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Chapter 1

Introduction

Who traces life and seeks to give
Descriptions of the things that live
Begins with ‘Killing to Dissect’

He gets the pieces to inspect

The lifeless limbs beneath his knife
All parts - but link which gave them life.
Goethe

The answer to the question of life, the universe
and everything is twenty-two.
| Douglas Adams

Since the development of the electronic computer in the 1940s, the serial processing
computational paradigm has successfully held sway. It has developed to the point
where it is now ubiquitous. However, there are many tasks which are yet to be
successfully tackled computationally. A case in point is the multifarious activities
that the human brain performs regularly, including pattern recognition, asscciative
recall, etc, which is extremely difficult, if not impossible to do using traditional
computation. |

This problem has led to the development of non-standard techniques to tackle sit-
uations at which biological information processing systems excel, One of the more
successful of such developments aims at “reverse-engineering” the biological appara-
tus itself to find out why and how it works. The field of neural network models has
grown up on the premise that the massively parallel distributed processing and con-
nectionist structure observed in the brain is the key behind its superior performance.
y implementing these features in the design of a new class of architectures and
algorithms, it is hoped that machines will approach human-like ability in handling
real-world situations. |

Network models of computation have been enjoying a period of revival for quiet
some time now, from the perspective of both theory and applications [85]. These
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models comprise networks of large numbers of simple processing elements, usually
having continuously varying activation values and stochastic threshold dynamics.
The activity of these elements, ; (1 = 1, 2, ..., N ) at some time instant ¢, are
determined by the temporal evolution equation:

X4 (f) == F(EjW}jm}- (t"“l) — G ):

where, 8; is an internal threshold (usually taken as zero), W;; is the connection weight
from element j to element i, and F is a nonlinear activation function. If W;; > 0,
the synaptic connection between neurons ¢ and j is called ezcitatory; if Wy < 0, it
is called znhibitory. The activation functlon F, usually has a sigmoid form, which
may be of the following type:

F(z) = tanh(g),
a being the slope. For a= 0, F is a “hard limiting" or step function,

z; = sgn (5 W2 — 6;).
Different neural network models are specified by

e network topology, i.e. the pattern of connections between the elements com-
prising the network,

o characteristics of the processing element, e.g. the explicit form of the nonlinear
function F', and the value of the threshold, &,

e learning rule, i.e. the rules for computing the connection weights W;; appro-
priate for a given task, and,

e updating rule, e.g. the states of the processing elements may be updated in
parallel (synchronous updating), sequentially or randomily.

One of the limitations of most network models at present is that they are basically .
static, i.e., once an equilibrium state is reached, the network remains in that state,
until the arrival of new external input [8]. In contrast, real neural networks show a
preponderance of dynamical behavior. Once we recall a memory, our minds are not
stuck to it, but also recall other associated memories without being prompted by any
additional external stimuli. This ability to ‘jump’ from one memory to another in
the absence of appropriate stimuli is one of the hallmarks of the brain. It is an ability
which one should try to recreate in a network model if it is ever to come close to
human-like performance in intellectual tasks. One of the possible ways of simulating
such behavior is through models guided by non-equilibrium dynamics, in particular,
chaos. This is because of the much richer dynamical possibilities of such networks,

compared to systems governed by convergent dynamics [86, 7].

There is as yet no universally accepted definition of the term “chaos”, but the fol-
lowing working definition is adequate for our purpose [188]:
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Chaos is aperiodic long-term behavior in deterministic systems that
exhibit sensitive dependence on initial conditions.

“Aperiodic long-term behavior” means that there are trajectories which do not settle
down to fixed points, periodic orbits, or quasiperiodic orbits as time, t — co. Ape-
riodic behavior is marked by a broad frequency spectrum. “Deterministic” implies
that the system has no random/ noisy inputs or parameters. The irregular behavior
arises from the system’s inherent nonlinearity. “Sensitive dependence on initial con-
ditions” indicates that nearby trajectories separate exponentially fast. As a result,
any error in our knowledge of the initial conditions of the system will amplify rapidly,
making its behavior effectively unpredictable,

In this thesis, we present some results of theoretical and simulation studies exploring
the occurrence and utility of chaotic dynamics in network computation, particularly
in the case of networks of nonlinear devices (“neurons”) of 2 specific classes: excita-
tory and inhibitory. Section 1 discusses the biological evidence for chaotic activity
in the brain. The necessity of modeling to resolve the controversy of interpreting the
biological data is briefly outlined. Even if chaos exists, its role in the functioning of
the brain will need to be established. The possible advantages of chaos for informa-
tion processing is discussed in Section 2. Section 3 contains a brief survey of the work
done in the general area of chaotic neural networks. However, so many papers in
this area have appeared over the past decade, that any review can at best be partial.
We have stressed on work which leads directly to the model network studied in the
thesis. We have also tried to trace the “ancestry” of our model. Finally, in Section

4, the scope of the thesis is outlined.

1.1 Neurobiological evidence of chaﬁs

Evidence of deterministic chaos in neuronal systems was found within a very short
time of the emergence of the field of chaotic dynamics. Experiments on excitable
biological membranes, supplemented by physiologically plausible models of neurons
showed that chaos occurs in the presence of periodic stimulation (either chemical or
electrical). Hayashi et al [79] investigated the nonperiodic behavior in self-sustained
oscillation of the internodal cell of Nitella under sinusoidal stimulation., The analysis
of the nonperiodic oscillations revealed chaotic behavior. Chaotic oscillations was also
observed in the molluscan neuron [88]. Another group of researchers [3] studied the
self-sustained oscillation of action potentials in a model axon immersed in calcium-
deficient sea water, whose dynamics was modeled by the Hodgkin-Huxley equations.
The oscillations were analyzed by stroboscopic plots revealing both periodic and
chaotic behavior, determined by the amplitude and the frequency of the stimulating
current. The results corroborated similar studies carried out previously in squid
giant axons (for an overview, see [121] or the article by Aihara and Matsumoto in
(87]). The group of Glass and Guevara [72] showed that recurrent inhibition and



periodic forcing of neural oscillators can produce chaos and explored its implications
in modeling normal and abnormal function in neurophysiology. However, most of
the experimental work was done with the membranes in artificial circumstances, the
electrical and/or chemical stimulations being far from the physiological state. The
occurrence of chaos in equations for membrane excitability even in the absence of
stimulation was shown in [34).

After demonstrating chaos in the case of single neurons, the obvious next step was
to show it in macroscopic neural assemblages, and in particular, the brain. However,
this progression was far from simple. For one thing, the complementary approaches
of experimental observations and modeling used successfully in the case of single
neuron studies, could not be used in the case of the brain. In the absence of any
good model for large-scale brain activity, the evidence for chaos in the brain has to
be searched for in such coarse-grained variables as the EEG. One of the complicating
factors in studying EEG is the continuous presence of background “spontaneous”
neural activity, seemingly random in appearance. One has to therefore devise a
test to determine whether this apparent randomness is truly stochastic or owes its
origin to deterministic chaos. Analysis of human EEG in various mental states have
put forward several candidates for chaotic activity. Evidence of low-dimensional
chaos was found in some sleep stages [15] and in ‘petit mal’ epileptic seizures of
small duration [14]. However, any claim based on time-series analysis of EEG data
depends on the efficiency of the tests for determining chaotic activity (65, 67, 27, 138].
Such methods usually require large data sets recorded under constant conditions and
relatively free of noise. As all three requirements are hard to satisfy in the case of
biological data, the detection of low dimensional chaos in brain activity has often
been questioned [62]. The dependence of the results of such tests on the brain site at
which recording occurs and on the state of the subject (wakeful, resting, or moving)
have been shown by Pijn et al[145]. Several attempts have been made to devise new
tests which will provide unequivocal results when applied to such data sets, including
nonlinear forecasting techniques, but as yet no one has come up with an universally

accepted method.

It has been suggested that the use of chaos control techniques to suppress and enhance
aperiodic activity in brain-slice preparations [155] is a clear-cut evidence in favor
of the presence of chaotic dynamics in the brain. However, such control methods
have been shown to be effective even in non-chaotic systems [37]. The presence of
unstable periodic orbits (UPOs) in chaotic trajectories has suggested a new method,
relying on the detection of such UPOs in the biological time series. Statistically
significant evidence of the existence of UPQOs in a crayfish sensory neuron [142] have
been reported, with experimental parameters being kept in ranges typically found in

the animal’s natural environment.

Chaos has also been implicated in certain ‘dynamical diseases’ - medical problems
that have their roots in some underlying dynamical effect [89]. In the neurological
context, abnormal oscillations and complex rhythms often peose clinical problems.
There may be significant oscillation in a neurological control system that does not

4



normally have a rhythm, e.g., ankle tremor in patients with corticospinal tract dis-
ease, various movement disorders like Parkinson’s tremors, and abnormal paroxysmal
oscillations in the discharge of neurons that occur in many seizures. Otherwise, there
may be qualitative changes in the oscillations within an already rhythmic process,
resulting in waking abnormality, alerted sleepwake cycles, or rapidly cycling manic
depression. Epileptic seizures, which recur in an apparently random manner, may be
yet another manifestation of such pathological dynamics. However, in the absence
of any reasonable models of such complex neural processes, the role of chaos in these
dynamical diseases cannot be established beyond doubt.

1.2 Chaos and information processing

Even if chaos does exist in the brain, the issue of whether it plays any role in the
overall cognitive functioning of the brain needs to be looked into. The possible uses
of chaos in the biological world has been discussed in [38]. In the context of brain
functioning, chaos may have the multiple roles of generating and preserving diversity,
maintenance of network activity through disentrainment, dissipation of disturbance
and facilitating learning. All these different functions enable the nervous system
to be adaptive, and continue to function in the face of an uncertain and unknown

environment,.

The role of chaos in higher brain functions is discussed in [75]. In the context of
information processing, it would appear at first that chaos can play only a negative
role. However, the brain is not a conventional processor of information, in the sense
of classical information theory, as developed by Shannon, Wiener and others. In
the case of a highly nonlinear and interconnected system such as the brain, chaotic
dynamics might play a counter intuitive role by enhancing the robustness, reliability
and overall functionality of neural information processing. The particular case of
thalamocortical interactions as a generator of chaotic activity [129] and its possible
role for generating self-referential logic and short-term memory, were explored in

[130].
Tsuda [192] has suggested several other possible roles of cortical chaos in brain func-
tioning; |

o Interpreter for input stimuli via thalamo-cortical interactions.

¢ Efficient search mechanism in memory.

e Robust information transfer channel for periodically oscillating stimuli.

e Providing dynamic storage of long-term memory.

The work on human EEG analysis has suggested a further possible functional role
of chaos [14]. Chaos seems to increase the resonance capacity of the brain, enabling
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an extremely rich response to an external stimulus, as compared to stable periodic
oscillations.

However, the most well-known work to obtain empirical physiological evidence for
the possible relevance of chaos to brain function is probably that of W. J. Freeman.
Through his work on the large-scale collective behavior of neurons in the perception
of olfactory stimuli [51], [177], [52}, a concrete link between chaos and cognition has
been built up through a successful combination of biological experiments and com-
putational modeling. Olfactory stimuli are detected by receptor neurons in the nasal
passage. The number of receptors excited by a smell is 2 measure of the intensity
of the stimulus, while the spatial pattern of activated receptors is dependent on the
nature of the scent, On trapping molecules carrying specific odors these receptors
fire action potentials which are transmitted to the olfactory bulb in the cortex. The
bulb then transmits signals ta the olfactory cortex which, in its turn, sends informa-
tion to many regions of the brain. The test animals used by Freeman were trained
to recognize several different odors and were then subjected to smells, both familiar
and unfamiliar., EEG data was recorded by a grid-like array of electrodes placed
over the surface of the olfactory bulb. Most of the time, the EEGs showed irregu-
lar oscillations. However, when an animal inhaled, a “burst” occurred in each EEG
tracing as all the waves in the array became more regular for a brief period until
the animal exhaled. These waves, named gamma waves, had a higher amplitude
and frequency than usual and varied in frequency from 20 - 90 Hz, mostly occurring
in the neighborhood of 40 Hz. FEach set of burst recordings had a common carrier
waveform, although the average amplitude of the different recordings varied widely.
It was inferred that, as the carrier waveform changed during each inhalation, even
for the same stimulus, the information about a particular scent was not encoded
in the shape of the waveform but rather, in the spatial pattern of the carrier-wave
amplitudes across the bulb, which remained invariant over trials. On plotting the
different amplitudes of the carrier waves in different regions of a surface representing
the locations in the grid-like array over the olfactory bulb from which they were
obtained, a contour diagram was produced. This remained the same for a specific
scent throughout the testing period, However, if the reinforcement associated with
a scent was altered, then the amplitude contour map representing it also changed.
This indicated that the olfactory bulb is involved in the assigning of meaning to
stimuli. One of the early pointers to chaotic activity was the aperiodicity of the
common carrier wave in the bulb both during and between bursts, Another clue was
the sudden transitions of neurcnal networks in the bulb and the cortex from a non-
burst to a active, bursting state. These factors prompted the development of a model
for the olfactory system having cells in a network connected by both excitatory and
inhibitory synapses. Computer simulations of the model showed that it recreated
all the observed behavior of the olfactory system and, thus, was an accurate repre-
sentation of it. The network was then made to produce EEGs of extended bursts
and of inter burst activity for a longer period than is possible in actual EEGs. The




attractor ! of the underlying dynamics, reconstructed from the EEG data using the
delay-coordinate technique was found to be chaotic in nature. The primary findings
suggested that a separate chaotic attractor is maintained for each stimulus and the
act of perception consists of a transition of the system from the domain of influence
of one attractor to another. Later findings led Freeman to hypothesize that each
~ brain area (rather than each stimulus) has a chaotic attractor. A specific sensory
stimulus drives the system into a localized region within the attractor, which can be
identified with the appearance of specific spatial patterns of carrier waveform ampli-
tudes, associated with a specific stimulus. Further, the attractors themselves would
have to change as a result of new experience and continued development of the brain.

This description of non equilibrium nervous activity has suggested several possible
functions of chaos:

e providing rapid and unbiased access to a number of possible attractors, one of
which is selected dependent upon the stimulus,

e acting as a “novelty filter” by failing to converge to any of the existing attractors
in the presence of a significant but unidentified stimulus, and,

e allowing the system to escape from the existing set of attractors and add a new
response to a novel stimulus under reinforcement

Thus, according to this picture, chaotic activity is fundamental to the general process
of perception,

1.3 A brief survey of chaotic neural network mod-
els

Extremely simplified models of neurons connected in a network via suitable connec-
tion weights were known to implement various logical functions since the 1940s [124].
The subject received fresh impetus a decade and half ago due to some breakthroughs,
e.g., the identification of a class of globally connected network models with ‘spin glass’
models [126] of condensed matter physics by Hopfield [90| (see also {159]). These
developments were however restricted to networks subject to equilibrium dynamics.
Such systems converge to a time-independent solution {(a “fixed-point” attractor)
after starting off from some initial condition. On the other hand, the brain never
settles down to a steady state but appears to exhibit a rich variety of non-periodic

behavior.

L Attractor of a dynamical system is a set to which all neighboring trajectories converge. Stable
fixed points and stable limit cycles are exampies, An attractor that exhibits sensitive dependence on

initial conditions is a chaotic attractor.,



The development of nonlinear dynamical systems theory - in particular, the discovery
of “deterministic chaos” in extremely simple systems - has furnished the theoretical
tools necessary for analyzing non-equilibrium network dynamics, Neurobiological
studies indicating the presence of chaotic dynamics in the brain and its possible
role in biological information processing has provided further motivation. Thus, the
ability to design networks with aperiodic behavior promises to add a new dimension
to our understanding of how the brain works.

Several efforts in designing and applying chaotic neural networks have been reported.
One of the first such studies was on a continuous time randomly connected network
[108], whose individual elements are inherently stable. The high dimensionality of this
example precludes a theoretical understanding. However, numerical studies showed
the occurrence of chaos. |

Chaotic dynamics in a globally connected network with Gaussian distribution of
connection weights was theoretically established by Sompolinsky et al [180] in the
thermodynamic limit (i.e., N — oo, N=the number of neurons). This was extended
to networks with variable connectivity in [49], which showed through numerical sim-
ulations that the connectivity is not a determinant parameter for the behavior of
such nets.

Aihara et al [4] developed a neural network model where each neuron behaved as a
chaotic system, due to the introduction of delayed interactions [127]. This model was
shown to be effective in solving optimization problems [35], as the chaotic behavior
could be used as to perform a deterministic version of stmulated annealing [103].
The network can also be used for image segmentation [77] and associative recall [1].

Recurrent neural networks with a single hidden layer have been proposed as a realiza-
tion of one-dimensional maps of an interval onto itself which show chaotic behavior
[9]. By encoding images as strings and relating them to stable limit cycles of a chaotic
map [10], such networks have been used to store and retrieve images.

Destexhe [44] has studied two-dimensional networks of excitatory and inhibitory neu-
rons which evolve in continuous time, with time-delayed interactions. As the number
of neurons, connectivity and synaptic weights are varied, the model exhibits a tran-
sition from spatially uniform oscillations to spatiotemporal chaos. Several properties
of the spatiotemporal phase and the information transport in such a system was
studied. Hayashi {80] has also examined a continuous-time evolving network of exci-
tatory and inhibitory neurons, with the aim of implementing a model of dynamical

assoclative memory.

Associative recall through non-equilibrium dynamics has also been explored (in the
discrete time evolution context) by Thomas et al [191], who use a network with
randomly connected excitatory neurons with an inhibitory interneuron that adjusts

their threshold, and Yamakawa et al [205].

Wang [197, 24] has studied the simple system of an excitatory and 1nl:11b1tory neuron
evolving in discrete time to analytically establish the occurrence of chaos. A similar



system has been studied in {149] to see how onset of chaos occurs as a function of
stimulus intensity. Variants of the model have been used for demonstration of chaocs
control methods in the neural context [179, 186].

Coupled map lattices [99] [100] which are networks of chaotic systems coupled to
each other, either locally or globally, share several common features with neural-
networks. The relation of a globally coupled map lattice to neural network models
has been explored in [101], Such systems have, in fact, been proposed as plausible
models of neural computation for performing optimization [94] and associative recall

96].

The Hopfield model, which shows only equilibrium dynamics, has been shown to
exhibit chaos when a nonlinear self-feedback term is introduced [33]. The chaotic
dynamics prevents the network from staying at a local minima indefinitely and there-
fore, the system can be used to solve combinatorial optimization problems.

Other network models which show chaos include higher order networks [196], ‘dy-
namical perceptron’ [102], stochastic dynamics networks [57] [192] and networks of
coupled Hindmarsh-Rose neurons [74].

In the present thesis, a particularly simple model comprising excitatory and in-
hibitory neurons, which are updated in parallel after discrete time intervals, is consid-
ered. The ‘simplicity’ of this model has enabled a detailed theoretical understanding
of its behavior, which could not be achieved in many of the aforementioned models,
owing to their relative complexity. The origin of this model may be traced back to
the work of other investigators as follows:

e Wilson and Cowan [204] derived coupled nonlinear differential equations for
the dynamics of spatially localized populations containing both ezcitatory and
inhibitory model neurons. The model showed simple and multiple hysteresis
phenomena as well as limit cycles. However, it evolves in continuous time, as
a result of which the original 2-variable autonomous system is not capable of
exhibiting chaos. As pointed out by Choi and Huberman [36] and explored in
depth later by Wang and Blum [198], the discretisation of time can often lead
to qualitatively different behavior in a network model.

o Amari [5] used an additive model of a neuron to study the dynamics of ran-
domly connected neuron-like elements,

o Hopfield [91) used graded-response (i.e., continuous valued) neurons in a glob-
ally coupled network to study the process of associative recall of patterns previ-
ously stored in the network, extending his work on a similar model comprising

binary state neurons [90]. As the connections are symmetric (i.e., Wi; = Wy),
the network always converges to an equilibrium state. Chaotic act1v1ty, which is
a non-equilibrium state, is therefore absent in this model. The network evolves
in continuous time with asynchronous updating of neurons.



o Little [113] described a network of binary neural elements, similar to the one
used by Hopfield, but the neurons being updated in parallel,

o Marcus and Westervelt [117] studied a discrete time version of the Hopfield
model referred above. The stability of the equilibrium states of this ‘iterated
map neural network’ was guaranteed by having a symmetric connection weight

matrix.

e Wang’s model [197] involves only a pair of excitatory and inhibitory neurons
coupled to each other, with the dynamics evolving in discrete time. It is a
very simple model which can show chaotic behavior, It is the closest relative
of the network model that will be described in the thesis., Note that, one
needs to impose severe restrictions on the model of Wang, as compared to the
one required by the proposed one, to make it analytically tractable. These
restrictions prevented a full exploration of various interesting features of the
system, even in the limited case of an asymmetric, sigmoid activation function.

1.4 Scope of the thesis

The present thesis reports some results of investigation on the behavior of simple
excitatory-inhibitory network models. Almost throughout, a strict form of Dale’s
hypothesis (i.e., a neuron has exclusively excitatory or inhibitory synaptic connec-
tions) is assumed. The resultant discrete-time dynamics (with synchronous or parallel
updating of the neural elements) has shown a variety of interesting features, The
underlying motivation is to look at the simplest neural module capable of showing
chaotic behavior and to use the knowledge gained from studying this system to ob-
tain a broader understanding of the possible relevance of chaotic dynamics to brain

functioning.

In Chapter 2, we introduce and analyze the basic module of the excitatory-inhibitory
neural network, which is the main topic of our investigation {169, 170]. As a first
step towards understanding the behavior of such a network, the intrinsic properties
of an excitatory-inhibitory pair is studied in detail. If #(n) and y(n) represent the
activation states of the excitatory and inhibitory elements at the nth time instant,
respectively, then the discrete-time evolution equations are:

o(n+1) = F, (@ s(n) - by(n) +I(n), y(n+1) = Fu(ca(n) — dy(n) +I'(n)

where F,(z) can be a asymmetric/ anti-symmetric, sigmoidal/ ‘piecewise linear’
activation function with parameter p, (a,b,¢,d) are the self- and interconnection
weights for the excitatory and inhibitory elements and 7, I’ denote magnitude of ex-
ternal stimuli. The model is analytically treated under the restrictive assumption of
b/a =dfc=k (say). For k =1, the 2-dimensional system reduces to an equivalent
1-dimensional system with the corresponding variable being 2 = 2 — y (absorbing a
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and b in p; and py respectively), defined in the interval [-1,1]. For sigmoidal acti-
vation functions, this system exhibits a period-doubling route to chaos for sigmoidal
activation function. The piecewise linear activation function also leads to chaotic
behavior following a route similar to that of the “tent” map, defined over the unit
interval {0,1] as:

z(n+ 1)

|

ax(n), for 0 < z(n) < 0.5,
a(l — z(n)), for 0.5 < z(n) < 1,

where a € [0,2] is a parameter.

The presence of chaos can be analytically demonstrated for a range of values of
(g1, up). For k € 1 the chaos is symmetry-broken. There are two chaotic intervals
corresponding to I; : [0,1] and I; : [0,—1] which are disconnected, i.e., if z(0)el},
then z(n)el; V n necessarily and similarly for I,. However, for k > 1 the symmetry
is restored and a trajectory starting from any initial 2z can go to both [; and I3. The
introduction of a threshold, 8, in this picture enables one to go from chaos to order
through the variation of 8, The concept of a dynamical threshold is motivated by
the existence of refractory period in biological neural network, A detailed study of
the dependence of chaotic activity on the magnitude of threshold has been done.

In Chapter 3, the nonlinear resonance phenomenon exhibited by a chaotic neural
pair, on stimulation with weak periodic signal, is studied [174]. This is remarkably
similar to “stochastic resonance” (SR} seen in non-deterministic systems. SR is a
recently observed nonlinear phenomena in noisy systems, whereby the noise helps
in amplifying a sub threshold signal (which would have been otherwise undetected)
when the signal frequency is close to a critical value. As the output of a chaotic
process is indistinguishable from that of a noisy system, the question of whether a
similar process occurs in the former case is studied in this chapter.

Before looking at the behavior of the excitatory-inhibitory neural pair, we study a
simpler model for analytical convenience. The model chosen is a anti-symmetric
piecewise linear map defined in the interval [-1,1]. The behavior of the system is
controlled by a parameter, a {0 < a < 4). Onset of chaos is seen to occur at a = 1,
The chaos is symmetry broken, i.e., the system is restricted to either of the two
sub-intervals (0,1] and (0,-1], depending on initial condition. Symmetry is restored
at a = 2.

To observe SR, the value of a is kept close to 2, and then modulated sinusoidally with
amplitude § and frequency w. The response of the system shows a non-monotonic
behavior as w is varied, attaining a peak value at w,, a “critical frequency”, which
depends on ag and § - a clear signature of a SR-type phenomenon. Some analytical
calculations have also been done - in particular obtaining the invariant probability
density and the dominant time scale of the time-varying processes. The implication
of the above study is that chaotic neural networks can amplify weak signals in a
noisy background, thus enhancing its information processing capabilities. We have

also studied kinetic aspects, such as hysteresis, of the above model. |
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The one-dimensional map equivalent to the excitatory- inhibitory neural model ex-
hibits SR-type behavior similar to that reported above for the anti-symmetric chaotic
map. The dependence of such ‘resonance’ on the relative magnitudes of p; and ps
and other parameters has been studied. Analytical results have been obtained in
the case of piecewise linear activation function. For sigmoidal function, numerical
studies have been done.

Having studied in Chapter 2 the existence of chaotic activity in our proposed model,
in Chapter 4 we proceed to control it [167, 166, 168]. With this objective, piecewise
linear maps are studied as approximations of excitatory-inhibitory neural pairs, for
analytical convenience. In principle, any piecewise linear map can be represented
by a recurrent neural network with properly connected excitatory and inhibitory
elements having appropriate thresholds and linear activation functions with a cutoff.

The “tent” map, defined above, is subjected to dynamical variable feedback control.
In this method, a particular interval I : (zy — 6, 2o + §) of the unit interval is chosen
and whenever z(n + 1)el, a feedback of magnitude k |z{n + 1) — x| is applied to the
system (k is a constant). The dependence of control on the parameter set (zq, 6, k) is
studied in detail and a geometrical understanding of the control process is obtained.

Control is also achieved through the use of a dynamical threshold (as outlined in
Chapter 2). This is same as subjecting the model to small-amplitude periodic per-
turbations. Various periodic cycles can be stabilized by periodically varying the
threshold. A numerical study of the control method has been done.

The chaos control method is then implemented on a network model comprising N
excitatory and N inhibitory elements. The model exhibits both periodic and chactic
behavior, depending on parameter values. Numerical simulations are carried out for
N=3, the number being kept low for ease of visual representation. The control process
made the chaotic trajectories converge to any one of a large number of possible
 unstable periodic attractors. The potentially high storage capacity, as well as, the
extremely rapid speed of convergence, are notable features of the network. The model
also attempts to explain the occurrence of olfactory hallucinations in certain types

of epileptic seizures.

In Chapter 5, the collective dynamics and synchronization in assemblies of coupled
chaotic neural pairs is studied {176, 174, 171]. In the brain, synchronization of neural
assemblies seems to be employed in “visual binding”. The question of what happens
if competitive synchronizing interactions occur among different neural assemblies is
the motivation to study such interaction among coupled chaotic systems,

Synchronization can be achieved through both unidirectional and bidirectional cou-
pling among chaotic elements. In the case of unidirectional coupling, an n-dimensional
autonomous system is divided into two parts, a ‘driving’ and a ‘responding’ subsys-
tem. A replica of the ‘responding’ subsystem is then created and driven with the
x4 variables of the original system. The two systems will synchronize only if the
‘conditional Lyapunov exponents’ of the ‘responding’ subsystem are all negative. For
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bidirectional coupling, the coupling magnitude should be at least greater than half
the magnitude of the Lyapunov exponent of the uncoupled system, for synchroniza-
tion to occur.

Synchronization of chaotic activity among small assemblies of coupled neural pairs
has been numerically studied. In the case of bidirectional coupling of two neural
pairs, on-off intermittency phenomena is observed. For three neural pairs (A,B,C)
coupled to each other, such that (A,B) and (B,C) are connected, but not (A,C),
we find synchronization to occur between (A,C), although neither (A,B) nor (B,C)
synchronize. We call this ‘mediated synchronization’, as B appears to be mediat-
ing the synchronization process, without itself taking part in it. For unidirectional
coupling, a particularly interesting feature is the effect of competitive interactions
on the synchronization dynamics. To obtain a theoretical understanding of some of
the numerical observations, we study the effect of two ‘driving’ systems driving a
single ‘responding’ system, each system being governed by the well-known Lorenz
equations. One of the variables (y) of the ‘responding’ system is defined in terms of
the corresponding variables of the two ‘driving’ systems as;

y =ay + (1~ a)y

where a is the ‘competition’ parameter. For a=0 or 1, the conventional Lorenz
attractor is obtained. However, as a — 0.5, the resultant chaotic attractor is found to
be qualitatively different and more complex than the conventional Lorenz attractor.
The results of linear stability analysis suggests that the trajectory of the system
moves among the stable and unstable manifolds of a large number of unstable fixed
points. This is responsible for the observed complicated dynamics of the system. We
define a ‘desynchronization parameter’, § and have obtained a scaling relation of ¢
with a.

In Chapter 6, we have used excitatory-inhibitory networks to study certain problems
of early vision, the stage of visual processing at which the primitive features of an
image are extracted. Two models have been studied: a two-layer network for segmen-
tation (in particular, object-background discrimination) and a three-layer network
for adaptive smoothing and edge detection.

The segmentation network model consists of a layer of excitatory and a layer of
inhibitory neurons coupled to each other. On presenting the network with a noisy.
image, the object and the background portions are found to have different dynamical
behavior, enabling segmentation to be done [172].

In the three-layer network model, contrast enhancement, followed by edge detection,
is studied. A layered network with a sigmoidal activation function is found to give
high contrast when a gray-level image is processed through it. The interaction be-
tween excitatory and inhibitory neurons results in a filtering process whereby edges
of the image are obtained. This has motivated the designing of a model of retinal
processing. The model consists of an input layer of excitatory neurons (analogous
to the photoreceptor layer in the retina), followed by a layer of coupled pairs of in-
hibitory and excitatory neurons (analogous to the horizontal and bipolar cell layers
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of the retina, respectively). The lateral connections among the inhibitory neurons
and the inter-layer connections between all three layers allows the local gradient of
the image to be computed, the information being fed back to the input layer, An
iterative process is then used to adaptively smooth the image. From the resulting
enhanced image, one can obtain the edges, either by employing an additional pair
of excitatory-inhibitory neuronal layer, or with a conventional gradient thresholding
technique. The proposed model has been implemented on different types of images,
and its performance compared with some existing models for image enhancement
and edge-extraction (namely, Perona-Malik diffusion method and the Canny opera-
tor). Although the model compares favorably with some standard methods of edge
detection, its main contribution lies in the area of adaptive smoothing.

A concluding summary with an outlook on further work that can be done extending
the aforesaid ideas is presented in Chapter 7.
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Chapter 2

Intrinsic Dynamics of an
Excitatory-Inhibitory Neural Pair

A pair of an excitatory and an inhibitory neurons, coupled to each other and evolving
in discrete time intervals, is one of the simplest systems capable of showing chaotic
behavior. This has guided the choice of this system for extensive study in this thesis.
The present chapter examines the discrete-time dynamics of such coupled neuron
pairs with four different types of nonlinear activation functions, The complex dynam-
ical behavior of the system is generic for the different types of activation functions
considered here. Features specific to each of the functions, were also observed. For
example, in the case of piecewise linear functions, border-collision bifurcations and
multifractal fragmentation of the phase space occurred for a range of parameter val-
nes. Anti-symmetric activation functions show a transition from symmetry-broken
chaos (with multiple coexisting but disconnected attractors) to symmetric chaos
(when only a single chaotic attractor exists). The model can be extended to a larger
number of neurons, under certain restrictive assumptions, which makes the resultant
network dynamics effectively one-dimensional. Possible applications of the networle
for information processing have been outlined. These include using the network for
auto-association, pattern classification, nonlinear function approximation and peri-

odic sequence generation.,

The rest of the chapter is organized as follows, The basic features of the neural
model used is described in section 1, along with the biclogical motivation for such
a model. The next section is devoted to analyzing the dynamics of a pair of exci-
tatory and inhibitory neurons, with self- and inter-connections. Two specific types
of activation functions are chosen for detailed investigation, with either (i) asym-
metric, piecewise linear, or, (i) anti-symmetric, sigmoid characteristics. This simple
system shows a wide range of behavior including periodic cycles and chaos, In sec-
tion 3, we discuss the effect of introducing a non-zero threshold (or “bias”), which
is equivalent (in the present model) to subjecting the system to a constant exter-
nal input. Section 4 extends the model to larger networks under certain restrictive
conditions, This is followed by a discussion of the possible application of the model
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to various information processing tasks, such as associative memory and nonlinear
function approximation., The rich dynamics of the system allows it to respond to
specific inputs with periodic or aperiodic responses (in contrast with convergent net-
works, which give time-independent constant output) and also to act as a central
pattern generator, We conclude with a short discussion on possible ramifications of
the model.

2.1 Single ‘neuron’ behavior

Let u,, denote the activation state of a model neuron at the n—th time interval. If
u, = 1, the neuron is considered to be active (firing), and if u,, = 0, it is quiescent.
Then, if v, is the input to the neuron at the nth instant and 8 be the threshold, the

discrete-time neural dynamics is described by the equation
Uy = -F(’Un = 9): (21)

assuming there to be no effects of delay. The input v, is the weighted sum of the
activation states of all other neurons, at the (n —1)-th instant, that are connected to
the neuron under consideration, together with external stimulus (if any). The form
of F is decided by the input-output behavior of the neuron. Usually, it is taken to
be the Heaviside step function, i.e.,

F(2)

1, if z> 6,

0, otherwise, (2:2)

[

where 8 is known as the threshold.

If the mean firing rate, i.e., the activation state averaged over a time interval, is
taken as the dynamical variable, then a continuous state space is available to the
system. If X,, be the mean firing rate at the n—th time interval, then

Xun = Fu(Z;W;X5+1,—6,). (2.3)

Here, F' is known as the activation function and p is the parameter associated with
it. The first term of the argument represents the weighted sum of inputs from all
neurons connected with the one under study. W; is the synaptic weightage for the
connection to the jth neuron. I, and 8, represent the external stimulus and threshold
respectively, at the nth instant,

Considering the detailed biology of a neuron, there are two transforms occurring at
the threshold element. At the input end, the impulse frequency coded information is
transformed into the amplitude modulation of the neural current, For single neurons,
this pulse-wave transfer function is linear over a small region, with nonlinear satura-
tion at both extremities. At the output end, the current amplitude is converted back
to impulse frequency. The wave-pulse transfer-function for single neurons is zero be-
low a threshold, then rises linearly upto a maximum value, Beyond this maximum,
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the output falls to zero due to “cathodal block”. These relations are time-dependent.
For example, the slope of the wave-pulse transfer function decreases with time when
subjected to sustained activation - this is known as “adaptation” [53].

The net transformation of a input by a neuron is therefore given by the combined
action of the two transfer-functions. Let us approximate the nonlinear pulse-wave
transfer function Fj with a piecewise linear function, such that

Fl(.Z) —-c, if 2 < —c/m,
mz, if —c/m <2< 1/m, (2.4)

1, if 2> 1/m.

|

=

The wave-pulse transfer function F) is represented as

Fg(z)

0, if z2< 6, .
m' (z—6), if 8 <z< 6+ (1/m'), (2.5)
0, if 2> 84 (1/m'),

I

I

where m, m’ are the slopes of Fy, F; respectively, ¢ is the inhibitory saturation value
and € represents a threshold value,

It is easily seen that the combined effect of the two gives rise to the resultant transfer
function, 7, defined as

G(2)

|

0, if z< 6,

mm' (z—8), if 8§ <z< 8+ (1/m),

m' (1-8), if 86+ (1/m) <z< 8+ (1/m/),
0, if z> 6+ (1/m’).

i

(2.6)

|

In the present work we will assume that m’ (1 - 6) << 8 4+ (1/m’). This condition
ensures that the operating region of the neuron does not go into the “cathodal block”
zone. This allows us to work with the following simplified, piecewise linear neural
activation function {upon rescaling) throughout the rest of the thesis:

F,(z) 0, if z< 6, -
a(z—0), if 0 <z< 8+ (1/a), (2.7)

1, if 2> 0+ (1/a),

I

where a (> 0) is called the gain parameter of the function (Figure 2.1 (a)). Note
that, this activation function is asymmetric as it corresponds to an input-output
mapping of the form (—co0,c0) — [0,1]. For infinite gain (@ — o), the activation
function reverts to the hard-limiting Heaviside step function.

The piecewise linear nature of the model neuron used, not only makes detailed theo-
retical analysis possible, but also enables an intuitive understanding of the dynamics,
at least for a small number of connected elements. This makes it easier to extrap-
olate to larger networks and suggest possible applications, The proposed model is
also particularly suitable for hardware implementation using operational amplifiers
(owing to their piecewise linear characteristics).
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Figure 2.1: The different activation functions (F,) for a single neuron (gain param-
eter, a = 5) having (a) asymmetric, piecewise linear, (b} anti-symmetric, piecewise
linear, (c) asymmetric, sigmoid, and (d) anti-symmetric, sigmoid characteristics.
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On translation and scaling, we obtain an antisymmetric form of this activation
function, viz,

-1, if 2z« 9-—-—(1/&),l
a(z—-8), if 0—(1/a) <2< 0+ (1/a), (2.8)
1, if z> 6+ (1/a), -

Fu(z)

Il

i

i

so that the input-output mapping is now of the form (—co,00) — [-1,1} (Fig.
2.1 (b)).

Although, in the present study, the gain parameter, a, of the transfer function is
considered constant, in general it will be a time-varying function of the activation
state, decreasing under constant external stimulation until the neuron goes into a
quiescent state. The threshold 4 is also a dynamic parameter, changing as a result of
external stimulation, We have also assumed that the neuron state at the nth instant
is a function of the state value at the previous instant only. Introducing delay effects
into the model, such that,

'XTH-I — F(Xm Xn—l: v uey Xﬂ-—r):

might lead to novel behavior. This is discussed briefly in the concluding section.

If we now consider neural populations, instead of single neurons, then sigmoidal
activation functions of the form

Fo(2z)

I

1—e™, if z> 0,

0, otherwise, (2.9)

t

are the appropriate choice (Fig. 2.1 (c)). Note that, the output of a neural population
is not a train of pulses (as in single neuron) but a continuous pulse density. By
varying a, transfer functions with different slopes are obtained. In the neurobiological
- situation, the slope is both state-dependent (e.g., it increases with the behavioral
arousal of a subject) and input-dependent (increasing with sensory excitation). In
this work, we have taken a to be constant,

As in the piecewise linear case, here also we can define an antisymmetric form of the
activation function (Fig. 2.1 (d)) as follows:

|

F.(z) 1—-e*, if 2> 0,

—(1 — e*), otherwise. -(2'10_)

|

Note that for all the activation functions defined so far (i.e., Eqns, (2.7), (2.8), (2-.9)
and (2.10)), the following common features hold:

e F(0) =0,1ie., 0isa ‘fixed-point’ of the function, and

o the functions saturate at an output value, arbitrarily set to unity.
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Figure 2.2: The pair of excitatory (z) and inhibitory (y) neurons. The arrows and
circles represent excitatory and inhibitory synapses, respectively. |

2.2 Excitatory-inhibitory pair dynamics

Having established the response properties of single neurons, we can now study the
dynamics when they are connected. It is observed that, even connecting only an
excitatory and an inhibitory neuron with each other leads to a rich variety of be-
havior, including high period oscillations and chaos, The continuous-time dynamics
of pairwise connected excitatory-inhibitory neural populations (with sigmoidal non-
linearity) have been studied before [204]. However, an autonomous two-dimensional
system {i.e., one containing no explicitly time-dependent term), evolving continu-
ously in time, cannot exhibit chaotic phenomena, by the Poincare-Bendixson theorem
[188]. In the present case, the resultant system is updated in discrete-time intervals
and the dynamics is governed by one of the nonlinear activation functions defined in
the previous section. This makes chaotic behavior possible in the proposed neural
network model.

If X and Y be the mean firing rates of the excitatory and inhibitory neurons, respec-
tively, then their time evolution is given by the coupled difference equations:

Xn—i-l = Fﬂ(Wﬂ:mXﬂ = meYn): . (211)
El-l-l == Fb(wmeﬂ - Wyyxt)-

The network connections are shown in Fig. 2.2. The W, and W, terms represent
the synaptic weights of coupling between the excitatory and inhibitory elements,
while W, and W,, represent self-feedback connection weights, Although a neuron
coupling to itself is biologically implausible, such connections are commonly used in
neural network models to compensate for the omission of explicit terms for synaptic
and dendritic cable delays [53].

Without loss of generality, the connection weightages W,, and W, can be absorbed
into the gain parameters a and b and the correspondingly rescaled remaining con-
nection weightages, W, and W, are labeled & and k' respectively. For convenience,
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Figurle 2.3: The one-dimensional map representing neural pair dynamics with asym-
metric, piecewise linear F for (a) k=k'=1and (b) k =k # 1.

a transformed set of variables, Z, = X, — k Y, and Z! = X, — k' Y, is used. The
dynamics is now given by

Zﬂ.+1 = FE(ZTL) —k Fb(Z:L): (2'12)
::,+1 = Fa(zn) — k' Fb(Z‘:L)'

Note that, if & = k', the two-dimensional dynamics is reduced effectively to that of
an one-dimensional difference equation (“map”), simplifying the analysis. We shall
now consider in detail the dynamics of the map, when F' has either () asymmetric,
piecewise linear nature, or (i) anti-symmetric, sigmoid character.

2.2.1 Asymmetric, piecewise linear activation function

Chaotic activity has been previously observed in piecewise linear systems, for both
continuous-time [157] as well as discrete-time evolution (132, 133] of the system. In
the following investigation, we shall examine the cases: (i)k =k =1, (i1)k = k' # 1,
and (#4i)k # k', in detail. Throughout the present section, the threshold, 8, will be
taken as 0 (a non-zero value of & introduces some new phenomena, which will be
investigated in the next Section).

Case I: k=K =1
This represents the condition when the connection weights Wy, = W, and W, =
Wz, (a > b). The dynamics is that of an asymmetric tent map (Fig. 2.3 (a)):

Zﬂ~|~1 = ({‘" — b) Zﬂ! if 0 < Zn < 1/'1:
= 1 — bZ,, if 1l/a <Z,< 1/b, (2.13)
0, otherwise.

fl
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Figure 2.4: The activation gain e vs. (b/a) parameter space for & = &' = 1. Region
A: z* = 0 stable, B: z' = 1/(1 + b) stable, C: chaos, D: coexistence of 2* = 0 and a
fractal chaotic invariant set.

The fixed points of this system are, Z} = 0and Z; = 1/(1+b). Z} is stable for
a—b < 1, whereas 74 exists only whena—~b > 1, and is stable for b < 1. Beyond
this, chaotic behavior is observed unless the maximum output value, i.e., 1 — {(b/a),
maps to Z > 1/b, The parameter space diagram is shown in Fig. 2.4. Along the
line b/a = 0.5, we get the symmetric tent map scenaric. So the Lyapunov exponent
! along this curve grows as A = log,(b) for 0 < a < 4. This is one of the two special
- cases where an analytical expression for A can be obtained. The other instance is
when the map’s invariant probability distribution, P(Z) = 1. This occurs when

F(l/a)=1-(b/a)=1/b. (2.14)

Along the curve defined by the above relation, the Lyapunov exponent evolves with
the parameter b/a according to

= —b/a log,(b/a) — (1= (b/a))log.(1 ~ (b/a)). (2.15)

In general, A has to be obtained computationally. Fig, 2.5 shows A plotted against
b/a for a. = 4, when the map is in the chaotic region., A sharp drop to zero is
“observed in both the terminal points, indicating sharp transition between chaotic
and fixed-point behavior at b/a = 0.25 and 0.75. At b/a = 0.5, the entire interval

0,1/b] is uniformly visited by the chaotic trajectory (P(Z) = 1). This corresponds
- to “fully-developed chaos” in the symmetric tent map for which A = log,(2) =~ 0.693.

!Lyapunov exponent (A) is a qua,nti"t";ativc indicator of chaotic behavior. It is defined for a one-
dimensional mapping F as:

N-1
: 1 Z ar

i=0

Chaotic behavior is indicated by a positive value of ).
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Figure 2.5: Lyapunov exponent of the chaotic dynamics for 5 = k' =1 and a = 4.0.
At b/a = 0.5, the entire interval [0,1/b] is uniformly visited.

When F(1/a) > 1/b, the interval [0, 1/}] is divided into a chaotic region of measure
zero, defined on a non-uniformm Cantor set (in general) and an “escape set” which
maps to Zf = 0. This is because, for Z € (1/b(a—b), (b—1)/b%), F(Z)=0. Any time
an iterate of Z falls in this region, in the next iterate the trajectory will converge
to Z;. The points left invariant after one iteration, will be in the two intervals
0,1/b(a—b)] and [(b—1)/b% 1]. The phase space is thus fragmented into two invariant
regions. After n iterations, there will be 2" fragments of the chaotic invariant set, with
n!/ri(n—r)! (r=0,1,...,n) intervals of length (a—b)"(1—b)""". The fragmentation
of the phase space, therefore, has a multifractal nature [123].

The presence of multiple length scales is due to the fact that the slope magnitude
of the map is not constant throughout the interval [0,1/5]. It is to be noted that,
even for Z not belonging to the fractal invariant set, the trajectory might show long
chaotic transients until at some iterate it maps to Z* = 0. For b/a = 0.5, the map
has a constant slope. As a result, the Cantor set is uniform, having exact geometrical
self-similarity and a fractal dimension, D = log(2)/log,(b). So, the phase space
of the coupled system has a fractal structure in this parameter region, i.e., where

1—(b/a) > 1/b.

Fig. 2.6 shows the bifurcation structure of the map for a = 4. For b/a < 0.25,
the fixed point Z; is stable. At b/a = 0.25 it becomes unstable, leading to bands
of chaotic behavior. The chaotic bands collide with the unstable fixed point Z; at
b/a = 0.2985... and merge into a single chaotic band. This band-merging transition
is an example of erisis [69] and has been studied in detail for the symmetric tent
map [206]. The b-value at which the band-merging occurs for a given value of a, can
be obtained analytically by solving the quartic equation:

b* + (1 — 2a)b° + (@® — a)b* + ab + (@ — a*) = 0. (2.16)
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Figure 2.6; Bifurcation diagram for k = k' = 1 at a = 4.0.
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For 2 < a < 2.5, all the roots are complex, implying that band-merging does not
occur over this range of a-values.

Uniform chaotic behavior occurs at b/a = 0.5 (the entire interval {0,1/b] is uniformly
visited by the chaotic trajectory). The chaotic band collides with the unstable Z;
again at b/a = 0.75. This boundary crisis destroys chaos and stabilizes the fixed

point Z{ = 0.
Case II: k= k' # 1

This represents the condition when the connection weightages are such that, W,,/W,, =
W,y /Wys =k, (a > b). The dynamics is given by the following map (Fig. 2.3 (b))

(@ — kb) Z,, if 0 <Z,< 1/a,
1 — kbZ,, if 1/a < Z, < 1/b, (2.17)
1 — k, otherwise.

ZH'|-1

The key difference with the earlier case is that, now, the dynamics supports super-
stable period-m orbits {(m > 2). This is a result of the existence of a region of zero
slope (Z > 1/b) giving a non-zero cutput. There are two fixed points of the map,
Z{ =0 (as before), and,

Z¢ = 1—k, if0<k<1-(1/b), or,
1/(1+kb), if (a—1)/b > k > 1 — (1/b).

I

I

Z; = 11—k, if it exists, is superstable, as the local slope is zero. On the other
hand, Z; = 1/(1 + kb) is stable, only if bk < 1. If the fixed points are unstable,
but iterates of Z fall in the region Z > 1/b, superstable periodic cycles occur. The
fixed point, Z; = 0, becomes stable when (a — bk) < 1. Chaotic behavior occurs if
none of the fixed points are stable, and no iterate of Z falls in the region Z > 1/b.
The (b/a) vs. k parameter space d1agram in Fig. 2.7 (for a = 4) shows the different
dynamical regimes that are observed.

The bifurcation diagram for @ = 4,b = 2 (Fig. 2.8) shows how the dynamics changes
with k. For 0 € & < 0.5, Z3 = 1 — k, is the stable fixed point. At & = 0.5, Z,
becomes unstable, giving rise to a superstable period-2 cycle, A periodic regime is
now observed, which was absent in the previous case. The periodic orbits initially
follow a period-doubling sequence until a period-32 (= 2 x 2%) orbit gives rise to a
period-48 (= 3 x 2*) one. This occurs as a result of a border-collision bifurcation by
which “period-2 to period-3” bifurcations have been seen to occur {132, 133]. In the
above instance, each of the sixteen period-2 orbits give rise to a period-3 orbit. The
structure of the superstable periodic orbits is quite complex. The length of the cycles
is plotted against k in Fig. 2.9, The remarkable self-similar structure of the intervals
is to be noted. Numerical studies indicate that cycles of all periods exist having the
following ordering: between any superstable period-m and period-(m+1) cycle, there
exists an interval of k for which a period-(m + 2) orbit is superstable. At & = 1.0
all periodic orbits become unstable, leading to onset of chacs. The chaotic behavior
persists till £ = 1.5, when Z} = 0 becomes stable. The sequence of the periodic cycles
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Figure 2.9: Length of superstable periodic cycles, m, of the excitatory-inhibitory
neural pair (a =4, b = 2) for (a) 0.76 < k < 1, and (b) 0.82 < k < 0.84, Note the

self-similar structure of the intervals.

is remarkably similar to that seen in the case of unidirectional, adaptive dynamics
on a lattice of chaotic maps [165].

Case III: k £ k'

This corresponds to the condition when all the connection weights are different. The
dynamics is irreducible to 1-dimension. We need to consider only the positive (Z, Z’)
region, as otherwise, (0,0) is the stable fixed point. In the non-zero region, different
dynamical behavior may occur depending on the region where the fixed point occurs
and on its stability. One of the fixed points is (Z,Z") = (0,0), whose stability is
determined by obtaining the eigenvalues of the corresponding Jacobian,

a —=kb

J = a —k'b

Evaluating the above matrix, gives the following condition

~ 2 < (a—k'b) £[(a —~ k'b)? — 4ab(k ~ k)]}/? < 2, (2.18)

for stability of the fixed point,

The other fixed point may occur in any one of the four following regions of the
(Z, Z')-space: |

Region I: 0 < Z < 1/a, 0 < 2" < 1/b.

(Z,Z') = (0,0) is the only fixed point.

Region II: 0< Z < 1/a, Z' > 1/b.
The fixed point is (Z,2') = (k/(a — 1), (a(k — k') + ¥')/(a — 1)), which is stable if
-1 <a<1l, | | |
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Figure 2.10: The (k, k') parameter space for a = 4.0 and b = 2.0. Region 1: z*=1,
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have period-2 cycles, b: « and y show period-m cycles (m>2). Fully chaotic behavior
occurs in the dark wedge-shaped region in 3. In addition, fractal intervals showing

chaos occur in region b.

Region ITI: Z > 1/a, 0 < Z' < 1/b.
The fixed point is (Z,Z') = ((1 +b(k’ — k))/(1 + bk'), 1/(1 + bK'}), which is stable if
-1 < kb <.

Region I'V: Z > 1/a, Z' > 1/b.
The fixed point is (Z,Z2') = (1 —k,1 — & ) This is a superstable root, as the local

slope is zero under all conditions.

The abundance of tunable parameters in this case, makes detailed simulation study
extremely difficult. However, some preliminary studies in the (k, k') parameter space
(keeping the other parameters fixed) gives indication of dynamics similar to that
seen in cases (i) and (i2). The (k,k') parameter space is shown in Fig. 2.10 for
a =4, b = 2. A variety of dynamical behaviors is observed - from fixed points to
periodic cycles to chaos, as indicated by the different regions. In addition, there are
regions exhibiting periodic behavior which have fractal intervals of chaotic activity

embedded within them.,

2.2.2 Anti-symmetric, sigmoid activation function

We will now look at the dynamics of the excitatory-inhibitory neural pair when the
activation function F' is of the form (2.10), If k = k', the resultant dynamics is that
of a one-dimensional bimodal map, whose phase space is disconnected into two halves
for k < 1. We shall consider first the case when k = &' = 1, and then 1r1vest1gate the
change in the behavior of the system when k = k' # 1. - -
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Figure 2.11: The sigmoid activation functions (F) for slopes, a=20 and b=5, and the
resulting one-dimensional map.

For k = 1, the two halves of the phase space (L : (—c0,0) and R : [0,00) are not
connected - i.e., a trajectory starting with an initial condition belonging to L, can
never reach R in the course of time, and vice versa. The resulting dynamics is that

of the following map:

Zn+1

exp(—bZ,) — exp(—-aZ,), if 0 €2, £ oo, (2.19)
—exp(bZ,) + exp(ad,), otherwise. Y

Fig. 2.11 shows the map, arising out of interaction between an excitatory neuron
with slope, @ = 20, and an inhibitory neuron with slope, b = 5. The bifurcation
diagram of the map (Fig. 2.12), obtained by increasing the ratio b/a, keeping a fixed
shows a transition from fixed point to periodic cycles and chaos, following a “period-
doubling” route, an universal feature for an entire family of one-dimensional chaotic
maps [188]. Fig. 2.13 shows a magnified image of the bifurcations, which clearly
exhibits the successive doubling of the periodic cycles. The variation of a, keeping
the ratio b/a fixed, also shows a transition to chactic behavior, as is indicated in Fig.

2.14.

The map has 3 fixed points: Z{ = 0, Z3 and Z; (by symmetry of the map, Zf =
—~Z5). The latter are the solutions of the transcendental equation Z = exp(—bZ) —
exp(—aZ). The fixed point Z} is stable if the local slope (~ (a — b)) is less than 1.
For a > -1-;1__—; (where, p = 2), this condition no longer holds and Z; loses stability
while Z; becomes stable by a transcritical bifurcation. On further increase of a, this
fixed point also loses stability (by flip bifurcation) with the local slope becoming less
than -1, and a 2-period cycle become stable. Increasing a further leads to cycles of
higher and higher periods becoming stable, ultimately leading to totally aperiodic

behavior.

The chaotic behavior can be quantified, as in the case of the piecewise linear function,
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Figure 2.15: Lyapunov exponent (A) plotted against a for b/a = 0.5.

by the Lyapunov exponent (A). Fig. 2.15 shows the variation of A with a (b/a =
0.5) and Fig. 2.168 exhibits the chaotic and non-chaotic regions on the basis of the
sign of A, with regions having A < 0 (i.e., non-chaotic) indicated by black. Notice
the “garlands” of periodic windows within the chaotic region. The isolated points
of periodic behavior, interspersed throughout the chaotic region, are remnants of
periodic windows too fine to be resolved at the present scale.

We shall now consider the case when & = &' % 1. Figs. 2.17 and 2.18 show the
bifurcation diagrams at a = 50 and b/a = 0.5 over the intervals, (0 € &k < 1.5) and
(0.99 < k < 1.03), respectively. As &k decreases from 1, the flatter end of the map
rises, so that, very soon the local slope of the fixed point, Z3 (or, equivalently, Z3),
becomes greater than -1, making it stable. This is indicated by the long interval of
non-chaotic behavior for 0 < k < 0.9. When k increases from 1, the two disjoint
chaotic attractors are dynamically connected - so that a transition from symmetry-
broken chaos to symmetric chaos is observed. On further increase of &, chaos again
gives rise to periodic, and finally, fixed point behavior.

2.3 Effect of threshold / bias

In the previous section, we have looked at the autonomous dynamics of the excitatory-
inhibitory neural pair - i.e., in the absence of any external input. We had also
assumed the threshold 8 to be zero, We shall now look at the effect of both of thesé
variables on the system variables. One of the simplifying features of the type of
activation functions we have chosen is that introducing a threshold of magnitude &
is equivalent to subjecting the system to a constant external input of amplitude |d|.
This is evident if we look at eqn. 2.12 for the case k = k' = 1, in the presence of
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Figure 2.16: Stability diagram in the a vs (b/a) parameter space with ordered be-

havior indicated by black and chaotic behavior indicated by white.
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Figure 2.19: (a) The critical bias (6,) and (b) the saturation bias (8,).

external input

Dyl = Fa(Zn T 9) - Fb(Zn + 5)' (2-20)

An identical equation is obtained if, instead of an external input, we had introduced
a negative threshold (i.e., bias) of magnitude 8. In what is to follow, we will not
therefore differentiate between bias/threshold and a constant amplitude external in-
put. The effect of introducing a constant perturbation in simple chaotic maps, have
been previously observed to give rise to ‘non-universal’ behavior (i.e., the nature of
response differ from one map to another) [187, 175]

Let us first consider the case when 6 > 0 (we will refer to this as ‘bias’). As &
increases from 0, the map shifts to the left, and the origin, Z; = 0, is no longer a
fixed point. Two values of & are of interest in understanding what changes are made

to the autonomous system dynamics by this modification.

¢ The critical bias (6;) is the bias value at which the critical point of the one-
dimensional map (representing the dynamics of the system) is mapped to 0.
This marks the transition point from chaotic behavior to superstable cycles

(Fig. 2.19 (a)).

s The saturation bias (93) is the bias value at which Z{ = 0 again becomes a
fixed point, in fact, a stable one - i.e., for any initial value, Zy, the trajectory
terminates at Z{ = 0. This occurs when the entire non-zero portion of the map
shifts to the left of the origin, so that the point Z = 1/b in the original map,
now coincides with the origin.

An expression for the critical bias is obtained, in the case of the asymmetric piecewise
linear transfer function, by noting that for 8 = 8., F,(: 4+ 8) — Fi(3 + 6) = 0. So,
1 b

b a L

g, =
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Figure 2.20: The u vs & parameter space indicating regions of (A) chaotic, (B)
superstable period cycles and (C) fixed point (Z* = 0) behavior, for a = 4.

_The saturation bias, &,, is given as
8, =1/b,

These two expressions enable us to draw the (b/a} vs € diagram in Fig. 2.20, showing
the regions of different dynamical behavior.

When 6 < 0, coexistence of multiple attractors of different dynamical types is ob-
served. Fig, 2.21 gives an example of the coexistence of a fixed point (Z* = 0) and
a chaotic attractor,

This allows the segmentation of activation state (X, Y )-space, according to dynamical
behavior. For initial conditions lying in the region bounded by the two straight lines,
Y =(X~0)/kandY = (X - 8)/(k — 1/ak), the trajectories are chaotic, provided
the maximum point of the map, F(Z) = 1 — (kb/a), does not iterate into the region
Z > 6+ (1/b). For the region, ¥ > (X - 8)/k, any iterate will map to the fixed
point, Z* = 0. Initial conditions from ¥ < (X — 8)/(k — 1/ak) will map to the
chaotic region, if the maximum point of the map does not iterate into Z > 6+ (1/b).
Otherwise, a fractal set of initial conditions will give rise to bounded chaotic motion,
the remaining region falling in the “escape set”, eventually leading to periodic orbits.

The condition for coexistence of multiple attractors, in the case of k = k' = 1, is
obtained as follows. The one-dimensional map equivalent to the excitatory-inhibitory
system now has an unstable fixed point at Z, = ﬂ(_“;_f% Note that Z* = 0 will always
be stable for any 8 < 0. For two attractors to exist, the critical point of this modified
map should not belong to the basin of attraction of Z* = 0, which can be written as:

. b
Fﬂ(l -~ E) —_ Fb(l - -") > Zy,.

a a -
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Figure 2.21: Coexistence of fixed point (Z* = 0) and chaotic attractors, with trajec-
tories in the two basins of attractions indicated, for a = 4, b = 1.5,

By simple algebraic manipulation, one obtains the following condition on the mag-
nitude of .
(1-b+%)(a-b-1)

a—b—bla-b—-1) (221)

6 <

In the case of anti-symmetric activation functions, for a negative 8, Z* = 0 is not
a fixed point, Rather, under the condition mentioned above, the two disconnected
chaotic attractors to be dynamically connected. This means, starting from an initial
condition which belongs to one of the chaotic attractors, it is possible to visit the
other attractor, provided the above condition is satisfied, This gives rise to hysteretic
phenomenon in the model, as # is monotonically increased or decreased.

Let us discuss the case of the anti-symmetric activation function given by Eqn. (2.10).
As mentioned before, this has two coexisting chaotic attractors, in the two halves of
the phase space: L : (—c0,0) and R : [0, c0). In general, when & > 0, the trajectory
remains in the attractor in R, whereas, if 6 < 0, it is confined to the attractor in L.
Fig. 2.22 shows the bifurcations induced by varying &, when the initial value, Zy; > 0.
It is apparent that the trajectory falls in the attractor in R, much before 8 = 0. On
the other hand, for the initial value Z; < 0, a magnified view {Fig. 2.23) over the
interval (—0.01 < 8 < 0.01), shows that the trajectory remains in L even after & has

become positive.

Simple hysteresis loops have been demonstrated and discussed by Harth (reviewed in
[75] and the article by Harth in [6]) in neural populations containing mostly excita-
tory elements. Wilson and Cowan [204] showed that excitatory- inhibitory networks
can show more complex hysteresis phenomena. For instance, multiple separated or
simultaneous loops are observed, which is an outcome essentially of the inclusion of

inhibition in the model.
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Figure 2.22: Bifurcation diagram for variation of threshold 8 over the interval (-0.01,
0.01) for a = 50,b/a = 0.5 and k = k' = 1 (initial value, Zy > 0)..
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Functionally, hysteresis may be a physiological basis for short-term memory. Any
sufficiently strong stimulus is going to cause the activity to jump from a low level to
a high level, and this activity will persist even after the input ceases. The existence
of hysteresis in the central nervous system, specifically in the fusion of binocularly
presented patterns to produce single vision, has also been experimentally verified.
Hysteresis has the benefit of imparting robustness against noise. A large change in the
external stimulus is needed to excite the element to a higher state, giving a threshold.
For a complex system like the brain, that is immersed in a noisy environment, the
advantage of such noise tolerance is obvious.

2.4 Extension to large networks

In the preceding sections, the behavior of a pair of excitatory-inhibitory neurons
(number of neurons, N = 2} was shown to have sufficient complexity. The dynamics
of a N-neuron network (N >> 2) described by

Xn+l = F(Z W*xn):

where Xy, is the set of IV activation state values (both excitatory and inhibitory
neurons), and W is the matrix of connection weights between different neurons. The
full range of behavior shown by such a system will be impossible to study in detail,
as the number of available tunable parameters are too large to handle. However,
under certain restrictions, the dynamics of such large networks can be inferred.

Let W;; denote the connection weight from jth to the ith neuron, Then, under the
condition |

Wi ie1/Wi1=k;, (kj=constant for a given j=1,...,N), (2.22)

the N-neuron network dynamics is reducible to that of a 1-dimensional map with (N
1) linear segments (for 8 = 0). The occurrence of “folds” in a map have already been
shown to be responsible for creation and persistence of localized coherent structures
within a chaotic flow [162]. As in this case, the resultant map will have a number of
such folds, the system might show coexistence of multiple chaotic attractors (isolated
from each other)., A simple example to illustrate this point is a fully connected
network of four neurons: two excitatory (z),z.) and two inhibitory (y1,y2). Let
a; and b; represent the slope of the transfer functions for the ith excitatory and
inhibitory neurons, respectively. The 4-dimensional dynamics is reducible to the
1-dimensional dynamics of z = x; — ki1 + kazy ~ k3ya. Simulations were carried.
out for the set of parameter values: (a; = 4.6,a; = 4.0,b; = 3.6,b, = 1.6) and
(ky = 0.7, kg = 1.0, k3 = 1.1). Furthermore, ®3,3; have a threshold equal to 1/b;. Fig.
2.24 (a) shows the return map and time evolution of 2 in the absence of any bias.
There is only a single global chaotic attractor in this case, When a small negative
bias is applied to the whole network, the previous attractor splits into two coexisting
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Figure 2.24: The return map and time evolution of the reduced variable, z, for a
4-neuron network (for details see text), with (a) bias = 0 and (b) bias = ~ 0.15.
In the former there is a single global chaotic attractor. For non-zero bias, there
are two co-existing chaotic attractors. Time evolution of z starting from two initial
conditions belonging to different attractors are superposed.
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isolated attractors having localized chaotic activity, Which attractor the system will
be in, depends upon the initial value it starts from, Fig, 2.24 (b) shows the return
map for a bias value of -0.15 and the superposed time evolutions of z starting from
initial conditions belonging to two different attractors, So, an increase in bias, can
cause transition from global chaos to localized chaotic regions. |

This property can be used to simulate a proposed mechanism of olfactory information
processing [53]. It has been suggested that the olfactory system maintains a global
attractor with multiple “wings”, each corresponding to a specific class of odorant.
During each inhalation, the system moves from the central chaotic repeller to one of
the wings, if the input contains a known stimulus, The continual shift from one wing
to another via the central repelling zone has been termed as chaotic' “itinerancy”.
This forms the basis of several chaotic associative memory models.

The above picture can be observed in the present model by noting that, if the external
input has the effect of momentarily increasing the bias from a negative value to zero,
then the isolated chaotic regions merge together into a single global attractor. In
this condition, the entire region is accessible to any input state. However, as the
bias goes back to a small negative value, the different isolated chaotic attractors re-
emerge, and the system dynamics is constrained into one of these. Sustained external
stimuli will cause the gain parameters to decrease (adaptation), thereby decreasing
the local slope of the map. If the stimulus is maintained, the unstable fixed point in
the isolated region will become stable leading to a fixed-point or periodic behavior.
The above scenario, in fact, is the basis of using the proposed model as an associative

memory network.

2.5 Information processing with chaos

Chaotic dynamics enables the microscopic sensory input received by the brain to
control the macroscopic activity that constitutes its output. This occurs as a result
of the selective sensitivity of chaotic systems to small fluctuations in the environment
and their capacity for rapid state transitions. On the other hand, chaotic attractors
are globally extremely robust. These properties indicate that the utilization of chaos
by biological systems for information processing can indeed be advantageous. It
has been suggested, based on investigations into cellular automata, that complex

computational capabilities emerge at the “edge of chacs” [109].

Based on this notion, efforts are on to use chaos in neural network models to achieve
human-like information processing capabilities. Chaotic neural networks have been
already been applied in designing associative memory networks [96] and solving com-
binatorial optimization problems, using chaos to carry out an effective stochastic
search [94]. The superposition of chaotic maps for information processing has also

been suggested before [10, 9].

The model presented in this chapter"ca'n be used for a variety of purposes, classified
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as follows:

Assoclative memory: A set of patterns (i.e., specific network state configurations)
are stored in the network as attractors of the system dynamics, such that, whenever
a distorted version of one of the patterns is presented to the network as input, the
original is retrieved upon iteration. The distortion has to be small enough so that
the input pattern is not outside the basin of attraction of the desired attractor.
In networks using convergent dynamics, the stored patterns necessarily have to be
time-invariant or at most, periodic.

Chaos provides rapid and unbiased access to all attractors, any of which may be
selected on presentation of a stimulus, depending upon the network state and ex-
ternal environment. It also acts as a “novelty detector”, classifying a stimulus as
being previously unknown, by not converging to any of the existing attractors. This
suggests the use of chaotic networks for auto association.

In the previous section, the basic mechanism for constructing an associative memory
network has been described. In this proposed model, both constant and periodic
sequences can be stored. This is made possible by introducing “folds” in the return
map of the network, so that a large number of isolated regions are produced. The
nature of the dynamics in a region can be controlled by altering the gain parameters
of individual neurons. Accessibility to a given attractor depends upon the initial
condition of the network and the input stimulus. So, regions with fixed-point or
periodic attractors may be embedded within regions having chaotic behavior. In
addition, chaotic trajectories confined within a specific region can also be generated
when presented with a short-duration input stimulus belonging to that region. “Nov-
elty detection” is implemented in the above model by making the basins of attractors
(corresponding to the stored patterns) of some pre-specified size. Input belonging
outside the region, therefore, cannot enter the basin and will not be able to converge

to the stored pattern.

Pattern classification: In this information processing task, different input sets
‘need to be classified into a fixed number of categories. Decision boundaries, i.e,
boundaries between the different classes are constructed by a “training session” where
the network is presented with a series of inputs and the corresponding class to which
they belong, In the proposed model, classification can be on the basis of dynamical
behavior. For example, input sets belonging to different input classes may give rise
to different periodic sequences. Otherwise, the distinction can be made between
categories of inputs which give rise to chaotic and non-chaotic trajectories. For a pair
of neurons (N = 2), under the condition k = k', linear separation of the (X, Y)-space
can be done {as shown above). By varying the parameters ¥ and b the orientation
and size of the class regions can be controlled. If & # &' and N > 2, nonlinear
 decision boundaries between different classes can be generated. By using suitably
. adjusted weights, any arbitrary classification can be achieved.

An example of nonlinear decision 'boundary generation is shown in Fig. 2.25. The
network used for this purpose consists of 4 neurons - 2 excitatory (z;,z;) and 2
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(a) (b)

Figure 2.25: (a) A fully connected 4-neuron network with 2 excitatory (z;2) and 2
inhibitory (y1,2) neurons. The arrows and circles represent excitatory and inhibitory
synapses, respectively. (b) The (z1, z2) phase space shows the basin of the chaotic
attractor (shaded region) for threshold, 8=0.25. The unshaded region corresponds
to fixed point behavior of the network. |

inhibitory (y1,y2) (Fig. 2.25 (a)) with asymmetric, piecewise linear activation func-
tions. The gain parameters are a; q, = 2 and b, 4, = 1. All the neurons have a
threshold, 8. The network is fully connected with all weightages equal to unity. The
input stimulus is taken to be the initial value of the excitatory neurons and the
inhibitory neuronal states are initially taken to be zero,

As shown in Fig. 2.25 (b), for 6 = 0.25, the (z;, ) phase space is segmented into
basins leading either to fixed point or to chaotic attractors. By increasing 8, the
width of the chaotic band can be reduced. Changing the initial value of the inhibitory
neurons will cause translation of the band and manipulating the connection weights
gives a rotation to the band. Thus, any general transformation can be applied to
the segment. More complex network connections might permit segmenting isolated
box-like regions in the phase space. This possibility is currently under investigation.

System Dynamics Approximation: A system may be described by a nonlinear

input-output relation,
Y = G(X),

where the mapping function, G, is unknown. By having access to a limited set of
input-output pairs, the function has to be approximated - in effect, building a sys-
tem simulator. Jin et al have proposed a discrete-time recurrent neural network
97], which is non-chaotic but similar to the present model, in order to approximate
discrete-time systems [98]. In the present model, a sufficient number of coupled neu-
rons can be used to construct any arbitrary piecewise linear input-output relation.
By use of a suitable learning rule, the available data set can be used to determine the
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gain parameters, thresholds and connection weights of the network. A close approxi-
mation of the system dynamics will enable prediction and control of its behavior. The
approximation’s accuracy is not restricted to systems with piecewise linear functions
- but can also give good qualitative reconstruction of smooth nonlinear systems.

Periodic sequence generation: Capability for periodic sequence generation can
be exploited for modeling central patiern generators. These are a class of bi-
ological neural ensembles which control well-defined rhythmic muscle movements
such as swimming, running, walking, breathing, etc. Usually they are found in the
spinal cord, producing periodic sequences without feedback from the motor system
or higher-level control. The ability to generate multiple sequences from the same
neural assembly is another interesting feature. Postulating the existence of single
pacemaker neurons acting as the ‘system clock’ to initiate periodic activity cannot
explain all the observed phenomena. The existing network models for simulating this
behavior mostly suffer from the drawback that they cannot generate multiple non-
overlapping sequences. This shortcoming is overcome in the model presented here.
For N = 2 and k = k' # 1, a rich variety of periodic sequences can be chosen from
the same network, siaply by altering the gain parameters by a very small amount.
As mentioned above, numerical investigations indicate that cycles of any period can
be generated by suitably altering the value of k.

2.6 Discussion

One notable feature of our investigations is the existence of the wide range of dynam-
ical behavior in the simple system of a coupled neuron pair, which has been observed
with a variety of nonlinear activation functions. In addition to the functions con-
sidered here, other types of nonlinear activation functions, e.g., Fu(2) = tanh(z/a)
and F,(z) = 2 arctan(z/a) also show qualitatively similar features. In this context,
it may be remarked that a related form of activation function: F,(z) = 1 1_{1;)
has been shown to be topologically conjugate to the chaotic logistic map by Wang
[197). The universality of the observed dynamical features argue strongly that the
observations reported here are not merely artifacts of the specific type of function

chosen, but in fact, have a broader relevance.

As mentioned previously, we have not considered delayed interactions in our model.
The introduction of delays in a neural system can produce gualitatively different
behavior. Such effects have been observed in continuous-time {16] and discrete-time
(116, 43] updated neural networks. A particularly simple form of delay, viz., an
unbounded, exponentially decreasing delay is amenable to simple theoretical analysis
139]. Including this type of delayed interaction in our model shows no new qualitative
features. However, other types of delay might produce new, interesting behaviors in

the system.

To summarize, the behavior of an excitatory-inhibitory neural pair has been studied
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in detail for N = 2 (where N'is the number of neurons). Nonetheless it shows
capability for supporting extremely complex behavior. Under certain restrictions,
the dynamics for N >> 2 networks can also be understood. Relaxation of these
restrictions will provide a challenging task for the future.
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Chapter 3

Nonlinear Resonance in a Chaotic
Neural Pair

The autonomous behavior of the excitatory-inhibitory neural pair was investigated in
the previous chapter. We shall now look at the response of such a system to periodic
stimulus. Our observations indicate the occurrence of a nonlinear resonance phe-
nomenon in such a situation. To simplify the theoretical analysis we have investigated
an anti-symmetric, piecewise linear map, that shows a transition from symmetry-
broken to symmetric chaos on increasing a system parameter. In the latter state,
the chaotic trajectory switches between the two formerly disjoint attractors, driven
by the map’s inherent dynamics. This chaotic switching rate is found to ‘resonate’
with the frequency of an externally applied periodic perturbation (multiplicative or
additive). By periodically modulating the parameter at a specific frequency w we
observe the existence of resonance where the response of the system (in terms of the
residence-time distribution) is maximum, This is a clear indication that the reso-
nance we have observed is a deterministic analogue of the phenomenon of Stochastic
Resonance (SR) [59] - with thermal noise being replaced by one-dimensional chaos.
The insights gained from the simple model is then used to study similar resonance
behavior in an excitatory-inhibitory neural pair with anti-symmetric, piecewise linear

activation functions.

In Section 1, we briefly review the previous investigations of stochastic resonance
in chaotic systems. In Section 2, the model for studying deterministic SR is intro-
duced and the experimental observation of resonance in computer simulations for
parametric perturbation is described. In the following section, a theoretical analysis
is undertaken of these observations. Additive perturbations also give rise to simijlar
resonance and is described in Section 4. In Section 5, we consider an excitatory-
inhibitory neural pair, for which experimental and thecretical results are given. We
conclude with a discussion on the implication of such resonance phenomena for biclog-
ical systems. We also mention the relation of the results of the present investigation
with the process of deterministic diffusive and resonance in the kinetic Ising model.
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3.1 Stochastic resonance in chaotic systems

“Stochastic Resonance” is a recently observed nonlinear phenomena in noisy systems,
where the noise helps in amplifying a sub threshold signal (which would have been
otherwise undetected) when the signal frequency is close to a critical value [19]. This
occurs because of noise-induced hopping between multiple stable states of a system,
locking on to an externally imposed periodic signal. The characteristic signature of
SR is the non-monotonic nature of the Signal-to-Noise Ratio (SNR) as a function
of the external noise intensity. A theoretical understanding of this phenomena in
bistable systems, subject to both periodic and random forcing, has been obtained
based on the rate equation approach [125]. As the output of a chaotic process is
indistinguishable from that of a noisy system, the question of whether a similar
process occurs in the former case has long been debated. In fact, Benzi et al [19]
indicated that the Lorenz system of equations, a well-known paradigm of chaotic
behavior might be showing SR. Later studies [128], [11] in both discrete-time and
continuous-time systems seemed to support this view, However, it is difficult to
guarantee that the response behavior is due to “resonance’” and not due to “forcing”.
In the latter case, the periodic perturbation is of so large an amplitude, that the
system is forced to follow the driving frequency of the periodic forcing. The ambiguity
is partly because the SNR is a monotonically decreasing function of the forcing
frequency and cannot be used to distinguish between resonance and forcing.

Signature of SR can also be observed in the residence time distribution. In the pres-
ence of a periodic modulation, the distribution shows a number of peaks superposed
on an exponential background. However, this is observed both in the case of reso-
nance as well as forcing. The ambiguity is, therefore, present in theoretical [40] and
experimental [150] studies of noise-free SR, where regular and chaotic phases take
the role of the two stable states in conventional SR. Although the distribution of the
lengths of the chaotic interval shows a multi-peaked structure, this by itself is not
sufficient to ensure that the enhanced response is not due to “forcing”. In the present
work this problem is avoided by measuring the response of the system in terms of
the peaks in the normalized distribution of residence times [60]. For SR, the strength
of the peaks shows non-monotonicity with the variation of both noise intensity and

signal frequency,

Ippen et al [95] have used a chaotic driving term to show SR-like behavior in the SNR
of the system response. However, in this case, the chaos is supplied from outside, and
not inherent to the system. Indeed, this distinction between stochastic and chaotic
driving is somewhat artificial as, e.g., random numbers for Monte Carlo simulations
are generated using chaos, If SR is actually used for information processing by
biological systems, then it is likely that organs producing chaotic behavior might
enhance their survival capability through selective amplification of signals in a noisy
background. In this case, the inherent chaos of the system itself could play the role
of “noise”. In the model proposed in this chapter, a simple one-dimensional map
has been shown to use its inherent chaoticity to replicate SR-like phenomena. This

49



suggests a deep relation between stochastic resonance on the one hand, and crises in

chaotic dynamics on the other, mentioned in [31]. The present work also supports
this view.

3.2 The model

The simplest chaotic system to show SR-type behavior are one-dimensional maps
with two critical points. The most commonly studied system of this kind is the cubic
map [122, 190},

Tppl = as + (1~ @)z,

where a is a tunable parameter. The map is found to consist of two attractors, the
initial condition determining the attractor into which the system settles. Various
properties of such ‘bimodal’ maps differ from those observed for the well-studied class
of maps with a single critical point (e.g., the logistic map).

Recently, SR has been studied in 1-D maps with two well-defined states (but not
necessarily stable) with switching between them aided by either additive or multi-
plicative external noise [58]. However, dynamical contact of two chaotic 1-D maps
can also induce rhythmic hopping between the two domains of the system {158}. The
present work shows how the chaotic dynamics of a system can itself be used for
resonant switching between two states, without introducing any external noise,

The model chosen here is a piecewise linear anti-symmetric map, henceforth referred
to as the Discontinuous Anti-symmetric Tent (DAT) map, defined in the interval
-1,1]:

| (14 a(0.5-=(n)), if z(n)=20.5
1—-0a(0.5-2=(n)), Iif 0<z(n)<0.5
—1+a(0.5+xz(n), if —05<az(n) <0
~1~a(0.5+z(n)), if z(n) < -0.5.

The map has a discontinuity at £ = 0. The behavior of the system was controlled
by the parameter a (0 < @ < 4). Onset of chaos occurs at « = 1. The chaocs is
symmetry-broken, i.e., the trajectory is restricted to either of the two sub-intervals
R:(0,1] and L:(0,-1], depending on initial condition. Symmetry is restored at a = 2.
The Lyapunov exponent of the map is a simple monotonic function of the parameter
a. The piecewise-linear nature of the map makes its behavior simpler to study than, -
say, the cubic map described above, The map is shown in Fig. 3.1, the inset giving
a detailed picture of the region around the discontinuity at z = 0. Fig. 3.2 shows
the evolution of the map’s attractor with a increasing from 0 to 4.

z{n +1) = F(z,) ¢ (3.1)

The map has a symmetrical pair of fixed points z}, = =+ -+—“L which are stable for
0 < a < 1 and unstable for @ > 1. Another pair of unstable ﬁxed points, z3, = 1;“/ 2

come into existence for @ > 2. It is to be noted that as ¢ — 2 from above, 34 both

" collide at z = 0 causing an interior crisis [69], which leads to symmetry- breakmg of

the chaotic attractor.
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Figufe 3.1: The DAT map for ay = 2.01. Inset: a magnified view of the map in the
interval [—0.005, 0.005] x [~0.005, 0.005].
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Figure 3.2: Attractor of the DAT map versus ay. The figure was obtained .for Ty € R.
For 25 € L, the corresponding image is obtained by reﬁectmg about z-axis,
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Figure 3.3: The time-evolution of the sinusoidally perturbed DAT map for ap = 2.01,
w = 1/400 and § = 0.05. The broken line is the boundary between I, and R.

3.3 Parametric perturbation

To observe SR, the value of a was kept close to 2, and then modulated sinusoidally
with amplitude § and frequency w, i.e.,

Gy = { ap -+ 6sin(2rwn), if € R (3.2)

ap — 6 sin(2rwn), if z € L.

We refer to this henceforth as multiplicative or parametric perturbation, to distin-
guish it from additive perturbation (discussed later),

The system immediately offers an analogy to the classical bistable well scenario of SR.
The sub intervals L and R correspond to the two wells between which the system hops
to and fro, aided by the inherent noise (chaos) and the external periodic forcing. In
each positive (negative) half-cycle of the periodic signal, a portion of the map defined
over R (L) overlaps into the domain of the other portion defined over L (R). This is
analogous to the successive raising and lowering of the wells in synchronization with
the signal frequency, allowing the system to escape from one well to the other. The
resultant intermittent switching of the trajectory between L and R is shown in Fig.
3.3. If the dynamics of the system due to the internal noise (chaos) has some inherent
time-scale (say ni), as = — m; the two time-scales may lock onto each other. This
resonance should be observable through an increase in the response characteristics

of the map.
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Figure 3.4: (a) P, (n =1, 2, 3) versus w for ¢y = 2.01 and § = 0.05, (b) P, (n =1, 2,
3) versus ag for w = 1/400 and é = 0.05. The circles represent the average value of
P, for 18 different initial values of ¢, the bars representing the standard deviation.
The data points are joined by solid lines for the reader’s convenience.

3.3.1 Simulation results

The response of the system is measured in terms of the normalized distribution of
residence times, N(n) [60]. This distribution shows a series of peaks centered at
n; = (j — 3)no, i.e.,0dd-integral multiples of the forcing period, no = 1. The strength
of the j-th peak

7ti-Forr
Pi=["""Nndn (0<a<0.25), (3.3)

nj=—ang

is obtained at different values of w, keeping ag fixed for §=1,2 and 3. To maximize
sensitivity, o was taken to be 0.25. For ag = 2.01 and 6 = 0.05, the response of
the system showed a non-monotonic behavior as w was varied, with P; peaking at
wy ~ 1/400, a value dependent upon gy — a clear signature of SR-type phenomenon.
P, and P; also showed non-monotonic behavior, peaking roughly at odd-integral
multiples of w; (Fig. 3.4 (a)). For ag < 2, P, increases monotonically to 1 with
decreasing w, while, P;(j > 1) goes down to zero. So, ‘true resonance’, signified by
the non-monotonic profile of Py, occurs only for ag > 2.

Similar observations of P; were done also by varying ao, while keeping w fixed. Fig.
3.4 (b) shows the results of simulations for w = 1/400 and 6 = 0.05. Here also a
non-monotonicity was observed for P;,P; and P;.- The broadness of the response
curve and the magnitude of the peak-strengths are a function of the perturbation
magnitude, §, The variation of Py with gy for different values of 6 were also studied
(Fig. 8.5). As § decreases, the response curve becomes more sharply peaked while

the peak-strength decreases.

Note that, the paré,metric perturbation cannot be done without modulating the noise-
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Figure 3.5: P versus ag for w =1/200 at 6 = 0.01, 0.05 and 0.025. The circles repre-
sent the average value of B, for 18 different initial values of x, the bars representing
the standard deviation.

intensity. This seems to be the principal difference between this type of ‘chaotic
resonance’ and classical SR. As the local slope of the map, a, is varied periodically,
the internal noise, whose intensity is a function of the Lyapunov exponent (and hence
of a) also varies periodically. In contrast, for classical SR, the wells are raised or
lowered periodically without affecting the external noise, which is independent of the
geometry of the wells. |

3.3.2 Theoretical analysis

Analytical calculations were done to obtain the invariant probability density and
the dominant time-scale governing the residence-time distribution. This was done
by proper partitioning of the domain of definition of the system and obtaining the
eigenvalues of the corresponding transition matrix. From Fig, 3.2, it is clear that
the system spends a longer time in the interval [—¢/2,¢/2]|, where € = qg — 2. So a
natural partitioning of the interval [-1,1] is into the four sub-intervals: C; : [~1,—e/2],
Oy : [~€/2,0], Cy : [0,¢/2] and Cy : [¢/2,1). This is an exactly Markov partition
at integral values of ¢, i.e., the partition boundaries, {p;} transform into each other
- on application of the map dynamics, ( f(p;) € {p:}) [18]. It is assumed that for
¢ — 0 the partitioning approximately retains its Markovian character, so that the
process can be mapped onto a Markov process. Close to € = 0, the transition matrix
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" corresponding to the above partitioning is:

1‘—E/2—52/4 ¢

| 1-5 74 =274 4{1-}2/4) 0
w=| 24 2ye y (3.4)
2+¢ 2te p
0 £ £ 1-—&/2-— 1}4
4(1-¢tf4)  4{1—-e2/4) 1-£2/4

where, Wi; = P(C;, C;) is the probability of transition from C; to C;. The eigenvalues
" —efD 2 |

o.f the above matrix are Ay = 1, %2 = .1 f{%/‘? LED T_I;"—-;ﬁ and Ay = 0. The largest

eigenvalue, 1, corresponds to the invariant probability density over the four intervals.

The next largest eigenvalue dominates any time-dependent phenomena. The relevant

time-scale (i.e., the mean residence time) is given by [128]

-1 -1

log(“fﬁ;;:[“) - log(l—€/2)

Tk (3.5)

So, for ag = 2.01, ny ~ 200. This predicts that a peak in the response should be
observed at a frequency -2—3: ~ 1/400, which agrees with the simulation results. For

small €, Ay =~ exp(—e¢/2). Therefore, as gy — 2 from above, the residence time
diverges as |

ng ~ (ag —a})™t, ap =2 (3.6)

The mean time spent by the trajectory in any one of the sub-intervals (L or R) can

be calculated exactly for piecewise linear maps [50]. For ¢ > 0, the intervals 8; =
(0, ) end By = [1— %~ 1] of R maps to L, so that the trajectory escapes from one

sub-interval to the othe?ﬁﬁote the syrmmetrical placement of the two R — L ‘escape
regions’ about z = 0.5, because of the symmetry F(1/2—z) = F(1/2+x) of the DAT
map. So the total fraction of R escaping to L after one iteration is [; = z(zzi 3 Let us
now consider the first pre-image of 8; and f,, which escapes from R to L after two
iterations. The total fraction of R belonging to this set is 3 = 5(-21:5 Proceeding
in this manner, we find from the geometry of the map that the totai fraction of R

which maps to L after n iterations is

| 2"¢
22 e

(3.7)

These are just the probabilities that the trajectory spends a period of n iterations in
R before escaping to L (37,214 = 1). So the average lifetime of a trajectory in R is

2

od | .
<n>=3 (- 1=~ (3.8)
j=1

For ay = 2.01, < n > = 200, in good agreement with the result obtained using the

approximate Markov partitioning (which ensures the validity of the latter approxi-
mation). The above equation also establishes exactly the linear scaling relation of
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the mean lifetime about € = 0, with < n > diverging at ag = 2. By symmetry of the

map, identical results will be obtained if we consider the trajectory switching from
L to R.

Another interesting quantity which also shows a scaling behavior around € = 0, is
the drift rate, v, from one sub-interval to the other {71]. This measures the rate
at which the chaotic trajectory switches between I and R. Owing to the symmetry
F(—z) = —F(z) of the DAT map, the net drift rate is zero, i.e., switching to either
sub-interval occurs equally often. Let us consider switching from R to L (identical
results will hold for switching in the opposite direction due to symmetry). The drift
rate is measured by the fraction of R mapping to L per iteration. Hence,

¢
o V=g - (3.9)

It is again a linear scaling relation as gy — 2 from above. Note that, for ay < 2,
v = 0 as the two sub-intervals are isolated from each other, Thus, v is analogous to
an ‘order parameter’, having a finite (positive) value above gy = 2 and zero below
it. This suggests that the merging of the chaotic attractors at ay = 2 is akin to a
critical phenomena, with the local slope ay as the tuning parameter.

3.4 Additive perturbation

Similar study was also conducted with additive perturbation for the above map. In
this case the dynamical system is defined as follows:

Ty = F(z,) + &sin(27wn). (3.10)

For a = 1.9 (say), the map has two disconnected sub-intervals, L:[-1,0) and R:(0,1].
However, an additive perturbation of magnitude § > 0.1 causes a portion of L to
diffuse into R in the paositive half-cycle of the sinuscidal signal (of frequency w).
Similarly, in the negative half-cycle, a portion of the R interval diffuses into L. The
long-term behavior of the map is described by a “smeared-out” DAT map with a
width &8, rather than the “crisp” piecewise linear DAT map with ao = 1.9. This
happens as the map performs a periodic vertical motion, causing a smearing-out
over time. The simulation results showed non-monotonic behavior for the response,
as either w or ay was varied, keeping the other constant, but this was less marked
than in the case of multiplicative perturbation (Fig. 3.6). This work can be seen in
context with studies conducted on the dynamics of the logistic map under parametric

perturbation [153].
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Figure 3.6: F, (n = 1, 2, 8) versus w for ay = 2.01 and § = 0.05, in the case of
additive perturbation, The circles represent the average value of P, for 18 different
initial values of z, the bars representing the standard deviation,

3.5 Nonlinear resonance in a chaotic neural net-
work model

The resonance phenomenon is also observed in an excitatory-inhibitory neural pair,
with anti-symmetric, piecewise linear activation function. This type of activation
function has been chosen for ease of theoretical analysis. However, sigmoidal ac-
tivation functions also show similar resonance behavior. When a small amplitude
periodic signal is given as external input, it is enhanced if the signal frequency is
close to the “characteristic frequency” of thé chaotic activity. This is due to reso-
nance between the periodic signal and the chaotic switching. The frequency-sensitive
enhanced response to stimuli allows the detection of signals which would otherwise
have been undetected. As shown below by theoretical and simulation studies, proper
choice of system parameters leads to resonant enhancement of signals of a desired
frequency bandwidth.

If ¢, and ¥y, (x,y € [—1,1]) be the state of the excitatory and inhibitory elements
at the n-th iteration, respectively, then the discrete time-evolution equation of the
system is given by |

Tntl = Fa(wﬂ:xmn ~ Wyl + Iﬂ):

Yn+1 = Fb(’wmymn = WyyYn + In.):

where w;; is the connection weight from neuron j to neuron i, and 7 is an external
input. The activation function is of anti-symmetric, piecewise linear nature, viz.,
F.(z) = =1,if 2 < =1/a, F,(2) = az,if —1/a £ 2 < 1/a, and Fy(z) = 1,if z > 1/a.
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Figure 3.7: The (b/a) vs. k parameter space at a = 6.0, for neural pair dynam-
ics governed by an anti-symmetric, piecewise linear activation function. Region A:
2* = 1 — k stable, B: 2* = 1/(1 + kb) stable, C: z* = 0 stable, D: 2-period cycle
between [(1 — k),—(1 — k)], E: superstable periodic cycles, F: two-band symme-
try-broken chaos, G: symmetric chaos. The two thin bands, between B and F, and
again, between F and C, indicate regions of single-band symmetry-broken chaos.

Under the restriction wy,/w,, = wy,/w,, =k, the 2-dimensional dynamics reduces
to a simple 1-dimensional form. The relevant variable is now the effective neural
potential z = ¢ — ky (2 € [-1,1]), whose dynamics is governed by

ZH.HI = Fa (zﬂ) — ka(zn),

where a, b are the suitably scaled transfer function parameters, The design of the
network ensures that the phase space [-1,1] is divided into two well-defined and
segregated sub-intervals L:[-1,0] and R:[0,1]. Analysis shows that for a < 4, there is
no dynamical connection between the two sub-intervals. For a > 4, in a certain range
of (b, k) values the system shows both symmetry-broken and symmetric chaos. In the
former case, the trajectory, while chaotically wandering over one of the sub intervals,
cannot enter the other sub interval. In the latter case, this restriction is removed
and the trajectory visits both sub-intervals in turn, The parameter space diagram in
Fig. 3.7 shows the various dynamical regimes occurring for different values of & and
b/a, at @ = 6, The curve in (b/a, k)-parameter space forming a boundary between
the symmetric and symmetry-broken chaotic domains is given by the equation:

k= a(l%/1—(4/a))/2. (3.11)
For the simulations reported here, a = 6 and b = 3.42, for which the system shows

symmetric chaos over a range of values of k.

The chaotic switching between the two sub-intervals occurs at random. However the
average time spent in any of the sub-intervals before a switching event can be’exactly
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Figure 3.8: The map representing the dynamics of a neural pair for a = 6.0, = 3.42
and k = 1.3811. The figure in solid lines represent the unperturbed map, while the
figures in broken lines indicate the maximum displacement due to a periodic signal
of peak amplitude, § = 0.1.

calculated for the present model:
ng = 1/(bk(1 — (bk/a)) — 1). (3.12)

As a complete cycle would involve the system switching from one sub-interval to the
other and then switching back, the “characteristic frequency” of the chaotic process
is w, = 1/2n;. E.g., for the system to have a “characteristic frequency” of w = 1/400
(say), the above relation provides the value of k ~ 1.3811 for @ = 6,b = 3.42, The
system being symmetric, there is no net drift between L and R. However, in the
presence of an external signal of amplitude ¢, the symmetry is broken. The net drift:
rate, which measures the net fraction of phase space of one sub-interval mapped to
the other after one iteration, is given by v = ¢,if ¢ < ¢, and v = 1 — (kb/a) — (1/bk),
otherwise. The critical signal strength,

e, = 1 — (k*b* + a)/akb, (3.13)

15 a limit above which the net drift rate no longer varies in phase with the external
signal. For the aforementioned system parameters (a, b, k), €. ~ 0.001. If the input
to the system is a sinusoidal signal of amplitude < ¢, and frequency ~ w,, we can
expect the signal to be enhanced, as is borne out in the simulations described below.
The effect of a periodic input (having peak amplitude 6, say) is to translate the map
describing the dynamics of the neural pair, to the left and right, periodically. Fig.
- 3.8 shows the unperturbed map (solid lines) along with the maximum displacement

to the left and right (broken lines) for § = 0.1,

As before, we verify the presencé of resonance by looking at the peaks of the residence
time distribution, where the strength of the jth peak is given by Eqn, (3.3). For max-
imum sensitivity, ¢ is set as 0.25. As seen in Fig. 3.9, the dependence of P;(7 = 1,2, 3)
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Figure 3.9: The peak strengths of the normalized residence time distribution,
P,(n = 1,2,3), for periodic stimulation of the excitatory-inhibitory neural pair
(a = 6, b = 3.42 and k = 1.3811). The peak amplitude of the periodic signal, § =
0.001. P, shows a maximum at a signal frequency w, =~ 1/400 -

on external signal frequency, w, exhibits a characteristic non-monotonic profile, in-
dicating the occurrence of resonance at w 2 1/2n;. For the system parameters used
in the simulation, n; = 200. The results clearly establish that the switching be-

tween states is dominated by the sub-threshold periodic signal close to the resonant
frequency.

The above results indicate that deterministic chaos can play a constructive role
in the processing of sub-threshold signals. Experimental study involving crayfish
mechanoreceptor cells have provided evidence of SR in the presence of external noise
and periodic stimuli. The evidence of chaotic activity in neural processes of the
crayfish [142] suggests that nonlinear resonance (as reported here) due to inherent
chaos might also be playing an active role in such systems. The versatility of biolog-
_ical sensory apparatus could be partially emulated in artificial systems by using the
proposed resonance mechanism for signal enhancement.

3.6 Discussion

Low-dimensional discrete-time dynamical systems are amenable to several analyti-
cal techniques and hence can be well-understood compared to other systems. The
examination of resonance phenomena in this scenario was for ease of numerical and
theoretical analysis. However, it is reasonable to assume that similar behavior oc-
curs in higher-dimensional chaotic system, described by both maps and differential
equations. In fact, SR has been reported for spatially extended systems (spatiotem-
poral SR) [112], e.g., in coupled map lattices [58]. A possible area of future work is
the demonstration of phenomena analogous to spatiotemporal SR with a network of
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coupled excitatory-inhibitory neural pairs.

The close resemblance of the merging of attractors with critical phenomena has
nossible relevance to SR in Ising systems. Although numerical studies have reported
SR in kinetic Ising system, it seems to be inconclusive as the primary peak strength
of the normalized residence-time distribution shows only a monotonic behavior [163],
(164]. This response profile is identical to that observed in DAT Map for a5 < 2.
A study of kinetic aspects like hysteresis is planned to be undertaken, which should
give information concerning the phase-dependence of the resonance behavior, The

relation of nonlinear resonance to the phenomena of deterministic diffusion (66, 104]
is another area of further study.

The observation of ‘SR’ in chaotic systems also has implications for the area of
noisy information processing. It has been proposed that the sensory apparatus of
several creatures use SR to enhance their sensitivity to weak external stimulus, e.g.,
the approach of a predator. Some experimental work on crayfish have provided
supporting evidence to this assertion [48]. The above study indicates that external
noise is not necessary for such amplification as chaos in neural networks can enhance
weak signals. As chaotic behavior is extremely common in a recurrent network of
excitatory and inhibitory neurons, such a scenario is not entirely unlikely to have
occurred in the biological world. This can however be confirmed only by further
biological studies and detailed modeling of the phenomena.

61



Chapter 4

Chaos Control in Simple
Excitatory-Inhibitory Neural

Network Models

Neurobiological studies have indicated that rapid transitions between chaotic and
relatively more ordered states may be the key towards understanding how the brain
performs cognitive tasks. This immediately suggests that methods of controlling
chaos may be used to study similar phenomena in neural network models. In the
work described in this chapter, control of chaotic behavior is investigated in chaotic
neural network models, On imposition of control, transition of the network behavior
from chaos to periodicity is observed. This has implications for both the explanation
of observed neurobiological phenomena (e.g., olfactory hallucinations during epileptic
seizures) as well as a more dynamic interpretation of associative recall performed by
neural network models,

The next section reviews some existing techniques of chaos control which can drive
a system from chaotic to ordered behavior, In Section 2, we analyze the physical
mechanism of control in a chaotic neural pair, achieved through, either, a feedback
to a system variable, or, through periodic forcing. Section 3 reports the results of
applying control to a chaotlc neural network comprising three pairs of excitatory
and inhibitory neurons, while, in Section 4, the relevance of this type of research to
explaining neurobiological phenomena is discussed. Finally, some observations on the
possible applications of chaos control in neural computation are briefly mentioned.

4.1 Chaos control

One of the distinguiShing features of chaotic attractors is that they have an infinite
number of periodic attractors embedded within them. If the system state exists at
atly time on a region belonging to one of the periodic attractors then it will remain
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within it. However, as the attractors are unstable, when perturbed by noise, the
system diverges away from the periodic orbit at an exponential rate. In a chaotic
attractor, the system state may be, at any given time, infinitesimally close to any
one of the infinite periodic attractors but due to the highly unstable nature of the
periodic orbits, the periodicity is never manifested over a measurable period of time.

Ott, Grebogi and Yorke have used this feature of chaotic attractors to construct a
general method of controlling chaos, i.e. to convert the chaotic behavior of a sys-
tem to a time-periodic one [135, 161]. Their method (referred to as OGY method
henceforth) achieves this control by making small, carefully chosen time-dependent
perturbations of one of the parameters of the system. To obtain a periodic orbit,
a local map around the desired attractor is constructed by the method of delay-
coordinate embedding. In this method, the experimentally obtained time-series of a
system is used to construct a (n+1)-dimensional (say) delay-coordinate vector, whose
time-evolution can be plotted to give a 3-dimensional projection of the trajectory.
It has been mathematically demonstrated that such a projection is a good approx-
imation of the dynamical attractor of the relevant system in (n + 1)-dimensional
space [138], {27]. The OGY control method relies upon the identification of saddle
instabilities, i.e., unstable periodic points located on a surface having both stable
and unstable directions. The system approaches the periodic point along a stable
direction and diverges away from it along an unstable one, When the chaotic system
state is in the neighborhood of the desired attractor, a perturbation is applied to
a system parameter such that on the next iteration the system state falls on the
stable direction. The state will then move towards the attractor in successive it-
erations. Using this principle, many physical systems exhibiting chaotic behavior
has been subjected to control. However, one drawback of this method is that only
low-period orbits can be stabilized, since, because of the exponential error magnifi-
cation in chaotic systems, high-period stable orbits are extremely difficult to achieve
by making only one correction in the long period. The OGY method has been used
to control chaos in a biological neural network prepared from a hippocampal slice
of a rat brain [155]. Using precisely timed electrical stimulation of the brain slice,
the system was perturbed such that a trajectory coincided with a stable direction in
the neighborhood of a periodic attractor. Thereafter the point moved towards the
attractor with successive iterations and the resulting trajectories became periodic.
In a similar way, anticontrol was achieved by perturbing a stable orbit, so that the
next iterate falls close to the unstable direction, with a corresponding transition from

periodic to chaotic behavior.

An alternative method of controlling chaos, called “occasional proportional feedback”
(OPF), has been proposed by Hunt [93]. This allows stabilization of longer orbits
than that possible through the OGY method. As higher period orbits visit most
regions of the attractor, which correspond to different physical states of the system,
it is desirable to have high-period orbits if one wishes to sample as many of the
states as possible. In the OPF method, feedback is used to modulate the system
parameter. The deviations of a chaotic variable within a specified window, centered
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abou'Lt a specified value of a chosen system variable, are fed back to the system. By
varying the control parameters, different periodic orbits are stabilized. A theoretical

framework for this control mechanism has been sought to be developed by Carr and
Schwartz [30].

Both the methods mentioned above apply the control signal to the system parameter.
Feedback to the system variable, has also been applied to contro! chaotic systems with
success. One such method [120] is based on the application of a periodic proportional
feedback to the system variable, such that, every p time steps (say), the system is
modified by means of a proportional feedback. As a result, an unstable periodic
orbit, of period equal to a multiple of p is found to be stabilized. This method has
been used to control the chaotic behavior of small, discrete neural networks [179],

where the control is applied to one of the neurons, the others being free of direct
control.

4.2 Controlling chaos in a neural pair

In this section we demonstrate two different ways of controlling the discrete-time
chaotic dynamics of an excitatory-inhibitory neural pair. The first method is based
on the application of proportional feedback to the system variable (instead of the
system parameter, as in the OPF method) described above. The second method
involves subjecting the neural pair to an external periodic stimulus,

4.2.1 System variable feedback method

To observe the effect of applying occasional proportional feedback to the system vari-
able, let us consider the case of a neural pair whose dynamics is governed by piecewise
linear activation functions. As already mentioned in Chapter 2, the behavior of a
neural pair, with function parameters, a = 4 and b = 2, is identical to that of the
“tent” map: | |
Zupl = 22, for 0< 2z, <0.9, (4.1)
2(1—z,), for 0.5 <2, <1, '

with the difference being that the phase space of the neural system is confined to
the interval [0,0.5], while the tent map is defined in the unit interval [0, 1]. However,
this distinction can be removed by suitable rescaling. We shall therefore focus on the
tent map as the system to which the proposed control mechanism is applied.

The tent map, as defined above, is chaotic over the entire unit interval. The Lya-

punov exponent of the system is A = log,2 =~ 0.693, and the expansion of small
perturbations among nearby trajectories is uniform throughout the interval. The

results obtained for this specific case, are easily generalizable to maps with a glob-
ally uniform stretching rate, and, with slight modifications, to piecewise uniform

stretching rates.
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Figure 4.1: The input-output relation of the control signal, §z, with the control
parameters, z* and Az*. The feedback magnitude, o, gives the slope of the function.

If zy41 = IF'(2,) represent the system to be controlled (in the present case, JF' is given
by Eqn. (4.1)), then the on applying control, we have the modified system:

lntl = F(zn) + ’5311.1 ' (42)

where, 6z,, represents the control signal. For the proposed control method, the
control signal is obtained by

62y, = aFap(z" — F(z,)). | | (43)

Here, z* is the system state which is desired to be stabilized, o is a pa,rameter'
governing the magnitude of feedback and F is a function, defined as,

ﬂ(é) = &, if [§| <y,

= (), otherwise,.
As is evident from the form of F, the control signal is generated only on occasions
when the system variable z € I~ (2* - Az') (see Fig. 4.1).

Let us now see the effect of the above control mechanism on the tent map. If z, =
F~1(2* + Az), where Az < Az', then, on the next iteration, the system goes to

Zorr = 2" + Az + 02" — 2" — Az).
Now for the tent map, F~'(z) = £, so that,
Az =2z,— 2",

Therefore, one can write the resultant system dynamics, in the presence of control,

adS .
Zoy1 = 22n — 202, + a2’ . (4.4)
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Figure 4.2: The effect of feedback control (2* = 0.4, Az* = 0.02 and & = 1) to the
system variable of the tent map (inset), #, is shown in a magnified view. The regions
F~1(2*) £ Az* have a slope of zero, the rest of the map remaining unchanged.

The above expression implies that, the slope of the map, in the region F~1(z* £ Az*),
has been modified to |

dz,1+1
= 2] ~
5, = Al~a),

on the application of control. This is shown, for 2* = 0.4, A2* = 0.02 and & = 1,
in Fig, 4.2. Note that, the slope of the map is the system parameter governing
the nature of the dynamics. This implies that the effect of feedback to the system
variable is the same as local parametric perturbation around the desired region of
the phase space to be controlled.

We shall now investigate the conditions under which a period-p cycle is stabilized by
the control method. Let, the p-th iterate, JF*, be the lowest order iterate of the map,
to have a fixed point in the region JF~'(2* & Az). The stability of the fixed point is
decided by the magnitude of its slope, m. In the case of the tent map,

m = 2%(1 — a). - (4.5)

The p-th order cycle is stable only if |m] < 1, so that, by Eqn. (4.5), the critical
value of v at which the cycle just becomes stable is:

1 .
=1 - -, | 4,6
o, =1 op (4.6)

For example, a fixed point can be stabilized for o > 0.5, while a stable 2-cycle is
obtained only for & > 0.75, and similarly for higher order periodic cycles.

The time required for the system to converge to the stable state, .m application
of the control mechanism, is dependent upon Az’. The average time required _-for |
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convergence can be obtained analytically in the case of the tent map, The extent of
the region in which control is activated is 2Az2*. As the map is defined in the unit
interval, the probability that a trajectory is in this region is also-2Az*, If the system
is in another region, the probability that it enters the control region is 2A z* (1-24Az2").

Proceeding in this manner, the probability for the trajectory to enter the control
region after n iterations, is given by

P(n) = 2Az*(1 — 2A2")" (4.7)

Therefore, the average time required for convergence is

<n>=LnP(n) =242'E2 n(1 - 242", (4.8)
This is evaluated as
S (1-—-2Az%)
 2Az¢ (4.9)

which, comes out to be =~ 49, for Az* = 0.01. An example of a controlled transi-
tion from chaos to a period-2 cycle is shown in Fig. 4.3, for the control parameters:
2*=0.4, Az' = 0.01 and a = 1. The control mechanism is turned on at n == 50 (in-
dicated by an arrow “a”) and the periodic cycle is stabilized quite rapidly (indicated
by an arrow “b”). The bottom panel of Fig 4.3 shows the magnitude of the control
signal, 6z,

Since the control perturbation, 6z, is a function of the neuron state, z,, and a de-
sired system state, z', the control method can be implemented as a network of
excitatory-inhibitory neural pairs with suitable connection weights and activation
function parameters { Fig. 4.4). The combination of a chaotic neural pair with a
controlling neural system provides a neuromodule for stabilizing various periodic or-
bits, as suggested in [186]. Note that, an entire periodic sequence can be stabilized
if only one of its members is known. Therefore, for a system with uniform stretching
rate (e.g., the tent map), there is no necessity for obtaining a time-series to generate
a control signal - a single stationary input is sufficient. The method has the further
advantage of being extremely simple to implement, as compared to, say, the OGY
method, which involves intensive calculations.

4.2.2 External periodic stimulation

Periodic cycles can also be stabilized by applying a periodic external input. T .h'is
had been observed in the case of chaotic nonlinear oscillators evolving in continuous
time [25]. Similar phenomena has been observed in our neural model.

For an excitatory-inhibitory neural pair, with activation functions of sigmoid nature, .
the effect of applying a periodic signal has been observed. As already mentioned in
Chapter 3, for low-frequency signals, nonlinear resonance occurs. However, __i.f the
signal is of higher frequency, periodic orbits of various orders are stabilized. - The

reason for this phenomena is as follows,
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Figure 4.3: (Time series of the tent map subjected to control (top) and the magnitude
of the control signal (bottom). The arrows a and b indicate the switching on of the
control mechanism and the onset of controlled periodic cycles, respectively.
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Figure 4.4: A biologically plausible mechanism for implementing the feedback control
mechanism demonstrated for the tent map.
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2(n)

Figure 4.5: The map representing the dynamics of the excitatory-inhibitory neural
pair (¢ = 50,b = 25) governed by sigmoid activation function subjected to control
by a periodic external input of peak amplitude § = 0.05. The broken curve indicates
the unperturbed map (F}), while the solid curve indicates the shifted map (F3) due
to the periodic input.

Let the unperturbed map be chaotic in nature. On applying a periodic signal, the
map is translated periodically, so that the slope at different points of the map is a
function of time. Consider the case of a period-2 signal, which switches alternately
between 0 and § (Fig. 4.5). The trajectory from the critical point of the unperturbed
map, F; (indicated by broken lines), iterates to the tail portion of the shifted map,
Fy (indicated by solid lines). Note that the slope, at this region, of the perturbed
map, is much less than that of the original map, The stability of a period-2 cycle (2,

2y), is decided by the slope of the fixed point of the composite map, Fy * Fy, given
by: |
iRy dF,

m= 'Ez"z_"’“" X g7

Now, ‘%El‘z=zg & 1= |m| < 1 (for sufficiently large 6), iﬁdicating the stabilization of
the period-2 cycle.

4.3 Chaotic neural network model

We shall now consider a network comprising a larger number of elements for the
purpose of controlling unstable periodic cycles. The present work has been done
on an excitatory-inhibitory neural network model, which is a discrete-time version
of a model proposed by Hayashi [80]. The system consists of N excitatory and N
inhibitory elements, denoted by z; and i, respectively (Fig. 46) The cells update
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Figure 4.6: The oscillatory neural network model. Excitatory and inhibitory cells
are labeled as « and y, respectively. W, represents the connection weights between
the excitatory cells. K. is the strength of inhibitory connection from y to x and K,
is the strength of excitatory connection from x to y.

their states in the (n + 1)th iteration, according to the following transformations:

¥
zi(n+1) = G(; Wi; z5(n) - Kgr yi(n) + Liw)) (4.10)
and,
yi(n+1) = G(Kie z(n) + Liw+86)) (4.11)

where, I(w) is an external periodic input or bias, § is a phase difference between the
inputs to x; and y; and, the function G is defined as,

G’(z) - 2 arctan(z/a) (4.12)

vid :

a being the slope of the function. This parameter is analogous to ‘temperature’ in a
physical system. |
Thus, while excitatory cells are all connected to each other, inhibitory cells are con-

nected only to the corresponding excitatory cells - Kyg being the weightage of the
excitatory connection from «; to ¥; and Kg; being the inhibitory connection weigh-
tage from g; to x;. It is evident that z; and y; vary between +1 and -1. The activation
values of the excitatory cells at time ¢, ;(¢), is taken as the output of the network

~at that instant of time.
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The synaPtic connection weights W;; between the excitatory cells, z;, are evaluated
by a modification of the standard Hebb rule, |

1
Wy = N D+ 6 (4.13)
- .

where &' is the ith component of the uth pattern vector being stored in the network
and &;; is the Kronecker delta function.

It is easily seen that the pair of first-order difference equations (4-5) is equivalent to
the second-order difference equation:

N
zi(n+1) = G}, Wy zi(n) — Kgr G(Kpp mi(n—1) + L{w+6)) + Li{w)) (4.14)
3=1

which resembles a Hopfield-like model with delay-dynamics.

4.3.1 Stability analysis

The stability of the fixed points of a single excitatory-inhibitory pair is investigated
in this section. Let z* denote a fixed point of the pair of evolution equations for z;
and y;. The Jacobian in the neighborhood of the fixed point in the absence of any
external input is given by

: e
] = CG;:'((:))||::::II§?; G (z)‘zgz*KEI (4.15)
where G’ (z).is the derivative of G(z) w.r.t. 2.
The eigenvalues are given by the solution of the equation
Det | J — AL | = 0 (4.16)
where I is the identity matrix. This equation can be reduced to
M~ TrJA+ DetJ =0 (4.17)
Thus,
Ny = TrJ £ /(T 2J)2 ~ 4 Det J 4.18)

For (Tr J)* — 4DetJ > 0 the solutions eventually converges to the fixed poi%t, which
is thus stable. EvaluatingJ, Trd = G'(2)|:—r Wisand Det J = (G'(2)|:=»)}" Kig Kgr.

CAs G (2) = = (zgizz), the eigenvalues are given by,

2 a
Az = - @ 2% (Wy + (Wi - 4 Ker Kig) (4.19)

According to Eqn. (4.13), Wi = 2. Therefore, the condition for stability of the fixed
point is Kg; Kyg < 1. If this condition is not satisfied, all the fixed points of the
second-order difference equation become unstable giving rise to periodic orbits.

Ke



4.3.2 Simulation results

For the present work, a network with N = 3 was used for carrying out computer

simulations. The number of cells was kept low for ease of graphical analysis. The
pattern vectors chosen for storage in the network were :

§=(111),&=(1~1-1),8=(-1 -11)

The memory patterns are, therefore, vertices of a cube, -1 < z; < 1 (i=1,2,3).
After evaluating the weight matrix, the network was made to evolve from a randomly
chosen initial value. The initial states were taken as z;(0) = I; and 4;(0) = 0. As
pointed out above the condition for oscillations in a single excitatory-inhibitory pair
is Kg; Krg > 1. The system thus corresponds to three oscillators weakly coupled
together through connection strengths ~ O (7). If these three oscillators have
independent periods of oscillations then, according to the results of Li and Yorke
(110}, the system is capable of chaotic behavior, |

The simulation was carried out for the following set of parameters: Kgy = 2.0, Kz
= 2.0 and @ = 0.1. An external sinusoidal input which completed one period every
300 iterations of the network with = 0 was used to stimulate the network. The
system showed chaotic activity when the input pattern vector was very different from
any of the stored pattern vectors. The 3-dimensional plot of the trajectory of the
network state in state space is shown in Fig. 4.7, while Fig. 4.8 shows the variation
of the average activation of the excitatory cells with iteration number along with the
corresponding logarithmic spectral density.

Another performance parameter to be noted is the overlap of the output of the
network at a given time with each of the stored patterns, This is defined for the uth
pattern vector at the nth iteration as

1 N

TIEAOKS (4.20)

i=)

mH(n) =

In Fig. 4.9 the overlap values are plotted against the number of iterations, for each
“of the three £*. |

This chaotic system was then subjected to control by modulating the amplitude of
the external periodic input. The resulting system, starting from the same initial
conditions and network parameters as in the previous chaotic case, showed a time-
series repeating every 15 iterations, after the initial transients had died away. The
trajectory of the system state over time in Fig. 4.10 shows a simple periodic orbit.
Regular periodic behavior is clearly manifested in the plot of the average excitatory
cell activation and the corresponding logarithmic spectral density curve in Fig. 4.11.

L

The overlap vs. iterations diagram in Fig, 4.12 shows that the network periodically
comes close to each of the three stored patterns. Thus, on imposing control, the

system state exhibits periodicity quite clearly.
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Figure 4.7: Trajectory of the network output in the chaotic state (K,; = 2.0,
Kie = 2.0). The activation values for the cells z(1), z(2) and =(3) are plotted along
the three axes. The circles represent the locations of the stored patterns and the plus
- sign indicate the location of the input pattern.
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Figure 4.8: Temporal evolution of the average activation value of the excitatory cells
in the chaotic state and the corresponding logarithmic spectral density.
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Figure 4.9: Temporal evolution of the overlap of the network output with the stored
patterns in the chaotic state.

4.4 Neurobiological implications

The modeling of neurobiological chaos and its subsequent control to produce periodic
behavior, points out several possible avenues for research aimed at understanding
how the brain works. As Freeman has already pointed out {177], chaos is omnipresent
in the brain - demonstrably so, in the somatosensory and the olfactory cortices.
It has been suggested that the quiescent state of the brain is chaos, while during
perception, i.e. when attention is focused on any sensory stimuli, brain activity
becomes more periodic. From this perspective, the periodic orbits observed in the
controlled state of the network model can be interpreted as specific memories. If the
different spatio-temporal patterns stored in memory are identified with the infinite
number of unstable periodic attractors that are embedded in the chaotic attractor,
then the transition from quiescence to attention can be interpreted as the controlling
of chaos to give rise to periodic behavior, culminating in the identification of the
sensory stimulus that has been received, This control, of course, is not imposed by

any external agency, but is an emergent property of the brain,

This identification is also indirectly supported by the clinical observations of hal-
lucinations that are prevalent during sensory epileptic seizures [2). Complex visual
hallucinations are usually due to an epileptic focus in the posterior part of the tem-
poral lobe, near its junction with the occipital lobe. Often the hallucinatory visual

~ images are distorted, being too small or too large or unnaturally arranged. More
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Figure 4.10: Trajectory of the network output in the controlled state for the same
set of network parameters and input pattern as in Fig. 7.
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striking is the case of olfactory hallucinations, that are often associated with disease
of the inferior and medial parts of the temporal lobe, usually in the region of the
hippocampal convolution. Commonly, the hallucinatory smell is thought by the sub-
jects to come from some place in the environment and is described as disagreeable
or foul, although otherwise unidentifiable. This can be explained in terms of the
proposed plicture of brain function by noting that during epilepsy, undesired control
of the chaotic activity of the brain occurs as a result of the highly synchronized elec-
trical stimulation of large parts of the brain. The stabilizing of an undesired periodic
attractor results in the erroneous recognition of a sensory stimuli even when such a
stimuli is absent from the immediate environment of the epileptic subject.

4.5 Discussion

In this investigation, we have confined our attention to small networks for convenience
- of analysis. The extension of the control methods to the situation of spatiotemporally
extended systems {92] is a challenging task for the future.

The traditional neural network paradigm has been so far dominated by dynamics
governed by a multitude of fixed point attractors {8]. Each such attractor is iden-
tifled with a specific pattern which is desired to be classified appropriately and/or
recalled associatively. But limitations of neural networks designed according to this
prescription, as well as, recent neurobiological research, is now forcing this “fixed-
point" approach to be replaced by a more dynamic interpretation of how cognitive
tasks may actually be performed in the brain.

The use of chaos control can improve the performance of neural network models
for processing information. The possibility of embedding an enormous amount of
dynamic patterns ( e.g., moving images, pieces of music, etc.) in a chaotic neural net-
work and their systematic recognition will widen the scope of applications of neuro-
computers. Rapid switching between various unstable periodic cycles, without large
changes in the system dynamics, can be of use in tasks such as storing information
and pattern classification. Temporal sequences can be associated with the unstable
periodic attractors by suitable learning rules and then recalled on presentation of
- suitable stimulus as input to the network. The convergence to the stored patterns
“will be extremely rapid owing to the chaotic dynamics governing the network.

Although control of chaos (by the OGY method) has been demonstrated in the brain
[155], it is still not clear whether a similar process is actually used in nature. In
this situation, the investigation of different control processes in simple, biologically
plausible neural models, can give us an insight on the possible functional role of such

phenomena in the actual neurobiological situation.
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Chapter 5

Collective Dynamics and
Synchronization in Small
Assemblies of Neural Pairs

The unique capabilities of the brain to perform cognitive tasks are an outcome of
the collective global behavior of its constituent neurons. This is the motivation for
investigating the dynamics of small networks of excitatory-inhibitory neural pairs,
‘which have been studied in isolation so far, Recent neurobiological studies have shown
that many cortical neurons respond to behavioral events with rapid modulations of
discharge correlations, lasting between ~ 107¢ — 10 seconds [193]. This supports the
notion that a neuron can intermittently participate in different computations by rapid
synchronization and desynchronization with neighboring neurons. The mechanism
of such dynamic correlations in the brain are as yet unknown,

Observation of transition between synchronized activity and incoherent activity in
the brain during sensory perception [53], hints at a connection with phase-locking
among coupled chaotic systems, Under certain conditions, such chaotic systems
can synchronize, either through coupling, or by being linked to a common signal.
However, the presence of multiple synchronizing interactions in a network of chaotic
elements shows a variety of novel phenomena. The numerical observations reported
in this chapter provide a glimpse of the possible range of collective behavior in small
assemblies of chaotic neural pairs. Section 1 reviews some techniques for synchro-
- nizing chaotic systems. In Section 2 we briefly mention several interesting features
observed during the synchronization of two or three coupled neural pairs (both uni-
directional and bidirectional couplings have been considered). Section 3 introduces
~ the model (based on the Lorenz system of equations) used for studying competition
B 'a,mong synchronizing chaotic systems and includes a short analysis of the fixed points
_and their stability. Section 4 contains the results of computer simulations of the
| :5"system Finally, possible directions of future research and the relevance of this type

- 'of research to the theory of neural computation are dlscussed
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5.1 Synchronization of chaotic systems

The synchronization of chaotic systems is a difficult problem owing to their extremely
sensitive dependence on initial conditions. Any initial correlation present between
identical systems, starting from very close initial conditions, exponentially decrease to
zero with time. Thus, for all practical purposes, any initial synchronization between
the systems is bound to disappear rapidly. In recent times, however, some methods
of achieving synchronized behavior between chactic systems have been proposed.
Pjoneering work in this respect has been done by Pecora and Carroll [140], who used
the concept of a response system locking on to a driver system. So far, such studies
have been limited to driving a response system by a single driver system. However,
the knowledge gained from studying such simple systems may not be adequate to
give us an idea as to how systems consisting of multiple independent driver systerns,
competing with each other to synchronize the same response system, will behave.
The Pecora-Carroll driving mechanism can be seen as the “strong-coupling” limit of
a general scheme of directionally- oriented couplings in a network of chaotic elements.

The synchronization of bidirectionally coupled chaotic systems is stable provided the
coupling strength is at least half the Lyapunov exponent of the system [55] (when the
coupling includes all the components of the system equally). One-way coupling (or,
driving one chaotic system by another) can also lead to synchronization, provided
certain conditions are satisfied [140], [141], [81]. The drive-response method consist
of the following steps. First an n-dimensional autonomous system

dx
dt

is divided into two parts, driving (x4) and responding (X, ):

= F(x),

 dxd | dx, . _
_d"t_ - g(xdj xr‘)} At - h(xdixr)i.
where, x4 = (T 0,%m), € = [filX)s 0fa(x), X» = (Zm41,...,2a) and

h = [far1(X)s- .o fa(x)]. A replica subsystem x; identical to x. is then created and
driven with the x, variables of the original system. Therefore, the replica subsystem
equations are, ,
dx;|
dt
The responding subsystems x, and x; will synchronize only if &%, = |x, — x| — 0.
According to Pecora and Carroll, this occurs if and only if the conditional Lyapunov
“exponents of the x, subsystem are all negative.

" Drive-response synchronization has been realized in various electrical circuit experi-
ments. It has also been used in experiments of secure communication where a chaotic
masking signal is added to the transmitted signal. It is then recc:ver‘?d at the receiving
end by subtracting the chaotic signal regenerated by synchronization [42].

= h(xg x.).
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Besides the Pecora-Carroll method, other synchronization procedures have also been
proposed. Of these, the Variable Control Feedback (VCF) method is of particular
interest, as it can be used for both control and synchronization of chaos [92]. In fact,
the Pecora-Carroll method turns out to be a special limiting case of this method.
VCF consists of adding a feedback term to a dynamical system to guide it into some
- prescribed state. If % = F(x) be an n-dimensional dynamical system and x* be the

desired state to which the system has to be brought, then VCF involves modifying
the system dynamics to;

dx
o = F(x) — A(x - x')

where A is the set of n feedback multipliers. If x* be the output of a chaotic system |

F'(x), then the system synchronizes with F(x). In the large-)\ limit, VCF reduces
to the Pecora-Carroll method. Specifically, the feedback parameters for the driving
subsystem variables, A; — co, while the remaining As are set to zero.

5.2 Collective dynamics of neural assemblies-

Synchronization among chaotic maps, with either unidirectional or bidirectional cou-
- pling, have been investigated previously in [46, 78, 189], while the effect of coupling
on the chaotic dynamics has been studied in [115, 152, 63, 143]. In this section we
briefly mention some results of numerical investigations of collective dynamics of NV
pairs of excitatory-inhibitory neural pairs (N=2,3), coupled to each other, either
unidirectionally or bidirectionally. The cases considered are shown schematically in

Fig. 5.1,
Case I: N =2

In this case, synchronization occurs for both unidirectional and bidirectional cou-
pling, when the magnitude of the coupling parameter is above a certain critical
threshold, An interesting feature observed is the intermittent occurrence of desyn-
chronization (56, 82] in an apparently synchronized situation, for a range of coupling
values. The arrangements we have investigated numerically are given by the following

set of equations: -
1 _ 1
’zn-l-l - F(zn)i

221 = (2 + Nz, — 2;]),
for unidirectional coupling, and
zhn = Fz, + Mz — 2)),

o = F(z2+ Az, — z2)),

for bidirectional coupling (IF' indicates the dynamical system representing an excitatory-
inhibitory neural pair, with sigmoid activation function). Both systems show quali-
tatively similar behavior. In Fig. 5.2, we present the results of numerical simutation
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Figure 5.1: The coupling arrangements investigated for N = 2 ((a) unidirectional
and (b) bidirectional) and N = 3 neural pairs. In the latter case, two further cases
were considered: local coupling ((c) unidirectional and (d) bidirectional) and global
coupling ((e) unidirectional and (f) bidirectional). |
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Figure 5.2: Intermittent synchronization for 2 bidirectionally coupled neural pairs
(21, 23) with coupling magnitude (a} A = 0.26 and (b) A = 0.28 (a = 100, & = 25, for
both the pairs).

of a bidirectionally coupled system, where the component neural pairs have the ac-
tivation function parameters a = 100, b = 25. As can be seen clearly, the presence of

intermittent burst of desynchronization occurs as a function of the coupling param-
eter, A.

Case II: N =3

For N = 3, two coupling arrangements are possible for both unidirectional and
bldlrectlonal coupling: local coupling, where nearest neighbors are coupled to each
other, and global coupling, where the elements are coupled in an all-to-all fashion.

In the case of unidirectional coupling, a certain type of local coupling arrangement
can produce a situation, referred to as “frustrated synchronization”, that has been
analysed in detail later in this chapter. In the case of bidirectional coupling, we
observe a new phenomenon, referred to as mediated synchronization. The equations
governing the dynamics of the coupled system is given by:

H+1""F(z +/\Z)

n+1— F( n+)\[z +‘33)
'zn-f'-l = E‘(zn T ’\zn)‘

For the set of activation parameters a = 100,b = 25, we observe the fallc}wing
feature over a range of values of the coupling parameter, A: the neural pairs, z
and 2z which have no direct connection between themselves synchronize, although z*
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Figure 5.3: Mediated synchronization for 3 bidirectional, locally coupled neural pairs
(21, 23, 23) with coupling magnitude A = 0.12: (a) no synchronization between z; and
22, while, (b) z1 and 23 synchronize after ~ 500 iterations (a = 100,b = 25 for all the
pairs). |

synchronizes with neither (¥Fig. 5.3). So, the system z? appears to be “mediating”
the synchronization interaction, although not taking part in it by itself.

For a global coupling arrangement, no new feature is observed for unidirectional
coupling (this arrangement is similar to that studied in (18] for continuous time
systems) - but for bidirectional coupling, governed by the set of equations:

331—1-1 = F(ﬂwji T }\[zi + zﬁ ),
Zoy = (22 + Az, + 23)),
‘z3r.+l = F(zﬁ t Azgn + zﬁ])!

T

the phenomenon of “frustrated synchronization” is observed. The phase space of the
entire coupled system is shown in Fig. 5.4. The time series plots in Fig 5.5 show that
none of the component systems synchronize. This is because the 3 systems, each
trying to synchronize the other, frustrate all attempts at collective synchronization.
( Note that the introduction of structural disorder in chaotic systems can also lead
to frustration [26].) To study this phenomenon in detail in the unidirectionally
coupled situation, we have considered the well-known Lorenz system of equations in -
the following section.
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Figure 5.4: Phase space for 3 bidirectional, globally Icuupled'neura,l pairs (zy, 22, 23)
with coupling magnitude A = 0.5 (@ = 100,b =5 for all the pairs).
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Figure 5.5: Frustrated synchronization for 3 bidirectional, globally coupled neural
pairs (21, 23, 23) with coupling magnitude A = 0.5: no synchronization between (a) 2
and 2, or, (b) #; and z3 (a = 100,b = 5 for all the pairs).
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5.3 Competition among synchronizing Lorenz SYS-
tems

The investigation of competition among synchronizing chaotic systems was carried

out using the Lorenz system of equations [114], [182], This well-known paradigm of
chaos is defined by the following set of equations:

dr |
Fra (y ~ =), (5.1)
ay
=TT -y~ ez (5.2)
dz
7 = W bz, (5.3)

where, o, » and b are real, positive parameters. There are three fixed points for this
system: Fy = (0,0,0), F; = (\/b(*r ~ 1), \/b(?‘—--l),*r — 1), and Fj == (_\/b(r - 1),

--\/b(r - 15, r —1). The local stability of the fixed point {z , ¥, 2;) is determined
by the eigenvalues of the Jacobian o

E— s 0 |
J=(r=2) -1 -z _ (5.4)
Ys zy  — b

Evaluation of the matrix shows that for 0 < + < 1, F; is the only stable fixed
point. For r > 1, F; becomeg unstable and the phase-space trajectory of the system
converges to either F; or Fy. For r > r, = oc(0c+ b+ 3)/(c — b — 1) the system’s
trajectory perpetually wanders along the extremely complicated structure of the
stable and unstable manifolds of the fixed points, exhibiting chaotic behavior.

For the present work the effect of two driving systems, designated as driving systems 1
(21, Y1, 21) and 2 (29, Ys, 29), competing to synchronize a responding system (za, ¥, 23)
was studied. The responding system was driven using the y variable. A competition
parameter a was defined to indicate the strength of the driving systems relative to
each other. The maximum value of @ was normalized to unity. Therefore, the y
variable of the responding system was defined in terms of the two driving systems
as:

y3 = ayy + (1 — a)y. (5.5)

We consider first the case where the two driving systems have the same r-parameter
value, and then, the more general case, where the two r-values are different (r, and
ro, say). The ¢ and b-parameter values are considered to be the same in all cases.

Caseiry=ro=r

It is obvious that for ¢ = 1 the responding system synchronizes with driver system
1, whereas for a = 0, it synchronizes with system 2. The attractor of the response
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(a) _ (b)

Figure 5.6: The response system attractor for (a) @ = 1.0 and (b) a = 0.5
(r1 =7, =28,0=10,b=8/3).

system, is identical to that of the conventional Lorenz system (Fig. 5.6 (a)). For
0 < a < 1, the responding system (=3, 33, 23} has nine fixed points:
Fl == (0: 01 O):

F2 = (/b(r ~1),/b(r —1),r=1),

Fy = (m\/b(r—l),—‘/b(r-—:l),r—l),

Fy = (a/b(r — 1),a,/b(r — 1), a*(r — 1)),

Fs = ((1-a)/b(r~1),(L~a)y/b(r —1),(1 - a)*(r - 1)),

Fg = (—ay/b(r —1),~a\/br — 1),a¥(r ~1), _

Fr = (=(1 - a)y/blr — 1), =(1 = a)y/br — 1), (1 - a)*(r - 1)),

Fy = ((2a-1)/b(r — 1), (22 = 1)/b(r ~ 1), (2a — 1)*(r - 1)),

Fg = (—(2a—1)y/b(r — 1), ~(2a — 1),/b(r — 1), (2a — 1)*(r - 1)).

Note that the first three fixed points are those of the uncoupled Lorenz system., To
find out about the stability of these fixed points we need to calculate the eigenvalues
of the corresponding Jacobian, J'. The partially block-diagonal form.of the matrix
makes the calculation easy:; |

J . O3xa Oaxe
Jf — 03:-:3 J 03:-:2 g - (5*6)
A B. Jx

where, J is the Jacobian (eqn. 4) of the unperturbed Lorenz system of equations,
Omxn i a null matrix having m rows and n columns, and the other matrices are

defined as,

0 aoc O o
_ | 5.7
A 0 axy O | (57
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Figure 5.7: The z-coordinate of fixed points of the response system for 0 < a < 1,

10 (1 =a)o O |
5 = 0 (1 —-a)a, 0| (5:8)
and, '_ | .
- 0
Jp = 7 . .
& a Yy, +(1"'hﬂ‘)yfz —-b (59)

Here f; refers to the fixed point of the kth Lorenz system.

For 0 < » < 1, the only stable fixed point is Fy. For » > 1, F; loses its stability,
and there are four new stable fixed points: Fy, ¥3,Fs and Fy. For r > r, = o(o
b+ 8)/(c — b~ 1), these fixed points lose their stability and the system shows only
chaotic behavior. The most interesting instance is that of a = 0.5, where maximal
competition occurs, In this case, Fg = Fg = Fy, ¥y = F5 and Fg = Fy (Fig. 5.7). The
attractor of the responding system is found to be stretched over its 3-dimensional
phase space showing an extremely tangled structure (Fig. 5.6 (b)). This is due to
the extremely complicated motion of the response system trajectory along the stable
and unstable manifolds of the fixed points F,Fy, F3, ¥4 and Fg. The coupling with
driver system 1 tries to force the response system into synchronization with it, but at
the same time, the coupling with driver system 2 desynchronizes the trajectory. The
synchronization is therefore ‘frustrated’ by the competition between the two driver
systems, The “frustrated” response system attractor reduces to the conventional
Lorenz attractor if a — 0 or 1, when competition is absent.

The abtractor structure is found to be quite robust, If we start from two different
initial conditions for the responding system, (z,y,z) and (z',9',2'), say, then for
stable synchronization, the two respective trajectories should converge rapidly. How-
ever, whereas in the Pecora-Carroll case, convergence occurs to the standard Lorenz
attractor, in this case, both the trajectories converge to the “frustrated” attractor.
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The stability of synchronization can be demonstrated analytically by linear stability
analysis of the error dynamics. Defining the dynamical error between two response
system trajectories (x and x’) which have different initial conditions, as e = x — x’,
the error equations can be written as:

de..

]

At = —g&;, (510)
ey =0, _ (5.11)

de.,
dt (ﬂiy;[ + (1 — ﬂ-)‘yg) — E}Bz. | (5-12)

Here we have assumed that the equation parameters for the two systems are identical.
The error system of equations has an equilibrium point at e = (0, 0, 0), which
corresponds to perfect synchronization. The local stability of synchronization can
then be checked by looking at the eigenvalues of the Jacobian of the error equations:

Jﬁelayl‘l'(]."ﬂ-)yg "*"b (5.13)

The eigenvalues are —c and —b, which are the conditional Lyapunov exponents of the
response system. As both eigenvalues are negative, the synchronization is locally sta-
ble, and any difference in initial conditions rapidly goes to zero. Note that, this does
not prove the global stability of the synchronized state. However, simulations have
verified that even in the presence of large deviations in initial conditions, synchro-
nization with the “frustrated” trajectory is achieved. This indicates that, although
exact synchronization with the driver system cannot be achieved, the “frustrated”
system can still be used for secure communication through chaotic masking. This
has been established through simulations reported below.

Case II: 7{ # 19

When the value of the r-parameter of the two driving systems is not the same, the
ﬁxed points are given by:

(000) | |
(a/b(rs — 1) + (1 — a)y/b(rs = 1), ay/b(r = 1) + (1 — a)y/brs = 1), &*(r; = 1) +
(1 - a) (rs — 1) +2a(1 ~ a)y/(r1 = 1)(ra =~ 1)), _
Fy = (—ay/b(m — 1) = (1 = a)y/b(r2 — 1), ~ay/b(r — 1) = (1 = a)y/brs — 1), a*(r -
1) + (1 —~a)*(ry — 1) + 2a(l — a) \/—1"1-—-1 (re — 1)),
Fi = (ay/b(r; — 1), ay/b(ry — 1),a*(rs — 1)),
Fs = ((1—a)\/blrs— 1), ( 1_.«,1\/5?2—1 ), (1 - a)(ry — 1)),

= (~ay/b(r; — 1), ), —ay/b(ry = 1),a*(r; ~ 1)),
FT = 1“&)\[1‘2*1 1_&\/b(‘7‘2“1 ), (1 - )(?‘2‘"1))
Fg (a\/b(frl—l) _a\/b — 1), \/b(r—l) —&)‘/b — 1), —-1)+

I
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Figure 5.8: The (ry,re)-parameter space showing the stable fixed points of the re-
sponse system at different regions.

(1~ a)’(ra = 1) = 2a(1 ~ a)/(ry — 1)(rs = 1)), |
Fy = (—ay/b(ry = 1) + (1 — a) /b(rg = 1), ~ay/b(r — 1) + (1 — a)y/b(r; ~ 1), a*(r; —
1) + (1 = a)?(ra — 1) ~ 2a(l — @) /(r1 — 1)(r; ~ 1)),

Fig. 5.8 shows the (r,m)-parameter space. The stable fixed points at different
regions are indicated in the diagram. The dotted line corresponds to the special case
71 = ry which has been considered above. Note that, whereas in the general case all
the fixed points are stable in some region or other, in the special case of r; = 1y, four
of the fixed points, viz., Fy, Fs, Fg and Fy, are always unstable. When one of the
r-values go over to the chaotic regime, while the other r-value remains fairly below it,
asymptotic synchronization with the chaotic trajectory is observed [106]. The time
required to ultimately synchronize with the chaotic attractor is a function of both
the r-parameter values. The synchronization is phase- synchronization rather than
state- synchronization, as the response system chaotic attractor is a scaled replica of
the driver system attractor. The scaling factor is a for synchronization with driving
system 1, and (1 —~a), for driving system 2. When both the r-values are in the chaotic

regime, the “frustrated synchronization” sitnation occurs.

5.4 Simulation results

For conducting simulations, the pa,rametef values chosen were ry = 13 = 28, o = 10
and b = 8/3. The trace of the Jacobian (which is equal fo the sum of the Lya-
punov exponents) for the total system, including the driver and response systems, 1s
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-40.0. So the overall system is diffusive and possesses an attractor, The competition
parameter a was varied in the interval [0,1]. The differential equations were nu-
merically solved using the fourth-order Runge-Kutta method with step-size == 0.025,
The phase-space trajectory of the responding system (z3,%s, 23) was observed with
different values of a from ¢t = 0 to t = 100 . At the limit a = 0 (or 1) the responding
system trajectory is identical to that of a unperturbed Lorenz system (Fig. 5.6 (2)).
However, as a — 0.5 (where maximal competition occurs), the trajectory deviates
more and more from the standard Lorenz form. At a = 0.5, the trajectory moves
in a complicated path around the fixed points Fy, F» and F; (note that, at a = 0.5,
Fg = Fg = Fy (Fig. 5.6 (b)). It appears that for a=0.5, the z-variable time-series is
much more correlated, This becomes clearer on taking a Fourier transform of the
data. The power spectral density of the frustrated attractor time-series is low in the
high-frequency end compared to the unperturbed system time-series.

The Lyapunov exponents were calculated using Gram-Schmidt technique [160] to
create an orthonormal basis every 0.5 seconds of simulation time (this time interval
being roughly half the “period” of the Lorenz system) and then averaging over 100
iterations. As expected, of the eight exponents, six correspond to those for the two
unperturbed driving Lorenz systems (0.84, 0, -14.51). The remaining two exponents
are the conditional Lyapunov exponents of the responding system : -8/3 and -10.
This implies the robustness of the “frustrated” attractor - as any deviation from the

attractor rapidly diminishes.

To study the degree of synchronization, z-coordinates of the responding system state
(z3)were plotted against the z-coordinates of each of the driver system states (21, ),
for different values of a. If the two are synchronized, the plot gives a straight line.
This suggests that the linear correlation coefficients, r, between the driver and re-
sponse system time series, can be used to obtain a quantitative measure of synchro-
nization. The linear correlation coefficient between two time series data z(t) and

y(£)(t =1,...,n), is given by

where & and o, are the mean and standard deviation respectively, for the time series
z(t). A measure of desynchronization is defined as

g = 1 =Ty o (5‘14)

At a=0, where there is exact synchronization between driver system 2 and the re-
sponse system, 6 = 0. This is a particularly robust measure, as § — 0 for bath sfate-
and phase- synchronization. The variation of § with a is shown in a logarithmic plot
(Fig. 5.9). The linear nature of the curve over at least 3 orders of magnitude as
a — 0, indicates the presence of & power-law scaling relation of the form:

§~af, ' - (5.15)
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Figure 5.9: Log-scale plot of desynchronization (§) for 0 < ¢ € 1. The power-law
scaling relation (with characteristic exponent, 8 ~ 2.0) is indicated by the solid line
fitted to the simulation data.

where the scaling exponent, 8 ~ 2.0. The scaling exponent was also obtained for r=
50 and 70. In both cases, § =2 2.0 within simulation error. The scaling seems to be
related to similar scaling phenomena due to intermittency induced by noise (in this
case, the non-synchronized chaotic input) for motion on the invariant synchronization
manifold {146, 136], that have been observed both theoretically {12, 83, 147, 45] and

experimentally [207].

Another interesting feature studied was the fractal correlation dimension of the frus-
trated attractor (Fig. 5.10), calculated using the FD3 (ver. 0.3) software [154].
For the unperturbed Lorenz system, this is very close to 2, as the attractor is al-
most 2-dimensional. As a increases from O to 0.5, the attractor deviates from this
two-dimensional shape, which can be quantitatively measured by the correlation di-
mension. As a — 0.5, the attractor structure stretches out more and more over the
three-dimensional space. This type of enhanced diffusion in phase space seems to be
a generic feature of frustration in chaotic systems, and has been reported previously

in the case of Coupled Map Lattices [20).

The simulations also showed the robustness of the “frustrated” attractor, Starting
from different initial conditions, the response system trajectory was found to converge
to the same attractor structure. This indicates that even in the absence of exact
synchronization with any of the driver systems, the response system trajectory can be
used as a chaotic masking signal for secure communication {42]. This was verified by
adding a small amplitude periodic signal (e.g., a sine wave of frequency w == 1/200)
to the response system y-variable time series. The resultant time series appears to be
devoid of any periodic component (Fig. 5.11, top). It is then used to drive another
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Figure §.10: Correlation dimension of the response system attractor for 0 < a < 1.
The error is less than +10%.
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Figure 5.11: Chaotic masking: the z-variable time series of response system (top);
the periodic signal obtained by subtracting the regenerated time series from the
chaotic carrier wave (bottom), |
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Lorenz system, and the x-variable time series of the two systems are subtracted from
each other to refrieve the original signal (Fig. 5.11, bottom), The modulation of
the competition parameter,a, by a binary signal for chaotic switching, is another

possibility of using the competitive scheme for secure communication.

5.5 Discussion

The competitive scheme described here for y-variable coupling was also implemented
for - and z-coupling of Lorenz systems: In the former, similar generalized attractor
structure was observed, while in the latter, where the Pecora-Carroll synchronization
does not work, no such structure could be observed. The work done here on coupled
Lorenz systems can be extended to other systems defined by autonomous set of
differential equations as well as discrete maps. However, it might be interesting to
consider the result of competition in synchronizing non-autonomous systems (e.g.,
the Duffing oscillator), As such systems already have a forcing term present, which
brings about the onset of chaos, the introduction of additional forcing terms can lead

to qualitatively new behavior.

Competitive synchronization in extended systems might also lead to interesting phe-
nomena. Lattices of (globally or diffusively) coupled chaotic elements, where each
element can be used both to drive other elements, as well as respond to driving sig-
nals from yet another set of elements, and hence by a series of feedbacks drive its
own driving systems, will serve to illustrate interactions between multiple compet-
ing synchronizing feedback loops. The motivation for such a study is that, in the
human brain, synchronization of activity among different neurons appear to have
an important functional role in the proper performance of perceptual tasks. It is to
be noted that, single neurons are capable of chaotic behavior. As the brain is com-
posed of densely connected networks of neurons, there is bound to be competitive
synchronizing interactions between neural assemblies [193, 176]. A dynamic competi-
tion parameter, which causes synchronization-desynchronization transitions between
various neural sub-assemblies, is a possible mechanism for information processing in
biological systems. The resultant dynamics will be radically different from the one -
we are led to expect by observing the dynamics of single neurons or small groups of

neurons.

The above work describes the simplest competitive scenario which can show a qual-
itatively different dynamics from that in the non-competitive situation. It is at
present not known how the nature of synchronization and the attractor structure
of the responding system might be altered by increasing the number of competing
driver systems. In the brain, where each neuron is connected to ~ 10* other neu-
rons, the competitive situation is bound to be far more complicated. The manner In
which such an extremely competitive synchronization scenario might influence the
way in which neural networks perform computations and process information is a

very interesting problem for the future.
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Chapter 6

Visual Information Processing
with Excitatory-Inhibitory
Networks

Upto now we have considered in detail only neural networks comprising a small
number of processing elements, N - viz., the largest network examined so far, contains
three excitatory and three inhibitory neurons (i.e., N = 6). This simplification has
made it possible to investigate the properties of such networks as a function of several
parameters, without making the attendant complexity too forbidding to allow any
analysis, We shall now introduce relatively larger networks (N ~ 10%) for the specific
purpose of applying such systems to visual information processing, The specific
tasks considered are those of segmentation and adaptive smoothing (followed by edge
extraction), which form part of the phenomenon known as "early vision", the first
stage in the visual processing path in the brain. At this level, the raw sensory data
(intensity value) is the source from which the primitive features are obtained, to
construct representations of objects present in the visual field. These are used by
higher stages for further processing, ultimately leading to the act of "seeing". Several
efforts have been made by the neural network community to model various aspects of
vision. These models have been formulated at various levels of abstraction - from a
detailed representation of the actual neurobiological structures employed for vision,
to a phenomenological explanation. While low level processing can be investigated
retaining a degree of fidelity to the biological apparatus, in the case of higher level
processing, the enormous complexity of the neurobiological architecture (and the lack
of complete understanding of the processes employed) forces one to invoke various
simplification to model features such as object recognition [17] and visual memory

173].

In this chapter we have investigated certain features of early vision, using a couple
of excitatory-inhibitory neural network models. The process of image segmentation,
in particular, object-background segregation, has been examined with a network of
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excitatory-inhibitory pairs, coupled over a local neighborhood. The other model
introduced, has been inspired by the architecture of the retina and consists of three
‘layers, comprising excitatory, inhibitory and excitatory elements respectively, It is

used to implement adaptive smoothing on images - the resulting enhanced image
being used for extracting edges.

The rest of the chapter is organized as follows: In Section 1, we have briefly reviewed -
some of the existing computational techniques used to implement "early vision" tasks,
such as, segmentation and edge detection. In the next section, the network model
used for dynamical segmentation of images is introduced. A theoretical analysis is
presented for the case of an uncoupled network and results for different types of
images are presented. In Section 3, we describe the three-layer network model used
for adaptive smoothing. The results of applying the proposed method on a gray-
level image are presented and compared with some existing techniques. Finally, we
conclude with some comments on the relation of the models presented here to existing
work reported in the image processing literature, |

6.1 The problem of early vision

Early vision is the name given to that part of visual information processing where
the principal features of an image are extracted (e.g., information concerning form,
motion, color, etc.) and sent to higher brain areas for further processing. Although
identification of the portion of the brain which is concerned with early vision is
somewhat arbitrary (depending on an individual investigator’s interpretation of the
word ‘early’), for our purpose we shall be concerned with the processing done in the
retina. Note that, a considerable amount of processing appears to be involved before
information from the photoreceptors in the eye reach higher visual centers in the
brain, for further interpretation, It appears that this processing is done in subsequent
stages so as to use the fewest possible number of active neurons to achieve an adequate
representation of the stimulus. Such selective representations have the advantage of
reducing considerably the volume of information that has to be propagated through

the visual pathway, at any given time.,

In this chapter, we shall be concerned with two specific tasks performed during early
vision: (i) the detection of edges, and (i¢) the segmentation of similar regions, in an
image. We now briefly review a few existing techniques for achieving these objectives
through computational means. | |

6.1.1 Edge detection

Edges are points of discontinuity in the gray level intensity values of an image -
and hence, are local features, determined on the basis of local information. A large
variety of edge detection methods are available in the image processing literature (e.g.
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118, 29, 23]). A good edge detector should be a filter with the following features:

o it should be a differential operator, taking either a first or second order spatial
derivative of the image, and,

e it should be capable of being tuned to act at any desired scale (large filters for
blurry edges and small ones to detect sharply focussed fine details).

The second requirement is very useful, as intensity changes occur at different scales
in an image.

The simple differential operators used for edge detection are the first difference opera-
tors like Roberts gradient, Sobel gradient and Prewitt gradient and second difference
operators like the Laplacian operator [64]. These not only respond to edges but also
to isolated points. For a noisy picture, the Laplacian operator gives a higher response
for noise than for a true edge, unless the noise has a low contrast. Marr and Hildreth
[119] proposed the Laplacian of Gaussian (LOG) operator to alleviate this problem.
To find intensity changes at a given scale, the image is first convolved with a two-
dimensional Gaussian distribution with an appropriate standard deviation ¢. This -
blurs the image, smoothing out all structures at scales much smaller than . The
image is then filtered through a Laplacian operator and the zero-crossings obtained.
The space described by the scale parameter & and the zero-crossing curves is called

the scale space.

Canny [29] has proposed an "optimal" edge detector in terms of good detection, good
localization and single response. Good detection, i.e., low probability of detecting
non-edges or not detecting the actual edges, is achieved by maximizing the signal-
to-noise ratio (SNR), while, good localization (i.e. points marked as edges should
be as close as possible to true edges) is achieved by maximizing the reciprocal of
the (approximately) standard deviation of the displacement of edge points. Single
response, i.e. one and only one response to a single edge point, is achieved by
subjecting the optimal filter to a constraint that eliminates multiple responses. The
Canny detector has been found to be extremely effective for a wide class of images.
A neural network model implementation of Canny’s method has also been reported

[184].

All the edges produced by the operators discussed above, are normally not significant
or relevant edges, when viewed by human beings. Therefore, one needs to extract
prominent edges from the output of such edge detectors. Kundu and Pal {107] have
suggested a method of thresholding, to extract the prominent edges, based on psycho-
visual phenomena.

6.1.2 Segmentation

Segmentation is an essential and important step of early vision [64]. It is a process of
partitioning the image into some non-intersecting regions, such that, each region is

07



homogeneous and the union of no two adjacent regions is homogeneous. Segmentation
may be formally defined as follows [139]:

If F'is the set of all pixels and P{ ) is a uniformity/ homogeneity
predicate defined on groups of connected pixels, then segmentation is
a partitioning of the set F' into a set of connected subsets or regions
(S], Sg, veuy SH) Sl_.lCh. that

| na=1)Si — F

with S; N S; = 0,4 # j. The uniformity predicate P(S;) = true for all
regions S;, and P(S; U S;) = false, when S, S; are adjacent regions.

There are several approaches available for image segmentation. In addition to tech-
niques based on histogram thresholding, édge detection, relaxation and semantic
& syntactic approaches, several attempts have been made to develop segmentation
methods using neural network models, particularly the Hopfield and Kohonen net-
works. Neural network based methods have the advantages of producing reasonable
outputs even in highly noisy environments, as well as, generating results in real time.

Thresholding is an old and simple technique for image segmentation. It can be done
based, either on global information (e.g. gray level histogram of the entire image), or
on local information of the image, If only one threshold is used for the entire image, it
is called global thresholding. On the other hand, when the image is partitioned into
several sub-regions and a threshold is determined for each sub-region, it is referred
to as local thresholding or adaptive thresholding. Thresholding techniques can also
be classified into bi-level and multi-level thresholding. In the former case, the image
is partitioned into two regions - object (say, black) and background (white)., Thus,
here thresholding can be viewed as a classification problem, with the pixels of the
image being assigned to one of two classes: object and background, When the
image is composed of several objects with different characteristics, one needs several
thresholds for segmentation, This is multi-level thresholding.

Segmentation can also be obtained through detection of edges of various regions, A
good strategy to produce meaningful segments would be to fuse region segmentation
resuits and edge detector outputs.

Neural network based methods are attempts to achieve robustness with respect to
random noise (or failure of processors) and to have real time output. Massive con-
nectionist architecture makes the system robust while the parallel processing enables
real time operation. Ghosh et al {61] used a Hopfield type network for extraction
of objects from highly noise-corrupted scenes. The energy function of the network
has been constructed in such a manner that in a stable state of the net, it extracts

compact regions from a noisy scene.
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6.2 The dynamical segmentation network

In this section, we investigate a model for performing bi-level image segmentation,
comprising excitatory and inhibitory neurons, that are coupled to each other over
a local neighborhood. The basic module of the proposed network is an excitatory-
inhibitory neural pair. If @ and y be the activities of the excitatory and the inhibitory

elements respectively, then they evolve in time according to:

I

L1
YUnt1

Fu(wmmﬂ:n = Wgyln T Iﬂ) (6*1)
v b(wymmn — Wyyln + I;l)" l

‘where, w;; is the weight of synaptic coupling between elements i and j, F is the
activation function defined by Eqn. (2.9) and I,I’ are the external stimuli. By
imposing the following restriction on the values of the synaptic weights:

Wey Wy
Wey Wy

= k,

and absorbing w,; and w,, within a and b (respectively), we can simplify the dynamics
to that of the following one-dimensional map:

Zntl = Fa(zn + Iﬂ) "" ka(zn T I:,_) (62)

Without loss of generality, we can take k = 1. In the following account we will be
considering only time-invariant external stimuli, so that, for our purposes:

ILi=I =1

6.2.1 Analysis of response to constant magnitude external
stimulus

We shall now consider how the dyanmics of the excitatory-inhibitory neural pair
changes in response to external stimulus. Let us consider the isolated neural pair,
whose time evolution is given by Eqn. (6.2). On replacing the expression of the
transfer function from (2.9), we get

a1 = exp(—b(z, + 1)) — exp(—a(z, + I)). (6.3)

Now,
Zntl = & = z’

for a fixed point. It is stable if
dzn-}-l

S
dz, L

l.e.,
(a — b) exp(—a(z, + I)) — bz = —1.
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Therefore, for the fixed point to be marginally stable (i.e, dj;ﬂ- = ~1), it must satisfy
the following condition: "

(a — b) exp(~a(z* + Ic)) = bz’ —~ 1, (6.4)

where, I, is the critical external stimulus for which 2* just attains stability. Let us
define a new variable, ¢, as

bzt -1
YTy (6:5)
Therefore, from (6.4), we get
exp(—a(z* + I.)) = q. (6.6)
Also from (6.5),
T p ° | ( ' )
where y = b/a. Now, from (6.3), a fixed point can be expressed ag
2" = —exp(~a(z' + L)) + exp(=b(z" + L),
Therefore, from (6.6) and (6.7), the above expression can be written as
1 1l —pu
a“—azg-i-( ; Jau. (6.8)
- By simple algebraic manipulation, we get
1
o = m(l—kaa)m‘. | ' (6.9)

Assuming ac << 1, we need to consider only the first order terms in « in the right
hand side, so that

Hma=1+%§, (6.10)

which gives the following expression for «:
1

T opljp g’
b p

(6.11)

8

For a real solution of 2* to exist, we must have bz* — 1 > 0, since, otherwise, z* will
have an imaginary component (from (6.14)). In other words, o > 0 (from (6.4)).
Therefore, from (6.11), we must have

a < ubl/ru‘ (6.12)
Since b = ua, we get |
a > e, (6.13)
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For example, if p = 0.5, then a > 8, for z* to be real. From (6.4) we get

a—b
bzt — 1

exp(al;) = exp(—az'). (6.14)

Taking logarithms on both sides, we have,
I, = 2" - llo (o)
c = Z a g v

Therefore replacing z* from (6.7),

k-, 21
I.=( ” o ” &log(a:). (6.15)

The equation (6.15), together with (6.11), provides the critical value of the external
stimulus, which leads the oscillatery neuron pair to a fixed stable state, subject to

the restriction (6.13).

This expression can be further simplified. From (6.9), we can write
ulog(a) = — log(b) + log(1 + ac).

As before, assuming ac << 1, we need to consider only the first order terms in « in
the right hand side of the logarithmic expansion, which gives us

acx 1
log(a) = — — —log(b). 6.16
g(a) = 22 - Zlogly). (6.16)
From (6.11), (6.15), and (6.16), the critical magnitude of the external stimulus is

given as

A S S
© (pa)E—2 " ua 8

where e = exp(1l). Fig. 6.1 shows the a vs. I; curves for different values of u, viz.
p=0.1, 0.25 and 0.5.

To make the network segment regions of different intensities (I, < Iy, say), one can
fix 4 and choose a suitable a, such that [, < I, < I). So elements, which receive
input of intensity I, will undergo oscillatory behavior, while elements receiving input
of intensity Iy, will go to a fixed-point solution. Notice that, the curves obtained
from Fig. 6.1 gives two values of a for the same I.. This gives rise to an operational
question: given a certain [, which value of a is more appropriate. Notice that the
region of the a vs I, curve, to the left of the maxima, has a very high gradient. This
implies that, in the presence of wide variation in the possible value of I;, choice of a
from this region, will show very small variation - i.e., the system performance will be
robust with respect to uncertainty in the determination of the appropriate value of ..
This is possible in the case of any gray image, with a bimodal intensity distribution,
having a long, almost uniform valley in between.

), (6.17)
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Figure 6.1: Critical magnitude (I,) of the external stimulus, at which transition from
periodic to fixed point behavior occurs. The circles (filled and blank) and squares
represent the values obtained exactly through numerical procedures for b/a = p =
0.5, 0.25 and 0.1, respectively. The curves indicate the theoretically predicted values.

On the other hand, the region of the curve to the right of the maxima has a very
low gradient (almost approaching zero for high values of a}, This implies structural
stability in network performance, as wide variation in choice of a will give almost
identical results. So, choice of @ from this region is going to make the network per-
formance stable against parametric variations. As both robustness against uncertain
input, and, stability against parametric variations, are highly desirable properties in
network computation, a trade-off seems to be involved here. The nature of the task
in hand is going to be the determining factor of which value of a we should choose
for a specific I.. | |

6.2.2 The two-dimensional network

The introduction of spatial interactions over a local neighborhood in the above model
produces some improvement in the segmentation performance. We have considered
discrete approximations of circular neighborhoods [22] of radii rez, 7 (r = 1,2) in
our simulations (Fig. 6.2). ’

There is an important feature to consider when choosing the neighborhoods of the
excitatory and inhibitory neurons. Unless 7., < 7, the network activity becomes
unstable owing to the unbounded increase in the activity of the excitatory elements.
This is shown by looking at the averaged activity of the network < z >,= =%, 2,(3),
where z(%) indicates the i-th excitatory-inhibitory neural pair (Fig. 6.3). For re; =
Tm, < 2 > shows an oscillatory behavior whose amplitude increases with n (Fig.
6.3 (b)). However, for the network to have stable behavior, the amplitude of the
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r=2

Figure 6.2: Discrete circular neighborhoods of radii ¥ = 1 and r = 2.
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Figure 6.3: Average activity (Z) of a network of 100 x 100 elements, arranged in a

two-dimensional plane, with coupling over a local neighborhood: (a) r,, = 1, 7y, = 2
and (b) re = 2, 1y, = 2.

oscillation should be constant in time. This is so for re, <y, as seen in Fig. 6.3 (a).

6.2.3 Simulation results

The network described above has been used to segment images, both synthetic and
“real-life”. The synthetic image chosen is that of a square of intensity I, (the “ob-
ject”) against a background of intensity 71 (I; < Iy). Uniform noise of intensity ¢ is
added to this image. The signal-to-noise ratio (SNR) is defined as the ratio of the
range of gray levels in the original image to the range of noise added {given by ¢).
The image is then presented to the network, which is made to undergo 200 - 300 iter-
ations. Afterwards, the elements which remain unchanged over successive iterations
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Figure 6.4: Results of implementing the proposed segmentation method on noisy
synthetic image: (a) original image, {b} output by the uncoupled network, (c) output
by the coupled network (r., = 1,r;, = 2), and (d) output by the coupled network
(Pez = Ti = 2), after 200 iterations (a=20, b/a=0.25 and threshold ¢+7=0.02).
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(within a tolerance value, th) are labeled as the “object”, the remaining being labeled
the “background”, For SNR = 1, the results of segmentation are shown in Fig, 6.4.
Results for 7. = 1,75, = 2 and 1.y, = 7, = 2 are shown. The two architectures

show very similar segmentation results, at least upto the iterations considered here,
although the latter is unstable (as discussed in the previous section). Excepting for
the boundary of the “object”, which is somewhat broken, the rest of the image has

been assigned to the two different classes quite accurately.

We have also considered the 5-bit gray level “Lincoln” image as an example of a
“real-life” picture. A suitable I, has been estimated by looking at the histogram of
the gray-level values, and taking the trough between two dominating peaks as the
required value. Following the same procedure, as in the synthetic image, we have
segmented the image, The results are shown in Fig. 6.5. Most of the image has been

labeled accurately, except for a few regions (e.g., near the neck).

Note that, we have considered a single value of a (and hence I.) for the entire image.

This is akin to “global thresholding”. By implementing local thresholding and choice
of a on the basis of local neighborhood information, the performance of the network

can be improved,

6.3 The retinal procesSing model

We next proceed to investigate image enhancement through adaptive smoothing in
 an excitatory-inhibitory network, followed by edge extraction from the processed
image. The model used for this purpose has been inspired by the neural architecture

of the retina.

6.3.1 Structure of the retina

The retina is where the physical image of a visual scene is converted to a neural
representation, on being projected onto a receptor array. It is a thin sheet of neural
tissue lining the rear hemisphere of the eyeball, being a projection of the brain itself.
The basic design of a retina involves three interconnected layers and five broad classes
of neurons: photoreceptor, bipolar, horizontal, amacrine and ganglion cells (Fig. 6.6).
In all vertebrate retinas, the transformation from optical to neural image involves

three stages [185);

e phototransduction by a layer of receptor neurons,

e transmission of their signals by chemical synapses to a layer of bipolar neurons,
and, |

e transmission of these signals by chemical synapses to output neurons (ganglion
cells).
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Figure 6.5: Results of implementing the proposed segmentation method on “Lincoln”
image: (a) original image, (b) output by the uncoupled network, (c) output by
the coupled network (r.; = 1,7, = 2), and {d) output by the coupled network
(Tex = Tin = 2), after 300 iterations (a=30, b/a=0.25 and threshold ¢th=0.02).
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Figure 6.6: S'i':ru_ctural organization of the retina. (Adapted from R. H. Masland,
“The functional architecture of the retina”, Sci. Am. 255(6), 102-111 (1986).)

Synaptic connections in the retina are confined to two distinct zones: the outer
plexiform layer (OPL) and the inner plexiform layer (IPL). The OPL contains the
axon terminals of rods and cones, the dendritic processes of bipolar cells and the
processes of horizontal cells. The IPL comprises the axon terminals of bipolar cells,
the processes of amacrine cells and the dendrites of ganglion cells.

The two structurally similar systems of lateral interactions, at the OPL and the
IPL, mediated by the horizontal and amacrine cells, respectively, modulate the signal
transmitted along the input-cutput pathway. These interactions, which are inhibitory
in nature {203], play an important role in retinal response, as they implement the
process of lateral inhibition. This process is observed in a large variety of neural
systems, whereby the stimulation of a neuron leads to the inhibition of other neurons
lying in the surrounding area. Lateral inhibition in sensory systems has important
functional significance, since, it provides for an enhancement of the acuity by in-
creasing the contrasts of the pattern of the message carried to the brain [76, 137].
The modulation of the local input-output pathways due to the lateral interneurons
(on the basis of an average signal received over a broad area) is used by the retina
to adjust its operating characteristics to prevailing light conditions [200, 201, 178|.
This ensures the generation of a high-contrast visual image. In this work, we have
focussed on the interactions at the OFL, responsible for producing a high contrast
response to visual stimuli. |

107



input J ‘ ‘

Figure 6.7: An excitatory-inhibitory neural network model for retinal information
processing. Layers A, B and C correspond to the photoreceptor, horizontal cell and
bipolar cell layers of the retina, Arrows indicate excitatory connections, while circles
represent inhibitory synaptic couplings.

6.3.2 The model

A model comprising three layers of excitatory, inhibitory and excitatory elements
(respectively), with anti-symmetric, sigmoid activation function, has been used to
investigate the visual processing done in the outer plexiform layer of the retina. Fig-
ure 6.7 shows the arrangement of the network, Layers A and C consist of excitatory
elements, while, layer B is composed of inhibitory elements, They correspond to the
photoreceptor, horizontal cell and bipolar cell layers of the retina, respectively. The
dynamics of the network is governed by the following set of equations:

- On+l ~ Fﬁ(]), (618)
Un+1 = Fb(xn 1 B — Un — ’\(mn + An — EJ'ERy-i))'I (619)
Zngl = Fn(ﬂ}n + Zp — Yn — }"(mn 1 Bn = EjERy}?;, ) (620)

Here F indicates the local neighborhood in layer B, over which |ateral connections are
considered. In our simulations for a two-dimensional network, R is the 3 x 3 neigh-
borhood around a given element. The external input to the network is denoted by
I, while, the parameter, A, controls the relative weightage of the lateral interactions.
The activation functions, F, are given by Eqn. (2.10).

Initially (i.e. at n = 0), the input I is taken to be the input image, while x,y, z are
all set equal to zero. The input image is then withdrawn, so that for all subsequent
iterations, I, and hence, z, is zero. Therefore, for n > 0, if we neglect the lateral
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interactions (i.e.,, A == 0}, the dynamics of the network reduces to that of the one
dimensional map:

‘En—!-l = Fa(&n) "'" Fb(‘fﬂ):

where, £ = 2 —y, This is the map representing the dynamics of a single excitatory-
inhibitory neural pair, that has been analyzed.in Chapter 2. The additiona] features
of the network that shall be reported here are, therefore, purely the result of lateral

interactions.

The effect of the lateral interaction term is to enable computation of the local gradient
of the intensity values in an image. This is used to generate an output, which is then
added to the existing image. The result is adaptive smoothing ! of the image. Note
that, A necessarily has to be small, as otherwise, the network becomes unstable, and

the activity becomes spatially uniform.

The mechanism by which adaptive smoothing is implemented in the present model,
can be easily understood by looking at the map governing the dynamics of an
excitatory-inhibitory pair with sigmoid activation functions (Fig. 2.11). In the
present context, the input is the gradient of the image. For edge regions, where the
gradient is high, the resultant output is low, implying that there will be little or no
change in these regions. However, isolated discontinuities, which are not part of any
edge, also give high gradients. As a result of the selective smoothing process, they
will be maintained almost unchanged, degrading the performance of the method,
This can be avoided by decreasing b (keeping a fixed), which increases the output
value of the map for high values of the gradient. Therefore, there will be smoothing
of points having a very high gradient value.

Let us now consider the smooth regions of the image, for which the gradient is low.
The neural map, considered above, gives a very high cutput value for these regions.
Any small inhomogeneity present in these regions is, therefore, rapidly smoothed
out. As the peak value of the map is a function of the parameter, a (with b fixed),
the extent of smoothing is governed by the magnitude of a - i.e., a desired degree of
smoothing can be obtained by a suitable choice of a.

6.3.3 Simulation results

The proposed model has been used to implement adaptive smoothing in several
gray-level images, an example being shown in Fig. 6.8 (a). The results of adaptive
smoothing is shown for various parameter values in Fig. 6.8 (b - d). The process was
carried out for 30 iterations for all the parameter values considered. As is clear from
the results, increasing the parameter o results in enhanced smoothing of the image,
while, increasing b has the effect of increasing the gradient of isolated discontinuities
of the image. This is in accordance with the qualitative understanding of the network
behavior outlined previously.

'Adaptive smoothing is a nonlinear ﬁlfering mechanism that can achieve edge-preserving smoothing
of an image [151] |
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Figure 6.8: Results of lmplemenl:mg the proposed adaptive smoothing method on
“Uma” image: (a) original image, (b) output by the model with a=20, b=5, (c)
output by the model with a=10, b=>5, and (d) output by the model with a=10, b =8,
after 30 iterations (A=0.01). It is ev1dent that increasing a prﬂduces greater ‘t:olurrmu:r
of the final image, while i increasing b leads to enhancemeut of isolated discontmmmes
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Figure 6.9: Comparison with Perona-Malik method: (a) output by the Per-
ona-Malik variable conductance diffusion method, and (b) the relative smoothing of
a one-dimensional signal extracted from “Uma” image by considering the 32nd row.
The broken line shows the original signal, while outputs by the Perona-Malik method
(P-M) and the proposed model (E-I) (¢ = 10, b = §, A = 0.01) are shown with solid
curves (the intensity values have been scaled to lie in (0,1)). |

We have compared the proposed method with the variable conductance diffusion
(VCD) method proposed by Perona and Malik [144] in Fig. 6.9. As can be seen
clearly, isolated points having a high local gradiel;lt have been enhanced by the VCD
method, leading to a speckled image. By extracting a one-dimensional signal from
the image (viz. the 32nd row) we demonstrate the relative performance of the YCD
method and the proposed method. While the former seems to enhance small local
discontinuities (which may be only due to.noise), the latter retains the broad fea-
tures of the original signal, while averaging out smaller discontinuities, thus giving 2

smoother image.

The output of the adaptive smoothing process has been used for extraction of edges
by using a conventional gradient thresholding technique. Note that, alternatively,
an extra pair of excitatory-inhibitory layers can also be used for this purpose. This
is because, as mentioned earlier, the interaction between excitatory and inhibitory
neurons results in the gradient of the intensity values of an image to be nbtainec}.
In Fig 6.10, the edges obtained from the output image of the proposed'meth-of:l is
compared with the results of applying the Canny operator method {29] on the or1g1'nal
image. No post-processing technique, such as thinning or linking, bas been applied.
The performance of the two methods appear to be comparable, -althaugh_—the former

method leads to a few broken edges.
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Figure 6.10: Performance in edge extraction: edges obtained from the “Uma" image
on implementing (a) Canny’s method and (b) the proposed model (a = 10, b = 5).

6.4 Discussion

The segmentation of images, through dynamical activity in neural network models,
have been investigated previously by a number of researchers [68, 181, 183, 70, .194,
156, 195, 28, 73]. However, all these efforts had been confined to using synchroniza-
tion and desynchronization of oscillatory activity among neural assemblies, We have
instead, concentrated on using stimulus induced transitions from periodic to fixed
point behavior, in order to segment images. As Malsburg [194] has indicated, the
reason oscillatory synchronization has been studied so far, as a mean of segment-
ing sensory stimuli, is its relative ease of analysis. However, with the developments
in nonlinear dynamics and chaos theory, we can approach the problem of sensory
segmentation using more general dynamical behavior.,

The adaptive smoothing method proposed in this chapter is similar to the variable
conductance diffusion method discussed in the image processing literature [144, 131,
21]. Although the continuous space version of this method, expressed in terms of
partial differential equations, is ill-posed [32, 202), the discretised version appears
to be quite robust [199]. As the proposed model is based on a discrete lattice of
elements, a relation with discrete scale space methods [111] may not be far-fetched.
However, this is an area for future investigation.
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Chapter 7

Conclusions

The spirit within nourishes, and mind instilled
Throughout the living parts activates the whole mass
And mingles with the vast frame.

| Virgil

Life is not so simple, man!

B, Uma Shankar

We have presented in this thesis some results of investigations, both theoretical and
computational, which demonstrate some of the features of simple networks of excita-
tory and inhibitory neuron-type elements. The main goal was to study the behavior
of the simplest network model capable of producing chaotic behavior. Initially, a
single pair of an excitatory and an inhibitory neuron is described and analyzed in
detail. Then small networks of such pairs are studied in the context of control and
synchronization of their activity. Finally, an attempt is made to utilize such networks
for some image processing tasks, specifically, segmentation and adaptive smoothing,.

In the following section, the most important results are briefly summarized, while
the final section provides an outlook to further problems which can be looked at in
the future, as an extension to the investigation reported here.

7.1 Summary of Main Results

o The intrinsic properties of an excitatory-inhibitory neural pair have been stud-
ied with four types of nonlinear activation functions, distinct from each other
in terms of their (i) asymmetric or anti-symmetric nature and (i4) sigmoid or
piecewise linear characteristics. Fixed point, oscillatory and chaotic behaviors
have been found to occur for various parameter values for these different types
of functions, leading to the conclusion that this wide range of dynamics is a
generic feature of excitatory-inhibitory neural pairs, evolving in discrete time.
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¢ In addition to generic features, behavior specific to each type of transfer func-
tion has also been observed. For example, in the case of the piecewise linear
functions, the presence of border-collision bifurcations and multifractal frag-
mentation of the phase space are noted. Neural pairs with sigmoidal activation
functions exhibit a period-doubling route to chaos, which is an universal fea-
ture of unimodal one-dimensional chaotic maps {134, 188]. The anti-symmetric
activation functions show a trangition from symmetry-broken chaos (with mul-
tiple coexisting but disconnected chaotic attractors) to symmetric chaos (when

only a single chaotic attractor exists).

e Varying a threshold/ bias parameter or equivalently, introducing a constant
amplitude external stimulus, leads either to transition between chaos and peri-
“odic behavior or to coexistence of multiple attractors, depending on the nature
of the variation. In the case of anti-symmetric functions, this causes previously
distinct attractors to be dynamically connected., Hysteresis effect, a possible
mechanism for short-term memory, is observed as the parameter is varied.

e Networks composed of elements having plecewise linear activation functions
are found to be amenable to analytical treatment under some simplifying as-
sumptions. This makes the resultant dynamics effectively equivalent to that of
an one-dimensional piecewise linear map with multiple “folds”. These “folds”
permit the creation and maintenance of localized coherent structures within
a global chaotic activity. This is of relevance to the use of such networks for
information processing. Applications to problems of auto-associative recall,
pattern classification, nonlinear function approximation and periodic sequence
generation are outlined. This serves to indicate the versatility of such networks
and possible areas where they maybe successfully used,

e Inthe presence of low-amplitude, low-frequency external stimulation, the chaotic
neural pair with anti-symmetric activation function is found to exhibit a type of
nonlinear resonance phenomenon, which can be looked upon as a determin-
istic analogue of “stochastic resonance” (SR) [59]. By introducing a piecewise
linear system to study this phenomenon, a detailed understanding of the res-
onance process is obtained. The chaotic trajectory of the system is found to
switch between two halves of the phase space at a rate which ‘resonates’ with
the frequency of an externally applied periodic perturbation {(both multiplica-
tive and additive). By periodically modulating the. parameter at a specific
frequency, we observe the existence of resonance where the response of the sys-
tem (in terms of the residence-time distribution) is maximum. The possible
application of nonlinear resonance for the enhancement of subthreshold signals
is indicated by showing that the excitatory- inhibitory neural pair shows sim-
ilar resonance behavior when the external input is a small amplitude periodic
signal. The “characteristic frequency” at which the system response is maxi-
mum is obtained explicitly in terms of the network parameters, in the case of
the piecewise linear activation function. It is found that as the amplitude of
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the signal increases, the response of the system also increases up to a limit.
An expression for the “critical signal amplitude”, above which the response
saturates, is also obtained.

Control mechanisms for the chaos observed in excitatory-inhibitory neural pairs
have been studied. Two types of control have been proposed: (i) propor-
tional variable feedback and (ii) small-amplitude periodic forcing. A physical
understanding of the control mechanism is obtained in the case of a single
excitatory-inhibitory pair. Control of a 3-neuron pair network has been studied
through computer simulations. A possible connection between undesirable sta-
bilization of periodic cycles by external periodic stimulus and the phenomenon
of epileptic hallucination is suggested.

Collective dynamics and synchronization of small assemblies of neural pairs are
analyzed. Both unidirectional and bidirectional couplings between the neural
pairs have been studied. For bidirectional coupling, intermittent synchroniza-
tion is observed in the case of two coupled neural pairs, while the case of
three coupled neural pairs show the more interesting feature of “mediated”
‘synchronization. For unidirectional coupling, the phenomena of “frustrated
‘synchronization” has been studied in detail. The well-known Lorenz systern of
' equations has been used as a model system for ease of theoretical analysis. A
‘desynchronization’ parameter has been defined, which shows a scaling relation

with the scaled coupling parameter.

The utility of chaotic dynamics in certain image processing tasks such as,
segmentation and adaptive smoothing, has been studied. A two-dimensional
network of locally coupled excitatory-inhibitory pairs is used to study segmen-
tation. Bilevel segmentation is achieved through different dynamical responses
of neural pairs corresponding to “object” and “background”. An approximate
expression for the critical input stimulus magnitude, that leads to transition
between the two different dynamical responses, is obtained in the case of an
isolated neural pair. Noisy, synthetic images as well as “real-life” images are
used to show the effectiveness of the segmentation procedure.

Adaptive smoothing of gray-level images is achieved with a three layer network
of excitatory, inhibitory and excitatory neurons, respectively. The output of
this network is then used to find the edges of the input image by using a
standard difference operator. The network has been used on several “real-life”
images, and the results compare favorably to those of some standard methods
of edge detection. The network architecture has been inspired by the structure
of the outer plexiform layer of the retina and it has been proposed as a. model

for retinal information processing,
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7.2 Outlook

In this work, we have stressed on ‘simple’ network models: ‘simple’ not only in terms
of the size of the networks considered when compared to the brain (consisting of
~ 10 neurons and ~ 10 synapses), but ‘simple’ also in terms of the properties
of the constituent elements (i.e., the ‘neurons’) themselves, in that, most of the
physiological details of real neurons are ignored. Biological neurons are far more
complicated, and a lot of computation is achieved at the level of the single neuron
itself [105].

The point is to see what is essential and what is unnecessary detail for the proper
functioning of biological neuronal networks, To do that one has to throw away as
much of the complexity as possible to make the model tractable - while at the same
time retaining those features of the system which make it interesting. So, while
our modeling is indeed inspired by neuroscience, we are not concerned with actually
mimicking the activity of real neuronal systems. '

Our prime concern is what functional role chaos might be playing in the brain. As
the brain itself is still a relatively poorly understood system, we have instead tried
to look at what artificial networks can do with chaos, Hopefully, this will give us a
clearer understanding of how chaos might actually be used in the brain to perform
cognitive tasks. By resorting to a simple model, where we can perform detailed

theoretical analysis, we can obtain a deep understanding of its behavior. This can
then be used fruitfully to study the more complex entity, that is the brain.

In the work reported here, many interesting features were observed. However, to
see their relevance to the actual biological situation, we have to make a connection
between our results and the behavior of the brain. Such attempts have already been
made, as for example, in Chapter 4, where, undesired control of neurobiological chaos
is sought to be connected to the phenomenon of epileptic hallucinations. However,
to take these efforts further, the complexity of the model needs to be increased
systematically in a step-by-step manner, with detailed analysis of the new features

thus revealed, in each step of the way.

For example, in this work we have been concerned exclusively with ‘neurons’ evolv-
ing in discrete time intervals. Biological neurons are better modeled by differential
equations which evolve in continuous time, However, this is not really a limitation as
any N-dimensional discrete-time dynamical system may be related to a correspond-
ing (N +4 1)-dimensional continuous-time dynamical system through the concept of
Poincare sections [188]. It follows that the discrete-time model we have studied
has a higher dimensional differential equation analogue, which will show qualitatively
similar behavior. Several differential equation models already exist which describe
the activity of single neurons, with varying degrees of fidelity. A popular model which
is biologically motivated and yet simple enough for ease of analysis is the Bonhoefter-
van der Pol (BVP) system of equations. Such systems have been shown to exhibit
chaos when subjected to forced oscillations of specific amplitude and frequency [148]

tttttt '_. -
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However, large networks of BVP or similar systems have, as yet, not been studied
in detail. Investigation of the collective behavior of such continuous-time neural net-
work models, and linking the results to those reported here, should go a long way in
establishing the genericity of our findings.

Real biological systems reside in an extremely noisy environment, This is incorpo-
rated in neural models by using stochastic updating rule and /or explicit introduction
of a term representing external noise. The former can be represented as a form of
multiplicative noise, whereas the latter is a strictly additive form of noise [192]. Phys-
iologically, additive noise may originate from threshold fluctuations of a dendritic
potential, while multiplicative noise could be due to stimulus-induced stochastic re-
lease of vescicles, containing neurotransmitter chemicals, from the synapses. We plan
to introduce similar features in our model in the future. In dissipative chaotic sys-
tems, the effect of external noise seems to be limited to destroying the fine structure
of the bifurcation sequence [41]. The interaction of deterministic chaos and stochastic

noise in the network wﬂl be mterestmg to study.

One nnportant pmnt not addressed here is the issue of learning. The connection
weights { Wi; } have been assumed constant, as they change at a much slower time
scale compared to that of the neural activation states. However, modification of the
weights due to learning will also cause changes in the dynarmcs Such bifurcation
behavior, induced by weight changes, will have to be taken into account when devising
learning rules for specific purposes. The interaction of chaotic activation dynamics
at a fast time scale and learning dynamics on a slower time scale might yield richer
behavior than that seen in the present model {47|. The first step towards such a
program would be to incorporate time-varying connection weights in the model. In
[196], time-dependence of a suitable system parameter was shown to give rise to
interesting dynamical behaviors, e.g., transition between periodic oscillations and
chaos. This suggests that varying the environment can facilitate memory retrieval if
dynamic states are used for storing information in a neural network. The introduction
of temporal variation in the connection weights, independent of the neural state
dynamics, should allow us to develop an understanding of how the dynamics at two

time-scales interact with each other.

Parallel to this we have to look at the learning dynamics itself. Freeman [54],
among others, has suggested an important role of chaos in the Hebbian model of
learning [84]. This is one of the most popular learning models in the neural network
community and is based on the following principle postulated by Hebb [84] in 1949:

When an axon of cell A is near enough to excite cell B and repeatedly
or consistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.

According to the principle known as synaptic plasticity, the synapse between neu-
rons A and B increase its “weight”, if the neurons are simultaneously active. By
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invoking an “adiabatic approximation”, we can separate the time scale of updating
the connection weights from that of neural state updating. This will allow us to
study the dynamics of the connection weights in isolation.

The final step will be to remove the “adiabatic approximation”, so that the neural
states will evolve, guided by the connection weights (as studied in the thesis), while
the connection weights themselves will alsc evolve, depending on the activation states

of the neurons, as:
Wiin+1) = Fe(Wij(n):.Xi(n):Xf(n)):

where X(n) and W(n) denote the neuron state and connection weight at the nth
instant, F is a nonlinear function that specifies the learning rule, and e is related
to the time-scale of the synaptic dynamics, The cross-level effects of such synaptic
dynamics interacting with the chaotic network dynamics might lead to significant
departure from the overall behavior of the network described here.

The proposed extensions and modifications of the neural network model presented
here will most probably lead to behavior yet unexpected. Considering that the model
already exhibits such complex behavior, the incorporation of the details suggested
above should provide results, which will be comparable to actual neurobiological

data.

On a broader front, chaos may play a substantial role in resolving the stability-
plasticity dilemma that confronts a wide range of complex adaptive systems, in-
cluding neural networks. This dilemma can be framed in terms of the following

questions:

e How can a learning system be designed to remain plastic (adaptive} in response
to significant events and yet remain stable in response to irrelevant events 7

o How does the system know when to switch between its stable and plastic modes
to achieve stability without rigidity and plasticity without disorder ?

Transitions between chaotic and ordered behavior are a general feature of complex
adaptive systems and form the subject matter of the recently emerged discipline of
Artificial Life (A-Life). It studies how local rules of interaction between elements of a
complex system can give rise to collectively emergent global behavior of the system.
This phenomena has been studied in the relatively simple system of cellular automata
(CA) models by Langton [109]. CA are rule driven systems, defined by specifying the
transformation rules that map a given initial state of the system to the final state.
They can show a wide variety of behavior, ranging from highly ordered to totally
chaotic. By using a variable parameter, changing which alters the behavior of the
system, it has been seen that, at the region where transition from ordered to chaotic
behavior occurs, the system exhibits complexity in the sense that 1t is capable of
universal computation. Langton has extended this finding to the generalization that
“complexity occurs at the edge of chaos”. The substance of this assertion is that
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while an ordered system is too rigid to learn from experience, and chaotic systems
are too unstable to exist in a competitive environment, complexity arises only in
those systems having the right blend of order and chaos. Only systems poised at
the “edge of chaos” , the critical state at which complexity is most likely to emergs,
are rigid enough to survive, while being capable of suitably adapting themselves to
a changing environment. While these findings are only for the specific system of
CA, and not yet universally accepted, they are nonetheless highly suggestive, The
brain, being a complex adaptive system also, might be indulging in a similar kind of
tradeoff between order and chaos, Studying chaotic models of neural activity thus
might provide us with an an understanding of how complexity emerges not only in
the brain, but in a broad family of complex adaptive systems, of which it is a member,
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