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ON THE “STRONG MEMORYLESSNESS PROPERTY” OF

THE EXPONENTIAL AND GEOMETRIC
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SUMMARY, If F in on oxponential (rosp. gwomotric) pr. lnw, rolution (2) Lolow is
satisfiod for all @ with support on R}_ (roap. on Z'}. What can bo aaid of F if {2) holds for a
specific G2 A bost possiblo answer is oblained as Thoorora A, simplifying the proof and
dropping tho assumption that @ hos m.g.f., mado in an carlior version duo to tho outhor. A
rolatod result is etatod 88 Thoorvmn B (proof now).

Let o} denote tho class of all luttice probability distribution functions
(d.£.’8) on the non-negativo real axis kaving the origin as a lattice point, and
p > 008 a span, i.0, tho class of all d.f.’s on R whoso points of increase form
a subset (proper or not) of thoset {np :n = 0,1, ...} and let £+ = }_)J a.["".

In Ramachandran (1977), abbreviated below as R-1977, tho follawing
result was established (under the superfluous assumption that tho moment
gencrating function (m.g.f.) of @ exists) :

Theorem A : Let X and' Y be non-negative independent random variables
(on some probability space) such that

PX> Y+t)=PX > Y] P[X>{] for all t > 0. o {D)
(1) is equivalent to
c[1—~F(1)] =l°.j") [1—F(t+)]1dCy) forall t> 0 e (2)
where F and @ are the d.f.’s of X and Y respectively, and
¢c=P[X>7Y] =(0.I-) [1—F(y)) dG(y). o ()
The cases of inlerest correspond to (see Remark (i) below)
o) <e< e (4)
If then A(0 < X < c0) be the unique solution of the equation
(o,I-) e Wd0(y) = ¢, v (9)

then, for all 2> 0,
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(a) F(x) =1—e*z (F is an exponential law) if G¢ £, and
(b} Flz) = 1—§(z)e~%, where ¢ is periodic with period p, if Qe £F.

Remarks : (i) If X has an exponentinl d.f., then (1) is satisfied for any
non-negative r.v. independent of X : this is a stronger property than the usual
“memorylessness” of exponential laws—which corresponds to constant-valued
¥. Tho geomotrio d.f. given by 1—F(n) = pn for n = 0, 1, 2, ... and constant
on each interval {n, n+1), for somo p €(0, 1), natisfies (2) for any G e, and
corresponds to A = —log p, £(z) = p ~*for z > 0in Part (b) of tho theorcm.
This remark is by way of explaining the titlo of this paper.

(ii) Condition (4) is rather awkward, involving as it does F as well as
G, but is trivially satisfied (indopendently of F) if @ is a continuous d.f,, or,
moro generally, @ has no atom at tho origin. But, as shown by tho following
examplo duo to Dr. J. S. Huang of Guolph, Canada, it cannot be improved
upon; if G(0) = ¢, then our theorem need not hold : tako F(z) = xfor0 € 2 < 1
and G(z) = 1—e1for 0 € v < 1 and G(x) = 1—e~Z for 2 > 1. Also, tho cases
¢=0and ¢ = 1 aro uninteresting : for their disposal, sco R-1977.

(i) If (2) is satisficd for G = 8 and @ = & (8, donotes the degencrate
d.f. with its sole point of increaso at the point z), whore 0 < a,b and afb is
irrational, then, nppealing to ecither Part (a) or Part (b) of tho thoorom, ono
can deduco that F is oxponential—seo R-1977 for details.

The result was established in R-1977 using complox analysis methods
(including the complex inversion formula for tho Laplaco transform) and
(initially) under the assumption that tho m.g.f. of Gexists. A “real variablos
proof” without any assumptions was given in Shimizu (1978); sco also Huang
(1978) in this conncction. In tho present papor, wo present a simplified
version of the original proof, based on first proving that tho Laplaco transform
of Fig defined for Roz> —A; a proliminary establishmont of this fact does
away with tho need for : (i) Lemma 3 in R-1977, (ii) tho introduction thero of
an auxiliary parameter A, and (iii) tho nssumption that @ has m.g.f.

Wo also stato and prove (es Theorem B below) a slightly improvoed version
of a rosult proved in Shimizu (1978), tho two proofs being substantially
different. This result not only is of importanco for a ‘roal variables proof’ of
our characterization theorem but also leads to similar proofs of somo results
on characteristic functions satisfying certain functional oquations, which
woro originally established in tho years 1968-70 Ly R. Shimizu on the ono
hand and by the author and C. R. Rao on tho other : for thoso reforonces,
sco R-1077,
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Proof of Theorem A : Seiting h = 1—F, wo havo from (2)
ch(t) = 0 j‘) h(t+y) dG(y). . (0)

Since, by assumption (4), ¢ > G(0), @ 5 &, in particular and (8) can be rewritton
as

Ity = [ h{t+y)d@*(y) for all t> 0 . (8)
(0,’«)
whoro 0 <¢* <1 and G* is a d.f. with G°(0) = 0, and, further, (tho same)
A satisfies the relation ¢* = [ e~*v dG°(y). In other words, wo nced only
0, ©)
consider below the case : G(0) = 0, and 0 < ¢ < 1, while A satisfies (5).

Now chooso and fix any a ¢(0, A), and lot 2 (¢) = A(!) e®. Then we havo
from (6) that

hy() =(OI 17'.(’+y) d0.(y) R U]

whero
Oz =c¢ | ewdQ(y) for all 22> 0 . (8)
©,2]

80 that @,(0) = G(0) = 0 and G,(+00) > 1. We can thereforo find a and b
such that 0 < a < b < o and G,(b)—G,(a) > 1. From (7) we have

k() > " IM ho(t+y) dGo(y)

whenes it follows by contraposition that, for somo £¢(a, b}, hy(t+£) < hy(t).
Also, for ¢ < u K 14E, h(u) < hyft) e85 & hy(t)e™ < h().e’®. Starting
therefore with an arbitrary ¢, > 0, we can construct a sequence {t,} such that
(i) tayy > Lata (s0 that {£,} = o), (ii) Ay(t,) < Rultay) K - S Rofty) and (idi) for
1 < % < by, Bufu) < Bt €, 50 that, for all w3 by, hyfu) < hyfh). €.
Thus k, is bounded on (0, co).

Sinco « €(0, A) is arbitrary, it follows in particular that
z iy <o; [ evdF(y) < oo for all r <. - (@
, ©)
Taking tho Lapleco transforms (L.T.’s) of both sidos in (6), and noting that
g, the L.T, of &, is dofined for Roz > —A in view of (9) and that a{.) and A(.),
defined by

@)= | evddly)~c; Ke) = T ev( f euhiu)du) d6) o (10)
(0, a) o 0
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are both analytio in Roz < 0, wo havo that

g(z).0(z) = K(z) for —A < Roz < 0 . (1)
50 that we may in fact writo

9(z) = K@@)[o(z) for —A <Rez <0 . (12)
zeros of K(.) cancolling out thoso of o(.) in that strip. o note further that

{o{z+iy)| 2 c— [ e dOy) > 0 for z < —A,
;=

80 that o(.) has no zcros in the half-plane Rez < —A.

Wo then invoke the following lemmas, as in R-1977, in order to apply
» complex inversion formula for g.  For their proofs, wo refer to R-1977,

Lemma 1:  The number of zeros of o(.) in any closed rectangle of the form
a S Rez  b(<0), y <Imz < y+), is bounded by a number n{a, b) which
does not depend on y.

Lemma 2: Given vy, €, both posilive, there exists an m(y, £) > 0 such
that |a(z)| > m(y, €) for all z lying in the sirip : —y+¢ < Rez < —¢ but oulside
of discs of radius & with centres at the zeros of of.).

Lemma 3: (i) of,) has no zeros other than —2X on the line Rez = —A,
if @ ¢ £F; if, however, Qe £} for some p > 0, then the zeros of o(.) on that line
Jorm the set {—A+42m infpin=0, +1, £2,...}.

(ii) The zeros of o(.) on the line Rez = —A are all simple.

Now we appeal to tho following inversion formula for L.T.’s (soo, for
instance, Doctsch, 1974, p. 181, Theorom 27.2): for any z such that —A <2 < 0,

24l o
BV o T e 8 g T g dutor all ¢ 0.
13

TT2m ate

Hence, by (12),

- 1 MK
— { h(u) du = P.V. mzo!ln etz w((’z)) dz(t > 0) o {13)

for any specifio 2o € (—A, 0).  On the strongth of Jemma 1, we can find § > 0
and a scquenco {T',} of real numbers with 2 T, < »+1 for n > 0 integer,
such that all the zcros of a(.) in tho strip —A < Roz < z, lio at a distanco of
at least § from tho lines |Imz| = 7', and, as wo have already seon, o{.) has
no zoros in the half-plano Rez < —A, so that, thon, by Lemma 2, |oz)| > b
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for all # if z lics on tho lines [Imz| = T, for somo b > 0. K{(.) admits tho
estimato | K(z)| < const./|Roz| intho half-plano Rez < 0, 8o that K(z).ez is
bounded in any half-plane of the form Re z< z < 0. It then follows casily
)
201(z)
zeros of of.) which lic on the lino-segment: Roz = —A, |Imz| <7,] and,
in view of Lemma 3, this lcads, as in R-1977, to tho stated conclusions of the
thoorom in the cases (a) and (b).

from (13) that — ? I(u) du = lim [the sum of tho residucs of at thoso
4 LR X

In fact, starting from (2), in tho presenco of conditions (4) and (5), we
can establish as a preliminary fact even thoe stronger statemont, ;

e*7[1— F(x)] is bounded. o (19)

Such prior establishment is not particularly important or useful for our
method of proof, but it is of independent interest as well as vital for tho
purposes of Shimizu (1978). As stated carlicr, wo givo below a substantially
different proof of his result concerning tho boundedness of tho solution of a
functional inoquality related in form to (G), while dropping at tho samoe time the
assumption of right-continuity of tho function k(.) below as well as the require-
ment that C(0+) = 1 (sco also tho remark at the end of this paper).

Theorem B : Let I be a d.f. with supporl on [0, 0) and having m.g.f.
If k is a non-negative real-valued function on [0, co), salisfying the growth condition

sup Kz+y) < k(z).C(y) for all z > 0 N ]
0Cy<n
(where C(.) is non-decreasing on [0, o0)) and the ineguality
k(z) )loj' Kz+y) dIl(y) forall z > 0, e (16)
\ ®)

then i'nfl k is uniformly bounded for all x > O for some @ > 0 and hence k is

(2, 244
bounded on {0, c0) (on account of (15)).

Note :  If k(z4) = 0 for somo x,, then (15) implies that X(z) = 0 for 2 > 2z,
8o we need only consider tho caso whero X{x) > 0 for evory x > 0.

Corollary :  If F and @ satisfy (2) subject {o (4) and (5), then (14) holds.

To sco this, we need only tako k(z) = e**[1—F(2)]. (15) is thon satisfied
for C(n) = exp(An) and (16) for II given Ly dll(x) = c~'e~*2d0(z).
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Remark: Wo may also considor k dofincd on [z4, 0) where x, > 0 and
satisfying (15) and (16) thero : tho conclusions of tho thoorem will hold in the
relevant interval,  An oxamplo is provided by k(z) = 1/x in such an interval.

Proof : As beforo, wo nced only consider tho casos whoro H(0) = 0, so

in particular If # 8,. Then ky(.), givon by ky(x) = kz). oxp (—8z), satisfies,
for all § > 0, tho inoquality

Ko=) > T kulz+y) e dllly).

Wo nced only consider thoso 6 > 0 for which f e®v dIl(y) < oo (Il has m.g.f.,
0

so such & oxist, by assumption). Then we can conclude, as wo did in the
context of relation (7), that &, is bounded : in fact, if 0 < a < b < 00 Lo such

that [ ¥ dIl{y) o Y(II # &), then, for cvery z > 0, thero oxists a £ €(a, b))
{0, 0]

such that k(x+¢£) < ky(z), and then as beforo it follows in view of (15) that
for all = > any fixed 7, > 0, ky2) < C(b). ky(z,). It thorefore follows that
(tako & = u/2)

fe'“k(::) dx exists finitely for all u > 0.
]

Then, & being any numbler > 0 such that fe‘v dll(y) < o0, we have from
0
(16) that for any u such that 0 < 1 <4,

(;f ) d:)(z e dli(y)—1) < {De"y (:{'k(c) et dt) dy). ... (17)

If Cy is any bound for tho function k(.), so that k(t) < C,et, tho R.ILS. of
(17) is easily verified to admit the estimate

Cy [ (v—em) dit(y)[(6—)

& const, Fe‘v dI(y) for 0 < u < §/2.
o
It thon follows from (17) that

ufe‘“k(a:)dzg/t for 0<ugl
0
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whero A is somo absoluto constant. Honco, for every 2 > 0 and all such %,
j eui My)dy < Afu
80 that, for z > 1, we may concludo (tako u = 1/z) that
) = j:k(y) dy < Adez(z > ). . (18)
Since /! has m.g.f., zy diI{y) exists finitely, and henco so do
I éety)dit) ond § ) dily)
by (18). Denoting the value of the last integral by B, we have from (16) that
€) > [ te+9) ) —B forall 2> 0

whence, for any z, a > 0, wo have

T (':k(z)dz) aue) < § (Troa)amy < 5

a
50 that, choosing eny a > 0 such that I{a) < 1, wo sco that

inf k g some K > 0, uniformly for all > 0. e {19)

{r,24a)

It then follows from (15) that for any x> a (k is obviously bounded on [0, a]),
kz) < Mz—y) . Cla) forall y€[0, a}
80 that
Kz) € inf KHz—y).Cle) < K.Cla) for z>a
0cy<a

by (19). Ilonco the thoorom.

Remark : Theorem 1 of Shimizu (1978), of which tho result above is a
modification, assumes in addition that k is right-continuous and that C(0+) =1,
theso requiremonts boing sutomatically satisfied in both tho applications
of tho theorom (including a proof of our characterizaion theorom) considored
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thero : further, tho proof of tho above thcorom given thero also depends
essentially on k being right-continuous as well as on C(0+) being = 1, through
tho fact that X, subject to (15), is also lower scmi-continuous then and in
particular attains its infimuwm on every compact interval,

For details of how tho above thcorem is used to prove our characterization
theorem, we refer to Shimizu (1978). In this connection we may also refor
to related results due to Choquet and Deny, statemonts and (martingale-
theoretio) proofs of which may bo found in P. A. DMeyer, Probability and
Potentials, Blaisdell (1966).
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