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Chapter 1

Introduction

1.1 _Background

Median is a natural estimate of location of a data set, and there are several versions of
multivariate median studied in the literature, each of which is an interesting descriptive
statistic for multivariate data and provides some nice geometric insights into the data
cloud. One would expect that multidimensional median will be a natural estimate for the
center of symmetry of a multivariate distribution. However, there is no unique concept
of symmetry in multivariate problems. The center of symmetry can be defined in several
ways there. For example, the d-dimensional random variable X is spherically symmetric
about 8 € RY if X — 6 and O(X — ) are identically distributed for any orthogonal d % d
matrix O, and the distribution of a random variable X is said to be elliptically symmetric if
there exists some positive definite matrix £ such that £=1/2.X has a spherically symmetric
distribution. One can relax the criteria of symmetry in order to define central symmetry
as X — & and 8 — X having the same distribution. The concept of angular symmetry was
suggested by Liu (1988). The random vector X is said to be angularly symmetric about
& if the direction vector (X — &}/)|X — 8| is centrally symmetric about the origin.

From the definitions above, it is clear that all the notions of symmetry are sufficiently
intuitive and worth studying. Any point 8 of spherical symmetry is a point of elliptical
symmetry, and every point of elliptical symmetry is a point of central symmetr'y.' In
turn, any point of central symmetry is a point of angular symmetry. Closely related to
the concept of a point of symmetry is the idea of the equivariani:e (or invariance) of a
location estimate. For example, the univariate median is equivariant under monotoue
transformations of the real line, i.e. if X,..., X}, is a sample with median 4(X;,... , Xn)

and A : R — R is a monotone transformation, then

AXL, o h(Xa)) = R(AK L,y X))

1



Introduction

In the multivariate set up, one would expect an estimator of the point of spherical sym-
metry to be equivariant under the group of orthogonal transformations and translations.
Similarly, an estimator of the point of elliptic symmetry should be equivariant under affine
transformations of the data cloud. In subsequent sections, we will again discuss this prop-
erty of equivariance while discussing some of the proposed multivariate medians in the
literature.

Closely related to the concept of multivariate median is the concept of multivariate
quantiles. Barnett (1976) has discussed in detail several methods for ordering multivariate
data. Eddy (1983, 1985) approached the problem of multivariate quantiles through nested
sequence of sets. Recently, Chaudhuri {(1996) defined the concept of geometric quantiles,
which generalizes the concept of spatial median to the quantile problem. According to
Small (1990), an approach to quantiles can be based upon the fact that the maximization
of the function —Er|{X - pul can be done by gradients, and which in a univariate situation
reduces to the simple derivative. In higher dimensions, the gradient vector will typically
poin{ inwards to the center of the distribution with a length that is proportional to how
exterior the location g is (with respect to the distribution or its empirical analog) from
the data set.

One of the early references to the concept of bivariate median can be found in Hayford
(1902). He made a clear distinction between centroid of a spatial distribution (i.e. mul-
tivariate mean) and a median-like estimate of the center of a distribution. He suggested
the vector of medians of orthogonal coordinates but clearly recognized that this higher
dimensional analog of median is dependent on the choice of the orthogonal coordinate
system. In other words, that median vector is not equivariant under orthogonal transfor-
mations or rotations. Gini and Galvani (1929) introduced the definition of spatial median.
However, their work did not receive widespread attention among the statisticians, and Hal-
dane (1948) rediscovered the same concept. He introduced the term ‘geometric median’
to distinguish it from ‘arithmetic median’, which is the vector of coordinatewise medians.
Gower (1974) referred to it as ‘mediancentre’ while discussing an algorithm for computing
it. Brown (1983) introduced the term ‘spatial median’, which so far has been most popu-
lar. But none of these multivariate analogs of medians are equivariant under general affine
transformations. Tukey (1975) defined another notion of multivariate median, called the
‘half-space depth median’ based on the geometry of the data cloud. Similarly, Oja (1983)
and Liu (1990) proposed ‘simplicial or generalized median’ and ‘simplicial depth median’
respectively, which are also based on the geometry of the data cloud. These three notions
of multivariate median are equivariant under affine transformations, but all of them are
computationally quite complex. In the later sections, we will discuss these popular notions
of multivariate medians in little detail with their advantages and shortcomings. |
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1.2 Coordinatewise Median and Coordinatewise Sign Test

Most simple and oldest notion of multivariate median is the vector of coordinatewise

medians. We may define it formally as {ollows.

Definition 1.2.1 Lel X, Xo,..., X, be d-dimensional observations. We define the vec-
lor of coordinatewise medion lo this dala to be any point 8, € RY, which minimizes

Yiz | X — 8|, where [®] = |21] + |zaf + -+ + |z4] Jor @ = (zy, 22, ..., 74)".

This multivariate median is easy to compute as it involves computing univariate me-
dians only. It may be noted that this median vector has a breakdown point of 50%, which
was established by Lopuhaa and Rousseeuw (1991). Bickel (1964) derived the asymptotic
normality and \/n-consistency of 8,. At the same time, he pointed out that this estimator
loses efficiency compared to sample mean in the presence of high correlations among the
coordinates of the data vectors. He commented that this pathological behaviour of the
estimate may be due to lack of affine equivariance of the proposed estimate. We will dis-
cuss in detail this issue of efficiency in Chapter 2 in relation with our proposed estimate
of location. |

Based on this vector of coordinatewise medians, Bickel (1965) constructed a coordi-
natewise sign test statistic as an alternative to Hotelling’s T for the multivariate location
parameter. He established the asymptotic normality of the proposed statistic and sug-
gested a suitable chi-square test. The main advantage of this method is that it is very
easy to calculate the test statistic and its asymptotic distribution is normal. But these
coordinatewise procedures are handicapped by the fact that they are not equivartant (or,
not invariant in the case of test statistic) under arbitrary affine transformations (not even
under rotations) though they are equivariant under location shift and coordinatewise scale

transformations.

1.3 Spatial Median and Angle Test

Weber (1909) considered a problem in the ‘location theory’ in which a company has to
select an appropriate location for its warehouse, which will serve n customers whose planar
coordinates are given by X1,Xs,...,X,. He assumed that the company can locate the
warehouse at any coordinate without any constraint, and the transportation cost for deliv-
eries from the warehouse to the customers are proportional to Euclidean distances only. As
a solution to this location problem, Weber (1909) suggested to minimize the average trans-

portation cost {or total transportation cost) from the warehouse to the customers. Gini



Introduction

and Galvani {1929) introduced this concept as a new definition of multivariate median.

Haldane (1948) coined the terin ‘geometric median' which is defined as follows :

Definition 1.3.1 For d-dimensional observation veclors X, Xo, ..., Xy, the spateal me-

dian or geomelric median is defined as the point 8, € R, twhich minimizes the sum of

Fuclidean distances of the dala points from i, 1.e.

8, = arg min Z X — 8|,

end

where ||z = /22 + -+ 23, T = (21,....24) .

Note that spatial median reduces to standard univariate median for d = 1, and as
the Euclidean distance is invariant under rotations or orthogonal transformations, spatial
median is automatically equivariant under rotations. Apart from the fact that it i1s not
equivariant under arbitrary affine transformations, it is not equivariant under coordinate-
wise scale transformations either. Thus, if different coordinates of the data vectors are
measured in different scales, spatial median does not lead to any meaningful estimate of
location. Despite its limitations, spatial median leads to quite efficient estimates i spheri-
cally symmetric models, and its efficiency increases with the dimension of the observations
(see Brown 1983, Chaudhuri 1992a). Besides, good algorithms are available for computing
spatial median (Gower 1974, Bedall and Zimmermann 1979 etc.).

An interesting geometrical fact is that the gradient vectors (X; — 8)/||X; — 8| are
uniformly distributed over d-dimensional unit sphere if the common distribution of X;’s
are spherically symmetric with & as the point of spherical symmetry. Thus, a test [some
times called the “angle test”, see Brown (1983)] for the center of spherical symmetry of
the data vectors may be constructed based on these direction vectors, and the test will
reduce to a test of uniformity on the sphere. Mardia (1972) discussed the problem in
the context of directional statistics. In Chapter 2, we will discuss an affine equivariant
version of spatial median and the related invariant version of angle test for locations will

be discussed in Chapter 3.
Chaudhuri (1992a) and Neimiro (1992) had almost simultaneously studied the asymp-

totic distribution of spatial median under very general conditions and using different ap-
proaches. They showed that /7 (8, — #) converges asymptotically to a d-dimensional
normal distribution. Chaudhuri (1992a) has also showed that the efficiency of the spatial

median over sample mean increases to one as the dimension d — oo when the underlying |
distribution is multivariate spherical normal. Lopuhaa and Rousseeuw (1991) have inves-
tigated the breakdﬂwn of the spatial median and have found it to be 50%, w]ncll 1s same

as that of univariate median.
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1.4 Oja’s Simplicial Median and Related Sign Test

Oja (1983) proposed an interesting notion of affine equivariant multivariate median. Con-
or elliptic symimetry of a distribution I,

sider a point @ € RY, which is a point of centra
X; — 0] can be interpreted as the length

In univariate problems, the absolute distance

of a simplex with vertices X; and f, and median is well known as a minimizer of the
X, in RY, let us define

sum of lengths of all such simplices. Given a sample X, X»,...
V[X1,Xo,..., X4 0] to be the d-dimensional volume of the simplex in RY whose vertices

are Xl,...,Xd,Q.

Definition 1.4.1 Oja’s simplicial median of the data set X1,...,Xn t5 a point 6 which
minimizes
Z V[Xi'li“'ixfdig]i
1< <o Ligan

where the sum is taken over all subsets of integers {4y,...,%4} C {1,...,n}.

It can be easily verified that Oja’s simplicial median does not have the uniqueness
property of the spatial median but has the advantage of being affine equivariant. It has a
geometric interpretation via gradient vectors. For each (d — 1)-dimensional simplex with
vertices X;,,...,X;, chosen as in Definition 1.4.1, construct a vector Af,___,-d(ﬂ) at the
origin whose length is proportional to the (d — 1)-dimensional volume of the simplex, and
pointing in the same direction as the ray from & which passes perpendicularly through the

(d — 1)-dimensional hyperplane generated by the simplex. If the vector sum of all these
(;) vectors is zero, then & is an Oja’s simplicial median. See Brown and Hettmansperger
(1987, 1989) for the development of this idea and in particular for the construction of
affine invariant analogs of rank tests in one and two sample multivariate settings.

Arcones, Chen and Giné (1994) have established the asymptotic normality of the sim-
plicial median under very general conditions through U-statistics type representations,
But computation of Oja's simplicial median involves optimization using simplex methods
that becomes difficult for large dimensions [see Niinimaa, Oja and Nyblom (1992)]. Also,
due to the computational complexity, it is virtually impossible to have an estimate of fi-
nite sample variation of the estimate. Niinimaa and Oja (1995) showed that the influence
function of the simplicial median is bounded but OQja, Niinimaa and Tableman (1990) have
found that this median has 0% breakdown.

As we have noted earlier that the gradient vector of Qja's criterion function is zero
at Oja’s simplicial median. This implies that one can construct a multivariate analog
of sign test based on this gradient vector. In other words, under the null hypothesis of

Hy: = 0, origin should be close to the simplicial median computed from the data. Brown
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and Hettmansperger (1989) studied the test in bivariate case and derived its asymptotic
properties. Hettmansperger, Nyblom and QOja (1994) had shown that the permutation
test based on this statistic has an asymptotic x* distribution. They have noted that in
the spherically symmetric case this test statistic and angle test as well as Randle’s (1989)
sign test statistic yield the same asymptotic test with the same asymptotic efliciency.

1.5 Tukey’s Halfspace Median and Hodges’s Sign Test

Hotelling (1929) introduced a different interpretation of the univariate median which gen-
eralizes to what is called the halfspace median due to Tukey (1975) in higher dimensions.
It is easy to see that min|F(z),1 — F(z—)] is maximized when z is the median of the
distribution F. The symmetrized quantile min[FF{z),1 — F(z-)] is a measure of depth of
the point  within the distribution F. If F¥ happens to be the empirical distribution of a
sample Xy,..., X,, the above leads to a minimax interpretation of sample median. The
extension of this argument in higher dimensions is straightforward, Let X, Xo,..., Xy,
be a sample in R®. Let # be the class of all closed halfspaces in R?. Following Tukey

(1975), we define the halfspace depth H D(8) of a point 8§ € R¢ within the data set as

3

HD(8) =n"! inf{z 1{X; e H};,

12=1 /

where the infimum is taken over all closed halfspaces H € H for which 8 € H.

Definition 1.5.1 The halfs;mc.e median of a daia set is defined as

8 = arg max HD(6).
g max (8)

The breakdown properties of the halfspace median have been extensively studied by
Donoho and Gasko (1992) and Chen (1995). In particular, the breakdown point of the
halfspace median is at least 1/(d 4+ 1) and as high as 1/3 in the limit for large samples
from a centrally symmetric distribution. This median is affine equivariant. Though ge-
ometrically appealing, the asymptotic properties of it is yet to be fully worked out, and
it is computationally quite complex. Ruts and Rousseeuw (1996) developed an algorithm
to compute the halfspace depth and halfspace median for bivariate data. For dimensions
d 2 3, there is not yet any good algorithm for computing this median.

Chaudhuri and Sengupta (1993) have shown that the multivariate extension of Hodges
bivariate sign test statistic (Hodges, 1955} is equivalent to the halfspace depth of the origin
within the data cloud in a d-dimensional Euclidean space, and this test uses it to make
the decision about the null hypothesis that asserts the origin as a halfspace median of the

probability distribution generating the data.
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1.6 Liu’s Simplicial Depth Median and Related Sign Test

An affine equivariant multivariate median and afline invariant notion of data depth can
be obtained from the simplicial depth function of Liu (1990). To motivate it, we observe
that the usual sample median in one dimension can be characterized by the fact that it
lies in the greatest number of intervals constructed from the data points. In this sense,
it can be viewed as being decp inside the data cloud. To generalize these ideas in higher

dimensions, it suflices to replace intervals by d-dimensional simplices in R?. The empirical

depth function is defined to be

-1
SD(8) = (d—tl) z I{BES(Xin---tnXidq.l)}

1<y <'*'¢:id.|.1 <n

where S{x;,...,Tqs1) is the simplex with vertices &,..., Tg41.

Definition 1.6.1 A simplicial depth median is a point 6 which minimizes the function
SD(6) over all 8 € RY, |

It is evident that this depth function is affine invariant, and the corresponding sim-
plicial depth median is equivariant under arbitrary affine transformations. Arcones, Chen
and Giné {1994) have established the asymptotic normality of this median under very
general conditions using U-statistics type representations. Rousseeuw and Ruts (1996)
have developed an algorithm to compute the simplicial depth of a point and the simplicial
depth median for bivariate data. However, it is computationally quite complex in dimen-
sions d > 3 and no good algorithm is yet available. Due to computational complexity, 1t
is nearly impossible to estimate finite sample variations of this median even in dimension
d = 2. Chen (1996) has shown that it has a breakdown point less than 1/{d + 1).

Chaudhuri and Sengupta (1993) have shown that for d = 2, Liu's simplicial depth
function is related in a very interesting way to a statistic used by Ajne (1968) (see also
Oja and Nyblom, 1989) for testing the uniformity of a circular distribution. It is a matter
of simple and straight forward algebra to verify that in the bivariate case, Ajne’s test
statistic is equivalent to the statistic that counts the number of triangles (simplices in
two-dimensional Euclidean space), which are formed with the data points as their vertices
and contain the origin in R® as an interior point. In other words, it is the simplicial
depth of the origin in R%. Unfortunately, an analogous result fails to hold in any of the

dimensions d > 3.
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1.7 A New Approach

From the discussions in the earlier sections it is clear that computationally simpler mul-
tivariate medians like the vector of coordinate wise medians and spatial median are not
equivariant under arbitrary affine transformations of the data vectors, whereas affine equiv-
ariant multivariate medians like Oja’s simplicial median, Tukey’s halfspace median and
Liu’s simplicial depth median are computationally quite complex. To resolve this prob-
lem, we propose a new approach to construct multidimensional estimates and tests in this
thesis. Qur approach is based on a transformation retransformation strategy that owes
its origin to ‘data-driven coordinate system’, which was introduced by Chaudhuri and
Sengupta (1993). In Chapter 2, we introduce the transformation retransformation strat-
egy and construct several estimates of multivariate location parameter, which are affine
equivariant as well as computationally simple. In the process of studying the properties of
the proposed estimates, we observe some intriguing facts about the statistical efficiency of
multivariate location estimates. The contents of Chapter 2 have been drawn mainly from
Chakraborty and Chaudhuri (1996, 1998a, 1998b) and Chakraborty, Chaudhuri and Oja
(1998). Tn Chapter 3, we construct some multivariate analogs of sign and rank tests, which
are affine invariant, based on our transformation retransformation strategy. The perfor-
mance of the tests are studied analytically as well as using some simulations and real data
analysis. Chapter 3 is based on Chakraborty and Chaudhuri (1998b) and Chakraborty,
Chaudhuri and Oja (1998). In Chapter 4, we discuss the multiresponse linear models
and extend our transformation retransformation strategy to construct affine equivariant
estimates of the parameter matrices there. We have considered two approaches: one ex-
tends the usual least absolute deviation or median regression in multidimension, and the
second one extends the rank regression in multidimension. In addition to carrying out a
detailed theoretical study, the performance of the proposed methodology has been demon-
strated by results from some simulation studies and the analysis of some real data sets.
The contents of Chapter 4 are drawn mainly from Chakraborty (1997a) and Chakraborty
and Chaudhuri (1997). In Chapter 5, we introduce a new notion of affine equivariant
multivariate quantile with the help of transformation retransformation strategy. These
multidimensional quantiles are useful in constructing multivariate Q-Q plots and quantile
contour plots. These quantiles and the plots open up the possibility of constructing several
descriptive statistics for multivariate data clouds. The contents of Chapter 5 are ba._sed_on

Chakraborty (1997b).



Chapter 2

Estimation of Multivariate

Location

2.1 Transformation and Retransformation : Methodology

and Motivation

Let us begin by observing a simple geometrical fact about any*given affine transformation
of a set of multivariate observations. For a nonsingular d X d matrix A and any b E_]H.‘f, the
transformation that maps the d-dimensional observations X; into AX; +bfor 1 <2< n
essentially expresses the original data in terms of a new coordinate system determined by
A and b. The new origin is located at —A~'b, and depending on whether A is an orthogo-
nal matrix or not, this new coordinate system may or may not be an orthonormal system.
The fundamental idea that lies at the root of data based transformation and retransfor-
mation is to form an appropriate ‘data driven coordinate system’ [see also Chaudhuri and
Sengupta (1993)] and to express all the data points in terms of that coordinate sysiem
first. After the selection of a ‘data driven coordinate system’, one computes a location
estimate or a test statistic based on those transformed data points. Finally, the location
estimate is retransformed to express it back in terms of the original coordinate system. In
order to form a ‘data driven coordinate system’, we need d + 1 data points in R?, one of
which will determine the origin, and the lines joining that origin to the remaining d data
points will form various coordinate axes. To get a valid coordinate system, these 6 + 1
points must satisfy some ‘nonsingularity’ or ‘affine independence’ condition. However, it
is not necessary for this ‘data driven coordinate system’ to be an orthonormal system.
We will now discuss in detail and in more precise terms how this transformation and

retransformation technique converts different multivariate location estimates into affine
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equivariant estimastes of multivariate location.
Consider data points X1, X9,..., X in RY. Unless specified otherwise, all vectors

will be column vectors, and the superscript T will be used to denote the transpose of a

vector or a matrix. Define
n={alaC {1,2,...,n) and #{i:7€ a} =d+ 1},

which is the collection of all subsets of size d + 1 of {1,2,... ,n}. For a fixed a =
{i0,%1,-..,%4} € Sy, let X{c) be the d x d matrix whose columns are the random vectors
(X;—X;,) with i € o and £ # 5. We assume that the elements of o are naturally ordered,
and if the X;’s are independent and identically distributed with a common probability
distribution that happens to be absolutely continuous w.r.t. the Lebesgue measure on R¢,
X (er) must be an invertible matrix with probability one. We will treat X{ca) as a data
based transformation matrix, and for each 7 € @, write Yﬁ”" = {X(a)} ' X; (cf. data
driven coordinate system discussed in Chaudhuri and Sengupta (1993)). Note that here
we are trying to view the data cloud from a data-centric reference frame created by the

basis matrix X(c«). Consider
ZEQ} = {X(a)} "X~ Xy) = an) —{X(a)}7 X4,

A simple but crucial fact about these tranformed observations can be stated as follows,

Proposition 2.1.1 Fiz an o« € Sy, and let the common disiribution of the independent
and identically distributed random vectors X1,..., X be absolutely continuous in RY.
Then the transformed vectors zgﬂ" s with 1 <1< n and 1 & o as defined above form a
magzimal tnvariant with respect to the group of invertible affine transformations on R,

Proof : Let A be a d X d nonsingular matrix and b be a d-dimensional vector and
let Y; = AX;+b for 1 < i< n. Then it is easy to see that Y(a) = AX(a). Hence
{(Y{(a)}}~HY;-Y;,) = {X(a)}"1 (X~ X;,) forall 1 <1 < n. This ensures the invariance
of the ZE“) 's under invertible affine transformations. Also, for two sets of data points
{X1,...,Xp}and {Yy,...,Y,}, if we have {X ()} (X; — X;,) = {Y(e)} " (Yi-Y},)

for all 7 ¢ o, we automatically have
X;=X(@{Y(@)} " (Y;-Yi)+ Xy, A{2.1)

for all 4 such that 1 <4 < n. Note that the equation is trivially true for £ € . Therefore,
the data set {Xl, Xoa,...,X )} isobtainable from {Y'1,Y2,..., Y} by an invertible affine
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transformation and vice versa. This completes the proof by estabilishing the maximality
of the invariant vectors. o

Now we proceed to demonstrate how the proposed translormation retransformation
methodology can be used as a general too! to construct affine equivariant estimates of

H i ’ » . - ﬂ . » 1
multivariate location out of non-equivariant ones. Let qbft be some translation invariant

- [} ] ] - » " ﬂ
estimate of multivariate location based on d-dimensional transformed observations Yf J =

{X(a)}7' X, such that 1 < i < n and ¢ € . Then define the location estimate é,f for

the original data by retrausforming qnfaff as
9\ = (X ()}
no { (o:)}qb” )
. . . ] A | O
The following Proposition asserts affine equivariance of &, .

Proposition 2.1.2 [et é'f:r) be the location estimate based on the data points Xy,. .., Xy

as described above. Suppose that A is a fired d x d nonsingular mairiz and b is a fized

vector in RY. Then the multivariate location estimate computed from AXy+ b, AXy +
~{a)

b,...,AX, +b in the same way as above (using the same indezx sel o) will be AG,, " + b,

Proof : First observe that in view of the way the matrix X{a) has been constructed,

if the X;’s are transformed to (A X; -+ b)’s, X(a) will be transformed to AX(c). Also,

note that the Y,g“) ’s remain invariant under a linear transformation of the X;'s. Hence,
in( \;iew of the location equivariance of &f), for the transformed data points (A X; + b),
~ { & N - A

¢, ~ will be transformed to f) {AX(a)}~tb. Consequently Gi&), which was defined as

{X(a)}c;ﬁffJ, will be transformed to Aéfj + b. 0

Before we discuss the asymptotics and other properties of the estimate éf? ) when ¢ f:t)

1s some specific estimate of multivariate location, e.g. vector of coordinatewise medians,
spatial median, vector of coordinatewise Hodges-Lehmann estimate etc. in the following
sections, let us now consider the following example as an illustration of the methodalogy,
where we will try to locate the ‘geographical centre’ of Indian population using trans-
formation retransformation coordinatewise median computed from decennial census data.
This example will demonstrate the usefulness of this affine equivariant location estimate
as a multivariate descriptive statistic. | .

Example 2.1 : To estimate the ‘geographical centre’ of a population distribution, earlier
statisticians used centroid (i.e. usual multivariate mean) but observed that the centroid
may be highly sensitive to the influence of probability masses at the extremes [see e.g.
Small (1990) and Chaudhuri (1996)). In other words, an event like a death or a birth in the



Estimation 12

Figure 2.1: Geographical centres of Indian population during 1872~-1971
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periphery of the country tends to have more influence on the centroid of the population
than a similar event occurring at the central part of the country. This motivates the
use of a median like measure of the centre of a population. For India, we have used
the data obtained in census years during the period 1872 to 1971 and considered only
the populations of Type-I towns (as classified in 1971), which cover nearly 80% of the
population. The rest of the population is scattered in smaller towns and villages, which
have insignificant effect on the estimation of the centre of the population, and by ignoring
them we have substantially reduced the time required for the compilation of the data and
subsequent numerical computation. As the radius of the earth is very large compared to
the size of India, we have ignored the effect of the curvature of the earth in this example,
and the population is regarded as living on an essentially flat map in which the lines
of lattitude and those of longitude are assumed to be orthogonal straight lines. The
‘geographical centres’ of population as located by our transformation retransformation

coordinatewise median are given in Figure 2.1.
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2.2 Vector of Coordinatewise Medians

Let us now consider “(ﬂ) to be the vector of caordinatewise medians of the transformed
observations Y(“) wn;h 1 <4< nandi¢a Define the resulting transformation retrans-

formation multivariate median as 9(&} {X(a)}&afl. It is easy to see that

9&3) = arg min Z H{X (o)} 1 (X — 8)]

GERdtgﬂ

where | - | is usual ly-norm, i.e. |x| = |z| + - + |4 for = = (z1,...,z4)T.

In the case of data arising from an elliptically symmetric distribution, éﬂj estimates
the centre of elliptic symmetry of that distribution. In general, 9;; can be viewed as a
descriptive statistic that yields a new concept of location of a multivariate data cloud.
Note at this point that for d = 1 and a fixed o = {ig,%1} € Sq, B(ﬂ) reduces to the usual
untvariate median of the X;’s excluding the observations X;, and Xj;,. Hence the difference
between éi{;) and the median of all X;'s with 1 <1 <n will be insignificant especially when
the sample size n is large, and their asymptotic behaviour will be identical. Specifically,
if Xy, Xo,..., X, are independent and identically distributed univariate observations with
a common density f that has a median at #, and [ is continuous and positive at 8,
the asymptotic distribution of \/E(éﬁ) -—.6’) will be Gaussian with mean 0 and variance
{2f()} 2, which is the same as the asymptotic distribution of the median of all the X,'s
(see Bahadur, 1966). The situation however is very different in higher dimensions. For
d 2 2, the asymptotic behaviour of QEJ critically depends on the matrix X(«), and as we
will see later, the selection of @ € S, and i3 € o has a crucial impact on the asymptotic

performance of 8, (a)

It is worthwhile to note at this stage that though transforming the data points by the
square root of the sample variance covariance matrix is a popular approach, the resulting
coordinate system does not have any simple and natural geometric interpretation. Further,
such a transformation cannot lead to an affine equivariant modification of nonequivariant
vector of coordinatewise median, and the limitation of that approach is primarily due to the
fact that there does not exist an affine equivariant square root of the variance covariance
matrix. On the other hand, for a fixed a € 5, multiplication of the data points with
the matrix {X(a)}~" can be viewed as a different (and somewhat unconventional) way of
normalizing the observations. Clea.rly, once we select a € S, the computation of qb( %) and
wa) 18 extremely simple in any dimension. One only needs to compute the usual univariate
median for each coordinate of the transfarmed observations Y( ), and then retransform

the resulting vector of medians (i.e. qbn )) by multlplymg it with X (o). We now state the
following Theorem, which exposes an interesting geometric feature of B(H
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Theorem 2.2.1 Fizra € S, and ip € e, and let 8 € RY. For each i € a, replace X; by
Z:=X;+ 8, and for cach i & o, replace X by Z; = X; + X4y, So, each data point 1s
transformed by a location shifl, where the shifting vector is either 8 or Xy, depending on
whelher the data point to be shifted is used in the formation of the transformation malric
X(a) or not, respectively. Consider those simplices in RY each of which is formed by a
collection of d + 1 points {Z;;, Zjsy. .2 Zi,.1v Zio, Zi} such thal {f1,Jo,-- 1 Jd-1} C «

o) L Y
and 1 € o. Then 8 = 85”) minimizes the sum of volumes of all such simplices.

Proof : For z = (21,29,...,24) € R®, let |z| denote the I,-norm of z defined as
z = 7% |2]|. Then as we have noted earlier

éﬁ} =arg min Y  [{X{e}}7(X; - 6)].
Oer? 1 ¢i<i iga

Now {X ()} (X ;—8) can be viewed as a solution (in z) of the system of linear equations

{X({a)}z = (X;—8). So, if one applies the well-known Cramer’s rule for solving a system
of linear equations, the absolute value of any component of the d-dimensional vector

{X(a)}~1(X; — 6) will be of the form
| det{X ()} det{(Xj, — Xig, Xj, = Xigrerrs Xjgo1 — Xig, X; — )}
The proof of the Theorem is now complete in view of the fact that
| det{(X j; ~ Xig) X, — Xigye v Xjy_y = Xigy X — )}

is the volume of the simplex in R?%, which is formed by the collection of d + 1 points
{Z;,,2;,,... L. Ziy Z;} as described in the statement of the Theorem. 0

Random simplices formed by data points play a very crucial role in the construction
of Oja’s median (1983) as well as Liu's median (1990) as we have described in Chapter
1. The above Theorem indicates that they have a fundamental role in the construction of

éf{? too.

2.2.1 Asymptotic Properties of Proposed Median

From now on we will assume that the X;’s are independent and identically distributed
observations with a common probability distribution-that is absolutely continuous w.r.t,
the Lebesgue measure on RY. Then, for a fixed o € S, the transformed observations
Yf-“)’s with 1 S_ 1 < nand ¢ € o are conditionally independently distributed with a
common absoluteljcantinuous distribution if we condition on the X;'s for which i € . It
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is now obvigus that the limiting conditional distributions (conditioned on the X;’s wilh
i € a) of both &55:1 and 901) will be normal in view of well-known asymptotic results
about the univariate median that are applicable to a vector of univariate medians {see
e.g. Babu and Rao, 1988). When the common distribution of the X;'s happens to be
clliptically symnmetric, it is possible to describe that limiting normal distribution explicitly
by deriving a useful expression for the limiting dispersion matrix in terms of X(«a}. This
leads to valuable insights into the asymptotic performance of éﬁj) as an estimate of the
center of elliptic symmetry, and provides us with a way of adaptively sclecting an optimal

a € S, for forming the transformation matrix X(aj.

2.2.1.1 Behaviour in the Elliptically Symmetric Case

Suppose that the X;'s have an elliptically symmetric probability distribution with density
{det{T)} 12 f{(x—8)TE " (x —~8))}. Here 8 € R? is the location of symmetry, and I is a
d % d positive definite matrix. Let us write {Z~72X(a)}~! = R{a)J(a), where R(c) is a
diagonal matrix with positive diagonal entries and J{«) is a matrix whose rows are of unit
length. Clearly, the rows of J(a) are obtained by normalizing the rows of {&~1/2X(a)}!,

and the diagonal elements of R{c) are the norms of those rows.

Theorem 2.2.2 Fiz o€ 5, and ig € o as befére. Assume that the density function [ is
such that any univariate marginal g of the spherically symmetric density f(x” ) is differ-
entiable and positive at zero, Then as n tends to infinity, the conditional distribution of
\/E(G(&} — 8) given the X;’s with ¢ € o converges weakly to a d-dimensional normal dis-
tribution with zero mean and the dispersion mariz ¢SY2{J ()}~ {D (e a) H[I ()T}~ 1812
Here c = {29(0)}%, and D(cx) s the d x d malriz whose diagonal elements are all equal
to 1, and for i # 4, its (i,7)-th element is (2/m)sin™" v;;, 7i; being the inner product of
the 1-th and the j-th rows of J{«).

Proof : In view of affine equivariance of the location estimate éEJ
to prove the Theorem in the special case when @ is the zero vector in RY and X is the
d x d identity matrix. Then, given the X;’s for which i € ¢, the transformed abser-
vations Ygﬂ]’s with ¢ & o are conditionally i.i.d random vectors with common density
| det {X ()} f{y”" [X ()T [X(e))y}. Let ri,...,74 be the diagonal entries of R(c), In
view of the main result in Babu and Rao (1988) on asymptotic distribution of the vec-
tor of univariate quantiles of a multivariate data, the conditional distribution ofnl/qu(ﬂ)
will converge weakly to a d-variate normal distribution with zero mean, and the limiting
dispersion matrix will be such that its k-th diagonal entry will be crf, and for & # [,

. it is sufficient
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its (k,1)-th element will be derger{ Pr( U( > 0 and U( @} 5 0) ~ 1/4}, where ¢ is as

defined in the Theorem. Here U( ) and U( are the k-th and Lhe I-th components of Y(
respectively. Note that we are using the fact that for a d-dimensional random vector Z

with a spherically symmetric distribution, the distribution of the random variable al Z is

the same for any a € R? such that a¥a = 1. Also, since the conditional distribution of
a) -, 0} does

}”;-(“) is elliptically symmetric around the origin in R?, Pr{ Ui&?) > 0 and U
not depend on the density f. Recall that the rows of J(a) are of unit length obtained by
normalizing the rows of {X(a)}~'. We now have the following by some routine analytic

computation.

PrU® > 0and U > 0) = 1/4 + (1/27) sin™ g .
So, the dispersion matrix of the conditional asymptotic distribution of n/2¢, " is
o(R(@)HD (@) HR()}.

Next recall that (o < (@) (a)
N o o X
9 X( ) —{J(&’} 1{R(ﬂ)} 1¢ '

The proof of the Theorem is now complete by straight-forward algebra.

It follows from the preceding Theorem that 9('1) is a nl/%-consistent estimate of 8, and

its conditional asymptotic generalized variance is
(c/n)*{det(E) }{det {D(ex) }][det{I(a) ]2 .
Consider now the symmetric positive definite matrix
V(a) = {3} {D(@HEE)} .

Note that it depends only on the directions of the rows of {£1/2X(a}}~! and not on
their magnitudes. The following Theorem establishes a lower bound for det{V{(«}}, and
this yields a lower bound for conditional asymptotic generalized variance of éf.j],

Theorem 2.2.3 For the matrices D{a) and J(c) defined above, we have det{D()} >
[det{I(a)}]* so that det{V ()} > 1. This lower bound is sharp in the sense thal an ezact
equality in place of the inequality will hold if J{e) happens to be an orthogonal malriz.

The following well-known Fact will be used in the proof of Theorem 2.2.3. A proof of
this Fact has been discussed in Lancaster {1969). | |
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Fact 2.2.4 Let X and Y be p and q-dimensional normal random vectors. Then

max Corr(a’ X,67Y) = max Corr(n(X),9(Y)),
acr?, ber? Y
where “Corr” stands for the usual correlation coefficient, and n : R — K, ¢ : BY — R are

measurable functions such that n(X) aend (YY) have finile second moments.

Proof of Theorem 2.2.9 : Denote {J(a)}{J(c)}? by P, and for notational convenience,
we will write simply D for D(a). We will prove the result by induction on the dimension

d., For d = 2, the matrices D and P can be written as,

and P =

D - r 1 2 5in~(cos d) 1 cosé J
% sin~(cos &) 1 cosd ] 1

where 0 < § < = is the angle between the two rows of J{e). So, det(D} = 1 —
{Zsin7!(cos8)}? = 1 — (1 — 2§)? and det(P) = 1 — cos?d. Now, for 0 < § <, cos®d >
(1~ -2-5)2, and the equality holds if and only if § = w/2. This proves the result for d = 2.

New assume that the result is true lor dxmensmn d~ 1 > 2. Partition the d x d matrix

1 d7 1 p' |
D as and the d X d matrix P as . Note that P can be viewed
d D, p P
as the correlation matrix of a d-dimensional normal random vector (U, Wi,...,Wy_1),

and D can be viewed as the correlation matrix of the random vector ({(U > 0), (W, >
0),....7(Wg—y > 0)) = (V,Z1,...,Z4_1) (say), where T is the usual 0-1 valued indicator
function. Write W = (Wy,... ,Wy_1) and Z = (Z),...,Z4-1). Then using Fact 2.2.4
stated above, we get

max Corr(U,6°W) > max Corr(V,b" 2)
beR.d-l bERd-—l

But on the LHS above, we have the multiple correlation coefficient between U and W,
and on the RHS, we have the multiple correlation coefficient between V and Z. Therefore,
we must have p"P;'p > d'D;'d. The induction hypothesis implies that det(D,} >
det(P,). The proof of the Theorem is now complete by observing that det (D) = {det )}
(1 - d'D;td) and det(P) = {det(P.)}(1 — pTP7p). 0

2.2.1,2 Adaptive Choice of o

Theorem 2.2.3 implies that whatever may [ and ¥ be, the conditional asymptotic gen-
eralized variance of 9(&) cannot be smaller than (c/n)¢det(X) for any choice of a € S,
and 49 € «, and one should preferably choose X(a) in such a way that the columns of
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512X (a) (i.e. the vectors Z71V2(X; — X, )'s, where ¢ € @ and 7 # 1g) are as orthogonal
as possible so that det{V(«a)} becomes very close to one. Here we propose an adaptive
way ta select the best subset a. First, obtain some consistent estimate of the scale matrix
. say & that is equivariant under nonsingular linear transformation of the data. Then,
normalize each data point X; by v-1/2, Define Y, = Y2-UY2X. for 1 €4 < n. Choose
« € 8, and compute (o) = det{‘:’(a)} based on Y';’s as described before. Then minimize
Ea) over all choices of a € §5,,. Suppose that & is the minimizer. Form X (&) and compute

v
alal . .
¢, from the original observations X;'s.

Note that once the matrix X () is formed, the computation of éf;? is straightforward
as 1t does not require any further optimization or iterative computation. But the selection
of optimal & may require a search over (') possible subsets ¢, and this number grows
very fast with n and d. One can reduce the amount of computation involved for searching
the optimal o by stopping whenever 4(«) is sufficiently close to one in case of transforma-
tion retransformation coordinatewise median because we know from Theorem 2.2.3 that
the lower bound for v{a) is one. We have observed that this approximation makes the
algorithm very fast without making any serious change in the sampling variation or any
significant loss of efficiency of the resulting estimate. In all the real examples that we have
considered in Section 2.2, it performed satisfactorily. An alternative approach would be
to make a random search over different subsets « and stopping when »(a) stabilizes in
some appropriate sense. Approaches similar to this have been considered in computing

least median of squares estimates [see e.g. Rousseeuw and Leroy (1987)].

2.2.2 Asymptotic Optimality of the Proposed Estimate

In this section, we will discuss some efficiency results of the proposed adaptive transfor-
mation retransformation estimate. Suppose that a* & S, minimizes det{V(a)} = v(a),
and recall that X1, Xg,..., X, are i.i.d. observations with a common density » on R%,

which need not be elliptically symmetric for the time being.

Theorem 2.2.5 Assume that h satisfies [a{h(y)}**!' dy < 0. Then v(a*) converges to
one in probability as n tends to infinity.

Proof : Assume without loss of generality that T is the d-dimensional identity matrix.
Consider @ = {1,2,...,d+ 1} and ¢y = 1. As the underlying distribution of the X;’s are
Lid. with density A, the joint p.d.f. of X1,..., X 441 can be written as Hf:f h(z;}. Now
we make the following transformation of variables | |

Yi=Xo—- X1, ... Ya=Xgp1 - X1, Y41 = X1
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Then the joint density of ¥'y,..., ¥ gy is given by h(yger) [T62, A{y; + y441). Therefore,
the joint density of Y'y,..., Yy at the origin in R™*? is [ .{h(y}}*t" dy, which is finite
and positive by the condition assumed in the statement of the Theorem. This condition
further implies that the map

d
(Y1 Y200 Yg) h(y)Hh(yi'i’y) dy

o )
R 1=l

from R4 o R is everywhere continuous. Therefore the joint density of Y'q,...,Y; must
remain bounded away from zero in a neighbourhood of 0 € R¥*¢, Consequently, the
probability of the event that the columns of X{a) wili be nearly orthogonal (and hence
v(e) = det{V(a)} will be very close to 1) is bounded away from zero. In other words, we

have for any € > 0,
Pridet{V(a)} =v(a) <i+¢ = p. >0

Let oy, g, ..., o, be disjoint subsets of Sy, such that &, tends to infinity as n tends to
infinity (e.g. k, may be equal to n/(d = 1) ). Then

Pr{vVoe S, wv(a)>1-+¢}

< Pri{v(iar) 2 1+e...,v(a,) > 1+ ¢}

(1—p)* —0 as n o oco.

|

Pr{iv(a®}) > 1+ ¢}

Clearly, the integrability condition imposed on A in the above theorem will hold if
h happens to be a bounded density on R¢. In the presence of elliptic symmetry with
M) = {det(Z)} 12 f{(z - T g - @)}, this condition translates into an integrability
condition on f, which is again trivially satisfied for any bounded spherically symmetric
density f on RY. This theorem implies that when the scale matrix ¥ is known and the
adaptive selection of o* and S, is done using that known %, the conditional general-
ized variance of the resulting transformation retransformation estimate tends to the lower
bound established in Theorem 2.2.3 in the previous subsection. However, in practice T is
unknown, and we will estimate it by a consistent and afline equivariant estimate 3 when
we minimize §(c) to obtain & The next theorem tells that the difference between v(&)

and v(a*) is asymptotically negligible.

Theorem 2.2.6 Under the condition assumed in Theorem 2.2. 5, (&) — v(a*) converges

in probability to zero as n tends to infinily.

In order to prove Theorem 2.2.6, we will prove some preliminary results first.
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Lemma 2.2.7 sup [J(a) — J(a)| converges in probability to zero as n lends lo infinity,
aecsSy,
where J(c) is obtained in the same way as J(«) using & in place of .

Proof : Let us write {X(a)}~'5Y2 = R(a)J(a) and similarly {X(a)}~'5Y? =

R(a)J(c), where ¥ is a consistent estimate of I. Clearly, the rows of J{«) and J(«)

are nothing but the normalized rows of {X(a)}='SY2 and {X(a)}~'%1/?* respectively.

Let the j-th row of {X(e)}~! be u;. Then
u}"il/? u?zl}? u}j‘il,leug-zi/zl _ H?E'l/%u;{‘ilﬂl

|u§1i1/2| Iu_';!“21/2| Iu}*i‘;uzl |“§1E”2f

u}"(ilﬁ — El/g)lufﬁlﬂl + u_?ﬂlﬁ{!uj?ﬁlﬂl — lu;il/2|}

T WT 52| [uTS1/2)

P
Now, since ¥ — ¥ (a positive definite matrix) as n — oo, for sufficiently large n
and any d x 1 vector u, we must have
uly ~

fﬂ'r some ¢ > Di )| hell
<

|u?f)1/2| - |u?21/9| = c

In other words, we must

T531/2 Ty1/2 51/2 _ yi/2

u; L TEDY

Therefore, sup sup [—i= :} < 2[5 N
a€Sn  j |u§1}31/2| |w; $1/2| ¢

have

sup |J(e) — J{a)| < ¢*|8Y2 - TV,
aESn |

for some positive constant ¢*. The proof is now complete in view of the fact that % is a

consistent estimate of X.

Lemma 2.2.8 sup 1T () {I ()} — J(@){T(e)}T| converges in probability to zero as n

@€ Sy,
tends to infinity.

Proof : First observe that
3 (@) {T(@)}T = J(@){I ()]
= J@{@ @) = I(e){I()}T
+I (eI ()} — J(e) {T(e)} |
()T (@) = I(a)| + (J(@)F(e) = I(a)]
|3 () ~ I(a)l , o

IA A
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where ¢’ is some positive constant. The last incquality follows from the fact that the rows

of J(e) and J(c) are of unit length. The result now follows from Lemma 2.2.7, O

Lemma 2.2.9 For M > 0, define KY, = {a : « € §,, and v(a) < M}. Then

sup [9(e) — v{a)| converges in probabilily to zero as 1 lends to infinily.
aE Ky,

Proof : Trom Lemma 2.2.8, it is easy to see that

sup [D{a) - D(a)| -2 0,
a€ S

sup |[det{I(@)}? - [det {I(@) P 2 0
3l I

and

sup |det{D(e)} — det{D(c)} “ =0 as n— oo.
oE S

Next, note that there exists § > 0 such that, for any o € Ky, [det{J(a)}]? > 4. The
existence of such a ¢ follows from some routine analysis using some of the arguments in
the proof of Theorem 2.2.3. So, for sufficiently large n, with probability tending to one we

have, [det{j(a)}]g > 0. Therefore, for o € K},

ldet{f)(cr)} — det{D(a)}|
[det{J(c)})?
| det{D () }| |[det{T(a)}]* — [det{I(a)}}*
[det{J () }]2(det{J(cx)}?

[9(a) —v(a)] <

_ [det{D (@)} - det{D(a)}| + |[det{I(a)}}? — [det{I (@)}
< | |

Hence, we have the result. [s

Proof of Theorem 2.2.6 : From Theorem 2.2.5, we have that the o*, which minimizes
v(a), is in the set K}, and hence in view of Lemma 2.2.9 & will be in K}, with probability

tending to one as n tends to infinity if M > 0 is chosen to be suitably large.
Next, since & minimizes 9{a), and a* minimizes v(c), it follows by some straightfor-

ward analysis that [§(&)—v(&)| < € and |5{a*) —v(a*)| < € will imply that |9(d&)—v(a*)| <

¢. Hence

Pr{|o(&) — v(a*)| > €} < Pr{[d(&) — v(&)] > ¢} + Pr{w(a*)}— u'(;-:..?*n > e}
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At this point, it follows from Lemma 2.2.9 that #{&) — v{a*) converges in prolability Lo

zero. The proof is now complete after observing the inequality

[v(&) — v{a®)| € [v(&) — O(&)| + |B(&) — »(a7)]

and using Lemma 2.2.9.
[t follows from the above Ltwo Theorems that both of v(a*) and v(&) converge Lo one,

which is the lower bound discussed in the previous section following Theorem 2.2.3. Recall
from this discussion that the asymptotic generalized variance of éh'f}} is (¢/n)? det(T)v(e).
Consequently, it now follows from Theorems 2.2.5 and 2.2.6 that the adaptive sclection of
a € Sy, will produce an estimate with asymptotic generalized variance (¢/n)®det(Z). As
noted by Bickel (1964) and Babu and Rao (1988), the asymptotic generalized variance of
the vector of coordinatewise medians is (¢/n)¢ det(I"), where the (3, j)-th element of T' is
(01:055) /2(2 /) sin™! Pijy Piy = Jij/(ﬂ'ﬁﬂ'jj)ljg, aij is the (¢, 7)-th element of X and ¢ is as
defined in Theorem 2.2.2. Following the line of arguments used in the proof of Theorem
2.2.3 it is easy to see that det([') > det(X), and equality holds only if £ is a diagonal ma-
trix. If the asymptotic efficiency of two competing estimates of a d-dimensional location
parameter is now defined as the d-th root of the ratio of their asymptotic generalized vari-
ances, the efficiency of our adaptive equivariant estimate compared to the nonequivariant
vector of medians is always greater than or equal to one. Further, the asymptotic effi-
ciency of our estimate compared to the usual vector of means is the same as the efficiency
of sample median compared to sample mean in the univariate problem, and it may be
greater or smaller than one depending on the nature of the tail of the univariate marginal
g of the d-variate spherically symmetric density f. These critical observations enable us
to get a good feeling of the subtle and intriguing connection between affine equivariance
and asymptotic efficiency of multivariate versions of median when there exist correlations
among the observed variables.

- We close this section by presenting some simulation results to demonstrate the perfor-
mance of the adaptive equivariant estimate in small samples. We have generated obser-
vations from bivariate normal [i.e. A(z,y) = (27)"lexp(—(2? + 3?)/2) ] and Laplace [i.e.
h(z,y) = (27)~! exp(—+/22 + 42)] distributions with

(1)

and @ = (0,0)". We have used a set of five different values of p and two sample sizes,
namely 20 and 30. Our adaptive equivariant estimate was compared with the nonequiv-
artant vector of medians, and for the purpose of efficiency computation, the estimates of
their generalized variances were computed based on 2000 Monte Carlo replications, The
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efficiency is taken to be the square root of the ratio of the gencralized variances of the two

competing bivariate location estimates.

Table 2.1: Efficiency figures for bivariate normal

Sample 17
Size 0.75 (.80 (.85 0.90 0.95
20) 1.1039 | 1.1876 ! 1.2657 | 1.3702 | 1.6202
30 1.1447 | 1.2637 | 1.3031 | 1.3882 { 1.6849

Table 2.2; Efficiency figures for bivariate Laplace

Sample Vi
Size 0.75 (.80 0.85 0.90 0.95
20 1.0679 | 1.1035 | 1.1611 | 1.2633 | 1.4819
30 1.0746 | 1,1659 | 1.2314 | 1.4326 | 1.7804

It is apparent from Tables 2,1 and 2.2 that even with small sample sizes, there is a gain
in efficiency when the adaptive equivariant estimate is used instead of the nonequivariant
vector of univariate medians if the correlation between the variables is high, As p increases
efliciency increases, and there is an increase in efficiency with increase in the sample size
too. We would like to point out that in small samples, the gain in efficiency for the
adaptive equivariant estimate seems to be more in the bivariate normal case than in the

bivariate Laplace case.

2.2.3 Some Real Examples

In this section, we will consider two real data sets and explore the impact of adaptive trans-
formation and retransformation strategy on their analysis. In both the examples we will
estimate the generalized variances of the location estimates by the bootstrap method [see
e.g. Efron (1982}]. One of the primary motivations behind considering the transformation
retransformation estimate is that once we have the desired transformation matrix X({e), it
s quite easy to compute the estimate as it involves only determining the vector of coordi-
natewise medians of the transformed observations {X (@)}~ X 's and then retransforming
that vector of univariate medians. As a consequence, one can conveniently estimate the
conditional generalized variance of the transformation retransformation estimate using the
bootstrap method once a € S, is fixed and the transformation matrix is formed. In each
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case considered here, we have used 10,000 bootstrap replications Lo estimate the general-
ized variance, and it took only a negligible amount of time on a 486 PC equipped with
a standard FORTRAN compiler. We would like to note here that the sampling variation
of any other affine equivariant multivariate median proposed in the literature [e.g. Tukey
(1975), Oja (1983) and Liu (1990)] is extremely difficult to estimate fromn the data. Tt is
virtually impossible to use the bootstrap or other resampling techniques for any of thein

in practice due to the complex computational problems associated with each of them in

the case of high or even moderately high dimensional data,

Example 2.2 : This example deals with the famous Iris data analyzed by R. A.
Fisher and many eminent statisticians assuming multivariate normality. We have applied
our technique of adaptive transformation and retransformation to all three different species
considered in this data set, namely Iris Sefosa, Iris Versicolour and Iris Virginica. HEach
data pomt in the set 1s four dimensional with variables : sepal length, sepal width, petal
length and petal width, and there are 50 observations for each species. Table 2.3 gives the
adaptive transformation retransformation medians and their estimated root mean squared
errors (RMSE) for these variables separately for three different species.

Table 2.3: Transformation retransformation medians

and_their estimated B,MSE’§ for.Iris data

Specles sepal length | sepal width | petal length | petal width
Setosa 4.99 3.39 1.40 0.23
(0.0690) (0.0704) (0,0285) (0.0161)
Virginica 6.4456 2.9658 5.4039 2.0434
(0.1264) (0.0534) (0.0769) (0.0640)
Verstcolour 6.0355 2.8285 4.3511 1.3482
(0.1319) (0.0549) (0.0073) (0.0475)

The estimated correlation matrices of the sample medians for three Tris species are !

1.0 0.81 0.33 0.25 1.0 050 0.76 0.24 \ / 1.0 078 0.72 0.52 \

1.0 0.22 0.27 1.0 0.61 0.72 1.0 0.79 0.74
1.0 0.31 1.0 053 1.0 0.84
1.0 1.0 /  \ 1.0 /

In addition to the adaptive equivariant estimate, we have computed the nonequivariant
vector of medians and estimated the generalized variances for both of them in each species
in order to make a comparison. Interestingly, the equivariant estimate turns out to be more
efficient than the non-equivariant one for JIris Versicolour and Iris Virginica (estimated
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efficiencies being 1.9158 and 1.8259 respectively in the two cases), while 1t turns out io be
less efficient in the case of Iris Sefosa (estimated efficiency being only 0.8522).

Example 2.3 : The data set used in this example was originally obtained from the
laboratory of James S. Elliot, M.D. of the Urology Section, Veteran's Administration
Medical Center, Palo Alto, California and, the Division of Urology, Stanford University
School of Medicine, Stanford, California, and it is reported in Andrews and Herzberg
(1985). We have considered four physical characteristics of 33 urine specimens with calcium
oxalate crystals (see Table 2.4). These variables are : specific gravity (i.c. the density of
urine relative to water), pH (i.e. the negative logarithm of the hydrogen ion concentration},

osmolarity (which is proportional to the concentration of molecules in the solution) and

conductivity (which is proportional to the concentration of charged ion in the solution). As
one would expect, the correlations among these variables are fairly high and the estimated
efficiency of the adaptive equivariant estimate compared to the nonequivariant vector of
medians turns out to be 2.2870. In other words, the transformation retransformation
strategy significantly reduces the sampling variation in the location estimate in this case.
The transformation and retransformation medians and their estimated root mean squared
errors and correlation matrix are presented in Table 2.5.

It is clear from the preceding two examples that one does sometimes (though not
always) gain by using the adaptive equivariant estimate. Our analysis enables us to choose
between the equivariant transformation retransformation median and the nonequivariant
vector of usual medians using a simple and conveunient rule after the sampling variations

of the two rultivariate location estimates are estimated from the data.

2.3 Spatial Median

Let us now consider the spatial median &,(f) of the transformed observations Ygf”]’s by
minimizing the sum 374, “Y_g-ﬂ)—-ff)", where for ¢ = (z1,...,z3)7, ||z| = \/m% + oo 4 15,
Finally, in order to express things back in terms of the original coordinate system, we need
to retransform ¢ S) into @?) = X(cr)&:(n), which is our desired location estimate. In view
of its construction, it is clear that ésﬂ is an affine equivariant estimate of location, but
we need to settle the question of how to choose the ‘data driven coordinate system’' or
equivalently the data based transformation matrix X(«). An answer to this question is
provided in the following Theorem.

Let us write h(x) to denote the elliptically symmetric density {det(2)} "2 f (=TT~ '),
where ¥ is a dx d positive definite matrix and f(x? ) is a continuous spherically symmetric
density around the origin in RY. The X;’s will be assumed to be i.i.d observations with
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Table 2.4: Physical characteristics of urine specimens
with calcium oxalate crystals

Specific gravity pH  Osmolarity Conductivity
1.021 5.04 774 27.9
1.024 577 608 19.5
1.024 5.60 866 20.9
1.021 5.93 775 31.2
1.024 5.36 853 27.06
1.026 9.10 822 20.0
1.013 5.86 531 21.4
1,010 6.27 371 11.2
1.011 7.01 443 2.4
1.011 6.13 364 10.9
1.031 5.73 874 17.4
1.020 7.94 867 19.7
1.040 6.28 838 14.3
1.021 5.56 658 23.6
1.026 5.71 854 27.0
1.026 6.10 056 27.6
1.034 5.24 1236 27.3
1.033 8.58 1032 28.1
1.015 5.98 487 14.8
1.013 5.8 516 20.8
1.014 5.90 456 17.8
1.012 6.75 251 5.1
1.025 6.90 045 33.6
1.026 6.29 833 22.2
1.028 4,76 312 12.4
1.027 5,40 840Q 24.5
1.018 5.14 703 29.0
1.022 5,00 736 19.8
1.025 7.90 721 23.6
1.017 4.81 410 13.3
1.024 5.40 803 21.8
1.016 6.81 . 594 21.4
1.015 6.03 416 12,8
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Table 2.5: Transformation retransformation medians,
their estimated RMSE's and correlations for urine data

Variables Median Correlation matrix

Specific gravity 1.0222 | 1.00 -0.1161 0.9207 0.5223
(0.0015)

niH 5.8718 1,00 -0.2217  -0.4135
(0.1253)

Osmolarily 730.1650 1.00 0.7599
(55.3338)

Conductivity 21.6204 1.00
(1.7926)

common elliptically symmetric dellsit;y hiz — ), where @ € RY is the location of elliptic

symmetry for the data.

Theorem 2.3.1 For any given subsel o of {1,...,n} with size d+ 1 and given the X;'s
with i € o, the conditional asympiotic distribution off11/2(9 2 —8) is d-variale normal wilh
zero mean and a variance covariance matriz A{f, T, X(«)} that depends on [, 3 and the
transformation matriz X(«). Here the positive definiie malriz A is such that the difference
A{J, D, A} -~ A{f,Z,B} is non-negative definite (i.e. A{Jf, T, A} Znna OD{f, 2, B} ) Jor
any [, ¥ and any two d X d invertible matrices A and B such that BTYLIB = M\, where
A > 0 is a constant and 4 is the d x d identity mairiz. Further, for any such B, we hove
A{S,Z,B) = c{d, /), where c(d, f) = m~td(d ~ 1)~2{g(0)}"2[[{(d— 1)/2}]"*{T(d/2)}?,
g being the univariate marginal of the spherically symmetric density [ on RY.

Proof: First observe that in view of affine equivariance of éf;' , it 15 enough to consider
the case when @ = 0 and £ = I;. Then h(z - 8) reduces to the spherically symmet-
ric density f(z%z). Now, for a given subset o with size d + 1 of {1,...,n} and given
the X;’s for which i € «, the transformmed observations Y}“) 's are conditionally inde-
pendent, and they are identically distributed with common elliptically symmetric density
Myl X (@)} = |det{X ()} flyT{X(a)}? X()y]. For a random vector Y with density A,
elliptic symmetry around the origin implies that the distribution of ||Y}|~'Y does not
depend on f but on X(a). Consider the matrices C{X(a)} = E(JJY|-*YYT) and
D{/, X(e}} = B {||Zl"'(Xa = |Y|I72YY")}. Then it follows from Chaudhuri (1992a)
that given X(a), the conditional limiting distribution of nlfqu(a) where qb(ﬁ) is the spa-
tial median based on the transformed observaiions Y§ }’s, is normal with zero mean and
(D{f, X ()} C{X(c} }{D{/f, X(a)}]! as the variance covariance matrix, Further, ellip-
tic symmetry of h around the origin implies that D{f, X(a)} = u(d, /}G{X ()}, where 1
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is a positive constant depending on dimension d and [, and G is a positive definite sym-

(o)
metric matrix depending on X{«) only. Finally, since B(S = X{c }qbn , the conditional
limiting distribution of nl/?é[;] must be normal with variance covariance matrix

a)[D{f, X(@)}] ' C{X(@)}D{f, X()}] " {X(a)}"

= {p(d, N} *X(@)G{X(a)}] T C{X (@)}G{X(e)}] " {X(x)}",

which we can write as A{f, I, X()}, where by afline equivariance we have A{f, 5, A} =

CU2A{f, 14, S7V2AYTY2,
Next observe that it is enough to prove the non-negative definite ordering of A stated
in the Theorem for % = I; and BTB = I, because when BTB = Al,, A{f,1;,B} is a

diagonal matrix that does not depend on the value of A or the specific choice of B. Also,

for any nonsingular A,
A{f,1a, A} = {u(d, /)Y 2A{G(A)}"'C(A){G(A)} AT,

and hence in order to prove the non-negative definite ordering of A, we can choose [ to
be any specific density as its effect appears only through the scalar factor p(d, f). In par-
ticular, we can choose f(z”z) to be the multivariate Laplace density kexp{u(me)1/2}+
Then it is straight forward to verify that for a random vector Y with density h(y|A) =

det(A)f (yT AT Ay), we must have
(ANYID(f, M)A~ = (ANTB(Y ) I - Y172 YY ) AT

= COV{|[Y|~"(AT)"'Y, [AY|"'AY },

where COV denotes the covariance matrix between two random vectors. Also, note that
(AT)~1C(A)A! is nothing but the dispersion matrix of ||Y']|(AT)~!'Y. Now, the non-

negative definiteness of the difference
&(flIdi A) - A(f, Id'.l B) =

A{D(/,A)}7'C(A){D(s,A)}'A" - B{D(/,B)}"'C(B){D(/,B)}'B"

follows from the simple fact that for any two d-dimensional random vectors U and V', the

difference
{cov(V,U)}"'DISP(V){COV(U,V)}~! — {DISP(U)}!

is non-negative definite, where DISP denotes dispersion matrix, and all the matrices
invoived are invertible. Finally, the expression of ¢(d, f) stated in the Theorem follows



Fstimation 29

from a direct algebraic computation using the asymptotic distribution of spatial median

in spherically symmetric models [see c.g. Brown (1983), Chaudhuri (1992a)).

The main message communicated by the above Theorem is that we need to choose
X(e) in such a way that {X(a)}T="1X(«) becomes as close as possible to a matrix of
the form A4, which is a diagonal inatrix with all diagonal entries equal. Tn other words,
the coordinate system represented by the transformation matrix $-1/2X (a) should be as
orthonormal in nature as possible. The expression for ¢(d, /) in Theorem 2.3.1 nnplies
that when {X(c)}? 71X () is chosen to be close to a diagonal iatrix with all diagonal
entries equal, the asymptotic efficiency of the estiinate é_(gﬁ) becomes close to that of the
spatial median under spherically symmetric models (i.e. when % = a?14), and it will
be more efficient than spatial median in elliptically symmetric models [see Chaudhurt
(1992a)], Tt is known that for spherically symmetric data rotationally equivariant spatial
median 15 more efficient than the vector of coordinatewise medians, which lacks rotational
equivariance [see Brown (1983), Chaudhuri (1992a)}, and with a proper selection of X({«),
él(;) too will have similar superior performance. Another implication of Theorem 2.3.1
is that with appropriate choice of X (@), the estimate 9?) will be more (or less) eflicient
than the sample mean vector depending on whether the tail of the density [ is ‘heavy’ (or

‘light').

We will discuss a procedure for choosing the transformation matrix X{«) from the
data when we will discuss numerical examples in the next subsection, and there we will
compare the finite sample performance of our estimate with that of some other well-known
estimates of multivariate location, But before that let us close this section by noting that
an alternative affine equivariant modification of spatial median has been considered in the
literature by other authors [see e.g. Isogai (1985), Rao (1988)], wha computed spatial
median based on multivariate observations transformed by the square root of the usual
variance covariance matrix. While transforming the data points by the square root of the
sample variance covariance matrix is a popular approaclh, the resulting coordinate system
does not have any simple and natural geometric interpretation as we have already pointed
out. We will see in the next chapter that the strategy of transforming the data points using
an appropriately chosen X(«) leads to an affine invariant modification of the well-known
angle test, which turns out to be ‘distribution free’ in nature in the sense that the nul
distribution of the test statistic under elliptically symmetric model does not depend on
the unknown density f. This is not achievable by transforming the observations using the

square root of the sample variance covariance matrix.
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2.3.1 Simulation Studies and Data Analysis

Tt is quite clear from our main results and discussion in the preceding subsection that we
need to choose X(a) in such a way that {X(a)}TZ7'X(a) becomes as close as possible
to a matrix of the form Al; Since ¥ will be unknown in practice, we have to estimate
that from the data and we will need a consistent and affine equivariant estimate (say
i) When the variables observed in the data have finite population variances, we can
use the usual variance covariance malrix for this purpose. In any case, after obtaining
5, we will try to choose X(e) in such a way that the eigenvalues of the positive definite
matrix {X ()}’ £7'X(a) become as equal as possible. To achieve this, our strategy will
be to minimize either the ratio between the arithmetic mean and the geometric mean or
that between the geometric mean and the harmonic mean of the eigenvalues. Note that a
major advantage in using such a criterion is that it does not involve explicit compuiation
of the eigenvalues of the matrix. Arithmetic and harmonic means of the eigenvalues can
be obtained from the trace of the matrix and that of its inverse respectively, while the
geometric mean can be computed from its determinant. In our numerical studies, we
have observed that the criteria based on different ratios yield more or less siinilar results.
Instead of minimizing the ratio over all possible subsets o with size d+1 of {1,...,n}, one
can substantially reduce the amount of computation by stopping the search for optimal
X () as soon as the ratio becomes smaller than 14, where ¢ is a preassigned small positive
number. In our simulations and data analysis, we did not observe such an approach to
cause any significant change in the statistical performance of the procedures though there
was considerable gain in the speed of computation. Of course, there are other different ways
to achieve this goal of making {X(a)}? =~ 'X () as close as possible to a diagonal matrix
with all diagonal entries equal. We have adopted a specific strategy that is computationally
convenient and has been observed to work fairly well in our numerical investigations. Note
that once X () is chosen, we can compute the spatial median :inﬁf* ) from the transformed
observations an) 's using any of the standard algorithms discussed in the literature [see
e.g. Gower (1974), Chaudhuri (1996)].

We will now discuss a simulation study that was undertaken with the objective of com-
paring the finite sample performance of égﬂ with that of the sample mean vector and the
vector of coordinatewise sample medians, We have used sample size n = 30 and consid-
ered the cases d = 2 and 3. We generated data from three different distributions, namely
multivariate normal, multivariate Laplace (i.e. when f(azT=) = kexp{—(zT2)!/?}) and
multivariate ¢ with 3 degrees of freedom. Keeping in mind location equivariance as well as
equivariance under coordinatewise scale transformation of each of the three multivariate

location estimates considered, we decided to generate data from the elliptically symmetric
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density h(xz —8), where 8 was taken to be the zero vector and ¥ was taken to be the matrix
with each diagonal entry equal to one and each off-diagonal entry equal to p. The value of
p was chosen from the interval [0,1). We will denote by e; and eq the efficiencies of g

compared with sample mean vector and the vector of coordinatewise sample medians re-
spectively. For two competing estimates &Jl and c}g of a d-dimensional location parameter
@, we will define the efficiency of the former estimate compared with the latter one as the
d-th root of the ratio between det{ E(¢y— ¢) (¢, — )T} and det{ E(¢, — $)(y — )T} [see
e.g. Bickel (1964)]. The results are reported in Tables 2.6 and 2.7. In each case, we have
estimated the efficiencies e; and es based on 10,000 Monte Cario replications for d = 2
and using 5,000 Monte Carlo replications for d = 3. Since both of 9(;] and sample mean
vector are affine equivariant estimates, the value of e; remains constant for different values
of p. The superior performance of 9'(;) for non-normal elliptically symmetric distributions

(especially when p is large) is quite transpareni in the figures given in Tables 2.6 and 2.7.

Table 2.6: Finite sample efficiency of afline equivariant

modification of spatial median for n = 30 and d = 2

Distribution f
000 075 080 085 090  0.95
Normal | e; | 0.7158 0.7153 0.7153 0.7153 0.7153 0.7153
es | 1.1313 1.4418 1.5243 1.6447 1.8285 2.1747
Laplace | e; | 1.2849 1.2840 1.2849 1.2849 1.2849 1.2849
es | 1.0861 1.3779 1.4655 15877 1.7688 2.1172
t with 3 d.f, [ ey | 1.7676 1.7676 1.7676 1.7676 1.7676 1.7676
es | 1.0628 1.3551 1.43790 1.5512 1.7291 2.0769

Table 2.7: Finite sample efliciency of affine equivariant

modification of spatial median for n = 30 and d = 3.

Distribution 7,
0.00 0.75 0.80 0.85 0.90 0.95
Normal e; | 0.7319 0.7319 0.7319 0.7319 0.7319 0,7319
eo | 1.1649 1.5883 11,7140 1.87256 2.1219 2.6873
Laplace e; | 1.1023 1.1023 1.1023 1.1023 1.1023 1.1023 |
ey | 1.1701 1.6078 1.7271 1.9041 2.17567 2.7461
t with 3d.f. | e; | 1.67258 1.67256 1.67256 1.6725 1.6725 1.6725
eg | 1.13956 1.5725 1.6830 1.8638 2.1097 2.6413

( )Let, us next consider two real data sets and try to investigate the performance of
~ oy _ . ' . | .
85" there. One of the primary reasons for using the transformation retransformation
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technique is that once the optimal data based transformation matrix X (a) is chosen, it
is quite easy to compute éf;” as il requires only the computation of spatial median based
on the transformed observations Y;“}‘s* An important consequence of this is that one can
conveniently use resampling techniques such as the bootstrap [see e.g. Efron (1982)] to
estimate the conditional sampling variation of é(sn] given the X;'s with i € o (i.e. after
X () is fixed). In each of the two examples discussed below, we have used 10,000 bootstrap
replications to estimate the sampling variation and the efficiency of our transformation

retransformation estimate, and it took only a lew seconds on a workstation equipped with
a standard FORTRAN compiler.

Table 2.8: Transformation retransformation estimates and

the results of bootstrap analysis of Fisher's Iris data
Species Estimates and estimated RMSE’s Estimated

Sepal Sepal Petal Petal efficiency
length  width  length  width
Setosa | 5.0148 3.4180 1.4684 0.2376 | e! = 1.0308
(0.0488) (0.0648) (0.0221) (0.0137) | e = 1.2482
Versicolor | 5.9111  2.8001 4.2733  1.3256 | e} = 0.6607
(0.1178)  (0.0656) (0.0961) (0.0422) | e} = 2.4361
Virginica | 6.5421 2.9864 5.4953  2.0428 | e} = 0.7494 |
(0.0926) (0.0516) (0.0802) (0.0514) | e} = 1.9220

Example 2.4 : Like Example 2.2 this example deals with the Iris data. Table 2.8
gives our location estimate and its root mean squared error (RMSE)} as estimated by the
bootstrap for each variable separately for different species. We have denoted by e} and €3
the bootstrap estimates of the efliciencies of our affine equivariant modification of spatial
median as compared with the sample mean vector and the vector of coordinatewise sample
medians respectively. It is interesting to note that while there is a gain in efficiency when
compared with the non-equivariant vector of coordinatewise median in all three species,
when compared with the affine equivariant sample mean, there is gain only in the case of
Iris Setosa, and there is a definite loss in efficiency in each of the other two cases. The
entire analysis seems to make a very good case for using affine equivariant procedures.

Example 2.5 : The data set used in this example is the same as that in Example
2.3. Table 2.9 summarizes the results of the bootstrap analysis of this data set. The
values of e} and ej indicate considerable gain in efficiency over the non-equivariant vector

of coordinatewise medians and a small gain over the sample mean vector.
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Table 2.9: Transformation retransformation estimates and the results
of bootstrap analysis of urine dala

Estimates and estimated RMSE’s Estimated
- Specific Gravity pH Conductivity Osmolarity | efliciency
1.025 7.90 721.0 23.6 el = 1.092]
(0.0016) (0.1201)  (54.5453) (1.6232) | e = 2.8250 ]

2.4 HodgéS—-Lehmann Type Estimates

As in previous sections, define the transformation matrix X(a) and transformed ob-
servations Y( )5, for 1 <7 <mn, § € a. One can then compute coordinatewise Hl.-

. (ﬂ vyl
estimate ¢,, ° based on qu) 's by minimizing the sum ):) ] 5 : $| (here for
. - - tZa ';f;:
T = (z1,...,24)7, |&]| = |z + ...+ [z4]). Finally, in order to express the Lsmmate l)ac}E in
~ ()

terms of the original coordinate system, we need to retransform q!:ﬂ “ into QH = X({a) g,
which is our desired location estimate. Alternatively, one may also use Euclidean norin
based procedures described in Chaudhuri (1992a) for constructing c;?)ff). However, we will
not consider that here. In view of the construction, it is obvious that é; is equivariant
under any arbitrary affine transformation of the data vectors, whatever be the procedure -
used to estimate qﬁ(ﬂ). |

Theorem 2.4.1 If X1,X,,..., Xy are independent and identically distributed with a
common elliptically symmetric density {det(2)}~Y2f[(x~0)T T~ (x—8)), the conditional
asymptotic distribution nfnlfz(éf;?)F—B) given the X,- ’s Mthi € w«, 18 d-variate normal with
zero mean and a variance covariance matriz V{f, ¥, X(a)} that depends on [, T and the
transformation matriz X(a) as n — oo. Further, if the underlying distribution of X ;s
is d-dimensional normal, the positive definite matriz V is such that det[V{f, L, A}] >
det[V{f, Z,B}] for any T and any two d x d invertible matrices A and B such that

BT'S"1B is a diagonal matriz.

Proof: Note that, &Ef ' is the coordinatewise HL-estimate based on the transformed
observations Yga) 's, 4 & . Then by the results of Bickel (1964), n'/ 2(¢(a] ¢) is asymp-
totically conditionally normal gwen X(a) with mean zero, where ¢ = {Xf&)}“‘ﬂ. Now
qu) Is defined as {X(a }t;bn . Thus the limiting distribution of nlﬂ(é; — @) given
X(a) is d-dimensional normal with mean zero. Straightforward algebra shows that the
asymptotic variance covariance matrix to be V{f, T, X(«) } which depends on [, ¥ and the
transformation matrix X(a). In fei-::t, we do not need the assumption of elliptic symmetry
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for asymptotic normality of our transformation retransformation HL-estimate. We made
the assumption of elliptic symmetry for the asymptotic variance covariance matrix V to

have the special structure

V{/, L, X(a) =;1§{ / [E(z)dz) " 23 (@)} " U(e)[{I ()} T] ISV, (2.2)

where f; is the univariate marginal density of the spherically symmetric density f and
the matrix J{«) is oblained by normalizing the rows of {E"]/?X(a)}"‘ and {(a) is the
correlation matrix of (Fi(¥1),..., Fqa(¥))?. Here F; is the i-th marginal distribution
function of J{a)X and Y; is the ¢th coordinate variable of J(a)X, where X has a
spherically symmetric density f. The determinant ordering of the matrix V{/, £, X(a)}

when the underlying distribution is d-dimensional normal follows {rom the arguments
| [

similar to those used in the proof of Theorem 2.2.3.

In Section 2.3, it was suggested that one may select. optimal & by choosing X{(a) in
such a way that {X (o)} 571X (o) becomes as close as possible to a diagonal matrix with
all diagonal entries equal, Following the arguments used in Theorem 2.2.6, it can be shown
that for the above mentioned procedure, the conditional asymptotic generalized variance of
the proposed estimate is [12n{ [ f2(z)dz}?]~¢ det{E}. Thus the efficiency of the proposed
estimate éﬁ?} over sample mean is the same as that of the HL-estimate of location over
mean in the univariate setup. Next we will discuss some simulation studies in an attempt
to see the performance of the transformation retransformation HL-estimate éﬁf in finite

samples for different elliptically symmetric distributions,

2.4.1 Finite Sample Efficiency of Multivariate Hodges-Lehmann Esti-

mate

We conclude this Section with a small simulation study on the efficiency of our affine
equivariant HL-estimate of location. To determine the efficiency of a multivariate loca-
tion estimate over another, we have once again used the notion of efficiency introduced
by Bickel (1964) based on the d-th root of the ratic of the generalized variances of the
competing estimates, where d is the dimension of the data. We carried out the simulations
for three multivariate distributions, namely multivariate normal, multivariate Laplace and
multivariate ¢ with 3 d.f. with sample size n = 30 and 5000 Monte Carlo replications. The
efficiency of the affine equivariaﬁt.HL-type estimate is computed over the usual sample
mean, the vector of coordinatewise median, affine equivariant transformation retrans- -
formation codrdiﬁatewise median and affine equivﬁriantl transformation retransformation
spatial median, which are denoted by e;, ea,e; and ey4 respectively, for different values of

- p- The results are summarized in Tables 2,10 and 2.11.
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Table 2.10: Finite sample efliciency of affine equivariant
HL-estimate of location for n =30 and d = 2

Distribution |
000 075 080 085  0.90 095
Laplace e; | 1.0919 1.0919 1.0919 1.0919 1.0919 1.0919
es | 0.0047 1.1356 1.2078 1.3086 1.4629 1.7579
es | 1.2854 12854 1.2854 1.2854 1.2854 1.2854
es | 0.8360 0.8360 0.8360 0.8360 0.8360 0.8360
Normal | e; | 0.8480 0.8480 0.8480 0.8480 0.8480 0.8480
es | 1.3534 17005 1.8224 1.9734 2.1929 2.6099
es | L7757 L7757 L7757 L7757 1.7757 L7757
es | 1.2328 1.2328 1.2328 1.2328 1.2328 1.2328
t with 3d.f. | e; | 1.5883 1.5883 1.5883 1.5883 1.5883 1.5883
es | 0.0474 1.2261 1.2054 1.3992 15603 1.8810
es | 1.3971 1.3971 1.3971 1.3971 1.3971 1.397I
es | 0.8861 0.8861 0.8861 0.8861 0.8861 0.886)
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2.5 Concluding Remarks

Remark 1: It is interesting to note that the procedure proposed here for selection of «
and X(a) does not require any knowledge of the form of the underlying density f. As
has been abserved in previous sections, there is a nice and intuitively appealing geometric
interpretation for such an approach. The matrix {X(a)}¥ S X(e) becomes a diagonal
matrix when the columns of £7Y/2X(a) are orthogonal to one another. In other words,
our recommendation amounts to transforming the observation vectors using a new ‘data
driven coordinate system’ determined by the transformation matrix X(a) such that the
coordinate system is as orthogonal as possible in a d-dimensional vector space, where the
inner product and orthogonality are defined based on the positive definite scatter matrix
2 of the probability distribution associated with the data vectors.

Remark 2: As we have discussed in detail in Section 2.2, the concern about poor ef-
ficiency of the nonequivariant vector of univariate medians raised by Bickel (1964) and
Brown and Hettmansperger (1987) can be settled by using our adaptive transformation
and retransformation strategy. Asymptotically our equivariant estimate outperforms the
nonequivariant vector of medians as well as the affine equivariant vector of means in the
presence of correlation among the variables if the underlying distribution is elliptically
symmetric with univariate marginals having heavy tails. Qur. simulation results amply
indicate a gain in the efficiency over the vector of coordinatewise median even in finite
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Table 2.11: Finite sample efficiency of affine equivariant

HL-estimate of location for n = 30 and d = 3

Distribution 0
0.00 0.75 (.80 0.85 0.90 0.95
Laplace e; | 0.9926 0.9926 0.9926 0.9926 0.9926 (0.9926
es | 1.0685 1.4729 1.5763 1.7326 1.9993 24015 |
ez | 1.2425 1.2425 1.2425 1.2425 1.2425 1.2425
es | 0.8807 0.8807 0.8807 0.8807 0.8807 0.8807
Normnal e; | 0.8344 0.8344 0.8344 (.8344 0.8344 0.8344 |
es | 1.3382 1.8066 1.9327 2.1351 2.3848 2.9853
es | 1.5036 1.5036 1.5036 1.5036 1.6036 1.5036
eqs | 1.1260 1.12900 1.1209 1.1299 1.1299 1.1299
t with 3d.f. | ey | 1.4273 1.4273 1.4273 14273 14273 1.4273
ez | 0.9495 1.2946 1.3882 1.5305 1.7494 2.1956
es | 1.2362 1.2362 1.2362 1.2362 1.2362 1.2362
es { 0.8203 0.8203 0.8203 0.8203 0.8203 0.8203
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sample situations for standard elliptically symmetric distributions when the correlations

among the variables in the data are significant.

Remark 3: When the underlying distribution deviates significantly from being elliptically
symmetric, instead of minimizing v{a), one can try to estimate the generalized variance of
the transformation retransformation median for a fixed o using some resampling technique,
and then minimize that estimated variance w.r.t o € S,,, However, such an approach will

be computationally quite intensive, and we will not discuss it here.

Remark 4: Chaudhuri (1992a) proposed and studied a class of HL-type estimates in
multidimension, which are equivariant under rotations (i.e. under orthogonal transfor-
mations} but they are not equivariant under arbitrary affine transformations of the data.,
We can employ our transformation retransformation strategy in conjunction with those
estimates to define another related class of affine equivariant versions of HL-type estimates

retaining their good efficiency properties.

Remark 5: It is also worth noting here that the estimation of finite sample variation of
our proposed transformation retransformation estimate is quite simple. After selecting the
optimal transformation matrix, one can use any resampling techniques (e.g. bootstrap) on
the transformed observations to estimate the variance covariance matrix of the proposed
estimate. This simplicity in computing the finite sﬁmple variation of the estimate is

a major advantage for the transformation retransformation estimate when it comes to
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practical applications.

Remark 6: We have seen earlier that none of the affine equivariant multivariate medians
proposed in the existing literature possess good breakdown property (i.e. 50% break-
down) of univariate median, whereas nonequivariant medians like vector of coordinatewise
medians and spatial median have breakdown 50%. After we fix the transformation, we
need to compute only nonequivariant vector of coordinatewise medians or spatial median,
Thus our transformation retransformation estimates can only break if the selected trans-
formation matrix breaks. But our selection procedure guarantees that the determinant of
{X{e)}TL X () always remains finite and bounded away from zero. We only need a
robust and consistent estimate ¥ of the scatter matrix £. Tt is easy to observe that the
breakdown point of £ provides a lower bound for the breakdown point of the affine equiv-
ariant transformation retransformation estimates. Thus if one uses high breakdown afline
equivariant estimates of ¥ (see Davies 1987), the asymptotic breakdown of transformation

retransformation spatial median or coordinatewise median would be 50%.



Chapter 3

Multivariate Sign and Rank Tests

3.1 Introduction

The simplicity and widespread popularity of univariate sign and rank tests for one-sample
and two-sample location problems have motivated numerous statisticians to explore sev-
eral possibilities for their multivariate generalization. In the late 50% and the early 60’s
Bennett (1962), Bickel (1965), Blumen (1958) and Chatterjee (1966) developed some mul-
tivariate sign and rank based methods. More recent attempts in that direction have
been made by Brown and Hettmansperger (1987,1989), Brown, Hettmansperger, Nyblom
and Oja (1992), Liu (1992), Liu and Singh (1993), Oja and Nyblom (1989), Randles
(1989), Hettmansperger, Méttdnen and QOja (1996a,b) and others. Readers are referred to
Hettmansperger, Nyblom and Oja {(1992) and Chaudhuri and Sengupta (1993) for some
recent detailed reviews. The popularity of univariate sign and rank based methods have
their root in their distribution free nature and their applicability to solve a number of prac-
tical problems for which more traditional techniques cannot be used as they frequently
require the assumption of normality of the data, which may be hard to justify in practice.
It is a well-known fact that sample median is the estimate of location naturally associated
with the univariate sign test, and in the same way Hodges-Lehmann (1963) estimate is
naturally associated with Wilcoxon’s signed rank test. So it is reasonable to expect that a
multivariate version of median will be associated with a multivariate sign test, and a mul-
tivariate analog of Hodges-Lehmann (HL) estimate will be associated with a multivariate
rank test. Among different versions of multivariate median and HL-type estimates of loca-
tion, the vector of coordinatewise median and the vector of coordinatewise HL estimates
are perhaps the simplest ones. In one sample multivariate location problems, the tests
that are naturally associated with them are the coordinatewise sign tests and the coordi-
natewise signed rank tests respectively. Both the tests have been studied extensively by

38
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Bickel (1965), Puriand Sen (1971) etc. Spatial median is another popular generalization of
univariate median to multidimension, which is considered in earlier chapters and the test
that is naturally associated with spatial median is the angle test. The angle test, based
on the direction vectors U(X;) = | X7 X; (1 <1 < n, X; # 0), has been considered by
Brown(1983, 1988), Mottonen and Oja (1995) etc..

One serious drawback of coordinatewise sign as well as signed rank test is that nei-
ther of them is invariant under arbitrary affine transformation of the data. In addition to
being an undesirable geometric feature, this lack of invariance is known to have some neg-
ative impact on the statistical performance of these tests especially when the real-valued
components of the multivariate data are substantially correlated. This issue was first
raised by Bickel (1964,1965), and subsequently investigated by Brown and Hettmansperger
(1987,1989). Spatial median is known to have rather impressive and somewhat counter-
intuitive efliciency properties for multidimensional data generated from a spherically sym-
metric probability distribution, and this has been disf:ussed in detail in Chaudhuri (1992a)
[see also Brown (1983)]. Hﬂwevelr, the performance of angle test tends to be quite poor
compared to other affine invariant procedures when there is significant deviation from
spherical symmetry caused by the presence of correlation among observed variables (e.g.
when the underlying distribution is elliptically symmetric). While the coordinatewise sign
and signed rank tests can be used for data consisting of variables measured in different
scales, it is not possible to use angle test on such data due to its lack of invariance under
coordinatewise scale transformations.

In Section 3.2, we propose the transformation technique for constructing afline invari-
ant sign and rank tests in one sample problems. In the same section, we will see that our
tests have a very encouraging common feature -~ they inherit good efficiency properties of
coordinatewise sign and signed rank tests in spherically symmetric multivariate normal
models and extend them to more general elliptically symmetric situations. In Section 3.3,
we will discuss the two sample tests and their asymptotic properties. Statistical perfor-
mance of the proposed tests under various elliptically symmetric distributions is studied
with the help of simulation in Section 3.4. In the same Section, we will indicate how
one can estimate the P-value when our proposed tests are applied to real data sets by
simulating the permutation distributions of the proposed test statistics under the null
hypothesis.
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3.2 One Sample Location Problem

Suppose that we have n data points X,,..., X, in R?, and assume that n > d + 1. Let
us begin by intmducing some notation. As in the preceding Chapter define

San={alaC{1,2,...,n} and #{i:i € a} =d+ 1},

which is the collection of all subsets of size d + 1 of {1,2,...,n}. TFor a fixed subset
a = {ig,%1,...,4q}, consider the points X;,, X;,,..., Xi,, whlch will form a ‘data driven
coordinate system’ as described before, and the d x d matrix X () containing the columns
Xiy— Xigyo oy Xi, — Xy, can be taken as the transformation matrix for transforming the
data points X ; such that 1 < j <0, j € « in order to express them in terms of the new
coordinate system as Y( o) = = {X(a)} 1 X;. If the observations X;'s are generated from
a common distribufion wluch is absolutely continuous w.r.t the Lebesgue measure on RY,

the transformation matrix X(a)} must be an invertible matrix with probability one. We
have already cbserved that the transformed observations Y:E-“)’s withl <j<nand: & «
form a maximal invariant with respect to the group of nonsingular linear transformations
on R? [see Chapter 2].

3.2.1 Affine Invariant Sign and Signed Rank Tests

One can now define the following test statistics

78 = 3" Sign(Yi™) (3.1)
i
and '
R(”) = — Z Z Sign( Y( )+ Y(a)) (3.2)
tﬁ!a o o
ji

where Sign(X;) = (Sign(Xir ), - Sign(Xiq))* for X; = (Xi,... , Xia)*. In view of the
construction, it is clear that T, (“) and Rq(f) are affine invariant. Note that they are nothing
but coordinatewise sign test statistic and coordinatewise Wilcoxon’s signed rank statistic
respectively based on the transformed observations Y( Ds, A question that naturally
arises at this stage is how to choose the ‘data driven conrdlnate system’ or equivalently
the data based transformation matrix X(a). An answer to this question is pravlded in the
following discussion,

Let us consider the elliptically symmetric density h{z) = {det(Z)}~12 f (xS 1a),

where ¥ is a d x d positive definite matrix, and j'(:n Tgz) is a continuous spherically sym-

metric density around the origin in RY, X1,...,Xy are assumed to be i.i.d observations
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with common elliptically symmetric density h(xz — 8), where 8 € RY is the location of el-
liptic symmetry for the data. Suppose that we have two competing hypothesis Hyp : § = 0O
and H4 : 8 % 0. We now state a result that summarizes the main features of the affine

invariant sign test statistic T(“J.

Theorem 3.2.1 Under the null hypothesis Hy : 8 = 0, the conditional disiribution of
n12gi®) grven the X;'s with 1 € o does nol depend on f, and il converges to d-variaic
normal with zero mean and o variance covariance mairiz ¥ {&-1/2X(a)} as n — oo,
where ¥y depends only on SV2X (o). When log [ is twice differentiable almost everywhere
(w.r.t. Lebesgue measure) on R® and satisfies the Cramér type reqularity conditions, the
alternatives H("') . 0 = n7Y2§ such that § € RY and § # O will form a contiguous
sequence, and the condilional limiting distribution of n~Y2Ts™ under that sequence of
atternatives is normal with the same variance covariance matric ¥y and a mean vector
M {f, B7128, n1 2K (@)} that depends on f, B=1Y28 and £~12X (). Also, the limiling
condilional power of the lest under such a sequence of contiguous alternalives increases

monotonically with the noncentrality parameter
A{f, 27?6, 572X (@)

= (M {/, =728, SV (@) T [0 22X (@) M, B2, 5X (@) (3.3)

Here the noncentrality parameter Ay is such that for any [, §, & and any invertible malriz
A, we have A {f, 57126, 512 A} = B(F)6TD14, where B is a scalar depending only on
[ whenever ATS"1A s o diagonal mairiz. Further, for any invertible matriz B we will

have

inf n-1/25 y—1/2 |
o pinl  A1{f, 57126, 5712B} < cB(f).

Proof: First note that in view of the affine invariance of the test statistic T ,(;“)

enough to prove the Theorem only for X = Is. Now, since given X(«), the transformed
observations Y( hs are conditionally independent, and they are identically distributed
with the elliptically symmetric density |det{X (« )My {X ()} X(e)y], the conditional
distribution of T( % does not depend on f and depends only on X(«). This actually
follows from the introductory discussion in Bickel (1965). The (¢,7)-th element of the
variance covariance matrix ¥ {X(a))} is rir;(2/7) sin™! pi; where {X(a)}~! = R(a)J (),
R(c) = diag(r1,...,rq) and each row of the matrix J(«) is of unit length. p;; is the inner
product between the i-th and j-th row of J(a).

When log f is twice differentiable almost everywhere in R? and satisfies Cramér type
regul'arity conditions, by Lemma 3.1 of Bickel (1965), the conditional limiting distribution
of n"I/zT( ) given X(a) under the sequence of contiguous alternatives Hg"} is normal with

AN T
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mean equal to {ﬁ(f)}w{}((a)}“lﬁ = A {f,6,X(a)} and ¥, as the variance covariance
matrix. Here B(f) = {2/1(0)}? is a scalar multiple that depends only on the univariate
marginal f; of the spherically symmetric density f. This immediately implies that the
conditional limiting distribution al“n'"l{Tf) }T[llll{}((a)}]“‘T,Eﬂ} under H‘T) is noncentral
x? with d d.f., and the noncentrality parameter is

BN [{I()) D () [{T ()} 14, (3.4)

where the (¢, 7)}-th element of the matrix D(a) is (2/7) sin™! p;;. Consequently the limiting
conditional power of the test under the sequence of contiguous alternatives will be a
monotonically increasing function of this noncentrality parameter. Note now that when the
rows of J(cx) are orthogonal we have {J{a)} " !D{(a)[{J(e)}?]~! = I4. Finally the minimax
ordering of the noncentrality parameter A, stated in the Theorem follows from Theorem
2.2.3 of Chapter 2 which implies that the largest eigen value of {J(cr)}“lD(cr)[{J(tr)}T]"l
is larger than or equal to 1. L]

The main implication of the above Theorem is that whatever may f be, it is possible to
stinulate the conditional finite sample null distribution of T,E“) after obtaining an appropri-
ate estimate of ¥ in small sample situations, and one can use normal approximation when
the sample size is large. It is interesting to note that in order to maximize the minimum
power of the test one needs to chodse X(a) in such a way that {X(a)}* £~ X () becomes
as close as possible to a diagonal matrix (especially for alternatives close to the null), We

now make the following observation, from the proof of the above Theorem.

Observation 2.1 : The Pitman efficiency of the test based on ( } with the above choice
of X(e) would be close to that of coordinatewise sign test when the coordinate variables
are uncorrelated (i.e. L is diagonal). Further, it will outperform coordinatewise sign test
in elliptically symmetric models in a minimax sense i.e. if the parameter @ is non-zero and
oriented in the worst pc}rssible direction giving rise to the minimum power of the tests, our
invariant test will have more power than the noninvariant sign test. Also, this version of
affine invariant sign test will be more (or less) efficient than the usual Hotelling's T2-test

if the tail of the density f is ‘heavy’ (or ‘hght ). .
Next we state a result on the behavior of affine invariant signed rank test statistic Rn

defined in (3.2).

Theorem 3.2.2 Asn — 00, under the null hypothesis Hy : 8 = 0, the conditional distri-
bution of n™Y/ QR&E) given the X;’s with i € a converges to a d-variate normal disiribulion
with zero mean and a variance covariance MmMaoirts U {f, n-Y X ()} that depends on f
and T-Y2X (a). When log f is twice differentiable almost everywhere (w.r.t. Lebesgue
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measure) on R and satisfies Cramér type reqularity condilions, the conditional limiling
distribution of n'_I/zREF] under the sequence of conliguous alternalives Hﬁin) : 0 = n~1/2§
such that § € R® and & 5 0 will be normal with the same variance covariance matriz Uq
and ¢ mean vector Ao{f, E“1f25,2“1/2X(a)} that depends on [, £7Y2§ and T-V?X ().
Also, the limiting conditional power of the test under such ¢ sequence of alternatives de-
pends mdnotonicaﬂy on the noncentrality paramefer

Ao f, B-Y25 ="YX ()}

= [Ao{f, 7128, = 12X ()} T [Wo {/, S 2K (0)})] "  Aa{f, 71128, 272X () }. (3.5)

Here the noncentrality parameter Ay 1s such that for any [, §, & and any invertible motriz
A, we have Aq{/f, 2”1/26, E‘"VQA} = y(f}§T 818, where 7y is a scalar depending only on
[, whenever ATE71A is a diagonal matriz. Further, normelily of the density [ implies
that for any inveriible matriz B, we have

; ~1/2 —1/2
J:JTlEr}—l;ng Aﬂ{fi 2 51 2 B} < CT(f)

Proof: Here also we can assume that = I; in view of the afline invariance of the test
statistic R\, The conditional limiting distribution of n~ /2R under the null hypothesis
and also under the sequence of contiguous alternatives follow from Bickel (1965). Let
F; be the marginal distribution of the i-th coordinate of the transformed observations
Y_,E“) ’s. Then the (z,7)-th element of the variance covariance matrix o is given by the
covariance between I5(Y};) and F;(Y};), where Yy, is the ¢-th coordinate of Yf,f}. And
the noncentrality parameter of the limiting distribution under alternative H E{‘) is glven
by §T[V{f, 1, X()}]71 4, where V{f, 2, X(c))} is as defined in (2.2). Consequently, the
minimax ordering of the noncentrality parameter under the assumption of normality of
the density f follows from arguments similar to those used in the proof of Theorem 3.2.1
and Theorem 2.2.3 of Chapter 2. u

From Theorem 3.2.2, it is clear that when the underlying distribution is normal, the
optimal choice for X () is such that {X(a)}? X («) is as close as possible to a diagonal
matrix in order to maximize the minimum power of the test. We now observe the following,

X
5; } can be

Observation 2,2 : The asymptotic Pitman efficiency of the test based on R
made close to that of coordinatewise Wilcoxon's signed rank test when ¥ is diagonal
by selecting X (o) as described above, and it will sutperform the coordinatewise signed
rank test in a minimax sense when ¥ is not a diagonal matrix and data follows normal

distribution.
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Whether the underlying distribution is normmal or not, it is easy to simulate the null
permutation distribution of Rn and based on that one can carry out the permutation test.
Furthermore, one can use normal approximation to the null distribution of Rn %) for large
values of n. Later, we will compare the finite sample performance of our affine invariant
test statistics T4™ and R( ) with some other standard one sample tests for multivariate

location.

3.2.2 An Affine Invariant Multivariate Angle Test

As in the preceding Subsection, let us assume that the X;’s are i.i.d observations gen-
erated from the elliptically symmetric density h(m.-— ) on RY. Suppose that we have
two competing hypotheses Hg : @ = 0 and H4 : 8 # 0 concerning the center of elliptic
symmetry of the distribution. Consider once again the transformed observations Yg- ) for
7€ axand 1 <7 < n, and define the test statistic UEF] = 2.ida ||Y§“')||“1Y§“}i We now
state a Theorem that summarizes the main features of this test statistic. |

Theorem 3.2.3 Under the null hypothesis Hyg : @ = 0, the conditional distribution of
U(“) given the X;’s with i € « does not depend on [, and it depends on L through
SU2X (a). Further, in large samples, the conditional null disiribuiion of n~ 1/QU(“")

approzimately normael with zero mean and a variance covariance matriz V{L~ L2X (o }}
that depends on 5~ Y2X (). When log f is twice differentiable almost everywhere (w.r.t.
Lebesgue measure) on RE and satisfies the Cramer type regularity conditions, the alter-
natives H,(f'} : 8 = n~V/2§ such that § € RY and 6 # 0 will form a contiguous se-

quence, and the conditional limiting distribution of n"lf,’?U,(f) under that sequence of
alternatives is normal with the same variance covariance matriz ¥ and a mean veclor
A{f, £-12§ 512X (a)} that depends on [, ™25 and T-V2X(a). Also, the limiting
conditional power of the lest under such a sequence of contiguous alternatives depends

monotonically m'the' noncenirality parameter
5{f,571/%6, 572X (o))
= [A{f, 27128, 272X ()} (9T /P X ()} AL, B 5, nTVEX (e)}
where d ts such that fc)r any f, 8, X and any two invertible matrices A and B, we have

5{f,£-125 £-12B} > §{f,5-1/25,5~1/2A} whenever BTSIB = Alq for some A > 0.

- Proof: First note that in view of the affine invariance of the test statistic U,(f), it

is enough to prove the entire Theorem only for % = Iz Now, since given X(«) the
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transformed observations Y}“} 's are conditionally independent and they are identically
distributed with the elliptically symmetric density | det{X(o:)}U[yT{X(a)}TX(CE)y], the
conditional distribution of U = §. (Y {™]I~1¥{* does not depend on / and depends
only on X(a). This actually follows from what we have already seen in the proofl of
Theorem 2.3.1. Next, the asymptotic normality of the conditional null distribution of
n~12U follows by a straight forward application of the central limit theorem, and the
variance covariance matrix W is equal to the matrix C defined in the proof of Theorem
2.3.1. |

Some standard analysis using Le Cam’s third lemma [see Hajek and Sidak (1967)]
and the spherical symmetry of the density f imply that under the sequence HT), the
conditional limiting distribution of n~1/277 given X(c) is normal with mean equal to
B(d, YH{X(a}}d = A{f,§,X{a)} and T{X(a)} as the variance covariance matrix. Here
B is a scalar multiple that depends only on the dimension d and the density f, and the
d x d matrix H{X(a)} is equal to COV[||{X(a)} Y || HX()}" Y, |Y||"'Y], where
Y is a d-dimensional random vector with density f(y”y). This immediately implies that
the conditional limiting distribution of n“l{Uﬁfi }T['«IJ’{E“'1/2}'{(:::\0}]‘IU,(,,':"'-Jl under HL”J IS
noncentral x* with d d.f. and noncentrality parameter §{f, 8, X ()}, which is defined in
the statement of the Theorem. Consequently the limiting conditional power of the test
under the sequence of contiguous alternatives will be a monotonically increasing function
of this 9. Finally the ordering of § stated in the Theorem will follow if we can show that

{H(A)}{P(A)} "' H(A) <nna {H(B)} {¥(B)} H(B),

for any two nonsingular matrices A and B such that B¥B = \I;. The proof of this
nonnegative definite ordering of matrices follows from straightforward arguments that are
very similar to those used in the second half of the proof of Theorem 2.3.1. a

Note that one of the main implications of this Theorem is that whatever may [ be, it is
possible to simulate the conditional finite sample null distribution of U™ after obtaining
an appropriate estimate of ¥ in small sample situations, and one can use the normal ap-
proximation when the sample size is lafge, It is also noteworthy that in order to maximize
the power of the test that rejects Hp for large values of {UE;“)}T[\I‘{E“I/QX(Q)}]'*Uﬁf),
one needs to choose X (a) in such a way that {X{a)}* T~ !X () becomes as close as possible
to a diagonal matrix with all diagonal entries equal {especially for alternatives close to the
null). Tt is transparent from the proof of Theorem 3.2,3 that by choosing [X ()] 71X (a)
very close to a matrix of the form Aly, asymptnt.i_c Pitman efficiency of the test can be
made close to that of the angle test in spherically symmetric model (i.e. when X = ¢%1,),
and it will be more efficient than angle test in elliptically symmetric models. Also, the
test will be more (or less) efficient than the standard test of location based on Hotelling's
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T? statistic (which is a test based on the sample mean vector) if the tail of the density
[ is ‘heavy’ (or ‘light’). In the Section 3.4, we will demonstrate how the simulated con-
ditional null distribution of U,(f) can be used to determine the critical region of the test
for a pre-specified level of significance and also to estimate the P-value corresponding to
a given value of {UY T [@{2-12X ()}]- UL computed from the observed data. Also,
there we will compare the finite sample performance of our test with some other standard

one sample tests for multivariate location.

3.3 Two Sample Location Problem

Let X1,...,X,, and Y,..., Y, be two independent samples from two d-dimensional
distributions For the purpose of comparing these two samples, we will develop an afline
invariant multivariate analog of Wilcoxon’s two-sample rank-sum test based on transfor-
mation and retransformation approach. Let us define X ;41 =.Y1, ooy Xme4n =Y and
the transformation matrix X(c) whose columns are X; — X;s,..., X, — Xy, where
@ = {§1, 79,810,013} € Span With 1 < 4 < m, m+1< jo <m-+nand i = j
or jo depending on whether 45 € {1,...,m} or it € {m + 1,...,m -+ n} respectively
for all 1 < k < d. As before, define transformed observations Zg-“) = {X(a)} "' X,
l<j<m+mn, j¢& a Onecan now compute coordinatewise Wilcoxon's rank-sum

statistic based on Zg-ﬂ) 's, which is equivalent to the statistic

N 1 UL ! ' )
Witk = e 5 3 sion(z - 202, 39
ido m-djifa

The following result describes the main features of the test statistic W,gff% Let X;'s be
i.i.d. with density h(x —8), Y;’s be i.i.d, with density h{(x — @ — &), where L is as before,
and we want to test Hy : d = 0 against- H4 : § # 0.

Theorem 3.3.1 Under the null hypothesis Hyg : & = 0, the conditional disirtbution of
(m + n)-WW,&EA given the X;’s with i € o converges to a normal distribuiion with
zero mean and variance covariance matriz Va{f, 5~1/2X (a), A} as m,n — oo such that
m/(m+n) — A> 0. When log f is twice differentiable almost everywhere (w.r.t. Lebesgue
measure on RY) and satisfies Cramér type reqularity conditions, the conditional limiting
distribution of (m+n)Y2Wi), under the sequence of contiguous alternatives H H”‘"] L § =
(m +n)~12u such that pu € R? and p # O is normal with the same variance covariance
matriz Uy and a mean vector As{f, S~12p, 52X (), A} that depends on [, =12y

and 512X (@), Also, the limiting conditional power of the test under such a sequence of
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alternalives increases monotonically with the noncentralily parameter
As{f, 2712, 12X (), A)

= [As{f, 520, 5 V2X (), AWT (T3 { £, T /2K (@), AY) " As{ S, 2720, BTEX (), AL

| (3.7)
Further, for any u, ¥ and any invertible matriz A such that AT 1A is a diagonal
matriz, we have Ag{f, S~ 12pu, 5=Y2B, A} = n(f, A\) T =1y, where the scalar ) depends

only on [ and X, and for normal § and any invertible mairiz B, we have

it Ag{f, TV, BB, ) < en(/, ),
Jip ft=c

Proof: In view of the affine invariance of the test statistic W,ﬁnﬂ, we may assume that

Y =1I4 Under Hy, X1...., Xmand Yy,..., Y, are assumed to have the same distribution
with density function h{x — ). We can generalize the result of asymptotic normality of
the univariate two sample rank-sum test statistic to the d-dimensional rank statistic W,(,ffg;
through U-statistics type representations [for a detailed proof, see Hodges and Lehmann
(1963), Puri and Sen (1971)]. Let F; be the marginal distribution of the ¢-th coordinate
of the transformed observations Zﬁ-ﬂ')’s and m/(m +n) — A as m,n — oo, Then the
(¢, 7)-th element of the asymptotic variance covariance matrix of (m+ n)~1/2 Wéﬁ% is given
by A1 - A)Cov{F;(Zy;), F;(Zy;)}, where Zg; is the i-th coordinate of Zﬁf).

When log f is twice differentiable almost everywhere in R and satisfies Cramér type
regularity conditions, the sequence of alternatives HY™™ : § = (m + n)~/?p such that
;€ &Y and i # 0 will form a contiguous sequence. Then we can apply results of Hajek
and Sidak (1967) for univariate two sample linear rank statistic to have the asymptatic
normality of (m +n)~Y2WS%), given X(c) under the sequence of contiguous alternatives
H,(,f"“) as m,n — oo. The asymptotic mean of the non-null distribution is given by
AL = M{[ fi(z)dz}J (o) where the matrix J{a) and the function f, are as defined
earlier. Consequently, the noncentrality parameter of the limiting distribution under the
alternative H{™™ is given by A(1 — N pT[V{/, Ly, X(a)}]~ ¢ where V{f,Z, X ()} is as
defined in (2.8). Again as before the minimax ordering of the noncentrality parameter
under the assumption of normality of the density f follows from the argﬁments used in

the proofs of Theorems 3.2.1 and 3.2.2 and Theorem 2.2.3 of Chapter 2.

Once again for normal f, if one chooses the transformation matrix X (o) in such a
way that {X(a)}TL~!X(e) is as close as possible to a diagonal matrix, it maximizes the
minimum power of the test. We now note the following.
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]
Observation 2.3 : With proper choice of X (), the Pitman efficiency of the test based on
,E?,?l can be made close to that of coordinatewise two sample rank-sum test when 2 is di-
agonal. Also, if the data follows norimal distribution, it will outperform the coordinatewise

two sample rank-sum test in a minimax sense when ¥ is not.diagonal.

- We close this section by pointing out that using a similar approach one may define an
afline invariant version of multivariate median test in the two sample problem. Define

Vi) = 3 Sign(2(") - ¢), (3.8)

where c,b is the vector of coordinatewise medians based on the transformed observations
of the combined sample ZE“), i = 1,....,m+mn, i ¢ . It is possible to establish the
asymptotic normality of (m + n)“”ﬂVnﬂ, following the results in Puri and Sen (1971).
Here also we may adopt the strategy for selecting the transformation matrix X(a) in such
a way that {X(a)}T &~1X(a) becomes as close as possible to a diagonal matrix. In the
next section, we will explain in detail how to obtain FP-values for the test and report
simulation results comparing our test with other standard multivariate two sample tests

for different multivariate distributions.

3.4 Simulation Results and Data Analysis

From the results and discussions in the previous section, it is clear that we need to choose
the transformation matrix X(e) in such a way that {X(c)}? Z~'X(a) becomes as close as
possible to a diagonal matrix. Since ¥ will be unknown in practice, we have to estimate
that from the data, and we will need a consistent estimate that will be invariant under
location shift and equivariant under linear transformations of the data (say L). If we can
assume that the underlying distribution has finite second order moments, we can use the
usual variance covariance matrix for this purpose. To be in conformity with the selection
procedure described in Chapter 2, we will try to select X(«) in such a way that the
eigenvalues of the positive definite matrix {X(a)}¥ £~'X (a) become as equal as possible.
Rathér than computing the eigenvalues of the matrix explicitly, we will minimize the ratio
between the arithmetic mean and the geometric mean of the eigenvalues, which are given
by the trace and the determinant of the matrix respectively. We have observed that instead
of minimizing the ratio over all possible subsets a with size d + 1 of {1,...,n}, one can
substantially reduce the amount of computation By stopping the search for optimal subset
« as soon as the ratio becomes sufficiently close to one. Of course there are other different

ways to achieve this goal of making {X(a)}T 21X (a) as close as possible to a diagonal
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matrix. We have adopted a technique thal is computationally convenient and has been

observed to work fairly well in our numerical investigations.

3.4.1 Simulated Powers of Different One Sample Tests

We will present the results of a simulation study that was carried out to compare the
finite sample powers of our affine invariant rank test, sign test and angle test, which
are based on the statistics REF ), :(a,ﬂ) and Ugfﬂ respectively in the one sample problem
Table 3.1: Finite sample power of affine invariant rank test

and its competitors in the one sample problem for n = 30,
d = 2 and level of significance = 5%.

Distributions | Test { p (8Ts-1p)1/?
00 03 06 09 12 L5
Laplace R T _ 1 0.049 0134 0405 0729 0.918 0.982
W0 [ 0.081 0134 0.384 0.677 0.891 0,970
Ul [ - 10050 0149 0421 0.740 0.923 0.982
T | - (0040 0.121 0.367 0.692 0902 0.982
S, [000]0.048 0.133 0.383 0.677 0.889 0.972
0.75 | 0.047 0.134 0.413 0.708 0.905 0.971
0.85 | 0.046 0.133 0.419 0.712 0.892 0.946
0.951{ 0.035 0.123 0.392 0.647 0.796 0.818
Normal R - |0.048 0266 0.796 0986 00990 0.998
@I T~ To0.053 0103 0.615 0923 0.994 0.999
Ul 0049 0207 0679 0954 0998 £.000
7% | . | 0.049 0267 0.805 0989 1.000 1.000
S, | 0.00] 0.049 0.184 0.609 0.925 0.994 1.000
0.75 | 0,046 0.196 0.645 0.938 0984 0.969
0.85 | 0.049 0.194 0.648 0.927 0.947 0.809
0.95 | 0,033 0.175 0.597 0.831 0.782 0.667
twith3df | R¥ | - |0.051 0191 0580 0876 0.977 0.983
e - 10050 0.172 0523 0.848 0.969 0.995
v [ - [o0.051 0.178 0553 0.883 0.988 0.999
i - | 0.043 0.157 0.489 0.799 0.938 0.981
S. | 000]0.052 0174 0.528 0.844 0970 0.996
0.75 | 0.048 0.184 0.559 0.868 0.973 0.980
0.85 | 0.045 0.184 0.564 0.865 0.943 0,931
0.95] 0.035 0.169 0.524 0778 0.819 0.749

with the powers of the

well-known Hotelling’s 7' test and the noninvariant sign test,
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which 1s based on the coordinatewise sign test statistic S,. We have used sample size
n = 40, and for level of significance 5%, we estimated the powers in each case from
5,000 Monte Carlo replications for d = 2 and from 3,000 Monte Carlo replications for
d = 3. We generated data from three different distributions, namely multivariate normal,
multivariate Laplace (i.e. when f(z”2) = kexp{—(zT=)!/?}) and multivariate ¢ with 3
degrees of freedom and for £ we have used the matrix with each diagonal entry equal to
1 and each off diagonal entry equal to p such that p € [0,1). The results are presented
in Tables 3.1 and 3.2. For Hotelling's 72 test the critical value at §% level of significance

Table 3.2: Finite sample power of affine invariant rank test

and its competitors in the one sample problem for n = 30,
d = 3 and level of significance = 5%.

Distributions | Test [ (8721 4)!/?
0.0 03 06 09 12 15
Laplace Re | - | 0052 0103 0272 0530 0.775 0.922
T |- ]0.051 0103 0.247 0471 0.694 0.857
ul’ | - 10051 0104 0.258 0497 0.757 0.916
T | - 0042 0083 0.237 0493 0.740 0.911
Sn | 0.00 | 0.046 0.080 0.204 0415 0.662 0.851
0.75 | 0.038 0.082 0.228 0465 0.701 0.878
0.85 ] 0.035 0.073 0.223 0.463 0.601 0.847
095 | 0.021 0.052 0.178 0.372 0.545 0.629
Normal RO _ |o0.0s51 0243 0.741 0976 0.987 0.992
el 1. ] 0056 0197 0.561 0.893 0.991 0.998
Ul - [ 0.051 074 0.604 0.928 0.994 1.000
72 | - [0050 0245 0.743 0.981 1.000 1,000
S. |0.00/[0041 0156 0.542 0.884 0.988 0.999
0.75 | 0.034 0.182 0.576 0.910 0.968 0.918
0.85 | 0.030 0.181 0.572 0.878 0.878 0.743
| 0.95 | 0.017 0137 0.481 0.664 0.554 0.358
twith3df | Ry | - ]0050 0215 0.667 0923 0.981 0.994
T - [ 0.054 0.185 0.605 0.803 0.984 0.996
UH‘”L - o051 0158 0493 0826 0965 0.995
72 | - 10041 0.160 0578 0.878 0969 0.991
S, | 000] 0047 0171 0.575 0901 0.987 0.997
0.75 | 0.042 0.186 0.617 0.915 0.956 0.903
0.85 { 0.037 0.185 0.614 0870 0.852 0.723
0.95 ] 0.025 0.150 0.497 0.604 0.509 0.362
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was determined from the F' distribution table, and for the noninvariant coordinatewise
sign test S, and invariant sign test T,E“], we used x? approximations (with 2 d.f. and 3
d.f. for d = 2 and 3 respectively) for the distributions of the test statistics. In the case of
REF), we chose to simulate the permutation distribution of the test statistic as the use of
x? approximation to RL“) was observed to be not adequate for such a small sample size.
The null distribution of the test statistic Ugf) is sttmulated using the method dicussed later
in Section 3.4.3. It will be appropriate to note that in the case of invariant sign test, it
is possible to simulate the conditional null distribution because of the ‘distribution (ree’
nature of the test. However, x? approximation was observed to lead Lo very good resulls.
The matrix ¥ was always estimated using the usual sample variance covariance matrix.
Since Rﬁf),} ,E“), U,Ef) and Hotelling’s T2 are all invariant under affine {ransformations
of the data, their powers do not depend on different values of p and depend only on the
noncentrality parameler (QTEAB)V?‘ It is quite clear from the Tables 3.1 and 3.2 that
our affine invariant modifications of sign and rank tests have a superior performance over

noninvariant procedures for large values of p.

3.4.2 P-value Computation for Sign and Rank Tests

Let us now consider a real data set and try to mmvestigate the performance of our afline

1 v . . o
invariant versions of sign and rank tests T,(,, )

metabolism in epileptic patients Sperling ct. al. (1989) measured the meiabolic rates

and R applied to it. Tn a study of cercbral

of glucose at 10 cortical locations and 6 subcortical locations in the brain by positron
emission tomography (PET). Cortical locations were Frontal, Sensorimolor, Temporal,
Parietal and Occipital locations of right and lefi hemispheres of the brain. Similarly,
subcortical locations were Caudale nucleus, Lenticular nucleus and Thalamas regions of
right and left hemispheres. The metabolic rates are measured in mg/100/g/min. We
have considered 18 patients forming a normal control group Lo see whether there is any
difference in metabolic rates of right and left hemispheres of the brain, After fixing the
transformation matrix X(a), it is very easy Lo simulate the null permutation distribution
of the invariant rank test statistic, and the P-value of the mvariant rank test based on
Rg“) was obtained to be 0.0033 in the case of cortical regions, P-value of invariant sign
test based on ¥? (with & d.f.) approximation came out to be 0.046 and those of Hotelling's
T? and noninvariant sign tests were 0,006 and 0.169 respectively, Tn the case of subcortical
regions, the P-value of invariant rank tesl'.lturne(l out to be 0.0264 and that of invariant

sign test was 0.014, For the same, classical Hotelling’s 7% tost and noninvariant sign
test produced P-values that are 0.041 and 0.075 respectively. In bolh the situations, we
see that all the invariani tests conclude that there is a significant difference in motabolie
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rates of right and left hemispheres of the brain at 5% level of significance, whereas the
noninvariant sign test concludes the difference to be insignificant. This example amply
highlights the necessity and importance of using invariant procedures over noninvariant
procedures,

Table 3.3: Metabolic rates of glucose at cortical
locations in the brain by positron emission tomography

Id  Frontal  Sensorimotor Temporal  Parietal Occipital

R L R L R L R L R L
1 465 4.83 4.88 527 4.07 4.13 448 4.80 4.36 4.78
2 3.60 3.59 3.28 350 3.09 325 3.08 3.21 3.00 2.94
3 3.00 3.11 277 287 240 248 242 242 242 2.56
4 340 348 341 337 314 3.12 3.10 3.08 3.36 3.39
5 340 343 329 337 354 347 311 3.04 349 3.58
6 4.48 4.51 4.84 479 4.44 433 4.77 4.42 453 4.53
7 4.04 3.85 3.67 361 370 3.19 3.04 2.77 3.47 3.28
8§ 4.05 3.93 411 414 3.71 3.67 3.56 3.50 3.88 3.85
9 3.93 4.08 396 3.917 3.65 3.81 3.25 3.05 341 3.25
10 4.58 4.83 4.59 447 3.96 428 4.30 4.14 4.50 4.42
11 443 452 436 432 3.62 344 3.84 3.60 348 3.40
12 3.06 3.13 296 306 294 289 276 2.72 3.15 3.20
13 4.51 4.51 420 419 4.47 441 3.96 379 4.51 4.42
14 438 4.65 441 4.64 400 4.06 3.62 4.09 457 4.7
15 4.66 4.53 424 449 471 436 438 460 4.88 5.12
16 4.76 4.5 4.67 456 4.33 4.32 3.99 3.87 430 4.17
17 538 549 518 534 438 436 4.71 473 456 4.66
18 3.67 3.69 3.8 375 4.09 390 320 3.39 3.68 3.68

3.4.3 P-value Computation for Angle Test

At this point we will turn our attention to the affine invariant test introduced and discussed
in Section 3.2. Tt is clear from the proof of Theorem 3.2.3 that once the transformation
matrix X{e) is fixed, the conditional null distribution of Ul s the same as that of
):;’:id"l) IY;]I~ 1Y, where the Y ,’s are i.i.d observations generated from the elliptically
symmetric density det{Y ()}f[yT{Y ()} Y(a)y] and Y(a) = 2-1/2X(a). Further,
elliptic symmetry implies that the distribution of |[Y;{I~'Y; is uniform on the ellipse,
which is completely determined by the matrix {Y(&)}TY(Q) = {X{(a)}TE-'X(a) and
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Table 3.4: Metabolic rates of glucose at subcortical

tocations in the brain by positron emission tomography

Id Caudate nucleus Lenticular nucleus  Thalamas
"R L R L R L
1 449 473 4.67 4,99 4,58 4.40
2 3.19 3.40 3.00 3.24 2.86 2.8]
3 3.02 2.97 3.07 3.12 2.81 2.78
4 3.03 2.83 3.76 4.09 3.41 3.55
5 3.05 3.23 3.97 4,22 3.61 3.54
6 4.55 4.57 5.16 5.34 5.02 4,89
7 3.62 3.48 3.84 3.60 3.80  3.67
8 J3.84 4.13 4.18 4.42 3.86 4,15
9 4.08 4.11 4.76 4.56 4.10 4.08
10 441 4.55 4.74 4.97 4,64 4.80
11 4,02 3.96 3.83 4.03 3.81 371
12 2.73 2.85 3.40 3.02 2,97 2.87
13 4.81 4,91 4.97 5.03 4,69 4.88
14 3.06 4.37 4.05 4.07 4,10 4.15
15 4.44 5.36 6.24 6.20 541 5.08
16 4.64 4.64 4,27 4,22 3.91 3.96
17  3.85 4.03 5.106 5.32 4,49 4.64
18 3.18 §,15 4.14 4,36 3.88 3.75

does not depend on f. Hence one can simulate the conditional null distribution of U

od

()
n

by taking f to be any specific spherically symmeiric density (e.g. the normal density) on
kY. OF course, actual © will be unknown in practice, and one can use a consistent affine
equivariant estimate 5} while simulating the null distribution. In the following example,
we demonstrate simulation based estimation of the P-value when our test is applied to a

real data set.

Example 3.1 : Merchant, Halprin, Hudéﬂn, Kilburn, McKemie,.'Hurt and Berma-
zohn (1975) investig;ated changes in pulmonary functions of twelve workers after they were
expased to cotton dust for six hours, Table 3.5 gives the changes in forced vital capacity
(FVC), forced expiratory volume (FEV3) and closing capacity (CC) for these twelve work-
ers. When Hotelling's T? test is applied to this data, the P-value computed using the F
distribution turns out to be 0.061. On the other hand the coordinatewise sign test yields a
P-value of 0.300 based on a % approximation with 3 d.f. We estimated the P-value of our
test based on a simulation of the conditional null distribution of U;(f) using 10,000 Monte
Carlo replications, and it turns out to be 0.0721, For simulating the null distribution, we
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Table 3.5: Changes in pulmonary functions of twelve workers

exposed to cotton dust for six hours.

Subject | FVC | FEV; | CC
1 _0.11 | —0.12 | —4.3
2 0.02] 008 44
3 | —002] 003 7.5
4 0.07] 0.19 { —0.3
5 | —0.16{ -0.36 | —5.8
6 | —042 | —-049 | 14.5
7 | -0.32 | -0.48 | —1.9
8 | -0.35|-030]| 17.3
9 | ~0.10| -0.04 | 2.5
10 0.01 | —0.02 | 5.6
11 | —-0.01] =017 2.2
12 | —-0.26 | —-0.30 | 5.5

have chosen f to be the multivariate spherically symmetric normal density and estimated
% by the usual variance covariance matrix. Figures in Table 3.5 indicate presence of cor-
relation among the variables, and the scale of the third variable is very different from that
of each of the other two. The close agreement between the P-values obtained from two
afline invariant tests is noteworthy, and the high P-value produced by the non-invariant
coordinatewise sign test is an indication of its failure to detect the deviation from the null

hypothesis.

3.4.4 Simulated Powers of Different Two Sample Tests

For two sample problems, we conducted a simulation study similar to that in Section 3.4.1
to judge the performance of our affine invariant two sample rank test based on the statistic
ngﬂ Here we compared the power of invariant rank test with that of invariant two sample
median test based on the test statistic Vn(f,l, classical Hotelling’s 72 test for two sample
location problem and noninvariant median test based on coordinatewise univariate two
sample median test statistics Sy, ,. Again the powers of the tests were computed based
on 5000 Monte Carlo replications in the case d = 2 and 3000 Monte Carlo replications
when d = 3, and in both the dimensions the sizes of both the samples were taken to be
30 (i.e. m = n = 30). The critical value corresponding to the nominal significance level

of 5% for Hotelling’s T2 test is obtained from F distribution, and that of invariant and
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noumvariant median tests arc obtained from Y* approximations (with d d.1.). The critical

Table 3.6: Finite sample power of affine invariant rank test
and its competitors in the two samnple problem for n = 30,
d = 2 and level of significance = 5%,

Distributions | Test Vi (;?E~t 1}/ ”
_ ) 00 03 06 09 12 L5
Laplace Wien | - ] 0052 0.082 0226 0444 0.602 0864
Vaen | - | 0048 0.085 0217 0.418 0651 0837
T* | - 10047 0.079 0204 0423 0652 0844
Smn | 0.00 | 0.041 0.082 0.199 0.410 0.638 0.819
0.75 ) 0.042 0.080 0206 0.389 0.633 0827
0.85 | 0.040 0.075 0,181 0.383 0.630 0.829
[ 0950039 0.072 0177 0.384 0.636 0821
Norinal Wien | - ] 0049 0.141 0467 0832 0973 0999
Vien | - | 0052 0.109 0333 0.664 0.894 0.984
7 [ - T0050 0.156 0518 0874 0.984 1.000
Smn | 0.00] 0.046 0.109 0292 0.661 0.878 0.083
0.75 [ 0043 0.106 0294 0.628 0.880 0.982
0.85 | 0.040 0.080 0286 0.634 0.892 0.982
| 0.95] 0030 0.091 0286 0.620 0.884 0.968
twith 3df. | Wil | - 0040 0111 0317 0606 0.852 0.956
Vaon | - | 0046 0095 0281 0561 0.804 0.942
T - | 0046 0,095 0267 0508 0742 0.889
Smn | 0.00] 0.050 0.089 0276 0503 0.763 0.930
0.75 | 0.041 0.081 0244 0527 0.788 0.940
0.85 | 0043 0.087 0243 0520 0.785 0.944
0.95 | 0.041 0.082 0242 0524 0.782 0.931

value for invariant rank statistic is obtained by simulating the permutation distribution of
the statistic Wéﬁ%. The results are presented in Tables 3.6 and 3.7 for dimensions @ = 2
and d = 3 respectively for the same three multivariate distributions used earlier, We
have selected the optimal transformation matrix X(«) in the same manner as discussed
earlier but this time we have restricted our search in the first sample only (i.e. we have
considered only 1 < 4y < mfor all1 € k < d) in order to reduce the size of the search
problem substantially, From the Tables 3.6 and 3.7, it is clear that invariant two sample
rank test has a superior performance over Hotelling's 7 for non-normal distributions and

it is also better than noninvariant procedures for large values of p.
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lable 3.7: Finite sample power of affine invariant rank test

and its competitors in the two sample problem for n = 30,
@ =3 and level of significance = 5%,

Distributions | ‘Test 7 (T Tt/
00 03 06 09 L2 L5
Laplace Wien | - [ 0052 0074 0145 0996 0508 0.665
Vien | - | 0052 0.082 0.156 0.965 0456 0.635 |
T 1 - 0046 0072 0141 0276 0473 0664 |

Smn | 000 | 0.052 0072 0.145 0.217 0444 0.632
0.76 | 0.063 0.071 0.112 0.221 0.400 0.508
0.85 | 0.054 0.078 0.109 0.226 0408 0.599
095 | 0.043 0.066 0.108 0.218 0.402 0.588

Normal Wieh | - [ 0052 0.129 0391 0.760 0955 0.998
Ve | - | 0054 0.120 0314 0.633 0.870 0.977
T | - [005L 0.140 0.447 0.822 0.980 0.999

Sma | 0.00 [ 0049 0.105 0.313 0.624 0.885 0.959
0.76 [ 0.045 0.113 0273 0.595 0.854 0.972
(.86 ) 0.046 0.113 0,284 0.593 0.856 0.977
0.95 | 0.037 0.109 0276 0.583 0.834 0.936

ey . ppp——

twith 3d.b | W | - [0051 0098 0268 0514 0.772 0.052
L - {0054 0.108 0954 0.504 0.750 0.904
72 | - [0037 0.081 09228 0.443 0.684 0.853

Smu | 000 | 0.047 0.002 0211 0453 0.718 0.891
0.75 | 0.047 0.072 0212 0486 0.759 0.923
0.85 | 0047 0.073 0210 0489 0.764 0.930
0.95 | 0,042 0.071 0211 0430 0749 0.893

3.4.5 P-value Computation in the Two Sample Case

It order to investigate the performance of the test statistic W,&ﬂ; when appiied to real data,
we analyzed a data on the effect of a certain drug on three biochemical compounds found
in the brain, which is reported by Morrison (1990, pp. 184-185). 24 mice of the same
strain were randomly divided into two equal groups with the second receiving periodic
administrations of the drug. Both samples received the same care and diet, and two of
the control group mice died of natural causes during the experiment, Assays of the brains
of the sacrificed mice revealed the amounts of the compounds in micrograms per gram of
brain tisste. We estimated the P-value of the invariant rank statistic by simulating the
null permutation distribution of the statistic with 2000 replica_tians, and it came out fo



Multivariate Tests 57

Table 3.8: Bffect of a certain drug on three biochemical

__compound found in the brain of mice

Coutrol Drug Administered

1 2 3 1 2 3
1.21  0.61 070 | 1.40 Q.50 Q.71
0.92 043 071117 039 0.69
0.80 035 071 1.23 0.44 0.70
0.85 (.48 0.68 | 1.19 0.37 0.72
0.9 042 0.71(1.38 042 0.71
.16 0.82 0.2 1.17 045 0.70
1.10  0.60 075 | 1.31 041 0.70
1.02 (.53 0.70( 1.30 047 0.67
118 045 0.70 | 122 029 0.68
1.09  0.40 0.69 ; 1.00 030 0.70
.12 0.27  0.72

1.09 035 0.73

be 0.0016. P-value of the Hotelling's 7" based on I? distribution was 0.00003, and that
of invariant median test and noninvariant median test based on y? approximation were
0.01376 and 0.02894 respectively. Here also there is a noticeable difference in the P-values

of the invariant and noninvariant procedures.

3.5 Concluding Remarks

Remark 1: Chaudhuri (1996) and Moétténen and Oja (1995) gave detailed reviews of
various notions of multivariate quantiles and ranks. An interesting alternative to our
present approach is to use the rank vectors that are associated with spatial median. Affine
invariance can still be achieved through data driven transformation as has been done in this
Chapter. Such geometric concepts of ranks are very different in nature from coordinatewise
ranks considered here. We will discuss in detail these concepts of multivariate ranks in

Chapter §.

Remark 2: Note that once the matrix X(«} is formed, the cqmputation of the test -
statistics T,(F), Rﬁ“l and U&”) are straightforward. But the selection of optimal o may
require a search over (dil) possible subsets @, and this number grows very fast with »
and d. One can reduce the amount of computation involved for searching the optimal
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a by stopping wheunever the ratio of the arithmetic and geometric means of the eigen
values of the matrix {X(a)}"Z7'X(a) is sufficiently close to one. We have observed
that this approximation makes the algorithm very fast without making any serious change
in the sampling variation of the test statistic or any significant loss of efficiency of the
resulting test. In all the real examples that we have considered in Section 3.4, it performed
satisfactorily.

Remark 3: Tt is clear from the definitions that once the transformation matrix X (a) 1s
fixed, the conditional null distribution of TTE”] is the same as that of E}‘;‘f"’l Sign(Y ;) and
the conditional null distribution of US® is the same as that of Y| 7Y, where
the Y's are i.i.d, observations with common density [det{Y (e)}|/{y" {¥Y(e)}' Y(c}y]
and Y(a) = L 1/2X (o), Turther, elliptic syminetry implies that the distributions of these
statistics do not depend on f. Hence one can simulate the conditional null distributions
of T and U by taking [ to be any specific spherically symmetric density (e.g. the
normal density) on RY, Of course, actual & will be unknown in practice, and one can use

a consistent afline equivariant estimate £ while simulating the null distribution,

Remark 4: It will be appropriate to note here that in the univariate case, the null distri-
bution of Wilcoxon's signed rank Lest in the one sample problem and that of rank-sum test
in the two sample problem do not depend on the unknown distribution function I? of the
observations. But this does not hold in the multivariate case. To overcome this difficulty,
we consider the basic sign invariance principle which leads to “conditionally distribution-
free tests”. Under the assumption of elliptic symmetry, the distributions of X, and - X
are same, and the joint distribution of Xj, Xg,..., Xy, is same as that of Vi, YV3,...,Yq,
where Y; is +X; or =X, 1 €1 <n, Given the observations X, X9,...,X 5, weconsider
the permutation distribution over 2" possible points. Puri and Sen (1971) showed that
the permutation tests have the same size as the unconditional test. We have simulated the
permutation distributions of our invariant signed rank and rank-sum test statistics and

based on them we have computed the powers of the tests.



‘Chapter 4

Multivariate Linear Models

4.1 Least Absolute Deviations and Rank Regression

Consider a linear regression set-up with a k-dimensional regressor z and a univariate
response y satisfying the linear model y = 67 & + €, where our objective is to estimate and
make inference about the k-dimensional parameter vector 8 based on a set of independent,
observations (y1,®1), (y2,@2).. ., (Yn.xy). In this set-up, the method of least absolute
deviations (LAD) and the method of least squares (LS) have competed with each other
for more than two hundred years, LAD estimation technique is known to have greater
antiquity than least squares method (see e.g. Bloomfield and Steiger 1983). Legendre
published his “Principle of Least Squares” in 1808, But nearly halfl a century earlier,
sometime between 1755 and 1757, R.J. Boscovitch discussed an interesting criterion for
fitting a line to n > 2 points in the plane (see Eisenhart 1961), which is nothing but
choosing a line by minimizing the sum of absolute deviations between the observed and
htted y-values among all lines constrained to pass through the mean of the data points.
In 1760, he outlined a simple geometric algorithm to find a solution to this constrained
minimization problem, which was algebraically formalized by Laplace in 1789. For a
long period, no good algorithm for computing LAD estimates in a general set-up was
available even when & = 2. LS estimates certainly did not have this drawback as they can
be expressed as simple and closed form solutions to certain systems of linear equations,
and this has greatly contributed towards overwhelming popularity of LS over LAD among
practitioners from the very inception of LS. Another serious difficulty with LAD estimation
was that the distributional properties of the resulting estimates were not easy to work
out analytically, whereas those of LS estimates were well known and easy to use {or the
purpose of making statistical inference. Bassett and Koenker (1978) investigated LAD
estimates in Jinear models and proved several interesting results related to it. Since then

59
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a vast amount of literature has evolved extending the notion of LAD estimation in various
directions in the linear regression set-up with a univariate response. Koenker and Bassett
(1978) proposed and investigated quantile regression in linear models. Ruppert and Carroll
(1980) considered two methods of defining regression analogs of the trimmed mean. The
first one was originally suggested by Koenker and Bassett (1978) and uses their concept
of regression quantiles. Tts asymptotic behavior is completely analogous to that of a
trimmed mean. The second method uses residuals from a preliminary estimator, and its
asymptotic behaviorlheavily depends on that preliminary estimate. Welsh (1987) proposed
another analog of trimmed mean using von Mises functional approach, and he established
asymptotic and robustness properties of the proposed estimate, which are equivalent to
those of the estimate proposed by Koenker and Bassett (1978). It is well known now
that the LAD regression problem can be formulated as a linear programming problem,
and as a result, several good algorithms are available for computing the LAD estimates
(Armstrong and Kung 1978, Barrodale and Roberts 1973, Bloomfield and Steiger 1984,
Koenker and d'Orey 1987, Narula and Wellington 1977, Wesolowsky 1981). For estimating
the parameters of a structural equation in a simultaneous equation model, Amemiya (1982)
extended LAD estimators to two-stage least absolute deviation estimators and established
the strong consistency and asymptotic normality of the estimates. Subsequently McKean
and Schrader (1987), Schrader and McKean (1987), Bai, Rao and Yin (1990} showed
that the statistical inference procedures based on LAD estimates are quite similar to the
classical analysis of variance based on least squares. Here the reduction in sum of squares
is replaced by the reduction in sum of absolute errors, which leads to summarization of
the analysis in the form of ‘LAD analysis of variance table’. Strong consistency of LAD
estimates and their Bahadur-type representations have been established by Babu (1989)
and also discussed as a special case to a very general result obtained by Neimiro (1992).
In linear models with univariate response, rank regression techniques have been pro-
posed and extensively studied as alternatives to traditional least squares regression by sev-
eral statisticians [see e.g. Lehmann (1963a, 1963b, 1964), Adichi (1967, 1978), Koul (1969,
1970), Puri and Sen (1969, 1973), Jureckova (1971, 1973), Jaeckel (1972), Hettmansperger
and McKean (1977, 1978, 1983)]. These authors explored various extensions of rank based
methods, which were originally developed for nonparametric inference in one and two
sample univariate location problems, into véry general linear models including standard
"ANOVA models. A primary motivation behind considering rank regression is the lack
of robustness in least squares regression, which is known to have very poor performance
when the random error e in the linear model happens to follow non-Gaussian distributions
especially those with heavy tails. Higher statistical efficiency of rank based nonparametric
procedures compared to the inference based on sample means in one and two sample lo-
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cation problems involving univariate non-Gaussian data is known to extend for parameter
estimates and related inference based on rank regression in linear models with univariate
response. An excellent review of various rank based statistical methods for linear models
with real valued response can be found in Draper (1988) and in fascinating comments
and discussion that Draper’s expository article was successful in generating from leading
experts in robust regression in linear models,

But so far all the work documented in the literature is restricted {o essentially uni-
variale response . Almost nothing exists in the literature beyond least squares methods
when we have a d-dimensional (d > 1) response vector y, and the problem is to estimate
the & x d diensional matrix of parameters 8 in the multiresponse linear regression model
Y = BTz +e. To motivate the need for considering such a multiresponse linear regression,

let us consider the following example.

Table 4.1; Systolic and diastolic blood pressure distribution
with age of 40 Marwari females residing in Calcutta

"Serial  Age Systolic  Diastolic | Serial Age Systolic Diastolic
10, pressure  pressure | no, pressure  pressure
] 52 130 80 21 26 130 84
2 21 120 88 22 76 160 90
3 60 - 180 100 23 37 110 80
4 38 110 g0 24 48 130 90
5 19 100 70 25 40 160 112
6 50 170 100 26 36 150 00
7 32 130 84 27 39 140 100
8 41 120 80 28 38 110 74
G 36 140 84 20 16 110 70
10 57 170 106 30 48 130 100
11 H2 110 80 31 22 120 80
12 19 120 80 32 30 110 70
13 17 110 70 33 19 120 80
14 16 120 80 34 39 124 84
15 67 160 90 35 38 130 04
16 42 130 - 90 36 45 120 84
17 44 140 90 37 22 130 80
18 56 170 100 38 20 120 86
19 32 150 04 30 18 120 80
20 21 140 94 40 31 112 80

Example 4.1: Biblogical Sciences Divisi

on of Indian Statistical Institute, Calcutta
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collected data on blood pressures of 40 Marwari females residing at Burrabazar area of
Calcutta (see Table 4.1). Tt is well-known to physiologists that the arterial pressures tend
to increase with the age of a person. Severa) empirical studies have been made in this
context, and it has been observed that this relationship depends on various environmental
factors as well as the ethnic status of a person. In other words, there is no common
relationship that works for all human beings, and it ig different for different groups of
people. Nevertheless it is accepted by all physiologists that the age is an important factor
in deciding what should be the normal blood pressures of a person.

Systol vs. Age Diastol vs. Age
180 + x - | *
110 -
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160 - * * % 100 - . e
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120 o % * & | | 80 Axmx % * % *
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Age o Age

Figure 4.1: The systolic and diastolic blood pressures are plotted against the age of 40
women. The plot shows high variability in the scattered data with some possible outliers.

We are int‘;erested here in finding an empliric.al relationship of systolic and diastolic
blood pressures with the age of a normal Marwari woman residing at Calcutta. Now in
Figure 4.1, whicli shows the scatter plots of systelic and diastolic blood pressures against
age, there are some outlying observations and the spread of the data is very high. It is
well-known that unlike LAD estimates, the LS estimates of the regression parameters are
lliglily sensitive to outlying data points (e.g. those corresponding to very high or low blood
pressures). One can argue that very high or low pressure cases should not have any undue
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influence on an empirically developed relationship of the blood pressures with the age of
" " « i r TR 3

a nornal female. This is one of the primary reasons for using an appropriate extension of
the LAD method that will be suitable for this multiresponse regression problem.

Rao (1988) addressed the problem of generalizing LAD estimation in multiresponse lin-
ear regression set-up and suggested the use of univariate least absolute deviation regression
for cach coordinate of the response vector. He has shown that under simple conditions
Lthat estimate s asymptotically normal, but the problem with his estimation technique Is
Lthat it does not take into account the inter-dependence of the coordinates of the response
vector, and it may not be always wise to ignore correlations that exist among different
rosponse variables. Another approach to generalise LAD estimation in the multivariate
response problem is due to Bai, Chen, Miao and Rao (1990), who extended the notion
of spatia) median (ci. Brown 1983, Chaudhuri 1992a, Haldane 1948) in the regression
sot-up, and obtained their estimate by minimizing %, |ly; ~ 6” zi|| w.rt. 8 (here | - ||
denates the usual Buclidean norin). Tt is casy to observe that while in the univariate case,
this leads to estimates that are equivariant under the scale transformation of the response
variable, in the case of multivariate response, the estimated parameter matrix will not be
eqquivariant under arbitrary nonsingular linear transformations of the response vector. It
is known that for multivariate data with correlated variables, spatial median may have
poor statistical efficiency compared to afline invariant sample mean vector [see Brown
(1983), Chaudhuri (1992a), sec also Chapter 2]. Further, the lack of scale equivariance
makes spatial median as well as its generalization in linear models practically useless when
different real valued components of the response vector y are measured in different scales
or when the response variables have different degrees of statistical variation. In another
generalization, Koenker and Portnoy (1990) suggested M-estimation in the multi-response
linear regression model. Though their generalization has some nice properties, it fails to
be affine cquivariant and they have discussed the lack of affine equivariance of their es-
timates and related matters in some details, Davis and McKean (1993) have extensively |

studied the coardinatewise extension of rank regression from univariate ta multivariate
These authors have derived some interesting statistical properties of
results on numerical performance .
tao fails to take into

regponse problems.
their proposed estimales and tests and reported some
of the procedures. This coordinatewise extension of rank regression
the real valued components of the response vector,

account the inter-dependence among
ation present among differ-

and in practice it may not be appropriate to ignore the correl
ent, response variables. Procedures that lack affine equivariance/in
have very poor statistical performance in the presence of substantial
the components of the response vector. [see Chapters 2 and 3]

variance are known {o

correlation among
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Systol vs. Diastol
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Figure 4.2: The scatter plot showing the distribution of systolic
blood pressures against diastolic blood pressures.

Let us consider the blood pressures data discussed in Example 4.1, Tt is fairly obvious
rom Figure 4,2 that there exists high correlation between the systolic and the diastolic
pressures of a person as one would expect, and instead of using the least absolute deviation
regression for each of the two pressure measurements separately, we neéd to use some afline

equivariant approach.

Example 4.2: Srinivasan (1995) compiled fertility and mortality figures from the
official publications of the Registrar (zeneral of India and figures on female literacy rates
from Decennial Census reports. The data-set contains total fertility rates (TFR), infant
mortality rates (IMR) and female literacy rates (FLR) for the years 1971, 1981 and 1991
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for sixteen most populated states of India. (See Table 4.2). Ourinterest here is in exploring

Infant Mortality vs. Total Fertility Rates
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Figure 4.3: The total fertility rate (TFR) is plotted against infant mortality
rate (IMR) showing high correlation among themselves.

relationships of TR and IMR with FLR over different years and regions. As the data-
seb contains only 48 observations, we clubbed the states into 4 regions namely North,
South, Fast and West instead of looking at them separately. It is well-known from socio-
demographic studies that TFR and IMR. are highly correlated (see Figure 4.3). So in
this situation too the asymptotic efficiency of the non-equivariant coordinate-wise LAD
estimates is likely to be very poor, and one needs to use affine equivariant estimates of
regression parameters that will take into account the inter-dependence between TFR and

IMRA
In this Chapter, we propose and investigate in detail a technique for estimating pa-
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Table 4.2: Fertility, infant mortality and female literacy rates
for different states of India during 1971-1991

00

" States Total Fertility Rates | Infant Mortality [tates | Female Liter;cy Rates]
1971 1081 1991 | 1971 1981 1991 1971 1981 1991

Andhra Pradesh 4.7 3.0 3.0 106 35 71 19.2 249 33.7 |
Assain 5.2 4.1 3.4 139 104 78 22.8 - 43.7
Bihar 50 57 46 | - 118 72 107 165  23.1
Gujarat 568 4.4 3.2 i44 113 69 30.3 38.5 48.5
Haryana 6.6 5.0 3.9 72 99 71 18.6 26.9 40.9
Himachal Pradesh | 4.4 4.0 3.1 113 75 70 24,7 37.7 52.5
Karnataka 4,2 3.6 3.1 95 68 13 | 26,7 332 44.3
Kerala 4,1 2.9 1.8 58 36 17 65.4 75.7 86.9
Madhya Pradesh 88 5.2 4.6 | 135 139 111 13.7 19.0 28.4
Maharashtra 4.5 3.7 3.0 105 75 89 324 41.0 50.5
Orissa 4.6 4.2 3.3 127 137 120 17.0 25.1 34.4
Punjab 53 4.0 3.1 102 82 57 31.3 39.6 49.7

Rajasthan 62 54 4.5 123 103 84 105 140 208 |
Tamiinadu 4.0 34 2.2 113 89 a8 32.3 404 52.3
Uttar Pradesh 66 5.8 5.2 167 - 182 98 130 17.2 26.0
West Bengal — 42 3.2 - 91 66 278 36.1 47.2

rameters in linear models with multivariate response, which will lead to estimates that are
equivariant under nonsingular linear transformations of the response vector. First observe
that the T.AD regression problem is a median regression problem in the sense that the con-
ditional median of the response y given the regressors « is being estimated, whereas LS
regression problem is a mean regression problem, where the conditional mean of ¥ given «
is estimated. So, in order to solve the multiresponse LAD linear regression problem, one
needs to define a proper analog of the median in multidimension. In the preceding Chap-
ters we have already discused several definitions of multivariate median available in the
literature. The vector of coordinate-wise median lacks the property of equivariance even
under orthogonal transformations, and its regression analog, which is the coordinate-wise
LAD estimates, has the same drawback. Spatial median is equivariant under orthogonal
transformations but not under arbitrary affine transformations, and the same is true for
the regression estimates proposed by Bai et al.(1990). There are several definitions of
multivariate medians that are affine equivariant in nature (see Liu 1590, Gja 1983, Tukey
1975), and each of them leads to a regression analog, which will be equivariant under
nongingular linear transformations of the response. However, none of these regression
analogs has been considered in the existing literature, and all of them are computationally
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so tntensive that having estimates of regression parameters may turn ocut to be virtually
impossible in practice with the available computing resources even when both the sample
size and the dimension of the parameter space are only moderately large. We consider
here the regression analog of the transformation retransformation coordinatewise median
defined in Chapter 2. We will demonstrate that the proposed estimate outperforms the
matrix of coordinate-wise LAD estimates when the real valued components of the response
vector are correlated. The procedure suggested in this paper is easy to compute, and we
provide a convenient algorithm, which enables one to compute parameter estimates as well
as to invoke resampling strategies such as the bootstrap to estimate finite sample variance
covariance matrix of the estimates. | |

In Section 4.2, we pose the multiresponse linear regression problem in detail with neces-
sary assumptions and describe the methodology as well as the computation of the estimate
of the parameter matrix, We discuss a simple algorithm called TREMMER to compute
our proposed transformation retransformation LAD estimates. Then we demonstrate with
two real examples, the performance of the procedure. In Section 4.3, we establish some
important asymptotic results about the proposed estimate and demonstrate some optimal
properties of the transformation retransformation median regression estimaftes.

In Section 4.4 that follows, we will describe how one can appropriately modify TREM-
MER to come up with afline equivariant rank regression procedures for multi-response
linear models. Such a modification inherits the nice statistical properties of TREMMER,
and in the special case of regression based on Wilcoxon’s rank scores or equivalently the
linear regression analogs of Hodges-Lehmann type estimates [see e.g. Chaudhuri (1992b)],
this modification takes a simplified and elegant form that makes the implementation of
the methodology as well as investigation into its statistical properties quite convenient. In
Section 4.5, we will present some results based on numerical studies that were undertaken
to investigate the performance of the proposed methodology, We will discuss results from
small sample simulation experiments that yield strong evidence for superior performance of
transformation retransformation rank regression estimates in multi-response linear model
problems when compared with traditional least squares and coordinatewise least absolute
deviations estimates if the residuals in the linear model have elliptic non-Gaussian distri-
butions with heavy tails. We will also report analysis of real data sets in an attempt to
demonstrate the implementation of the methodology in real data and hcw it outperforms

some competing non-equivariant procedures,
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4.2 Description and Computation of TREMMER Estimates

Consider the following multiresponse linear model :
. 1 : T ". L y [ 4 1)

where the y,’s are d X 1 response vectors, the x;'s are & x 1 dimensional vectors of ex-
planatory variables, the e;'s are d-dimensional errar vectors, and A is a k x d matrix of
paraineters, We assume that the e;’s are independent and identically distributed with a
common probability distribution on R¢. Before defining the transformation retransforma-
tion strategy, let us observe a simple geometrical fact. about any given affine transformation
of a set of multivariate responses. For a nonsingular d x d matrix A, the transformation
that maps y; into Ay; for 1 < ¢ < n essentially expresses the original linear model in
terms of a new coordinate system determined by A and depending on whether A is an
orthogonal matrix or not, this new coordinate system may or may not be an orthonormal
system. The fundamental idea that lies at the root of the data based transformation re-
transformation is to form an appropriate ‘data driven coordinate system’ [see Chapter 2]
and {o express the linear model in terms of that coordinate system first. This is equivalent
to making an affine transformation of the error vectors. Then one computes parameter
estimates based on transformed response vectors. Finally the estimates of regression pa-
rameters are retransformed to express everything back in terms of the original coordinate
system. Now, in order to form a ‘data driven coordinate system', we need d points in RY
and the lines joining the origin to these d points will form various coordinate axes. In
order t0 get a valid coordinate system, these d points must satisly some nonsingularity
condition. |
Let us define

Ap={a:aC{1,2,...,n} and #{i:i€ a} =k}

Bp={b:bC {1,2,...,n} and #{i:icb}=d}
and | |
Sn={a=an:aEAn bEBﬂ,, aﬂb=¢'a}.

Note that Sy, is the set of all subsets of k +d indices from the set {1,2,...,n}. For a fixed
&= {i1,.00y08, 915000, 74} € Sn, let W(e) be the k x &k matrix whose columns are the vec-
tors @;,,...,2;,, and Z{a) be the d x k matrix whose columns are the vectors y;,,... y;, .
We will assume that W{c) is invertible and define E(a) to be the d X d matrix consisfing
of the columns y; — Z(a){W ()} tej,,. .., yy, — Z(@){W ()} xj,. If the error vectors
e;'s happen to be i.i.d random vectors with a common probability distribution, which is
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absolutely continuous w.r.t. the Lebesgue measure on RY, the matrix E{e) will be invert-

ible with probability one. Then define transformed response vectors zg-ﬂ] = {E(&)}hlyj

for 1 <7 < n with §j ¢ . Let I;S{‘IJ be the matrix of parameter estimates obtained by
regressing each coordinate of the d-dimensional transformed vectors zg'l) 's separately on
the ;s for 1 <{<mandi¢uw using the LAD method. Then deﬁne the transformation
IEtlansfmmatlon estimate of the parameter matrix as ﬁ(ﬂ} = [ {E(e)}T. Note that
ﬁn ) ; is obtained by retransforming the earlier I"( «) by the linear transformation E{a). The
following Theorem asserts equivariance of ﬁn (o) under nonsingular transformations of the

response vector and the regression equivariance of it.

Theorem 4.2.1 For a fived o € S,,, let ﬁff) be the estimaled matriz of parameters based
on the data-points (y,,21), (g, @2),..., (¥, Tn) 65 described above.

(i) Suppose that A is a fivred d X d nonsingular motriz. Then the transformation-
retransformation estimate computed from (Ayi,ml), . (Ay,, z,) in the same way o6s
above (using the same indes set o) will b_e_ﬁ” AT,

(it) Suppose that the response vectbi"s y;’s are transformed to y;,— Gl x; fori=1,...,n
where G is a fized k x d mairiz. Then the transformation retransformation estimate will

be transformed lo ﬁ(ﬂ) G,

Proof: (i) First observe that in view of the way the matrix Z(a) has been constructed,
1f the y;'s are transformed to Ay,’s, Z{c) will be transformed to AZ(x). In turn the
transformation matrix E{e) is transformed to AE(a). Also, note that the z{*)s remain
invariant under a nonsingular linear transformation of the y;'s. Hence, the estimated
matrix of regression parameters f‘(ﬂ) obtained by regressing each coordinate of the zg by
on the x;’s using LAD separately is invariant under that transformation. Cﬂnsequently,

; (“) . which was originally defined as I'v" {E(a)}7, will be transformed to ﬁ

(ii} Observe that if the y;’s are transformed to y; ~ GTzy's, the matrix Z(e) will
be transformed to Z(¢) — GTW(a). In turn the'transformatian matrix E{a)} remains
invariant. Also, note that the z( g are transformed to z —{B(a)} 1GTx;. Hence, the
estimated matrix of regression parameters Fc *) obtained by regressing each coordinate of
the z{* *his on the z;'s using LAD will be transformed o P — G{E(@))T}! in view of

the regression equivariance property of LAD. Consequently, ,ﬂ(ﬂ) will be transformed to

_G. .

2 (ﬂr)

From the definition of the transformation retransformation estimate of the matrix of
parameters and from the above Theorem, we make the following simple observations :

Observation 1 : If k=1 and Lhe regressors &y = 1, for 1 <1 < n, then our problem
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reduces to estimation of the multivariate median of the observations ¥, ¥s,..., ¥y, and
our estimation procedure leads to transformation retransformation multivariate coordi-

natewise median introduced in Chapter 2.

Observation 2 : The transformation retransformation estimate of the parameter
matrix is obtained as the minimizer of 5, ({E(e}} ! (y; — 67 =;){ with respect to 4 €

)

RFX4 where |-| denotes the {; norm in K. Thisimplies that the estimate ,@5:1 1S equivariant

under linear reparametrization of the design points x;’s. In other words, if we transform
our regressor vectors o;'s to Be;'s for 1 <4 < n, where B is a k x k nonsingular matrix,

our estimate is transformed to (BZ)! ﬂf].

Observation 3 : Consider the multiresponse linear model with an intercept term
v & Ilﬁ‘f, 1.€e.
| yi=7+ﬁTmf+ei, t=1,...,m.
If the y,’s are transformed to y; + b, where b is a d-dimensional vector, then by (1) of
Theorem 4.2.1 our transformation retransformation estimate ,?I{f) will be transformed to

ﬁ“’ﬁﬂ) + b and f']ff) will remain unchanged.

4.2.1 Asymptotic Normality and Selection of «

Clearly, for different choices of the subset of indices «, we have different estimates of the
parameter matrix 8. So the natural question that arises at this stage is which subset
of indices @ we should use. Our approach for selecting the subset o is based on the
minimization of the generalized variance (Wilks 1932) of the estimate ﬁff), which is defined
as the determinant of the variance covariance matrix of the estimate. Recall that this
determinant is proportional to the volume of the concentration ellipsoid associated with
the sampling distribution of the estimate. If we assume that the underlying common
probability distribution of the error vector e is elliptically symmetric with a density of

the form {det(£)}~1/2f(eTL~e) where T is a d x d positive definite matrix, and f(e'e) |
is a spherically symmetric density on R?, we have a nice simple form for the asymptotic
generalized variance of the estimate ;5’,(1&} for a given « as given in the following Theorem.,
Let us write {3~Y2B{a)}~! = R{a)J(a), where R(c) is a diagonal matrix with positive
diagonal entries, and J(e) is a matrix whose rows are of unit length. The following

Theorem gives the asymptotic distribution of the estimated regression parameter matrix
AC) | |
0.

Theorerh 4,2.2 Fiz ¢ € S,. Assume that the densily [ ts such that any univari-
ate marginal 'g' of the spherically symmelric densily [ (ee) is differeniiable and posi-
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tive at zero, and I?Ea:xx m?{‘; mjm?}“lm{ converges to zero as n tends lo tnfintty. Then,
jd o

as n tends to infinity, the condilional distribution of {¥;¢a mjm?}lfz(ﬁiﬂ) — B) given
the e;’s with i € a converges weakly to a multivariate normal distribution with zero
mean and cEl/EV(a)Z)lﬁ@I;; as the dispersion mairiz. Here ¢ = {2¢{0)} 7%, V{a) =
{(J(@)} " H{D(@HI (@)}, and D(a} is the d x d matriz whose (i, 7)-th element is
(2/m)sin™} Vij being the inner product of the i-th and the §-th row of J{c). We denote
by @ the usual Kronecker product, and I, is the identity malriz of dimension kK x k.

Proof: In view of the equivariance of the regression estimates B,(f under nonsingular

” linear transformations of the y,’s, it is sufficient to prove the Theorem in the special case
when ¥ is the d x d identity matrix. Define e = {B(a)} le; for 1 <i<nandi ¢ o
to be the transformed error vectors. Then, given the e;'s for which 7 € , we have the

transformed mode] as,
2" = [Te; + ¢, 1§ . (4:2)

Under the assumption that max;g, @] {¥;00 ;27 }~'@; converges to zero as n tends to

infinity, we have the following representation (see Babu 1989)

2:(0) {3 wja] YL~ 10) = Y {3 wal } 2, sign(Us) + Ra,

JEa Ja lda

where U;; is the ¢-th component of e, g; is the i-th marginal density of the distribution of
e; and f‘f: ) and ['; are the ¢-th columns of f‘&“” and [ respectively. Here R, converges in
probabihity to zero. By the assumption on the o;'s stated in the Theorem, the Lindeberg
condition for CLT is satisfied for the first term on the right hand side, and hence we have
the asymptotic normality of the estimated regression parameter matrix given the e;’s for
which ¢ € o, Note that we have not used the elliptic symmetry-of the error distribution.
In other words, asymptotic normality holds in a large class of probability distributions.
Now, under the assumption of elliptic sjmmetry of the error distribution as stated in
the Theorem, ef’s with 7 € o are conditionally i.i.d random vectors with common density
| det{E(a)}|f {eT[E()]T[E())e}. Let r1,...,74 be the diagonal entries of R(c). In view
of the above representation, the conditional distribution of {3 ;g mj:n}"}l/ 2(1"“5{") =%
will converge weakly to a k X d-variate normal distribution with zero mean, and limiting
dispersion matrix S(«) @ I;. Here the matrix S(c) is such that its i-th diagonal entry is
cr?, and for i # j, its (4,7)-th element is deryr; {Pr(U; <0 and Uy < 0) —1/4}. Uy and
Ui; are the i-th and the j-th components of ef respectively. Note that we are using the
fact that for a d-dimensional random vector z with a spherically symmetric distribution,

the distribution of the random variable a” z is the same for any @ € R? such that a’a = 1.
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Also, since the conditional distribution of e; 1s elliptically symmetric around the origin in
d

R, Pr{U;; <0 and Uy < 0} does not depend on the density f. Recall that the rows of

J{a) are of unit length obtained by normalizing the rows of {E(a)}~!. We now have the

following by some routine analytic computation,
Pr{U; <0 and Uy < 0) = 1/4 + (1/2r)sin™" ;.
So, the matrix S(«) is nothing but ¢{R(a)}{D(a)}{R(a}}. Next recall that
B = P (R(e)) ™ (T (@)

The proof of the Theorem is now complete by straightforward algebra. O

It follows from the preceding Theorem that ﬁ,(:] is a n'/%-consistent estimate of 8, and

its conditional asymptotic generalized variance is

[c*{det(T)} det{V()}}*[det{d " zixT}]
i€

Corollary 4.2.83 Suppose that the conditions on the distribution of the error vector e
stated in Theorem 4.2.2 are salisfied, and assume that n=' 3%, w;x! converges to a
posilive definite mairix Q as n tends to infinity. Then the conditional distribution of
\/ﬁ(la(a) B3) given the e;’s with i € « converge‘s wéakty te ¢ mulitvariate normal distri-

no
bution with zero mean and cSV2V ()2 @ Q=1 as the dispersion matriz where ¢ and

V{a} are as in Theorem {.2.2.

Proof: Proof of this corollary follows from observing the fact that n ™' Y0 aiz]

converges to a positive definite matrix Q implies that maxyci<n mg‘{E}},__.l x jm?}"lﬂﬁi con-

verges to zero as n tends to infinity. (O

Under the assumptions of Corollary 4.2.3, the expression of the asymptotic generalized

variance becomes

(¢*{deb(E)} det {V (c) ) det(Q)]

The following Fact, which directly follows from Theorem 2.2.3 of Chapter 2 establishes a
lower bound for det{V{a)} (= v{a), say), and this yields a lower bound for conditional

. . , LY
asymptotic generalized variance of 3,, .

Fﬁt:i; 4.2.4 For the positive definite matrizc D{a) and the matriz J(o) defined above, we

have det{D(a)} > [det{J(a)}}* so that det{V(a)} > L. This lower bound is sharp in the
sense that an esact equality in place of the inequality will hold if J{a) happens to be an

orthogonal matriz.
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We now propose to choose that subset o, which minimizes the asymptotic generalized
variance of Bﬁa). The above mentioned expression for generalized variance involves the
scatter matrix %, which is in general unknown, We will need a consistent affine equiv-
ariant estimate 33 of , and then we can transform y;'s to £~/%y; for 1 <4 < n and
construct the transformation matrix E(«) and the corresponding matrix Via) as well as
det{V(a)} (= (), say) based on those transformed observations. An optimal a is de-
| fined as & = arg ming 9{a}. We now indicate the basic computational steps involved in the

computation of the adaptive transformation retransformation estimate in multivariate me-
dian regression. From now on, we shall use the abbreviation TREMMER. (Transformation

Retransformation Estimate in Multivariate MEdian Regression) for that estimate.

4.2.2 TREMMER Algorithm

Step 1: Obtain a consistent and affine equivariant estimate 53 of the scale matrix 3
associated with the distribution of the random error e from the data (yy,®1),..., (¥, Ty ).
Step 2: Transform all the response vectors y;’s to 3 ?y,'s for 1 <4 < n. Then fix
a subset o € Sp and compute 9(a) as given above which appears in the expression for

~ asymptotic generallzed variance of the estimate ﬁn ,

Step 3: Minimize ©{c) with respect to o € S,. Call that & One can reduce the
amount of comput&tlonal time required for searching the optimal o by stopping whenever
() is sufficiently close to 1 because we know from Fact 4.2.4 that the lower bound for
v(cx) is 1. This approximation makes the algorithm very fast.

Step 4: Form the matrix W(&) with columns @y, ..., @i, whereiy,. .., are the first
k elements of the subset & and also form the matrix Z(é&) whose columns are y;,,.. ., ¥y,
Then construct the transformation matrix BE(é&) with columns y; ~Z(&){ W (&)} zj,, ...,

i, — LAY W(a)}~'xj, where f1,...,jq are the last d elements of &.
Step 5: Transform all response vectors y;’s to z( &) {B(&)} 'y, for i & & Compute

coardinate-wise LAD estimate I"( & of the matrix of parameters by regressing the z( )1g
on the m;’s for i ¢ & Then retransform that matrix to obtain the TREMMER. estimate

s B = T {B(&))

Before we discuss some applications of the TREMMER algorithm with real data sets,
let us note that while transforming the response vectors by the square root of the variance
covariance matrix computed from some preliminary error estimates is a popular approach
(see Zellner 1962), the resulting coordinate system does not have any simple and natu-
ral geometric interpretation. Moreover, such a transformation does not lead to an affine
equivariant modification of coordinatewise LAD estimates, and the limitation of such ap-
proach is primarily due to the fact that there does not exist an affine equivariant square
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root of the usual estimates of the ¥ matrix. Our ‘data driven coordinate system’ is a
widely applicable tool for converting non-equivariant (or non-invariant) procedures into
equivariant (or invariant) procedures, which is not limited to coordinatewise LAD esti-
mates. Besides, for a properly selecied subset o (as suggested in TREMMER . algorithm)
the matrix [E(e)][B(c)]" provides an estimate of the scale matrix & upto some scalar

multiple.

In Step 1, we have to use a consistent and affine equivariant estimate of the scale
matrix L. As the methodology is quile a general one, one may use any estimate with
those properties and it is upon the user to seleci a proper estimate for his/her problem.
Depending on the nature of the problem, one may use robust estimates of X (see, Davies
1987), but in general the construction of such robust estimates of 2 is computationally
expensive, and if it is not absolutely necessary, one may use the variance covariance matrix
of ordinary least squares residuals as an affine equivariant, consistent estimate of T

Note that once the matrix E(&) is formed, the computation of fi,(: is straightforward
as it requires to solve a linear programming problem for which a lot of efficient algorithms
are available (Armstrong and Kung 1978, Barrodale and Roberts 1973, Wesolowsky 1981).
As a result, the adaptive version of the TREMMER estimate continues to remain com-
putationally advantageous. To compute the finite sample conditional variation of the
TREMMER estimate g{ven a fixed choice of the transformation, we have used resampling
techniques like the bootstrap. To implement the bootstrap, one chooses the transforma-

tion matrix adaptively first, and then fixing that transformation matrix, one transforms

all the y,’s to get the zgm’s as before. Then one computes &) and retransforms it to get

ﬁff). The sampling variation of ,@ff} is estimated by resampling from the pairs (y;, @;)’s
for 1 <4< n, & & and calculating the TREMMER estimate of 8 for each bootstrap
replication keeping the optimal subset & fixed. Then one computes the sample variance

covariance matrix of those TREMMER. estimates corresponding te different bootstrap
samples. We next illustrate the procedure with Examples 4.1 and 4.2.

Example 4.1 (Continued): The following table gives the TREMMER estimates of

regression coefficients and corresponding standard errors of the estimates are reported in

the parentheses. Standard errors have been computed based on 10,000 bootstrap replica-

In addition to the adaptive equivariant estimate, we have computed the nonequiv-

tions.
ation estimates of the regression parameters and estimated the

ariant least absolute devi _
generalized variances of both of them in order to make comparison. To compare two

multidimensi_dnal estimates, Bickel {1964) defined the measure of efficiency as the p-th
root of the ratio of corresponding generalized variances, where p is the dimension of the
estima,te. In the above exaiﬁp[e the dimension of the parameter is 4, and to compute the
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Table 4.3: TREMMER. estimates

Pressures | Constant Age
Systolic | 102.8509 | 0.8519
(5.8851) | {0.2628)
Diastolic | 73.1066 | 0.3587
(3.6855) | (0.1425)

efficiency of TREMMER. estimate we have taken the 4-th root of the ratio of the gen-
eralized variances of the TREMMER estimate and coordinate-wise LAD estimate. The
efficiency estimated from 10,000 bootstrap replications turns out ¢o be 1.145365. Figure
4.4 shows the TREMMER lines on the scatter plots of systolic and diastolic pressures

against the age.

Example 4.2 (Continued): - Total fertility rate (TFR) is a measure of fertility that
denotes the average number of children born to a woman in her entire reproductive span
assuming that she experiences the level of age-specific fertility rate obtained in a given
year or period. Infant mortality rate (IMR) is defined as the number of deaths of children
below age one year per 1000 live births. Detailed studies of the demographic transition in
the developed and developing countries have revealed a strong link between declines in the
mortality levels of a population (especially in the infant and child mortality} and fertility
levels. One of the major determinants of demographic transition leading to decline in
infant mortality and fertility is education of women. Female literacy rate (FLR) is defined
as the percentage of literates among females aged 7 years and above. Our interest is to
see the effect of FLR and time on TFR. and IMR. The following table gives TREMMER
 estimates and corresponding standard errors of various regional effects and the effects of
time and FLR in an analysis of covariance type linear model.
~ From Table 4.4, we see that both of FLR and time have strong negative effects on
both TFR and IMR. So in India, infant mortality and fertility levels both seem to be
declining with time and as female literacy increases. However, there is not much visible
regional variation in the data, except for the fact that southern region tends to have the
lowest TFR and IMR levels compared to others. In this example, we again observed that
the TREMMER estimate is more efficient than the coordinate-wise LAD estimates the
efficiency being 1.456471 as estimated from 10,000 bootstrap replications.
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Figure 4.4: The plot shows TREMMER regression lines on the
scatter plots of blood pressures with the age.

4.3 . Asy_mptotic Optimality Properties of TREMMER.

In this section, we will discuss asymptotic performance of the adaptive TREMMER es-
timate and establish some efficiency results. For that we impose some conditions on the
ﬁ:f"S.

Condition A : There exists a constant M > 0, a sequence of integers {k,} such that
kn —: 00 as n — oo, and at least one partition of the set {1,2,...,n} containing ky,
subsets such that in each subset of that partition there exists at least one a € Se satlsfymg

I{W(a)}~z;|| < M for all i € « and all 1 sufficiently large.

| Condltmn B: The denmty hof a d—dlmensmnal random vector e is spherically symmetric

and satlsﬁes

dxk{h Za‘e" }d H he;) de; < oo

f , _ ; : i=1
where e;,..., e are independent_ and identically distributed with common density s and
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Table 4.4: TREMMER estimates for demographic data

Regional Effects Coefl. of | Coeff. of

North East West, South Time | FLR

TFR | 6.9603 6.7627 6.7958 6.0459 -0.6361. | -0.0338
(0.3631) | (0.3589) | (0.3358) | (0.3640) | (0.1946) | (0.0139)

IMR | 166.7407 | 164.0223 | 162.5226 | 144.9509 | -10.5994 | -1.2508
(12.7284) | (19.5363) | (14.9983) | (14.7764) | (4.4422) | (0.4476)

77

a;'s are given constants.

- Note that if the spherically symmetric density h is bounded, Condition B is trivially
satisfied. |

Remark : In the case of one-way analysis of variance problem, one can always construct

a partition of the index set {1,2,...,n} such that in each subset at least one replication of

n
each treatment occurs. Note that in order to satisfy the condition max mf{z x jm?}ﬂ-liﬂi
t~n 1

— 0 as.n — oo, the number of replications of each treatment goes to infinity. Thus one
can easily have a sequence of paititions so that Condition A holds. We discuss in the
~ following proposition another simple situation where Condition A holds.

Proposition 4.3.1 Suppose that the ©;’s are independent and identicelly distributed ran-
‘dom variables satisfying n~' S0, Tix] 5 Q as n = 0. Then the probability of the event
that Condition A holds goes to one as n tends to infinity.

~ Proof: As the »;’s are independent and identically distributed, there exists M > (
such thgt for any a € Sy,

Pr[%a&x {W (o)} o] < M]=d>0
'l:ofisame 4 > U._ Consider any sequence of integers {kn} such that k, — oc and n/k, —

0o as n — oo. Then

Pr{ Condition A holds} _.‘>_ 1 —kn(l— .:5)"-’"/("“'*““)

where ¢n = n/ky. Thus the result follows immediately. O

Suppose that o* € S, minimizes det{V(a)} (= v(a), say) which is defined in Theorem

4.2.2, when the scale matrix % is known,
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Theorem 4.3.2 Assume thal the e;’s are independent and identically disiributed with a
common elliptically symmeltric distribution {det(Z)}~12f(eTT-'e) such that the spher-
ically symmetric density h(e) = f(e'e) on R? satisfies Condition B, any univariate
marginal g of h 18 differentiable and positive at 0, £ is a d X d posttive definite ma-
iriz, and the ®;’s satisfy Condition A. Then v(a') converges to one in probability as n
tends to infinily.

Proof: First observe that in view of afline equivariance of f],(:), it is enough to consider
the case when X = Iy. Consider Ay, Aoy, ..., Ag, » disjoint subsets of {1,2,... ,n}, such
that Condition A holds. So for sufficiently large n, we will have at least one subset of indices
oy € A such that ||{W(e;)} 'e; || isbounded by M forl = 1,...,d and {f1, j2,. .. Jd} C
;. Note that for a subset of indices «, any column of the transformation matrix E(c) can
be written as ej, ~ i (wf 4, )ei,, where w] is _t.he'l-th row of {W{a)}~'. As the e;’s
are L.i.d. with spherically symmetric density h, the joint p.d.fof e;,...,€i;:€41,-+ 1€y
can be written as [[;co h(e;). Consider the following transformation of variables

A k

Uy = €4 — Z(W}Piﬂh)ﬂi” ooy Ug = €4y Z(w?‘mfﬂ)eil
{=1 =1

Ugtl = €iyy ooy Udtk = €4y,

Then the joint density of uy,...,uqsy is given by

d K k
H h{ui -+ E(w?mﬁ)ud“} H h(“d-{-i)
i=1 f==1 =1

Therefore, the joint density of u1,...,uq at the origin in REXY s

ks

d P
fR en H IL{Z(w}Pﬂ?ﬁ)udﬂ} [] h(wars) dugrr ... dbdtks

i=1 I=1 i'.—-"l.

which exists and is positive by Condition B. Now, in view of Condition A and the continuity

of hat 0 & IER“, the joint density of u1,...,ud must remain bounded away from zero in
a neighborhood of 0 € R4*d, Therefore the probability that the columns of E(ca) will be
near orthogonal (and hence v(c) = det{V(a)} will be very close to 1) is bounded away

from zero, So we have for any ¢ > 0

inf Priv(e) <l+¢=pc>0
LoiER | |

Then
PriVa € Sp, v(e) 2 1+¢)
Priv(an) 2 1+6...,v(ar,) 2 1+ €}

_(l:ﬂpg)k_" — 0 as n— 0.

Pr{v(a’} 21+ €}

A

IA
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The above Theorem implies that if the scale matrix ¥ happens to be known and the
adaptive selection of o* € S,, is done using that known £, the conditional generalized vari-
ance of the resulting adaptive TREMMER. estimate tends to the lower bound established
in Fact 4.2.4. However, in practice L is unknown, and we will estimate it by a consistent
and affine equivariant estimate 5 when we minimize #(a) to obtain & The next Theorem
tells that the difference between o{@) and v{a*) is asymptotically negligible.

Theorem 4.3.3 Under the assumptions of the previous theorem, v(é&) — v(a™) converges

in probability to zero as n tends to infinity.

Proof: As 3 is a consistent estimate of &, by the simple arguments used in the proof
of Lemina 2.2.7, 2.2.8 in Chapter 2, it can be shown that sup,eg. (T () ~ J{a)| converges

in probability to zero as n tends to infinity, which in turn implies that

sup D (@) - D(a)[ O, (4.3)
Sélé) |[det{T()})* — [det{I(c)})?| 50 (4.4}

and
sup | det{D{a)} — det{D(a)}} =+ 0 as n— oo (4.5)

a€Sn
For M’ > 0, define K§, ={a:a¢€ S, and v(c) € M’}. Then by (4.3), (4.4) and (4.5)
it is easy to see that SUPge 7, [5{c) — v(e)| converges in probability to zero as n tends to
infinity.

From Theorem 4.3.2, we have that the o, which minimizes v(a), is in the set Ky,
and hence in view of the fact stated above & will be in Kg, with probability tending to
one as n tends to infinity if M’ > 0 is chosen to be suitably large.

Next, since & minimizes #(c), and o® minimizes v(c), it follows by some straightfor-
ward analysis that |#({&) —v(&)| < € and 1D {a*)—v(a*)| < ¢ will imply that 10{&) —v(a*)] <

e. Hence, it follows that 9(&) —v(a*) converges in probability to zero, which completes the
| A _ o

proof with previous observations.

The above two theorems suggest that there is an optimal choice of the subset a € Sy,

for which v(e) attains its lower bound as n goes to infinity when the scale matrix 23 1s

known. If 5 is unknown, with a consistent and equivariant estimate of ¥, we can choose
a subset & € S, such that v(&) also attains its lower bound asymptotically. Thus for n
sufficiently large, we will be able to get hold of an & such that v(&) < 1+ ¢, for any ¢ > Q.
Any « € S,,, for which v(a) < 1+ ¢, will produce an estimate with conditional asymptotic

generalized variance close to (c/n)¢ det(E)]*(det(Q)] ™%, where Q is the positive definite
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ey ~] . : :
limit of n™! %, x;2f as n tends to infinity. From the asymptotic result obtained by

Rao (1988), it can be seen that the asymptotic generalized variance of the coordinate-
wise LAD estimates of parameter matrix is [(c/n)? det(I)]*[det Q)] where the (i, 7)-th
element of T' is (oi3035)'/*(2/m) sin™" pyj, pis = 035/(0i045)/2. Here ay; is the (3, 5)-th
clement of & and c is as defined earlier. Following the line of arguments used in the proof
of Fact 2.2.3 in Chapter 2, it is easy to see that det(l') > det(T), and equality holds
only iII' X2 1s a diagonal matrix. If the asymptotic efficiency of two competing estimates
of the kd-dimensional parameter matrix is defined as the (k x d)-th root of the ratio of
their asymptotic generalized variances, the efficiency of TREMMER estimate compared
to nonequivariani coordinate-wise LLAD estimate is always greater than or equal to one.
Further, Theorems 4.3.2 and 4.3.3 imply that it is possible to get hold of an appropriate
transformation matrix E{«a) for large n such that the estimate ﬁffl will be more (or less)
efficient than the ordinary least squares estimate depending on whether the tail of the
univariate marginal ¢ of the spherically symmetric density f (eTe) is ‘heavy’ (or ‘light’).
Observe that we are using a linear transformation which retains the linear structure of
the model, and the efficiency gain is solely due to non-equivariance of the coordinatewise
LAY estimates in multiresponse linear models under nonsingular linear transformations.
We close this section by presenting some simulation results to demonstrate the perfor-
mance of the adaptive TREMMER estimate in small samples. In the mode! ¥; = A zite;,
we have generated the e;'s from bivariate normal (ie. f (eTe) = (2:rr)“1exp(—-(£Te}/2})
and Laplace (i.e. fleTe)= (27)"" exp(—veTe)) distributions with |

B:(l"’).
p 1

We have taken @ = 0, k = 2, where the first element of @; is one and the second element
is generated from standard univariate normal distribution. Using these e;’s, x¢'s and 3,
we have generated the observations (y;,@)'s for 2 = 1,...,7. We have used a set of five
different, values of p and two sample sizes, namely 20 and 30. Qur adaptive TREMMER
estimale was compared with the coordinate-wise LAD estimate, and for the purpose of
officiency computation, the estimates of their generalized variances were obtained based
on 10,000 Monte Carlo replications. The efficiency is taken to be the fourth root of the
ratio of the generalized variances of the two competing estimates of 3.
From Tables 4.5 and 4.6, we see that TREMMER estimates are m

coordinate-wise LAD estimates in the presence of substantial correlagion
sample sizes. As correlation among the real valued coordinates of the response vector

increases, the efficiency of TREMMER over coordinate-wise LAD increases. It will be
that unlike what has been done in Examples _1 and 2 where

ore efficient than
g even with small

appropriate to note here
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we estimated conditional sampling variation using the bootstrap, in these simulations we

have compared unconditional sampling variation of TREMMER, estimates with that of
the coordinate-wise LAD,

Table 4.5 . Bfficiency figures for bivariate normal
S’amplf, V;
~ Size 075 080 085 09  0.95
20) 1.0639 | 1.2695 | 1.4931 | 1.3253 [ 1.8595
30 | 12391 | 1.2500 | 1.2251 | 1.5327 | 1.9808

Table 4.6: Efficiency figures for bivariate Laplace

Sample P

Size | 075 080 08 090 095
20 | 1.0431 ] 1.1825 | 1.3816 | 1.4899 | 1.6065
30 | 1.0181 | 1.2396 | 1.4935 | 1.6243 | 16740

We conclude by noting that when the underlying distribution of the e;'s are not el-
Y ok . , afo) |, - witl
liptically symmetric, the conditional asymptofic normality of 8, ° still holds but with a
more complicated dispersion matrix, To choose the best subset @ in that case, one can
estimate the asymptotic generalized variance of fiff) for a given o by resampling or some
other technique and then try to minimize that over different possible choices of . But
that will be much more computationally intensive, and we do not intend to consider it

here.

4.4 Transformation Retransformation Procedure and Mul-

tivariate Rank Regression

Let us now facus our attention on the data points (m,,y!_)’s, which are assumed to satisfy
the linear modei (4. 1}, Suppose that n > d+ k&, and « is a subset of size d + k of the
set of indices {1,2,...,n}. Following the notation used iit the previous Sectnons, we will
write o = {41, .0, 08 01,0« Jd} and denote by W( ) the k x k matrix whose columns
are the vectors @j,,.. ., and by Z{«a) the d X k matrm whose columns are the vectors

' in ' trix B
Yiser o ¥p, We will again assume that W) is invertible and form the d x d matrix E(x)

- - —1 Th
that consists of the columns y; ~ Z(a{W(a a)} 1-’»";,1 ¥y Z(ﬂ){w(ﬁ)} T34 ;
matrix E{a) too ig assumed to he nﬂn-smgular, and as before we define the transforme

now that we
response vectors as z} ) = { (o)} ty for 1 £ L<n and | ¢ a. Suppose
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' x * : ' .
perform rank regression on each coordinate of zg ) separately with @; as the regressor as

has been done in Davis and McKean (1993), and the resulting estimate of the matrix of
coeflicient parameters is denoted by ﬂ,(f). In other words, Eﬂ“i is obtained by minimizing
(w.r.t. A) a dispersion function D(A) (say), which is a simple multivariate extension
of Jaeckel’s dispersion function [see Jaeckel (1972)] based on residuals and their ranks
computed from a linear model. In this case D(A) is a function of the real valued coordinates
of the multivariate residuals zf“) — ATg; with1 <! < n,! & a and their ranks [see

Davis and McKean (1993)]. Finally, the transformation retransformation estimate ol 3 is

obtained by retransforming AEP’J by the matrix E(«) as follows

3 = A (E(a))”. (4.6)

n -

In view of the definition of f'lf), we now have the following result, which asserts that
1t 1s an affine equivariant estimate of 8. As a matter of fact, this result is the analog of

Theorem 4.2.1 in the context of rank regression.

Result 4.4.1 Suppose that A is a fized dx d nonsingular matriz. Then the transformation
relransformation estimate computed from (Ay,, z1), (Ayq, ®3),. .., (AyY,, x,) in the same
way as above (i.e. using the same index set o) will be f‘i,(:)AT. Further, if the response
vector y; is transformed to y; — GTx; for each i = 1,2,...,n, where G is a fized d X k
maliriz, the transformation retransformation estimate gets transformed to ,@f) — G,

4.4.1 Selection of the Optimal Data Driven Transformation

Since the estimate fif) depends on the choice of the transformation matrix BE(c), a ques-
tion that naturally arises at this point is how to choose the subset of indices ¢. Depending
on the nature of the problem, we have earlier determined the form of the optimal trans-
formation E(«) and suggested appropriate data driven selection procedure for the optimal
subset of indices a. All these procedures for choosing the optimal transformation ma-
trix, however, are based on the common idea of minimizing the generalized variance (i.c.
the determinant of the dispersion matrix) of the multivariate location or regression esti-
mate. The motivation for looking at the generalized variance comes from the fact that it
is proportional to the volume of the concentration ellipsoid associated with the sampling
distribution of the estimate which is usually normal for large samples. We will now stale
a result that asserts that under suitable regﬁlarity conditions £ f:t) is a n'/%-consistent and

asymptotically normal estimate of the parameter matrix 8 in the linear model (4.1).

Result 4.4.2 Fiz an o. Suppose that the distribution of the (zi,y;)’s and the nature of
the dispersion function D(A) are such that n}/?-consistency and asymptotic normality of
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the coordinatewise rank regression eslimales holds. For example the regqularity conditions

used in Davis and McKean (1993), who considered coordinatewise rank regression will

be suffictent for this purpose. Then conditioned on o and the (wx;,y;)’s with i € a, the
lotic distributi /2 (p)

asymplotic distribution of n (,6 — B) is multivariate normal with zero mean and o

variance covariance maltriz that depends on the transformation matriz B(a).

Proof: Let us [ix an o and argue conditionally given the (z;, y;)'s with ¢ € . Note that
since A( @) ; is obtained by performing coordinatewise rank regression of the transformed

response veclors zfﬂ')’

s on the covariates x;'s, it will be a n!/?-consistent and asymptotically
normal estimate of {E(c)}~'B7 under appropriate regularity conditions as assumed in the
statement of the result. The proof is now complete if we recall that Ef} == ﬂ&ﬂ){E(a)}T
and use the fact that linear transformation preserves multivariate normality as well as

nl/2.consistency. W,

However, the conditional asymptotic dispersion matrix of fiff ) depends on E(wx) in a
rather complex way, and it is hardly useful in providing any insight regarding the optimal
choice of « in a general situation. Alternatively, one can try m use resampling technigues
(e.z. the bootstrap) to estimate the sampling var mtlon in ,6 and then select an optimal

E{c) based on this estimate. But, it does not seem to be a feasible approach in practice
in view of the enormous amount of computation that any form of resampling estimation

(o)

of the dispersion of ,6 will require for different choices of a.

Suppose now that e has an elliptically symmetric distribution with a density of the form
{det(T)} /2 f(eTm~'e), where T is a d x d positive definite matrix, and f is a probability
density function on the real line. Let us write {E7Y2E(a)}~! = R(a)J(c), where R{a)
is a diagonal matrix with positive diagonal entries, and J(e) is a matrix whose rows are
of unit length, and define D(a) to be the symmetric d X d matrix whose (7, 7)-th element
15 sin”lfﬁj, vi; being the Fuclidean inner product of the i-th and the j-th row of J (),
Then by Theorem 4.2.2 uﬁder suitable conditions the asymptotic generalized variance of
the transformation retransformation median regression (i.e. TREMMER) estimate of B
in the linear model (4.1) is minimized by choosing o to minimize the determinant of the
matrix

V(o) = (3@} D@HF@ (4

Note that such a selection of o does not require any knowledge of the form of the density [,
and there is a nice and intuitively appealing geometric interpretation for such an approach.,

The determinant of V() is minimized when the columns of 2~ ~}2E(cr) are orthogonal to

one another, Hence, an alternative way of selecting E(a) will be to minimize the ratio

of the trace and the d-th root of the determinant of the matrix {E{a) }TE 'E(a), which



Multivariate Lincar Modoly "

is equivalent to winimizing the ratio of the arithmetic mean and the geometric mean of
the eigenvalues of the paositive definite matrix sec Chapters 2 and 3]. In the absence
of any other betler and practically feasible procedure, we intend to use this criterion
for choosing the transformation matrix for our multivariate rank regression. In other

words, our recommendation amounts to transforming the response vectors using a new
data driven coordimide system determined by the transformation matrix E(e) such that
the coordinale system is as orthogonal as possible in the d-dimensional vector space, where
the inner produet and orthogonality are defined based on the positive definite dispersion
matrix 2 of the residual distribution associated with the linear model (4.1). Of course we
nead an appropriate estimate of X in order to implement such a strategy, and we can get
that from the residuals computed at an initial stage after fitting the linear model to the
data by any simple and suitable method. Note that it is important that such an estimate
of £ be equivariant under linear transformation of the response vectors.

4,4.2 Multivariate Rank Regression Using Wilcoxon’s Score

Lot us now consider the dispersion funciions associated with well known Wilcoxon's rank
scores. Sueh dispersion funclions can be expressed in the form

pA)= Y 3 [(z,ﬁfﬂ 20y — AT (2, + ) (4.8)
I<rCash v s fo
Or
DAY= Y Y |l - A — AT, - 20)] (49

| Srsstirsa
where for a d-dimensional veetor & = (1, 29, ... ,2q)s (€] = the li-normof & = |21 [+ |zaf +
s+ |zal. Note that the dispersion in {4.8) origmaies from Wilcoxon's signed rank score
used in single sample location problems while that in (4.9) is related to the two sample
Wilcoxon's rank test. The second dispersion can be viewed as a form of Gini's mean
dilerence of multivariate residuals, and it is meaningful to use this dispersion function

whon there is no intercept torm present in the linear model (4.1). On the other hand the
soful in multivariate linear models with intercept terms.

ansperger (1989) and Chaudhuri (1992b) for
nd their use in rank regression in linear

dispersion funciion in (4.8) is u
Readoers ave roferred to Aubuchon and Hetém
a detailed discussion of these dispersion functions a

models with univariate response.

The estimates of the coeflicient matrix obtained through minimization of dispersion

functions in (4.8) and (4.9) can be viewed as natural extensions of the well-known Hodges-

- + . i tivariate linear
Lehmann estimates from one and two samp]e location pmblems 1nto mu' '
| wo dispersions leads

models. Observe at thig point that minitmization of any of these t
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to a coordinatewise least absolute deviations problem, and hence the computation of the
transformation retransformation estimate ﬁ(ﬂ) can be easily handled by some straight
forward modification of the TREMMER algorithmm developed in Section 4.2.2. One only
needs to replace the original data by their pairwise averages or differences (depending on
whether (4.8) or (4.9) is used) before invoking TREMMER. We now state a result that
establishes asymptotic optimality of our procedure for choosing the transformation matrix
E(a) as described in Section 4.4.1 when rank regression is performed using Wilcoxon’s score
in a multivariate linear model with the residual having multivariate normal distribution.

Result 4.4.3 Suppose that the residuals e; = y,— 1 x; for 1 <1 <n are i.i.d and have a
common d-variate normal distribution with zero mean and 5 as their common dispersion
matriz that does not depend on the regressor (i.e. we have perfect homoscedasticity),
and the i.i.d random regres&urs x;’s have a distribution with an associated k X k expected
information matriz E(wm;z? ) = Q that is positive definite ensuring asymplotic normality of
the coordinatewise rank regression estimates obtained using the dispersion function (4.8 ) or
(4.9) [cf. the asymptotic results in Chaudhuri (1992b)]. Then our procedure for choosing
the set of indices o and the associated transformation mairiz B(c) described in Seciion
4.4.1 yields a tmmfurmatwn retransformation esiimate ﬁn) such that the asymplotic
generalized variance of nl ( 3 _ 3) tends to zt.s minimum possible value as n tends to

infinely.

Proof : Once again let us fix o and argue conditionally give the (¢, y;}’s with 1 € «,
Note that when the dispersion function (4.9) is used, there are no intercept terms in the
multivariate linear model, and without loss of generality we can assume in this case that
the z;'s have zero mean. Under the conditions assumed in the statement of the result,
it is easy to establish a Bahadur type asymptotic linear representation of ﬁn using the
asymptotic results in Chaudhuri &19921:)) and this implies that as n tends to infinity,
the limiting distribution of n!/ 2(19 ) A) is multivariate normal with zero mean and a

variance covariance matrix that has the form
$2{3(a) ) H(e) {[T (@) )15 0 Q7 ~ (4.10)

where ® denotes the usual Kornecker product of matrices. Here J(«) is the matrix whose
rows are obtained by normalizing the rows of the matrix {E-Y2B(a)} ! as described in
Section 4.4.1, and H(e) is the d x d symmetric matrix with (4, )-th ‘element equal to
2sin~ (i1 /2), 7i; being the Buclidean iner product between the i-th and the j-th row
of J(ar). Tt is the multivariate normality of the residual distribution in the linear model

that enables us to simplify the the form of the asymptotic dispersion matrix in this special
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case. It is clear from (4.10) that the asymplotic generalized variance of the transformation
retransformation rank regression estimate will be minimized if we choose o to minimize
det{H(cx)}/[det{J(e)}], and this is accomplished when the rows of J(a) or equivalently
the columns of 2”1/2E(a) are orthogonal to one ancther. L

4.5 Numerical Results : Simulation and Data Analysis

In an attempt to investigate the performance of transformation retransformation rank
reregression inethodology in finite sample situations, we ran a simulation study and ana-
lyzed the real data sets in Examples 4.1 and 4.2 . We compared our approach with more
traditional procedures some of which are not affine equivariant, and as we will gradually
see the results turned out to be quite encouraging and favorable for our affine equivariant

rank regression,

A Simulation Study : We considered a problem with sample size n = 30, where the
data was generated from a multivariate linear model like (4.1) with d = k{—-- 2, and the
first coordinate of @ was taken to be the constant 1.0 while the second coordinate was gen-
erated from a standard normal distribution. We chose 3 as the 2 x 2 zero matrix, and for
the random residual, we used three different elliptically symmetric distributions i.e. dis-
tributions having densities of the form {det(E)}~1/2f(eT5~'e). These distributions are
bivariate normal, bivariate Laplace [i.e. when f(eTe) = (27)~! exp( (veTe)] and bivariate
t with 3 degrees of freedom. We used the dispersion function (4.8) for computing the
transformation retransformation estimate ﬁﬂ () after choosing « using the selection proce-
dure described in Section 4.4.1. Let &, and &,q denate the efficiencies of our estimates
compared with the ordinary least squares and cmrdinate\#ise least absclute deviations
estimatcs respectively, These efficiencies were computed using the fourth root of the ra-
tio of the generalized variances of competing estimates [see e.g. Bickel (1964}], and the
gener allzed variances were estlmated using 3000 Monte Carlo rephcatnons in each case,
Since both of ordinary least squares estimate and our estimate of A are affine equivariant,
Eots does not depend on S We observed that for bivariate normal Eots = 827, and for
bivariate Laplace £qs = 1017%. However, for the 1 distribution with 3 degrees of freedom,
which is a distribution with a fairly heavy tall we observed that 8{,;3 = 150%. Since the
coordinatewise least absolute deviations regression does not lead to an affine equwarlant
estimate of 83, & de[)ends on L. For our simulation study, we have used different choices
of 37, and each choice had both diagonal entries equal to 1.0 and both off-diagonal entries
equal to p. Five different values of p were used, and they are 0.75, 0.80, 0.85, 0.90 and

0.95. The results are summarized in Table 4.7.
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Table 4.7: Values of &,y for different choices of the residual distribution and 0.

Residual Values of p
Distribution 0.75 (.80 (1.85 (.90 0.95
Bivariate Normal 1.6823 | 1.7436 | 1.8547 | 2.0782 | 2.4439
Bivariate Laplace 1.2681 | 1.2874 | 1.4437 | 1.5925 | 1.9356
Bivariate { with 3 d.f. | 1.2135 | 1.2843 | 1.4138 | 1.5829 1 1.8910

Example 4.1 (Continued): We applied our affine equivariant rank regression proce-
dure based on the dispersion function (4.8) to the blood pressures data and obtained the
following estimated linear equations : systolic pressure = 100.64 -+ 0.8(age), and diastolic
pressure = 74.04 4 0.32(age). Following the procedures used earlier, we estimated the
sampling variations using 2000 bootstrap samples for each of the competing procedures
and observed 66.9% gain in statistical efficiency when our affine equivariant rank regression
was compared with coordinatewise least absolute deviations regression, The coefficients of
age in both the equations here are slightly larger than those obtained using TREMMER,
and their standard errors 0,20 and 0.11 for systolic and diastolic pressures respectively)
estimated through bootstrap turned out to be smaller than those for the TREMMER
estimates. | -

Example 4.2 (Continued): Since here one is interested in the differences between
regional effects, the dispersion function in (4.9) is quite appropriate. When we compared
our alline equivariant procedure with non-equivariant coordinatewise rank regression based
on Wilcoxon’s score using botstrap estimates of sampling variations, we observed about 8%
gain in statistical efficiency. As in the preceding example, here too we used 2000 bootstrap
samples for each competing procedure, In the case of our affine equivariant procedure,
time with estimated coefficients -0.4929 and -9.5899 having standard errors 0.1964 and
4.5880 respectively appeared to be a statistically significant covariate indicating decline
in both of TFR and IMR over time, FLR too turned out to be a statistically significant
covariate with estimated coefficients -0.03775 and -1.3006 haying standard errors 0.01223
and 0.2983 respectively indicating a strong influence of female education on decreasing
TFR and IMR. However, as in case of TREMMER based analysis we did not observe any
statistically significant regional difference in fertility and mori:':ality rates,



Chapter 5

Multivariate Quantiles

5.1 Introduction

The problem of finding ont suitable analogs of quantiles for multivariate data has a long
history in statistics, Univariate quantiles are quite popular for their usefulness in con-
structing useftl desertplive statistics like the median, the inter-quartile range and various
measures of skewness and kartosis, They are also used in constructing robust L-estimates
of loeation. As there is no inherent ordering in multidimension, extending the notion of
quantiles poses n big problom. Tn a classic paper, Barnett (1976) reviewed different pos-
sible techniques for ordering multivariabe data (see also Plackett, 1976 and Reiss, 1989).
Brown and Helbmansperger (1087, 1989) have proposed a notion of bivariate quantiles
basad on Qia'y simplicial median {(see Oja, 1983). Eddy {1983, 1985) proposed an inter-
esting approach Lo define multivariate quantiles using certain nested sequence of convex
sety. Very recontly, Chaudhuri (1996) and Koltchinskii {1997) proposed the notion of ge-
ometric or spatial quantile, which generalizes the notion of spatial median that has been
studied by earlier authars (see e.g. Brown 1083, Chaudhuri 1992a). Chaudhuri (1996) in-
dexed multivariate geometric quantiles, based on Buclidean distances, using the elements
of d-dimensional open unit ball. The corresponding quantiles not only give the idea of
‘extrome’ or ‘central’ observations but also about their orientations in the data cloud. He
also presuntad o Bahadur type reprosentation for the geometric quantiles and indicated
various ways of extending these quantiles to L-estimates; regression quantiles etc. R'B“
contly, Marden (1998) proposed somo analogs of bivariate Q-Q plots based on geometric
quantiles. Theso bivariate Q-Q plots can be used in comparibg a sample to a given popu-
lation distribution and thoy may reveal differences in location, scale and skewness, as well
as outliers. ‘

Whether the notion of multivariate quantiles would be based on sore univariate con-

88
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cept of ordering or on some veclor valued concept of ranks is a debatable issue. In many
ways il seems to be a good idea Lo make use of the orientation information in any version
of multivariate quantile. That is the only way in which one can talk about the ‘high points’
and the *low points’ in a multivariate data cloud. In a multivariate situation an observa-
tion may have ‘high’ values in some direction but ‘low’ values in some other direction. To
capture these intrinsic geomeiric features of the muitivariate data cloud, it seems reason-
able to index the multivariate quantiles by some multivariate quantities, which will give
us a way of measuring the closencss (or deviation) of a specific data point to (or from) the
center of the data cloud as well as its spatial orientation with respect to the data cloud.
Brown and Hettmansperger (1987, 1989) introduced a notion of bivariate quantile which
is based on their definition of multivariate ranks derived from QOja’s criterion function (cf.
Oja, 1983). The problem with their approach is that the criterion function used by them
is not ‘self~normalized’ in the sense that it is the gradient vector of Oja loss function based
on simplicial volumes and is not bounded. For certain losses and distances, the gradient
leads to ‘self-normalized’ orientation. For instance, the gradient vector of the function
[z @,y .00 By) = |z | + {zg| 4+ +|zy] (e the l1-norm) is the coordinatewise sign vec-
tors for which cach coordinate is bounded by 1. If f(21, 52, ., za) = (@3 +55+- - - +53)1?
(i.e. the lg-norm), the gradient is a unit direction vector [see Mottonen and Oja (1995)
and Motténen, Oja and Tienari (1997) for the notions of the ranks of the data points
constructed using such a gradient]. The advantage of using ‘self-normalized’ orientation
is that it becomes easy to interpret what is ‘high’ and what is ‘low’ in a multidimensional
selting, - |

The problem with geometric quantiles (Chaudhuri 19986, Koltchinskii 1997) is that
they are not equivariant under arbitrary affine transformations though they are equivari-
ant under rotations of the data cloud. Due to lack of affine equivariance, these geometric
quantiles do not lead to any sensible estimate when the different coordinate variables of
the data-vectors are measured in different units or they have different degrees of statistical
variations. In this Chapter we have used the transformation retransformation approach
to construct affine equivariant estimates of multivariate quantiles. In Section 5.2, we in-
troduce the notion of ly-quantiles and a proper indexing for them. Then with the help of
transformation retransformation methodology, we extend [,-quantiles to a family of affine
equivariant multivariate quantiles and explore their basic properties with regard to unique-
ness, existence and computation. In Section 5.3, we discuss asymptotic behavior of multi-
variate quantiles, We establish a Bahadur-type linear representation and use it to derive
asymptotic distributions of sample quantiles. In the same section, we indicate a procedure
to select a suitable ‘data-driven coordinate system’ and discuss a few interesting results
related to that. In Section 5.4, we present some applications of our proposed quantiles. In
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particular, we discuss construction of quantile based contour plots for distributions and
indicate a procedure for multivariate generalization of Q-Q plots and demonstrate with
some simulation results and real data sets about how they can be used in comparing a
multivariate sample to a giveln distribution. We also construct L-estimates and trimmed

mean estimates for multivariate location based on these multivariate quantiles.

5.2 [,~Quantiles and Transformation Retransformation

It is easy to see that given any # such that 0 < 8 < 1 and v = 2 — 1, the sum

b X — Q| + u(X; — @)} is minimized when @ is the sample 8-th quantile based on
the real-valued observations Xi‘s (see e.g. Ferguson 1967). In this article, we generalize
this concept to d-dimensional lp spaces for 1 < p < o0, Define the open unit ball B;(,d) n Iy
space as {u : u € RY, |lull, < 1} where w = (uy, ..., uq)T and |[ully = (jur [P+ -+ |ualP) /7
and ||ullee = max{jui|,...,|uq]). For 1 < p < o0, and for any u & Bé‘”, t € R, where

1/p+1/q = 1 with the convention that ¢ = oo when p = 1, let us define
2,(u,t) = [It]l, +ut (5.1)

Then the ly,-quantile QS)(H) corresponding to u is defined as

- ,
QS)(u) = arg min » P$p(u, X; - Q). (5.2)
| Qer4: 7 |

Observe at this point that a vector u for which ||u|, is close to one corresponds to an
extreme quantile whereas a vector u for which ||ul], is close to zero corresponds to a central
quantile. Since the vector u has a direction in addition to its magnitude, this immediately
leads to a notion of directional outlyingness of a point with respect to the center of a cloud
of observations based on the geometry of the cloud. It is also noteworthy that if we view
the d-dimensional space R? equipped with l-norm as the dual of the Banach space RY
equipped with l,-norm where 1/p 4 1/¢ = 1, our index vector u is an element of the open
unit ball in that dual space. - |

It is easy to observe that for 1 < p < oo, [;-quantiles are not equivariant under
arbitrary affine transformations of the data vectors and they are not even equivariant
under orthogonal transformations unless p = 2 (for rotational equivariance in the case
p = 2 see Chaudhuri 1996). Thus when the coordinate variables are measured in different
units, or they have different degrees of statistical variation l;-quantiles do not make much
sense. This lack of affine equivariance makes l,-quantiles very much dependent on the

choice of the coordinate system, which is not at all desirable,
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Lot us now consider n data points X, X,,..., X, in RY, and assume that n > d+
1. Lev oo = {ig,%1,...,8¢} denole a subset of size (d + 1) of {1,2,...,n}. Consider
the points X, Xiy, .0 Xy, which will form a ‘data-driven coordinate system’, where
X, will determine the origin and the lines joining that origin to the remaining d data
points X, ..., X, will form various coordinate axes. The d x d matrix X{o} containing
the columns Xy, ~ Xy, Xy, — X4, can be taken as the transformation matrix for
transforming the remaining data points Xi’s 1 <j <n, j € o to éﬁpress them in terms
of the new coordinate system as Y_E.-&) = {X(a)} ' X;. Il the X ;’s are i.i.d. observations
with a conunaon probabilicy distribution that happens to be absolutely continuous w.r.t
the Lebesgue measure on BY, X{«) must be an invertible matrix with probability one. To
compute the u-th ly-quantile for 1 < p < oo and jjull, < 1 with 1/p + 1/g =1 define

X{a)) ! |
]]-[lf((ﬂ%;ﬂullq for u # 0
0

forw =10

fl

v()

i

Let Rf'm (w) be the v{e)-th I,-quantile based on Ygﬁ)’s with1 <7 <mn J7¢ aas
dofined i (5.2). Then define the multivariate transformation retransformation (TR)
L-quantile H f:t"”)(u} for the original data by retransforming f%,(f'?) (u) as ﬁf’p](U) =
{X(rx)}fig? '{})(u). Note that as we transform the observations in the new coordinate
system, we need Lo suitably modify the orientation of the index vector wu. In the new
coordinate system, the vecior u should be transformed to {X(a)}~'u, but it may not be
in the open unit ball BE,‘” . To preserve the l-norm of the vector u, we reseale {X(a}} 'y
by multiplying it with {jull,/ H{X ()}~ uaffq. In the translormed coardinate system, we
compute v{c)-th [-quantile based an transformed observations and then retransform it
back to the original coordinate system. We now state a Theorem demonstrating the

equivariance of the TR [p-quantile under arbitrary affine transformations of data vectors.

Theorem 5.2.1 Lel the d-dimengional random vectors X1, Xy, X be transformed

o AX, + b,AXy+ b,...,AX, + b, where A is a d X d nonsingular matriz and b
is o vector in RY. Then for w = (|jull /N Awlq) Au,the w-th TR ly-quantile based on
AX, by AXy -+ b is given by AQr"(w) + b, where 5P (u) is the u-th TR by-
quantile based on Xl,Xg,...,Xn. | S |

. Xy are trangformed to A X +
matrix and b is d'x 1 vector, the
For u € B, define w =

Proof: As d-dimensional random vectors X 1y
b,....AX, + b, where A isa dXd nonsingular

iransformation matrix X(a) gets transformed to AX(a). € B ro v =
(llwlle/ | Awlls) Au. Note that the index vector v(c) based on original observa



Multivariate Quantiles 02

corresponding to v is defined as {||ullq/I{X(a)} " ull,){X (@)} 'u and that based on trans-
formed observations and corresponding to w is given by

o) = AX(@)} w {AX(c)} "' Au
= ARl = fax(e) a1 =

Algo, notle thatl the YE“)‘S will be transformed to ZE“) = YE“) + {AX(a)}"'b, and the
v(cr)-th [,-quantile is equivariant under a location shift of the data points. Hence, the v(«)-

th {-quantile based on zﬁ“)’a s transformed to & (w) = RE? ’p)(u) + {AX(e)} b

I
a OGP ' 1
Consequently Qf! ](w), the w-th TR [,-quantile based on transformed observations,

which is defined as {AX (o)} : JEfk"p]('u.i), will be equal to AQJ{:’M (u) + b, Thus the w-
th TR {,-quantile based on transformed observations (AX; + b) is AQ?’F} (u) + b, where
QEF ?) (u) is the u-th TR [,-quantile based on criginal X’s.

It is easy to see that, if we take p = 2 and A happens to be an orthogonal matrix,
then Au-th quantile based on AX(+b,...,AX, +b will be given by AQiﬂ'z}(u) + b
where Ef 2 (w) is the u-th transformation retransformation geometric quantile based on
X1, Xa9,...,X,, (cf. Fact 2.2.1 of Chaudhuri 1996).

It should be noted that general M-quantiles defined by Koltchinskii (1997) are not atfine
equivariant in nature and we can employ this transformation retransformation strategy to
genecral M-quantiles also to make them affine equivariant. But we have decided to restrict
ourselves Lo [p-quantiles here mainly because in many practical situations {;-quantiles and
spatial (or lp) quantiles turn out to be adequate to explore different statistically important
geometric agpects of a multivariate data cloud, some of which we will see later. The
mathematical treatment of /,-quantiles is not much different from those of l3-quantiles,
and for each p > 1, the l,-norm leads to a notion of multidimensional symmetry and
associated symmetric probability distributions will have contours that coincide with the

balls defined by the {p-norm. The existence and uniqueness of TR lp-quantiles are given -

in the following IFact,

Fact 5‘2.2 Consider the d-dimensiongl observations Xl,Xg,....,X_n_ in 11;2'5f and o
{10,81,.++ 444} C {1,2,...,n} such that_the matriz X(c) as defined earlier is invertible.
Then the TR l,-quantile Qf:x 'p)(u')'eﬂ:ists for any gien u in the open unit ball Béd), where
l/p+1/q = 1. Purther, ford>2 and 1 <p < co, it will be unique ¢f the X; 's, 1 & o are
not all carried by a single straight line in R, |

Efficient algorithms for computing spatial median have been extensively studied by Gower

(1974) and Bedall and Zimmermann (1979). Chaudhuri (1996) suggested an algorithm to

compute geometric quantiles which is & minor modification of Newton-Raphson algorithm
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for finding roots of multivariate equations. We now state a fact characterizing TR ;-
quantiles in terms of data points from which it is computed.

Fact 5.2.3 Consider X, Xy5,..., X, in & and o = {t)81,..y2q} € {1,2,...,n} such
that the malriz X(a), as defined earlier , zs invertible, and Q( J('u,) 18 the u-~th TR L,-

quaniile based on these observations, If QH ’m(u) # X for all i € «, we have for 1 < P <
owandl/p+1/g=1

X(2)} (X, - O (w)) _

Z V[{ ] - +n—-d-1 = 5.9
iga || {X( a-)}""(x.-,- N " o) (53
On the other hand, if Q ’p)( ) = X; for some i & o, we will have

V[{X (@)} (X - O (w)) }
: + v(a)
2 {”{X( JFHX - Q( P )1 ’

igon X;#Q{ ) q
<L+ (@)l X = @ (w)), (5.4)
where v[(21, 20, .., 8¢)7) = (sign(z)|z|P~1,.. ., sign(zg)zqP1)T, v(a) as defined ear-

lier, and 4 denoles the number of elements in a sel.

This fact implies that one can use iterative methods like Newton-Raphson type method to
computbe Q,ﬂﬂ) (u) for 1 < p < oo, For p = 1, {1-quantiles are nothing but coordinatewise
quantiles. Thus, after transformation, one has to compute coordinatewise quantiles of the
transformed observations and then retransform it back. This shows the simplicity of the
computation involved in TR {,-quantiles once the transformation matrix is fixed. Both of
Facts 5.2.2 and 5.2.3 follow from some minor modifications of some of the fundamental
results in Kemperman (1987) and Chaudhuri (1996), and we will skip their proofs here.

5.3 Large Sample Properties: Main Results

Lel us begin by introducing some notations. For any @ € R? and u € B( D, we w:ll write
wplu, @) = y(m)/"m“ﬁ“l + 4 for ¢ # 0 and ¢,(u,0) = u. Note that t,ap(u., @) is the
gradient or first order derivative of the function ®p(u,x) w.r.t @ when @ # 0. Let Wy(z)
denate the d ¥ d Hessian matrix or the second order derivative of $p(u,z) for 1 < p < o0,

o re ko (@) (@)}
vz {vix
wﬂ(m) = (P — 1)||:IJ|I;‘,'P[WP(:U) - |m"¥ ]1
f""g). We will adopt the con-

where Wy(z) is the diagonal matrix diag{|z1["™*, =2z
vention that W,(0) = 0 = the zero matrix. Note that when p = 1, @,(u,x) becomes

 (sign(z),. .., stgn(zq))” +u and ¥p(x) is identically equal to 0.
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5.3.1 Asymptotic Behavior of TR /,-quantiles

Let us define Q(“’p)(u) a8

QM (u) = argmin BV (2(v(a), {X(e)}™ (X - Q)) - Bp(o(a), {X (@)}~ X)]

where E(®) denotes the conditional expectation given the X ;'s for which i € o and v({a)
is as defined in Section 5.2. In this Section, the observations X;'s will be assumed to be
i.i.d. observations with a common probability distribution having density A(x) on ®e. Let

us define

DI*(Q) = BO{W,({X(a)}HX ~ Q)

and
DIP(Q,u) = B9 {p,(v(e), {X(@)} (X — @)} {1, (v(a), {X(e)} (X — QD).

Theorem 5.3.1 (Bahadur type representation of TR !;-quantiles)

Assume that X1, Xq,...,Xy,... 15 a sequence of 1.4.d. observations with a common den-
sity h(z). Fiz o = {ig,81,... 43¢} C {1,2,...,n} and the moiriz X(o) and assume thal the
j-th marginal g; of the densily f(y) = |det{X(a)}r{X(a)y} is differentiable and posilive
at Qf(u), where Q¥ (u) is the j-th element of {X ()} 'Q*V(u) for i=1,...,d. Then
for any u € R* such that ||ulle < 1, and given the X;’s with i € a, we have

QY (w) - Q) =
n” X (@) {Ds(a)}™ Z{S@gn[{}{(a)} l{xi"Q(ﬂ‘l)(H)}]"*-U(CI)}+Rr1('u')i (5.5)
1o

where Dy¢(a) is the diagonel mairiz diag(2g {Q#(u)},.,.,.‘lg{f{Qf(u)}), Sign denoles
the vector of coordinatewise signs, and as n — 0o, the remainder term Rp(u) is almost

surely O(n~34(log ﬂ)3/4)-

1
Before we prove Theorem 5.3.1, we state an asymptotic representation of Q( )(u),
which is the non-equivariant vector of coordinatewise sample quantiles, Consider Qm(u)
as the vector of marginal quantiles of the population distribution function F,

Lemma 5.3.2 Let the j-th marginal distribution Iy of F' be twice differentiable and
fJ(Q(I (u)) > 0 where f; is lhe j -th marginal density for 1 < J<d and Q1 (u) =

(Qm( ). .., QW v (W)’ Then
éaf:%u) QW) =0 D7 S (Sign(X; — QU(w)) + 4] + Rulu),  (5.)
o f=1

where 'Df is the diagonal matriz diag(2f1( {1)(15)), oo ,2].;;(@&1)(14))) and as n — oo, the
remainder term Ry(w) is almost surely O(n=3/4(log n)3/4)y.
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The above Lemma follows almost directly from Bahadur (1966) representation for
sample quantiles in the univariate case and thus we omit the proof of this Lemma. TFor
the vector of marginal quantiles, the asymptotic normality can be derived with weaker
conditions and it is studied in detail by Babu and Rao (1588).

Proof of Theorem §.8.1: Define ZE“J as ZE“) = {X(a)}"! X;. Then, given the X;'s
for which 7 € a, the transformed observations ZE”)’S with ¢ & « are conditionally i.i.d.
random vectors with common density | det {X(2) }h{X(a)z}. The conditions of Theorem
5.3.1 imply that the conditions of Lemma 5.3.2 hold for the density of transforimed data.
Thus using Lemma 5.3.2 for the coordinatewise quantiles of transformed observations

Z(“J's for 1 <1< n,i¢ o we have the representation in (5.5) for the TR {;-quantile
(ﬂll)( ) [:-]

Theorem 5.3.3 (Bahadur type representation of TR [,~quantiles, 1 <p < o)
Assume that X1,X2,...,Xn,... 15 a sequence of i.i.d. observations with a common
density h(x) which 1is bounded on every compact subset of R® with d > 2. Fiz a =
{30,281, .., 2¢} C {1,2,...,n} and the malriz X(x). Then for any fized u € Bé 0 where
l<p<ooand 1/p-+ l/q = 1, the expectation defining the mairiz Dg "’)[Q f’) (w)] will
exist as a finite and tnvertible matriz, and given the X;’s with 1 € , we have

27" (W) - QU (u) =

v X(@)(DIP(QEP W) Ty lu(a) {X(@)} X — QPP )N + Rulu), (5.7)
o

where as n — 00, Ry(u) is almost surely Ologn/n) if d > 3, and when d = 2, Ryp(u) is
almost surely o(n"F) for any fized B such that 0 < 8 < 1.

Before we prove Theorem 5.3. 3, let us prove a-Lemma on asymptotic representation
of non-equivariant [p-quantiles Q(P)( ) for 1 < p < 0. Let QW (w) be the popula-
tion l, quantile and define the matrices D{"/(Q) = E{¥,(X - Q)} and DI (Q,u) =
E{{e,(u, X — Q)]lp,(u, X - Q))7'}. Note that, D{p)(Q) will be positive definite unless
the distribution of X is completely supported on a straight line in R?, and the expectation
defining DE”)(Q) will exist finitely for d > 2 whenever X has a density that is bounded
on compact subsets of R¥. These facts can be verified directly.

Lemma 5.3.4 Assume that X, Xo,..., X,,,... 1 a sequence of independent and identi-
cally distributed random vectors in R? such that their common density is bounded on every

bounded subset of kY, Then for any fized u € Bm where 1 <p < oo andl/p+1/q=1,
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we have the following Bahadur type representation for the u-th lp-quanttle:

(), _ e
@y (u) - Q(p)(u) =0 I[Dgp)(Q(u))] : Z wp(u, X — Q(p) (u)) + Rp(u), (5.8)
t=1
where as n — 00, Rp(u) is almost surely O(logn/n) if d > 3 and when d = 2, Ry(u) s
almost surely o(n=") for any fized f such that 0 < 8 < 1.

Proof: We present the proof of the lemma following arguments similar to those used to
prove the main results in Chaudhuri (1992a, 1996) with suitable modifications. We spht
the proof in several parts to expose the key ideas. Koltchinskii (1997) obtained a similar
representation theorem but with slower rate of convergence fof the remainder term Rn(u).
It follows form his result that there exists a constant Ky > 0 such that we have almost
surely [\Q(p)( ) — Q(P)( )|, < K for all n sufficiently large.

Now observe that ) i, ¢,(u, X; Qflp)( )} is bounded [cf. Kemperman (1987),
Chaudhuri(1996)] with the convention ¢,(u,0) = u. Consequently, an easy extension
of Proposition 5.6 of Chaudhuri (1992a) implies the existence of a constant K3 > 0 such
that almost surely HQ(p)( ) — Q(P)(u)"}] < Kon~Y%(log n)}/? for all n sufficiently large.
Recall here that Q'P)(u) satisfies Elp,(u, Q?)(u))] = 0, and lemmas 5.3 and 5.4 of Chaud-
huri (1992a) can be suitably modified to imply that the magnitude of the d-dimensional
vector 357, 0, (u, X; — Q) will explode to infinity almost surely as n — oo, unless Q lies
inside a ball in R with center at QP (u) and radius of the order O(n~Y?{log n}/?).

Let B, be the subset of R* defined as

B, = {(v1,... ,vd)|ﬂ4v; = an integer and Ju;] < !{21(1“1/2(105ﬂ)l/2 for 1 << d}.
For Q € IR¢, define |
A(Q) = Blpy(u, X1 - @} + (PP (@P(w)HQ - QP (w)},

and for Q e By, define
| | An(QP (1), Q + QP (u))

n~h EE{‘PP(”: X~ QP (u)) — pp(w, Xi ~ QP (u) - Q)} .

¢=1

+E{pp(u, X1~ QP (u) - Q)}.

Cﬂnmder a sample sequence Xl,Xz, ..+ yXp, ... such that, for all n sufficiently large, we
0P w) - Qullp < Ka(logn/n) for

have | (u) = Q@) (w)ll, < Ki(logn/n)"/2, and g
some K3 > 0 and @y, is a point in RY such that Q} — - QP (u) € By, and @, is closest
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to @ﬂ (u) in lp-norm. If there are several choices for such a Q*, we can choose any one
of them. It is quite easy to verify (see the proof of Proposition §.6 in Chaudhuri 1992a)
that the collection of all sample sequences satisfying these requirements will form a set of
probability one. Now, we can write

Y p(u, Xi - QP (u))

i=1

= A {QP) (w), Q}) + = Zsopux - Q) - AQ}) + DY QP u) Q) - QP (w)},

Some minor modlﬁcatmns c:-f the arguments used in the proof of Fact 5.8 and Lemma 5.9
in Chaudhuri (1992a) implies that for a fixed constant M* > 0,

Sup IAQ)Il; = O(logn/n) (5.9)
Q- Q{P](u}llp M*{log n/n)1/?

as n — oo, for d > 3. On the other hand for d =.2, we have

sup 1A Qg = o(n™) (5.10)
IQ-Q() ()l <M*(log n/n)1/2

as n — 0o for any constant w such that 1/2 < w < 1, We also have that for d > 3 there is
a constant K5 > 0 such that maxgegp, ||Ar(QP (1), Q + QW ()}l £ Ks(logn/n) almost
surely for all n sufficiently large. Further, if d = 2, we have maxgep., ||An(QP(u), Q +
QP (u u))|lg = o(n~*) almost surely as n — oo, where w is any constant satisfying 0 <
w < 1. On the other hand, it is quite easy to verify (cf. the inequality (6) in the proof of
proposition 5.6 in Chaudhuri 1992a) that n=! 1 ¢, (u, X; ~Q}) = O{n~! logn) almost

surely as n — oo.
The proof of the lemma is now complete usmg the positive definiteness of the matrix
D(p)[Q(p) (u)] together WIth the fact that |[Qn ( )= Qrllp is O(n~*) as n = o0 along our
chosen sample sequence. O

Proof of Theorem 5.3.3: Define Y;(ﬂ) = {X(a)}"'X;, for 1 < i< n,i & a Then,
given the X ;'8 for which 7 € «, the transformed observations an) 's with © € « are
conditionally i.i.d random vectors with common density |det{X(a)}h{X(a)y}. As the
density h is bounded on every bounded subset of R®, the conditions in Lemma 5.3.4 hold
for transformed observations, Using Lemma 5.3.4 for representation of [,-quantiles of
transformed observ&tlons Y( )’s, we have the representation in (5.7) for TR lp quantile
Q™ (u) - - 0

- It will be appropriate to note here that Chaudhuri (1996} established a Bahadur type
representation of nonequivariant /z-quantiles and Koltchinskii (1997) considered general



Multivariate Quantiles 98

non-equivariant multivariate M-estimators and proved a Bahadur type linear represen-
tation for them with a slower convergence rate for the remainder term. The following
Corollaries are easy consequence of the above two Theorems.

Corollary 5.3.5 Under the assumptions of Theorem 5.8.1, for any fized u € R*® such
that ||u|leo < 1, the conditional distribution of ﬁ{t’:}f’l)(u) ~ Q'®N (1)} given the X;'s
with v € o converges weakly to a d-dimensional normal distribution with zero mean and

dispersion malrig

{X()HD )} DE Q@Y (w), w)){ Dy ()~ {X ()T

25 1 — 00.

Corollary §5.3.6 Under the assumptions of Theorem 5.3.3, for 1 < p < oo and for any
U € B(Eud) where 1/p + 1/q = 1, the conditional distribution of \/E{fo'p) (u) — QP (u)}
quven the X;'s with 1 € o converges weakly to a d-dimenstonal normal distribution with
zero mean end dispersion matriz | |

{(X()}D{*P{Q (w) )]~ DM QWP (), u)][DP { Qe ()} X ()}

as n — oo,

5.3.2 Selection of o

The asymptotic normal distribution of € ff’p ) (u) established in the preceding section and
the form of the associated dispersion matrix clearly indicates that the performance of
the TR I,-quantiles will depend upon the choice of the transformation matrix X(c).
Hence it is important to select a suitable subset of indices . Before we state any formal
method for selecting the transformation matrix X(a), let us consider the special cases
of /1 and I, TR medians discussed in Chapter 2, which will provide some valuable in-
sights into the problem. Let us assume that X, X9,...,X4,... are independent and
identically distributed random variables with a common elliptically symmetric density
| det(2)|~Y2f{(x — )7L~ (x — )} where T is a d x d positive definite matrix, 8 € &Y
and f(zTx) is a density in R?. The main message communicated by Theorem 2.2.2, 2.2.3
and 2.3.1 is that for u = 0 (i.e. in the case of multivariate median) and p = 1 or 2, we
need to choose X(a) in such a way that {X(a)}*£1X(c) becomes as close as possible
to a matrix of the form Al4, which is a diagonal matrix with all diagonal entries equal.
In other wor'ds,. the coordinate system represented by the matrix 212X (o) should be
as orthonormal as possible, Tt also implies that when {X(a)}? E~!X(«) is chosen to be
close to a diagonal matrix with all diagonal entries equal, the asympt_;ﬂtic efficiency of the
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F)

est.imate_Qfl&'p)(O) becomes close to that of the [,-median under spherically symmetric
models, and it will be more efficient than [, median in elliptically symmetric models for
p=1 or 2,

Keeping in mind the fact that the above selection procedure provides “the most efficient
transformation” for the multivariate median problem, we propose to select the transfor-
mation matrix X(a} in such a way that {X(&)}! Z~'X(a) becomes as close as possible
to a diagonal matrix with all diagonal entries equal. Here I is the scatter matrix associ-
ated with the underlying distribution of the X;’s which may not necessarily be elliptically
symmetric. If the second moments of the underlying distribution exist, 3 can be taken
to be the variance covariance matrix of that distribution. Since ¥ will be an unknown
parameter in practice, we have to estimate that from. the data, and we will need an afline
equivariant estimate (say L). After obtaining ¥, we will try to choose X(«) in such a
way that the eigen values of the positive definite matrix {X(e)}T £7!X(«) becomes as
equal as possible. To achieve this, our strategy will be to minimize the ratio between the
arithmetic mean and the geometric mean of the eigenvalues. Since the arithmetic mean
and the geometric mean of the eigenvalues of a symmetric matrix can be obtained from its
trace and the determinant respectively, we do not need to compute individual eigenvalues.
Define now X*(a) = |det(X())|~V4X(a) and £* = {det(2)} /45> where 2 is a positive
definite matrix computed from the data. Note that, the absolute values of the determi-
nants of the newly defined matrices X*(a) and £* are both equal to 1, and the operation
can be viewed as a way of normalizing matrices, Then to select the optimal o according to
the above mentioned criteria, we only have to minimize the trace of {X*(a)}Tf}*“IX*(a).
Suppose that for the subset of indices &, the trace of {X*(«) }Tf‘.*'l}(*(a) is minimized.

Theorem 5.3.7 Assume thal, the random vectors X1, Xs,..., X are independent and
identically distributed with a common densily h{x) which satisfies

. d{h(i:)}d+1 de < 00,

Further assume that L* converges in probability to a positive definite matriz L*. Then
det(2*) = 1, and trace[{X*(&)}F £*~1X*(&)]/d converges to 1 in probabiltty as n — oo.

Before we prove Theorem 5.3.7, let us present some auxiliary results,

Lemma 5.3.8 Assume that the observations X1, Xo,...,Xp,... ore independent and
identically distributed with a common density h(x) such that foa{h(@)}¥t de < oo, Let
T' be a positive definite matriz with determinant equal to I and & minimizes t(a)
trace[{X*(a)}TT-1X*(a)]/d. Then t(&) converges in probablity to I as n —+ 0.
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Proof: Let A be a d X d positive definite matrix such that I' = AAT. Consider
a = {1,2,...,d+ 1}, As the underlying distribution of the X;’s are independent and
identically distributed with a common density h, the joint probability density function of
X1,X2,...,X 441 can be written as Hfill h{z;}. Now we make the following transforma-
tion of variables:

YVi=A Xo-X1),.... Y= A" (Xgp - X)), Yo = A7 X

Then the joint density of Y'y,...,Y 4., is given by

d .
MAY 441) H MA(Y; + Y1)} (5.11)
=1
Therefore, the joint density of ¥'1,..., ¥ 4 at the origin in R¥*¢ is
{h(Ay)}**dy,
Rd

which is finite and positive by the condition assumed in the statement of the Lemma. This

condition further implies that the map

| d
W0 Yas ey Yg) P /R h(Ay) [ AW +v)} dy (5.12)
from R%¥¢ to R is everywhere continuous. Therefore the joint density of ¥i,..., Yy

must remain bounded away from zero in a neighbourhood of 0 € R**¢. Consequently
the probability of the event that the columns of AX (&} will be nearly arthogoenal and of
nearly same length (and hence {X*(a)}*T~!X*(a) will be very close to I4) is bounded
away from zero. In other words, we have for any € > 0}, |

PI{X* (@))TT X @) - Tullh <& = pe > 0 (5.13)

Let o,io,...,a, be disjoints subsets of {1,2,...,n} each with size d + 1 such that
k, = 0o as n —+ oo [e.g. ky may be equal to n/(d +1)]. Then
Plltrace[{X*(a)} T=1X*(a) — 14)| > ¢ -

< P[ltmce[{]{*(aj)}fpl"“lx* (o) —Lg)| > ¢, for 1 <3 < kn}

IA
-
[

=

%
—
7
=
1
g

]

Hence, the result follows.

Proof of Theorem 5.8.7: For M > 1, define K}; = {a = {40,81,+ +2ld} o)

trace[{X*(a)}TT*1X*(a)]/d < M}. Then it is easy to see that there exists some M, >0
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such that for any o € Kfy, trace(X* (a)}{X*(a)}7] < M. Observe that, for any @ € K%

X (@} 271X (o) - (X (@2 X (0l < X (IS - 2+,

< M| -2,

: = p ' PR ’ b » ¥
Now, since ¥* — T* as n — oo, where 2% is a positive definite matrix with determinant
equal to 1, we have

sup H{X ()} 71X (@) ~ {X* (@)} TS X (o)l 2 0 (5.14)
acK{,

as . — 00. Since & minimizes t{a), by taking ©* as T in Lemma 5.3.8, we must have with
large probability & € K, for all sufficiently large n. Therefore using the continuity of the
trace function of a matrix, we have

li(@) - t(a@)| - 0, (5.15)

where £(c) = trace[{X*(a)}T2*~1X*(a)]/d. Thus, for all sufficiently large n, {(&) < M,
with large probability for some My > 0. In other words, for & which minimizes #(a), we
have {(&) < M. Therefore trace[X*(a){X*(&)}7)/d is also bounded in probability as .
n — oo. This in turn ensures that [{(&) — ¢(&)] == 0 as n — co.

Next, since & minimizes #(«) and & minimizes ¢(«), it follows by some straightforward
analysis that [f(c:"r) t(&)] < € and [f(&) —1(@)| < e will imply that [{(&) —t(&)| < e. Hence,
we have

Plli(&) — #(&)| > €] < PE(&) — t(&)] > ¢ + Plli(&) — (@) > €}

and consequently [f‘,'(c’if) — #{&@)| <5 0 as n — oo. Finally, since

46) - H@)] < [1(&) - £(@)] + [i(&) - @)l

it follows from Lemma 5.3.8 that t(&) converges in probability to 1.

Clearly, the integrability condition imposed on A in Theorem 5.3.7 will hold if A hap-
pens to be a bounded density on Rf, In the case of elliptic symmetry with h(z) =
{det(T)}~12 f{(x ~ 6)TT "z - §)), this condition translates into an integrability condi-
tion on f, which is again trivially satisfied for any bounded spherically symmetric density
f on RY, It is interesting to note that if the second moments of the distribution of X;’s
exist, & can taken to be the usual sample variance covariance matrix and $* will con-
verge in probability to ©* where T* is the normalized version of the variance covariance
matrix of the distribution. In the case of elliptically symmetric distributions, one can use
any consistent affine equivariant estimate of the associated scale matrix ¥ upto a scalar

multiple.
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As an alternative affine equivariant modification of spatial median, Isogai (1985} and
Rao (1988) suggested spatial median based on observations transformed by the square
root of the usual variance covariance matrix. While transforming the data points by the
square root of the sample variance covariance matrix is a popular approach, the resuliing
coordinate system does not have any simple geometric interpretation. Further, such a
transformation cannot lead to an affine equivariant modification of multivariate location
estimates which are obtained by minimizing the general |, distances for a p different from 2,
(see Chapter 2}, and the limitation of that approach is primarily due to the fact that there
does not exist a way to extract an affine equivariant square root of the sample variance
covariance matrix. On the other hand, observe that in a sense our selection procedure
gives an “affine equivariant estimate” of the matrix £1/2 which is further justified from

our next result,

Theorem 5.3.9 Under the conditions assumed in Theorem 5.8.7, the posittve definite
matriz X*(&){X*(&)} converges in probability to the matriz ©* as n — oo,

Lemma 5.3.10 Let {A,} be a sequence of d x d random positive definite matrices such
that det(A,) = 1 for all n 2 1 and trace(Ay) Py dasn = 0. Then Ap == Iy as

n — 00,

Proof : Let the eigenvalues of the positive definite matrix Ay be Ay < Ao < -+ &

Adine Then, if we show that Ay, 5 1 and Agn L3 1 asn = oo, the proof of the Lemma
will be complete. If possible, suppose that Agp, does not converge in probability to 1 as
n —» 0o. Then there exists some € > 0 and d > 0 such that for infinitely many values all

n > 1, we will have
P[}\d:ﬂ >1+E]>5*

Define pin = (An + - + Ag—1:n)/(d — 1), i.e. the average of the eigenvalues excluding the
maximum one. Then, as the product of all the eigenvalues is 1, we have by the A.M.~

G.M. inequality u, > A;}f(dqll, Thus we have

ot (d = Dpn A (@~ DAz, @
trace(An)/d_)‘d-ﬂ—f—(j )an dﬂ+( d) d:n >1+£1

{or some €; > 0 whenever A, > 1 + ¢. Here ¢; depends on ¢ and d only. Therefore

Pltrace(Ay)/d > 1+ €1] 2 Pl > 1+ €] >4,

which contradicts the fact that trace(A,) converges in probability to d as n —r 00. Hence,

we must have Ag, P51 asn - oo.
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As the maximum eigenvalue Ay, converges to 1 and the determinant of the matrix A,

is 1, all other eigenvalues including the minimum one must converge to 1 in probability as
1~ 00, | U

Proof of Theorem 5.8.9: Theorem 5.3.7 implies that trace[{X* (&)} &*~1X*(&)] tends
to d in probability as n — co, Hence, |X*(&)|ls must remain bounded in probability as

n — oo, Also, since det[{X*(&)}'S*'X*(&)] = 1, Theorem 5.3.7 and Lemma 5.3.10
imply that

(X*@&)} e 1xa) 5 1y

as n — oo. The proof is now complete by observing the fact
IX*(@){X* (@)} - B2 < IX*@NZIHX (@)} 2 {{(X* ()]} — Lall.

]

Our results hold for any consistent and affine equivariant estimate of 3 {or Z*) and one
can use robust estimates of scale as discussed by Davies (1987), which however are com-
putationally quite intensive. Note that, this ‘data-driven coordinate system’ is a widely
applicable tool for converting naﬁ-equivariant (or non-invariant) procedures into equivari-
ant (or invariant) procedures, which is not limited to only l,-quantiles. Besides, it has
a very nice and intuitively meaningful geometric interpretation, and an attractive fea-
ture of this data-based transformation retransformation strategy is the clean and elegant

mathematical theory associated with the approach,

5.4 Applications

5.4.1 Quantile‘COHtouf Plots

In the univariate set-up the quantiles uniquely determine the population distri_bution,
and the sample quantiles provide a fair idea about the shape of the distribution.” While
exploring a multivariate data cloud, one may be interested to find out quantile contours,
which join the quantiles for which the length of the index vector u is a constant, to get
ideas about the shape of the underlying population distribution. Thus quantile contours
can be described by the sets {Q}f’p)(u) : ||ully = r} where 0 < r < 1. Forr =0, it
comprises of only one point - the TR, !, median. In principle, quantile contours can be
constructed for any dimension d > 2, but for practical purposes, it is easier to visualize
things only for bivariate data.

It is interesting to note that, for the optimal selection of the transformation matrix

X (o), the population quantile contours corresponding to p = 9 are nothing but the level



Multivariate Quantiles 104

sets of the probability density function (or, probability density contours) when the underly-
ing distribution is elliptically symmetric with density {det(Z)}~/2f{(x—8)TT~(x—8))}.
The optimal selection of X(«) provides an estimate of the matrix T1/2 upto a scalar multi-
ple and premultiplying the observations by {X{(a)}~! makes the data spherical. As prob-
ability density contours characterize a distribution, the affine equivariant TR l,-quantile
contour plots can be used to measure the closeness of the data to a specific elliptically
symmetric probability distribution. Even when the underlying probability distribution is
not ellipiically symmetric, Koltchinskii (1997) observed that the spatial quantile process
uniquely determines the population distribution. Vector of coordinatewise quantiles de-
termine the marginals of the joint multivariate distribution. However, marginals do not
uniquely determine the joint distribution. Thus TR /,-quantile contour plots cannot be
used as a tool for measuring proximity to a multivariate distribution. Nevertheless, they
can provide some insighiis into the geometry of the multivariate data cloud and help in
identifying possible outliers.

To illustrate quantile contour plots, we simulated 100 observations from bivariate nor-
mal populations with zero means, unit standard deviations and varying correlation coefh-
cients p = 0.0, 0.5 and 0.95. In Figure 5.1 (a), (b) and (c), we have plotted TR {;-quantiles
for r = 0.1,0.2,...,0.9. To construct quantile contouré, for each r, we have taken 32
values of u such that ||u|, = 7 and joined the corresponding quantiles. In Figures 5.1
(d), (e) and (f) we have similarly plotted TR l3-quantiles for » = 0.1,0.2,...,0.9. For each
r, we have computed quantiles corresponding to u = {r cos@,rsin 8)*" where 8 = wk/16,

= 0,1,...,31 and joined them. We notice that as the TR quantiles are affine equivari-
ant, quantile contours nicely capture the shift of the distribution from spherical symmetry
to elliptical symmetry. The regions enclosed by quantile contours can be viewed as mul-
tivariate analogs of box and whisker plots used for univariate data.

Another interesting application of these quantile contours is in detecting nuthers in
the multivariate data. In multidimension, it is really difficult to detect the outliers. Here
we suggest a simple procédure. We compute the quantile contour for some r close to 1
(the choice of r depends on the problem and the user’s preference), and if a particular
observation lies outside this contour, then we will call it an outlier. We demonstrate the
methodology in a real data set. Reaven and Miller (1979) examined the relationship be-
tween chemical, subclinical and overt nonketotic diabetes in 145 non-obese adult subjects.
The three primary variables used in the analysis are glucose intolerance, insulin response
to oral glucose and insulin resistance. In addition, the relative weight and fasting plasma
glucose were also measured for each individual in the study conducted at the Stanford
Clinical Research Center (see Table 5.1), We have taken only 76 overt nonketotic diabetic
patients and in Figure 5.2 we have shown the TR {,-quantile contours by taking two vari-
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Table §.1: Measures of blood glucose and insulin levels
of overt diabetic patients

Fasting | Fasting
Patient plasma Glicose Insulin Patient plasma Glucose Insulin
number glucose area area  S3PG | number glucose area area  SSPG
1 80 356 124 55 39 106 396 128 30
. 97 289 117 76 40 98 277 299 186
3 105 319 [43 105 41 102 378 165 117
4 90 356 199 108 42 00 360 282 160
5 90 323 240 143 43 04 201 04 71
6 86 381 157 165 44 80 269 121 79
7 100 350 221 119 45 93 318 73 42
8 85 301 186 105 46 86 328 106 56
9 97 379 142 98 | 47 85 334 118 129
10 97 296 131 04 48 96 356 112 73
11 91 353 221 53 49 88 291 157 192
12 87 306 178 66 50 87 360 292 128
13 78 200 136 142 51 94 313 200 233
14 90 371 200 93 52 93 306 220 132
15 86 312 208 68 53 86 319 144 138
16 80 393 202 102 564 86 349 109 83
17 " 80 364 152 76 55 96 332 151 109
18 99 359 . 185 37 | 56 86 323 158 96
19 85 296 1186 60 57 89 393 73 52 |
20 90 345 123 50 58 83 351 81 42
21 90 378 136 47 59 100 398 122 176
22 88 304 134 50 60 110 426 117 118
23 95 347 184 91 61 80 333 131 136
24 90 327 192 124 62 96 418 130 153
2% 92 386 279 74 63 95 391 137 248
26 74 365 228 235 64 82 390 375 273
27 98 365 145 158 65 84 416 146 80
28 100 352 172 140 66 100 385 192 180
29 86 325 179 145 - 67 86 393 115 85
30 08 321 222 99 68 93 376 195 106
31 70 360 134 g0 69 107 403 287 - 254
32 Bg 336 143 105 70 112 - 414 281 119
33 75 352 169 32 71 93 364 156 129
34 90 353 263 165 72 93 391 221 103
a5 85 373 174 78 73 90 356 199 59
36 99 376 134 80 74 99 398 76 108
37 100 367 182 54 75 93 - 393 450 209
38 78 335 241 175 76 89 318 73 220
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ables at a time and r = 0.0,0.1,...,0.9. These quantile contours clearly reveal that there
are some outliers in the data set. Note that affine equivariance of the quantiles is crucial
in outlier detection as the outlyingness of a data point should not be judged differently in
different coordinate systems.

5.4.2 Multivariate Ranks

In univariate set-up, the concept of ranks and quantiles are closely related. Jan and Ran-
dles (1994) and Métténen and Oja (1995) considered soime notions of multivariate ranks
which are closely related to geometric quantiles (or lo-quantiles). Chaudhuri (1996) sug-

gested the d-dimensional direction vector n™! Z I1X:i—ylls (X;—vy) as the multivariate

Xi7Y
rank of ¥ € RY., We may define affine invariant notions of multivariate ranks based on

our transformation retransformation approach as follows. Consider the d-dimensional di-

rection vector based on lg-norm n~t Y [{X(e)} (X - i H{X ()} X — )

- Xi¢y=i€ﬂ'

or alternatively based on lj-norm n™' >° Sign{{X{e)} (X — y)], which can be
X;#y,iﬁu: - -

viewed as descriptive statistics that determine the geometric position of the pomt y € RY

with respect to the data cloud formed by the observations X1, X2,... . X, and these
lead to vector valued concepts of multivariate centered ranks corresponding to TR lp and
l;-quantiles. Similarly, from the gradient vectors of the other /y-norms, one can con-
struct different versions of multivariate ranks. However, it is rather easy to interpret
and geometrically visualize things for p = 1 and p = 2. Observe that the multivariate
rank vectors associated with TR I,-quantiles lie inside the unit ball B,gd) where as usual
1/p+1/q = 1. There are some attempts to construct ranks as univariate gquantities based
on different data depth concepts like Tukey's half-space depth (Tukey, 1975) and Liu’s
simplicial depth (Liu, 1990), but they fail to take into account the orientation of a point
in the data cloud. Uni#ariate concepts of ranks can distinguish between ‘extreme’ points
and ‘central’ points but they do not provide the information whether the ‘extreme' ob-
servations are ‘low’ or ‘high’ observations with respect to some specific directions. For
these limitations multivariate notions of ranks are often preferred over univariate notions.
Based on these affine invariant multivariate ranks one can construct different rank related

methodologies in multidimension extending univariate rank based methodologtes.

5.4.3 Multivariate Q-Q Plots

Q-Q plots are popular and useful diagnostic tools in univariate data analysis. With their

help, it is possible to assess graphically the closeness of a sample to a particular univariate
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(@) rho = 0.0 (d) rko = 0.0

Figure 8.1; ! and l2 quantile contour plots for bivariate normal
data with different correlation coeflicient
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Figure 5.2: Quantile contour plots of blood sugar data for overt diabetic patients



E——

- e T —

Multivariate Quantiles 109

distribution or the closeness between two independent samples. The idea behind Q-Q plots
Is to compute and plot a finite number of quantiles from the sample and corresponding
quantiles from the comparing probability distribution or from the comparing sample. Mar-
den (1998) generalized this concept to define bivariate Q-Q plots. He started by computing
multivariate ranks associated with geometric quantiles for each observation in the sample,
and then he computed corresponding geometric quantile from the comparing probability
distribution by taking the rank of the observation as the index vector w. Then he joined

the original data point and the quantile from the distribution with a directed arrow. If
these arrows are very small in length and randomly oriented, then one may conclude that

the sample does not deviate much from the chosen probability distribution, But if most
of the arrows are directed towards a particular direction then the sample is more skewed
in that direction, and if in general arrow lengths are large then the sample obviously does
not conform with the given distribution. But these Q-Q plots are not affine invariant
in nature and thus the presence of high correlations among the coordinate variables will
often lead to inappropriate inference. To resolve the problem, we employ transformation
retransformation technique, At first, one should transform the data points by {,S.X(cx)}"l
where A2 = trace[{X(a)} "1 5({X(x)}7)~1]/d. After that {p-ranks of the transformed ob-
servations are computed as discussed earlier. As we know that these I,-rank vectors lie in
Bff.‘”, and one can compute corresponding {,-quantiles of the comparing probability distri-
bution with scatter matrix I; and location parameter 0, Then following Marden (1998),
we should plot the arrows from the l;-quantiles of the given distribution to the trans-
formed observations. We have noted earlier that a proper selection of the transtormation
matrix X(c) leads to an estimate of the scatter matrix £ and A=2{X(a)} 1 E{[X ()"} !
15 expected to be close to a d-dimensional identity matrix.

The TR Q-Q plots, which are affine invariant, can be used to construct tests of goodness
of fit to a given multivariate distribution. There is no known good way of testing in practice
whether the observed data is from a specified multivariate distribution or not. ‘Both of the
well-known y2-goodness of fit test and Kolmogorov-Smirnov test have serious practical
limitations and are not very useful for multivariate problems. We suggest the following
test procedure. At first, we make the data spherical by transforming the ubSert_’ations
by {AX({a)}~! and then subtract the l,-median of the transformed observations from
them. Let us call these observations ZE“’F Y for 7 ¢ a. Thus, we have t.fansformed
observations with location parameter zero and identity as the scale matrix. Then we
compute I,-ranks of each of these transformed observations and corresponding [;-quantiles
of the population distribution (say, QE“"’ ) 's), In the case p = 2, these population lp-
quantiles can be computed using the formula given in Mottonen, Oja and Tienari ((iﬁ}g’?)
for spherically symmetric distributions. After that, let us consider the statistic T, P} =

I
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Figure 5.3: Multivariate Q-Q plot for Fisher's Iris data

zign(zgﬂ’ﬂ‘" ) _ Qgﬂ"ﬂ ), which is nothing but the sum of the “directed arrows” as discussed
(a,p)

earher. If the observed data is close to the given distribution, the norm of the vector Tj

should be close to zero. Thus T,E“’p ) can be used as a test statistic for testing goodness of

fit of a multivariate distribution. As an illustration, we have constructed bivariate affine
invariant Q-Q) plots for Iris Setosa, Iris Virginica and [ris Versicolor of the famaous Fisher's
iris data using TR ls-quantiles. We have considered only two variables sepal length and
sepal width for the demonstration purpose and compared them with bivariate normal
distributions in Figure 5.3, where the plots indicate fairly good fits. Mottonen, Oja and
Tienari (1997) provided a result for computing geometric quantiles of the bivariate normal

distribution, and we have used that {or our calculations,
As discussed earlier, we can also construct tests of equality of the underlying distri-
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{able 5.2: Measures of blood glucose and insulin levels of normal patients

Fasting Fasting }

Patient  plasma Qlucose Insulin Patient plasma Glucose Insulin

number glucose area area  SSPG | number glucose area area  SSPG
1 300 1468 28 455 18 146 847 103 339
2 303 1487 23 327 19 124 538 460 320
3 125 714 232 279 20 213 1001 42 207
4 280 1470 54 382 21 330 1520 13 303
5 216 1113 81 378 29 123 557 130 152
6 190 972 87 374 93 130 670 44 167
7 151 854 76 260 24 120 836 314 220
8 303 1364 42 346 25 138 741 219 209
9 173 -~ 832 102 319 26 188 958 100 351
10 203 967 138 351 27 330 ° 1354 10 450
11 195 920 160 357 28 265 1263 83 413
12 140 613 131 248 29 353 1428 41 480
13 151 857 145 324 30 180 923 77 150
14 9275 1373 45 300 31 213 1025 29 209
15 260 1133 118 300 32 328 1246 124 449

16 149 B49 159 310 33 346 1568 15 253
17 233 1183 73 458

bution of two multivariate samples in a similar fashion. Here we compute transformed
observations for both the samples and based on the ranks of the observations of one sam-
ple, we compute the quantiles of the other sample and draw directed arrows. Sum of these
directed arrows provides us a test statistic for testing equality of the underlying distribu-
tion of two samples. To illustrate the comparison between two samples using Q-Q plots, we
again used the blood sugar data, which we have used earlier to demonstrate quantile con-
tour plots. In Figure 5.4, we construct Q-Q plots for comparing normal patients (see Table
5.2) with overt nonketotic patients by computing multivariate affine invariant lz-ranks of
the first sample and corresponding geometric quantiles of the transformed observations of
the second sample. We have taken two variable at a time. From these Q-Q plots, it 1s
quite apparent that the underlying distributions of the normal patients and overt diabetic
patients are quite differenf. Large arrow lengths in all the plots suggest that there are
possibly differences in locations and scales of the distributions and also the arrows are
ariented towards a common direction indicating possible differences in the shapes of the

distributions.
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5.4.4 L-HKEstimates

[n the univariate set-up, linear combinations of arder statistics or L-estimators have played
an extremely important role in the development of robust methods for the one sample
location problem. Serfling (1980) gave a detailed account of various important univariate
descriptive statistics (e.g. trimmed mean, inter-quartile range etc.) by formulating them
as L-statistics and derived their asymptotic properties. It is possible to extend the concept
of L~estimators of univariate location to a multivariate set-up using TR {p-quantiles in a
natural way. To construct L-estimators we have to form suitable weighted averages of
Qia’p) (w)'s as u varies over an appropriate subset of B{gd)_ One has to keep in mind that
a u with jjull, close to zero corresponds to a central quantile and for a u with ||ull; close
to one corresponds to an extreme quantile.

Suppose that p is an appropriately chosen probability measure on Béd)-supported
on a subset S of Bgd). Then an L-estimate of multivariate location will have the {form
s Q(&’p} (w)p{du). Specifically, if we consider J{u), a bounded, real-valued continucus

function defined on 5y () . we may define [-estimabe corresponding to the function J as,

i) o T 1O (1) du (5.16)

By considering different forms of the function J{u), one can construct various interest-
ing descriptive statistics of the multivariate data cloud. One can define analogs of trimmed
mean or inter-quartile range for a multivariate set-up. In the above set-up, it we consider
S to be the l;-ball with center at the origin and radius r, where r is a constant such that
0<r<l,(ie. is § = {ulu € R% |ully <r}) and the probability measure 4 is chosen
to be the uniform probability measure on S, [q Qf., #) (u)p(du) will be a typical definition
of trimmed mean by taking J{u) = (A(S)) '1¢s) (), where S is the ig-ball of radius r
as-defined above and A(S) is the Lebesgue measure of the set S. Thus the r-trimmed

multivariate mean is given by |
2 (o, p) {onp)
iy = 5 S) f Q7 (u) du. (5.17)

As the transformation retransformation J,-quantiles are equivariant under arbitrary affine
transformations, the L-estimators 93 » or the trimmed multivariate mean ﬁgf)’p] are
also affine equivariant. Some recent attempts to construct and study various versions
of trimmed mean estimate of multivariate location using different ideas can be found in
Donoho and Gasko (1992), Gordaliza (1991) and Nolan (1992). Recently, Koltchinskil
(1997) showed that the geometric quantile process converges asymptotically to a Gaussian
process under some suitable conditions. Using that result, he proved the asymptotic nor-

mality of the L-estimates based on non-equivariant geometric quantiles. We can establish
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similar results for our TR l,-quantile processes and derive asymptotic normality of affine

oqquivariant L-estimates based on them.
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