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Abstract. Given a Gelfand pair(Hn,K) whereHn is the Heisenberg group
andK is a compact subgroup of the unitary groupU(n) we consider the
sphere and ball averages of certainK−invariant measures onHn.We prove
local ergodic theorems for these measures whenn ≥ 3. We also consider
averages over annuli in the case of reduced Heisenberg group and show that
when the functions have zero mean value the maximal function associated
to the annulus averages behave better than the spherical maximal function.
We use square function arguments which require several properties of the
K−spherical functions.

1 Introduction and the main results

The aim of this paper is to prove local ergodic theorems for certain one
parameter families of probability measures on the Heisenberg group associ-
ated to Gelfand pairs. LetHn denote the Heisenberg group which is simply
C

n × R with the group law

(z, t)(w, s) = (z + w, t+ s+
1
2
Im(z.w̄))

wherez, w ∈ C
n, t, s ∈ R. Let (Hn,K) be a Gelfand pair whereK is

a subgroup of the unitary groupU(n). Given a pointw ∈ C
n there is a

measureµK.w which is supported onK.w, theK−orbit throughw. This
measure is defined by the equation

f ∗ µK.w(z, t) =
∫

K
f((z, t)(k.w, 0)−1)dk
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wheredk is the normalised Haar measure onK. This measure in general
is very singular being supported on lower dimensional subsets and depends
on several parameters known as the fundamental invariants associated to
the Gelfand pair (see the work of Benson, Jenkins and Ratcliff [2]). Some
examples are given towards the end of this section.

By averaging the measuresµK.w over spherical subsets ofCn we can
construct one parameter families of probability measures which are still
singular. It is an interesting problem to study pointwise ergodic properties of
such families. When we consider the average over the sphereSr = {(z, 0) :
|z| = r} with respect to the surface measureµ2n−1

r normalised so that
µ2n−1

r (Sr) = 1 then it turns out that∫
Sr

f ∗ µK.w dµ
2n−1
r = f ∗ µr

wheref ∗ µr is the spherical means off. The ergodic properties of this
family have been studied in [17]. In this paper we are interested in averages
over still lower dimensional sets. More precisely we will consider averages
over balls and spheres inRn.

Before we state our main theorems we recall a couple of definitions.
Let G be a locally compact second countable group acting on a standard
Borel measure space(X,B,m) wherem isσ−finite. The action is denoted
by (g, x) → g.x and let the action preservem. Without loss of generality
we can assume thatX is a locally compact metric space and the action
is jointly continuous. There is a natural isometric representation ofG on
Lp(X), 1 ≤ p ≤ ∞ given byπ(g)f(x) = f(g−1.x). We say that the
action is ergodic if there are noG−invariant functions inL2(X) other than
constants.

Given a complex bounded Borel measureσ on G we can define an
operatorπ(σ) onLp(X) by

π(σ)f(x) =
∫

G
π(g)f(x) dσ.

WhenG is acting onLp(G) by left translations we use the notationf ∗ σ
rather thanπ(σ). If the group is unimodular thenσ → π(σ) turns out to
be a norm continuous star representation of the involutive Banach algebra
M(G)of complex Borel measures onGas an algebra of operators onL2(X).
Consider a one parameter family of probability measuresσr, r > 0 onG.We
say that{σr} is a local ergodic family inLp if for every ergodic action ofG
on(X,B,m) and for everyf ∈ Lp(X) the limit limr→0 π(σr)f(x) = f(x)
exists form−almost everyx and also in theLp norm.

In this paper we are concerned with measuresµK.x supported on orbits
through real pointsx ∈ R

n. We study ergodic properties of the spherical
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averages

σr =
∫

|x|=r
µK.xdµ

n−1
r

whereµn−1
r is the normalised surface measure on the sphere of radiusr in

R
n and the ball averages

νr =
∫

|x|≤r
µK.xdx.

Note that these measures are singular and they depend on the groupK. In
fact, they are supported on a union ofK− orbits through subsets ofR

n.We
now state our main results.

Theorem 1.1 The ball averagesνr is a local ergodic family inLp for all
1 < p < ∞ in any dimension.

As we are assuming that the action ofHn on the measure space is jointly
continuous, it follows thatπ(νr)f(x) converges tof(x) pointwise for all
continuous functions. Since such functions form a dense class inLp the
above theorem will follow once we prove the following maximal theorem.
Let

Mνf(x) = sup
r>0

|π(νr)f(x)|

be the associated maximal function.

Theorem 1.2 Let n ≥ 1 and 1 < p < ∞. Then the maximal function
Mνf is measurable and satisfies the estimate||Mνf ||p ≤ C||f ||p for all
f ∈ Lp(X).

As we will see in the proof the maximal theorem forνr is an easy conse-
quence of Birkhoff’s theorem for the action ofR. What is not so easy is the
following maximal theorem for the sphere averages. LetMσ be the maximal
function associated to the familyσr.

Theorem 1.3 Letn ≥ 3 andp > n
n−1 . Then the maximal functionMσf is

measurable and satisfies||Mσf ||p ≤ C||f ||p for all f ∈ Lp(X).

As above the density of compactly supported continuous functions in
Lp(X) and the maximal theorem yields the following result.

Theorem 1.4 Let n ≥ 3 andp > n
n−1 . Then the sphere averagesσr is a

local ergodic family inLp.
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For the action of the Heisenberg group on itself the last theorem is an
instance of sphere differentiation on the Heisenberg group. The case ofR

n is
the celebrated theorem of Stein [19]. In an earlier paper [17] we considered
the sphere differentiation corresponding to the caseK = U(n) which gives
us the spherical means as noted above. For this case it was shown that
the spherical means converge almost everywhere forf ∈ Lp(Hn) for all
p > 2n−1

2n−2 . The sphere averages treated in this paper are more singular than
the spherical means.

Pointwise ergodic theorems for various groups have been studied by
several authors. The case ofR

n is treated in [11], the case of simple Lie
groups in [14] and [15]. For the case of semi simple groups see [16], and
also the references given there. It would be interesting to see if we can
obtain pointwise ergodic theorems which considers the limits asr tending
to infinity in our set up. What is lacking is a dense class of functions in
Lp(X) for which the ergodic averages will converge asr goes to infinity.

In proving the maximal theorem we closely follow Stein-Wainger [19]
in their proof of the spherical maximal theorem. In place of the Fourier
transform we will use expansion in terms of spherical functions associated
to the Gelfand pair under consideration. As the measures we consider are
K− invariant we can expand them in terms of spherical functions. As in
[19] we use square functions and analytic interpolation.

In Sect. 4 of this paper we study the maximal function associated to shell
averages or averages over annuli of fixed thickness. That is we consider the
maximal function

Af(z, t) = supr>0|
∫ r+1

r
f ∗ µs(z, t)ds| (1.1)

wheref ∗ µs are the spherical means on the Heisenberg group. In the case
of R

n the maximal function associated to averages over annuli of thickness
one are bounded onLp(Rn) if and only if p > n

n−1 . This can be seen by a
scaling argument: any estimate for the annulus maximal function will imply
the same estimate for the spherical maximal function. On the other hand the
situation is different in the case of semi-simple Lie groups where the balls
have exponential volume growth. It was shown recently by Nevo and Stein
in [16] that in the case of semisimple Lie groups the maximal functions
associated to annuli of fixed thickness and balls have the sameLp mapping
properties.

Naturally one is curious to know what happens in the case of the Heisen-
berg group. Again a dilation argument shows that anyLp estimate for the
maximal functionAf leads to the same estimate for the spherical maximal
function. On the other hand the situation is quite different in the case of the
reduced Heisenberg group. Recall that the reduced Heisenberg groupHn

red
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is simply the groupC
n × T with the group law

(z, eit)(w, eis) = (z + w, ei(t+s+ 1
2 Im(z.w̄))).

For functions on the reduced Heisenberg group which have mean value zero
the maximal functionAf has a better behaviour than the spherical maximal
function. More precisely, we have the following result. Presumably,Af is
not bounded on allLp spaces though we do not have a counter example.

Theorem 1.5 Letn ≥ 2 and consider functions inLp(Hn
red) which satisfy

the mean zero condition
∫ 2π
0 f(z, t)dt = 0. Then the maximal function

Af associated to the annulus averages is bounded onLp(Hn
red) for all

p > 2n+1
2n .

In the paper [17] mentioned earlier the authors have restricted to the
casen ≥ 2. Whenn = 1 the spherical maximal function is not expected to
be bounded onL2(H1) and so we cannot make use of the square function
argument. In that case it is conjectured that the spherical maximal function
is bounded onLp for all p > 2.The situation is very much like the Euclidean
case. For spherical averages onR

n Stein proved his theorem only forn ≥ 3.
The casen = 2 was settled much later by Bourgain [1] using a different
argument. However, for certain annulus averages of the spherical means on
H1 we can prove a maximal theorem.

Consider the spherical meansf ∗ µr onH1 given by

f ∗ µr(z, t) =
1
2π

∫ 2π

0
f((z, t)(reiθ, 0)−1)dθ.

If supr>0 |f∗µr| were bounded onLp then so would be the maximal function
for the annulus averages:

Mf(z, t) = sup
r≥1

|
∫ r+1

r−1
f ∗ µ√

s(z, t)ds|. (1.2)

More generally, we can consider the maximal function

Mϕf(z, t) = sup
r>0

|
∫ ∞

0
ϕ(r − s)f ∗ µ√

s(z, t)ds|

whereϕ is an integrable function onR.

Theorem 1.6 Let the functionϕ satisfy the condition∫ ∞

−∞
|ϕ̂(t)t−1|dt < ∞.

Then the maximal functionMϕf is bounded onLp(H1) for all p ≥ 2.
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The functionϕ(t) = tχ(−1,1)(t) whereχ(−1,1) is the characteristic func-
tion of the interval(−1, 1) satisfies the condition of the theorem. Conse-
quently the maximal function

Mϕf(z, t) = sup
r>1

|
∫ r+1

r−1
(t− s)f ∗ µ√

s(z, t)ds|

is bounded onLp(H1) for p ≥ 2. This maximal function is not the same as
(1.2). However, for the reduced Heisenberg group we do have the following
result.

Corollary 1.7 The maximal function (1.2) is bounded onLp(H1
red) for p ≥

2 provided
∫ 2π
0 f(z, t)dt = 0. Otherwise, it is bounded only forp > 2.

As we have already remarked we need a different argument to deal with
the annulus averages whenn = 1. We use the following simple idea. Sup-
pose we are interested in the maximal functionsupr>0 |Trf(x)|. Extend the
definition ofTr to all r ∈ R by setting it zero forr < 0. If we can take the
Fourier transform ofTrf(x) in ther variable then we have

sup
r>0

|Trf(x)| ≤
∫ ∞

−∞
|T̂sf(x)|ds.

So, it is enough to show that̂Tsf is bounded onLp with norm, sayC(s)
satisfying

∫∞
−∞C(s)ds < ∞. Since the spherical means involve Laguerre

functions of type zero whose Fourier transforms are explicitly known we
can make use of this method. For more about this kind of philosophy to deal
with maximal functions we refer to Cowling [7].

We end this section with a couple of examples. The following examples
show that the measures we consider are supported on very thin sets.

As we have already remarked the Gelfand pair(Hn, U(n)) leads to the
spherical meansf ∗ µr studied in [17]. Letn = 2 and consider the pair
(H2, T (2)) whereT (2) is the 2-torus acting onC2. Writing (z1, z2, t) for
the elements ofH2 we see that the measureµK.x supported on theK− orbit
throughx = (x1, x2) is given by

f ∗ µK.x(z, t)

= (2π)−2
∫ 2π

0

∫ 2π

0
f((z1, z2, t)(eiθ1x1, e

iθ2x2, 0)−1)dθ1dθ2.

Writing x = (r cosϕ, r sinϕ) and integrating with respect toϕ we obtain

f ∗ σr(z, t)

= (2π)−3
∫ 2π

0

∫ 2π

0

∫ 2π

0
f((z1, z2, t)(eiθ1r cosϕ, eiθ2r sinϕ, 0)−1)dθ1dθ2dϕ.
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Another example is provided by the groupK = SO(n,R) × T where
SO(n,R) is the special orthogonal group andT is the torus. Here, the action
of SO(n,R) is given byσ.z = σ.x + iσ.y if z = x + iy andT acts on
C

n by scalar multiplication. This Gelfand pair and the associated spherical
functions have been studied in [3]. In this case there are two kinds of orbits.
Whenw = u + iv with u andv linearly dependent then the orbitK.w is
isomorphic toSn−1 × T. Whenu andv are linearly independent the orbit
is isomorphic toVn,2 × T whereVn,2 is the compact Stiefel manifold of
orthonormal two frames inRn. Whenw = x ∈ R

n the measureµK.x is
given by

f ∗ µK.x(z, t) = (2π)−1
∫

SO(n)

∫ 2π

0
f((z, t)(eiθk.x, 0)−1)dkdθ.

From this it is clear that the measureµK.x depends only on|x|. If we let
x = rx′ with |x′| = 1 then the sphere averagesσr associated toµK.x is
given by

f ∗ σr(z, t) = (2π)−1
∫ 2π

0

∫
SO(n)

f((z, t)(reiθx′, 0)−1)dθdx′.

We end this section with the following remarks. We started this investi-
gation with the aim of proving pointwise ergodic theorems forK−spherical
means associated to Gelfand pairs(Hn,K). The particular case whenK =
U(n) was treated in Nevo- Thangavelu [17]. When we tried to use the same
circle of ideas we encountered the following problems. First one has to es-
tablish a maximal theorem and then one has to prove convergence on a dense
class of functions. In this paper we have restricted ourselves to the problem
of studying theLp boundedness of the maximal functions associated to the
K−spherical averages. The second problem should be tractable once we
have fairly good estimates on the associatedK−spherical functions. We
hope to return to this problem in the future.

In order to prove the maximal theorem we use square function arguments
which depend heavily on good estimates for theK−spherical functions.
In the general situation theK−spherical functions have been studied by
Benson, Jenkins and Ratcliff in a series of papers [2], [3] and [5]. Though
their works provide us with important information on theK− spherical
functions, we do not have any good estimates on these functions. The only
cases where we have explicit formulas and hence good estimates for the the
K− spherical functions are whenK = T (n) andK = U(n). Even in these
cases the known estimates are not good enough to prove the optimal results
as can be seen from the work [17].

Therefore, we are forced to consider measuresµK.x supported on orbits
through real points. No doubt, we are excluding several interesting cases
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by imposing this restriction but with our present knowledge of spherical
functions we cannot do better. Under the above restriction we are able to
get usable formulae for the associated spherical functions which lead us to
good estimates. Even then we are not sure if the results we get are optimal
or not. However, this is just the beginning of our investigation and we hope
to return to several problems left open in this article.

We are extremely thankful to the referee for his careful and thorough
study of the manuscript and for making various comments and suggestions.
We are also grateful to Amos Nevo and Elias Stein for several useful dis-
cussions we had with them on the topic of annulus averages.

We will be freely using the notations of [17] and [22]. For various facts
about the Heisenberg group and Gelfand pairs we refer the reader to the
monographs [8], [9], [21] and the paper [12].

2 Gelfand pairs and K-spherical functions

LetHn = C
n × R be the(2n+ 1) dimensional Heisenberg group and let

Aut(Hn) be the group of automorphisms ofHn. For eachσ ∈ U(n), the
group of unitary matrices we have an automorphism inAut(Hn) given by
σ(z, t) = (σz, t). ThisU(n) is a maximal compact connected subgroup of
Aut(Hn) and it can be shown that any subgroupK ofAut(Hn) is conjugate
to a subgroup ofU(n). So without loss of generality we will only consider
subgroups of the unitary group.

The Banach spaceL1(Hn) forms a (non-commutative) Banach algebra
under convolution. LetL1

K(Hn) stand for the subspace consisting of all
integrable,K invariant functions. We say that(Hn,K) is a Gelfand pair if
L1

K(Hn) turns out to be a commutative Banach algebra.There are several
subgroupsK ⊂ U(n) for which (Hn,K) is a Gelfand pair. For example,
the full unitary groupK = U(n) and the torus groupK = T (n) give rise
to Gelfand pairs.

There is a representation theoretic criterion due to Carcano [6] for(Hn,
K) to be a Gelfand pair. In our case this criterion implies that(Hn,K) is a
Gelfand pair if and only if the action ofK on the holomorphic polynomials
P ( C

n) is multiplicity free. LetKC ⊂ GL(n, C) be the complexification of
K. Then the irreducible components ofP ( C

n) with respect toK andKC

are identical. The connected groupsKC which act irreducibly and without
multiplicity have been classified by V.Kac [12]. The classification of groups
which act in a multiplicity free way was completed by Benson and Ratcliff
in [4] and also independently by A. Leahy in a Rutgers university thesis.

Let (Hn,K) be a Gelfand pair. We say that a functionϕ on Hn is a
K−spherical function if it isK−invariant,ϕ(0) = 1 and it satisfies
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∫
K
ϕ(g.kh) dk = ϕ(g)ϕ(h), g, h ∈ Hn (2.1)

wheredk is the normalised Haar measure onK. The general theory in [2]
describes the boundedK−spherical functions for a Gelfand pair in terms
of the representation theory of the Heisenberg group. There are two distinct
classes ofK−spherical functions. We record here some of their properties
without any proof.

Let P ( C
n) =

∑
α Pα denote the decomposition ofP ( C

n) into K-
irreducibles. The type I spherical functions are parametrised by the pairs
(λ, Pα) whereλ is a non-zero real number. They arise from the infinite
dimensional representations of the Heisenberg group and we denote them
by eλα. They satisfy the relationeλα(z, t) = e1α(

√
λz, λt) for λ > 0 and

eλα(z, t) = e
|λ|
α (z,−t) for λ < 0. The type II spherical functions arise from

the one dimensional representations and are parametrised byC
n/K the set

of K−orbits in C
n. Forw ∈ C

n we denote byηw for the associatedK−
spherical function. It is known thatηw is independent oft and is given by
the Fourier transform of the unit mass on the orbitK.w.

We concentrate on the type I spherical functions. We require some useful
formulas for them that were proved in [2]. Consider the Fock space reali-
sation of the infinite dimensional representations of the Heisenberg group.
For λ > 0 let Fλ be the space of holomorphic functions onC

n that are
square integrable with respect to the measuredwλ =

(
λ
2π

)n
e−

1
2λ|z|2dw.

The spaceP ( C
n) of holomorphic polynomials is dense inFλ and contains

an orthonormal basis given by

uα,λ(w) =

(
λ|α|

2|α|α!

) 1
2

wα

whereα ∈ Nn. The representationπλ of Hn onFλ is given by

πλ(z, t)u(w) = eiλt− 1
2λ(w,z)− 1

4λ|z|2u(z + w).

For λ < 0,Fλ consists of anti-holomorphic functions which are square
integrable with respect todw|λ| and the representation is given by

πλ(z, t)u(w̄) = eiλt+ 1
2λ(w,z)+ 1

4λ|z|2u(z̄ + w̄).

Let P ( C
n) =

∑
α Pα be the decomposition ofP ( C

n) intoK-irredu-
cible pieces. Then we have the following formula for the type IK−spherical
functions [2].

Proposition 2.1 Supposev1, v2, ..., vl is an orthonormal basis forPα.Then

eλα(z, t) =
1
l

l∑
j=1

(πλ(z, t)vj , vj).
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As a corollary we obtain the following result. LetK ′ be a compact
subset ofK so that(Hn,K ′) is another Gelfand pair. LetPα =

∑nα
i=1 Pα,i

be the decomposition ofPα intoK ′−irreducible subspaces and leteλα,i be
the associatedK ′− spherical functions. Then

dim(Pα)eλα =
nα∑
i=1

dim(Pα,i)eλα,i.

If we letϕλ
α = dim(Pα)eλα then we can write the above equation as

ϕλ
α =

nα∑
i=1

ϕλ
α,i. (2.2)

TheK−spherical functions are explicitly known in two cases. When
K = U(n) the decomposition ofP ( C

n) is given byP ( C
n) =

∑∞
k=0 Pk

wherePk is the set of all polynomials that are homogeneous of degree
k which is spanned by{uα,1 : |α| = k} . The corresponding spherical
functions are given by ( forλ = 1)

E1
k(z, t) =

k!(n− 1)!
(k + n− 1)!

eitϕk(z)

where

ϕk(z) = Ln−1
k

(
1
2
|z|2
)
e−

1
4 |z|2

are the Laguerre functions of type(n− 1). WhenK = T (n), the subgroup
of diagonal matrices inU(n), thePα in the decomposition is just the span
of uα,1 whereα runs through all multiindices. The corresponding spherical
functions are given by

E1
α,α(z, t) = eitΦα,α(z)

where

Φα,α(z) = Πn
j=1Lαj

(
1
2
|zj |2

)
e−

1
4 |zj |2

with Lk(t) being Laguerre polynomials of type0. For these facts we refer
to [2] and [22].

TheK−spherical functions are eigenfunctions of allK−invariant, left
invariant differential operators onHn. In particular, they are all eigenfunc-
tions of the sublaplacianL and the operator∂∂t . The joint eigenfunction ex-
pansions of these two operators have been extensively studied by Strichartz
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[20],[21] and is given in terms of theU(n) spherical functions. More pre-
cisely, we have the expansion ( which holds for functions inL1 ∩ L2)

f(z, t) = (2π)−n−1
∫ ∞

−∞

( ∞∑
k=0

f ∗ eλk(z, t)

)
|λ|n dλ

where we have writteneλk for (k+n−1)!
k!(n−1)! E

λ
k .

A similar expansion in terms ofK− spherical functions is also valid. In
fact as noted in (2.2) we can write

eλk(z, t) =
nk∑
i=1

ϕλ
k,i(z, t)

and hence the above expansion can be rewritten as

f(z, t) = (2π)−n−1
∫ ∞

−∞

( ∞∑
k=0

nk∑
i=1

f ∗ ϕλ
k,i(z, t)

)
|λ|ndλ

which in short can be put in the form

f(z, t) = (2π)−n−1
∫ ∞

−∞

(∑
α

f ∗ ϕλ
α(z, t)

)
|λ|n dλ.

Sinceϕλ
α(z, t) = eiλtϕλ

α(z) the above decomposition can be written in the
form

f(z, t) = (2π)−n−1
∫ ∞

−∞
eiλt

(∑
α

fλ ∗λ ϕ
λ
α(z)

)
|λ|n dλ.

In the above

fλ(z) =
∫ ∞

−∞
f(z, t)eiλtdt

is the partial Fourier transform in thet variable and∗λ is theλ twisted
convolution for two functions onCn defined by

F ∗λ G(z) =
∫

Cn

F (z − w)G(w)e
iλ
2 Im(z.w̄)dw

wheredw is the Lebesgue measure onCn.
Asϕλ

α(z, t) comes from different pieces of an orthogonal decomposition,
the above is an orthogonal expansion and we have the Plancherel theorem
in the form

||f ||22 = (2π)−2n−1
∑
α

∫ ∞

−∞

∫
Cn

|fλ ∗λ ϕ
λ
α(z)|2 λ2ndzdλ.
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For more about this expansion in the caseK = U(n) and its applications
we refer to [21] and [22].

If we want to prove pointwise ergodic theorems forK−spherical aver-
ages using harmonic analysis techniques, then good estimates on the asso-
ciated spherical functions and their derivatives are indispensable. Unfortu-
nately, except for the casesK = U(n) andK = T (n) such estimates are not
known and the formulas we have for the spherical functions are not good
enough to yield required estimates. However, for certain averages of the
K−spherical functions we can get good estimates, thanks to the following
formula. LetPα andvj be as in Proposition 2.1. Letµn−1

r be the normalised
surface measure on the sphere{x ∈ R

n : |x| = r}.
Proposition 2.2

∫
|x|=r

eλα(x, 0)dµn−1
r =

1
l

l∑
j=1

∫
Rn

cn
Jn

2 −1(
√|λ|r|ξ|)

(
√|λ|r|ξ|)n

2 −1 |uj(ξ)|2 dξ

whereJn
2 −1 is the Bessel function of order

(
n
2 − 1

)
, uj is a family of

orthonormal functions inL2( R
n) andcn = 2

n
2 −1Γ

(
n
2

)
.

Proof. It is enough to prove the proposition whenλ = 1 and to do that we
use the expression

e1α(z, t) =
1
l

l∑
j=1

(π1(z, t)vj , vj).

We will rewrite the above expression in terms of the Schrodinger represen-
tationρ1. This representation which is realised on the Hilbert spaceL2( R

n)
is given by

ρ1(z, t)ϕ(ξ) = eitei(x.ξ+ 1
2x.y)ϕ(ξ + y)

whereϕ ∈ L2( R
n) andz = x+ iy. According to the fundamental theorem

of Stone-von Neumann the representationsπ1 andρ1 are unitarily equivalent
and the intertwining operator is provided by the Bargmann transformB
which takesF1 ontoL2( R

n).
Thus we haveπ1(z, t) = B∗ρ1(z, t)B and therefore,

e1α(z, 0) =
1
l

l∑
j=1

(ρ1(z, 0)uj , uj)

whereuj = Bvj is a unit vector inL2( R
n). Now,∫

|x|=r
e1α(x, 0)dµn−1

r
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=
1
l

l∑
j=1

∫
|x|=r

∫
Rn

eix.ξ|uj(ξ)|2 dξdµn−1
r .

The proposition follows from the well known fact that∫
|x|=r

eix.ξ dµn−1
r = cn

Jn
2 −1(r|ξ|)

(r|ξ|)n
2 −1 .

The above proposition is crucial for our study of the spherical averages.
As good estimates for the Bessel function that appears in the proposition are
known, we can obtain estimates for the averages of the spherical functions.

3 Maximal functions and local ergodic theorems

In this section we prove our main results on the ball and sphere averages
of theK−spherical measuresµK.x. First we consider the maximal function
Mν . In order to prove the boundedness of this maximal function we will
use Birkhoff’s ergodic theorem for the actions of the groupR of reals. This
method has turned out to be very useful in establishing maximal theorems for
uniform averages of singular measures, see for example Nevo [14], Nevo-
Stein [16] and Nevo-Thangavelu [17]. In order to bring in the Birkhoff
averages we have to pass to a bigger group, namely the Heisenberg motion
group.

Given a Gelfand pair(Hn,K) considerGK = K ×Hn, the semidirect
product ofK andHn whose group law is given by

(k, z, t)(k′, z′, t′) = (kk′, z + kz′, t+ t′ +
1
2
Im(kz′.z̄)).

The inverse of the element(k, z, t) ∈ GK is (k−1,−k−1z,−t) and the
identity element is(I, 0, 0) whereI is then× n identity matrix. The group
K is then isomorphic to a subgroup ofGK and so isHn. The Haar measure
onGK is just the measuredkdzdt and we can form the Lebesgue spaces
with respect to this measure. It is easy to check that(Hn,K) is a Gelfand
pair if and only is the subspace ofK−bi-invariant functions inL1(G) forms
a commutative subalgebra under convolution. Actually this is the traditional
definition of a Gelfand pair.

Now, let us writemK for the Haar measure onK and define

Pf(z, t) =
∫

K
f(k, z, t)dmK

for a functionf onGK .This projection takes functions onGK into functions
onHn. Note that any functionf onHn can be identified with a function on
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GK which is independent ofk and for such functionsPf = f . Letδg be the
Dirac point mass atg ∈ GK . An easy calculation shows that the measure
mK ∗δg∗mK with g = (k,w, s) where the convolution is taken on the group
GK is independent ofk and depends only ons and theK−orbit throughw.
In fact,

f ∗mK ∗ δg ∗mK(z, t) =
∫

K
Pf(z − kw, t+ s− 1

2
Im(kw.z̄))dk.

In the above equation if we takeg(w) = (I, w, 0) then it follows that

f ∗mK ∗ δg(w) ∗mK(z, t) = Pf ∗ µK.w(z, t) (3.1)

where the convolution on the right is on the Heisenberg group. Given a unit
vectorω ∈ C

n the setAω = {(I, rω, 0) : r ∈ R} becomes a subgroup of
GK which is isomorphic toR.

Proof of Theorem 1.2.Recall that

f ∗ νr =
1
crn

∫
|x|≤r

f ∗ µK.x dx

which can be written, in view of (3.1) as

f ∗ νr(z, t) =
1
crn

∫ r

0

∫
|x′|=1

f ∗mK ∗ δg(sx′) ∗mK(z, t)sn−1dµn−1
1 ds.

Therefore, we have

|f ∗νr(z, t)| ≤ C

∫
|x′|=1

mK ∗
(

1
r

∫ r

0
|f | ∗ δg(sx′)ds

)
∗mK(z, t) dµn−1

1 .

Now,
1
r

∫ r

0
|f | ∗ δg(sx′)ds

are the Birkhoff averages over the groupAx′ which is bounded onLp for
1 < p < ∞ with a bound independent ofx′. As convolution with the Haar
measuremK is bounded, Theorem 1.2 is proved.

We now turn our attention towards the proof of Theorem 1.3. In order to
use square function arguments we need a usable expression for the measures
σr. By abuse of notation let us writeϕλ

α(w) = ϕλ
α(w, 0). Letdα = dim(Pα)

be the dimension ofPα.

Proposition 3.1 Forw ∈ C
n andf ∈ L1∩L2(Hn) we have the expansion

f ∗ µK.w(z, t)

= (2π)−n−1
∫ ∞

−∞
eiλt

(∑
α

d−1
α ϕλ

α(w)fλ ∗λ ϕ
λ
α(z)

)
|λ|ndλ.
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Proof. As f can be expanded in terms of the spherical functionseλα it is
enough to show that

eλα ∗ µK.w(z, t) = eiλteλα(w, 0)eλα(z, 0).

But this follows from the definition ofµK.w and the fact thateλα areK-sphe-
rical functions so that they verify the identity (2.1).

Takingw = x ∈ R
n and integrating over|x| = r we obtain

f ∗ σr(z, t) = (2π)−n−1
∫ ∞

−∞
eiλt

(∑
α

ϕλ
α(r)fλ ∗λ ϕ

λ
α(z)

)
|λ|n dλ

where we have written

ϕλ
α(r) =

∫
|x′|=1

eλα(rx′, 0)dµn−1
1 .

In view of Proposition 2.2 we have

ϕλ
α(r) = 2

n
2 −1Γ

(n
2

)∫
Rn

Jn
2 −1(r|ξ|)

(r|ξ|)n
2 −1 uα(ξ) dξ

whereuα(ξ) is a nonnegative function whose integral is one.
Once we have the above expansion forf ∗σr and the Plancherel theorem

for expansions in terms ofϕλ
α we can closely follow the arguments of Stein

and Wainger [19] to prove the maximal theorem. In what follows we sketch
the proof referring to [19] for details.

Proof of Theorem 1.3.Let

ϕλ
α(r, γ) = 2

n
2 +γ−1Γ

(n
2

+ γ
)∫

Rn

Jn
2 +γ+1(r|ξ|)

(r|ξ|)n
2 +γ−1 uα(ξ)dξ

whereγ is complex and define a family of operatorsMγ
r by

Mγ
r f(z, t) =

∫ ∞

−∞
eiλt

(∑
α

ϕλ
α(r, γ)fλ ∗λ ϕ

λ
α(z)

)
|λ|n dλ.

We note that

ϕλ
α(r, γ) =

Γ
(

n
2 + γ

)
π

n
2 Γ (γ)rn

∫
Rn

∫
|x|≤r

(1 − |x|2
r2

)γ−1eix.ξuα(ξ)dxdξ

and so we have the formula

Mγ
r f(z, t) =

Γ
(

n
2 + γ

)
π

n
2 Γ (γ)rn

∫
|x|≤r

(1 − |x|2
r2

)γ−1f ∗ µK.x(z, t)dx.
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Let Mγf(z, t) = supr>0 |Mγ
r f(z, t)| be the maximal function associ-

ated to the familyMγ
r . Stein’s argument involves the following three steps:

(i) An L2 estimate forMγf whenRe(γ) > 1 − n
2 . (ii) The end point es-

timates forRe(γ) > 0 andRe(γ) ≥ 1. (iii) Analytic interpolation. It is
obvious from the formula above that forRe(γ) > 0 the maximal operator
Mγ is bounded onL∞. In view of Theorem 1.2 it also follows thatM1+iγf
is bounded onLp for all p > 1. It remains to show thatMγ is bounded on
L2 for all Re(γ) > 1 − n

2 . Analytic interpolation will then complete the
proof of the theorem.

In order to prove theL2 estimate we introduce, as in [19], the square
function

M∗f(z, t) = sup
r>0

(
1
r

∫ r

0
|Mγ

s f(z, t)|2ds
) 1

2

.

It is enough to prove the inequality

||M∗f ||2 ≤ Cγ ||f ||2, Re(γ) >
1
2

− n

2

with the constantCγ bounded on any compact subinterval of
(1

2 − n
2 ,∞

)
.

It then follows, as in [19], thatMγ is bounded onL2 for Re(γ) > 1 − n
2 .

Finally, sinceM1f is bounded onL2 it is enough to show that the
g−function

(gγ(f)(z, t))2 =
∫ ∞

0
|Mγ

r f(z, t) −M1
r f(z, t)|2dr

r

is bounded onL2 forRe(γ) > 1
2−n

2 .But this will follow from the Plancherel
theorem once we show that

∫ ∞

0
|ϕλ

α(r, γ) − ϕλ
α(r, 1)|2dr

r
≤ Cγ

which is a consequence of the estimate

∫ ∞

0
|2n

2 +γ−1Γ
(n

2
+ γ
) Jn

2 +γ−1(r)

r
n
2 +γ−1 − 2

n
2 Γ
(n

2

) Jn
2
(r)

r
n
2

|2dr
r

≤ Cγ .

The last estimate follows forRe(γ) > 1
2 − n

2 once we use the asymptotic
properties of the Bessel functions.



Local ergodic theorems 307

4 The annulus averages

In this section we prove Theorems 1.5, 1.6 and Corollary 1.7. We first con-
sider Theorem 1.5. This theorem follows by a slight improvement of an
estimate used in the proof of Theorem 3.6.5 in [22]. Therefore, we will only
sketch the proof referring to [17] or [22] for details.

The Gelfand spectrumΣ of the commutative Banach algebra of radial
functions on the Heisenberg group is the union of the Laguerre spectrum
ΣL and the Bessel spectrumΣB.Recall that the Laguerre spectrum is given
by

ΣL = {(λ, k) : λ 6= 0, k ∈ N}.
For ζ ∈ Σ let ϕζ be the associated spherical function. Note that when
ζ = (λ, k),

ϕζ(z, t) =
k!(n− 1)!

(k + n− 1)!
eiλtϕλ

k(z)

where

ϕλ
k(z) = Ln−1

k

(
1
2
|λ||z|2

)
e−

1
4 |λ||z|2 .

For any functionf onHn the spherical meansf ∗ µr has the expansion

f ∗ µr(z, t) =
∫ ∞

−∞
eiλt

( ∞∑
k=0

k!(n− 1)!
(k + n− 1)!

ϕλ
k(r)fλ ∗λ ϕ

λ
k(z)

)
|λ|ndλ.

Similarly the annulus averagesArf defined by

Arf(z, t) =
∫ r+1

r
f ∗ µs(z, t)ds

has the expansion

Arf(z, t) =
∫ ∞

−∞
eiλt(

∞∑
k=0

k!(n− 1)!
(k + n− 1)!

ψλ
k (r)fλ ∗λ ϕ

λ
k(z))|λ|ndλ

where

ψλ
k (r) =

∫ r+1

r
ϕλ

k(s)ds.

In the case of the reduced Heisenberg group the Laguerre part of the
Gelfand spectrum of the algebra of radial functions consists precisely of the
points(j, k) wherej is a non-zero integer. Therefore, for functions onHn

red
with zero mean value we have the expansion

f ∗ µr(z, t) =
∞∑

|j|=1

∞∑
k=0

k!(n− 1)!
(k + n− 1)!

eijtϕj
k(r)f

j ∗j ϕ
j
k(z)|j|n.
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Similarly, the annulus averages are given by the expansion

Arf(z, t) =
∞∑

|j|=1

∞∑
k=0

k!(n− 1)!
(k + n− 1)!

eijtψj
k(r)f

j ∗j ϕ
j
k(z)|j|n.

We will make use of these expansions in the proof of Theorem 1.5.
Proceeding as in the proof of Theorem 3.6.5 in [22] we embedAr in an

analytic family of operatorsMα
r by means of Riemann- Liouville fractional

integrals. Let
S∗

αf(z, t) = supr>0|Mα
r f(z, t)|

be the associated maximal function. Recall that Theorem 3.6.5 in [22] was
proved by analytic interpolation of the estimates

||S∗
1+ibf ||p ≤ Ceπ|b|||f ||p

valid for 1 < p < ∞ and

||S∗
a+ibf ||2 ≤ Ceπ|b|||f ||2

valid for n ≥ 2 anda > −n+ 3
2 . The latter estimate followed easily from

||S∗
−n+2f ||2 ≤ C||f ||2.

In order to prove the above estimate we made use of the spectral theory
and g-functions. What was really needed is the estimate

supζ∈Σ

∫ ∞

0
| d

m

drm
ϕζ(r)|2r2m−1dr ≤ Cm

for all 1 ≤ m ≤ (n − 1). In the case of annulus averages for mean-zero
functions on the reduced Heisenberg group we need the estimates

supζ∈ΣL

∫ ∞

0
| d

m

drm
ψζ(r)|r2m−1dr ≤ Cm.

Note thatψζ(r) is the integral ofϕζ(s) over the interval(r, r + 1) and so
we gain an extra derivative.

Recalling the definition ofψζ(r) and making a change of variables we
see that we need the uniform estimates(

k!(n− 1)!
(k + n− 1)!

)2

|j|−1
∫ ∞

0
| d

m

drm
ϕk(r)|2r2m+1dr ≤ Cm.

As we are considering only functions with mean value zero, in the abovej
is a non-zero integer. So it is enough to prove the above estimate withj = 1.
As in the proof of Proposition 3.3.7 in [22] we can make use of the estimates
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on Laguerre functions. But now as we have gained an extra derivative the
above estimates are valid for1 ≤ m ≤ n.

Therefore, ifMα
r f andS∗

αf are the Riemann- Liouville fractional inte-
grals and the maximal function associated toArf onHn

red then for functions
f with mean value zero we have the estimates

||S∗
a+ibf ||2 ≤ Ceπ|b|||f ||2

for all a > −n+ 1
2 . Analytic interpolation leads to the estimate

||Af ||p ≤ C||f ||p
for all p > 2n+1

2n . This completes te proof of Theorem 1.5.
Now we consider Theorem 1.6 and Corollary 1.7. Recall that whenn = 1

the spherical mean value operator defined by

f ∗ µr(z, t) =
1
2π

∫ 2π

0
f((z, t)(reiθ, 0)−1) dθ

has the expansion

f ∗ µr(z, t) =
1
2π

∞∑
k=0

∫ ∞

−∞
e−iλtψk(

√
|λ|r)fλ ∗λ ϕ

λ
k(z)|λ|dλ

where

ψk(t) = Lk

(
1
2
t2
)
e−

1
4 t2

are Laguerre functions of type zero. (See [22] for a proof of this fact.) If
we defineTrf(z, t) = f ∗ µ√

r(z, t) for r > 0 and0 otherwise then the
maximal functionMϕf is given by

Mϕf(z, t) = sup
r>0

|
∫ ∞

−∞
ϕ(r − s)Tsf(z, t)ds|.

Taking the Fourier transform in ther variable we see that

Mϕf(z, t) ≤
∫ ∞

−∞
|ϕ̂(r)T̂rf(z, t)|dr

whereT̂rf(z, t) is the Fourier transform ofTrf(z, t) in ther variable. By
Minkowski’s integral inequality, we have

||Mϕf ||2 ≤
∫ ∞

−∞
|ϕ̂(r)|||T̂rf ||2dr.

Therefore, if we can show that the operatorT̂rf is bounded onL2 with the
bound

||T̂rf ||2 ≤ C|r|−1||f ||2
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then by the hypothesis onϕ we can conclude that the maximal function
Mϕf is bounded onL2. As it is clearly bounded onL∞ we get Theorem
1.5.

In order to show that̂Trf is bounded onL2 we make use of the following
result a proof of which can be found in [18].

Lemma 4.1 For t > 0 andk = 0, 1, 2, .. we have

Lk(t)e−
1
2 t =

1
π

∫ ∞

−∞
e−its 1

2is− 1

(
2is+ 1
2is− 1

)k

ds.

In view of this Lemma we have

ψk(
√

|λ|r) =
2
π

∫ ∞

−∞
e−irsek(λ, s)ds

where we have written

ek(λ, s) =
1

4is− 1

(
4is+ λ

4is− λ

)k

.

Therefore,

T̂rf(z, t) =
2
π

∫ ∞

−∞
(

∞∑
k=0

e−iλtek(λ, r)fλ ∗λ ϕ
λ
k(z))|λ|dλ.

Appealing to the Plancherel theorem for the Fourier transform in thet vari-
able we see that

||T̂rf ||22 = C

∫ ∞

−∞

∫
C

|
∞∑

k=0

ek(λ, r)fλ ∗λ ϕ
λ
k(z)|2|λ|2dzdλ

whereC is a constant. As the functions
(

4ir+|λ|
4ir−|λ|

)k
have absolute value

one, using the orthogonality properties of the special Hermite functions we
obtain

||T̂rf ||22 = C ′
∫ ∞

−∞
(4r2 + λ2)−1

( ∞∑
k=0

∫
C

|fλ ∗λ ϕ
λ
k(z)|2dz

)
λ2 dλ.

Appealing to the Plancherel theorem for the special Hermite series we obtain

||T̂rf ||22 ≤ Cr−2
∫ ∞

−∞

∫
C

|fλ(z)|2dzdλ

which proves the claim that

||T̂rf ||2 ≤ C|r|−1||f ||2.
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This completes the proof of Theorem 1.6.
We now turn to the proof of the corollary to Theorem 1.6. Let us recall

the definition of the reduced Heisenberg groupHn
red which is C

n × T with
the group law

(z, eit)(w, eis) = (z + w, ei(t+s+ 1
2 Im(z.w̄))).

We usually denote the elements ofHn
red by (z, t) instead of(z, eit) with

the obvious identification. The spherical meansf ∗ µr are defined as in the
case of the full Heisenberg group except that now we integrate over the
reduced Heisenberg group. The spherical means are given by the following
expansion:

f ∗ µr(z, t) = f0 ∗ µr(z, t) +
∞∑

k=0

∑
j 6=0

e−ijtψk(
√

|j|r)f j ∗j ϕ
j
k(z)|j|

where nowf j are the Fourier coefficients of the functionf(z, t) in the t
variable andψk is as in the proof of Theorem 1.6.

Suppose now
∫ 2π
0 f(z, t)dt = 0. Then the first term in the above ex-

pansion will be absent and proceeding as in the proof of Theorem 1.5 we
get

T̂rf(z, t) =
1
2π

∑
j 6=0

∞∑
k=0

e−ijtek(j, r)f j ∗j ϕ
j
k(z)|j|.

As j is different from zero, we have

|ek(j, r)| ≤ C(1 + r2)− 1
2

and therefore the first part of the corollary will follow once we have

∫ ∞

−∞
|ϕ̂(r)|(1 + r2)− 1

2dr < ∞.

This is the case when we takeϕ(t) = χ(−1,1)(t). Thus the maximal function
(1.1) is bounded onL2(H1

red) whenf has mean value zero in thet variable.
When this condition is not satisfied we have one extra term which is the
usual spherical means onR2. The associated maximal function is bounded
onLp( R

2) for all p > 2 by Bourgain’s theorem [1]. Thus Corollary 1.7 is
completely proved.
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