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REPRESENTATION OF QUANTILE PROCESSES
WITH NON-UNIFORM BOUNDS

By KESAR SINGH
Indian Statistical Institule

SUMMARY. A rop tion of q ilo y is blished in which the order of
the romaindor gets sharpor and sharpor as one movos towards samplo extromos.

1. INTRODUCTION

Lot {X} be a stationary soquonco of random variables (r.v.s.) with
marginals as U[0, 1]. At the n-th stage we defino empirical distribution
function (e.d.f.) as

F@)=@EX <z 1<i<n)n
and the ¢-th sample quantile as

F(y=inf{z:F (z) >t for t>0
end
F71o%) for t=0.

Bahadur (1966) proved that in tho indopcndont case
R () = | F3O)—t+F (-2
= O(n~¥4(log n)V*log log n)'/4) a.s.
Later, Kiefor (1967, 1970) concluded that in the indopendent case
R (t) = O(n-¥4(log log n)*4) a.s.
sup R,(f) = O(n-¥4(log n)V*(log log #)*") a.s. we (LY)
osr<1

and theso orders aro exact. Recontly, Babu and Singh (1978), Singh (1978a,
1978b) extended somo of tho above mentioned results for mixing random
variables.

It appears quito natural to expect that tho order of R ,(¢) would be sharpor
when ¢ is noar tho extremos of the interval [0, 1] than tho uniform order givon

by (L1).
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The phenomenon was also noted in Kiefer (1970) but it was left there as
an open problem, Tho purposo of this paper is to provide an a.8. asymptotio
bound for the process R, (!) in which tho smallness of {(1—!) ia reflected clearly.
To bo preciso, this paper establishes the following theorem :

Theoromn 1 : If {X¢} is a stationary m-dependent process with marginals
U[0, 1), then

sup (=01 FRA () —t+F ()=t
ntlogn <t < 1—n-tlogn

= O(n=>4(log n)¥%) a.s, o (1.2)

This bound appears to bo helpful in studying the extreme sample quantiles,
weighted quantilo processes and lincar functions of order statistics. These
applications aro presented in Singh (1978a).

In the next section !, stands for log n.

2, PROOF OF THEOREM 1

We shall prove (1.2) with the supremum over [n~17,, 1] only and a similar
argumeont is applied in the caso of tho interval [}, 1—n-*1,] to conclude the
theorom.

Defino, for 0 € @, £ € 1,
z(e, f) = I(min (@, f) € Xy < max (a, B))—|a—4|,

(I(4) denotes the indicator function of tho sot A4.) We start with the
exponential inequality which is the main tool in the proof.

Lemma 1: Let {Xg} be as in the theorem. Then, there exists a d> 0
such that whenever 0 € ¢, a+4< 1, |B| 6>0, 1<ug N, HDO0and
0 < D Nb for some 0< 0 < 3, one has

P( l "5 e a+ﬂ)|> 24DH) < 2m exp(—8DN-Y. ... (21)
{=H+1

(In this paper, the lemma is used in tho special case If = 0, # = N ==, and
0=} only)
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Proof : Lot us take, without loss of gonorality, Il =0 and b > > 0.
Defino z=b-N-1D 8o that 0z 1. Using tho stationarity, tho
m-dopondonco and Markov’s incquality, it follows that

P(E nfeath) > appt)
=1

{u/m]- 0

dDb’) ]

m

{uym)
+P( ‘/E:ozmlu(“. a+tf) >

< 2mexp(—zm-'dDl¥)  max [(E(oxp{zz, (2, a+B)))"

v=tu/m), (u/ml+1

[utm)
(In the abovo oxpressions, wo tako & =0 if [u/m)=0)
o

< 2m oxp (—m=1dD*N-1+4(u/m+1) log (14-0(:8)
< 2m exp (—8DN-1)
(log(1+2) < 2, ¥z> —1) e (2.2)
by choosing & appropriately.
We obtain a similar inequality for —él 2y, @+p) to complete tho proof.
Lemma 2: Lel F () be as in Theorem 1.

sup PV F ()—t] = O(n-Y2 1Y) as.
N KIS

Proof: We divido the intorval [n-!1,, 3/4) into subintervals of length
n~1 and note that

sup [P (t)—t[t-V2 & max {|F (s)—s]s-12: a6 S, )71 ... (2.3)
LS EC 34

whore

8, = {n-1,, n=N 401, 011,420, L., 2V (30 /44 1))
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Applying Lemma 1 with I/ =0, 0= —_l;, wu=N=n b=1 and
D = 2, it follows that, uniformly in s ¢ S,,
P(n|F (s)—s| > 2d sV/2 n1/3]}2) = O(n-3),

Therofore, using Bonferroni inoquality and tho Borel-Cantolli lomma, it
follows that tho r.h.s. of (2.3) = O(n~# 1}) a.s. This yiclds our desired result.

Lomma 3: Under the same st up as in Theorem 1 there exists a conslant
K > 0 such that

lim sup sup AR ER POt K as.
na o nll <i<L2

Proof : Lomma 2 guarantees tho existenco of a constant ¢ > 0 such that

lim sup sup A7 BER|F ()—t| <c as.
naw n1a I<34

Therefore, for all sufficiently large » and s € [-1,, 3/4),
t—c 2 =AY < P (1) < tdc2nU2 12 as,

(the null sot is same for all 1), Henco, for te[(c+1)2 a~1,, 1/2]) and » sufficiently
largo,

F(t—c 13 =172 JU2) < d—g 013 q=VA 12y c(t—c (13 n=3 U3 v il <,

(2.4)
and
F(84-2¢ 412 n=1/3 J112) > [4-0¢ 13 n=1/3 JU2_ (14 2¢ 23 -1 JHEYVE n =13 112 > ¢
(2.5)
with probability one (the null set being freo of t).
Obviously, (2.4) and (2.5) imply that
sup | F()—t] = O(n-Y21}%) as. o (2.0)
e+ )11, <112
Furthor,
sup 3t (-t
U << (o 1) nb
< [FRY(e+1) nt L) +He4- 12wt 1 )(n,) 0
=015 as. . (27

since (2.0) implies that F7Y((c+1)°2-Y,) = O(n-1,) a.s. Now, (2.6) and (2.7)
complete the proof of this lomma..
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Proof of Theorem 1 :  In view of tho fact that

| FuFR()—t| < | FL FRNO—F(FRN—-0)],
wo have,

|FR O =t F () —t|ent
| FFRMO—FNO—F(0)+e] 14
+ | F FRi()—(F FR 1) —0) |14
< 2| F RO —FR () —F ()|~
+ | F(FR ()= 0)— FA()— F ()44 14,
Combining this with Lemma 3, wo conclude that, for all sufliciently largo »,

sup [ FR)—t4F ()—t[ -1
w112

<3 sup sup |F(8)=F ()~s+L[t"as. ... (2.8)
pKIQL2 [o—1] S2KRAN-1A 112

(K is snmo a8 the constant appearing in Lemma 3.)

Let us fix a te[n~1l, 1/2) and divide tho interval [{—2Ki'/2p-1/2 Ik,
14 2K0'22-72 [)f2] into subintervals of length n=2. Then, duoe to tho usual kind
of approximation,

sup | Fo(s)—F (t)—a+e]4-1R
le—1) < 2K Ap-1a g1t

< max |F (t+jn~3)—F ()—jn-3 |- 40! o (229)
171 < valt)
where
v.(t) = (2K I 13) 41,

Further, let us divide tho interval [n~11,, }] into subintervals of length
2~3 and note that if

sen~MN +in=3, n-U 4(i4+1)n"2),

thon
max F(s4jn-3)—F (s)—jn-3| s~}
m<".(‘)| (8+jn"?) (s)—jn-3|
€2 max |F(a+jn?)—=F (a)—jn-%|a~V44+0(n"Y), ... (2.10)
151 < vafa)+1
whore

a=n"11 +(i+1)n"3
A3 4-17
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In viow of (2.0) and (2.10)

Lhs. of (2.8) < O(n~1)+3

max max
0K r<[WP] 11 va(nlytrn~3)+1

LB r43)0=8) = Fofn=H =) — |
(n~U 4 rn—8)-1e, . (211)

Let us fix some r and j (j depending upon r) as in the r.hs. of (2.11). Wo
shall ostimato

P | F (=t (r4-j)n=2) —F (0= 4 ra=3) —jn=3|
> 2d /3K, ra-3) Aptipls e (2.12)

using Lemma 1. Weo take f=jns, u=N==n HUH=0, 0=1/2
b= 3K (n~M,4rn-3)In-HY2 and D = »3}? in Lemma 1, for tho present
use. Wo have to check tho two conditions, namely, |f] < b and D < Nb,

Now

18] < (v {4+ )02
< 2K+ rn-d)in-ii4- 2073
< b (for alllargo n).

The socond condition is immediate assuming, without loss of generality, that
K > 1. Honce, Lemma 1 gives that the Lh.s. of (2.12) = O(n-9).

Now, a simplo application of Bonferroni incquality and DBorel-Cantolli
lemma shows that tho

r.hs. of (2.11) = O(n-¥434) as.

This completes the proof of Theorem 1.

Remark :  As a conscquonco of Theorem 1

VIFN )=t _  VAF () — L)
(OX{E=rR) L TN ) (i

whenever ¢, (1—£,) > 0 ond £,(1—2)n ;% — o0 a8 n—> 0.
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Some extensions of Theorem 1 for mixing random variables aro stated
below. Tho proofs of theso results are outlined in Singh (1978a). Wo
omit them hero since they follow cssentially tho samo lines.

Theorem 2: (i) If (X is & sequence of ¢-mizing U[0, 1] rws.
with ¢(n) = 0(n™") (if y=2, we assume further thal TPi) < o0) and

0< 2 < 12—

1
Y then

sup  {{(1=0)* | Fa{)~t+F ()—~t] = O(n—1 1Y) qus.
I l=n"t
(iiy If {X}) is a sequence of $-mizing U[0, 1] r.v.8. with ¢(n) = Ole-"),
for some y > 0, then

sup (A=) F0 =t F () =t| = O(n=417Y) a.s.
My St < l=n-1ls

(iii) If {Xi) is a sequence of strong-mixing r.v.e. with a(n) = Ofe-™), for
some.y > 0 then, for all 0 < 2e < 1/4

sup  ((1=DY PR —t+F ) —t] = O 1Y as.
nt g 1=nt
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