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Abstract. GivenaGelfand paifH", K') whereH" is the Heisenberg group
and K is a compact subgroup of the unitary grolign) we consider the
sphere and ball averages of certain-invariant measures ai™. We prove

local ergodic theorems for these measures when 3. We also consider
averages over annuli in the case of reduced Heisenberg group and show that
when the functions have zero mean value the maximal function associated
to the annulus averages behave better than the spherical maximal function.
We use square function arguments which require several properties of the
K —spherical functions.

1 Introduction and the main results

The aim of this paper is to prove local ergodic theorems for certain one
parameter families of probability measures on the Heisenberg group associ-
ated to Gelfand pairs. Léf ™ denote the Heisenberg group which is simply
C™ x R with the group law

1
(z,t)(w,s) = (z +w,t + s+ ilm(zw))
wherez,w € C",t,s € R. Let (H", K) be a Gelfand pair wher& is
a subgroup of the unitary group(n). Given a pointw € C" there is a

measureu k.., which is supported ot .w, the K —orbit throughw. This
measure is defined by the equation

[ pugw(z,t) = /Kf((z,t)(k.w,O)l)dk
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wheredk is the normalised Haar measure in This measure in general

is very singular being supported on lower dimensional subsets and depends
on several parameters known as the fundamental invariants associated to
the Gelfand pair (see the work of Benson, Jenkins and Ratcliff [2]). Some
examples are given towards the end of this section.

By averaging the measures ., over spherical subsets o™ we can
construct one parameter families of probability measures which are still
singular. Itis an interesting problem to study pointwise ergodic properties of
such families. When we consider the average over the sphere{(z,0) :
|z| = r} with respect to the surface measurg ! normalised so that
p2"=1(S,) = 1 then it turns out that

IREATT dp" " = f o py
where f x u, is the spherical means ¢gf The ergodic properties of this
family have been studied in [17]. In this paper we are interested in averages
over still lower dimensional sets. More precisely we will consider averages
over balls and spheres .

Before we state our main theorems we recall a couple of definitions.
Let G be a locally compact second countable group acting on a standard
Borel measure spa¢&, B, m) wherem is o—finite. The action is denoted
by (¢9,x) — g.z and let the action preserve. Without loss of generality
we can assume thaY is a locally compact metric space and the action
is jointly continuous. There is a natural isometric representatio oh
LP(X),1 < p < oo given byr(g)f(x) = f(g~'.z). We say that the
action is ergodic if there are n@—invariant functions inL2(X) other than
constants.

Given a complex bounded Borel measureon G we can define an
operatorr(c) on LP(X) by

WhenG is acting onL?(G) by left translations we use the notatigrx o
rather thanr (o). If the group is unimodular thea — (o) turns out to
be a norm continuous star representation of the involutive Banach algebra
M (G) of complex Borel measures 6has an algebra of operators bi X ).
Consider a one parameter family of probability measuyes > 0 onG. We
say that{o,.} is a local ergodic family ir? if for every ergodic action ofs
on(X, B,m)andforeveryf € LP(X)thelimitlim,_,o 7(o,) f(z) = f(z)
exists form—almost everyr and also in thd.” norm.

In this paper we are concerned with measyrgs. supported on orbits
through real points: € R™. We study ergodic properties of the spherical
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averages

Or = / ,U«K.a:d:u;}_l
|z|=r

wherep”~! is the normalised surface measure on the sphere of radius
R™ and the ball averages

Vp = / MK zdx.
jaf<r

Note that these measures are singular and they depend on thefjrdnip
fact, they are supported on a unioniof- orbits through subsets &". We
now state our main results.

Theorem 1.1 The ball averages, is a local ergodic family in? for all
1 < p < oo in any dimension.

As we are assuming that the action/&f on the measure space is jointly
continuous, it follows thatr(v,.) f (z) converges tof () pointwise for all
continuous functions. Since such functions form a dense clagg ime
above theorem will follow once we prove the following maximal theorem.
Let

M, f(z) = sup |7 (vy) f ()|

r>0

be the associated maximal function.

Theorem 1.2Letn > 1 and1l < p < oo. Then the maximal function
M, f is measurable and satisfies the estimiate, f||, < C||f||, for all
feLP(X).

As we will see in the proof the maximal theorem igris an easy conse-
guence of Birkhoff’s theorem for the action&f What is not so easy is the
following maximal theorem for the sphere averages.\gtbe the maximal
function associated to the famiby..

Theorem 1.3 Letn > 3 andp > 5. Then the maximal functioll/, f is
measurable and satisfi¢s\/,, f||, < C||f||, forall f € LP(X).

As above the density of compactly supported continuous functions in
LP(X) and the maximal theorem yields the following result.

Theorem 1.4 Letn > 3 andp > _“5. Then the sphere averages is a
local ergodic family inLP.
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For the action of the Heisenberg group on itself the last theorem is an
instance of sphere differentiation on the Heisenberg group. The c&Saof
the celebrated theorem of Stein [19]. In an earlier paper [17] we considered
the sphere differentiation corresponding to the dése U (n) which gives
us the spherical means as noted above. For this case it was shown that
the spherical means converge almost everywherg far LP(H"™) for all
p > 32:5. The sphere averages treated in this paper are more singular than
the spherical means.

Pointwise ergodic theorems for various groups have been studied by
several authors. The caseRf is treated in [11], the case of simple Lie
groups in [14] and [15]. For the case of semi simple groups see [16], and
also the references given there. It would be interesting to see if we can
obtain pointwise ergodic theorems which considers the limitstasding
to infinity in our set up. What is lacking is a dense class of functions in
LP(X) for which the ergodic averages will convergeragoes to infinity.

In proving the maximal theorem we closely follow Stein-Wainger [19]
in their proof of the spherical maximal theorem. In place of the Fourier
transform we will use expansion in terms of spherical functions associated
to the Gelfand pair under consideration. As the measures we consider are
K— invariant we can expand them in terms of spherical functions. As in
[19] we use square functions and analytic interpolation.

In Sect. 4 of this paper we study the maximal function associated to shell
averages or averages over annuli of fixed thickness. That is we consider the
maximal function

r+1
Af(est) = supesol [ i) (L1)

wheref x u, are the spherical means on the Heisenberg group. In the case
of R™ the maximal function associated to averages over annuli of thickness
one are bounded ob”(R") if and only if p > —"+. This can be seen by a
scaling argument: any estimate for the annulus maximal function will imply
the same estimate for the spherical maximal function. On the other hand the
situation is different in the case of semi-simple Lie groups where the balls
have exponential volume growth. It was shown recently by Nevo and Stein
in [16] that in the case of semisimple Lie groups the maximal functions
associated to annuli of fixed thickness and balls have the ¢&mepping
properties.

Naturally one is curious to know what happens in the case of the Heisen-
berg group. Again a dilation argument shows that afiyestimate for the
maximal functionA f leads to the same estimate for the spherical maximal
function. On the other hand the situation is quite different in the case of the
reduced Heisenberg group. Recall that the reduced Heisenberg Gfboyp
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is simply the groupC™ x T with the group law
(z,eit)(wjeis) _ (Z + w,ei(t—&-s—l-%lm(z.w)))'

For functions on the reduced Heisenberg group which have mean value zero
the maximal functiomd f has a better behaviour than the spherical maximal
function. More precisely, we have the following result. Presumab)yis

not bounded on alL? spaces though we do not have a counter example.

Theorem 1.5 Letn > 2 and consider functions id?(H", ;) which satisfy

the mean zero conditio[ﬁo%f(z,t)dt = 0. Then the maximal function

Af associated to the annulus averages is bounded & ;) for all

2n+1
p > o -

In the paper [17] mentioned earlier the authors have restricted to the
casen > 2. Whenn = 1 the spherical maximal function is not expected to
be bounded oi?(H') and so we cannot make use of the square function
argument. In that case it is conjectured that the spherical maximal function
is bounded or.? for all p > 2. The situation is very much like the Euclidean
case. For spherical averages®hStein proved his theorem only far> 3.
The casen = 2 was settled much later by Bourgain [1] using a different
argument. However, for certain annulus averages of the spherical means on
H'" we can prove a maximal theorem.

Consider the spherical meayis: 1, on H' given by

2

Franlet) =5 [ H(G 0.

If sup,.~q | f*u,| were bounded oh” then so would be the maximal function
for the annulus averages:
r+1
Mfzt)=swp| [ fxpys(zt)ds| (1.2)

r>1 r—1

More generally, we can consider the maximal function

o0

N@f@i)zsgﬂ ; o(r —8)f * p 52, t)ds|

wherey is an integrable function oR.

Theorem 1.6 Let the functionp satisfy the condition

/ |p(t)t 1 |dt < oo.

o0

Then the maximal functioh/,, f is bounded orL.?(H*) for all p > 2.
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The functionp(t) = tx_1,1)(t) wherey_ ) is the characteristic func-
tion of the interval(—1, 1) satisfies the condition of the theorem. Conse-
quently the maximal function

r+1
Mpf () =sup| | (t=s)f » sz, t)ds
> r—1
is bounded or.?(H') for p > 2. This maximal function is not the same as
(1.2). However, for the reduced Heisenberg group we do have the following
result.

Corollary 1.7 The maximal function (1.2) is bounded b¥ H}, ;) for p >
2 providedfo27T f(z,t)dt = 0. Otherwise, it is bounded only for> 2.

As we have already remarked we need a different argument to deal with
the annulus averages when= 1. We use the following simple idea. Sup-
pose we are interested in the maximal functiap, . |7 f (z)|. Extend the
definition of 7). to all » € R by setting it zero for < 0. If we can take the
Fourier transform of,. f (x) in ther variable then we have

sup T3 (@) < | [T.f(w)lds.

r>0 -
So, it is enough to show th4t, f is bounded or? with norm, sayC'(s)
satisfying [*_C(s)ds < oc. Since the spherical means involve Laguerre
functions of type zero whose Fourier transforms are explicitly known we
can make use of this method. For more about this kind of philosophy to deal
with maximal functions we refer to Cowling [7].

We end this section with a couple of examples. The following examples
show that the measures we consider are supported on very thin sets.

As we have already remarked the Gelfand pai", U(n)) leads to the
spherical meang * p, studied in [17]. Letn = 2 and consider the pair
(H?,T(2)) whereT'(2) is the 2-torus acting orC2. Writing (z1, 22, t) for
the elements off 2 we see that the measuyig , supported on th& — orbit
throughz = (z1, z2) is given by

f* pra(2,t)
21 2 ) )
= (27‘()72 / f((zl, 29, t)(elolxl, 61021112, 0)71)d91d92.
0 0
Writing = = (r cos ¢, 7 sin ) and integrating with respect towe obtain

fxor(z,t)

T 27 2T
(2m)~ // F((z1, 22, 1) (e cos @, €27 sin @, 0) 1) d6 dbzdp.
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Another example is provided by the groép = SO(n,R) x T where
SO(n,R) is the special orthogonal group afds the torus. Here, the action
of SO(n,R) is given byo.z = o.x + ic.y if z = = + iy andT acts on
C™ by scalar multiplication. This Gelfand pair and the associated spherical
functions have been studied in [3]. In this case there are two kinds of orbits.
Whenw = u + v with v andv linearly dependent then the orlif.w is
isomorphic toS”~! x T. Whenu andv are linearly independent the orbit
is isomorphic toV;, » x T whereV;, 5 is the compact Stiefel manifold of
orthonormal two frames ifR". Whenw = z € R" the measure:x .. iS
given by

27
F paea(zt) = (2m)! /SO( )/0 F((z 1) (.2, 0)~ ) dkdo.

From this it is clear that the measutg , depends only onz|. If we let
x = rz’ with |2/| = 1 then the sphere averages associated tquy . is
given by

2m .
frop(z,t) = (271')1/0 /SO( )f((z,t)(rewx/,O)fl)dex/.

We end this section with the following remarks. We started this investi-
gation with the aim of proving pointwise ergodic theoremsKorspherical
means associated to Gelfand pa#5’, K). The particular case wheld =
U (n) was treated in Nevo- Thangavelu [17]. When we tried to use the same
circle of ideas we encountered the following problems. First one has to es-
tablish a maximal theorem and then one has to prove convergence on a dense
class of functions. In this paper we have restricted ourselves to the problem
of studying theL? boundedness of the maximal functions associated to the
K —spherical averages. The second problem should be tractable once we
have fairly good estimates on the associatédspherical functions. We
hope to return to this problem in the future.

In order to prove the maximal theorem we use square function arguments
which depend heavily on good estimates for fkie-spherical functions.

In the general situation th& —spherical functions have been studied by
Benson, Jenkins and Ratcliff in a series of papers [2], [3] and [5]. Though
their works provide us with important information on tih&— spherical
functions, we do not have any good estimates on these functions. The only
cases where we have explicit formulas and hence good estimates for the the
K — spherical functions are wheii = 7'(n) andK = U(n). Evenin these
cases the known estimates are not good enough to prove the optimal results
as can be seen from the work [17].

Therefore, we are forced to consider measurgs supported on orbits
through real points. No doubt, we are excluding several interesting cases
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by imposing this restriction but with our present knowledge of spherical
functions we cannot do better. Under the above restriction we are able to
get usable formulae for the associated spherical functions which lead us to
good estimates. Even then we are not sure if the results we get are optimal
or not. However, this is just the beginning of our investigation and we hope
to return to several problems left open in this article.

We are extremely thankful to the referee for his careful and thorough
study of the manuscript and for making various comments and suggestions.
We are also grateful to Amos Nevo and Elias Stein for several useful dis-
cussions we had with them on the topic of annulus averages.

We will be freely using the notations of [17] and [22]. For various facts
about the Heisenberg group and Gelfand pairs we refer the reader to the
monographs [8], [9], [21] and the paper [12].

2 Gelfand pairs and K-spherical functions

Let H" = C" x R be the(2n + 1) dimensional Heisenberg group and let
Aut(H™) be the group of automorphisms &f". For eachr € U(n), the
group of unitary matrices we have an automorphismit(H") given by
o(z,t) = (oz,t). ThisU(n) is a maximal compact connected subgroup of
Aut(H™) and it can be shown that any subgrdipf Aut(H™) is conjugate

to a subgroup of/(n). So without loss of generality we will only consider
subgroups of the unitary group.

The Banach spack! (H™) forms a (non-commutative) Banach algebra
under convolution. Letf.}-(H™) stand for the subspace consisting of all
integrable K invariant functions. We say théti", K) is a Gelfand pair if
LI.(H™) turns out to be a commutative Banach algebra.There are several
subgroupsK’ C U(n) for which (H™, K) is a Gelfand pair. For example,
the full unitary groupK” = U(n) and the torus groufX’ = T'(n) give rise
to Gelfand pairs.

There is a representation theoretic criterion due to Carcano [6H6r
K) to be a Gelfand pair. In our case this criterion implies tat, K) is a
Gelfand pair if and only if the action d& on the holomorphic polynomials
P(C™)is multiplicity free. LetK« € GL(n, C) be the complexification of
K. Then the irreducible components Bf C™) with respect tak’ and K¢
are identical. The connected groufgs: which act irreducibly and without
multiplicity have been classified by V.Kac [12]. The classification of groups
which act in a multiplicity free way was completed by Benson and Ratcliff
in [4] and also independently by A. Leahy in a Rutgers university thesis.

Let (H", K) be a Gelfand pair. We say that a functipnon H™ is a
K —spherical function if it isk —invariant,p(0) = 1 and it satisfies
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/K o(g-kh) dk = p(g)p(h), g.he H" (2.1)

wheredk is the normalised Haar measure An The general theory in [2]
describes the bounddd—spherical functions for a Gelfand pair in terms

of the representation theory of the Heisenberg group. There are two distinct
classes of{ —spherical functions. We record here some of their properties
without any proof.

Let P(C") = > P, denote the decomposition &f( C") into K-
irreducibles. The type | spherical functions are parametrised by the pairs
(A, P,) where X is a non-zero real number. They arise from the infinite
dimensional representations of the Heisenberg group and we denote them
by e). They satisfy the relatior)(z,t) = el (v Az, \t) for A > 0 and
eXz,t) = elj‘(z, —t) for A < 0. The type Il spherical functions arise from
the one dimensional representations and are parametris€d pi( the set
of K—orbits in C". Forw € C™ we denote by, for the associated —
spherical function. It is known that, is independent of and is given by
the Fourier transform of the unit mass on the ofitv.

We concentrate on the type | spherical functions. We require some useful
formulas for them that were proved in [2]. Consider the Fock space reali-
sation of the infinite dimensional representations of the Heisenberg group.
For A > 0 let F, be the space of holomorphic functions @ft that are
square integrable with respect to the meastirg = ()" e~ 22 duw.

The space”( C™) of holomorphic polynomials is dense jf, and contains
an orthonormal basis given by

1
Al 2
U\ (W) = <2|aa'> w

wherea € N™. The representatiom, of H™ on F, is given by

ma(z, t)u(w) = ei’\t_%A(w’Z)_%Mz'Qu(z + w).
For A < 0,F, consists of anti-holomorphic functions which are square
integrable with respect tdw)| and the representation is given by

ma(z, Ou(w) = eMTaAw ATy (5 4 ).

Let P(C") = >, P, be the decomposition d?( C") into K-irredu-
cible pieces. Then we have the following formula for the type-+spherical
functions [2].

Proposition 2.1 Supposen, vs, ..., v; is an orthonormal basis foP,,. Then

l
1
en(z,t) = 7 jz::l(m(z,t)vjwj)-
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As a corollary we obtain the following result. Lét’ be a compact
subset ofK” so that(H", K') is another Gelfand pair. L&?, = >, Pa.i
be the decomposition @?, into K’ —irreducible subspaces and Ig)l be
the associated”’ — spherical functions. Then

Na
dim(Py)e) = Z dim(Pa,i)eé7i.
i=1
If we let ) = dim(P,)e), then we can write the above equation as
Na
Ca =D Pai (2.2)
i=1

The K —spherical functions are explicitly known in two cases. When
K = U(n) the decomposition oP( C") is given byP( C") = >"2 Pk
where P, is the set of all polynomials that are homogeneous of degree
k which is spanned byu,, : |o| = k} . The corresponding spherical
functions are given by ( fok = 1)

E(n—1)!

Ej(z,t) = me or(2)

where
1
on(s) = 171 (5lel ) e "

are the Laguerre functions of tyjpe — 1). WhenK = T'(n), the subgroup

of diagonal matrices i/ (n), the P, in the decomposition is just the span
of u,,1 Wherea runs through all multiindices. The corresponding spherical
functions are given by

Ega(2,t) = € ®a,a(2)

where
1
Paa(2) = I L, (2’%”2) el

with Ly (t) being Laguerre polynomials of tyge For these facts we refer
to [2] and [22].

The K —spherical functions are eigenfunctions of All-invariant, left
invariant differential operators oH™. In particular, they are all eigenfunc-
tions of the sublaplaciaf and the operatog—t. The joint eigenfunction ex-
pansions of these two operators have been extensively studied by Strichartz
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[20],[21] and is given in terms of th& (n) spherical functions. More pre-
cisely, we have the expansion ( which holds for functiongim L?)

f(z,t) = (2m) ™ / ) (Zf*emz,t)) A"
9 \k=0

where we have Writteak for (kJ(r” 11)), EA

A similar expansion in terms df — spherical functions is also valid. In
fact as noted in (2.2) we can write

N
)= oni(zt)
i=1

and hence the above expansion can be rewritten as

favty = m ot [ (sz*% 5t ) AN

k=0 i=1

which in short can be put in the form

fet) = ny [ (waﬁxz,t)) AI" dA.

Sincep) (z,t) = e (z) the above decomposition can be written in the
form

fz,1) = (2W)"1/ooe“t (Z RS wé(@) A" dA.

In the above ~
= / f(zt)eMat

is the partial Fourier transform in thevariable and«) is the A twisted
convolution for two functions orC™ defined by

Fx\G(z) = F(z—w)G(w)eZ;Im(z ) duy
(Cn
wheredw is the Lebesgue measure @if.
As ¢\ (z,t) comes from different pieces of an orthogonal decomposition,
the above is an orthogonal expansion and we have the Plancherel theorem
in the form

191 = (2m) " 3 / / N iy A(2)[2 A dzdA.
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For more about this expansion in the cdSe= U(n) and its applications
we refer to [21] and [22].

If we want to prove pointwise ergodic theorems f6rspherical aver-
ages using harmonic analysis technigues, then good estimates on the asso-
ciated spherical functions and their derivatives are indispensable. Unfortu-
nately, except for the caséS= U (n) andK = T'(n) such estimates are not
known and the formulas we have for the spherical functions are not good
enough to yield required estimates. However, for certain averages of the
K —spherical functions we can get good estimates, thanks to the following
formula. LetP, andv; be as in Proposition 2.1. Lef*~! be the normalised
surface measure on the sphérec R" : |z| = r}.

Proposition 2.2

Jﬂfl m |£\ o

where Jo_y is the Bessel function of orde(r% — 1) , uj is a family of
orthonormal functions iL?( R™) and¢,, = 2271 (2).

Proof. It is enough to prove the proposition whan= 1 and to do that we
use the expression

N‘]—l

l
Z m1(z, 1) U],’UJ

We will rewrite the above expression in terms of the Schrodinger represen-
tationp; . This representation which is realised on the Hilbert sgageR™)
is given by

iz, 0)p(€) = et @ER TV (e 4 y)

wherep € L?( R") andz = x + iy. According to the fundamental theorem
of Stone-von Neumann the representationandp; are unitarily equivalent
and the intertwining operator is provided by the Bargmann transfBrm
which takesF; onto L?( R™).

Thus we haver (z,t) = B*p1(z,t)B and therefore,

N\}_.

l
Z p1(z,0)uj, u; )

whereu; = Buj; is a unit vector inL?( R™). Now,

[ el
|z|=r
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l
1 i n—
SO N A G
=1 |z|=r J R™

The proposition follows from the well known fact that

. Jn_q1(r
/ ez:ﬂ.f dlu?—l =cp 2 l(ﬂlf‘l) ‘
jr|=r (rl€])>

The above proposition is crucial for our study of the spherical averages.
As good estimates for the Bessel function that appears in the proposition are
known, we can obtain estimates for the averages of the spherical functions.

3 Maximal functions and local ergodic theorems

In this section we prove our main results on the ball and sphere averages
of the K —spherical measuresy .. First we consider the maximal function
M,,. In order to prove the boundedness of this maximal function we will
use Birkhoff’s ergodic theorem for the actions of the gr&upf reals. This
method has turned outto be very useful in establishing maximal theorems for
uniform averages of singular measures, see for example Nevo [14], Nevo-
Stein [16] and Nevo-Thangavelu [17]. In order to bring in the Birkhoff
averages we have to pass to a bigger group, namely the Heisenberg motion
group.

Given a Gelfand paifH", K) considetGx = K x H", the semidirect
product of K and H™ whose group law is given by

1
(k,z,t) (K, 2/, V') = (kk', 2 + k', t +t' + ilm(kz'.z)).

The inverse of the elemertt, 2,t) € Gk is (k=1 —k~12,—t) and the
identity element g/, 0,0) wherel is then x n identity matrix. The group
K is then isomorphic to a subgroup@fx and so isH™. The Haar measure
on G is just the measurékdzdt and we can form the Lebesgue spaces
with respect to this measure. It is easy to check tfi#t, K) is a Gelfand
pair if and only is the subspace Af—bi-invariant functions in.! (G') forms
a commutative subalgebra under convolution. Actually this is the traditional
definition of a Gelfand pair.

Now, let us writem g for the Haar measure ofif and define

Pf(z,t):/Kf(k,z,t)de

forafunctionf onG . This projection takes functions @y into functions
on H™. Note that any functiorf on H™ can be identified with a function on
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G'i which is independent df and for such function® f = f. Letd, be the
Dirac point mass a# € Gi. An easy calculation shows that the measure
mi *0g%mp With g = (k,w, s) where the convolution is taken on the group
Gk isindependent of and depends only onand theK —orbit throughw.

In fact,

[xmp xdgxmp(z,t) = / Pf(z—kw,t +s— %Im(kw.z))dk.
K

In the above equation if we takgw) = (I, w, 0) then it follows that
[rmi * 0gy x mi(2,t) = Pf * pugw(2,1) (3.1)

where the convolution on the right is on the Heisenberg group. Given a unit
vectorw € C" the setd,, = {(I,rw,0) : » € R} becomes a subgroup of
G i which is isomorphic tdR.

Proof of Theorem 1.Recall that

1

f*yrz—n f* K dr
e Jz|<r

which can be written, in view of (3.1) as
1 T
fru(z,t) = cr”/ / J Mg * 0g(sar) * mK(z,t)gn—ldu’f—lds.
|z'|=1

Therefore, we have
1

r

1 r
T/O ‘f‘ * 5g(s:r’)d3

are the Birkhoff averages over the grodp: which is bounded oi.? for
1 < p < oo with a bound independent af. As convolution with the Haar
measureny is bounded, Theorem 1.2 is proved.

We now turn our attention towards the proof of Theorem 1.3. In order to
use square function arguments we need a usable expression for the measures
o, By abuse of notation let us writg) (w) = ¢ (w,0). Letd, = dim(P,)
be the dimension aF,.

|f*xve(z,t)| < C mK*< / |f * 04 sx)ds>*mK(z ) dut.
|z’|=1

Now,

Proposition 3.1 Forw € C*andf € L' N L?(H") we have the expansion

f * ﬂK.w(za t)

=@ / (Zda 2 (w) f 4 ¢3<z>> AI"dA.
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Proof. As f can be expanded in terms of the spherical functighst is
enough to show that

eg * Ui aw(z,t) = e )‘(w 0)e (z 0).

But this follows from the definition of: i, and the fact thaatg are K-sphe-
rical functions so that they verify the identity (2.1).
Takingw = = € R™ and integrating ovelrr| = r we obtain

fro(z,t) = (2m) "7 /_OO et <Z a(r)f* wé(@) [A[* dA

where we have written
() = /| a0y
z'|=1

In view of Proposition 2.2 we have

A =2 (3) [ 2 e d

whereu,, (§) is a nonnegative function whose integral is one.

Once we have the above expansionfferr,. and the Plancherel theorem
for expansions in terms gf) we can closely follow the arguments of Stein
and Wainger [19] to prove the maximal theorem. In what follows we sketch
the proof referring to [19] for details.

Proof of Theorem 1.3.et

. Jniyr1(rl€])

where is complex and define a family of operatavg! by

M) f(2,t) :/ et (Z Palr, ) a0z )) A" dA.
We note that
A 7—1 2:v£ dxd
T, X
A7) = M / oot w(E) g
and so we have the formula

_I'(3+9) % y-1
M,;.yf(Z,t) = W /|x<r(1 — TT)/Y f * IUK:E(Z,t>d£U



306 S. Thangavelu

Let M7 f(z,t) = sup,~q | M, f(z,t)| be the maximal function associ-
ated to the familyM/,). Stein’s argument involves the following three steps:
(i) An L? estimate forM” f when Re(y) > 1 — 5. (ii) The end point es-
timates forRe(y) > 0 and Re(y) > 1. (iii) Analytic interpolation. It is
obvious from the formula above that f&e(y) > 0 the maximal operator
M7 is bounded orL>°. In view of Theorem 1.2 it also follows that/ '+ f
is bounded or? for all p > 1. It remains to show that/” is bounded on
L? for all Re(y) > 1 — 5. Analytic interpolation will then complete the
proof of the theorem.

In order to prove thd.? estimate we introduce, as in [19], the square
function

Aﬁﬂaw—am(iﬁrnmﬂawﬁﬁ)f

r>0

It is enough to prove the inequality

1 n

Il < Cllf ke, Re() > 5 - 5

with the constan€’, bounded on any compact subinterval(gf— %, o) .

It then follows, as in [19], thad/” is bounded orl.? for Re(y) > 1 — 5
Finally, sinceM'f is bounded onL? it is enough to show that the

g—function

[e.e]

<%m@wV=/ MY f(2,1) — M (2, 1)

2
0 T

isbounded o for Re(y) > §—2%. Butthis will follow from the Plancherel
theorem once we show that

| 1o - T <

which is a consequence of the estimate

o Jn gy q(7) n ny J2(r) ,dr
923+7-1p (@ )$—2T (f) 2 2% o
/0 22 > T7) re 2 B

The last estimate follows faRe(y) > 3 — % once we use the asymptotic
properties of the Bessel functions.
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4 The annulus averages

In this section we prove Theorems 1.5, 1.6 and Corollary 1.7. We first con-
sider Theorem 1.5. This theorem follows by a slight improvement of an
estimate used in the proof of Theorem 3.6.5 in [22]. Therefore, we will only
sketch the proof referring to [17] or [22] for detalils.

The Gelfand spectruny’ of the commutative Banach algebra of radial
functions on the Heisenberg group is the union of the Laguerre spectrum
X'r and the Bessel spectruby. Recall that the Laguerre spectrum is given
by

X ={(\k): A#0,k € N}.

For ( € X let ¢. be the associated spherical function. Note that when

¢= ()" k)’
kl(n —1)!

AL, A
Gxnon© £

QOg(Z,t)Z
where

A n—1 (1 2\ —L|x[z2

er(z) = Ly 5!)\|\Z| e 4 :

For any functionf on H" the spherical meangx ., has the expansion

I (Z P @2(@) A
L .

Similarly the annulus averages. f defined by

r+1
Arf(z,t) = / f*ps(z,t)ds

has the expansion

A f(z,t) = / e 3
A

0

El(n —1)!

mwk( )f ) 802(2))’/“"‘1)\

where

In the case of the reduced Heisenberg group the Laguerre part of the
Gelfand spectrum of the algebra of radial functions consists precisely of the
points(j, k) wherej is a non-zero integer. Therefore, for functionsidf ,
with zero mean value we have the expansion

oo o0

J () = ZZk' ‘””<>fﬂwk<>w.

l7]|=1 k= O
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Similarly, the annulus averages are given by the expansion

Z Z ' ”W( IEEACINE

|7]|=1 k= 0

We will make use of these expansions in the proof of Theorem 1.5.

Proceeding as in the proof of Theorem 3.6.5 in [22] we emibeth an
analytic family of operatord/> by means of Riemann- Liouville fractional
integrals. Let

S:;f(zvt) = Sup7">0’Mgf(Z>t)|

be the associated maximal function. Recall that Theorem 3.6.5 in [22] was
proved by analytic interpolation of the estimates

1S5 canfllp < Ce™ | £,

valid for1 < p < oo and

182y ll2 < Ce™ || f]]2

valid forn > 2 anda > —n + % The latter estimate followed easily from

1502 fll2 < ClIfl2-

In order to prove the above estimate we made use of the spectral theory
and g-functions. What was really needed is the estimate

o dm 2 Qm—ld <C

supces [ | m)Pr?mhdr < O
0 T

forall1 < m < (n —1). In the case of annulus averages for mean-zero

functions on the reduced Heisenberg group we need the estimates

drm

0 gm B
W%&A L ) dr < Co,

Note thaty(r) is the integral ofp.(s) over the intervalr,r 4+ 1) and so
we gain an extra derivative.

Recalling the definition of): () and making a change of variables we
see that we need the uniform estimates

kl(n —1)! 2 1 dm 2 _2m+1
<(k+n 1)) " /0 |d’rm<pk(r)‘ " dr < Cin

As we are considering only functions with mean value zero, in the apove
is a non-zero integer. Soitis enough to prove the above estimatg with
As in the proof of Proposition 3.3.7 in [22] we can make use of the estimates
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on Laguerre functions. But now as we have gained an extra derivative the
above estimates are valid for< m < n.

Therefore, ifM f and S}, f are the Riemann- Liouville fractional inte-
grals and the maximal function associatedi{qgf on A , then for functions
f with mean value zero we have the estimates

1Sasafll2 < Ce™l|£]]2

foralla > —n + 1. Analytic interpolation leads to the estimate

1Afllp < ClI Il

for all p > 221 This completes te proof of Theorem 1.5.
Now we consider Theorem 1.6 and Corollary 1.7. Recall that whenl
the spherical mean value operator defined by

— 2ﬂf((z,t)(7’ei9,0)*l)d9
2m Jo

f *NT(th) =

has the expansion

fon(zt) = }j/ e P (v/INP) 1 2 (2) AldA

1/Jk(t) =Ly <;t2> efitQ

are Laguerre functions of type zero. (See [22] for a proof of this fact.) If
we defineT’. f(z,t) = f * p z(2,t) for r > 0 and0 otherwise then the
maximal functionM,, f is given by

where

oo

M, f(z,t) =sup| o(r —8s)Tsf(z,t)ds]|.

r>0 —0o0
Taking the Fourier transform in thevariable we see that

J%ﬂ%ﬂSKmWMﬁﬂamw

[e.o]

whereT, f(z, t) is the Fourier transform df}. f(z, t) in ther variable. By
Minkowski's integral inequality, we have

IMofll2 < [ RISl
Therefore, if we can show that the operaforf is bounded or.? with the
bound R

17, 112 < Clr| I 12
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then by the hypothesis op we can conclude that the maximal function
M, f is bounded orl.2. As it is clearly bounded o> we get Theorem
1.5.

In order to show thaf,. f is bounded o2 we make use of the following
result a proof of which can be found in [18].

Lemma4.1 Fort > 0andk =0,1,2,.. we have

PR R | 2s + 1\"
Li(t)e 3t = = —its ds.
K(B)e wf,e %3—1(%3—1) i

o0

In view of this Lemma we have

(W Ar) = 2/ e_irsek(/\,s)ds

T o)

where we have written

1 [4is+A1\*
A s) = .
ek, 9) M5—1<@3—A>

Therefore,
. 2 [
TGt =2 [ (e Men a e
T k=0

Appealing to the Plancherel theorem for the Fourier transform in vagi-
able we see that

1T fl3 = C / /@ S 0 1) o @) (2) Pz
-0 k=0

. k
where(C' is a constant. As the functio sfé:ifm) have absolute value
one, using the orthogonality properties of the special Hermite functions we

obtain

1T, f13 = /

—0o0

o0

(4r2 + 22)~1 (jg:u/ﬁ\fA*A<p£(zH2dz> A2
k=0" C
Appealing to the Plancherel theorem for the special Hermite series we obtain
i <o [ [ 19 R
—oo J C

which proves the claim that

17 fllz < Clr~H1/1]2-
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This completes the proof of Theorem 1.6.

We now turn to the proof of the corollary to Theorem 1.6. Let us recall
the definition of the reduced Heisenberg grdiify ; which is C™ x T" with
the group law

(2761'15)(“)’61’5) — (Z + w’ei(t—&—s—l—%lm(z.w))).

We usually denote the elements Bf"; by (z,t) instead of(z, e’) with

the obvious identification. The spherical medns,.,. are defined as in the
case of the full Heisenberg group except that now we integrate over the
reduced Heisenberg group. The spherical means are given by the following
expansion:

fonr(zt) = £ 5 pr(z,t) + ZZ e (V]3I 17 %5 21, (2)d|

k=0 j7#0

where nowf’ are the Fourier coefficients of the functigitz, t) in thet
variable and/y, is as in the proof of Theorem 1.6.

Suppose nOV\jOZ’T f(z,t)dt = 0. Then the first term in the above ex-
pansion will be absent and proceeding as in the proof of Theorem 1.5 we
get

ZZ Ter(3,m) 7 %5 94 (2)l3]-

]#Ok’ 0

As j is different from zero, we have

lex(j,r)| < C(1+12)73

and therefore the first part of the corollary will follow once we have

/OO 16(r) (1 + 72)"2dr < o.

e}

This is the case when we taket) = x(_1,1)(t). Thus the maximal function
(1.1) is bounded of?(H}, ;) when f has mean value zero in theariable.
When this condition is not satisfied we have one extra term which is the
usual spherical means dR?. The associated maximal function is bounded
on L?( R?) for all p > 2 by Bourgain’s theorem [1]. Thus Corollary 1.7 is
completely proved.
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