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Abstract

This paper deals with the segmentation of 3-D histo-pathological images. Here we have presented a region-based
segmentation method involving watershed algorithm and the rule-based merging technique. We have implemented a new
method similar to flooding process for circumventing the inability to automatically mark the regional minima in small
isolated objects. The 3-I3 histo-pathological images for testing the algorithm are obtaiped using confocal microscope in
the form of a stack of optical sections. Normally, result of a classical watershed algorithm on grey-scale textured images
such as tissue images is over-segmentation. We have proposed a rule-based heuristic merging technigue to reduce the
over-segmentation of cells. The tiny fragments of the cells and their parents are identified based on some heunstic rules
and are merged together. Rule-based merging gives more than )% accurate segmentation when compared to simple

classical watershad extended to 3-D. Results are shnwn on 3-TY imases of prostate cancer tissue specimen.
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1. Introduction

Automatic image analysis and decision making based
on histological images is an interesting and non-trivial
problem in histo-pathology. The difficulty in analysis of
histo-pathological images arises due to closely clustered
cells, which are touching or overlapping each other.
Proper segmentation of these touching cells is key to
automation of histo-pathological image processing.
There exist as many segmentation technigues, as the
segmentation problems. Even if the precise segmentation
of the tissue image is achieved, inaccuracy in feature
measurement persists due to usage of 2-I images. The
two-dimensional images do not represent the complete
cells in its entirety. Features such as size, shape, chrom

some density, etc., cannot be measured precisely using
2.D images. Most of these problems can be reduced by
the use of volumetric (3-I3) images. Use of thick-tissue
specimens and the three-dimensional (3-D) imaging re-
sults in complete and detailed representation of the cells.
The study of spatial distribution of the cells, tissue archi-
tecture, tumor grading, structural and geometric feature
measurements, counting of Fluorescence in situ Hybrid-
ization signals, etc, can be done more accumtely by
three-dimensional image analysis. Among recent devel-
opments in the visualisation of the histo-pathological
images, Confocal Laser Scanning Microscopy (CLSM)is
one of the most exciting new developments. Confocal
microscope can be considered as a three-dimensional
{3-D) imaging instrument for collecting data from spatial
structures, especially biological ones. BRelatively few
works with practical biological results from such images
have been presented. The use of quantitative study is
even more recent [1,2].

The main hurdle in developing completely automatic
image analysis tools for such 3-I histo-pathological im-
ages is the isolation of clustered and/or compactly ar-
ranged cells. The edge opermtors such as Marr-Hilderth
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[3]. Canny edge detector [4], etc., may not segment the
cells completely due to low and uneven gradient magni-
tude where the cells touch one another or overlap. More-
over, marking edges or boundary does not complete the
process of segmentation. The edge-based segmentation
is prone to problems such as marking of noisy edges,
discontinuous boundary, ete. [5]. On the other-hand,
region-based techniques i.e. isolation of the different
regions in the image is more suitable for tissue segmenta-
tion. This technique stems from the fact that the voxels
belonging to the same region show many similar charac-
teristics. Most simple and primitive region-based tech-
nique is thresholding the image based on local histogram
of the voxel intensity and then labelling the isolated re-
gions by connected component-labelling algorithm [6,7].

When the objects are well isolated, thresholding and
labelling process may give acceptable results. But, rarely
real-life images show uniform grey level within the object
as well as in the background. Moreover, histogram-based
thresholding does not exploit the fact that the points
from the same object are generally, spatially close due to
the surface coherence [8]. Techniques such as split and
merge algorithm [9], simple region growing [10], mul-
tiple thresholding [11], ete., do not produce acceptable
segmentation results due to the fine textured nature of
the cell chromatin and the presence of dense intracellular
as well as intercellular matters. In our previous article
[2]. we have described an edge-based segmentation
method for CLSM images and its application in confirm-
ing the membership of a FISH signal to a corresponding
cell nucleus. In this paper we have described a special
type of region growing method, which is popularly
known as watershed algorithm that gives acceptable re-
sults in most of the cases. The technique is extended
to work on 3-D tissue images. Watershed technigue is
suitably modified to avoid the problem of automatic
marking of regional minima. We have also presented a
methodology to comect the over-segmentation, which
characterises the segmentation of tissue images using
watershed technigues.

Segmentation based on the use of watershed lines to
separate the regions has been originally developed in the
framework of mathematical morphology [12,13]. When
we map the grey-scale image as a topographic surface,
the topography can be viewed as watersheds. The grey
level of each voxel stands for the elevations of the corre-
sponding watershed surface. Though mapping of grey
levels, as a topographical relief in three-dimensional im-
age is more ambiguous to visualize, the algorithm is
a simple extension of two-dimensional watershed to 3-D
with a modified region growing. Watershed algorithms
were extensively used for segmentation of 2-D histo-
pathological images. Some of the important works in this
regard are of Beucher [12], Beucher and Meyer [13],
Vincent [14], Lockett and Herman [15], Najman and
Schmitt [167, Malpica et al. [17], etc.

2, Segmentation: a 3-1 watershed approach

Segmentation of 3-I histo-pathological images can be
considered as good iff the results show the following
properties.

(1) Complete and detailed isolation of the clustered cells.

12) Minimum over-segmentation and under-segmenta-
tion of the cells.

{3) Each visually perceivable 3-D cell region has been
given a unigue label.

{4) The segmentation process should be less interactive
and the results should be comparable to manually
segmented results. The process should be fast and
efficient considering the large size of the volumetric
data sets.

Classical watershed algorithm partially satisfies all
these conditions. Though itis said that mostly all the cells
are separated at the end of watershed algorithm applica-
tion, more often, a single cell is divided into several
fragments resulting in over-segmentation. This results in
labelling the parts of the same cell as different individuals.
There are few methods suggested in the past literature to
overcome this problem [12,13,16]. The histo-pathologi-
cal images are often noisy and the cells we want to
segment are often complex and varied in its shape, size or
intensity. When we look at the mesult of a watershed
segmentation of a histo-pathological image, we find that
most of the cells are fragmented. Merging the fragments
of the same cell into a single object may produce desired
results. In this paper along with explaining the practical
implementation of watershed in 3-D, we have presented
a rule-based merging algorithm to reduce the over
segmentation. To a major extent, one can reduce the
over-segmentation by undertaking proper noise reduc-
tion and feature enhancement of the objects of interest in
the image before applying segmentation techniques. We
have used few pre-processing technigues to achieve the
same. These technigues are briefly described below.

2.1 Pre-processing

Sepamtion of image background and foreground re-
gions not only defines a broad area of interest but also
reduces ambiguity in the results due to uneven and dense
background. As it is well known and we can see later in
our experimental results too, noise and other artefacts
present in the image results in the over-segmentation of
the cells and the tissue. Several conventional and heuris-
tic methods are therefore necessary to reduce these arte-
facts in the image. We have implemented a simple win-
dow-slicing method to achieve this. Window slicing,
which is also known as amplitude thresholding, converts
all the pixels or voxels, which are below a threshold T,
to the lowest grey value that is zero (indicating dark
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background). The voxels having intensity value above
the threshold is kept undisturbed. This gives us an image
of uniform background while the foreground consists of
different grey levels. We have observed that the histo-
gram of our image data sets exhibits unimodal property.
Hence, the valley point indicating likely threshold, may
not be found explicitly in the histogram of the images. In
such cases it is often possible to defire a good threshold
at the shoulder of a histogram [18]. There are several
methods to choose the shoulder point of the histogram.
We have used an empirical formula, t = (u + ke) where
7 is the standard deviation and u is the average grey
value and & is a constant determined as follows. The
difference in the number of voxels in foreground for
(g + ke) and (u 4+ (k + 2)r) is calculated. If this difference
is small (approximately =10% of the total number of
foreground voxels calculated as per (u + ke)), then corre-
sponding value of & is considered as the constant for
threshold selection. We begin this iterative process of
determining & with k = 0 and increase & by 1 till the said
condition is satisfied. Here, T = (4 + ko) when the mode
point of the histogram lies close to the minimum grey
value in the image and © = (4 — ka) when the mode point
lies close to the maximum grey value in the image. Some-
times, window slicing results in creation of holes in the
cells and small noisy island-like structures in the back-
ground. This is due to the presence of dense non-cellular
matters in the background and dark intra-cellular objects
within the cell. We have developed a size- and shape-
heuristic-based filter to reduce this effect.

The size of all the isolated objects is calculated. If the
size is less than pre-defined size threshold then such an
object is considered as artifact and its voxel intensity are
changed to background intensity. Similarly, the holes are
identified. If the holes are smaller than the pre-defined
threshold, then the original grey values of the voxels
belonging to the holes are restored. Figs. 1{b) and (c)
show the result of window slicing and size filtering on
a representative image slice of CLSM image stack. The
representative image slice is shown in Fig. 1l{a). After
window slicing and size filtering of the image stack, the
background noise is reduced and the background grey
value becomes spatially uniform.

The main problem with the confocal image stack is the
attenuation of light along the depth of the specimen. The
uneven illumination along the depth of the specimen
results in the spatial varnation of light intensity in the
image volume. Besides the optical problems, the photo-
bleaching of the specimen contributes to the degradation
of intensity. Photo-bleaching can be modelled as a first-
order decay process and hence computationally correc-
ted [19]. When we plot the average image intensity of
each image slice against depth of the stack, we have
observed that the illumination degradation is not linear.
We have implemented a simple method of restoration of
intensity of the foreground voxels by comparing it with

{ch (d)

Fig. 1. Result of image enhancement steps shown over a single
image shice: (a) original image shice, (b) result of window sliang,
(o) resull of size-flering, (d) result of mor phelogical opening and
dosing of a 3-D image.

the highest intensity image slice in the stack. Let I; be the
image slice having maximum average image intensity, i.e.,
I =max{l I ...1,} whereI,.I,.....I, are the inten-
sities of (1,2, ..., n)th image slice in the stack. We con-
sider this image slice i as the standard image slice and
increase the average image intensity of remaining image
slices in the stack to be on par with average image
intensity of image slice i. Increasing the average image
intensity of the whole image slice increases the back-
ground intensity too, which is undesirable. Hence, we
have to consider only those voxels that belong to a par-
ticular region of interest where the intensity restoration is
necessary. The foreground (highlighted by locally high
grey value or image intensity due to specific fluorescent
material) of the image is considered as the region of
interest in the present case. Such a region is readily
available from the results of window-slicing and size-
filtering.

Let the mean intensities of the image slices 1,2, ... .. in
the image stack be I\ I, ....J,. The varation in the
average image intensity of the foreground is plotted as
shown in Fig. 2 If I is the average intensity of reference
image slice, such that I} = T, for all j, then, image slice i
is considered as the reference image slice and [, as the
standard image intensity value. Let fi, = |I; — I| be the
difference of average intensity of the foreground in Ath
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Fig. 2. Variation of average image intensity of the foreground (a) belore restoration and (b) alter restoration.

image slice and the reference image slice i. Then for the
kth image slice the grey level of each pixel of the fore-
ground is enhanced by a factor off, e, if lx, v, k) is the
intensity of voxel at (x, y, &) then the enhanced intensity is
given as fx,y, k) = Hx, . k) + ff, where ¢ is an experi-
mentally chosen constant. Ideally ¢ should be 1. This
simple addition of the average value to the image inten-
sity results in the loss of pixel sensitivity. A trade-off
optimising the requirements of light intensity and loss of
sensitivity is useful. This trade-off is also imaging and
application dependent. As the confocal microscopy im-
ages do not give clear details of the intra-cellular struc-
tures as well as our interest being limited to measure the
quantitative features of cells and the tissue, we have
ignored the pixel sensitivity issue. One can use simple
contrast stretching operation [20] to enhance the visual
quality of the intensity restored image.

Omne of the major reasons identified for over-segmenta-
tion or wrong segmentation results in watershed algo-
rithm is the presence of holes inside the object and the
barb-like structures at the object surface. These artefacts
can be reduced by the application of morphological oper-
ators. Morphological opening and closing operations
break the narrow isthmuses and eliminates small islands

and sharp peaks. This is very important as the removal
of noisy peaks and islands result in more accurate con-
struction of geodesic distance map, which holds the
key to reduce the over-segmentation. Opening of an
image Ix, y,z) by a structuring element K is denoted
by HNx.pz)-K and defined as [fix,pz):-K=
iz, v, k)@ K)@® K. The closing of the image by the same
structuring  element can be defined as  f{x k)
K ={lix,y. k)@ K)@ K, wher @ is the erosion operator
and & is the dilation operator [21]. We have used
three-dimensional 3 = 3% 3 six connected structuring ele-
ment for this purpose. Fig. 1{d) shows the result of mor-
phological opening and closing on a 3-I) image.

2.2 Watershed algorithm

Segmentation by watersheds was first proposed by
Lantuejoul [22], and was later improved jointly with
Beucher [ 23]. Classical watershed algorithm can be cat-
egorized as a region growing process. Briefly stating, each
cell is assigned a regional marker approximately at the
center of the cell. A voxel in the foreground is clubbed
with a nearest regional marker if its geodesic distance
from the corresponding regional marker is less than its
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peodesic distance from any other regional markers.
When the regional minima or markers are completely
grown, they approximately represent the region of a
single cell separated by different labels assigned to re-
gional markers or by those voxels whose geodesic dis-
tance is the same for more than one regional marker.
Before going to implementation details and the improwve-
ment of the watershed algorithm, we have described few
standard terms used in watershed paradigm namely, re-
gional minima, zone of influence, SKIZ, watershed lines,
etc., concerning 3-D objects to be segmented.

The regional minima R; of a 3-I) object is defined as
aconnected group of voxels at the approximate center of
the object characterised by the following property. If
the shortest distance of this group of connected voxels
from the object boundary is d;, then it is not possible to
traverse to another region of distance longer than d;
without traversing through the voxels of distance value
shorter than 4;. In simple words, a regional minimum is
a group of voxels or a single voxel belonging to the
object and has a maximum distance value from the near-
est background voxel than other voxels in the object.
Fig. 3 shows the concept of regional minima with respect
to a 3-D object.

The geodesic distance d; of a voxel i from the regional
minima K; of a 3-D object in a spatial image domain is
the length of a shortest existing path within the fore-
ground and linking voxel 7 and regional minimum & of
the ohject. Fig. 3 presents the concept of geodesic dis-
tance. The zone of influernce (Z01) of a regional minima
R; comsists of all those voxels whose geodesic distance
d; from the regional minima R; is smaller than their
peodesic  distance to all other regional minima
R;.; where j= 1.2 ... N.N being the total number of
regional minima in the image volume. Fig. 3 shows the
concept of zone of influence diagrammatically. The zone
of influence of each cell marker (regional minima) ap-
proximately covers the voxels belonging to the respective
cells. The Z01 are also called as catchment basins.

One of the simple methods to find the regional min-
imum is to appropriately threshold the distance map
such thateach cell gets one regional marker. For defining
the accurate zone of influence of each regional marker,
Euclidean distance of all the voxels from the nearest
regional marker should be caleculated to define the Z01
of each regional minimum. Calculation of accurate
Euclidean distance for each foreground voxel from the
nearest regional minima is computationally expensive.
A very close approximation to Euclidean map can be
used to define the zone of influence of the each regional
marker. We have used path generated distance trans-
forms (PGDT) as proposed by the Borgefors [24] for
finding the zone of influence.

Two-tone version of the image is obtaiped by thre-
sholding the image at suitable level as explained earlier.
All the background voxels are given a distance value 0
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Fig. 3. Diagrammatic description ol several terms used in waler-
shed paradigm.

while the foreground voxels are given a very high dis-
tance value (ideally infinity) In the first scan from
the top-left, a new distance value is computed for the
foreground voxel. A 3x3 =3 neighbourhood of each
foreground voxel is considered along the mster scan.
Compute the sums of the values of the already visited
neighbours and the corresponding local distances. In 26
neighbourhoods there are 13 already visited voxels for
each central voxel Thus, the new distance value for the
central voxel is the minimum of the 13 sums. This scan
computes the distances from the left-up-top. In the sec-
ond scan, the scan direction is reversed. Again for each
voxel, sum of the already visited neighbour distance
values and local distances are computed. The only differ-
ence is that now the central voxel itself must be included,
adding local distance zero. Thus the new, final value is
the minimum of the 14 sums. The second scan computes
the distances from right-down-bottom. Local distance of
[3.4.5] is given to a [face-connected, edge-connected and
comer-connected neighbourhoods] in a 26 neighbour-
hood voxel lattice.

The skeleton by zone of influence (SKLZ) is defined as
the surface consisting of those voxels in the foreground
which do not fall into Z0O1 of any particular regional
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minima K; where i = 1,2, ..., N. Voxels of 3KIZ surface
would have the same geodesic distance from more than
one regional marker. This SKIZ surface forms the water-
shed lines separmting the zone of influence of different
regional minima.

Explanation about some other related terms such as
sinks, divides, channels, hills, ndges, ruts, etc., of a func-
tion can be found in Ref. [25]. With the knowledge of
these terms used in watershed paradigm, we will be able
to explain how this methodology can be used to segment
the 3-D cells in a thick-tissue section images.

220 Segmentation

Enhanced and window-sliced image stack is converted
to two-tone image by changing all the foreground voxel
values to 1 and the background is kept the same ie., zero.
This two-tone volumetric image is used to calculate the
geodesic distance map as explained earier. The distance
map is then suitably thresholded such that maximum
number of cells would have a signature in the thre-
sholded distance map. These regions in the thresholded
map are superposed on the distance map as regional
markers. When all the cells in the image are more or less
of similar size and shape, thresholding a distance map
results in a regional marker for every cell in the tissue.
Unfortunately, that is not the case with the data sets we
are working on. One way to circumvent thisis to find the
marker by successive erosion. In successive erosion, the
two-tone version of the image is successively eroded with
a suitable structuring element. Care should be taken so
that no cell signature is completely eroded from the
image domain. This can be done by setting a size thre-
shold and not to erode any cell signature that is smaller
than the size threshold. The eroded cell signatures are
then considered as regional markers and the ZOI of each
marker can then be calculated by generating a suitable
distance map. In some cases it is found that successive
erosion results in more than one regional marker foreach
cell. This results in over-segmentation. We have used
thresholded distance map for marking the regional min-
ima and those cells which do not have regional minimum
marked in them are taken care of during the region
growing process which is explained below. Each regional
minima obtained from thresholding the distance map is
given a unique label by using a 3-D component labelling
algorithm and the results are kept separate [2].

The regional minima R, is grown into its neighbour-
hood voxel v, iff the geodesic distance from R; is less than
the distance from any other regional marker. Small iso-
lated or touching cells that do not have any regional
minima will be lost if we just concentrate on growing the
regional markers into their neighbourhood. We have
used voxel merging rather than region growing to cir-
cumvent this problem. Here all the voxels having a dis-
tance value o is merged with the neighbounng regional
marker or if there is no regional marker within a finite

peodesic distance (neighbourhood), the voxel is merged
with a higher distance value voxel in its immediate 26
neighbourhoods or the voxel itsell becomes a new re-
gional marker. The following algorithm explains this.

The process of 3-D watershed segmentation can be
explained in a few steps. Let R, for i = 1,23, |, N, be
the labelled regional markers where N gives the max-
imum number of regional markers in the image. Let distl.)
represents the distance value of voxels or regions in the
distance map.

Step 10 All the regional markers are given maximum
distance  value within  the image domain ie.,
dist{ R;) = max{dist(r;)} for all i and j. Let d,,, be the
maximum distance or the distance value of the regional
markers.

Step 20 Then, all the voxels having a distance value
ldyee — 1) and located in the neighbourhood of a re-
gional marker are merged with their nearest regional
marker. The merging process can be said as the growing
of the labelled regional markers into the neighbourhood
voxels, which falls into its zone of influence.

Step 3: The isolated voxel or group of connected voxels
with distance (d,,,, — 1) and not having a labelled re-
gional marker in their immediate neighbourhood are
given a new label and considered as new regional
markers and given a new unique label. This also shows
that, one can start with a single voxel of highest distance
as the only regional marker and still be able to segment
all the regions in a cluster of objects.

Step & dyy = dyay — 1

Step 5: If the d., # 0 then steps 2-4 are repeated.

This process of region merging for growing the re-
gional marker takes care of those cells, which are not
marked with regional markers initially. The process of
voxel merging stops when all the voxels in the foreground
is merged with a nearest regional marker or merged to
a highest distance value within the region when regional
marker is not found. The result of watershed-technigue-
based segmentation is usually fragmentation of the cells
in the image. Here we propose a region merging tech-
nique as a post-processing algorithm to reduce the over-
segmentation of the cells.

3. Rule-based merging of the over-segmented cells

In histo-pathological images, inside of the nuclei is
a texture chromatin and the outside is a cytoplasm,
which is also textured. The texture variation is so domi-
nant that it makes it difficult to discriminate between the
contour lines of the cell and the chromatin texture pat-
terns. If we construct the watershed lines directly from
such a textured image, it results in a severe over-segmen-
tation as shown in Fig. 4(b). Fig. 4a) shows the un-
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) o ) ic)

Fig.4. Result ofsimple watershed technigue shown over a single
image slice: {a) original image slice, (b) result of watershed
segmentation considering the grev-level topography of the im-
age for marking dilferent regions, (©) result of watershed consid-
ering distance map o mark dilferent regions.

processed image slice. The segmentation of the cells by
the direct construction of the watershed lines based on
grey-level topography results in too many fragments.
This is due to the fact that every regional minimum
becomes the centre of a catchment basin, ie. every re-
gional minimum is considered as belonging to a unique
cell and its ZO1 is calculated. Even if we use the enhanced
and window sliced image for the application of watershed
algorithm, some over-segmentation persists as is evident
from Fig. 4c). When we automatically choose the re-
gional marker by thresholding the distance map, there is
every possibility that the same cell may get more than
one regional minimum. Successive erosion also results in
more than one marker seed per cell. The holes and the
sharp protrusions which appear inside the thresholded
image for calculating the distance map which are not
cleaned during pre-processing results in wrong calcu-
lation of the distance map and hence results in more than
one regional marker within the same cell.

Several researchers have tried to address this problem
[13,16,26]. One possible method is to make use of hys-
terisis thresholding to suppress the noisy, weak contours,
representing the watershed lines between small regions.
Najman and Schmitt [16], have listed varous reasons for
ill suitability of hysterisis thresholding in case of water-
shed. They are: (1) Hysterisis thresholding is suitable for
edges and it produces non-closed contours while water-
shed contours are already closed contours, which are
obtained as a complimentary to the set of regions. (2)
Hystersis thresholding on watershed segmentation pro-
duces barbs, etc. Some of the proposed method to over-
come the over segmentation problem is the geodesic
reconstruction [ 12]. the hierarchical segmentation [ 13],
hierarchical segmentation using dynamics of contour
[16], etc. We have proposed an extension to 3-D water-
shed technique, which identifies the over-segmented ob-
jects based on simple size and shape features and merge
them with their parent cell.

Let & be the total number of segmented objects due to
the application of simple 3-D watershed segmentation
method. Let & be the total number of segmented objects

due to the application of classical 3-D watershed segmen-
tation method. Let T,;,. be the size threshold for a cell,
Le. a cell should have a minimum size of Tuee. This
threshold is set expennmentally. All the tiny fragments of
the cells whose sizes are below T,,,. are considered as
noisy and are merged with corresponding parent cell. We
assign fragment “a” to a parent cell "4, if the following
heuristic conditions hold good.

1. 4" and ‘@' should be touching neighbours,
sizeld) = sizela) and size(a) < T ..

2 If & is sharing its boundary with more than one
large cell fragment, then the length of the boundary it
shares with “4" should be larger than the length of the
boundary it shares with any other touching large object.

If these conditions are satisfied then the fragment "o is
merged with the parent cell “4" To reduce the possible
errors due to group of tiny fragments being sandwich
between two large objects, we merge those fragments first
which are touching neighbours to large objects. Also,
after merging one fragment to a large object, merging of

af

5

C, G, C, : Parent cells
I. 2. 3 4. 5and 6 : Fragments

Fragments 1 and 2 shares the houndary
with ) and C, but fragment | shares
maximum boundary with C. while fragment
2 shares maximum boundary with C,

So frugment 1is merged o C, L 2

merired to )8 s merged o O, 4 s
mezrged with C, . while 5 and & are merged
withC, . )

Aler merging e [agments

Fig. 5. Diagrammaltic representation of detecting the small lrag-
ments of the objed and finding its parent.
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any other small object to the same large object is con-
sidered only after all the other large objects are checked
for merging possible single fragment. Fig. 5 diagrammati-
cally explains the detection of fragments and their par-
ental cells.

When fragment o’ does not have any large touching
neighbour but has many small fragments as its neigh-
bours, then there is a possibility that a single cell might
have been over-segmented to such a level that there is no
fragment of size above threshold T, belonging to that
cell. In such cases, all the tiny fragments that are touching
each other and not connected to a larger object, are
merged to form a single object. If this merged object is
above the threshold T,;,. then it is considered as a cell
otherwise it is discarded as a noise artifact. The merging
process stops when all the tiny fragments are either
merged with a larger object or are discarded considering
them as artefacts.

(I}

Fig. ta) shows a sequence of image slices of a 3-D
image stack while Fig. 6(b) shows the result of a classical
watershed algorithmextended to 3-D. Fig. 6{c), shows the
result of antomatic rule-based merging of the small ob-
Jects in the over-segmented image volume. There can be
still many cases where large individual cells are found to
be segmented into two or three different objects. This
may be due to the fact that such artefacts do not fall into
the size threshold chosen by trial and error methods.
Moreover, the mle-based merging is not foolproof as it is
based on heuristic assumptions.

4. Experimental results and discussions

A Silicon Graphics, Indy machine with IRIX 53 is
used as a platform to run the software. Much of the
programming is done using Interactive Data Language
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Fig. 6. Result of 3-D watershed technique shown over a sequence of image slices of a 3-D stack: (o, 2') original image slices, (b, B) result
of classical watershed extended to 3-D, (¢, ©') result of classical watershed with a rule based merging.
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Table 1

1457

Comparative result of cell region isolation by simple 3-D watershed, watershed with selective marker technigue, and watershed with

rule-based merging

5L no. Actual number Mumber of wlls by Mumber of cells by Mumber of cells by
of wlls present simple 3-D¥ watershed selective marker technigque rule-based merging technique
ol 23 42 24 4
a2 kil 56 3l a2
a3 I8 e 23 21
s 42 67 47 3R
05 26 K 29 26
06 12 19 12 12
a7 05 05 03 05
08 kil 4 34 33
1 ek 43 31 ki
10 Ly 56 42 40
11 11 11 12 13
12 12 2 12 12
13 I6 21 18 17
14 28 B 30 kil
i5 a7 L1 a7 08

Sherror = 53%

Saerror = 9%

Saerror = 2%

(IDL) and C. Most of the experiments needed no human
interactions except to load the images.

Fig. 6 shows the results of the segmentation presented
in this paper. The 3-D watershed technique with rule-
based merging has taken 1 min 20 s with 95% cormect
segmentation of cells in a image of size 2506 % 256 = 24
consisting of 22 cells of different size and shape. Without
rule-based merging, results can be obtained within a min-
ute but the segmentation is found to be only 53% correct.
These figures are mentioned with respect to a particular
data set. Though for a reliable statistical evaluation, one
has to experiment on large amount of data before decid-
ing the efficiency of a particular methodology, the above
result is definitely an indicator of the utility of rule-based
merging. Rule-based merging allows us to do away with
selective regional minima marking or hysterisis thre-
sholding to reduce the over-segmentation.

Table 1 gives comparative results of simple 3-D water-
shed, watershed with a selective marker technique [13]
and watershed with rule-based merging technique as
applied to the segmentation of 3-D cells. Quantitative
results are shown on 15 3-I) image data set of a prostate
cancer tissue. From this table it is evident that classical
3-D watershed is of very little use for segmentation of 3-D
histo-pathological images unless some additional tech-
nique is used to reduce the over-segmentation.

The three-dimensional extension of watershed algo-
rithm is quite similar to the 2-D counterpart extensively
used for segmentation. The 3-D neighbourhood relation
and its equivalent distance calculation enhance the com-
plexity of the overall process. Presence of noise or hidden
holes in the 3-D objects makes the segmentation a diffi-

cult process especially the use of watershed technigue.
Extensive pre-processing of the 3-D images is necessary
to avoid the over-segmentation. An evolving approach
for marking the mgional minima in the technique pre-
sented in this paper reduces the problems due to im-
proper marking of regional minima. Given a cormect
geodesic distance map, proper region isolation can be
assured by using this technigque.

In the future work, we plan to study the influence of
different region-based segmentation techniques on the
measurement of important cytological and histological
features. We also plan to combine these technigques to
produce better segmentation results.
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