOGENEOUS OBSERVATIONS (SMOOTH .
DENSITIES).  Let X1, X3,... be independent observations with X; having a den-
sity fj(-;8) (with respect to some o-finite measure ;). Assume that ¥4, {f;(-;6) :
6 € 8} is QMD with Fisher’s information I;(6) positive definite and continuous.
Let U2(n;9) = 2 5=113(6). Under ce_rt.aiﬂ conditions (ﬁee Theare_nis.II.3;1, I1.6.1
and I11.4,1 of IH), Conditions (IH) alongwith the LAN condition are satisfied with
* on = (¥2%(n; 6))~1/2, A very important example of this kind apart from Example 1
is the “signal plus noise model” or a (nonlinear) regression model (see Sec. U4 of
IH). One can also consider a triangular array version of this; see Theorem 11.3.1' of
IH in this context. o I o .



There are many other “regular” situations outside the ii.d, set up. Among
them there are certain Markov processes, Gaussian white noise (Sec. I1.7 and III.5
of IH) and a planar Gibbsian point process model (Mase, 1992).

EXAMPLE 3. ALMOST SMOOTH DENSITY. In this casé, the classical smoothness
conditions are marginally violated and the Fisher information is infinite. However
LAN condition is satisfied with a different normalizer. This interseting case has been

treated in Sections I.5 and IIL3 of IH; see also Woodroofe (1972) and Weiss and
B Wolfﬂthz (1974a). To describe briefly, consider i.i.d. observations from a location

family f(z — 0) in R. Suppose f(z) is absolutely continuous and (f'(z))?/f(z) is

integrable everywhere except in a neighbourhood of finitely many points ¢1,...,%;

- and in a neighbdurhmd of a point zx, k = 1,...,! the following representation is

assumed to be valid:

) aplz — x| +Pr(z), ifz < ay, | |
M) = { bilz — 24| + ¢k(m)_, if z > x, (25)

. ‘where 1) is twice cnntinun.usly differentiable with ¢i(zg) = ¥i.(zz) = 0, ag, by 2 0
" ‘and B = 2 k=1{ar + b;) > 0. Then LAN condition holds with ¢, = (nlogn) -1/2,

Also, Conditions (IH 1) and (IH 2) are satisfied; one needs to assume the moment
condition (1.2) if © is unbounded,

Although the results of this chapter are valid in a wide generality, we are more

;;- interested in applying them to the non-smooth cases, or more familiarly known as
the nonregular cases {because most of the results are already known in the “regula-.r
cases”), So far in nonregular cases, the examplea of practical 1mpnrtance are only

. restricted to the i.i.d. case.

EXAMPLE 4. DENSITIES WITH JUMPS—ONE-PARAMETER CASE. The case of

one- parameter family of discontinuous densities occupy a very distingiushed position

since a long time because simple examples of this kind showed that a quite different

phenomenon happens if the classical smoothness conditions are not satisfied (see
-.Cramér (1946)). Many authors investigated this case; see, for ‘example, Chernoff

T
[ P

and Rubin (1956). A complete treatment is presented in IH (ch. V). Let X1, X;, ...

be Lid. with a density f(2;6) in R which has only r discontinuities a1(8),. .., o, ,(6)
:'ancl at ap(d), k =1,...,r, the right limit px(8) and the left limit 9:(0) exist. Then
under certain assumptions (see p. 242 of IH), it is shown that Conditions (TH) are

1<l



satisfied with ¢, = n~L Familia:r examples of this kind are U(0,6), § > 0 and
£(236) = f(z - 6) with f(a) = e~x{z 2 0}.

F.XAMPLE 5. DENSITiEs WITH SINGULARITIES. Let X), Xﬁ, ... beiid. real val-
ued random variables having a density f(z;0) with respect to the Lebesgue measure
~ and assume for simplicity that f(z;8) = f(z~#), i.e., a location family. Sometimes,
the lack of smoothness happens because of a singularity. Such cases are treated in

Chapter VI of IH, and we briefly state the set up.

A point z is called a singularity of order & of the first type (0 < & < 1) for
. the density f(z) if , in a neighbourhood of z, f(z) admits a representation

) o)z - 4% iz >z
)= { gz)lz - 2% ifz <z (2.6)

where the functions p(z) and g(z) are continuous, p(z) + ¢(z) > 0 and there exist a

number A > 1 + o such that asp— 0,7 > 0

[ 19+ ) - 9 @) e - ol
+ f ¢z — 1) - ¢ P @) - 27de = O(P). (2.7)

Here and below [, (or f*) denotes integration over an interval located to the right -

(left) of z where the representation (2.6) is valid, |
A point z is called a singularity of order a of the second type (0 < a < 1) for

the density f(z) if , in a neighbourhood of z, f(z) admits a representation

| k@) expla(@)lz - 2*?), iz <z
/(=) = { h{zx) exp[b(z)|z — 222, ifz> % (28)

where the functions a(z) and b(z) are continuous with at least one of a(z) and b(z)

i8 nonzero, |
2 | | | |
[ lo(e =) - a(@)Pda + [ |b(z +n) - b(a)Pdz = o(lnf**) asn—0  (29)
< :
~and there exist a number X > 1 + a such that as  — 0, we have |

WP —n) - wh@Pa =0  @10)

- A singularity of the third type ig alinos’t same as the first type of singularity
with the only difference being —1 < a < 0. The case a = 0 is a transition phase

~ ‘and corresponds to the case of discontinuous densities.
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The second type singularity appeared in the works of Prakasa Rao (1968) where
incidentally the method of likelihood ratio process was first successfully applied (in
the context of ﬁnding asymptotic distribution of the MLE). Densities with singulari-
ties have also been considered in Woodroofe (1974) and Polfeldt (1970). 'The special
case of the location shift of a lognormal family was considerd by Hill (1963) who
also used this model to analyze a point source epidemic data. The term singularity
and its classification are due to IH.

Suppose f has a finite number of singularities and (1.2) is satisfied. It is shown
in TH that the asymptotic properies of the LRP depends only on the highest order
singularity. If a is the order of the highest order singularity, then an appropriate
normalizing constant is ¢, = n~1/QA+e)  Ramiliar examples correspond to

() f(z) = (1/T(a))e~22% Ix{z > 0}, 1 < a <2 (first type),

(ii) F(z) = Cexp[~alz]|*/?], 0 < a < 1 (second type),

(it1) f(z) = (1/T(a))e =z 1x{z > 0}, 0 < & < 1 (third type).

EXAMPLE 6. MULTIPARAMETER DISCONTINUOUS DENSITIES, Let X, Xy,...

be i.i.d. RF-valued random variables having a density f(z;8) with respect to the
Lebesgue measure where # € @ C R? and the densities are discontinuous in . This
. is a generalization of Example 4 and treated in Rubin (1961) and Ermakov (1977).
Also see Pflug (1982h). Under certain agsumptions, it follows from Ermakov (1977)
that Conditions (IH) are satisfied, Examples of this kind are

(i) U@~ ¢, 0+p), 0 €R, ¢ >0,

(ii) For Q C R?, z € R?, 0 € RY,

wl(Q)7!, ifz—0€0,
f(z; 0) = vollih) _ o
- 0, otherwise,
Cexp[— Yl ai(x; ~ 6)], ifz;>6 Vi
0, | | otherwise,

(iii) flz;0) = {

There is another important type of family of multiparameter discontinuous den-
sities very much different from Examp]e 6. In this case, the density is discontinuous
at some points depending on the first component of the parameter but the family
of densities is smooth in the other '_ccrinponents for every fixed value of the first
component. The whole of Chapter 2 is devoted to the study of such cases. The
case with a singularity in the density at a point depending on the first cdmponenﬁ
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and smoothness of the famﬂy.ﬂf densities as the other components vary is dealt in

Chapter 3.

3 Behaviour of Postefior Distfibution’s

- Conditions (IH) have several implications regarding the asymptotic properties of
Bayes estimates and posterior distributions. The properties of Bayes estimates were
studied in IH which are stated in Appendix B for ready references. In this section,
we study the asymptotic properties of the posterior distributions under Conditions
- Let IT be the class of (possibly improper) prior densities on 8 which are continu-
ous and positive at fp and have a polynomial majorant. For example, Jefirys’ prior
in Example 1 is an element of I1. Let £ be the class of continuous “loss functions”
LR [0, 00) satisfying the following conditions:

(i) (0} =0, I(z) = I(—=z) for all z € RY.

(ii) The sets {z : I(z) < ¢} are convex for all ¢ > 0 and bounded if ¢ is sufficiently
small, | | |
(iii) I(z) < Bo(1 + ||zl|®), = € R? for some By, b > 0.
(iv) There exist numbers Hy,n > 0 such that for all H > Hp,

sup{l(z) : 2z < H”} —inf{i(z) : 2 2 H} < 0.

The class £ of loss functions is sufficiently general to include all loss of the form
I(z) = [|z||’, p > 0. Whenever we talk about posterior distribution and Bayes
estimates, it is implicitly understood that the prior 7 & Il and loss { € £. (Here, by
loss function !, we actually mean that at stage n, the loss function is (! (2 —6p)).)

It can be seen from the proofs of Lemma 1.5.2 and Theorem 1.5.2 of IH that
 the posterior is proper and the set of Bayes estimates is nonempty for all suffi-
" ciently large n almost surely. We shall, for simpli_city, assume that the posterior is
always proper and the set of Bayes estimates is nonempty. It then follows by the
celebrated von Neumann selection theorem that a measurable choice of Bayes esti-
mate is possible (provided the underlying probability is assumed to be compléte).

- However, this is impractical to assume that the Bayes estimate is measurable since

" while computing from the data, we cannot assure that we are following a measur-

.~ able choice. Therefore, we will not work with any measurability restriction and
- allow a completely arbitrary choice. Since the resulting random variables are not
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necessarily measurable, the weak convergence results are interpreted in the sense
of Hoffman-Jgrgessen-Dudley and others (see, e.g., Pollard (1990), Ch. 9). More
specifically, for a sequence of (possibly nonmeasurable) random variables {X,,,},_, we

say that {X,.} has a limiting distribution P (a probability) if

hmmfPr,{X GA}“IlmsupPr*{X € A} = P(A)

=00 n—ioo

for all P-continuity sets A, where Pr, and Pr* stand for the inner and outer proba-
bilities respectively. A similar remark also applies to the MLE.

Set
Zn(u)m (69 + ppu)

1) = fffn Zn(v)n(6y + V)V’
the posterior of the normalized parameter u = @, (8 — fp). We also denote the
posterior probability of a set A by =, (A|X™). |

One important ques tion is the consi stency of posterior distrib utions, i.e., whether
the posterior concentrates in the neighbourhoods of the true para.méter point as
more and more data is collected. More precisely, we have the following definition.

u € Uy,

DEFINITION 3.1, We say that the posterlor i8 (stmngly) conaistentif for any neigh-

bourhood V of by,
| | lim 7, (8 € V|X™) =0 a.s. (3.1)

Fi—00

The posterior is called weakly consistent if
(8 € VIX™) 5 0. (3.2)

REMARK 3.1. Strong and weak consistency of posterior can be viewed as Bayesian

analogues of the strong and weak laws of large numbers respectively.

| One nice consequence of the consistency is that the posterior is asymptotically
free of the prior. Note that Conditions (IH) play no role here. |

THEOREM 3.1. Let 8 be an interior point of 8 and m; and m be two prior
densities which are positive and continuous at 6. If the posterior n1, (0| X™)
and m,(6|X™) are consistent, then

lim [Ima(61X") - 720 (0 X™)|d6 =0 a.s. (3.3)

n—00

If the posteriors are weakly consistent, then

[Iman(01™) ~ man(61X™)]d6 25 0. (3.4)
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Proor. We shall prove only the first assertion; the other being exactly the
same. Let V be any neighbourhood of 8. Given 1 > 0, outside a. null set &N, we can
get no > 1 (depending on the sample sequence) such that

'"'2n(9 -Xﬂ)
‘J‘I‘lﬂ(ﬂ X“)

d6+2m; (3.5}

1

ﬁmﬂ,(em) — o (61X ™)]d6 < fv (61 X™)

this follows from posterior consistency. Let § > 0. Now choose the neighbourhood
V' so that for all 8 € Vand i =1, 2, |

7:(00)(1 — 8) < mi(6) < m(fo)(1 + 6); (3.6)
this is possible by continuity and positivity of m and &rﬁ at 8. Thus

(1 = 6)m:(60)C, < /V (O™ (X" 0)d0 < (1 + 8m(Bo)Cry i=1,2,  (3.7)

where C,, = fi,p"(X"; 8)db.
Clearly, outside the null set N, fori = 1,2,

/V (O (X" 0)d0 fm (0)5™(X™; 0)d

< (=) [ m(0)p"(X";0)do.

I

Using (3.8), for 8 € Vand i = 1,2, we have

(14 6)

(1 —m)(1 - 6)
n X“;ﬂ < s gl X" < n X"’;Q ‘ -
Thus outside the null sei; N and for & € V, we have
(1-86\2 _ ma(8)X™) 1+ 8] '
— ——rrrre— ' *< { — L L
(1 1_7)(1-{-5) ~ mon (B X") <{d-=mn) (1—6) (3.9)

Substituting in (3.5), we get the result since § and 7 are arbitrarily small positive

numbers.

REMARK 3.2. If P is a family of prior densities such that #(6p) > 0 for all 7 € ,
B is equicontinuous at 6y and the posterior consistency is uniform for priors m € 1,

then | .
lim sup{ ﬁﬂl(ﬁlxn)-*?Tg(ﬂX")lda!?Tl:?TZ cP)=0 as.  (3.10)

i—00

REMARK 3.3. Let 8, =8,(X") and T, = T,(X™) be any two sequence of statistics
and let v = 7;1(9 - 5,,,) be the normalized and centered parameter. Denote the
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posterior densities of v for priors m; and g by 7, (v|X™) and 3, (V| X") respectively.
Since L!-distance is invariant under a location and scale change, the conclusion (3.3)

can be restated as

im [jrl (0 X™) ~ 75| X")|dv =0 a.s. (3.11)

n—00

Similarly (3.4) can also be restated.

Posterior consistency is generally true in the finite dimensional situations. See,
in this connection, Diaconis and Freedman (1986) and the references therein, where
- a aubjecti?e interpretation of pusteriof consistency is also discussed. Below, we
show that posterior consistency is always guaranteed under Conditions (IH 1) and

(IH 2).

PROPOSITION 3.1. Assume Conditions (IH 1) and (IH 2) and let w € II. Then
the postertor is weakly consistent. If further Y oo, |lenll® < 00 for some s > 0,

then the posterior ia strongly consistent also (provided it is meaningful).

PrOOF. Let V be a neighbourhood of 6y and let » > 0 be such that the open
ball of radius » around 8 is contained in V. By Lemma 1.5.2 of IH, for any N > 0,

there is a constant Cp such that

8 Hg,;(u)du] < CyrVgll¥ VH> 0. (3.12)
ul|>

Consequently, we have

B0 ¢MX SB[ Gl <O e Vi (313)

The result is now immediate. O

Proposition 3.1 and Theorem 3.1 show that under Conditions (IH 1) and (IH 2),
the posterior distributions stabilize. We now investigate the convergence properties

~of the normalized posterior distributions. Define
£(w) = 2(w)/ [, Z()do

In the following, for any set A & B4, we shall abbreviate [4én(u)du as £,(A) and

- J4€é(u)du as £(A). Note that m,(u € AJX") = £,(A). The fﬂllowing theorem,

actually implicit in Theorem I1.10.2 of IH, shows weak convergence.
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THEOREM 3.2. Assume Conditions (IH) and let = ¢ II. Then for any A € B2,

we have

£n(4) 5 E(A). - (3.14)
PRrRoOF. Fix M > 0 and note, by Theorem A.2 that

' (‘m“"ﬂM x{u = A}‘H'(Q{] + tpnu) Zn(u)du, -ﬁIﬂIIEM ?T(Bu -+ ‘PILU) Zﬂ('ﬂ«) du)

& (frgen Xl € A}2(u)du, fepe Z(u)du), (3.15)
and hence | | .
Juigm x{u € A}n(8o + pnrt)Zn(u)dte 4 Jyu<ne x{u € A} Z(u}du (3.16)
fﬂu"féM (60 + ntt) Znu)du f"u“ <M Z(u)du ‘
- But | |
B J]IHIIE wxX{u € A}n(6p + paut) Zp{u)du
onl ) = ey caa ™00 + e} Zn(u)du (1+7.(8)), (3.17)

where lim Moo (M) = 0 (in probability) and

o e xiu € A}Z(u)du
f(A)_  Jpen Z(u)du

(1+~M)), (3.18)

where 4(M) 2 0 by arguments very similar to those given in IH. An application of
Theorem 1.4.2 of Billingsley (1968, p. 25} now proves the validity of (3.14). O

REMARK 3.4. Let A be a countable subcollection of 8%, Then by a slight mod-
ification of the proof of Theorem 3.2, it follows that for any Ay,...,A. € A, we

“have _
d '
(n(41), ..., &nlA4r)) = (£(A1), ..., E(Ar)). (3.19)
Hence by the weak convergence theory in R, the R¥-valued process (€n(A) : A €
A) converges weakly to the R®-valued process (£(4) : A € A).

Let P donote the space of all absolutely continuous probabilities on RY equipped
with the total variation distance. Then P is isometrically identified with the space |
of all probability densities on R? with the L!-distance. Note that by Lemma A.2, the
processes £, (-) and &() can be viwed as L'-valued random variables. The conclusion
in Remark 3.4 can be substantially strengthened as shown by the following result.

THEOREM 3.3. The process f,,,(-) converges weakly to &(-) in Ll(]Rd).
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PROOF. In view of Remark 3.4, the finite dimensionals of £,(') converge to those
of £(+) and thus we have to verify tightness. In view of Corollary A.l, we have to
verify for some np 2 '1, the quantities given by

(a) .’}|u||5u €n(u + 2) — Enlu)|du

and

(b) .ﬁ|u||>M€ﬂ(“)d“ | |
are arbitrarily small with probability arbitrarily close to one for all ||z < & and

n > ng by choosing 6 sufﬁclently small and M sufficiently large. The second assertion
follows from Lemma 1.5.2 of IH and we now prove the first. For simplicity, assume

that 7 = 1 and note that

/ﬂw €t + z) — £n(u)|du

(fztwd) [ 123+ ) = Zaal| 2+ =) + B
< o [zan ()18 ) = 2 )P 2
2Wdu 1/2
Jgeae (3.20)

- above we have used Gauchy—Schivartz inequality and the elementarary inet:;[ua.lit;jr

(a + b)? < 2(a? +b%). The expression in (3.20) is in turn less than or equal to

)1 12 (0 4 o) — 71200 [2)1/2
<2 g I g B0+ 2) = L@ (a2

The first factor in (3.21) is clearly stochastically bounded. Now

B[ |20+ 0) = 20 )

< R|Z1/2 2) — 7120312 e )1/2
B Jyens PV 4 2) = B
< A(K(L+ (M + 8y™) M2 go/2 | (3.22)

by Condition (IH 1) where A is an abﬂoluﬁe constant, The last expresgion can be
made arbitrarily small, for any fixed M, by choosing § > 0 sufficiently small. Hence
Assertion (a) follows and the proof is complete.

The above results, although theoretically interesting, give only weak limit of
posterior probabilities which has not much r_ﬁl;evance for approximating posterior- |
in practical situations, It is well known that in the regular cases, the posterior
~ centered at the MLE converges to a normal distribution almost surely. This fact
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was first observed by Laplace (1774) and more recently by Bernstein (1917) and
von Mises (1931) and subsequently referred to as the Bernstein-von Mises the-
orem or the Bayesian central limit theorem. A complefse_ proof of thig fact in
case of i.i.d. observations first appeared in Le Cam (1953, 1958). Various modi-
fications and extensions have been made by several authors including Bickel and
Yahav (1969), Walker (1969), Chao (1970), Dawid (1970), Borwanker, Kallianpur
and Prakasa Rao (1971), Heyde and Johnstone (1979), Chen (1985), Sweeting and
Adekola (1987) and Clarke and Barron (1990b). A detailed discussion on the vari-
ous conditions underlying the Bernstein-von Mises theorem can be found in Le Cam
(1970). Refinements of posterior normality are considered in Johnson (1967, 1970),
Ghosh, Sinha and Joshi (1982) and Woodroofe (1992). On the other hand, for a
 class of discontinuous densities, Samanta (1988) obtained a non-normal limit of the

posterior distribution after a suitable centering. This suggests the possibility that
the posterior, after a suitable centering (not necessarily at the MLE) may converge
to a limit (not necessarily a normal distribution} almost surely, or at least in prob-
ability. In the remaining portion of this section, we find necessary and sufficient
conditions for the above convergence. We ghall introduce the notion of a “suitable”
- centering. But before that, we observe a very simple but interesting fact. The resuls
s valid only in the ii.d. case, but Conditions (IH) play no role here.

PRrROPOSITION 3.2, Let X1,Xo,... be i.4.d. random variables taking values in
a standard Borel space (%, A) and has a density f(z;6), # € 8 C R% with
respect to a o-finite measure v on (%, A), Let gﬂ = @:;(Xl,. oy Xp) and fl".,”L =I
Ta(Xy,..., X5) be symmetric functions of Xu,...,X, (which may or may not
_inwolve the true parameter &). Let w be a prior densiﬁy for 8, v="T.1(6 ~ a,)
and A € B? be fixed. Let e(X) be a random variable on (X%, A®) such that

(v € AIX™ B o(X), (3.23)

where X stands for the infinite sequence (X1,Xz,...). Then ¢(X) is almost .
- surely constant.

PROOF. The posterior density of v is

(B + To) TTiny f(Xs3 80 + Tov)

Ta(U] X™) = sl .
| f 7"(9?1 + an) ?.—.—.—.1 f (Xi; 0, + fl‘,.,.w)dw
“This is a symmetric function of Xj,...,X, and hence so is m,(v € Al X™) =

Sam(v|X™dv. Thus ¢(X) is measurable with respect to the symmetric o-field
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and hence the result follows by an application of the Hewitt-Savage zero-one law.

Often it is true that Ty =+ ¥ where ¥ is a positive definite matrix. In that

case, one may assume that T}, = ;1.

DEFINITION 3.2. An R%valued random variable 0, = @;(X "), is called a proper
centering if for all A € B?, there exists a non-random quantity Q(A) such that

sup{|ma(¢:1(8 - 8,) € AJX™) ~ Q(A)|: A € B} 5 0. (3.24)
If for each A € BY, there is a constant Q(A) such that
Tn(ipn (6 - 6,) € A)X") 5 Q(A), (3.25)

we say that 5,,, I8 8 semeproper centering.
A statistic 8, is called compatible (with the posterior) if the random element
(1B, 0p), £4()) in R x LI(R?) is weakly convergent.

REMARK 3.5. If (3.24) is satisfied, it automatically follows that @ is an absolutely
- continuous countably additive probability, and if (3.25) holds, then @ is a finitely
© additive probability. Although the motivation for a constant limit comes from
Proposition 3.2, the concepts and the fdllﬂwing results are certainly not resticted to

the i.i.d. case.

REMARK 3.6. In view of Remark 3.3, if any of the above statements in Definition
3.2 holds for some prior 7 € II, then under the assumption of posterior consistency,

it holds for any other prior in II.

~ PROPOSITION 3 3. Let 8, be a proper centering such that W, := o (9 ~ 8p)
converges to a random variable W. Then for any countable subcollection A of

- B%, the R®-valued process {m,(;; (0 — 6) € A|X™): A€ A} converges weakly
to the process {Q(A - W) : A € A}.

PRrROOF, By the weak convergence theory in R®, it is endugh to prove the result

for a finite collection {A,..., A:}. Since Q is absolutely continuous, the mapping

2o (QA1~2), .., Q4 — )

15 continuous by Lemma A.1, and hence
(QUA1 ~Wa),..., QAr - Wi)) 5 (Q(A1 — W),...,Q(4, — W)).  (3.26)
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- Errata

Equation (3,27), Chapter 1, page 25, should be corrected as

e (03 (0~ ) € A7) - Q= W)l
< 5111-"{'7":1(5"1;](0 an) & A |Xﬂ) - Q(A)l}i
| _w1th the same numbermg as befﬂre (1 e, (3. 27)) ) | |

- In the proofs of Plopﬁmtmn 3.6 and Thﬁnrem 5 1 of Chapter 1 , pages 28 and .37
' respectively, the definition of 4,,(+) is missing. It should be deﬁned as

1.0,,,(3). = Ad l(-‘-_* "'_‘. u)E,;(ﬂ)du.



Also, o
max |m(s (0 — Bo) € A} X™) — Q(A))]

< sup{lez'(0— 00) € AIX™) - QAN (3.27)

which goes to zero in probability. By Slutsky’s theorem, the result now follows.

PROPOSITION 3.4. Assume Conditions (IH) and let @; be a proper centering.

Then ¢, 1(5,; — Bp) is weakly convergend.

PrROOF. We first show that W,, := @, 1(5; — &) is stochastically bounded. If
not, there exist € > 0 such that for any A > 0, there is a subsequence {m} of {n}

for which _ J
'P{HW- | > A}'> e Ym. - (3.28)

~Put u = (0~ 6) e.ndv—-(pﬂl(ﬂ 8,). Then
n AlX" z/ | du. : : 3.29
(v € AJX™) W én(u) (3.29)

Fix a bounded set A and positive numbers € and §. Using Lemma 1.5.2 of IH,

find M large enough so that ji[“"} 2 &n(u)du, uniformly in n 2 np (say), is less than
g with probability greater than 1 — 6. Cheese A>0 lerge enough so that |[z|| > A

:_ ﬁ_1mp11ee
| A+zC {u | >M} (3.30)
Combining (3.28) to (3.30) and using the definition of proper centering, it follows
that we must have Q(A) = 0. Clea.r]y, this cannot be true for every bounded set

and hence {W,,} is tight. |
- If W and W' are two subsequential limlte of {W,}, then by Prepee1tlen 3.3, we

 have

Q(A W) £ Q(A-W') VAe B (3.31)

.An apphcat.len of Lemma A.3 makes the proof complete, 00

Now we are in a positien te prove one of our main results,

THEOREM 3.4. Assume Conditions (IH). If a pmper centemng 8, exists, then
there extsts a random variable W such that |

0! (B — 00) S W o (339)
and for .ﬂlﬂioat allué]&d, | . - - e
(u-W) is non-random. (333
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Proor. In view of Proposition 3.4, such a W exists. Fix a countable field A

which generates B¢. By Lemma A.2, {(') = {Q(A ~ W) : A € B%} is an M(Q)-
valued random variable where J(Q) stands for the set of all shifts of €. Using

'Remark 3.4 and Proposition 3.3, _
((A): Ac A) £ (QUA~W): AeA) (3.34)

and hence &(-) £ ¢(). .
Since P{¢() € M(Q)} = 1, we also have P{{(:) € Mm(Q)} = 1. Define % :

M(Q) — R* by ¥(Q,) = 2 where Q,(A4) = Q(A+z) VA€ B¢, By Lemma A.3, we
“thus. have | | _ |

_ (6 9(€) £ (& %(0) = (& W) - (3.35)
since ¥(¢) = W by definition, Put W* = (£} and note that Wt W, By Lemma

‘A.1, we have -
[ twand [ wdu=Qa)
A+

and so

/A Eu—Widu=Q(A) as. (3.36)

The conclusion is now immediate.

The next result shows that a proper centering, if exists, is essentially unique,

PROPOSITION 3.5, Agsume Conditions (IH) aend let @;,, and 5,1 be two proper
centerings. Then the associated probabilities and weak limits are shifts of

each other.

-~ PROOF. Let @1, @2 denote the associated probabilities and W1, W, denote
the weak limits of {:4(6,, — o)} and [1(8 — 8y)} respectively (which exist by
Pmpasition 3.4). By Proposition 3.3, it follows that the P-valued random process
{Q1(A—W1) : A € B%} has the same distribution as {Q2(4 — W3) : A € B%}. Hence
it folows that Qg is a shift of Qy, say Q2(4) = Q1(A+c) VA € B%, Using arguments
similar to those in Theorem 3.4, it follows that W> d Wi +ec.

We now give a partial answer to the question whether a semiproper centering

exists,

-:'_THEOREM 3.5. Assume Conditions (IH) and mppase that 5;1 18 a 1compatiblﬂ
“and semiproper centering with associated finitely additive probability Q. Then
Q is countably additive and there exist a random variable W satisfying .
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(a) 97 (B~ 00) S W
and
(b) &(u —- W) is non-random for almost all u € RY.

FPurther, if 9, i3 another compattble semiproper centering with associated
probability Q' and weak limit W', then @ and W' are shifts of Q@ and W

regpectively.
ProoF. Let (0:1(6, — 6o), £()) LA (W;¢(:)). By Lemma A.1, we obtain
(a7 @~ B) € AX™) s A€ BY S ([ fwduzAe By (3)
By given condition, for any A € B?
E(u)du = Q(A) - (3.38)
+W
and consequently
(w070 - 9 ) € AJX™): A€ BY) S (Q(A) 1 Ae BY). (3.39)

- Since the right hand side of (3.39_) is non-random, we have a convergence in proba-
bility and so 8, is in fact a proper centering. Thus the result follws from Theorem

3.4 or by direct arguments as before.

REMARK 3.7. When Condition (3.33) in Theorem 3.4 is fulfilled, it is normally easy

to exhibit a random variable W satisfying the requirement. But when (3.33) fails, it
is relatively more difficult to show non-existence of such a W, A direct application
of Theorem 3.4 thus may not be convenient. We present two alternative methods

of checklng non-existence. Let Y{u) = log Z(u). Then (3.33) is equivalent to saying
that for a]mnat all uy,us € RY,

Yy — W) — Y(ug — W) is non-random. - (3.40)

Also, if £(t) denotes the Fourier transform of the (random) L!-function £(w),
then by Theorem 3.3, a (further) necesaary condltion for the existence of posterior

limit is | |
RO non-random S (3 41)

To show the non-existence of posterior limit, (3.40) and (3 41) may be easier
to apply. Pa,rtlcularly, since the the last condltlon does not involve any unknown
random variable, it is sometlmes easmr to check whether already (3.41) fa.lls It
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is to be expected that (3.33) is more likely to fail if the limiting LRP is more
complicated. We however should admit that we have not been able to conclude the
existence or non-existence in every possible nonregular cases. Fortunately for most
of the important cases arising in practice, we have an answer. (See the next section
for this.) Finally, even if a posterior limit does not exist, useful approximations may
still be obtained. For example, Theorem 3.1 says that we can do our computations

with respect to any convenient choice of prior if sample size is large enough.

Now it is natural to ask whether (3.33) is also sufficient to imply the posterior
convergence. We see that this is indeed so, as shown by the following theorem.

THEOREM 3.6. Assume Conditions (IH) and suppose that there exisis a ran-
dom variable W such that for almost all u € R%, {(u— W) 4s non-random. Let
l € £ and suppose that the random function

Wls) = [ Ko - u)g(u)d

attains its absolute minimum at a unique point . Then the Bayes estimate
with respect to loss | works as a compatible proper centering, i.e., (tp;l(gn—
80), €n(*)) converges weakly (to (r,£(")) in R? x LYR?)) and

sup{|m(p (6~ ) € AIX™) = Q(A)] : 4 € A} 50
for some probability measure Q on RS,

Let 8, be a Bayes estimate with respect to a loss £ and prior 7 € II. Because of
Remark 3.6, it is sufficient to consider the posterior with respect to the same prior
. We first establish the following result which also of some independent interest.

- PROPOSITION 3.6. Any Bayes esta;mate:_is coﬁpat*i_ble. |
PROOF. We have to show that | | |
' | SRV R ..d-' S o |
(9" 1(9!'1 _90)151'1(')) = (1,€(1)), | o '(3'42) !

where 7 is as in Theorem 3.6. By the argu,ments for the proof of Theorem 1.10. 2 of
IH, it suf'ices tu show that for all M > 0 in the Apace Cl-M, M]d X Ll(]Rd)

M, () ((IM) o : _--_(.3.43_) o
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where 1, (-|M) and 9(-]M) stand for the restrictions of ¥y (:) and Y(+) respectively
on [—M, M)°. From Theorems 1.10.2 of IH and Theorem 3.3 respectively, we know

that {,(:[M)} and {£,(-)} are tight; hence it suffices to verify the finite dimensional
s, €R%and Ay,..., 4 € B¢, We have to show that

convergences. Let s81,...,

(ann('gl)*: veay ¢Tl(3m)i ETI(-AI)! v :EH(AJ:))
("lb(sl)s ' l¢(3m)1£(Al)i"'16(Ak))' (3'44)

This is an easy conﬂeqﬁence of Theorem A.2 by the arguments used in Theorem

' 1.10.2 of IH and Theorem 3.2. O

ProoF OF THEOREM 3.6. By the given condition,
€(u) = g(u+ W), -~ (3.45)

~ where g is a fixed probability density. Let ¢ be the unique minimizer of [I(s —
- w)g(u)du. Then r = W+ ¢ and hence, without loss of generality, we can assume
that W = 7. The posterior density of v := ;" (8 - §ﬂ) given by

ma(UX") = ba(v = Ta),  (346)
where 1',,,, = 7 1(8, - 9;;;). By (3.42) and Lemma A.1, in the space L}(R?), we have
(m (0] X"} 1w € Iﬁd) LA (g(v): v € Rd). | (3.47)

The result is now hnmediate since g(-) is a non-random element. O

- We illustrate the usefulness of Theorem 3.6 by means of a simple example. Let
X1, X2,... be a sequence of independent random variables with X, ~ N(§, 02),
n=12,... with o, known and ¥°°, 672 = co. Then by results of Section 11.3.1
and I11.4.1 of IH (or by straightforward computations}, Conditions (IH) are satisfied
with @, = (s 07?)/? and Z(u) = exp[uA - (1/2)u?] where A ~ N(0,1). Let
7 € 1l and 8, be a Bayes estimate. Thus the canditiﬂn'given by (3.33) is satisfied
with W= A, Hence by Theorem 3.6, it follows that with v = ;18 - 6,)

sup(ma(v € 41X") - Q(4)|: 4 € B} B0

:f;where Q is the N(0, 1) prabablllty In other wurds, we get a version of the Bernstein-
vun Mises theorem in this independent nonhamogeneous case. For a slightly differnt

- version, see Section 5.
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The above obtained pc':steriﬂr limit theorem may not be fully satisfactory to a
Bayesian because the convergence is in probability sense, while a Bayesian will like
to know whether the posterior convergence holds for a given sequeénce of sample
obsevations, In this context, let us observe the following simple fact, which is an

easy consequence of Hewitt-Savage zero-one law,

ZERO-ONE LAW FOR POSTERIOR LiMrIT. Let Xi, Xo, ... be t.t.d. observations
and 0, = ﬁn(Xl,,..,Xn) be symmetric in its arguments. Then the set of all

aamples for which

sup{|mn(; (0 — 8,) € A) - Q(A)|: A € Bd} —0
has probability zero or one.

If (3.24) holds, there is no a priori reason that the corresponding almost sure
convergence will happen. However, still we do not know of any example where

(3.24) holds but the corresponding almost sure result fails.

4 Investigation of Posterior Convergence in Examples

" In this section, we apply the criterion (3.33) to investigate whether a posterior

: convergence holds for the examples mentioned in Section 2.

(1) “REGULAR" CASES, In all the cases of Examples 1, 2, 3 and the examples
mentioned after Example 2, the limiting LRP Z(u) is of the form

Z(0) = expl/'A — (1/Duw/Se), (4.1)

where ¥ is a constant positive definite matrix and A ~ N4(0,%). It is clear that
(3.33) is satisfied with W = 2~"A, Consequently, Theorem 3.6 implies a posterior
~ convergence with Bayes estimate as a proper centering and Ng(0,X~') as the limit. -
This fact i8 quite well known in the i.i.d. case (Exarriple 1) and known as (a in
probability version of) the Bernstein-von Mises theorem. It has also been estab-
lished for for many stochastic processes (see Section 3 for the relevant references).

For a different version, see also Section 5.

(2) ONE-PARAMETER DISCONTINUOUS DENSITIES. In the set up of Example 4,
et . T L T S TR
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[t = {1§_Z_k_<_,1*:'qk=0,a‘}‘>0}U{15k5r:pk=0,a‘j¢<U},
[ = {ISkﬁr:pk=0,a},>O}U{likﬁr:qk=0,afkl<0}
and ¢ = Y% _; (pr—qr)a). The limiting LRP and hence the possibility of the existence

of a posterior limit depends on the nature of the jumps. Let v1,...,%, P1,..., Py be

independent, unit rate homogeneous Poisson processes and for k= 1,...,7, define

JF = u;,(pkajgu), if ;. > 0,
vi(—araju), if a <0,

ifu>0,vf(u)=0ifu<0and

S Ue(—qraju), if aj, > 0,
g Ur(pra ), if a < 0,

if u <0, vi(u)=0ifu>0
The limiting LRP Z(u) is given by

2u) = expluc-+ 3 sign(ual) log(ae/pa) (@) + g (w)}  (4.2)
k=1 | ) |

(see Theorem V2.1 of IH}. Below, we consider several important cagses.
CASE 1. Assume that I' is empty, i.e., there is no positive to positive jump.

SUBCASE 1(a). Suppose both I'* and I"™ are nonempty. In this case, Z(u) can

be written more simpiy as

Z(u) = expleu], if — 1"" <u<T, I 4.3)
0, otherwise,

where 77 and 7 are independent, exponential random variables with parameters

= ) ker-(qr — pr)a;, and B:= Y icp+(Pk — qk) @), respectively. Note that ¢ = 8- a.
If ¢ = 0, we have | |

TR
E(u):{(T +77Y, i -1 <u<rt (4.4

0, otherwise,

Had £(-) been of the form (3.33), the length of the support (i.e., where () > 0)
would h_ave been constant. This is clearly not so for (4.4), and hence there canot
be any posterior convergence. An example of this kind is U(6,8 4+ 1), § € R.
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If ¢ # 0, we have

| cexpleu]/(expfer™] — explerT]), if ~77 <u< 7™,
Sl = { 0, otherwise. (45)

Again, by the same argument, (3.33) is not satisfied and consequently there is
no posterior limit. An example of this kind is U(6,26), & > 0.

SuBcASE 1(b). Suppose one of I'™ and I'" is empty, say I'™ = 0. Here Z(u) is
simplified to | |

| explew), ifu< 7t
VA = 4.6
() { 0, otherwise, ( | )
and 8o | |
cexple(u — %), if u <7, ”
() = { pleu—r), ifu<s e
0, otherwise,

where 7 is exponential with parameter c. (Note that in this case, ¢ =8> 0.) It -
is clear that (3.33) is satisfied with W = 7 and consequently we have a posterior
limit, | |
| Indeed, a limit has been obtained in Samanta (1988) for a special case of Subcase
- 1(b), where the support of the density is an interval which is either increasing or
- decreasing in 6. Samanta (1988) assumed conditions aimilaf to those in Weiss and
Wolfowitz (1974, Ch. 5) and a uniform integrability type condition on log f and
obtained an exponential limit in an almost sure sense, In this situations, there
exists a statistic 7}, such that the set {(z1,...,2.) : f(zi;8) > 0 for all i} can be |
ekpreased as {T,(z1,...,2,) > 0} or {Tu(z1,...,25) <6} according as the support
is increasing or decreasing in 8. This T, works as a proper centering, Important |
examples of this kind are shifts of exponential density, U(0,0), & >0 etc. | |

CASE 2. The set I is nonempty but both I't and I'” are empty.
We consider only the case r = 1 and @] > 0. In this case, we have c = (p1 — 1)} '

and

explcu — '_"ﬁ(ﬂu) log(?l/Pl)]g'. lf u< 0, |

2 - { expleu + v(u) log(a1/m)],  ifu20, g
where v(u) and 'r'/'(u) are homogeneous Poisson prpcess&ﬂ with rates pia] and qia}

respectively. We shall show that posterior convergence does not hold by showing

that (3.41) is violated. Let 5_--4 log(qi/p1 ), 0 =T ST < fg <...be the quurénr:_e
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times of ¥(*) and 0 =% < 7 € T2 £... be the occurence times of ¥(:). Thus we

have

Z(u) = explcu + 53, ff T f U < Tipl, i (4.9)
explcu — 6f], if — T <u < -7 |
Now
/Z(u)du = f Hwdu+ | Zw)du
| {u>0} {u<l}
O T oQ =T
= Ze‘sj] d e“du 4 Ze"ﬁjjt{ e“du
j:'o Ty j=0 =Tl
oo 0Q ~ e
= Y (e ~ o) + Y e (e — e )} (410
7=0 j=0
Similarly

./.eﬁ“Z(u) du

. |
= (c+it)7{)_e¥(exp[(c +it)7i1] — exp{(e + it)r])
=0 | |
o ' ' ' : -
-+ e expl~(e+it)F] — exp[—(c+it)Tja])}.
S |
. o . '
= (¢4 i)~} {Z e% (e (cog trie1 +isintriyn)
j=0
— e (cos tr; +isintry))
m | ]
+ Y e~% (e (cos tF; — 18in t7;)
j=0 | |

- e—“?f“(coa t7; — isint7;))}. | . (4.11)
Hence we have | |
&t = (c/(c +it) N(t)/ D(t),
where N(t) equals ' -
Z 2 Cilan (cosiTjyy +isin trﬂ.l) - e“i(cos 7 + _iéir’i tr;))
=0 |

+ Z e~% (e~ (costT; — i sin t¥;) — e (cos tTyy) — i8in 7))
I~

= {2, (™ contrina ~ €7 costy)
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o0 ot it .
+3 e~ % (e cos t7; — " cos t7i11)}
j=0 '

s #]
+i{) e’7(e“M sintripy — €™ sinty)

j=0
o0 . ot Pt
-4~ Z e % (e~ gin {41 — e “"4 sin t?j)}
=0 |
= R(t)+il(t) (say) (4.12)
~ and o o
D(t) = Y e%(e — ) + Y e (e™T — ™), (4.13)
=0 =0 |

To show that the function |£(t)|? is not non-random, it is enough to show that

‘the random variable [£(1)|? is nondegenerate, i.e.,
(R%(1) + I*(1))/D*(1) is nondegenerate. - {4.14)

If (4.14) is not true, any conditional distribution is also degenerate, We condition
on every random variable except 71, which we denote by z. Letting English letters
(with or without subscript) to denote constants with respect to the conditional

distribution, we have

(R*(1) + I*(1))/ D*(1)
(e= cosz — e®t= cos x + ay)? + (e sinz — e+ sinz + a;)?
(e — efteEp 4 q)2 |
(e cosz + by )? + (e sinz + by)?
- (e +6)%
2 4 2¢°%(by cos = + by sinz) + (b} + b5) ) {4 15)
 e2% 4 2be + B2 o '

It is easy to see that z is uniformly distributed over (0,7;) with respect to the

‘conditional distribution. If (4.15) is degenerate at A (say), then for all z € (0,73),

iy
L

e 4 26 (by cosz + by sinz) + (62 + b3) = A(e*™ + 2be™ + b?).  (4.16)
- The identity in (4.16) can be written a.s .
 Ae*® 4 Age™ + Aze®sin(z + a) + A, =0 o (4.17)

for all z € (0,72). This forces Ay = Ay =Ay = A4 =0 by the linear. indepéﬁt_:l_ence_
of the involved functions. But A; =1~ A and Az = —Ab forces b = 0,and so ¢ = 0.



It is obvious that @ > 0 unless 73 = 13 = +»» and 0 = 7| = T2 = -+ both happen.

The last event has probability zero and so (4.14) is proved.

An important example of this kind is the change point problem

a exp|—ax|, f0<z<é,
fz;8) = p-az] .
bexp[—ad — b(z — G)], ifz >4,

where a > b > 0 are known constants and 0 < 6 < B (a known bound) is the
parameter of interest. See, in this connection, Basu, Ghosh and Joshi (1988) and

Ghosh, Joshi and Mukhopadhyay (1992a, b).

(3) DENSITY WITH SINGULARITIES. We consider the question of existence of a

- posterior limit for the set up given in Example 5. We consider a density with only

one first or third type singularity at the point z = 0 satisfying ¢ = ¢(0) = 0 and
p = p(0) > 0. (The case p =0 and ¢ > 0 is exactly similar. The case treated here,

althogh very special, is perhaps the most important one from a practical point of

view.) In this case, we have Z(u) = exp[Y(u)],

&fﬁm log |1 — u/z|(v(dz) — Er{dz))

p [P(1 = w/z|® — 1 — alog|l — o
vy = | PIL - w/af ~ 1 - alog L - u/sl)a%dz a1
+(p/(1 + a))ulte, ifu>m

where v is a nonhomogeneous Poisson process with rate function A(z) = pz® and 7is
the first occurence time of 1/ (see Theorems V1.2,1 and V1.2.2 of IH). We shall show

- that a posterior limit does not exist by showing that (3.40) is violated. Suppose,
if possible, (3.40) holds with a random variable W, Fix any uy > u; and note that
Y(uy - W) —-Y{uy — W) is well defined and different from —oo on the set {(WHr <y}
If (3.40) holds, it must be true that the set {W -+ < u;} is a non-random set. By
considering different u;, it-is easy to see that then W+ 7 must be constant, say

W = ¢ — 7. Choose ug > u; > ¢ and put u] = u; — ¢, 4y = uz — ¢. Thus
Y(ﬂl -—W)'—-_Y(ug—-—W)

Y(uy +7) ~ Y{upg + 1) N
~ap [ log|1 — (s +7)/z| = log |1 = (u} + 7)/al|a"de

I

(.

A .
“‘P/ﬂ [9(‘”4'1 + rz) — g(ufg + 7, z)|x%dz
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+(p/(L+e))[(uy + )%~ (g +7)°
+afr log |1 — (] + 7)/z| — log|1 — (ug + 7)/z||{de), (4.19)

where |
glu, z) = |1 —u/z|* =1 —alog|l — u/z]

and

Hdz) = v(ds) — Ev(dz).

Clearly the first three terms are functions of 7 only. If ¥Y{u; — W) — Y(ug — W) is
non-random, then the conditional distribution of ¥{u; — W) — Y{ug — W) given 7 is

also degenerate. Therefore, |
[ Tog 1~ (us +7)/al ~ log]t = (u + 7)/ol]{da)
_,,

= [ 1ogl(@ ~ )/ (= - vh)la(a)

has a degenerate conditional distribution given 7 ; here

B(dz) = p(de) — Ep(dz)

and
p(dz) = T+ da).

However, given 7, i is again a nonhomogeneous Poisson process with rate function
p(z +'7)%. Thus the conditional variance of fy” log|(z — uy)/(z — uh)|A(dz) is

p [ log? (2 — 1)/ (s — (e + )%z > O

This contradiction implies the nonexistence of a posterior limit, |

Important examples of this kind are gamma density

a) = { (1/T(@))e*z", itz 20,

0, | otherwise,
and the Weibull density

g* lexp(~2*], ifz2>0
f(ﬂ:) e Qv xp[ ].l — ‘3
| | 0, otherwise,

where0<cn<2,a%1*
Another example is provided by the beta density

/) _ | (1/B@, )z 1 - =), 0Lz <,
| 0, B otherwise,

:wm$0<b<a<§.



5 Some Further Properties of the MILE

The asymptotic properties of the MLE are treated in Sections 1.5 and 1.10 of IH and
~ are also stated in Appendix B for convenience. In this section, we prove some further

related properties. Let Condition (IH 1) be replaced by the following condition:

(IH 1)’ There exist numbers m 2> a > d such that
d
B Z/™ (u) ~ Z,/™ (@)™ < ] Pol(Ry)|lw - ||®
i=1

for all u;v € U, with |u, |luil L R4 =1,...,4d.

Henceforth Conditions (IH 1), (IH 2) and (IH 3) together will be referred to as
Conditions (IH)'. We use the notation 8, for the MLE, For verification of Conditions

(IH)" in the i.i.d. case, we can take the convenient choice m = « = 2 if the
dimension d = 1. However for d > 2, this choice is not permissible, In the case
- when densities are smooth, a sufficient condition is given in Theorem I1I[.3.2 of

[H. Also, the restriction that the sample paths of the LRP and limiting LRP are
continuous somewhat reduces the applicability of the above two theorems, For
example, in case of Example 4, a different method was adopted in IH (Sec. V.3) for

the treatment of the MLE,

I

If Conditions (IH)" hold instead of Conditions (IH}, it is not difficult to see that
all the results on Bayes estimates and posterior distribution go through. But we

can actually claim a stronger fact.

. THEOREM 5.1. Assume Conditions (IH). Let Z,(-) and Z(\) have continuous
sample paths and Z() attaing its maximum at a unique point W, Suppose fur-
ther the random function (8) = [i(s — u)é(u)du attains its absolute mindmum

at a unique point . Then as n— oo,

(!P;'l‘(gﬂ — 90)1 ‘Pf:l(g'“ 9‘3)) 'i (ﬂs T)* (5'1)

PROOF. Let C[-M, M) be the space of all continuous functions on [—M, M)¢
~and for any function f(:) on R?, let f(-|M) denote the restriction of f(:) on [ M, M}¢,
- By arguments of Theorems 1.10.1 and 1.10.2 of IH, it is enough to show that as

random elements in C[—M, M]® x C[-M, M4,
(Za(1M), 9 1M)) S (ZC100), (| M)). (5.2)
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~ Since tightness has already been verified, 1t only remains to prove the convergence
of finite dimensional distributions. But this clearly follows from Theorem A.2.

" Theorem 5.1 has a very useful consequence which occurs in the LAN, LAMN
and the LAQ situations (see Le Cam (1986) and Le Cam and Yang (1990) for

~ definitions).

COROLLARY 5.1. Assume conditions of Theorem 5.1 and suppose further the
lmiting LRP is of the form

Z(u) = exp[u‘l'ﬁ ~ (1/2)u'Sul, I (5.3)

‘where A i3 a random vector and ¥ is an almost surely positive definile random

- matriz. Then
| ‘Pgl (gn - é;l) 5 0. | (5'4)

In .other words, MLE and Bayes estimates are asymptotically equivalent,

ProoOFr. By Theorem 5.1,
'P;l(a:u ~8,) S 11 (5:5)

If (5.3) is satisfied, Anderson’s Lemma (see, e.g., Section I1.10 of IH) implies that
r=8=Y5"1A, and hence (5.4) is satisfied, D

Let us consider now the special situation where both hypotheses of Theorem 5.1
' and the LAN condition are satisfied. In this case, ¥ is a non-random matrix and
A is distributed as N(0,X). Then (3.33) holds and hence we can have a limit of
the posterior with Bayes estimate as a proper centering, By Corollary 5.1, one can
‘now replace the Bayes estimate by the MLE. Moreover, the limit of the posterior
is N4(0,£71). The same conclusion can be reached by a more direct route. By
arguments similar to those in Theorem 5.1, one can show that MLE is compatible
and then one gets the result by following the proof of Theorem 3.86. Thus we obtain
an in probability version of the well known Bernstein-von Mises Theorem in a mach
. ‘more general setting. | | '
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- where

6 Convergence of Experiments, Efficiency and Asymp-

totic Independence

: The set up of IH has some connection with the theory of convergence of statistical

experiments. Let

| A={ueck?: BEZ(u) =1). | (6.1)
Then by Le Cam's First Lemma (see, e.g., Hajek and Sidak (1967, p. 202)),
{P§ ..} I8 contiguous to {Fj} whenever u € A. By Proposition 11.2.3 of Millar
- (1983), the experiment {Fj, , , : u € A} converges to the experiment {Q. P € A},

QuA) = [ Zuw)Qu@) 62)

and (%, A4, Qo) is the probability space where the limiting LRP {Z(u) : u € R%} is
defined. Note that A is always nonempty as 0 € A, In those cases where A is of

a “nice” form, one may obtain some further asymptotic results. For example, in
the regular case, A = R¢ and a convolution theorem and a lower bound to the local
asymptotic minimax rigk can be obtained. (See Le Cam (1986) or Millar (1983)). If
~we have a class of discontinuous densities with increasing (or decreasing) support,
then A = [0, 00) (or (—00,0]). In this case, similar results has been obtained in IH
(ch. V) using a different approach, and also by Samanta (1988a) using the limiting

experiment approach.

A desirable property of estimates is regularity in the sense of Hajek (1970).
- Under conditions of respective theorems, both MLE and Bayes esttmates are
 regular if some further mild conditions are satisfied, Indeed, if the mapping 6 ——

L((9)[6) is continuous, using uniform convergence on compacts (of course, we have

to assume uniform version of Conditions (IH)), for any u € RY,

lim £(¢;" (B — 0 — ont)| Plyyp) = L@ERNG).  (6.3)

n—+00

Similarly, if the mapping 8 — .C(’I"(BNPg) is continuous, then the Bayes estimate
is regular, In some situations, the regularity property can be used to derive a
convolution theorem in the lines of Theorem II1.2.10 of Millar {1983).

Asymptotic efficiency of a sequence of estimators 8,, was defined in IH as follows.

DEFINITION 6.1, Let [ be a loss function. A sequence of estimators g, is said to
- be asymptutimlly-eﬁicient in K C @ if for any nonempty open set U C K, the
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following relation holds:

lim [lnfsup Eal(ip (T, - 6)) ~ sup Egl(0 (8, — 0))] = (6.4) -

-0 T“ ﬂe

The estimator 9, is called asymptotically efficient at 6y € O if

Jim lim mf[mf sup Eel(e T, —0)) ~ sup Eyl(y, 1@, —0))]=0  (6.5)
6—0 N~ "Iy 19_gyj<6 | 0-bg|<6

Here, the infima in (6.4) and (6.5) are taken over all estimators 7, of 6.

| It is to be noted that asymptotic efficiency in K implieﬂ asymptotic efficiency
at any interior point & € K, Asymptotic efficiency at all points is also known as

local asymptotic minimazity.
As mentioned in IH, in order to prove asymptotm efficiency of an estimator Qn,

it is sufficient to show that uniformly in U C K, the limit

lim Eyl(s;1(8, — 6)) = L(6) (6.6)

N0

exists and then to prove that for any estimator 7, and any nonempty open set

| lim inf sup Egl(w;}(Tn — 0)) > sup L(H) | (6.7)

W00 gelr
In view of Theorem 1.9.1 and Theorem 1,10.2 of IH, a Bayes estimate is asymp-

totically efficient under a quite general situation stated below.

THEOREM 6.1. (IBRAGIMOV AND HAS'MINSKII). Assume Conditions (IH) hold
uniformly tn compact subsets of © and the random function y(s) = [is —
u)ép(u)du attains its minimum at a unigue point 7(6). Let 8, be a Bayes
“estimate with respect to the loss funclion | € £ and prior densitg} w € IL
Then 0, is asymptotically efficient in any compact subset K of © provided the
mapping 6 EZ(T(B)) z‘s continuous. "

Thus in nﬂnregular cases, Bayes estimates deserve special attentlnn since they

are always efficient while the MLE is not go.

In some important cases, the para.meter d can be naturally split into two parts,
say 9 = (9, 0) and the limiting likelihood. ratm at the nnrmahzed pa.rameter (u, V)

is of the form . | -
Z(u,v) = Z(U(u)z(?)(v), o (8.8)
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 where the processes Z(U(u) and Z(®(v) are independent. In this case, we have

several important phenomena.

(a) The weak limit of the posterior probability density of (u, v) is of the product
form with probability one, Moreover, the two (random) factors are stochastically
‘independent.

_- (b) The LRP Z(-) satisfies the criterion for posterior limit if and only if both
- ZU(.) and Z(@(.), viewed as the limiting LRP for 1 and v respectively, satisfies the
criterion. In this case, the (non-random) limit of the posterior probabilities of the

. normalized and centered paramters are of the product form.

() If the loss function I is of the form l(x,y) = li(z) + la(y) and conditions of

" Theorem 1.10.2 of IH are satisfied, then the asymptotic dlstrlbutl.on of the nomalized

* Bayes estimates of 1 and ¢ are of the praduct type. |
(d) If the conditions of Theorem 1.10.1 of IH are satisfied, then the asymptotic

distribution of the normalized MLE of 4 and ¢ are of product type.
(e) If A defined in (6.1) is of the form A = A; X Ag, then the limiting experiment

defined by (6.2) is product of two experiments {Q&l) :u € Ay} and {Q?) v € Agl,
where Q) and Q¥ are obtained from Z()(-) and Z()(.) respectively by (6.2).
In view of (), (b), (c), (d) and (e), in such a situation, we may say that the
" estimation problems of ¥ and o are asymptotically z’ndépendem. The cases dealt

:in Chapters 2 and 3 are of this type.
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Chapter 2
‘Multiparameter Densities with Discontinuities

1 Introduction

We consider i.i.d. observations with a common density on R. The estimation prob-
lem for a family of nonregular cases with discontinuous densities involving a single
parameter () was considered in Chapter V of IH. This case was also considered by
Pliug (1982a) and earlier by Chernoff and Rubin (1956). IH studied the proper-
"Itles of the likelihood ratio process (LRP) and using these obtained the asymptotic
propertms of the Bayes estimates using their general results, They also studied
‘the properties of the maximum likelihood estimate (MLE) in this context. Such
a method of investigation was also used earlier by Rubin (1961) and Prakasa Rao
.(1968). Rubin (1961), Ermakov (1977) and Pflug (1982b) considered the problem
of estimation for multiparameter family of discontinuous densities exhibiting non-
regﬁlarity in each of the parameters.
~ There are, hﬂwever, many important exa.mples of multiparameter family of den-
Eltles where in addltmn to the nonregular parameter 6, there is also a vector of
_para.meters o with respect to which the problem is regular (with 8 being fixed). For
important examples of this kind see, for example, Smith (1985) and Cheng and Iles
.(1987). Several classes of examples are also presented in Section 2 of this chapter.
Smith (1985) and Cheng and Iles (1987) were concerned mainly with the problem
of obtaining the asymptotic distribution of MLE or its alternatives. In this chap-
ter, we study the behaviour of Bayes 'estimates and posterior digtributions usiﬁg a,
method similar to that in IH. | |
We first obtain properties of the likelihood ratios, It is shown that the llke]ihoud
ratios satisfy certain conditions similar to Conditions (IH) The general results of TH
are then used to obtain asympt{itir; behaviour of the Bayes estimates. The results
of Chapter 1 on the aﬁymptotic behaviour of .posteriar distributions are also used
to study the cnnv'ergence' of posterior in this case. As meﬁtioned in -Section"l 6,
the estimation problems of 6 and ¢ when considered together are asymptotically
independent, since in this case, the limiting LRP is a product of two mdependent
processes — one mvolvmg the normahzed parameter corresponding to ¢ (i.e., u) c:nly

and the other 1nvﬂlvmg only that cmrrespondmg to ¢ (i.e., v). |
‘We derive asymptotic prﬂpertleﬂ of Bayes estimates and pﬂstermr dlstrlbutlons
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using a modified version of Theorem 1.10.2 of IH and results of Chapter 1. As
explained in Remark 2.1 of Section 2, such a modification is necessary since the
conditions of IH in the original form are not satisfied for the usual examples of
multiparameter families considered in this chapter. Here the bounding constant
“appearing in Condition (IH 1) will have exponential growth in the v~components
instead of having a polynomial growth. But here we can prove a stronger version of
Condition (IH 2) and so can apply the general results in view of the discussion in
Section 1.1. Since we consider two different kinds of parameter 8 and ¢ simultane-
ously, the corresponding normalizing factors being different, we also need a judicious
combination of the techniques for the “regular” and “nonregular”problems. Indeed,
there are certain difficulties in considering the (1 + d)-dimensional vector (8, ) and
proving conditions of IH for the normalized parameter {u,v) € R, One has to
treat u and v in a different manner as in Assertions (I) and (II) of Section 3.

The set up and assumptions have been stated in Section 2. We also present
" some natural and interesting examples in this section. In Section 3, we study the
properties of the LRP. The results of Section 3 are then used in Section 4 to study
‘the asymptotic behaviour of the Bayes estimates and to investigate the existence of
a limit of a suitably centered posterior. In Section 5, we consider a specific family of

" distributions admitting certain local asymptotic expansions of the likelihood ratio

and obtain, among other things, a convolution theorem characterizing the possible

. limiting distributions of a sequence of regular estimators,

2 Set up and Assumptions

In this section, we formally state the assumptions needed for the later developments.
We cnnai;:ler a sequence of i.i.d. observations X1, Xa,... with values in R and a
common distribution Py, depending on unknown parameters 8 € © and ¢ € @,
where © and & are non-empty open subsets of R and R? (d > 1) respectively. We
assume that Py, possesses a density f(ﬁ; 7 tp) with respect to the Lebesgue measure.

- We make the following assumptions:

(A1) For any (8,y) € © x @,

inf /if(:c;9+u,go+v) — [z6,0)dz >0, &> 0.

[ituw)l[>

~ (A2) The density f(:;6,) possesses r jumps at a;(6),...,a,(8) depending on &
only. (There may be some other points of discontinuity free from the parameters.)
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The functions a;(6), k = 1,...,r, are strictly monotone, continuously differentiable

with derivative @ (6) and a;(8) < a;(0) if i < 5, 4,7 =1,...,T.
(A3) For every (8,y) € © x @, the following limits exist:

8,1) = i 18, ), d,p) = i » @,
Pi(6; ) mlif(la)f(”' v), (6, p) i flz o)

and the convergences are uniform over compact subsets of © x &.
Also the functions pe(0, ), qi(8, ), k= 1,...,r, are continuous and px(8, ) #

q(0,0), k=1,...,r.
(A4) The function g(z;8,¢) = fY*(z;8,p) is continuously" differentiable in

(8, ) for a fixed = in each of the regions
T < 51(9), | a;(ﬁ) <L ag(ﬁ), ooy DD ﬂar(ﬁ).

Set go(z;6,) = (8/80)a(z;8, %), 94i(z;8,0) = (8/8¢:)a(z;0,), & = 1,...,d

and Go = (grpls (o sgﬁpd)r
(A5) The functions defined by

Sl ¢) = /(ge(m;ﬂ, ) dz,
Ji{f,9) = fgﬂ(m; 0, ) gpi(z; 6,p)dz, i=1,...,d,

Jij(6,9) = ﬁw(m;ﬂ.sa)gw(m;ﬁ,w)dm, ,Jj=1...,4d,

are (finite and) continuous in (6,¢). Moreover, the matrix (J;;(0,¢) )} is postive
definite,

(A6) The functions ai(0), a (), k = 1,...,r, J(8,¢), Ji(6,), 1 = 1,...,d,
J;i(8,¢),1,7=1,...,d, have polynomial majorants in § and exponential majorants
in ¢, i.e., the majorants are products of a polynomial in |8 and an exponential |
function in ||¢ll. | | '

Also, for k = 1,.,.,r, the function Fi(f, ¢, R) := sup{ f(z;8,) : |z—ar(8)| < R}
possesses a polynomial majorant in  and R and an exponential majorant in 0.

Let h(z; 8, v) = log g(x;8, ) aﬁd_ he, h{,,i and h, stand for the derivatives of A.

(A7) For any fixed (6, ¢), the functions hoi(2; 8, ) are bounded in 2 lying in a
deleted neighbourhood of the discontinuity points a; (8),...,a,(6). |

If © % ® is unbounded, we impose the following additional condition:

(A8) For some > 0and C > 0, we have
PP (@;8,0)1 (50 + u,p+ v}z < ClulTexpl=aifel]  (2.)
as max{|ul, |v]]} = oo, ' ' '
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REMARK 2.1. In our asymptotic analysis, following the approach of TH, we first
obtain certain properties of the LRP which are at}alognus; to Conditions (IH). As
noted in Example 2.1 of Chapter 1, one needs to apply a logarithmic transfomation
on a scale paramter. In the multipa.‘rameter case, whqn there is a scale (or scale

like) parameter ¢ in addition to the “nonregular” parameter 8, we may again use
the transformation ¢ = logo. The functions mentioned in (A8) will then have

majorants which are polynomial in g, but not in ¢, However, the majorants will
usually be exponential in ¢ (as in case of ¢ = log o) and one can prove a variant of

the conditions of IH as stated in Section 3 (Assertions (I), (II} and (III)}. Assertion
(I) of Section 3 is a weaker version of the first condition of IH; the polynomial

majorant in the condition of IH corresponding to the normalization v of the paramter
o is replaced by an exponential majorant. This is compensated by the strength of
Assertion (II). As mentioned in the discussion in Section 1 of Chapter 1, all the
asymptotic results of Sections I.5 and 1,10 of IH can be proved using Assertions (I),

(1) and (III) proceeding along the same lines of IH.

REMARK 2.2. If the functions ax(8), k = 1,...,7, are uniformly continuous, the
- second part of (A6) can be relaxed by replacing it by the assumption that for some
& > 0, the functions Fi(8,9,€), k= 1,...,r, have polynomial majorants in  and

exponential majorants in ¢,
Also, if in (A6), all the functions have poynomial majorants in ¢ as well, we can

relax (2.1) to
[£42(2;6,0) £1/2 (236 + w,  + v)dz < Cl o] (22)

- as max{|u}, [[v]|} — oo where ¥ > 0. In this case, we can prove the conditions of IH
in its original form and use the results of IH without any modification. However,

such cases are likely to be rare.

'The above assumptions will be used to establish asymptotic properties in the
subsequent sections. These are the analogoues of the assumptions made by IH (Ch,
V) for discontinuous densities with a single parameter 6,

Below we present four important classes of examples which fall in our set up.

EXAMPLE 1. LOCATION-SCALE FAMILY. Let f(:n) be a probability density on

R which has a discontinuity at only one point, differentiable at all the other points

~ and the right and left limits exist at the point of discontinuity. Without loss of
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generality, we shall assume that the point of discontinuity is zero. Consider the

family of densities
f(z; 0,) = e? f(e¥(z — 0)), z, 0,0 €ER, (2.3)

This class is of the type considered in this chapter. It is to be noted that if f(«) has
more than one discontinuity, then the discontinuity points depend on v also and
hence f does not fall in our set up. Clearly, the verification of (Al) is equivalent to

verifying

¥ T}ﬁ e le* fle®(x — u)) — flz)ldz > 0, > 0. (2.4)

If (2.4) is not true, there isan € > 0 and a sequence {(uy,, )} such that ||{u,,v,)]| >
e and

ﬁe"“f(e""(a: —1y)) ~ flz)ldz — 0 asn— oo (2.5)

If zero is the pth quantile of f{z), then so is w,, for f(x;u,,v,). Hence we must have
u, — 0. Now, get a A 3 0 such that f(A) > 0. Then by (2.5),

UpFAe~Y8 ty+ie™ W
[T s@da- [T e flen(o - w)de

— 3 .9

= /u.,,-}-:«r“n f(m)dm—'/l Sf(z)dz .

—00 — 00

which converges to zero as n — oo. Clearly, we must have u, + Ae™™ — A,
which together with u, — 0 implies that v, — 0. This contradicts the fact that

H{(2tn, vn)|| > £ and hence (A1) is verified.
In this example, + = 1, a3(8) = 6, a}(8) = 1, p1(6, ) = ¥ f(0+), q1(8, g,)
e¥ f(0—); p1(6,) and ¢1(8, ) are continuous, do not depend on 8 and have EXPO-

nential majorants in . | .
It is clear that (A2), (A3) and (A4) are satisfied. To ve:rlfy (AS), observe that L

10.0) = (2/4) [((f (m))zmm))dm,
RO = (/1) [f'e)de = (1) fol(f/ @) o))
JulOg) = /4 [+ @) 1) He)d "

and hence it is enough to assume that the 1ntegrals in the right side are ﬁnlte (In the_ -

above expreaswns, integrals are over all z # 0 such that f(z) > 0) It may be noted

~ that ff'(z)dz may not be equal to zero. Finally, (A7) is satlsﬁed if o f (a:)/f(m) is
' bounded in a deleted neigh_bourhood of zero. In case © x ¢ is-unbounded, to prove
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(A8), we assume that for some § > 0, (a) [laf® f(z)dz < oo and (b) flz) = Q|| )

as |z| — 0o. For example, let ¢ > 0 and observe that
ofe™ [£1/2(@) 1 (e# (z ~ 6))da
< 2 [1V@)(erla - O eP (o - ) do

27 [Olle = 8> 1} + x{lz - 8 < 1})(Jal /= - )£ 2(z)
(eflo — O1)7//2(e* (z - ) do
< 21 P flaff@)de) 2 + [iof"S(2)dz + M( flaf? f(z)da) 2

‘the last expression is dominated by a constant by (a) if we choose v = /2, Here,
the second inequality is obtained by applying Cauchy-Schwartz inequality to each
term and using (b) for the third term. The case for ¢ < 0 is similar.

An important example corresponds to

flz) = { e ™™, if 220,

0, otherwise,

HXAMPLE 2. TRUNCATION MODELS. Let g(m;é,o) be a smooth density, positive
on a finite or infinite interval (a,8) C R, ¢ € $ C R?. Let

g(_q;; 99)/( ﬂ?f-g) g(y, Cp)dy)a if ﬂl(ﬂ) << {32(9)1 (2 6) I
0, . : otherwise, '

f(z; 6, @) = {

where @ € O, a finite or infinite open interval in R and a S a1(0) < az(8) < b. 1t
is possible that a1{f) = a or a3(8) = b (but not both). In this case, » = 1 or 2,

QI(B: "P) =0 = P2(91-‘P):

pi(09) = g(ar1(6);0)/A(6, ),
‘H(gr ‘P) = 9(32 (9): @)/A(ﬂ, ‘P)r

where A(6, ) = [ ‘:fg) g(z; w)dz. We assume that a1(6) and ay(6) satisfy (A2). One

a

can find suitable conditions on the densities g(z; ) under which (A1) is saisfied. g

By continuity of g(z; ) in ¢, p1(6, ¥), p2(8, ), 01(6, ) and g2(8, ) are continuous.
Further, ; L

J6,9) = (d(O)alar(8),0) - a56)9(aa(6), 0))/442(0, 0),

fl
o
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az(

2(6)
356,0) = [40.0) [ (05510 aps(ai ) 0,90

ai

az(6) az(f) .
- [ gs(midn [ gpi(mi 0)da]/44%(0,)
ay(6) A1)

for 4,7 = 1,...,d. Under appropriate conditions on the density g{z;y) and the
truncation points a;(8) and as(6), (A6) is satisfied. Further, (A7) will be satisfied
if gi(2; ) /9(2; @) are bounded in z. For a particular important case, consider the

density
| e®? [T (a)) exp[~zeflz®l, if 2> 0
g(m)z{( /T(a)) exp[-zef]z=t, 0
- 0, otherwise,

where —oo < ¢ < 00 is a parameter and a > 0 is a known constant. Let a;(6) = &

and a3(0) == 0o, 8 > 0. Then
AlB, ) = Lm(e"*’/l"(a))exp[-—a:e""]m““lda:

- .]ﬂ:(l/[‘(&)) exp[—m]mﬂ—ldml
o (@) explap - e}

if Be¥ — oo. (see, e.g., Johnson and Kotz (1970), p. 179). Using this fact, it can be
seen that (A6) is satisfied. It is obvious that (A7) holds. A little calculation using

the same fact mentioned above guarantees the validity of (A8).
One can also verify the validity of the assumptions in case « is also unknown,

i.e., the parameter v is replaced by (yp, @), if a belongs to a compact set. The case
with a Weibull density can also be treated similarly.

EXAMPLE 3. CHANGE POINT MoDELS. Let ¢ (z; ) and ¢@(z;¢) be two
smooth families of densities on a finite or infinite open interval (a,b) C R where

€ P, an open subset of R%. Further, for any 8 € {a,b) and ¢ € 3,
(85 ¢) # M8,0)9? (8, %) _ (2.7)
where A(8,¢) = [y 9V(z; p)dz/ f§ 9¥(z; p)de. Let '

g(l)(m; 5‘9)1 if a < x I"C 9,.

f(x;'e’ ?)= { A(6,9)g(z;9), if 6<z<b. (2.8)

The pa.rameter 9 is called a change point. This éxamplé falls in our set up with
r=1,a1(6) = 0, q:(6, ) = ¢V(6, ) and p1(6, ) = A(6,9)9?(6; ). The quantities
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in (A5) can also be computed, but they are a little messy. We consider a very
" important special case with
£z 6,0) = { expgaf — e%z], ?f 0< 2 <8,
| exp(d — 0(e® —ePf) — ePz], if 8< 2z < o0,

where 0 < 8 < o0, —00 < B < a < o0 are unknown parameters. This mode! has been
traditionally used in reliability problems using “burn-in” technique; see Nguyen,
Rogers and Walker (1984) and Basu, Ghosh and Joshi (1988). Also ¢1(6, @, 8) =
expla — %], p1(6, o, B) = exp[B — (e* — &) — €”f] are continuous in (4, &, ) and
have polynmmial majorants in & and exponential majorants in (@, 3). Further,

JO,a,8) = (e*—eP)% exp[—0e°]/4,
Jl (91 &, /3) = gea(en - eﬁ) exp[—-ﬂea]/tl,

Ja(6,,08) = —(e* — €”){1+ (6 — 1) exp[—0e”|} exp[—B(e® — €”)) /4,
Ji(6,0,08) = 1-—exp{—6e*|(1 + 20e*}/4,
Ji2(8,0,8) = —8e*{1 + (fe® — 1) exp[—0€”]} exp[—0(e* — €P)] /4,

Ju(d,0,8) = (1 +6e¥)exp[—0e® — §%(e® — eP)?] /4,

which are continuous and satisfy the required growth r?a.te conditions. Also, it is not

difficult to observe that (A1) and (A7) are satisfied. However, in this case, (A8) fails
to hold. For if @, 8 remain fixed and u — oo, then f(z;0, e, 5} and f(z; 0 + u,a, B)
have a common portion; consequently their affinity cannot go to zero. So we have to
restrict our attention to the case where © is bounded in which case (A8) is satisfied.

EXAMPLE 4. LOCATION SHIFT OF REGULAR FAMILY. Suppose {g(z;¢) : v €
®} is a family of probability densities on R which is smooth with respect to ¢, but
has at least one discontinuity as a function of z and the jump points are free from

. Consider the family of densities defined by
f(m; 6190) = g(m o 9: tP), 6 E-R, p € P, | (29)

This family falls within the scope of our set up and it is not difficult to give sufficient
conditions on {g(z; ) : ¢ € P} so that (A1)—(A8) are satisfied, but we omit this for

brevity. Example 1 is a special case of this when the regular family is also a scale |
family. For an example which i_s'nut included in any of the previous ones, consider

L _J (1/2)e® exp[—e®z], . if = 20,
gl f) = { (1/2)ePexplePz),  if £ <0, (2.10)

where —00 < f < a < oo.
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3 Properties of Likelihood Ratio Process

The asymptotic properties of the usual estimators depend on the behaviour of the
local likelihood ratios. For a fixed' (8g,p9) € © x B, the (local) likelihood ratio

- process i8 defined by

% f(Xs;80 +u/n, oo + 0V %)
| f(-thU:‘Pﬂ) j

2 o 00 (th V) = Zp(u,v) =

1=1
where u € Up :=n(0~6p) andv € V;, 1= n/2(® — ). The appropriate normalizing
constant is n™1/2 when @ is known and n~! when ¢ is known. Hence it is natural to
consider the above normalizer. Below, we shall omit the argument (6, wo) whenever

there is no source of confusion. Also, all the probability statements made below refer

to the parameter point (6, o).
All the asymptotic results will follow from the following three properties of the

LRP:
(I) There exist a1, as, B > 0 such that

EIZ}l/E(ul,vl) - Z}:ﬂ(uh 1"2”2
< B(1+ R{)exp(azRa)(|ur —~ ua| + [lvr — wa?)

for all u;,us € [—Ry, By}, v1,v2 € {v: ||vl|] < Rz}.
(IT) For all u € U,, and v € V,,,

EZ};IE(H, v) < exp["’gn(lula til)]

where {g.(+,*)} is a sequence of functions from [0, 00) X [D, oo} into [0, 0o) satisfying
the following properties: |

(a) For each n > 1, g,(z,y) is increasing to infinity in each component.

(b) For any Ny, N,y > 0, we have |

=0

lim  2MeM¥exp[—g,(z,y)] =0.
max(z,y)— 0o '

(III) The finite dimensional distributions of the process Z,(u,v) converge to
those of a process Z(u,v). (The expression for Z{u,v) is given in Theorem 2.2.)

REMARK 3.1. Assertions (I), (II) and (III) above can also be shown to hold uni-
formly in (8, o) belonging to compact subsets of © x & under appropriate uniform
versions of the Assumptions (A1)-(A8) of Section 2. Consequently, one can obtain

the uniform version.: of Theorem:. 4.1,5: * #.
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In this section, we prove the properties (I), (1I) and (III). We first prove a lemma
which will be used below. Set Gp{u) = Uj—;[ax(9), ax(6 +u)] and abbreviate Gy, ()
as G(u). o

LEMMA 3.1. Under Assumptions (A2), (A4} and (A5), we have as |ul?+|v]}? —
0,

ﬁg(x; 90 -+ U, @0 + 'U) = g(.‘.‘ﬂ; _901 ‘PU) = ugg(m; 901 l,ﬂﬂ) T Ufgq!:’(m; Bﬂl "Pﬂ)Iz
x x(z ¢ G(u))dz = ofluf* + [v[|*).

Proor. It is enough to prove the result along a sequence {(um,vm)} such that
[t |2 + |[om]|2 — 0. Without loss of generality, we assume that

tm/ (Jtem? + [Jom|2)/2 = A,
ﬂmi/(l%F + |'Um ‘2)1/2 —* ’\ii 1=1,... 1d: (3'1)

where A2 4+ M3 4 ... 4+ A2 =1, Hence it is enough to show that as m — oo

ﬁg(-'ﬂ; 80 + tm, Yo + Vi) — 9(z; B0, @o)
({uml?® + |lom || 7)1/%

d
3 Migpi(z; 60, 90)|2 x(z & Glum))da = o(1). (3.2)
=1 - .

~ Aga(2; 60, o)

Now
(Jtm]? + oml®) ™! [l9(z; 80 + im0 +vm) — 9(z; 60, o) |’
x(z & G(um))dz
= (ol + lonl® i [ ol + ity 0 + )
+01n Gy (2; 80 + timt, 0 + Vmt)dt] X (2 & G(um))dz
(tml? + )™ [ [z 60+ ety 0 + v
| + :ng,p(a:_; B9 + tmt, o + Ut} *dedt

1
(fuml? + o)™ [ (i (60 + et 0 + )

IA

IA

d
+2Um Zﬂmiji(eﬂ + U, o +’Umt)
i=1
d d -
+3 ) Umivmidif(00 + umt, 0 + umt)]dt  (3.3)
i=1 j=1 | | | )
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which, by (AS5), converges to

d d

A2 J(60, o) + 2,\2,\ J(aﬂ.,wu B IDIPIY 7i(00, o). (3.4)
1==x] i=1 j=1

Now by an application of a well known convergence theorem (see, e.g., Hijek

and Siddk (1967), p. 154), the proof is complete. O

We now prove Assertion (I). Assume Conditions (A2)-(A6) and denote the
Hellinger distance between Py, and Ppyy o by m2((6,¢), (0 + u, + v)). As in
IH (p. 54), we have

B\ Z}/*(u1, 01) — Z}*(ug, vo) *
< nri((6p + ui/n, 0o + n7H%0y), (6 + uz/n, o + n20,)). (3.5)

Now

r3((6,), (8 + v, +1))
= flo(i8 + w0 +0) - 9(a:0,¢)do

r ax (0+v) o
< 'Zl/ [9(z; 0 +u, 0 + v) — g(z; 0, p)|*dz]
' b1 ay(6)
+ [lo@i 0+ u,p+0) - 950, 0)x(z € Go(u))ds.  (3.6)

The first term is bounded above by

ax (0+u)

ZIL( N (30 + u, 0 + v) — flz; 6, p)|daf

<y Z:GE(SHHE , Iﬂ&(&)\(ﬂ:(ﬂ + U, 0 + 0, |ag(0 + u) — ar{6)])
+ P00 an(0+u) —ar(9)])), 3.7

where F}'s are as in (A6). To get a bound for the second term, note that, as argued

in (3.3}, we have

ﬁg (= 0+ 4, ¢ +v) — 9(z;0,)"x(x ¢ Ga(u))dm

1
2[|u|2/ J9+ut<p+vt +szv,v_?/ i 9+ut,tp+vt)dt]

<
i=1 j=1 .
< 2l sup J(O'p* ) + dflvfl* max ﬂup Jii(6" " )] (3.8)
(ﬂ'm )L W (8het)eL -
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where L stands for the line segment joining (8, ¢} and (6 + u, ¢ +v). Now relations
(3.5)-(3.8) in conjugation with (A6) imply Assertion (I).

Let us now prove Assertion (II). We note that, as in IH (p. 53), we have
EZ)/*(u,v) < exp[~(n/2)r3((bo, p0), (bo +u/myip0 + 07 Pw))). (3.9
We shall show that for all (u,v) satisfying (8p + u, o +v) € O x @,
73((60, o), (80 + u, o +v)) 2 a(lul + [|9]*)/(1 + |u] + [lo[|*) (3.10)
where a = a(6, o) > 0. Now

r5((8o, o), (6o + u, wo -+ v))
=3 ﬁg(x; 8o + u, 0 +v) — g(z; 6o, wo)*x(z € [ax(o), ar(Bo + w)])dz
k=1

+ ﬁg(m; Bo + u, o + v) — g{z; 00, o) Zx(z € G(u))dz. (3.11)

For |u| sufficiently small, we have by (A2) and (A3),

3~ flo@: o + 0 +2) = a(ai B0, o) (= € 4(fo), ax(Bo + )]z
k=1 | .

VvV

(1ul/2) kzi:cq},”(en, 20) ~ 57 (B0, o)1l (60)]
1

cifu]  (say) - (3.12)

For the second term in (3.11), we use Lemma 3.1 and note that
ﬁg(::c; B +u, 90 + v) — g(z; 80, o) *x(z € G(u))dz

. d 4 d . -
= u’J(8,00) +2u Y vi Ji(60, o) + Y vwdij(8o, wo) + o([ul® + [l |?)

d d d
> 2y vJi(6o, o) + 3 > vivsis(6o, po) + o(Jul® + [l])?)
j=1 j=1 j=1 | . | |
> —ciful/2+nflol* ' - (3.13)

for sufficiently small |u] and [[v|| and some 1 > 0. Now by (A1), there exists o > 0
such that (3.10) holds for all 4, From (3.9), we thus have

EZ)*(u, v) < exp[~ga(lul, Ilv]})],

53



where gu(z,y) = (a/2)(z + ¥*)/(1 + (z + y*)/n). Then the sequence of functions
{g.(z,y)} satisfies conditions (a) and (b) of Assertion (II) if © x ® is bounded (see
Lemma 1.5.3 of IH). When © x @ is unbounded, we further assume (A8) and the

result follows as in Lemma [.5.4 of IH.
Before proving Assertion (III), we introduce the following notations:

['= T[(6)= {k:pr(b0,0) > 0, ax(f0,v0) > 0},
[t = I'*(6) = {k:q(bo,%0) = 0,ar(60) > O}
| | J{k : pr(b0,0) = 0, ar(6o) < 0},
I'"= I(6) = {k:pe(fo,p0) =0, ar(fo) > 0}
U{k . qi(80,00) = 0, ax(6s) < 0},

ot = of(6) = inf{u>0:X; € | [ax(60), ar(fo +u/n))
| | kelt
for some i =1,...,n},
o, = 0,(6) = sup{u<0:X;¢€ U [ax(60), ax (6o + u/n)]
kel

for some i =1,...,n},

We define 0} = 400 if I't = @ and o, = ~o00 if I~ = 0. We also set

0, | if u <oy oru2 af,
Z" (u ‘U) . Exp{uc + EkEF Sign(uﬂ'fk) lﬂg(':?k/pk)
n } —
X Ty x(%s € [ag, a6 + (/n)a)
+ A, — (1/200 Iv}, if 0, <u <o},

where ar = ar(fh), o, = a.(6o), P = Pe(bo,%0), @ = w(boy40), & = 1,...,7,
¢ = c(bo, o) = 21Dk — G)ay, By = By(Bo,00) = 2 2L hio(Xi; B0, o). and
I = I(6o,w0) = (4Ji4(66, ¥0))) dxa. The following theorem gives an approximation to
the LRP Z,(u,v):

THEOREM 3.1. Under Assumptions (A1)-(A5), the follaming relations hold

uniformly in (u,v) I belonging to compact subsets of R*e :

|

) |
exp{uc + Z sign(ua) log(qe/pe)
k=1

(a) Zn(u,v)

X ix(){i € [ag, ax + (u/n)ay))
i=1

| | +'U’_A,,, ~{(1/2)v' v + op(l)}. + op(1), .
(b) Zﬂ(t_"iv) = zﬂ(ﬂi 'U) +ﬂp(1)~ . |
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Decompose the likelihood ratio ag

log Zﬂ(u, *'U) = Ilﬂ,(u, *v) -+ Igu(ﬂ.r, ‘U)

where
e . f(X;; 00 -I—u/n,tpu-i—n ) e
Ilﬂ(ui 1}) - i§=1:1 g( (X“ 6. 0, Y0 ) )X("‘{'-'r e' G( / ))

- Xi;g u/n, ~1/%
Ion(u, v) Zlﬂg( 1 G;EX:;T;{](:O;:)— n” ) Ix(X; € G(u/n)).

i

§=1

Let

Zlﬂ_(u, “U) = exp:Iln(u, *v)},
Zon(u,v) = exp[lo,(u,v)],

BXP{ZkeF Sigﬂ(“ﬂi) log(qx/pk)
Sy x(X; € log, ar + (u/n)ak])}, if o <u<of,
0, otherwise.

EQH(“! 'U)

The following lemmas will be used to prove Theorem 3.1.

LEMMA 3.2. As n — oo, uniformly on {(u,v) : |u| < H,|[v]} < H}, H < o0, we

have
Zon(, ) — Zian(1,) = 0,(1).

LEMMA 3.3. As n — oo, uniformly on {(u,v) : lu| < H, V|| £ H}, H < 00, we

have
Iy {u,v) = ue + v A, — (1/2)0 Iv + 0,(1).

Proof of Lemma 3.2 is similar to that of Lemma V.2.1 of IH and hence omitted.
To prove Lemma 3.3, we need the following auxiliary result: |

Fori=1,...,n, set

g(Ai1%,po)

u n~1/2y | .
P = (fXilotufrapotn o) _ 9y (X; @ Glu/n)),  if 9(Xi; 6o, w0) > O,
in —

LEMMA 3.4. As n— o0, we have
(a) B}, — E((u/n)ha(X1; 00, p0) + n~ 2 hy(X1; 60, 0))* = o(1/n),
(b} El’fhn — ((u/ ﬂ)ha(xh 80, 00) + 112 hy (X160, 0))?
x(X1 € G(u/n))} = o(1/n),
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(c) P{lmn} > e} =0(1/n}, € > 0,
(d) Eﬂln — Cu/(Qn) -+ (l/Sn)u’Iy = a(l/n)

and for any H < 0o, the convergences are uniform on {(u,v) : |u] < H, ||| <

H}.

Proor. For simplicity, we write down the proof for a fixed (u, v); the uniformity
will be clear from the arguments. In view of (A5), (a) follows from (b). Also from

Lemma 3.1, we have

E(|m1n — ((u/n)he(X1; 80, 90) + 1% hyp (X1; 60, 00))
xx(X1 € G(u/n))) =o(l/n). - (3.14)

Therefore, by (A5) and Cauchy-Schwartz inequality, (b) follows, N ow

P{lmnl > €} £ P{|nn— ((“/n)hﬂ(XIE b0, o) + ”_wﬂtha(xliﬂuﬂﬁo))l
xx(X1 € G(u/n)) >e/2}
+ P{}(u/n)ha(X1; 0, 0) + 1 by (X1; 60, 0))] > €/2}.

By an application of Chebyshev's inequality and using (3.14), the first term is
o(1/n). Using the elementary inequality : S

P(|2] > o} < a7 E(|Z)x(1Z] > a)]

for a random variable Z, the second term can be shown to be o(1/n) by virtue of

(AS5). Hence (c) is proved.
It remains to prove (d). We note that

ﬁf(m; Bo+u/n, po+n" v}~ f(z; 0, o)) x(2 & Glufn))dz = cu/n+o(l/n) (3.15)
by (A2) and (A3). Thus by Lemma 3.1 and (A5),

Emn = /(9(2;90 + u/n, 9o +n~2%) — g(z; 60, 00))9(z; b0, o)
x(@ # Glu/n))dz .
~(1/2) _/(9(93; b0 +u/n, w0 + %) — g(z;60,00))"
X(z # Gu/n))dz + cu/(2n) +o(1/n)
~(1/2) [((/n)go(z; 60, 00) + 120 (w: B0, 90)) (s ¢ Glu/n))ds
+cu/(2n) + o(1/n) |
cu/(2n) = (1/2n) [(¢/9,(z0,¢0))"dz + o{1/n)
cu/(2n) - (1/8n)Iv+o(1/n) S 31e)

!
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proving (d). O

1,...,n, we have

ProOF OF LEMMA 3.3. From the definition of m;y,, i
I =230 1 log(1 + 1), Expanding the logarithm in a Taylor’s series on the set

Ay = {maxy<icn |Min| € €0} for suitably chosen £y, we have on A,

n n n
I, = 227?1'11 - Eﬂfn + 2Eainn?m

i==1 i=1 i=]

where oy, i = 1,...,n are random variables satisfying (| < 1,2=1,...,n. The
result now follows from the following assertions:

(1) maxigign [Min] = 0p(1),

(2) Tt nip — (140 T = 05(2),

(3) ' ?=1 n?n - 59(1)1
(4) 3221 Min = (1/2)uc — (1/2)v' Ay + (1/8)v Iv = 0p(1).

Assertion (1) immediately follows from part (c) of Lemma 3 4.
From part (b) of Lemma 3.4, we have

L1 — i ((u/n)he(Xs3 00, p0) + n 2 hy(Xi; 60, o))’
xx(X; € Gu/n)) = op(1). (3.17)

Also by repeated appplication of (A5},

| i((“/ n)hﬂ(xﬂgmﬁoﬁ) + 1" Y2 hey(Xi; 60, 00)) 2% (3G € G(u/n))

i=1

= (1/n) i(ﬂfhw(xﬂ B0, %0))*x(X; € G(u/n)) + 0;:(1)
=1

= Um Y WhKato o)+ (318)

j=1
Assertion (2) now follows from (3.17), (3.18) and the Law of Large Numbers.
Assertion (3) is immediate from (1) and (2) by virtue of the inequality

n - "
; Iniula < (lﬂﬂ'lglnml) ;n?n_
We now prove (4). Put
" . . -
To=3 i — 3 ((6/)ha(Xi B0, o) + 1%y (Xi; o, 00))X(X: £ Glufn)).

=1 i=1

87



We observe that
T, - BT, 5 0. (3.19)

Indeed, for & > 0,

P{|T,, - ETy| > €}

e *var(T,,)

ne  EInin — ((u/n)he(X;; 60, o) + ”ﬂl/zﬂ!hw(}fﬁigﬂs 0))|°
xx(X1 & G(u/n))) |

which converges to zero by (3.14). We next show that

IA A

Bl(u/n) 3 ha(Xii 6o, polx(X; € G/ =o()  (3:20)
- g=1
and i |
E[n™"%" " ho(XG; 60, po)x(Xi € Glu/m))* = of1). (3.21)
i=1

Equation (3.20) follows from (A5) by virtue of the Dominated Convergence Theorem
(DCT) and Minkowski's inequality. Now, | |

B2 3 by (000 € Glafm))?
i=1 -
= E[(ﬂ'h.;p(X1;9q;sﬂo)2x(X1 € G(u/n))]
+(n — 1)(B/ hy(X1; 00, 00) x(X1 € G(u/n))])*.

The first term converges to zero by DCT and (AS5), while the second term, by
idempotency of indicator function and the Cauchy-Schwartz inequality, is dominated

by |
(n ~ 1)E[(v'hy(X1; 60, o) *x(X1 € Glu/n))}P{X1 € Glu/n)};

Since P{X; € G(u/n)} = O0(1/n), (3.21) follows.
By a well known fact on regular experiments, (see, e.g., equation 11.1.13 of IH)

Bhy(X1;60,00) =0. | _' (3.22)
Also, by Lemma V.2.5 of IH, we have .
. Ehg(X1;00,100) = c/f2. - (3.23)

Therefore, from (3.20)-(3.23) and part (d) of Lemma 3.4, we have
BT, = —(1/8W R +o(1). o (3.24)

o8



Now from (3.20) and (3.21), we have
T 1
> min = Tut(u/n) Y ho(Xi; 60, 0)
f=1 j=1

n
+n—-1f2vf Z hl‘p(xl; gﬂ: ﬂoﬂ) + op(]-):-

i=1
and therefore part (4) follows from (3.19), (3.22), (3.23) and the Law of Large
Numbers. O

PrROOF OF THEOREM 3.1. By results of IH (Sec. V.2), Zon(u, v) is stochastically
bounded and sois A, by the Central Limit Theorem (CLT). Therefore, from Lemma.

3.2 and 3.3, part (b) of Theorem 3.1 follows. Part (a) is an easy consequence of (b)

and in fact, is equivalent to {(b), O

We now obtain the limit of the LRP Z,(u,v). For this, we introduce the following

notations:
Let vi(u), ..., v(u), 7(u),. .., %.(u) be 2¢ independent copies of a homogeneous

Poisson process with rate one. For u > 0, define

ve(praly),  if al > 0,
v (u) = .
v(—qeaju), if @ <0,

k=1,...,r and for u <0, define

L’_(H) _ Ek(_qkﬂ'iu)i if {I-'L > 0,
U Bi(pkaiu),  if 6l <0,

k=1,...,r. Alsoset vJ(u)=0ifu < 0and v (u) =0ifu >0 Let A be a

N4(0, I) random variable independent of vy,..., ¥, Py, .., Uy

THEOREM 3.2. Under Assﬁmptiﬂm (A2)-(A5) and (A7), the finite dimensional
distributions of the LRP Z,(u,v) converge to those of the process |

Z(u,v) = z<1>(u,)z€2>_(w),
where -

20 () = exp{uc-+ 3 sign(ual) log(ar/me) (v (w) + 5 (1)}, weR
k=1

and
ZA(v) = exp{v'A — (1/2)1}’[1}},_ veER?,
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PrOOF. For uy,...,un € R, we find the joint asymptotic distribution of

n n
O x(X; € [aps a + (wa/n)a)), ..., D x(Xi € [ak, ax + (um/n)ap]) b =1,...,7)
1=1 . i=1
and n"Y2 0 b (X500, 40).
For simplicity, let us assume 0 < u; < +++ < tiy; the treatment for other cases

are similar. Thus it is enough to find out the joint asymptotic distribution of

(i X(X; € [ag, ax + (w1/n)ay)), i:x(Xi € [ax + (w1 /n)ay, ax + (uz/n)a]),

1=1 $=1
n

£oey EX(Xi € [ﬂ'k + (um—l/n)ait ek + (um/n)a‘;:])l k=1,. .' ' 1T)
i=1
and =2 0 b, (X300, o).
In view of Theorem 3.1, the result follows from the following lemma.

LEMMA 3.5. Let Xi,Xo... be ii.d. random variables having a density f(-)
and h : R — R? be a function satisfying Bh(X1) = 0 and COV(h(X1)) = Z, a
posttive definite matriz. Let Ip, Iny, ..., I, be disjoint intervals such that for
all §=1,...,1, the following hold; ' |

(a) mes(I;,) =c¢;/n+0(1/n) for somec; >0,

(b) sup{]f(z) — bs];2 € I;p} = o(1) as n — oo for some b; > 0,

(c) supps1{[h(z)]| : ¢ € Iin} < o0,

Set Ny =V x{Xs€ Ly}, s =1,..,, n > 1 and A, = n V2T, A(X5).
Then |

(Niny ..oy Nip, An) = (My,..., N}, A),

where Ni,...,N; and A are independent with N; ~ Poisson(bje;), 7 = 1,...,1
and A ~ Ng(0,%). '

PROOF. Let 1(8), 8 € R¢ be the characteristic function (c.f.) of h(X1). By
Assumption (c), exp[in~Y2sh(z)] = 1+ o(1) uniformly in z € Ly, j = 1,...,L
Also, by continuity of c.f., w(n"’l/ 28) = 140(1). By CLT, | |

1,{)"(71‘1_/23) —;.exp[-(1/2)3’23].
Now,
E[exp{ithlu +oo Ny +is'An}]
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!
= {C(exp(it) ~ 1) | explin™/25'h(a))f(2)do

=1 Iin

+ fexplin™"/2 h(a)] f(z)dz}"

j
Y (n2) {1+ Y (exp(ity) - 1)bje;(1 + o(1))/n}"

j=1
i

~  exp[—(1/2)¢'Ls] exp(%(exp(itj) — 1)b;c;). (3.25)

This completes the proof by virtue of the Levy Continuity Theorem. C

We end this section with a refinement of Theoerem 3.1 (in some particular
situations). This will not be used anywhere in this chapter, but is of independent
interest, and is analogous to Theorem V.2.4 of IH.

THEOREM 3.3. Assume Conditions (Al)-(A7) and suppose that h,(X1; 60, o)
has a finite moment generating function in o BFR neighbourhood of zero.
Then for any H < oo, | |

(a) sup{E|Z,(u,v) - fn(u,'u)l 0 <u< Hfv < H — 0asn— oo if
[~ (8o) = 0, | | | o

(b) sup{E|Z,(u,v} — Zn(w,)| : —H < u < O|l|| < HY = 0 as n — oo 3f
't () = 0, -

(c) sup{E{Z,(u,v) — Zpn(u,v)| : |u| < H || € H} — 0 as n — oo if both
[ (d) =0 and I'(6y) = 0.

Proor. We shall prove only (a); proof of (b) is similar and (c) is an easy
consequence of (a) and (b). Observe that the convergence in Theorem 3.2 is uniform

in (u,v) belonging to compacts. As argued in IH (Theorem V.2.4}, it now suffices

to verify that
lim EZu(u,v) = lim BZ,(u,v) = EZ(u,v) = 1 (3.26)

n—oeo n-—0G

where the convergences are uniform in the arguments. Now by Theorem 3.2,
EZ(u,v) = EZNw)EZD ) =1 (3.27)

by arguments of IH and the trivial equality EZ® (v) = 1. For converniernce, assume
that ﬂ,f,c >0vk=1,...,r. Obéerve that | -

BZu(u,0) = (B30 + u/mpo + 1700 [fKsbo,pol)* (3.9
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while

I

skl
—p——

BE(f(X1; 00 +u/n, 00 + 020/ f(X1; 00, v0))

B(1 +mn)? + fG ” )f(-'-v; B0 +u/n, o + n” Y ?v)x{f(=; 60, po) > 0}dz
usn )

— G, 00 )d
‘/G(Wﬂ)f(--“J 0, 0)dz

14 2B, + Bni, + (u/n) ) (a — pi)ai + o(1/n)
k=1 | .

1+ 2[eu/(2n) — (1/8n)v' Iv] + (1/4n)v Iy
—(u/n) ) (g — pr)ai + o(1/n)

1 +o(1/kr:)1 (3.29)

by arguments similar to that of IH and an application of Lemma 3.4. Also, the
convergence in (3.29) is uniform in the arguments. Consequently, (3.28) and (3.29)

together imply one part of (3.26).

and

Now

EZ,(u,v)

expluc — (1/2)v' W) E{x (s} > u) explij > log(qk/px)
i=1 kel

T
xx(Xi € [ak, ak + (u/n)ai]) + 2n7 Y2 Y ho(X5; 60, o))}
1=1

Il

explue — (1/2)v ) (B{x(X; & U 2k, ar(6y + u/n)))
kel

x exp[) _ log(gr/pe)x{X1 € [ag, ax + (u/n)ay])
kel

#2072 hy (X3 00, 00)] )" (3.30)

B{x(X: & | lax, dk (60 + v/ n)].) exp() _ log(qe/p)

kel'+ | kel
xX(X1 € [ag, ax + (u/n)af]) + 207 2hy(X1; 80, o

E{exp]>  log(qx/pr)x(X1 € ok, ax + (u/ n)a))
kel

+2n" 2R, (X1; 00, 90)]} — E{exp() log(gx/ps)
kel B

xx(X1 € [ag, ax + (u/n)al]) + 207 2hy(X1; 60, 00))
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X 3 x(X1 € [ak, ax(6o + u/n)])}
ke+

, ﬂk-‘l'-(u/rl-)ﬂk _1/2
= > (a/ms) / exp(2n™"*hy(X1; 0, o)) S(z; B0, wo)dz
kel

ag+(u/n)a
= E./ T explan 2y (X3 60, 90)] (2 60, o) o
kel

- exp[zn-lf.?hp (X 15 8o, ‘Pﬂ” f ('T’J o, (Pﬂ) dz
At (Wﬂ)ﬂn

> _/;3"9 [2n~ ljghw(XI:'90:500)].3’(-*’?:901*#0)63@
kel Ya,

(ufn) ) (qr/pe)aips — (u/n) ) aipy +1

kel kel

(1200 Ty — (u/n) Z a.q; + 0(1/n)
kel+

—(u/n) k}ij(pk — )+ (1/2n) B + o(1/n)
1

i

[

= —uc/n +}1/2ﬂ)ﬂ'ﬁ’ +o(1/n} (3.31)

if n is large enough. In the above derivation, we have used (A7), a standard ex-
pansion of the moment generating function in terms of the moments and equation
(3.22). It is obvious that (3.31) implies the other part of (3.26), and so the proof is

complete. (J

In the way of proving Theorem 3.3, we have obtained a very important result:

COROLLARY 3.1. Under the conditions of Theorem 3.2, {Fy ATV S
contiguous to {Fg  } if any one of the following holds:

() u20and '™ =0,

(b) u <0 and ' =4,

(c) u€R and ITUT™ =0.

This follows from (3.27) and Le Cam’s first lemma (see, H4jek and Sidak (1967,
p. 202)). |

4 Convergence of Posterior Distributions and Bayes
Estimates

In this section, we study the asymptotic behaviour of posterior distributions and
Bayes estimates. The properties of the LRP established in the previous section
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and the results obtained in IH and Chapter 1 are used to prove our results. As
mentioned in Remark 2.1, the results of IH and Chapter 1 follow also from Assertions
(X), (II) and (III) which are modified versions of the conditions of IH.

We consider prior densities which are positive and continuous at (g, ) and
have polynomial majorants in 8 and exponential majorants in v, Let II be the class
of all such priors and £ be the class of continuous functions [ ; R x R% — [0, o)
satisfying the following:

(i) 1(0,0) =0, iz, y) = {(~z, —y) Yz ER,y € R

(ii) The sets {(z,y) : l(z,y) < c} are convex Ve > 0 and are bounded if ¢ > 0 is
sufficiently small.

(iii) Uz, y) < B(1 + |2[%) exp[bs||yll] for some B, by, b9 > 0.

(iv) There exist Hg,v > 0 such that for H > Hy,

sup{l(z,y) : lo| < H", ||y} < H"} — inf{l{z,y) : |of 2 H, ||ly]| > H} <0.

We immediately have the strong consistency of posterior distributions and Bayes
esimates. The following result, a consequence of Theorem 1.10.2 of IH, gives the

asymptotic distributions of the Bayes estimates,

THEOREM 4.1, Let (5,1, @n) be @ Bayéa estimate of (6‘, ) with msﬁe&t to a prior
m € II and loss function l(n(z — 8), n'/%(y — po)) where [ € £. Assume Condi-
tions (Al)-(A8) stated in Section 2 and suppose that the random function

W(s,t) = / (s — u,t ~ v)é(u,v)dudv
ml-!—d'
attains its absolute minimum at a unique point 7= 1(6y, o), where
5(15;1;) ='Z(u,'v)/./ Z(w v )du' v
Rltd

Then .
(B, — 60), n/*(@n—~ o)) S 7, (41)

and for any continuous function 'w(ﬁ, v) satisfying -

jw(u,v)] < B(1 + |ul") explba|o]|

fOT‘ some B, bl,bz >0, we have .

00

lim Ew(n(gﬂ - 90),711/2(93:1 ~ o)) = Buw(T). - (4.2)
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Also the diameter of the set of all normalized Bayes estimates converges

to zero tn probability.
If further, the loss function l € £ 13 of the form

l(z,y) = l(z) + L),
then n(a;: — 6y} and nl/ 2($n — o) are asymplotically independent.

To investigate whether the posterior distribution, suitably normalized and cen-

tered, converges to a limit, we use Theorem 3.4 of Chapter 1. In this case, Z(u, v)
is of product form and this criterion for existence of a posterior limit is satisfied if
and only if &9 (u) = ZW(u)/ [ 20 (') dv is of the form g(u+ W) for some random
variable W and a fixed probability density g on R. In view of the investigations car-
ried out in Section 4 of Chapter 1, we can answer whether, the posterior converges

or not in the following cases:

CASE 1. The set I" is empty.
(i) If both I'" and I’ are nonempty, then the criterion is not satisfied and hence

a limit of posterior does not exist.
(ii) If one of 't and I'™ is empty, then it is immediate that the criterion is

satisfied and hence a. posterior limit exists. An important example of this kind is

e exp(—-e¥(z - 9)], if =290,
0, otherwise.

f(z30,9) = {

where H,c,o.r:' R. Indeed, any density in Example 1 with f(z) < 0 for z < 0 falls in

this category. |
CASE 2. The set I' is nonempty but both I"’f and I'~ are empty.

In the case r = 1, as shown in Chapter 1, a limit of posterior does not exist. An

important example of this kind is the change point problem described in Example

3 of Section 2.

5 A Convolution Theorem

 Let {(3‘.‘" A"") 5010 € ©,9 € 8}, n 2 1, be a sequence of statistical experlments
where © and ® are open subsets of R and ]Rd (d > 1) respectively. We fix 6 € ©

and g € & and as in Section 3, set

- Py 172 |
Zn(u, 'U) = ﬂg+;}/;,:pu+n u! 4 € UpyveVy,,
| b 0 - |
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Uy, Vi being as in Section 3. Here dF/dQ denotes the derivative of the absolutely
continuous component of Pwith respect to Q. We assume that either of the following

representations holds:

(Cl)  Zu(u,1) = exp{uc + VA, — (1/)vVIv} +e,, fu<o,, (5.1
ta 0, ifu> gy, |

where ¢ > 0 is a constant, I'is a positive definite matrix and ¢,, A, and o, are
random variables (all depening on (6o, o)) such that

P'."l | .
en 220,  and LA 0u)|F} ) = LA, o)

where A ~ Ny(0, I), o has an exponential distribution with mean 1/c and A and ¢

are independent.

'" 20 7 ‘ Yy
(C)  Zu(uy) = exp{uc + VA, — (1/2W v} + ¢, :fu > -0 (52)
0j if u < —On,

where ¢, I, ¢,, A, and o, are as in (C1).
It is to be noted that the above representation is a sort of combination of local

asymptotic normality in v and local asymptotic exponentiality (as discussed in IH,

Sec. V.5) in w.
If we consider ii.d. observations with a common density, Theorem 3.1 estab-

lished in Section 3 gives an asymptotic expansion of the likelihood ratio Zn(u,v)
under Assumptions (A1)-(A5) of Section 2. This implies that the asymptotic ex-
pansion (5.1) holds if the sets I and '~ are empty and the asymptotic expansion

(5.2) holds if both T and I'* are empty. |
Below we consider only the case when (5.1) holds, The treatment of the other

case is similar.

We define experiments

E" = {(", A"), Pt imgo -t ¥ 2 0,0 € R, n>1, (5.3)

One can then easily show that the sequenﬁelaf experiments £" converges"tu an ex-
~ periment £ = {Qw;_ﬂ > 0,v€ Rd}-Where Quv is the product of a distribution with
- density cexp[—c(z—u)|x{z > u} and Ng(v,I). This may be proved by using Propo-

- sition I1.2.3 of Millar (1983). Using the Hajek-Le Cam-Millar asymptotic minimax
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theorem (see Millar (1983), Sec. III.1), a lower bound to the local asymptotic mini-
max risk (for a natural class of loss functions including the class £ of Section 4) can
be obtained as in Samanta (1988, Ch. 4). This bound is attained by the Bayes esti-
mates. In the remaining part of this section, we shall obtain a convolution theorem
| characterizing the possible limiting distribution of a sequence of regular estimators
- {(S, T;.)} of (8,¢) which satisfies (5.4) below. We consider the class of estimators

{(Sn, Tn)} of (8, ¢) for which
L{(Sy — b0 — u/n), nt/*(T, — vy —n lﬂwm s ungein-itn) > G (54)

for all u > 0 and v € R® where G i3 some probabilty distribution on R4 not

depending on (u,v).

THEOREM 5.1, Suppose that the asymptotic expansion in (5.1) holds, Then for
any estimator {(S,,Tn)} satisfying (5.4), the limiting distribution G of (n(S, —
 6g), n' (T, — ¢p)) under P . 18 a convolution of Qoy and some probability

distribution u depending on {(S,, T,)}:
G = Qﬂ,ﬂ * L

- This theorem may be proved using arguments similar to that used in the proof
~ of Theorem V.5.2 of IH, We, hnwever, present a proof that uses the ideas of Millar

(1983, Sec. III. 2)
- To prove this theorem, we shall use the following result which is a modified

~ version of the convolution theorem given in Millar (1983, Sec. 1I1.2).

THEOREM 5.2, Let & = {(S",8"),Q% ,;u > 0,v € R?}, n > 1, be a sequence of
statistical experiments converging to the ezperiment £ = {(R*!, B#*1), @y u >
0,v € R%}. Suppose that R, is a sequence of statistics on (57, S") taking values

in R, Assume further that
(i) there is a family of pmbabz!ztzea {Guuyu 2 0,2 € R®} on (IR‘”I Bd“)

“such that for allu > 0, v € RY,

L(R|QR,) = Gup.

(1) QualA x B) = Qoo(A x B~ (u,1)) and Guu(A x B) = Gog(A x B — (u,v))
}|u| allu>0,veR?, A€ B and Be B, |
C iJm) Qoo 18 concentrated on [0,00) x R® and i3 absatutaly continuous with

! pect to the Lebesgue measure. Also the number (0, 0) belangs to the support

o '. 'ul 0
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Then there is a probability u on R such that
Goo = Qoo * 2.

PROOF. let & = {(IRd‘H, B, Gya;u > 0,v € R4}, Then by an argument given -
in Millar (1983, p. 98), there exists a Markov kernel Kj of (Ré+1, Bd+l) /(Rd+1, Bd+1)

such that
Gup = KoQuy forall (u,v) € [0,00) x R%, (5.5)

Let Ky be the collection of all Markov kernels K of (R*H1, B4+1) /(RF!, B4+1) guch
that (5.5) holds. Then Ky is a compact, convex subset of a topologlcal vector space,
For all g € [0,00) x R?, define a map K +— gK as

gK(z, A) = K(z + g, A +g), z€R¥ Ae Bt

Then the family {g : g € [0, 0o} x R%} is a commuting family of continuous linear
mappings which leaves Ky invariant. Therefore, by the Markov-Kakutani fixed point
theorem (see, e.g., Dunford and Schwartz, p. 456), there exists K € KXy such that

gK =K forall g€ [0,00) x RY,

i.e., for every u € V&) (see Millar ( 1983) for defintion), for every Borel set A € B4+
andgE[Om)de |

Jok(@, Ayutdz) = [K(z, Ayu(do)

Since V{€) = L(v) for some probability v with support [0, 0o} x R? which is equiva-
lent to the Lebesgue measure on [0, co) x R, this implies that for all g € {0, m) X R®
and A € B,

K(z,A)=K(z+g,A+g) ae. z€[0,00) xR (5.6)

We shall now use (5.6) to show that there exists a probability 4 on R such
that . :
K(z,A+z) = u(A), AeB* | (5.7)

for all z outside a null set Np, To show this, one can use straightforward arguments
involving lifting theorems (see, e.g., Ionescu Tulcea and lonescu Tulcea (1969), p.
122). We, however, give an elementary proof. In view of (5;6), it follows from
Fubini’s theorem that there exists a null set N such that for 2 & ¥, z € [0,00) X RY,

K(z,A) = K(z +9,_A+g). for all A € B*! and for a.e. g € [0, 00) ;r:le.
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We now choose a sequence a; — 0, e, € [0,00) X R% o, € N for all n. Then
for all n > 1, there is a null set NV, such that for all g € N, g € [0,00) X R,

K(oy + g, A+g) = K(an, A) for all A € B4+,
Hence for all £ & N,, + @y, = € [0,00) x B? + o,
K(z, A+ 2) = K(om, A+ay,) forall 4 e B

Let Ng = Up>1{Vn + an). Then Np is a null set and for any z,y € [D,00) x RS,
z,y & No, we have

K(z,A+z)=K(y,A+y) forall A€ B!,

This proves (5.7), We thus have

K(z,A) = K(z,(A—z)+2) =pu(A—-z) forall Ae B! = ¢ Ny,

~ and therefore

Goo(A) = /K(:r:, A)Quo(dz) = fp(A_- £)Qup(dz).
Since p is a probability, this proves the theorem. O

ProoOF OF THEOREM 5.1. Consider £" = {ngﬂfnmwﬂ_uﬂﬂ; u > 0,7 € R?} and
£ = {Quy;u> 0,v € R%} where Q. is as defined earlier in this section. It is easy
to see that all the conditions of Theorem 5.2 are satisfied and hence

G:Q{}'g ¥ U, O

6 Asymptotic Independence

Theorem 3.2 of Section 3 states that under Assumptions (A2)-(A5) and (A7) of
- Section 2, the limiting LRP Z(u,v) is of the form

Z(u,v) = 21 (u) 22 (v),

where Z(i)( .} and Z{9(.) are two independent processes as described in the theorem.
‘This result has been used in the previous sections to obtain the following interesting

regults:

69



Chapter 3

Multiparameter Densities with Singularities

1 Introduction

In the previous chapter, we have considered the estimation problem with density
f(2; 0, @) where the family is smooth with respect to i while the paramter 8 exhibits
nonregularity in the sense that the densities are discontinuous at certain points de-
pending on 8. In the present chapter, we shall consider a very similar problem. Here,
the family of densities f(z;8, ¢) is again smooth with respect to ¢ but the densities
 have singularities (see Example 5 of Section 2.1} at certaiﬁ'pnints depending on 8.

Let us recall the definition of singularity.
Let f be a density on R which admits the following representation in a neigh-

bourhoood of a point z :

o

f(z) _:{ p(z)|z - 2 L if z > 2, . (1;1)

glz))z - 2%, ifz<z

where ~1 < @ < 1, @ # 0 and the functions p(z) and g(z), which possibly involve
certain paramters, are continuous with p(z) + ¢(z) > 0. In this case, f is said to
have a singularity of the first type if 0 < @ < 1 and a gingularity of the third type if
-1 < a < 0. The case o = 0 corresponds to the case with discontinuous densities.

Important examples of this type are the gamma density
f(z) = (1/T(e))e™®z*", >0,
.a.nd the Weibull density |
. f(z) = az* lexp[~z°], z>0.

A singularity of the second type occur if the density admits the following represen-

~ taion in a neighbourhood of a point z :

| W(z)expla(z)lz - 2, iz <z g
f(m) ""' { 'J)(E) EXpb(-'B)]fE _ z!n:ﬁ]l if >z, . | (1- )

~ where 0 < a < 1, ¥(2) > 0, the functions ¥(z), a(z) and b(z) are continuous and
" at least one of the quantities a(z) and b(z) is nonzero. An example ig given by the

 density o -
flx) = Cexp[-]z]°].
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IH (Ch. VI) considered the problem of estimating a location parameter @ in
a location shift model f(z,0) = f(z — 8) where f is a density with singularities
at certain points. This case was also studied by Woodroofe (1974) and Polfeldt
(1970). There are, however, many important examples of multiparameter family of
densities where in addition to the “nonregular” parameter 4, there is also a vector
of parameters ¢ with respect to which the problem is regular (with & being fixed).
For important examples of this kind see, for example, Smith (1985) and Cheng and
Iles (1987), We here consider the case with densities having singularities in presence
of a “regular” parameter . As in IH, for simplicity, we assume & to be a location
parameter and consider the case with only one point of singularity; extension to
a more general case does not involve additional difficulties and does not lead to
substantially new phenomena. Also, most of the examples of practical importance

involves a location parameter and a single point of singularity.,
Let X1,X5,... be i.i.d. observations with values in R. We assume that each

observation X; possesses a distribution Py, _with a density f(x; 8, ) which is of the

form
[(&;8, 0} = glw — 6 ), | | - (L3)

where g(z; ) is a density with singularity at the point & = 0. We study the estima-
tion problem using a method similar to that in IH. We first obtain the properties of
the likelihood ratios. It is shown that the likelihood ratios satisfy certain conditions
similar to those in Theorem 1.10.2 of IH, The general results of IH are then used to
obtain asymptotic behaviour of the Bayes estimates. In Section 2, we consider the
case with a singularity of the first and third type. Section 3 deals with the singular-
ity of the second type. In Section 2, we also examine whether a limit of a suitably
centered (and normalized) posterior exists. We use Theorem 3.4 of Chapter 1 and

conclude that a limit of posterior does not exist in this case,

2 Singularities of the First and Third Type

In this section, we consider the case with a density g(z ~ 8; ) where g admits the
representation (1.1) in a neighbourhood (~eo, €o) (say) of z = 0 with p(z) = p(z; @)
and g(z) = ¢(z; ). We make the following assumptions: |

(A0) For all ¢ € ¥,

inf  [lg(z — u,p +v) —g(z;0)| >0, . £>0.
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(A1) The functions p(z; ) and g{z;¢) are continuously differentiable with re
spect to both = and ¢ in their respective domains of definition. |
(A2) The functions h(x; ) 1= log g(z; ¢) is thrice differentiable with respect to

@ for all z # 0,
We get

hi(z;) = (8/8pi)h(z; ),
hij(z;0) = (8%/8pibBp;)h(z; ),
hije(z;0) = (8°/8piBp;Bpr)h(z; ),

L, k=1,...,d.
(A3) There exist ; > 0 and functions Hy(x; ¢}, i = 1,2, 3, such that Hj is square
 integrable and Hj, Hj are integrable with respect to g(z; )} and for all z and all
i, k=1,2,...,d, | __
(a) sup{[hi(y; )| : ly — 2| <e1} < Hilz;),
(b) sup{|hi;(y; )| : [y — 2| < ea} < Halz; )

and  (c) sup{lhie(y; ')l : [y ~ 2| < &3, [l — @l < e} < Ha(z; )
(A4) The function hi(z;p)}, 4 =1,...,d, are differentiable with respect to z on

{z # 0}. Also for any & > 0, there exists a g(z; go)-integrab]e function Hs(z; ) and
g4 > 0 such that for |2} > e and i =1,...,4d, |

sup [(8/8y)hi(y; )| £ Halz; ).

ly—z)<ey

(A5) The functions (8%/828¢;)logp(z;yp) is bounded in =z € (0,&) and the
~ function (8%/820y;) log q(z; ) is bounded in & € (~&0,0). |
- (A6) For any & > 0, the functions

Kese) = [ (@) @p)ids,
Hpie) = [ (@/ex)g ¥ a))(0/0pg ziv)) s
nd Jy(eie) = [ (0/00)0" (@) (0/00)0 " ai e))de

are (finite and) continuous in . Moreover, the matrix

A
Jo Ju
I8 positive definite, where J; = (J1,. ....;.Jd)’_and- A =((J,J)) | F\irther, for 1,7 =

1,...,d, Iij(p) = [hij(z;0)g(z; p)dz is finite,
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(A7) The quantities sup{p(z;¢) : 0 < =z < &y}, sup{g(z;y) : —e0 < @ < 0},

52 (7' (m39))2/p(m; ) )dz and [°, ((d(z;9))* /a(z; 0))dz, J(p;e), & > 0, and Li;(w),
i,7 = 1,...,d, possess exponential majorants in |[¢|; here the prime stands for

differentiation with respeet to z.
(A8) For i =1,...,d, hi{z;y) is bounded in a neighbourhood of zero.

If @ x ® is unbounded, we impose the following additional condition:
(A9) For some y> 0 and C' > 0,

/9'1’ Y(z;0)9 (2 — u; .so +v)dz < Clu|™ exp[—4||v]]]
as max{|ul, [[v[|} — co.

REMARK 2.1. In IH, certain smoothness condition on p and ¢ are included in the
definition of singularity. The condition is stated in (1.2) of Section V1.1 of IH. It is
to be noted that this condition is satisfied with A = 2 under the assumptions stated

above,

Some important exmples which fall within our framework are as follows:

(i) Gamma,
f(2:8,¢0) = (1/T(a))e*?(x — 8)* L exp[—e?(z - 8)], z>0, FER, p €R.
(ii) Weibull, .
flz; 0, ¢) = ae®(z - 0)° L exp[—ef(z—-8)%], =>6,0€R, pER.

For some more exmples, see Smith (1985). It is to be noted that in these exam-
ples, one may also consider o to be unknown. Also, we here use a logarithmic
reparametrization for the usual scale parameter; this is necessary as argued in Ex-

ample 1 of Section 1.2 and Remark 2.1 of Chapter 2,
Fix a parameter point (6g,¢0) € © x & which may be regarded as the “true

; parameter point”. We first study the behaviour of the likelihood ratio process
(LRP) |

(X 60 + p—1/(4a)y, wo +n V) .I
VA . : 2.1
(u 'U) 1];! f('xlagﬂi‘)ﬁﬂ) | | : ( )

where u € U, = n/1ta}(@ — ) and v € V;, = n'/2(® — pg). Since the Pao v
 distribution of Z,(u,v) does not depend on fy, we shall assume below that 6y = 0.
" Below all the probability statements refer to the distribution Py ). |

74



The following properties of the LRP will be used to prove our asymptotic results:
(I) There exist ay,ag, B > 0 such that |

E\ZY?(uy,v1) — ZY*(ug, va)|?
< B(1+ R{')explagRe](Jug — ug["™T* + |lug — a|?)

for all uy,ug € [—Ry, Ry} and vy, v € {v: |[v]| < Rs}.
(II) For all u € U, and v € V,,, we have

EZ}*(u,v) < exp[~gn(lu], []])],

where {gs(:,*)} is a sequence of functions from [0, 00) X [0, 00) into [0, 00} satisfying
(a) For each n 2 1, gn(z,y) is increasing to infinity in each component,
(b) For any Ny, N; > 0,

lim 26 exp[-gu(z,y)] =0.
max{z,y)— oo

(ITI) The finite dimensional distributions of the process Z,(u,v) converge to
those of a process Z(u,v). (The expression for Z(u,v) is given in Theorem 2.2.)

REMARK 2.2. Assertions (I), (II) and (III) above can also be shown to hold uni- |
formly in (g, wo) belonging to compact subsets of © x & under appropriate uniform
versions of Assumptions (A0)-(A9). Consequently, one can obtain a uniform version

of Theorem 2.3.

We now prove assertions (1), (II) and (IIT). Let the Hellinger distance between
Ps,, and Pppy 44y be denoted by rao((8, ), (8+u,p+v)) and set &, = n~ /), Ag
shown in IH (p. 54), we have

EI Z}tjz(uhﬂl) ™ Z,];,fz(umvﬁ)lz < ﬂ"r%((kﬂu]ﬁoﬂ -+ n-—lfﬂ,vl)l (knu21 Yo + 1’1_1/21}2)).
(2.2)

To prove Assertion (I}, it is now enough to show that
r3((6,), (0 +u, ¢ +)) < Clo) ([ ™ + loI*) (2.3)

where C(i) grows at most like an exponential function in |||, The expression in
LHS in (2.3) is actually free from 8, and so we suppose & = 0, For definiteness, let
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u > 0. Using the inequality (a + b)* < 2(a? + b%), we have

r3((0,9), (o +v))
= [If(@0,0) - 1P+ o)

< 2 ﬁy” Yz — u;p) — g/%(z, )| d
+2 ﬂg” a5 +v) ~ g (2 ) (24)

In view of a well known result on regular families (see, e.g., (I1.2.6) of IH) and
(A7), the second term in RHS of (2.4) is bounded by Ci{e)||lv||* where Ci{p) is
exponential in |||, Also, for £ < g¢ and u sufficiently small,

ﬁy” Yz - u0) - '/%(z; )| *dz
B fau 9%z — u;0) — ¢"/3(z; ) Pdo
+ /u lge — ;) - 9 (@)
+ Z 9"z — u;p) — 9'*(z; ) do
. 9z — u; ) ~ g3 (z; ) [P
[ lle = 023 — wigp) = ol V2 ) e
+/ |z = ufPp 2 — s p) 2l (a5 )P
T f Z 1z — u|*/%q" (2 — u; p) — [l 2q/*(; ) il

+ g —u; ) — g (z; ) Pdz. (2.5)

|z|>e

|

The first term in RHS of (2.5) is dominated by

ol gu @, 0) + sup p(z;e
@/(1+ o))l sup_olaii) + sup ploiv]

and the coefficient of [u}*** in this expression has an exponential majorant in @ by

(A7). -
The second term in RHS of (2.5) is dominated by

E _
2 / [z — v ) = ' (2 )l — ul"de

4+2( sup p(a:,ga))_/;({:z:- u.l“/i-u }m,ﬂﬂ)zd:c. | (2.6)

- D<Lzlepy
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By (A7) and the arguments given in TH (p. 282), the first term has the required
bound and so it suffices to show that the intergal in the second term of (2.6) is
O(Ju|'**). This can be checked by elementary computations. In a similar manner,
the third term in RHS of (2.5) has a bound Cy(y)|u}'t™ where Cy(p) has at most

an exponential growth.
By the Cauchy-Schwartz inequality and changing the order of integration, for

sufficiently small u, we have
flm o 19"/ %(z — u; ) ~ g"*(2; )P de
= W /I an [ (0/o0g )it
< u? /mm /a) [ 1(6/00)g /(e dtds

|
: ugfltm;g (8/8t)g"*(t; )Pt = wPI(p;e/2), (2.7)

where J(ip,£/2) is a3 in (A7). This completes the proof of Assertion (I).

Let us now prove Assertion (II). We note that as in IH (p. 53}, we have
EZ/*(u,v) < exp[—(n/2)r3((0, ¢0), (knty 0 + n~1/20))]. (2.8)
We shall show that for all (u,v) satisfying (u, o +v) € Ox 93,
(0, 90)s (90 +0)) 2 @l + [oID)/(L+ [ + o), (2.9)
where a = al(g) > 0. The following :reéult will be used in cur proof:

LEMMA 2.1. Under Assumptions (A2} and (AB), we have for anye > 0,

]l N9V~ v +9) = 02 )+ 0(0/02)g' Vs o)

- Zvi(afaﬁﬂi)glf 2(wi wo)|*dz = o(ful® + [ju[l*). (2.10)

The proof of Lemma 2.1 is similar to that of Lemma 3.1 of Chapt&r 1. Now for

- sufficiently small and positive u,

r3((0, o), (4, 0 + )
> [16" = igo+o) - g/2(zi o) do

w1 16z - u;00 +v) — 0/(z; o) Pdz. (2.11)

|z]|>e
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By Lemma 2.1, the second term in RHS of (2.11) is equal to

| d - d d
ugJ(d,on;E) -} 21.',2 TJ{J{((,GG;E) + Z Z ’UinJij(‘Pﬂ;E) + 0(“*2 + ”'.U”z):
j=1 i=1 j=1 '

which is bounded below by n(u? + |jv||?) for some n > 0 in view of the assumption
of positive definiteness in (AS6). |
It is now enough to show that for u and |Jv|| sufficiently small, .

/0 16"2(z — 13 00 +) — gV/%(z; o) Pdz > agul e (2.12)
for some a1 > 0. We write LHS of (2.12) as
| 1l = wl*g 2@ — s 0 +0) ~ 2l My )Pt
= [ lle = i (00 +0) ~ [al"12p/2(0; ) P

+ /u’ Iz ~ wf* (¢ (@ ~ w3 00) — ¢7(0; 0))
— |2} */2(p /(23 p0) - p'/*(0; p0))|?da
+2 /{f( x — u[“ﬂ(ql/?(d: — U g + V) — qlz’?([}; ©o))
— ||/ (p*(z; o) - p2(0; 0)))
x(|z — u|*/%q"/%(0;.00) — |2|*/*p*/%(0; p0)) d. - (2.13)

The first term in RHS of (2.13) is dominated by agu!*® for some ap > 0. By (A1),
the functions p(z; ) and q(z; ¢} are jointly continuous in {z, ) and therefore, for
any § > 0, the second term is bounded by §ult®. Hence by an application of the
Cauchy—Sch#artz inequality, the third term is o(ul*®). Therefore, to prove (2.12),
it suffices to show that the first term is bounded below by agu'** for some a3 > 0.

To avoid triviality, assume that both p(0;g) and ¢(0; o) are strictly positive, We
note that there exists a constant 0 < ¢ < 1 such that whenever 0 < z < cu, we have

where r = p(0; g}/q(0;0). The inequality (2.12) now immediately follows from
(2.13) and (2.14) and the observations made above. This proves (2.9) for all
sufficiently small Ju| and ||v]l. Now by (A0), there exist ¢ > 0 such that (2.9)

holds for all u,v. From (2.8), we thus have EZ};/ 2(u, v) < expl—gn(|ul, Ili!”)_] where |
gn(z, ) = (3/2)'($1+E+y2)/(1+(:z:1+“+y2)/n). The sequence of functions {on(2,1)}
satisfies Conditions (a) and (b) of Assertion (II) if 8 x ¥ is bounded (see-Lemma
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1.5.3 of IH). When 8 x & is unbounded, we further assume (A9) and the result

follows as in Lemma [.5.4 of [H,

To prove Assertion (III}, we first obtain an approximate expression for Z,,(u,v}).

We consider a sequence A, — oo sucn that £, A,, — 0 and

kna‘in|“|
/ sup |p(z — w; ) — p(x; wo)l|z|*dz
0 s} e A

0
+[ s lale - wi0) - a(miwolllal*dz = o(1/n).
—ky Ap|u Jur| Sk A ]

Since the functions p and ¢ are continuous, one can always choose such a sequence
Ay. Define a random measure v,(B) on [—~A.|u|, A,]ul] a3 the number of variables

Xi,i=1,...,n, whose values belong to the set &, B.

THEOREM 2.1, Under Assumptions (A1)~(A6) and (A8), we have the following
asymptotic represenlation:

Ap |y

log Z,,(u,v) = cxf log {1 — (u/z)|(va(dz} — Evn(dz))

—Aqlyl
+1og(a(03 o) /(05 0)) | (i)

~[a00) [ (11 (/2)]* ~ 1 g1 — (u/ )]l

+2(0;0) [ (11 - (u/2)]" — 1 - clog [1 = (u/x)]) sl
+(1/(1 + a))(2(0;0) — P(0; o))} '
+' Ay — (1/20 1o )v + Tu(u, v), | - (215)

where A, =n 20 KO Xi;00), MY = (hy, ..., ha) and ry(u,v) converges in

probability to zero.

To prove Theorem 2,1, we note that

n . no. '_1 2

9(X; — knt; o) g(X; — kni; 00 + n~1/20)

>l +3 1 !
o 9(Xi; o) =1 o6 | 9(X; — knu;00)

=1

= I + I2n (say). | o (2.16) -

I

log Z,,(u,v)

' - -As shown in IH, Ch. VI, we have

B = a [ loglt ~ (u/a)(n(ds) - Bin(ds))

""Anlu
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+10g(a(050)/p(0; ) [ 1)

0 _
~laOs0) [ (11~ (/)" ~ 1 - alog]1 - (u/a)of*do
- +p(0; o) fo (1 - (u/z)|* ~ 1 — alog|l - (u/z)})]|z|*dz

+(1/(1 + o)) (g(0; wo) — p(0; wo))] + 0p(1). - (2.17)

- Expanding in Taylor’s series, we have

Ly = n" 23 VR(XG — ko) + (1/@W)Y ) VRO (X ~ ks o)

+HA/E)) Y ST vk (X - ks 0,), ©(2.18)
i=1 1< kl<d _.

where h{?) = ((hi;)) and ¢y, lies on the line segment joining g and g + =Y/ 2*&. We
rewrite the expression in RHS of (2.18) as | |

Iy, = n"1/? Y VAW (X5 00) = (L/2DV v + €10 + £20 + 30 (2.19)

i=1

where

T ' n '
g1, = n Y2 Z *u’h(l)(Xi — kpus o) —n 2 Zv’h(l)(X;; o)
=] 1=]

(1/(2n)) 3" o' B X; — kyu po)v + (1/2)0 I(ipo v
i=1 |
and g3, = (1/ (6”'3/2))2 Z wjvkvlhfkl(*xi." knll; @),
i=11<5k0<d

En

It now remains to prove that &4, == 0,(1) for i = 1,2,3, We prove these in three

steps,

STEP 1, We show that Eej, = o(1).
Note that

Ee?, = Bl bW (X — kut o) — (X 9‘70)]_2 |
+(n - 1)[B{YB(X; — kutsypo) — o/ A(Xispo)}l”. (2.20)

Under Assumptions (A2) and (A3), the first term in RHS of (2.19) converges to
zero by the Dominated Convergence Theorem (DOT)* Thus it. is ennugh to show

thﬂtf@l“i:]_“njd |
E[hi(X1 — ks o) — hi(Xi;90)] = 0('”»_"1_/ 2)-_ o (2.21)
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Fix C > |u| and ¢ < gy. Then we have

IEg:j(Xl — k5 o) — (X715 w0)]]
< -/Ck,, (Jhi(z — knu; wo)| + |hi(z; wo)]) 9(2; wo)d

+ |hi{x — knu; o} — hi(z; wo)lg{x; wo)dz

lz|>&
A
+ [ Ihilo = ki) = hilaspo)laes po)ds
~Clky
+ [ lhilz — ko) - hi(z; wo)lg(z; wo)de. (2.22)
By Assumption (A8), the first term in RHS of (2.22) is O(1/n). By Assumption
(A4) and an application of the Mean Value Theorem, the second term in RHS of
(2.22) is dominated by knu )i, Ha(z;40)9(=; po)dz which is o(n"1?). Now for z €
(—&, —Cky), both z and 2 — k,u are in (—&g, 0) and therefore g(z;wo) = |z|¥¢(z; o)
and (8/8x)hi(x; o) = (8 /8x6p;) logg(z; o). Thus the third term is o(n~1/?) in
view of Assumoption (A5). In a gimilar manner, one can show that the fourth term .

is also o(n~1/2),

STEP 2. We show that &3, = o.t..,('l).

For:=1,...,n, set
Viw = 0hO(X; ~ s o) — BYBD(X; — bt o))
By Assumptions (A2) and (A3)(b) and DCT, |
E[W R (X; — ko)) — —v'I{pg),
and therefore |

Bl Yin|x{Y1a| > f"'}]_
E{(d]Jv]| 2 Ha(X1; o) + | BB (X1 — knts; o))
xx{dlvl[*Ha(X1; 00) + [BVRB(Xy — kau; go)v] > a}

<

which converges to zero as a — oo, Thus by a version of the Weak Law of Large
Numbers (WLLN) for triangular arrays, the result follows.

STEP 3. By Assumption (A3)(c) and the WLLN, &3, = op(1).

The theorem is now proved, O | -
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We now obtain the limit of the LRP Z, (x, v). Let v and v~ be two independent
nonhomogeneous Poisson processes with rate functions p(0; wo)z* and ¢(0; )z
repectively. We define a stochastic process v as follows:

+ :
Az) = v{z), ifz2>0,
v (—gx), if £ <0.

Let A be an Ng(0, I(yo}) random variable independent of v.

THEOREM 2.2. Under the assumptions of Theorem 2.1, the finite dimensional
distributions of the LRP Z,(u,v) converge to those of the process

Z(u,v) = 2 () Z3(v), (2.23)
where . .
0g Z0(u) = a [ logl1- (/) (o) ~ Ev{da)
+log(g(0; o) /p(0; o)) fuu w(dz)
~las90) | (11~ (u/2)* = 1~ aclog|1 = (u/a) ol
+2(0590) [ (1= (uf2)|"~1 - alog L~ (w/a)jol"ds
+H1/(1+a)(9(0;00) ~p(O o)), wER, (224)
and | |
- Z() =expl'A, — (1/2)0'I(so)v], v € R, - (2.25)

In view of Theorem 2.1, the result follows from the following lemma: |

LEMMA 2.2. For any bounded intervals In,n,... Ig, the dfstributz'on of the
vector (Vn(li), ..., va(I), An) converges to that of (v(I1)y+ .1 A(Ig), A) and fur-

ther limy—.co Ern(ly) = Ev{ls).

- PROOF. As argued in the proof of Lemma VI.3.1 of IH, it is enough to prove for
intervals I; = [a;,8;), j=1,.... k0 Son < by Lo < < Bk Let ¥(s) s € R?
be the characteristic function (c.f.) of R(X1;¢0). By (A8), |

explin™"2¢h (z; 60)] = 1 + o(1)

uniformly in a neighbourhaﬂd' of 0. Also, by continuity O.f c.f., Pp(n~128) =1 +0(1).
By the Cental Limit Theorem, | -~

P (n1%8) — expl-(1/2)5 Tpo)s)
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Now

| k
E[exp{Z*itjyﬂ(Ij) + 18’ An}]
j=1

k
(- (exp(its) — 1) | explin™/25 WD (a; o) lo(z ) da
=1 &

+- exp[in"” 25'p(V (z; @0)]9(% po)dz}™

{

k
" (0" 28) (1 + (1 + o(1)) D (exp(it;) — 1)P{X; € kL))"

=1
e Ny, — p(();(p ) N . 1+a o n
= Y (n"V2s)(1 + o Ez) ;(exp(ttj) ~ 1)(ﬁ}+ — ﬂt}"‘ )+ o(1/n))
k _
- Blexpli ) tjv(I;)]) Eexp[~(1/2)s'I(1p0)s]), (2.26)

7=l

which completes the proof of the first part by virtue of the Levy Continuity Theorem.
The second part is contained in Lemma V1,3.1 of IH. O

In the remaining part of this section, we study.the asymptotic behaviour of
posterior distributions and Bayes estimates. The properties of the LRP (Assertions
(1), (IT) and (FII)) established above and the results obtained in TH and Chapter 1
are used to prove our results. It is to be noted that the results of IH and Chapter
1 follow also from Assertions (I), (II) and (III} which are modified versions of the
conditions of Theorem 1.10.2 of IH. See, in this connection, Remark 2.1 of Chapter

2.

We consider prior densities which are positive and continuous at (60, wo) and

have polynomial majorants in # and exponential majorants in Jl)|. Let II be the
class of all such priors and £ be the class of continuous functions ! : R x R? — [0, 00)

satisfying the following:
(i) 1(0,0) =0, I(z,y) = (-2, —y) Vz € R,y € R |
(ii) The sets {(z,y) : (2, y) < c} are conyex Ve > 0 and are bounded if ¢ > 0 is

sufficiently small, | |
(iii) Uz, y) < B(1 + |z|*) explby|ly[l] for some B,by,b; >0.
(iv) There exist Hp,7y > 0 such that for H > Ho,

sup{l(z,y) : |z| < HY, ||lyl| € H"} — inf{l(z,y) : |2] sz; jull 2 H} < 0.
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We immediately have the strong consistency of posterior distribution and Bayes

esimates. The following result, a consequence of Theorem 1.10.2 of IH, gives the

asymptotic distribution of Bayes estimates.

THEOREM 2.83. Let (611, @) be a Bayes estimale of (8,y) with respect to a prior
7 € II and loss function l(nY/A+0 (2 — ), n'/?(y — vg)) where | € £. Assume
Conditions (A0)-(A9) and let the random function

Y(s,t) = (s ~ u,t — v)€{u,v)dudy

Rl+d‘

attain its absolute minimum at a unique point = 7(0,vy), where
é(u,v) = Z(u,ﬂ)/fl ) 2\ v )du'dv .
_ ol

Then |
M+ (G, —~ 60), n (G — @) S T, - (2.27)

and for any continuous function w(u,v) satisfying
(e, v)} < B(L+ |ul*) explba|Jo]l]
for some B,b1, b2 > 0, we have

lim Ew(n/C+a(0, — 8), n!/*(F, — wo)} = Bu(r). (2.28)

- O

Also the diameter of the set of all normalized Bayes estimates with respect

to the prior  and loss l converges to zero in probability.
If further the loss functionl € £ is of the form

I(z,y) = L(z) + b(y),

then nl/ (1+"‘)(9n bo) and ni2(&, — wg) are aéymptatﬁmlly independent,

To investigate whether the posterior distribution, suitably normalized and cen-
tered, converges to a limit, we use Theorem 3.4 of Chapter 1. In this case, Z(u, V)
is of product form and the criterion for existence of posterior limit is satisfied if
and only if () 1= 2w}/ [ 20w Ydu' is of the form Y(u-+ W) for some random
variable W and a fixed probability density ¥(: ) on R. We consider only a simple but,
- important case where g(0;g) = 0 and p(0; wo) > 0; most of the examples of prac-
tical importance are of this type. As argued in Example 4.3 of Chapter 1, ¢) ()
is not of the form stated above. Consequently there does not exist a limit of the

. posterior distribution.
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We immediately have the strong consistency of posterior distribution and Bayes
esimates. The following result, a consequence of Theorem 1.10.2 of TH, gives the

asymptotic distribution of Bayes estimates.

THEOREM 2.3. Let (gﬂ, @) be a Bayes estimate of (8, ) with respect to a prior
7 € II and loss function lnlt*(z — 6), n'/*(y — o)) where | € £. Assume
Conditions (A0)-(A9) and let the random function

W(s,t) = / (8 — u, t — v)é(u, v)dudv
pl+d .

attain its absolute minimum at a unique point r= 1(6o,0), where

£, v) = Z(u,v)/ / 2, o).

R
Then
(B — B0}, (@ — 0)) S 7 (2.27)

and for any continuous function w(u,v) satisfying

w(w, )] < B(L+ ") explee]o]

- for some B, b,b2 > 0, we have

lim Bw(nt®(8, — ), n/3(@, — @) = Ew(7). (2.28)

i— 00

Also the diameter of the set of all normalized Bayes estimates with respect

to the prior 7 and loss | converges to zero in probability.
If further the loss function l € £ i3 of the form

iz, y) = li(z) + la(y),
then nit(8, — 8;) and nV/4(F, — o) are asymptotically independent.

To investigate whether the posterior distribution, suitably normalized and cen-
tered, cnnvérgeai to a limit, we use Theorem 3.4 of Chapter 1. In this case, Z(u,v)
is of product form and the criterion for existence of posterior limit is satisfied if
and only if &8 (u) := 20 (u)/ fZ0)(u')dy’ is of the form ¢)(u+ W) for some random
variable W and a fixed probability density ¢(-) on R. We consider only a simple but
important case where ¢(0;p0) = 0 and p(0;pp) > 0; most of the examples of prac-
tical importance are of this type. As argued in Example 4.3 of Chapter 1, €0(u)
is not of the form stated above. Consequently there does not exist a limit of the

posterior distribution.
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3 Singularities of the Second Type

We now consider the case with a density having a singulaity of the second type.

The treatment of this case is similar to that in Section 2.
In addition to Assumptions {AD), (A2), (A3), (A4), (AS8), (A8) and (A9) of

Section 2, we make the following assumptions:
(A1) The functions a(z; ), b(z; ) and (z; p) are continuously differentiable

in (z,) in their respective domains of definition.
(A2) In their respective domains of definition, for all 4 = 1,...,d, the func-

tions (8%/828¢;) log¥(z; ), (6°/0x6p;)logalz;) and (8°/828yp;)logb(z; ) are
bounded. | .

(A3)' The quantities J(z;), € > 0, Li(p), 14,7 =1,...,d, sup{a(z; p) : —ep <
z < 0}, sup{b{z;¢) : 0 < = < &}, sup{g(z; ) : —£0 < z < £}, sup{{8/8z)a(z; ) :
—eo < 7 < 0}, sup{(8/80)h(z0) : 0 < = < s}, J2,(1(6/62Vp(a; V)2 (e o)) d,
ffa.;. (8/8x)a(z; p)|*dz and f3°|(8/0z)b(z; )| 2dz have exponential majorants in .

REMARK 3.1. In IH, certain smoothness conditions on a, b and ¥ are included in

the definition of singularity. The conditions are stated in (1.5) and (1.8) of Section
VI.1 of IH. It is to be noted that these conditions are satisfied with A = 2 under

the assumptions stated above (see pp. 282-283 of TH).

An example which falls in this framework is
f(z;0,9) = C(p)exp[—eflz —0|%], z€R, 6€R, p€ER

We fix a parameter point (8,40} € © x ®. Let the likelihood ratio Z,(u,v) be
defined as in (2.1), We first prove Assetions (I), (II) and (III) stated in Section 2.
As mentioned in Remark 2.2, uniform versions of these assertions can be shown to

be valid under suitable uniform versions of the assumptions. As before, we assume

fp == 0 and proceed in a manner similar to that in Section 2.
As argued in Section 2 (see inequalities (2.2}, (2.3) and (2.4)), it is enough to
show that there exists a function B(yp), exponential in ||¢|f such that

Jld2(@ - w) - g @) < Blolul™. (3.1)

For definiteness, let u > 0. As in (2.6), for & < &g and.tl.t. sufficiently small, LHS of
(3.1) can be expressed as - | |

./uu '|¢1/'2($ ~ U, (P) EHp[(l/Q)a(mlw”m B u[ale
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92z 0) expl(1/2)b(53 )l P

+ /u . u 1 % (@ — u; ) exp[(1/2)b(z; p)|@ — u|*/?]
_ - 0V2(z; ) expl(1/2)b(z; ) |21 P

[ W@ -y ) exp[(1/2)a(z; ¢z - u[or?

=1 2(z;0) expl(1/2)a(z; ) |2|*/*| *da

* fose 19" (@ ~ u;0) ~ 9"%(z; ) 2dez (3.2)

T‘he first term in (3.2) is dominated by
3 fD"(w“ (e ~ U @) ~ Y/ (i) dz
+3 [ (@ ~ i o)(expl(1/2(z ~ s )z — w7 - 1)%de
+3fnu (e o) expl(1/2alz Pz - uf*lY) = 1)de.  (3.3)

In view of Remark 3.1 and Assumption (A3), the first term in (3.3) has an ap-
propriate bound while the other two term can be tackled using the mequahty

le® - 1] < |=|(e® + 1), z €R. | |
Using the Mean Value Theorem and Assumptmns (Al) and (AB)Jr we get an
appropriate bound for the second and the third term in (3.2). The treatment of the

fourth term is same as that in (2.5). This completes the proof of (3.1).

In order to prove Assertion (II), we proceed- as in Section 2 (see (2.8)- (2.12))
and note that LHS of (2.12) can be written as | - |

\/ﬂﬂ |¢1/2(w — U, !pg) pr[(l/Z)a(m; ‘ﬁ’ﬂ)[m ___ uiaﬁl .
— ¢7*{(z; o) exp((1/2)8(z; o) o) do. (5.4)

Using the expansion € =1 4z + O(mz)' (as © — 0) and the fact that
W= i o) = g = o+l
the expression in (3.4) can be written as

(1/4) [l ~ lPo(a — oo +9) - JelPale; o) e + o(u“"“ + Il
g | |

The result now follows as in Section 9.
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Before proving Assertion (IIT), we obtain an approximate expression for Z,, (u, v).

We define a random measure p,,(B) on [~A,lu|, A,|ul] as the number of variables
X; € k. B. |

" THEOREM 3.1. Under Assumptians (A2)-(A4), (A6), (A8), (A1), (A2), Z,(u,v)
admits the following asymptotic representation:

Anlu

' .
 Zy(u,v) = ”"amclw)/ A l(d(m“”* vo)lz — ul*/?

—~ d(z;0) '|2]°*)(n(dz) ~ Bpun(dz))

. oL+ a/2)T((1 - ) /2
~(1/2)%(0; o) [u*+ 2”“/#)/2&&))/)

x (a*(0; wo) + 6(0; q) — 2a(0;)b(0; o) cos(ma/2))

+v' Ay, ~ (17200 I{ye v + 7n(u, v), | (3.5)
where .
d(z; ) = { a(z; o), %:fﬂ? <0,
b(z;00), if >0,
Ay =n" 25 WX 00) and ra(u,v) ‘converges in probability to zero.

To prove Theorem 3.1, we express log Z,,(u, v) as in (2.15). An approximation for
the first term I,, is obtained in Lemma VI.4.2 of IH. Proceeding as in Section 2, one

can show that the secor.d term I, can be approximated by v/ A, — (1/2)v'I{wq)v.

We now obtain the limit of the LRP Z, (u,v). Let a random process

by(u), ifs20,
b(u) = W), ifz2 |
bz(-—u), if z <0,
where b; and b, are independent standard Wiener processes. Define a random

measure i on R by

w(U) =/Udb, UeB.
Let A be an Ny(0, I(¢0)) radom variable independent of 4.

THEOREM 3.2, Under the assumptions of Theorem 3.1, the finite dimensional
distributions of the LRP Z,(u,v) c_anﬁeryea to those of the process

Z(u, v) = Z(l)(u)Z(Q)(v);' - (36)
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where

00

29) = [ (da—wpo)a - ol - dia; )|l u(ds)

. oJ 1+ a/2T((1 -«
~( /2O o)l ( 2:+n{m)/zgg+a))/2)

(05 00) + 6%(0; 00) — 2a(0; 490)b(0; o) cos(m/2)), u € R(3.7)

and
Z0() = explt/ Ay — (/9 I(po)e], v e R (38)

In view of Theorem 3.1, the result follows ffam the following lemma.

LEMMA 3.1. For any bounded intervals I1,I2,...,I;r;, the distribution of the
vector (n~o/CMH) (y, (1)~ Bun (1)), .-y 0@+ (1 (L) — Bun (1)), An) con-
verges to that of W20 wo)ullr), . . ., W40 o)l Ii), A).

PRrROOF. It is enough to prove the result for disjoint intervals. Let 8.(t), 5(t),
t € R* and 4(s), s € R? be the c.f.'s of ((x{X1 € ko L5} — P{Xy € L;}),5 = 1,...,k),
Y205 o) (u(Ii), . . ., w(Ix)) and R (X7 o) respectively. Let & stand for the num-
ber a/(2(1 + a)). By Lemma VI1.4.3 of IH (or by dirtect computations), we have

(Bu(not))" — B(2).

It can be easily shown that

k | £
S (el — 1)P{X; € kul;} = Ba(t) expli ) t;P{X1 € kulj}] - 1.

7=1 j=1

Also, by Assumption {A8), one can show that

./J;"I Exp[‘iﬂ"lfzsfh(l)(m;(pg)]g(E;lpu)dgj = P{Xl - anJ} + ﬂ(l/ﬂ«), j"—: 1, o 1k-
j .
TFherefore the joint ¢.f. can be written as

k - k
{exp[—in~° Y tiP{Xy € knl j}](Z(exp[in*étj] ~ 1)P{ Xy € k,T;)
=1

i= j=1
+0(1/n) +4(n"2s))}"

ko k
= {exp[~inT?) t;P{X, ¢ kn;})(Ba(n %) explin™ ) t;P{X1 € kalj}}
-- =1 =1 | |

o 1+ éy(n-%/z_s) +o(1 /n))_}"--
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Since ¥(n""%s) = 1 - (1/(2n))s' L(po)s + o(1/n), explin-* ChitiP(X € ko)) =
1+0(1) and 8,(n~%) =1 + o(1}, the c.f. is equal to

{Bn(n™t) + (1 + o(1))(=(1/(2n))s'I(pg)s + o(1/n))}"
(Bu(n™*8))"(1 = (1/(2n))'I(1p0)s + o(1/n))",

which converges to ((t) exp[—(1/2)8' (0 )s], This completes the proof, O

Asymptotic properties of Bayes estimates can now be obtained using the general
results of IH. The statement of the result is exactly same as Theorem 2.3.

4 Discussions

In the definition of singularities, it is assumed that o lies strictly between 0 a.ﬁd
1 (first and second type} or ~1 and 0 (third type). It is wéll known that the
case o > 1 corresponds to the regular situations. The boundary case = 1 leads
to the “almost smooth” family (described in Example 3 of Section 1. 2); the proper
normalizing factor in this case is (nlogr)~Y/2 In presence of an additional “regular”
paramter ¢, this case can be treated in a manner sunﬂar to that in this chapter |
under appropriate assumptions, |
In the present chapter, we have considered a mul.tiparamter family of densities
involving two different kinds of parameters & and ¢ with different normaliﬁers The |
LRP turned out to be a product of two 1ndeper1dent processes — one involving the
normalized parameter (u} corresponding to & only and the other involving that {v)

corresponding to ¢. As a consequence, we have the follwing results:
(1) The joint posterior density of n 1/{1+2)(g - 6p) and n!/?(yp f,an) given the

observations X1,..., X, converges weakly {as a random density on R x R%) to a

random density which is of the product type with probability one. Moreover, as
random functions, the two factors are independent. (See Theorem 3.3 of Chapter

L) - - o _
(2) The Joint asymptotic distribution of the nprma.lized':version of the Bayes

estimates np/(t2)(8, — 6) and n!/3(5, — o) is of the product type if the loss

function is of the form |
. l(ﬂ.‘v, y) = ll(m) +lg(y).

In other words, the (normalized) Bayes estimates are asymptotically independent.

89 -



Smith (1985) obtained the joint asymptotic distribution of the maximum likeli-
hood estimates (or corrected MLE's) of 8 and ¢ which also turned out to be of the
product type. | -

In view of these observations, we again note that the estimation problem of ¢
and ¢, when considered together, are asymptotically independent in the sense of
Section 1.6.

In Chapter 2, the same phenomenon was observed in the context of multi-
paramter discontinuous densities. Thus we may expect in general that in presence
of two kinds of parameters with normalizing factors of different orders, the limiting
LRP can be expressed as a product of two independent processes as above. As
a consequence, the estimation problems of & and ¢ would then be asymptotically

independent.

90



Chapter 4
Expansion of Entropy Risk: Reference Prior

1 Introduction

Let X1, X2,..., X, be independent observations each having a distribution P with
" a density f(z;6) with respect to a fixed dominating measure where 6 € 8, an open
subset of R, Consider a prior on © having a density =(. ) with respect to the Lebesgue
measure, Lindley's (1965) measure of information I{m; X™) in X" = (X3,..., X n)
about 8 is given by the average relative entropy or Kullback-Leibler distance between
the posterior ditribution of & given X" and the prior m (see Sec. 2). This measure
is also equal to the average (with respect to «) relative entropy distance between
the joint distribution of X given & and the marginal distribution of X™ and indeed
is the Bayes risk when one estimates the density of X™ given 8 using the entropy
loss (see Aitchison (1975)). - '

In Section 2 of this chapter, we obtain an asymptotic expansion of this Bayes risk
(or information) I{m; X™) for a fa:mily of nonregular cases. Since such an expansion
leads to a posterior convergence result in the entropy distance which in turn implies
L}-convergence, we restrict our attention to the case which, by results of Chapter
1, is essentially the only case where a posterior convergence holds. Our treatment
is similar to that of Clarke and Barron (1990a, b) who obtained an exj:ansiﬁn of
the entropy risk for the regular cases. Results similar to those of Clarke and Barron
(1990b) were obtained earlier by Ibragimov and Has'minskii (1973). For extensions
to non ii.d. cases, see, for example, Polson (1988). Rissanen (1986, 1987) obtained -
certain related results, |

The reference prior method for development of noninformative priors was ini-
tiated by Bernardo (1979) and developed further in a number of papers including
Berger and Bernardo (1989, 1992a, b, c), Berger, Bernardo and Mendoza (1989),
Ghosh and Mukherjee {1992) and Chang and Eaves (1990). Bernardo (1979) con-
sidered the measure I(r; X™) as a measure of information in X" about § and argued -
that the larger the measure, the less informative is the prior. The Tﬂfemﬂﬂe prior is
thus defined as a 7 that maximizes this measure (in an asymptotic sense) Smce this
measure is also the Bayes risk with reapect to the entropy loss, maximizing I(m; X "’) |
- would lead to an (asymptotically) least favourable 7 and therefore under I‘Baﬂﬂnﬂble
conditions, the corresponding Bayes estimate is (asymptotlcally) minimax. Also,



the reference priors usually have the property that the corresponding procedures
match with some standard frequentist procedures upto a certain order,

In Section 3, we use the asymptotic expansion obtained in Section 2 to find a

prior that maximizes I{m; X™) in an asymptotic sense. Explicit forms are derived
in some important examples,

2 Expansion of Bayes Risk for Entropy Loss

Let X1, Xs,... beiid, observations with a dlstnbutmn P) having a density f(m g),
0 € © where O is an open Interval in R. We shall occasionally abbreviate P.g as B,

We assume that the densities f(x; 6) satisfy the fnllowmg conditions:
(A1) Uniformly on compact subsets of O,

lﬁﬂi@(@ 0+ h) >0, a_:» 0,

where 73(0, 84-h) = [(f1/%(x;60) — f1/%(x; 64 h))?dz is the squared Hellinger distance
between f(.;6) and f{:; 8+ k).

(A2) The density f(a; ) is supported on an interval .5'(19) [a1(8), a2(8)), where
it is possible that a;(f) = ~o0 or a2(8) = 00, but not both. If an endpoint is finite,
f(; 0) has a discontinuity at that point. In the region a;1(8) < z < a2(8), flz;8)
is continuously differentiable in # with derivative f'(z;8). Moreover, S(6) is ei't_her
increasing or decreasing in 6. o | |

(A3) If not infinite, @;(f) and ag(f) are continuously differentiable in & and
a;(60) #0, k=1,2. g |

(Ad) The limits

7
p(0) = fim, flzi ) m) %fxi?ﬂ)f(x’ )

exist Y0 € @, and the above convergences are uniform on compact subsets of 6.

Moreover, p(6) and ¢(6) are continuous in 6.
(A5) The function f|f/(z;6)|dz is finite and continuous in 6, o
(AB) The functions p(6), 9(6) and [|f'(z;6)ldz have polynomial majorants.

(A7) As [uf — oo, for some ¥ > 0,

ff‘f”"(a:, )flf”(:c, 0+ u)dx < B(f) !ul""'

where B(8) is bounded on compact aubsets of ©.
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(A8) On the set a1(0) < 2 < ag(0), log f(z; ) is twice continuously diﬁ'erentiaﬁle
in 9, for any @ and there ig a neighbourhood Ny of € such that

tseulz\(ﬂg/ﬁtz) log f(z;1)] < Hy(z),

where EgHy(X)) is finite and continuous in 6.

We restrict our attention to the case where S(8) is clecreasing;. treatment. for
the other case is similar, Let X1, < '+ £ X,y be the order statistics based on
X1,.0.,Xn. We define a random variable W, by |

Wa = min{ay" (X1), ay" (Xnn)}

(The first term is ignored if a;(f) = ~00, and the second term is ignored if a3(f) =
00.) Note that Xy, | 21(f) and Xy T a2(6) a8, [P, and hence for almost all
samples, W, is defined for all n, sufficiently large. Now the likelihood function |
p* (X 0) = [Tk f(X5;0) s positive if and only if § < Wy, Also define ¢(f) =
Eo((8/60) log f(X1;8)) and observe that

c(6) = a (O)p(6) — a5(0)a(6) > . 2.1)

Let oy = oy (0) = n(W;, — 0). We make one more asSumption.

(A9) For any compact subset K of 8,

sup sup Fyo, < o0o.
feK n2l

We shall give useful sufficient conditions for this assumption at the end of this

section,
Let m(0) be a (proper) prior density on ®. The Lindley’s measure of 1nfu:;ma—

tion I(m; X™) is defined to be the expected Kullback-Leibler distance between the

posterior and the prior, i.e,,
Km; X™) = H(m) ~ Hxn(m),

where -
H(ﬂ') e ]ﬂ(ﬂ) log*rr(ﬂ)d@, |
HX“(ﬂ) ] EH(Q‘X”)! o _
H@OX") = - fqr(f?lX ") logm(flX ")

and 7(6]X™) stands for the posterior obtained from w(ﬁ)

We shall derive the following theorem whlch is t.he main reault qf thls sectmn B
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THEOREM 2.1. Assume Conditions (A1)-(A9). Let K be a compact subset of

O and n(6) be a proper prior which is positive, continuous and concentrated
on K. Then as n — oo,

I{(m; X™) = log(nfe) 4+ L 7{6) li;g(c(ﬂ) [n(6))d8 + 6(1). (2.2)

The proof of this theorem will be a long one and we shall break it into several
parts, We shall show that

liminf{I(m X") —logn] > -1+ /K (9) log(c(8)/n(6))d8  (2.3)

oo

and lim sup[I{m; X"’)-—lggn] < .-—-.1+ ./K 7(6) lngtc(@)/ﬂ(ﬁ))dﬂ. (2.4)

n-—oo

We first establish (2.3), the proof of which is much easier than that of (2.4), We
observe the following entropy maximization propefty of the (negative of) exponen-
tial distribution (see, e.g., p. 217 of Rao (1973)).

LEMMA 2.1, Let § be the class of all densities on (~00,0] having ewpectation
—, 11> 0. Let g(z) = p~texple/ulx{z < 0}. Then for all f¢ S,

f( )log f(z)dz < - fﬂm)logg(m) o (25)

Proor. Clearly g € §. Since f__m f(m)log(f(:’t:)/g(m)).dm >0, f_or any f € §, we

have

- [ita)tog flelds < - [fta)ogate)is
' = logu+l.  (26)

But — [g()log g{z)dz = log p + 1, which proves (2.5). 0
REMARK 2.1. An analogous version of Lemma 2.1 for densities on the positive half

line is also true.

Let m,(z") = Jp™(«"; 0)7 7(8)dB be the ma:rglnal density of X*. The fnllowmg
result is an important step in the proof of Theorem 2.1, a.nd is also of interest in its .

own right. |
PROPOSITION 2.1, Under Assumptions (A1)~(AT), .
§ .
() log{ma(X")/p"(X"; 0)) + logn + log(e(6) /w(6)) — elf)on = O
(il) n(B(t[X") ~ ) % —1/c(0), |

where t stands far a dummy variable for the pammeter
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PRrOOF. By the general results derived in IH (Ch. V),

pM(X50 +u/n)[p™(X"0) = exple(O)ulx(u < 0y} + 0p(1), (2.7)
where the convergences are uniform in |u| < H for ény H>0.
Now
pH(X™60+ufn) o
f|*.rr(0 + ufn) G ) ) ~ 7(0) exple(P)ulx{u < 0, }du

o BME™ 0+ u/n)
< -[ulﬁff |m(60 + u/n) — w(0)| OB M du

p"(X";6+ u/n)
0
* |u|5Hﬂ() pH (X" 0)
(X0 +uln)
0 X"
+f|u|>rfﬂ( +u/n) pH{X"™;0) e

-+ . m(0)exple(Qulx{u < on}du. (2.8)

Let ¢ > 0 and 6 > 0 be given, We can get H > 0 such that P{o, > H} < §/4 and
(1(0)/c(0)) exp[~c(0)H] < &/4, Thus the last term is less than &/4 with probability '_
greater than 1-§/4. The third term can also be made less than ¢/4 with probability
greater than 1--6/4 by Lemma 1.5.2 of IH, provided H is chosen to be large enough.
Now, for such an M, choose n large enough so that the first two terms are less than

e/4 with probability greater than 1 — §/4, by virtue of (2.7). Thus

- exp[c(ﬂ)-ﬁ] x{u < op}{ du

fir@ 4w/ EELIEN ) pfetbetu <ot Fo @)

which also leads to the posterior approximation:

ﬁw(ﬂ +u/m)pt (X" 0+u/n) (0) exple(8)(u - aullx{u < o} Ry 2. Dj

LN S A Y o

nmy (X 0)
From (2.9), we immediately have

(X /(X% 0) - (rO)/ e oxple@an] B0 @)

which is equivalent to (i). Part (ii) is proved using a dﬂﬂmpmiﬁiﬁn similar to (2.8).. .

[]
REMARK 2.2. An almost sure version of Proposition 2.1 can also be obtained under
some further assumptions, see Samanta (1988, Ch. 3).
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We now prove (2.3), Let v = n(t — Wo). T hen the posterior density of v is
mv)=n" i (Wn +v/n),

- where 1, is the posterior density of t. Note that n!(v) is concentrated on (-0, 0].
Thus I{m; X™) is equal to

- [ (@) logn(6)d8 + [ma(a") [ ma(6)log ma(6)dds"
~ [ @) 1og(@)a0 + frn(a") [ na(o)logn +log 1 o) docs”
— [ @) togm(@)ds +logm + fma(ar) [ (o) log (b

2 - wa(ﬁ] log 7(6)dd + logn — fmn(:n“)(l +log B(—v|X™)dz"  (2.12)
by Lemma 2.1. By Propogition 2.1 (ii),

1

B(—u]X™) =4 (c(8))~*

Further, E(—v|X") = n(W,, — Bt|X™)) = o, — n(E({|X™) — ) (t is a dummy
variable for the parameter) is uniformly integrable by (A9) and Theorem 1.5.2 of
[H, (Here the uniformity is also with respect to & belonging to compacts) Hence
log E(—v|X") is uniformly mtegra,ble from above and so

lim inf(J{m; X™) - lﬂ-g(n/e) + fKﬂ(ﬁ) log w(6)d8)

n—oo

> —limsup K*ﬂ'(@) ﬁﬁgE(ﬂlm")p"(m";G)d:n"dﬁ

> - fKﬂ(e) log(c(6))"1d8 = ./.K*rr(ﬂ)hlog (6)d8, @.13_)

which is equivalent to (2.3).

We shall now prove (2.4). Fix a 6 € © and let

Ry = ~log(ma(e")/s(a"0)) = logn,
Tﬁn(ﬂ) "'-'_K(P mn) .lﬁgn=EaRm |
WO = log(e(d)/n(8) -1 )

where K(Py';m,) stands for the Kullback-Leibler infnrmation number between the

two probability measures Fy and m,,. Note that e
Im X" = f 0, (8)(9)d8. @)
The proof of (2.4) follows from the following result:
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LEMMA 2.2. Under Assumptions (A1)-(A7), we have

(ﬂ) hmﬂupn——lm leﬂ(g) < ‘l,b( )
(b) 'qbﬂ(ﬁ) is umfarmly dominated by an integrable function on K from

above.
The following result will be used to prove Lemma 2.2,

LEMMA 2.3, Let 8 € 8., Then under the true parameter 0, R, is uniformly
integrable from above, i.e., there exists a uniformly integrable sequence of
random variables R], such that R, < R, n 2> 1.

Below, we need the following notion purely for technical reasons.

DEFINITION 2.1, Let Pand Q be two probability measures on a measurable space
(£2, A) and let h stand for the Radon-Nikodym derivative of the absolutely contin-

uous part of P with respect to Q. The modified Kullback-Letbler information
number K*(Q; P) of Q with respect to Pis defined by

KR =~/ log h(w)Q(dw)- '

{h>0}

Unlike the usual Kullback-Leibler information number K(Q, F), K "(Q, P) can.
be negative and hence cannot be viewed as a distance measure. We do not claim any
statistical significance of it, Nevertheless, it has the.fﬂ}lnwing obvious but important -

property, which we need later:
Let P* and Q™ be two symmetric product prabablhtles Then

K'(Q% P") =nK"(Q; P)(@{h > 0})"". (215) |

PROOF OF LEMMA 2.3, For any A > 0,

— log[(1/p"(="; 6)) / p™(z"; tﬂ(t)dt]—lngn

M 9+u/n) . u/n)du . 2,16
: ﬂlog[/[—Aguﬁan(A)} ™ 0) @+ fﬂ') | @

where 0,(A4) = min{oy, A},
Now applying Jensen’s inequality,

~(A+04(A))! f{ ooy B O F U/ (@ 0))du

— log(A + ou(A)) ~ loginf{n(8 + w/n) : ul < 4}

R,

the RHS of (2.16) can be bounded by

(2.17)
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The second term in (2.17) is uniformly bounded and the last term converges to
log ©(8) > —oo. Hence it is enough to show that the first term is bounded by an

uniformly integrable function from above. Now
' Pﬂ
log(p™(X ™0+ u/n)/p"(X";6)) - e(Q)ulx{u < o} - 0 (2.18)

for any fixed u. Therefore, by Fubini’s theorem, the abave convergence also holds
in the joint probability (v x P}) where v is the uniform distribution on [—4, 4], So

it is now enough to show that
[log(p™(X™; 0 + u/n)/p"(X";6)) — c(O)ulx{u < o}

is uniformly integrable with respect to v x Fg. Indeed,. we then have

T m."r; 0 . T |
//-—A A | log D (pu(mr:l.—;;/n) — c(0)ux{u < o, }dup"(z™; #)dz™ — 0,

which implies that

p(x™; 0 + U/n) __f
f[-—A Al o p"(z™; 0) X{t < o} du*_ A A e(@)ux{u < on}du

is uniformly integrable with respect to P*. Since the last term is always so, the

result will then follow. Now

(- log(p™ (2" 0 + u/n)/p"(z"; 0)) + (Q)ulx{w < on}

_ pM (" 0+ u/n) p"(e"; 0+ u/n)
= 2[~log( (" 0) ) ( (™ 0) )12 = 1x{u < ou)
"[2(P (f)ﬂ(i:;‘ﬁ:;/n) )1/2 + e(Mu — 2x{u < on}. (2.19)

The second term has a bounded second moment and hence is uniformly inte-
grable. the first term is nonnegative and being a continuous function of the nor-
malized likelihood ratio, is itself weakly convergent with repect to £} for each fixed
u, and hence is also with respect to (v x F}')-probability. The weak limit here is

(—e(0)u + 2 exp[c( Ju/2] - 2)x{u < o},

where o has an exponential distribution with parameter ¢(?). The expectation of
the limit is

(24)1{~ f o f O)ux{u < 8}(0) oxp|-c(6)s]dsdu
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+2 f ol f exple(6)u/2x{u < s)e(8) expl—c(8)s]dsdu
+2 -/['—A ado / x{u < 8}c(d )exp[—-c(ﬂ')s]d.sdu}
= (24)7Y fl_ (—c(6)u + 2 exple(B)u/2] - 2)du

(—c(8)u + 2 explc(d)u/2] — 2) exp[—c(f)ujdu}. (220)

IU A]
By a well known fact, the uniform integrability venﬁcatmn now boils down to show-
ing that the limit of expectations coincides with the expression in (2.20). Fix u > 0
and note that expectation of the first term in (2.19) given 9 is equal to

9 n R . n
»/p"(m";ﬂ+u/n)p0p (.T. ’ )]Dg(p(z: :9'1'1&/11)/}] (m :BJ)dm

+2 [0+ u/n)y " 0)Pd” - 2By (o, > u)

az(6)

‘ — . rt-:-l -
flz; 0)dz >/a;~{ﬂ+ufu) flz;9)dz .

| ai(8+ufn
nIC* (6,0 + u/n)[1 — f ok
ay (8)

+2[1 = 13(6,8 +u/n) /2" - 2Py{0, > u}
n(—e{6)u/n+o(1/n))(1 - e(@)u/n)*"
+2(1 - (B)u/(2n) + o(1/n))" ~ 2Pp{o > u}.

}

i

This expregsion converges to
~c(B)uexpl—c(f)u] + 2 exp|~e(8)u/2] — 2exp[-c(B)y]

and the convergence is uniform in u belonging to compact subsets, Similarly for

u < 0, the limit is | |
~e(f)u + 2 exp[—c(B)u/2] -

and the convergence is uniform on compacts again. Clearly, the last two statements

are gufficient to imply the desired conclusion. O

PROOF OF LEMMA 2.2, We first prove Statement (a), As a cons&queucé_ of

Proposition 2.1, | - | .
- By, 5 log(c@)/n(8)) - ()0 (221)

where ¢ has an _expdn:ent_ial distribu_tion with parameter c(&). By Lemma 2.3, we

have o - |
IlnL a;p Ean < lﬂg(ﬂ(ﬁ)/ﬂ'(ﬂ)) -~ :::(B)Ea .
. | = -]ﬂg( (9)/*:r(6)) -1 (2.22)
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as desired,
It remains to prove Statoment (b). From (2.17),

W = <A“I/X— soniay? 300 .p( HM/n)ldu

(2", 6)
—log A - log inf{n(t) : t € K}. - - (2.23)
If p"(2"; 0 + u/n) > 0, i
n H; 0 - " -
g EETEAN (o 3(6/08) g A5
HO®/30) ()06 log (i #)
- §==] . _ - -

where 0* lies between 0 and 0+u/n, Consequently by (AB), for all sﬂfﬁciéntly large' |
n,

pn "; +u/n) lf! i n
[log ==y < (lul/n) }jl — 0 /an) ) Hife)

which yields
Y (0)

A

e n, I ( ; +'Hr/ﬂ) dﬂ:ﬂ
~/[--A.d] ‘/I-;"(:'ﬂ"iﬂ+u/u}>ﬂp (.’-'J ,9)[ Og n( N 9} [ du‘
~log A ~ loginf{n(t) : t € K} S

‘/i‘-*d,zi] v ﬁf’(&‘; 0))|de du .
+(1/2) / 2 fﬂa(m) (as6) e

-Ad
~log A — loginf{n(t) : t € K)
24 1Y & 0)lds + 24° [Ha(o)s (a3

~ log A ~ lﬂginf{ﬂ(t) e K},

TAN

IA

By assumption, the terms are continuous in & and hence bounded on cnmpacts
Thus (b) ls proved, O | -

From Proposition 2.1, we get the L!-convergence of the ppaterior, Le.,
. | - o
|, Ima(ulx™) - co)expletopidn %o

where y = n(t ~W,), and ;. s the posterior density of v, Thls can bﬂ equivalentl}’ o

written ag | o o
/0 [Tt X") nc(ﬁ)exp{nc(ﬂ)(t W,;)]]dt—-ro - (52.25)

We shall now show an information theoretic version of (2, 25)
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THEOREM 2.2. Assume (A1)-(A8) and further suppose that
(A9) ,(0) is uniformly (in n and 8 in compacta) mtegmble

Then
_/ / / (mn(t|2™) log(m, (2"} / pu(t; ,2™))dt) p™(™; )fr(e?)de_.,. 0 (2.26)

where p,(t; 0, z™) = nc(6) exp[nc(ﬂ) (t - W,)j.
ProOF, The expression in the right hand sidel of (2 26} is equal to

(m; 2" / m(6) log n{6)dd ~ logn - /logc(a )(8)d8
f / (E(tle™) — W,)e(@)p"(&" ;Q)dm“?r(ﬁ) . ' (2.27)

By Proposition 2.1 (ii) and (A9, the last term converges to one. Using Theorem

2,1, we now get the result. O

At this stage, it should be clear why we considered a particula,r case of the .
general set up of IH (Ch. V) for discontinuous densities, The reason is that such an

expansion leads to posterior convergence in entropy and hence also in I!-distance.
By the results obtained in Chapter 1, the case we have considered is essentially the

only case where a posterior limit can be obtained.
As we have promised, we now give sufficient conditions for (A9} to h{ﬂd For

the other conditions, note that (A1)-(A7) are required by the general theory of IH
(Ch. V) and (A8) is usually satisfied. __ -

PROPOSITION 2.2. Let go(v) = Py(S(8+v)). If

m - .
sup / g6(v)dv < 0, , (2.28)
gk JO - _ .
then (A9) holds. If for some 6> 0, |
ﬁup/ | ’Uﬁgg(‘!})dﬂ < 00, | | (2'29)
feK J0 |

then (A9) holds.
Proor. We shall prove only the first assertion, the second one ig similar. We

have | |
Epo,(0) = fﬂ PP oa(6) > v}dy

. ) |
/ﬂ (Po(S(8+v/n)) dv
| 0 B i
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Now n(ge(v))* < ge(v) if and only if go(v ) < n~H0=1) which is true if and only if
v > ¢, where gy(c,) =n ~(n-1), Clearly, ¢, — 0 since n~ /-1 1 Thus

Cn
Ego,(6) < /ﬂ n{gg(v) (v))"dv + /0 9s(v)dv. (2.31)
By assumption, the last term in (2.3%) is finite Wwhereas the first term is
fn /al(ﬁ{-u n o
. ' n
| " f(z; 6)dz) du. | (2.32)

Find ¢ > G and § > 0 such that

ﬂlgff; aj (ﬂ){;gfﬂl (9)46 f(m; 9) >e> 0’

f
ﬂlgff az(ﬂ)—gggf:ag(ﬂ) (fﬂ, 9) 2 &>,

inf inf ¥ >
aeméﬂc:a aj(+u) 2 >0,

ol (@) 2 e >0

this is possible by the assumed conditions in the set up, Then the term in (2.32) is

less than . .
_/0. (1 — 2e*u/n)"du < f exp[—2c°uldu < oo,
0 S

which proves the resuit. O

REMARK 2.3. The condition in (2.29) is satisfied clearly if © is bounded above. In.
the very important case when a;(f) =8 and a3(6) = 00, if we have supgcy Ep(X; —
0)1*4 < oo for some 6 > 0, then (2.29) is satisfied. This is simply by

go(v) = Bp{X;1 — 0 > v} v M Ey(X; - 6)!1%, 033)

3 Referenfze Prior

Reference priors are proposed by Bernardo (1979) as noninformative priors which

can be thought as a reference point against which any par tcular subjective prior
belief can be judged. These are obtained by maximizing the expected Kullback-

Leibler divergence between the posterior and the prior in an asymptotic sense,
However, Bernardo’s original suggestion needs to be slightly modified for techmpal

reasons and we shall follow essentially Ghosh and Mukherjee (1992).
For any (possibly improper) prior n(8) on 9 and K co cnmpact we shaﬂ write

’*T|K for the proper prlar defined by

|k (A) = n(A )/ﬂ(K)
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DEFINITION 3.1, A prior density #* on © is called a reference prior if
(i) m* is positive and continuous in ©.
(ii) for all compact K C © and for all prior density 7 positive and continuous in

8, we have

. Xn*lx) 2 )
where J(q) = [ 9(0) Jgg(c(ﬁ) /7 (6))d8.

Condition (i) in Definition 3.1 comes from Bernardo's (1979) motivation ('th'e.
present form is suggested by Ghosh and Mukherjee (1992)). We a’.gree that the first
one ig included for technical reasons, nevertheleas, it is an impartiality re-:jﬂirement.
One would hardly like to call a prior as a reference prior if (i) is not satisfied.

As is immediate, the prior #*(8) « ¢(f) is the reference prior. (In case S(6) is
increasing, 7*(8) o |c(8)].) In the particular case of location family f(z; 6) = f(z—~f),
f € R with f(0+) > 0, f(0—) =0, and so ¢(8) = f(0+). Consequently, =*(6) is the

improper uniform prior as it is expected. In case of truncation model

f(z; 6) = 9(2)/G(B), =2 ¢
where ¢ is a smooth positiﬁe density é.nd Glz) = [ Q(y)dy; we have
c(8) = 9(6)/G(6).

Consequently, the reference prior w*(6) is proportional to the hazard rate for the

density g.

103



Appendix A

LEMMA 1. For an f € LY(R?) and z € RY, let f, stand for the L' -function

deﬁned by fa(y) = fly — ). Then the mapping (z, /) = fz Jrom RS x LI(]R'-") is
continuous in = and isometry in f, and 30 is jointly contmuoua |

For a proof, see Rudin (1966, Theorem 9.5, p. 183).

LEMMA 2. Let P be the space of all absolutely continuous probabilities on R
equiped with the tolal variation distance. Let (0, A) be a measurable space
and £:Q — P be a map, Then £ is measuable if and an!y if, for all A € Be,

the map €4 defined by |
éalw) = E(w)(4)

18 Borel measurable.

ProOF, Since @ — Q(A) from P — R is continuous, the only if part is trivial.
For the if part, let 7 be countable field generating Be Then for any @, Qg € P

the total variation distance |[|Q@ — Qo satlsﬁes
1Q — Qoll = sup{IQ(A) - QU(A)|'= A€F}

by a well known fact in measure theory (see, e.g., Theorem 13.D of Halmos ( 1974)).

Now

{w: f{é(w) - Qoﬂ‘:f‘}— n{iv’ H’A(w) - Q(A)) sr}eA N

AcF

by hypothesis, which completes the proof. (J

LEMMA 3. Let P be the space of all absamtely continuous probabilities on

T and Q € P. Let MQ) = {Qz : 7 € RY} where Q, € P is defined by
Q::(A) = Q(A ~ z) for all A€ B%. Define a map ¥: Mm(Q) ~ Rd by q,a(Q,) =g
Then 9 i3 a homeomorphism and M(Q) i8 closed in P, .

d
- Proor. First let us check that ) is well deﬁned If not, t.here are 1,%2 € RY,
2y # z9 such that Qs = Qg+ Put § = #1 — 22, Then Q(A) = Q(A + 6) for al

A € B2 If A is bounded, by repeated application, we have Q(A) (A+ru5) — 0,
S0 Q(A) = 0 for all bounded sets. This' contradicts the countable additivity of Q

‘and so 1 is well defined, and at the same_tlme it is a bijection.
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To show % is continuous, let Qg — Q. We have to show that z,, — z. First
note that , is bounded, If not, let {m} be a subsequence of {n} along which # it
converges to plus or minus infinity, Then for any bounded set 4 € 5,

Qz(A) = lim Q(A Tm) =0

m—+00

which is again a contradiction. By Lemma A.1, ¢! : R* — P is continuous, So
all the subsequential limits of {2,} must be equal to z. Thus &, ~ z, and so 1 is

continuous, and so a homeomorphism. |
The fact that M(Q) is closed in P follows from essentially the same arguments.

THEOREM 1. Let &(t) dbe a real valued random function defined on a closed

subset F' in R4, Assume that £(t) és a measurable and separable process and

there exist numbersm > a > d and a function H ; RY — R bounded on compact -
sets such that for all @, h € R® with z,z +h € F, we have

Big(=)™ < H(z)
Bl¢(@+ k) - &))" < Hz)[[h]*

Then with probability one, the sample paths of £(t) are continuous on F.

- Moreover, set

w(8;€, R) = sup{l&(z) — éW) : =,y € Elizll lyll < R, |z — yl| < 6}.

Then

Eﬂd(tﬁ E, R) < BU("gﬁlpRH( ))1/mfadfm6(ﬂ:--t.f)fm

where the constants By depends on m,a and d anty.

For a proof, see Theorem A.19 Df IH,

THEOREM 2. Let &,(t), n 2 1 and §(t) be real valued measurable functions
~ defined on a compact set F € R? and w(t) be o measurable function on F.

Assume that the followmg condttwns are satzsﬁed.. |

(1) suppyy B([fplw(t)lén(t)ldt) < oo.
(2) There exist H,a >0 such that aupﬂ;,.l E|E,.,( ) ~&.(s)] < Hijt — 8%,

(3) Finste dzmenszonal dzstmbutwns of £n(t) converge fo those of &(t).
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Then for any t,...,t, € R,

(6t nlte), [ I62)) S (G, (), j w(t)e(t)de),

[ [ wmeea

The proof is a minor modification of that of Theorem A.22 of IH.

In particular,

THEOREM 3. A subset ' C LI(R‘*) has a norm—compact c!oaure if and oniy if

(a) sup{|[f]| : f €T} < oo,
~ (b) limyg—o sup{fiflz +y) - f(y)ldy . fel} =0,
(¢) limy-soosup{fjy>a f(Y)ldy: f€T} =0,

For a proof, see Dunford and Schwartz (1957, pp. 298-301).

- COROLLARY 1. Let &,,n > 1 be a sequence of random densities on R®. Then
{¢n.} s tight if and only if given e > 0, ?7 > 0, there exist M,6> 0 andng > 1
such that | S

(a) P{ﬂfn(ﬂ} +y) - Eﬂ(y)]dy > e} <1 for all ]|m|| <4, " > no
(b} P{fjsre Enlv)dy > €} <7 for alln 2 no.

COROLLARY 2. Let&,,n 2 1 be a sequence of mndﬂfﬁ densz'ts'e& on R% 3a't£3fy£ng'
the conditions of Corollary A.l. Let ¢ be a random density such that fur all
A A € Bd |

([ ez, |, & (i) ([ dais. ] (o)

Then as random elements in LY (R?), &, converges to E weakly
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Appendix B

Conditions (IH) have several implications regarding the asytﬁptotic' properties
of the Bayes estimates and the MLE, These results are derived in Sections 1.5 and -
1.10 of IH. Here we state the main results alongwith the numberings of [H; details

and proofs are available in IH (Sec. 1,5 and .10). We continue the notaions of

Chapter 1,

THEOREM 1.5.2. Assume Conditions (IH 1) and (IH 2), the pm'a.r' mell.
and loss 1 € & (however, continudty of | is not needed) and let {8,) demte the

Bayes estvtmates. Then for any N > 0

lim BYB (i@ - o)) > Hy =0. o W

H""‘ m

REMARK 1. It follows from {0,} Is weakly consistent for 6y, {p:1(8, - bo)} (ie.,
the sequence of normalized Bayes estimates) is stochastically bounded and all its

powers are uniformly integrable. Further, if 3 02 fenll® < 00 for some 8 > 0, then
{8,,} is strongly consistent also (pravided almost sure canvergenca is meamngﬁii[) |

A main step in proving Theorem L5.2 is the following lexmna (Lemrna. [.5.2 uf -
IH). Since we have slightly changed the conditions of [H and this lemma gives 2 -
very important estimate which is needed in many places in this wqu, we briefly
sketch the proof, referring IH for the details. | S

For this, define Q,,(H) = [y 1> y én(t)du and set gin(y) = ga(0;.. ., 0, ,0,...,0),
y > 0, where y occurs at the ith component, i =1,...,d. | o
LEMMA 1.6.2. For anym 2 0, |
pm H"‘E@;(H) .
00 o

Proor. We prove the result only for 7 = 1, the gener&l case can be easily
derived from this. It is enough to prove the result where the Euclidean norm |f - |
is replaced by the 1%-norm |- | (and consequently the definition of Q,,(H)) WB see "

that there are constants B, & > 0 such that for each @ = 1 N

P{I",,(H) > exp[_.bgm(ﬂ')]} c{_ B(l +H3) EKP[-—bgm(H)]} _I _- (3) -
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where [in(H) = [igep<n +.1}Z,,.,_('L.ﬂ)du,.. Indeed, this follows essentially from the

arguments given by IH. Rest of the proof now follows from the obvious modifications

~ of the steps of IH.

Tﬂ.ﬁnd out the asymptotic distributiﬁn of Bayes estimates, define
() = 2/ [Zo)d)
W) = fits~ulé(wdu

and assume that the random function #(:) attains its minimum at a unique point -

7 = 7{fp). This assumption is rather miid; any convex loss with a unique minimum
satisfies it. One such example is I(u) = ||u|?, p = 1. The limiting distribution is -

given by the next result.
THEOREM 1.10.2, Under Conditions (IH), we have
1,7 d | |
P (g'ﬂ- o 90) =T ' (4)
and for any continuous function w with a polynomial majorant

im By, - 00) = Bw(r). )

[ o d &0

Moreover, diam(A,) 2 0 where A, denotes the set of all normalized Bayes

estimates with respect to prior n and loss .

THEOREM [.5.1, Sup;iﬂsa the LRP Z,(.) has continuous sample paths and
Conditions (IH 1)’ and (IH 2) are satisfied. Then for any N 2 0 we have

tim HY Pl B, ~ o)) > H) = 0. (8

n—00

REMARK 2. It follows from the above estimate that {8,} is weakly consistent for
6o, {w; 1(8,,—8,)} (i.e., the sequence of normalized MLEs) is tight and all its powers
are uniformly integrable. Further, if Y oo wnll® < co for some s > 0, then {6,} is
st.rﬂngly consistent also (provided almost sure convergence makes sense).

THEOREM 1.10.1. Assume Conditions (IH), suppose that Z,(:) and Z(')

has continuous sample paths and Z() attains its mazimum at a unique point

I ]

U. Then as n — o0 ' |
Ry d |
0, (0, —6p) — B . B ()
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and for any continuous function w with a polynomial magjorant,

lim Bu(y; (B - ) = Bu(a). ®

n—o0

Purther the diameter of the set of all normalized MLEs converges to zero
in probability. |

REMARK 3. Let C(RY} be the space of all continuous functions on R? with the
topology of uniform convergence on compacts. Fix any sequence {K,,} of compact
sets increasing to R%. For f € C(R%) let fn denote the restriction of f to K.
By the canonical identification of C(R%) with a closed subset of the prroduct space
1%, C(K,,) through the mapping f + (f1, f2,...), it follows from the proof of
Theorem 1.10.1 of IH that the process Zn(-) converge to Z(+) in C(R%) and Z( Ye
Co(R%) (the class of functions in C(RY) vanishing at mﬁmty) with probability one.

This fact may have some ‘independent interest.
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