
Neurocomputing 36 (2001) 45}66

Evolutionary modular design of rough knowledge-based
network using fuzzy attributesq

Sushmita Mitra, Pabitra Mitra, Sankar K. Pal*
Machine Intelligence Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Calcutta 700035, India

Received 23 March 1999; accepted 29 August 2000

Abstract

This article describes a way of integrating rough set theory with a fuzzy MLP using
a modular evolutionary algorithm, for classi"cation and rule generation in soft computing
paradigm. The novelty of the method lies in applying rough set theory for extracting depend-
ency rules directly from a real-valued attribute table consisting of fuzzy membership values.
This helps in preserving all the class representative points in the dependency rules by adaptively
applying a threshold that automatically takes care of the shape of membership functions. An
l-class classi"cation problem is split into l two-class problems. Crude subnetwork modules are
initially encoded from the dependency rules. These subnetworks are then combined and the
"nal network is evolved using a GA with restricted mutation operator which utilizes the
knowledge of the modular structure already generated, for faster convergence. The GA tunes
the fuzzi"cation parameters, and network weight and structure simultaneously, by optimising
a single "tness function. This methodology helps in imposing a structure on the weights, which
results in a network more suitable for rule generation. Performance of the algorithm is
compared with related techniques. (2001 Elsevier Science B.V. All rights reserved.

Keywords: Soft computing; Fuzzy MLP; Rough sets; Knowledge-based network; Genetic
algorithms; Modular neural network

qThis work was partly supported by GTZ Project 93.2254.6-02.196/9602, Germany and CSIR Grant
25(0093)/97/EMR-II, India.

*Corresponding author. Tel.: #91-33-577-8085x3100; fax: #91-33-556-6680/6925.
E-mail addresses: sushmita@isical.ac.in (S. Mitra), pabitra}r@isical.ac.in (P. Mitra), sankar@isical.ac.in

(S.K. Pal).

0925-2312/01/$ - see front matter (2001 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 (0 0) 0 0 3 3 5 - 0

1. Introduction

Soft computing is a consortium of methodologies which works synergetically (not
competitively) and provides, in one form or another, #exible information processing
capability for handling real-life ambiguous situations [27]. Its aim is to exploit the
tolerance for imprecision, uncertainty, approximate reasoning and partial truth in
order to achieve tractability, robustness, low-cost solutions and close resemblance
with human-like decision making. The guiding principle is to devise methods of
computation which lead to an acceptable solution at low cost by seeking for an
approximate solution to an imprecisely/precisely formulated problem. There are
ongoing e!orts to integrate arti"cial neural networks (ANNs), fuzzy set theory, genetic
algorithms (GAs), rough set theory and other methodologies in the soft computing
paradigm [20]. Hybridization [16,17] exploiting the characteristics of these theories
include neuro-fuzzy, rough-fuzzy, neuro-genetic, fuzzy-genetic, neuro-rough, rough-
neuro-fuzzy approaches. Among these neuro-fuzzy computing is most visible.

Generally, ANNs consider a "xed topology of neurons connected by links in
a pre-de"nend manner. These connection weights are usually initialized by small
random values. Recently, there have been some attempts in improving the e$ciency of
neural computation by using knowledge-based nets. This helps in reducing the
searching space and time while the network traces the optimal solution. Knowledge-
based networks [3,22] constitute a special class of ANNs that consider crude domain
knowledge to generate the initial network architecture, which is later re"ned in the
presence of training data. Such a model has the capability of outperforming a stan-
dard MLP as well as other related algorithms including symbolic and numerical ones
[3,22]. Recently, the theory of rough sets has been used to generate knowledge-based
networks.

A recent trend in neural network design for large-scale problems is to split the
original task into simpler subtasks, and use a subnetwork module for each of the
subtasks [6]. The popular methods available for decomposition include the local
model network (LMN) [10] and the CALM model [6]. It has been shown that by
combining the output of several subnetworks in an ensemble, one can improve the
generalization ability over that of a single large network [5].

Many researchers have combined genetic algorithm with neural network for build-
ing more powerful adaptive systems. Here one simultaneously optimizes the weight
values and thresholds along with the network topology and learning parameters
[9,23}25]. Note that the search space of all possible network topologies is extremely
large. Other hybridizations involving GAs include the genetic-fuzzy [8,18] and gen-
etic-neuro-fuzzy [7,12,28] schemes. Another promising approach is the use of GAs for
theory re"nement in connectionist systems. Among such successful schemes are the
REGENT, TOPGEN [11] and other such algorithms.

In the present article an evolutionary strategy is suggested for designing a connec-
tionist system, integrating fuzzy sets and rough sets. The basic building block is
a rough fuzzy MLP. Unlike the existing approaches [1,26], the proposed algorithm
can directly extract dependency rules from a real-valued attribute table consisting of
fuzzy membership values. The evolutionary training algorithm generates the weight

46 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Fig. 1. Block diagram of fuzzy MLP.

values for a parsimonious network and simultaneously tunes the fuzzi"cation
parameters by optimizing a single "tness function. Rough set theory is used to obtain
a set of probable knowledge-based subnetworks from the decision rules. These form
the initial population of the GA. The modules are then integrated and evolved with
a restricted mutation operator that helps preserve extracted localized rule structures
as potential solutions. This type of ÷ and conquer' strategy accelerates the
training signi"cantly as compared to the training of the entire network using a single
GA. A restricted mutation operator is implemented, which utilizes the knowledge of
modular structure evolved to achieve faster convergence. The aforesaid integration of
four di!erent soft computing tools is found to signi"cantly enhance the performance
of the system.

2. Fuzzy MLP

The fuzzy MLP model [15] incorporates fuzziness at the input and output levels of
the MLP, and is capable of handling exact (numerical) and/or inexact (linguistic)
forms of input data. Any input feature value is described in terms of some combina-
tion of membership values in the linguistic property sets low (L), medium (M) and
high (H). Class membership values (k) of patterns are represented at the output layer
of the fuzzy MLP. During training, the weights are updated by backpropagating
errors with respect to these membership values such that the contribution of
uncertain vectors is automatically reduced. A schematic diagram depicting the whole
procedure is provided in Fig. 1. The various phases of the algorithm are described
below.

A three-layered feedforward MLP is used. The output of a neuron in any layer (h)
other than the input layer (h"0) is given as

yh
j
"

1

1#exp(!+
i
yh~1
i

wh~1
ji

)
, (1)

where yh~1
i

is the output of the ith neuron in the preceding (h!1)th layer wh~1
ji

is the
weight of the connection from the ith neuron in layer h!1 to the jth neuron in layer
h. For nodes in the input layer, y0

j
corresponds to the jth component of the input

vector. Note that xh
j
"+

i
yh~1
i

wh~1
ji

.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 47

An n-dimensional pattern F
i
"[F

i1
,F

i2
,2,F

in
] is represented as a 3n-dimen-

sional vector

F
i
"[k

-08(Fi1)
(F

i
), k

.%$*6.(Fi1)
(F

i
), k

)*')(Fi1)
(F

i
), k

-08(Fi2)
(F

i
), 2, k

)*')(Fin)
(F

i
)]

"[y0
1
,y0

2
,2, y0

3n
], (2)

where the k values indicate the membership functions of the corresponding linguistic
n sets low, medium and high along each feature axis and y0

1
,2, y0

3n
refer to the

activations of the 3n neurons in the input layer.
When the pattern element is numerical, we use the n-fuzzy sets (in the one-

dimensional form), with range [0,1], represented as [15]

n(F
j
; c, j)"G

2A1!
EF

j
!cE
j B

2
for

j
2
4EF

j
!cE;4j,

1!2A
EF

j
!cE
j B

2
for

j
2
4EF

j
!cE;4

j
2
,

0 otherwise,

(3)

where j('0) is the radius of the n}function with c as the central point. Note that
features in linguistic and set forms can also be handled in this framework [15].

Let m
j

be the mean of the pattern points along the jth-axis. Then m
jl

and m
jh

are
de"ned as the mean (along the jth-axis) of the pattern points having coordinate values
in the range [F

j.*/
,m

j
) and (m

j
,F

j.!9
], respectively, where F

j.!9
, and F

j.*/
denote

the upper and lower bounds of the dynamic range of feature F
j
(for the training set)

considering numerical values only. For the three linguistic property sets along the
jth-axis, the centers and the corresponding radii of the corresponding n}functions are
de"ned as

c
-08(Fj)

"m
jl
, c

.%$*6.(Fj)
"m

j
, c

)*')(Fj)
"m

jh
,

j
-08(Fj)

"c
.%$*6.(Fj)

!c
-08(Fj)

,

j
)*')(Fj)

"c
)*')(Fj)

!c
.%$*6.(Fj)

,

j
.%$*6.(Fj)

"0.5(c
)*')(Fj)

!c
-08(Fj)

),

(4)

respectively. Here we take into account the distribution of the pattern points along
each feature axis while choosing the corresponding centers and radii of the linguistic
properties. The nature of the membership function is illustrated in Fig. 2.

Consider an l-class problem domain such that we have l nodes in the output layer.
Let the n-dimensional vectors o

k
"[o

k1
, 2, o

kl
] and *

k
"[v

k1
,2, v

kl
] denote the

mean and standard deviation, respectively, of the numerical training data for the kth
class c

k
. The weighted distance of the training pattern F

i
from kth class c

k
is de"ned as

z
ik
"S

n
+
j/1
C
F
ij
!o

kj
v
kj

D
2

for k"1,2, l,

48 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Fig. 2. Overlapping membership functions along feature F
j
.

where F
ij

is the value of the jth component of the ith pattern point. The memership of
the ith pattern in class k, lying in the range [0, 1] is de"ned as [14]

k
k
(F

i
)"

1

1#(z
ik
/f
$
)fe ,

(5)

where positive constants f
$

and f
%

are the denominational and exponential fuzzy
generators controlling the amount of fuzziness in the class membership set.

3. Rough fuzzy MLP

The formulation of a rough fuzzy MLP is described in this section. This is an
extension of the model described in [1]. The extracted crude domain knowledge is
encoded among the connection weights. This helps one to automatically generate an
appropriate network architecture in terms of hidden nodes and links. The method
models arbitrary decision regions with multiple object representatives. This know-
ledge encoding algorithms is radically di!erent from existing models [3,22]. A three-
layered fuzzy MLP (Section 2) is considered where the feature space gives the
condition attributes and the output classes the decision attributes, so as to result in
a decision table. This table may be transformed, keeping the complexity of the
network to be constructed in mind. Rules are then generated from the (transformed)
table by computing relative reducts. The dependency factors of these rules are used to
encode the initial connection weights of the resultant knowledge-based network.

3.1. Rule generation

Let S"S;,AT be a decision table, with C and D"Md
1
,2, d

l
N its sets of condition

and decision attributes, respectively. Divide the decision table S"S;,AT into l tables

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 49

S
i
"S;

i
, A

i
T, i"1,2, l, corresponding to the l decision attributes d

1
,2, d

l
, where

;";
1
X2X;

l
and A

i
"CXMd

i
N.

The objective is to generate dependency rules seperately for each of the l classes. Let
Mx

i1
,2,x

ip
N be the set of those object of U

i
that occur in S

i
, i"1,2, l.

Now for each d
i
-reduct B"Mb

1
,2, b

k
N (say), a discernibility matrix (denoted

M
di
(B)) from the d

i
-discernibility matrix is de"ned as follow [21]:

c
ij
"Ma3B: a(x

i
)Oa(x

j
) N (6)

for i, j"1,2, n.
For each object x

j
3x

i1
,2, x

ip
, the discernibility function f xj

di
is de"ned as

f xj
di
"RMS(c

ij
): 14i, j4n, j(i, c

ij
O0. N, (7)

where S(c
ij
) is the disjunction of all members of c

ij
. Then f xj

di
is brought to its

conjunctive normal form (c.n.f). One thus obtains a dependency rule r
i
, viz., P

i
Qd

i
,

where P
i
is the disjunctive normal form (d.n.f) of f xj

di
, j3i

1
,2, i

p
.

The dependency factor df
i
for r

i
is given by

df
i
"

card(POS
i
(d

i
))

card(;
i
)

, (8)

where POS
i
(d

i
)";

X|Idi
l
i
(X), and l

i
(X) is the lower approximation of X with respect

to I
i
. In this case df

i
"1 [1]. This is used while initializing the connection weights of

the network as explained in the following section.

3.2. Knowledge encoding

Consider the case of feature F
j
for class c

k
in the l-class problem domain. The inputs

for the ith representative sample F
i
are mapped to the corresponding three-dimen-

sional feature space of k
-08(Fij)

(F
i
), k

.%$*6.(Fij)
(F

i
) and k

)*')(Fij)
(F

i
), by Eq. (2). Let these

be represented by ¸
j
, M

j
and H

j
, respectively. As the method considers multiple

objects in a class a separate n
k
]3n-dimensional attribute-value decision table is

generated for each class c
k

(where n
k

indicates the number of objects in c
k
).

The absolute distance between each pair of objects is computed along each attribute
¸
j
, M

j
, H

j
for all j. We modify Eq. (6) to directly handle a real-valued attribute table

consisting of fuzzy membership values. We de"ne

c
ij
"Ma3B: Da(x

i
)!a(x

j
) D'¹hN (9)

for i, j"1,2, n
k
, where ¹h is an adaptive threshold.

Note that the adaptivity of this threshold is in-built, depending on the inherent
shape of the membership function. Consider Fig. 3. Let a

1
, a

2
correspond to two

membership functions (attributes) with a
2

being steeper as compared to a
1
. It is

50 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Fig. 3. Illustration of adaptive thresholding of membership functions.

observed that r
1
'r

2
. This results in an implicit adaptivity of ¹h while computing

c
ij

in the discernibility matrix directly from the real-valued attributes. Here lies the
novelty of the proposed method. Moreover, this type of thresholding also enables the
discernibility matrix to contain all the representative points/clusters present in a class.
This is particularly useful in modeling multi-modal class distributions. A related
concept which links fuzzy sets and rough sets is shadowed sets by Pedrycz [19].

While designing the initial structure of the rough fuzzy MLP, the union of the rules
of the l classes is considered. The input layer consists of 3n attribute values while the
output layer is represented by l classes. The hidden layer nodes model the "rst-level
(innermost) operator in the antecedent part of a rule, which can be either a conjunct or
a disjunct. The output layer nodes model the outer level operands, which can again be
either a conjunct or a disjunct. For each inner level operator, corresponding to one
output class (one dependency rule), one hidden node is dedicated. Only those input
attributes that appear in this conjunct/disjunct are connected to the appropriate
hidden node, which in turn is connected to the corresponding output node. Each outer
level operator is modeled at the output layer by joining the corresponding hidden
nodes. Note that a single attribute (involving no inner level operators) is directly
connected to the appropriate output node via a hidden node, to maintain uniformity
in rule mapping.

Let the dependency factor for a particular dependency rule for class c
k

be
df"a"1 by Eq. (8). The weight w 1

ki
between a hidden node i and output node k is set

at a/fac#e, where fac refers to the number of outer level operands in the antecedent
of the rule and e is a small random number taken to destroy any symmetry among the
weights. Note that fac51 and each hidden node is connected to only one output
node. Let the initial weight so clamped at a hidden node be denoted as b. The weight
w 0
iaj

between an attribute a
j
(where a corresponding to low (L), medium (M) or high (H))

and hidden node i is set to b/facd#e, such that facd is the number of attributes
connected by the corresponding inner level operator. Again facd51. Thus, for an
l-class problem domain there are at least l hidden nodes. This encoding is explained
for an example one-class problem in Fig. 4. All other possible connections in the
resulting fuzzy MLP are set as small random numbers. It is to be mentioned that the
number of hidden nodes is determined from the dependency rules.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 51

Fig. 4. Example of an encoded network.

4. Modular knowledge-based network

It is believed that the use of modular neural network (MNN) enables a wider use of
ANNs for large-scale systems. Embedding modularity (i.e. to perform local and
encapsulated computation) into neural networks leads to many advantages compared
to the use of a single network. For instance, constraining the network connectivity
increases its learning capacity and permits its application to large-scale problems [6].
It is easier to encode a priori knowledge in modular neural networks. In addition, the
number of network parameters can be reduced by using modularity. This feature
speeds computation and can improve the generalization capability of the system [2].
Modular networks are not a!ected by the interference problem that a!ect global
networks like MLP.

We use two phases. First an l-class classi"cation problem is split into l two-class
problems. Let there be l sets of subnetworks, with 3n inputs and one output node each.
Rough set theoretic concepts are used to encode domain knowledge into each of the
subnetworks, using Eqs. (7)}(9). The number of hidden nodes and connectivity of the
knowledge-based subnetworks is automatically determined. A two-class problem
leads to the generation of one or more crude subnetworks, each encoding a particular
decision rule. Let each of these constitute a pool. So we obtain m5l pools of
knowledge-based modules. Each pool k is perturbed to generate a total of n

k
subnet-

works, such that n
1
"2"n

k
"2"n

m
. These pools constitute the initial popula-

tion of subnetworks, which are then evolved independently using genetic algorithms.
At the end of network training using GA, the modules/subnetworks corresponding

to each two-class problem are concatenated to form an initial network for the second
phase. The inter module links are initialized to small random values as depicted in
Fig. 5. A set of such concatenated networks forms the initial population of the GA.
Note that the individual modules cooperate, rather than compete, with each other
while evolving towards the "nal solution. The mutation probability for the inter-
module links is now set to a high value, while that of intra-module links is set to
a relatively lower value. This sort of restricted mutation helps preserve some of the
localized rule structures, already extracted and evolved, as potential solutions. The
initial population for the GA of the entire network is formed from all possible

52 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Fig. 5. Intra and Inter module links.

combinations of these individual network modules and random perturbations about
them. This ensures that for complex multi-modal pattern distributions all the di!erent
representative points remain in the population. The algorithm then searches through
the reduced space of possible network topologies. The block-diagram of the entire
process is provided in Fig. 6.

Use of the above scheme for generating modular knowledge-based networks has
several advantages:

(a) Su$cient reduction in training time is obtained, as the above approach parallel-
izes the GA to an extent. The search string for the GA for subnetworks being smaller,
more than linear decrease in searching time is obtained. Also, very small number of
training cycles are required in the re"nement phase, as the network is already very
close to the solution. Note that the modular aspect of our algorithm is similar to the
co-evolutionary algorithm (CEA) used for solving large-scale problems with EAs [29].
However, there exist no guidelines for the decomposition of network modules in [29].
Here arbitrary subnetworks are assigned to each of the classes. Use of networks with
the same number of hidden nodes for all classes leads to overlearning in the case of
simple classes and poor learning in complex classes.

(b) The use of rough sets for knowledge encoding provides an established math-
ematical framework for network decomposition. The search space is reduced, leading
to shorter training time. The initial network topology is also automatically deter-
mined and provides good building blocks for the GA.

(c) The algorithm indirectly constrains the solution in such a manner that a struc-
ture is imposed on the connection weights. This is helpful for subsequent rule-
extraction from the weights, as the resultant network obtained has sparse but strong
interconnection among the nodes. Although in the above process some amount of
optimality is sacri"ced, and often for many-class problems the number of nodes
required may be higher than optimal, yet the network is less redundant. However the

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 53

Fig. 6. Block diagram.

54 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

above choice of objective function and training algorithm enables su$cient amount of
link pruning and the total number of links are found to be signi"cantly less.

5. Evolutionary design

Genetic algorithms are highly parallel and adaptive search processes based on the
principles of natural selection [4]. Here we use GAs for evolving the weight values as
well as the structure of the fuzzy MLP used in the framework of modular neural
networks. The input and output fuzzi"cation parameters are also tuned. Unlike other
theory re"nement systems which train only the best network approximation obtained
from the domain theories, the initial population here consists of all possible networks
generated from rough set theoretic rules. This is an advantage because potentially
valuable information may be wasted by discarding the contribution of less successful
networks at the initial level itself.

Genetic algorithms involve three basic procedures * encoding of the problem
parameters in the form of binary strings, application of genetic operators like cross-
over and mutation, selection of individuals based on some objective function to create
a new population. Each of these aspects is discussed below with relevance to our
algorithm.

5.1. Chromosomal representation

The problem variables consists of the weight values and the input/output fuzzi"ca-
tion parameters. Each of the weights is encoded into a binary word of 16 bit length,
where [00020] decodes to !128 and [11121] decodes to 128. An additional bit is
assigned to each weight to indicate the presence or absence of the link. If this bit is
0 the remaining bits are unrepresented in the phenotype. The total number of bits in
the string is therefore dynamic [11]. Thus a total of 17 bits are assigned for each
weight. The fuzzi"cationn parameters tuned are the centers (c) and radius (j) for each
of the linguistic attributes low, medium and high of each feature (Eq. (3)), and the
output fuzzi"ers f

$
and f

%
(Eq. (5)). These are also coded as 16 bit strings in the range

[0,2]. For the input parameters, [00020] decodes to 0 and [11121] decodes to 1.2
times the maximum value attained by the corresponding feature in the training set.
This assumes that the maximum value of a feature in the test set would not exceed 1.2
times that in the training set. The chromosome is obtained by concatenating all the
above strings. Sample values of the string length are around 2000 bits for reasonably
sized networks.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 55

Fig. 7. Variation of mutation probability with
iterations.

Fig. 8. Variation of mutation probability along the
encoded string.

Initial population is generated by coding the networks obtained by rough set-based
knowledge encoding, and by random perturbations about them. A population size of
64 was considered.

5.2. Genetic operators

5.2.1. Crossover
It is obvious that due to the large string length, single point crossover would have

little e!ectiveness. Multiple point crossover is adopted, with the distance between two
crossover points being a random variable between 8 and 24 bits. This is done to ensure
a high probability for only one crossover point occurring within a word encoding
a single weight. The crossover probability is "xed at 0.7.

5.2.2. Mutation
The mutation operator has a profound in#uence on the search dynamics because of

large string size [24]. Each of the bits in the string is chosen to have some mutation
probability (pmut). This mutation probability however has a spatio-temporal vari-
ation. The variation of pmut with iterations is shown in Fig. 7. The maximum value of
pmut is chosen to be 0.4 and the minimum value as 0.01. The mutation probabilities
also vary along the encoded string as shown in Fig. 8, with the bits corresponding to
inter-module links being assigned a probability pmut (i.e., the value of pmut at that
iteration) and intra-module links assigned a probability pmut/10. This is done to
ensure least alterations in the structure of the individual modules already evolved.
Hence, the mutation operator indirectly incorporates the domain knowledge extrac-
ted through rough set theory.

5.3. Choice of xtness function

In GAs the "tness function is the "nal arbiter for string creation, and the nature of
the solution obtained depends on the objective function. An objective function of the
form described below is chosen:

F"a
1
f
1
#a

2
f
2
, (10)

56 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

where

f
1
"

No. of correctly classified sample in training set

¹otal no. of samples in training set
,

f
2
"1!

No. of links present

¹otal no. of links possible
.

Here a
1

and a
2

determine the relative importance of each of the factors. a
1

is taken
to be 0.9 and a

2
is taken as 0.1, to give more importance to the classi"cation

score compared to the network size in terms of number of links. Note that we
optimize the network connectivity, weights and input/output fuzzi"cation param-
eters simultanesouly.

5.4. Selection

Selection is done by the roulette wheel method. The probabilities are calculated on
the basis of ranking of the individuals in terms of the objective function, instead of the
objective function itself. Fitness ranking overcomes two of the biggest problems
inherited from traditional "tness scaling: over compression and under expansion. Elitism
is incorporated in the selection process to prevent oscillation of the "tness function with
generation. The "tness of the best individual of a new generation is compared with
that of the current generation. If the latter has a higher value * the corresponding
individual replaces a randomly selected individual in the new population.

6. Implementation and results

The genetic-rough-neuro-fuzzy algorithm has been implemented on both real-life
(speech, medical) and arti"cially generated data. The data sets are available at
http://www.isical.ac.in/Fsushmita/pattern. Let the proposed methodology be termed
Model S. Other models compared include:

Model O: An ordinary MLP trained using backpropagation (BP) with weight decay.
The rule employed for weight decay was w new

ij
"(1!e

ij
)wold

ij
. The term

e
ij
"

c
(1#w2

ij
)2

,

where c is the learning rate, insures that those weights which are not changing much
gradually decay to zero. The learning rate c is adaptive and decays in the "nal phase.

Model F: A fuzzy multilayer perceptron trained using BP [15] (with weight decay).
Model R: A fuzzy multilayer perception trained using BP (with weight decay), with

initial knowledge encoding using rough sets (using Eq. (9) for handling fuzzy at-
tributes, as modi"cation to [1]).

Model FM: A modular fuzzy multilayer perceptron trained with GAs along with
tuning of the fuzzi"cation parameters. Here the term modular refers to the use of
subnetworks corresponding to each class, that are later concatenated using GAs.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 57

Fig. 9. Projection in F
1
}F

2
plane of the Vowel data.

The dependency rules generated via rough set theory and used in the encoding
scheme are "st provided. Recognition scores obtained for each of the data by the
proposed soft modular network (Model S) are then presented and compared with
other related MLP-based classi"cation methods using di!erent levels of hybridiza-
tions described above. In all cases, 10% of the samples are used as training set and the
network is tested on the remaining samples.

6.1. Speech data

The speech data Vowel deals with 871 Indian Telegu vowel sounds. These were
uttered in a consonant}vowel}consonant context by three male speakers in the age
group of 30 to 35 years. The data set has three features: F

1
, F

2
and F

3
corresponding

to the "rst, second and third vowel formant frequencies obtained by trained personnel
through spectrum analysis of the speech data [13]. Fig. 9 depicts the projection in the
F
1
} F

2
plane, of the six vowel classes d, a, i, u, e, o. These overlapping classes will be

denoted by c
1
, c

2
,2, c

6
.

The rough set theoretic technique [Eqs. (7)}(9)] is applied on the vowel data to
extract some knowledge which is initially encoded among the connection weights of
the subnetworks. The data is "rst transformed into a nine-dimensional linguistic space
by Eq. (2).

The dependency rules obtained by using the methodology, described in Section 3.1,
are provided below. Note that ¸

i
, M

i
,H

i
correspond to the linguistic labels low,

medium, high of the ith feature [Eq. (2)]:

c
1
QM

1
s¸

3
,

c
1
QM

1
sM

2
,

c
2
QM

2
sM

3
s(H

1
'M

2
),

c
2
QM

2
sH

3
,

58 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Table 1
Comparative performance of di!erent models for Vowel data

Models Model O Model F Model R Model FM Model S

Train Test Train Test Train Test Train Test Train Test

c
1
(%) 11.2 8.1 15.7 14.2 44.1 42.4 42.4 32.5 62.0 58.4

c
2
(%) 75.7 76.4 82.5 88.4 88.8 87.5 95.0 88.8 100 88.8

c
3
(%) 80.0 85.5 90.9 92.4 88.4 88.7 90.9 89.5 94.2 92.4

c
4
(%) 71.4 65.2 93.2 87.2 88.2 87.4 90.9 90.0 90.2 90.2

c
5
(%) 68.5 59.1 80.0 78.5 94.2 93.4 82.2 80.42 85.8 82.4

c
6
(%) 76.4 71.1 96.2 93.9 94.4 94.2 100 100 95.1 94.9

Net(%) 65.2 64.2 84.3 81.8 86.8 85.8 85.4 82.4 87.2 85.8

d Links 131 210 152 124 84
Sweeps 5600 5600 2000 200 90

c
3
Q(¸

1
'H

2
)s(M

1
'H

2
),

c
3
Q(¸

1
'H

2
)s(¸

1
'M

3
),

c
4
Q(¸

1
'¸

2
)s(¸

1
'¸

3
)s(¸

2
'M

3
)s(¸

1
'M

3
),

c
5
Q(H

1
'M

2
)s(M

1
'M

3
)s(M

1
'M

2
)s(M

2
'¸

1
),

c
5
Q(H

1
'M

2
)s(M

1
'M

2
)s(H

1
'H

3
)s(H

2
'¸

1
),

c
5
Q(¸

2
'¸

1
)s(H

3
'M

3
)sM

1
,

c
6
Q¸

1
sM

3
s¸

2
,

c
6
QM

1
sH

3
,

c
6
Q¸

1
sH

3
,

c
6
QM

1
sM

3
s¸

2
.

The above rules are used to get initial subnetwork modules using the scheme outlined
in Section 3.2. The integrated network contains a single hidden layer with 18 nodes. In
all, 96 such networks are obtained. The initial population is formed by randomly
selecting 64 networks from them.

The performance of Model S along with its comparison with other models using the
same number of hidden nodes is presented in Table 1. In the "rst phase of the GA (for
models FM and S), each of the subnetworks are partially trained for 10 sweeps each. It
is observed that Model S performs the best with the least network size after being
trained for only 90 sweeps in the "nal phase. Comparing Models F and R, we observe
that the incorporation of domain knowledge in the latter through rough sets boosts its
performance. Similarly, using the modular approach with GA in Model FM improves
its e$ciency over that of Model F. Note that Model S encompasses both models
R and FM. Hence it results in the least redundant yet e!ective model. This is
corroborated from Fig. 10 which demonstrates the rise in correct classi"cation (%)

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 59

Fig. 10. Correct classi"cation percentage with number of sweeps for Vowel data: (1) MLP trained with BP
(Model O). (2) Fuzzy MLP trained with BP (Model F). (3) Rough Fuzzy MLP trained with BP (Model R).
(4) Fuzzy MLP trained with GA (Model FM). (5) Modular rough fuzzy MLP trained with GA (Model S).

Fig. 11. Evolution of the number of links with iterations for di!erent training schemes on Vowel data. (The
curve numbering is the same as that in Fig. 10.)

with number of training sweeps. It is observed that curve 5 (Model S) performs the
best. Here all curves are plotted up to 90 sweep, for each of comparison.

Fig. 11 depicts the evolution of the number of links with training. As models O and
F (curves 1 and 2) involve backpropagation, there is no signi"cant change. Model
R (curve 3) incorporates domain knowledge obtained from rough set rules. Hence, the
initial network is small but more number of links grow with training. In Model FM
(curve 4) the initial network is also sparse as the inter-module links are initialized to
zero, but links grow as the network is re"ned. In the case of Model S initial knowledge
encoding, modular training and link pruning all are present. Hence a network with

60 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Fig. 12. Connectivity of the network obtained for the Vowel data, using Model S.

least number of nodes is obtained. It may be noted that the training algorithm
suggested is successful in imposing a structure among the connection weights.

Consider a simple heuristic for rule extraction. Let us de"ne the following quanti-
ties: Thres

1
"mean of the weights'0, Thres

2
"mean of the weights'Thres

1
,Thres

3
"

mean of the weights'Thres
2
. We consider weights having value greater than Thres

3
as strong connections (plotted as thick lines in Fig. 12), weights having value between
Thres

2
and Thres

3
as moderate links (plotted as normal lines in Fig. 12), and weights

having value between Thres
1

and Thres
2

as weak links (plotted as faint lines in Fig.
12). We obtained Thres

1
"20.76, Thres

2
"74.14 and Thres

3
"92.65. If the same set

of threshold values are applied to Model F, only a few strong links are obtained.
Hence, it is not possible to extract any path from output to input nodes, leading to an
absence of certain rules. On the other hand, the network obtained using the proposed
Model S contains a number of strong links which can be used in extracting meaningful
rules.

A sample set of rules extracted from the network, considering only the strong and
moderate links, is presented below:

c
1
QM

1
,

c
2
Q(M

2
'M

3
)sM

2
s(H

1
'M

2
),

c
3
Q(¸

1
'H

2
)sM

1
,

c
4
Q(¸

1
'¸

2
)s(¸

1
'¸

3
)s(¸

2
'M

3
),

c
5
Q(M

1
'M

2
)sM

1
s(¸

1
'M

2
),

c
6
QM

3
.

6.2. Synthetic data

The Synthetic data Pat consists of 880 pattern points in the two-dimensional space
F
1
}F

2
as depicted in Fig. 13. There are three linearly non-separable pattern classes.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 61

Fig. 13. Arti"cially generated lineraly nonseperable pattern Pat.

The "gure is marked with classes 1(c
1
) and 2 (c

2
), while class 3 (c

3
) corresponds to the

background region.
The features are mapped to six-dimensional linguistic space. The following depend-

ency rules are generated:

c
1
Q(¸

1
'H

2
)s(M

1
'H

2
)s(M

1
'M

2
),

c
2
Q(H

1
'M

2
)s(H

1
'¸

2
),

c
2
Q(M

1
'M

2
)s(H

1
'M

2
)s(M

1
'¸

2
)s(H

1
'¸

2
),

c
2
Q(M

1
'¸

2
)s(H

1
'¸

2
)s¸

1
,

c
3
Q(¸

1
'H

2
)s(H

1
'¸

2
)s(M

1
'¸

2
)s(H

1
'M

2
)

s(H
1
'H

2
)s(M

1
'H

1
)s(¸

2
'¸

1
)s(¸

1
'M

2
)

s(M
1
'H

2
)s(¸

1
'M

2
).

Note that use of Eq. (9) resulted in generation of terms like (¸
1
'¸

2
), (H

1
'H

2
),

(H
1
'¸

2
), (¸

1
'H

2
) to account for clusters (marked in Fig. 13) corresponding to class

c
3
. This is not possible when one uses Eq. (8) as in [3]. The resultant subnetworks

when connected, produces a network with a single hidden layer having 15 nodes.
Three such networks are obtained, considering all possible combinations. The remain-
ing 61 networks are obtained by random perturbations about them. The performance
is presented in Table 2. Here also Model S outperforms the other models signi"cantly,
considering recognition scores, number of links and learning time. The network
corresponding to Model S is shown in Fig. 14.

A sample set of rules extracted from the network is presented below. Here we
obtained Thres

1
"33.98, Thres

2
"83.41 and Thres

3
"95.06. Since no strong links

62 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

Table 2
Comparative classi"cation scores of di!erent models for Pat data

Models Model O Model F Model R Model FM Model S

Train Test Train Test Train Test Train Test Train Test

c
1
(%) 71.0 71.0 73.4 72.2 74.5 73.0 73.4 73.0 78.2 77.4

c
2
(%) 68.0 68.0 71.8 70.2 76.7 75.2 74.5 74.2 78.2 77.2

c
3
(%) 24.2 22.4 60.4 58.4 68.2 67.1 64.4 62.8 70.2 69.8

Net (%) 55.2 54.8 68.8 68.0 73.2 71.1 70.0 69.8 75.5 74.8

d Links 62 105 82 84 72
Sweeps 2000 2000 1500 150 90

Fig. 14. Connectivity of the network obtained for the Pat data, using Model S.

could be obtained from Model F, therefore no meaningful logical rules are extracted:

c
1
Q(M

1
'H

2
)s(M

1
'M

2
)s(¸

1
'H

2
),

c
2
Q(M

1
'M

2
)s(H

1
'M

2
)s(¸

1
'M

2
)s(H

1
'¸

2
),

c
3
Q(M

1
'¸

2
)s(H

1
'¸

2
)s(¸

1
'H

2
)s(H

1
'M

2
)

s(H
1
'H

2
)s(M

1
'H

1
)s(¸

1
'¸

2
)s(¸

1
'¸

2
'M

2
).

7. Conclusions and discussion

A methodology for integrating four soft computing tools, viz., arti"cial neural
networks, fuzzy sets, genetic algorithms and rough sets for designing a knowledge-
based network for pattern classi"cation and rule generation is presented. The pro-
posed algorithm involves synthesis of several fuzzy MLP modules, each encoding the

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 63

rough set rules for a particular class. These knowledge-based modules are re"ned
using a GA. The genetic operators are implemented in such a way that they help
preserve the modular structure already evolved. It is seen that this methodology
results in superior performance in terms of classi"cation score, training time, and
network sparseness (thereby enabling easier extraction of rules) as compared to earlier
hybridizations. There is scope for future investigation regarding the exact nature of
in#uence of the mutation probability on the search dynamics. GAs with an adaptive
objective function can also be studied.

Unlike other approaches [1, 26], this algorithm directly extracts dependency rules
from a fuzzy attribute table consisting of membership values. An adaptive threshold
depending on the shape of the membership function, is used in the process. This helps
in preserving all representative points/clusters present in a multi-modal class distribu-
tion.

The role of fuzzy sets here is to handle uncertainty with input-output membership
functions, while rough sets exploit the granularity in information to obtain depend-
ency rules used for knowledge encoding in ANN. The initial rough set rules represent
crude domain knowledge. The "nal rules represent re"ned knowledge extracted from
the trained network and are more meaningful and compact.

References

[1] M. Banerjee, S. Mitra, S.K. Pal, Rough fuzzy MLP: knowledge encoding and classi"cation, IEEE
Trans. Neural Network 9 (6) (1998) 1203}1216.

[2] E.B. Baum, D. Haussler, What size nets give valid generalization? Neural Comput. 1 (1989) 151-160.
[3] L.M. Fu, Knowledge-based connectionism for revising domain theories, IEEE Trans. Systems Man

Cybernet. 23 (1993) 173}182.
[4] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addision-

Wesley, Reading, MA, 1989.
[5] L. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intelligence 12

(1990) 993}1001.
[6] B.M. Happel, J.J. Murre, Design and evolution of modular neural network architectures, Neural

Networks 7 (1994) 985}1004.
[7] H. Ishigami, T. Fukuda, T. Shibata, F. Arai, Structure optimisation of fuzzy neural network by genetic

algorithm, Fuzzy Sets and Systems 71 (1995) 257}264.
[8] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting fuzzy If-Then rules for classi"cation

problems using genetic algorithms, IEEE Trans. Fuzzy System 3 (1995) 260}270.
[9] V. Maniezzo, Genetic evolution of the topology and weight distribution of neural networks, IEEE

Trans. Neural Networks 5 (1994) 39}53.
[10] R. Murray-Smith, A Local Model Network approach to non-linear modelling, Ph.D. Thesis,

Department of Computer Science, University of Strathclyde, Glasgow, UK, 1994.
[11] D.W. Opitz, J.W. Shavlik, Connectionist theory re"nement: genetically searching the space of

network topologies, J. Arti"cal Intelligence Res. 6 (1997) 177}209.
[12] S.K. Pal, D. Bhandari, Genetic algorithms with fuzzy "tness function for object extraction using

cellular neural networks, Fuzzy Sets and Systems 65 (1994) 129}139.
[13] S.K. Pal, D. Dutta Majumder, Fuzzy sets and decision making approaches in vowel and speaker

recognition, IEEE Trans. Systems Man Cybernet. 7 (1977) 625}629.
[14] S.K. Pal, D. Dutta Majumder, Fuzzy Mathematical Approach to Pattern Recognition, Wiley,

(Halsted Press), New York, 1986.

64 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

[15] S.K. Pal, S. Mitra, Multi-layer perceptron, fuzzy sets and classi"cation, IEEE Trans. Neural Networks
3 (1992) 683}697.

[16] S.K. Pal, S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in soft Computing, Wiley, New York,
1999.

[17] S.K. Pal, A. Skowron (Eds.), Rough Fuzzy Hybridization: New Trends in Decision Making, Springer,
Singapore, 1999.

[18] W. Pedrycz (Ed.), Fuzzy Evolutionary Computation, Kluwer Academic, Boston, 1997.
[19] W. Pedrycz, Shadowed sets: representing and processing fuzzy sets, IEEE Trans. Systems Man

Cybernet. 28 (1998) 103}109.
[20] T.Y. Lin (Ed.), Proceedings of Third Workshop on Rough Sets and Soft Computing (RSSC'94), San

JoseH , USA, November 1994.
[21] A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems,

in: R. SlowinH ski (Ed.), Intelligent Decision Support, Handbook of Applications and Advances of
the Rough Sets Theory, Kluwer Academic, Dordrecht, 1993, pp. 331-362.

[22] G.G. Towell, J.W. Shavlik, Knowledge-based arti"cal neural networks, Arti"cial Intelligence 70
(1994) 119}165.

[23] D. Whitley, T. Starkweather, C. Bogart, Genetic algorithms and neural networks: optimizing connec-
tions and connectivity, Parallel Comput. 14 (1990) 347}361.

[24] X. Yao, A review of evolutionary arti"cal neural networks, Internat. J. Intelligent Sytems 8 (1993)
539}567.

[25] X. Yao, Y. Liu, A new evolutionary system for evolving arti"cal neural networks, IEEE Trans. Neural
Networks 8 (3) (1997) 694}713.

[26] R. Yasdi, Combining rough sets learning and neural learning method to deal with uncertain and
imprecise information, Neurocomputing 7 (1995) 61}84.

[27] L.A. Zadeh, Fuzzy logic, neural networks, and soft computing, Comm. ACM 37 (1994) 77}84.
[28] Y.-Q. Zhang, A. Kandel, Compensatory Genetic Fuzzy Neural Networks and their Applications,

World Scienti"c, Singapore, 1998.
[29] Q. Zhao, A co-evolutionary algorithm for neural network learning, Proceedings of the IEEE

International Conference on Neural Networks, Houston, 1997, pp. 432}437.

Sankar K. Pal is a Distinguished Scientist, and Founding Head of Machine Intelli-
gence Unit, at the Indian Statistical Institute, Calcutta. He received the M.Tech
and Ph.D. degrees in Radio physics and Electronics in 1974 and 1979, respectively,
from the University of Calcutta. In 1982 he received another Ph.D. in Electrical
Engineering along with DIC from Imperial College, University of London. He
worked at the University of California, Berkeley and the University of Maryland,
College Park during 1986}1987 as a Fulbright Post-doctoral Visiting Fellow; at the
NASA Johnson Space Center, Houston, Texas during 1990}1992 and 1994 as
a Guest Investigator under the NRC-NASA Senior Research Associateship program;
and at the Hong Kong Polytechnic University, Hong Kong in 1999 as a Visiting
Professor. He served as a Distinguished Visitor of IEEE Computer Society (USA) for
the Asia-Pacixc Region during 1997}1999.

Prof. Pal is a Fellow of the IEEE, USA, Third World Academy of Sciences, Italy, and all the four National
Academies for Science/Engineering in India. His research interests includes Pattern Recognition, Image
Processing, Soft Computing, Neural Nets, Genetic Algorithms, and Fuzzy Systems. He is a co-author of six
books including Fuzzy Mathematical Approach to Pattern Recognition, John Willey (Halsted), N Y, 1986, and
Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing, John Wiley, NY 1999.

He has received the 1990 S. S. Bhatnagar Prize (which is the most coveted award for a scientist in India),
1993 Jawaharlal Nehru Fellowship, 1993 Vikram Sarabhai Research Award, 1993 NASA Tech Brief
Award, 1994 IEEE Trans. Neural Networks Outstanding Paper Award, 1995 NASA Patent Application
Award, 1997 IETE-Ram Lal Wadhwa Gold Medal, 1998 Om Bhasin Foundation Award, and the 1999
G.D. Birla Award for Scienti"c Research.

Prof. Pal is an Associate Editor, IEEE Trans. Neural Networks (1994}98), Pattern Recognition Letters,
Neurocomputing, Applied Intelligence, Information Sciences, Fuzzy Sets and Systems, and Fundamenta
Informaticae; a Member, Executive Advisory Editorial Board, IEEE Trans. Fuzzy Systems and Int. Journal of
Approximate Reasoning, and a Guest Editor of many journals including the IEEE Computer.

S. Mitra et al. / Neurocomputing 36 (2001) 45}66 65

Sushmita Mitra obtained her B.Sc. (Hons.) in Physics and B. Tech and M. Tech. in
Computer Science from the University of Calcutta in 1984, 1987 and 1989
respectively, and Ph.D. in Computer Science from Indian Statistical Institute,
Calcutta in 1995. During 1992 to 1994 she was with the European Laboratory for
Intelligent Techniques Engineering, Aachen, as a German Academic Exchange
Service (DAAD) Fellow. Since 1995, she is an Associate Professor of the Indian
Statistical Institute, Calcutta, where she joined in 1989.

She was a recipient of the National Talent Search Scholarship (1978}1983) from
the National Council for Educational Research and Training, India, the IEEE TNN
Outstanding Paper Award in 1994 and CIMPA-INRIA-UNESCO Fellowship in
1996. She has co-authored a book Neuro-Fuzzy Pattern Recognition: Methods in
Soft Computing Paradigm published by John Wiley, NY 1999. She was a Visiting

Professor at Meiji University, Japan in 1999. Her research interests include pattern recognition, fuzzy sets,
arti"cal intelligence, neural networks and soft computing.

Pabitra Mitra obtained his B. Tech in Electrical Engg. in 1996, from Indian
Institute of Technology, Kharagpur. He worked as a Scientist at Centre for
Arti"cal Intelligence and Robotics, Bangalore and currently is a Junior Research
Fellow at the Machine Intelligence Unit, Indian Statistical Institute. His research
interests are in the "elds of data mining, knowledge discovery, medical expert
systems, learning.

66 S. Mitra et al. / Neurocomputing 36 (2001) 45}66

