Note
Dynamically maintaining the widest k-dense corridor ™

Subhas C. Nandy* *, Tomohiro Harayama®, Tetsuo Asano®

tComputer and Statistical Service Center, 203, BT, Road, Indian Statistioal Institute,
Caleutta 7080 035, India

b School of Information Scence, Japan Advanced Institute of Science and Technology,
fehifcawa 923-1202, Japan

Received 15 September 1999; revised 29 May 2000; accepted 7 August 2000
Communicated by K.-¥. Chwa

Abstract

In this paper, we propose an improved algoritm for dynamically maintaining the widesr
k-dense corrider as proposed in Shin et al. (Inform. Process. Lett. 68 (1998) 25-31) Ouwr
algorithm maintains a data structure of size O{n”), where n is the number of points present on
the floor at the current instant of time. For each insertion/deletion of points, the data structure
can be updated in Wnlogn) time, and the widest k-dense corridor in the updated environment
can be reported in Ofkn + rlogn) time. Another interesting variation of this problem, called guery
problem, is also considered in this paper, where the objective s to report the widest k-dense
corridor containing a given query point g. We propose two schemes for answering this query.
In the first scheme, an {}{nz} space data structure can answer this query in O{nk) time. In the
second scheme, we construct an ({mk) space data structure afresh for each gquery, and then
answer the query in Orklogl |# /%])) time.

Keywords: Geometric duality; Levels of arrangement; Corridors

1. Introduction

Given a set 8§ of » points in the Euclidean plane a corddor C is defined as an open
region bounded by parallel straight lines ¢ and #" such that it intersects the convex
hull of § [4]. The width of the comridor C is the perpendicular distance between the
bounding lines ¢ and /. The corridor is said to be k-dense iff C contains & points in

“ This work was done when the author was visiting School of Information Science, Japan Advanced
Institme of Science and Technology, Bhikawa 923-1292, Japan.

* Corresponding author,

E-mail address: nandyscipisical.ac.in (5.0, Nandy).

628 S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639

Fig. 1. Two types of comidors,

its intenor. The widest k-dense comridor through § is a k-dense coridor of maximum
width [1]. See Fig. 1 for illustration.

The widest empty comridor problem was first proposed in the context of robot motion
planning where the objective was o find the widest straight route avoiding obstacles
[4]. The widest k-dense corndor problem was mntroduced in [1] along with an algorithm
of time and space complexities O{n” logn) and ({n?), respectively. Here the underlying
assumption 15 that the robot can pass through (or in other words, can tolerate collision
with) a specified number (&) of obstacles. 1n [5], the space complexity of the widest
k-dense corridor problem was mproved o Ofn). In the same paper, they have suggested
an algonthm for maintaining the widest empty comidor, where the set of obstacles is
dynamically changing. The space complexity of the algorithm is O(n”), and it takes
nlogn) tme for each insertion/deletion of a point. However, the dynamic problem
for general £ =0), was posed as an open problem. In [7], both the static and dynamic
versions for the widest f-dense comidor problem were studied. The time and space
complexitics of their algorithm for the static version of the problem are O{n) and
O(n*), respectively. For the dynamic version, their algorithm is the pioneering work.
Maintaining an O(n”) size data structure they proposed an algorithm which reports the
widest £-dense corndor after the insertion and deletion of a point. The ume complexity
of their algodthm is O{% logn), where (%) 15 the combinatorial complexity of
{ =k)-level of an arangement of » half-lines, each of them belonging to and touching
the same side of a given line. They proved that the value of % is O(kn) in the worst
case.

In this paper, we improve the tme complexity of the dynamic version of the widest
k-dense comridor problem. Given O{n’) space for maintaining the data structure, our
algorthm can update the data structure and can report the widest f-dense comridor
in (% + nlogn) time for the insertion and deletion of a point. As it 15 an online
algorithm, this reduction in the time complexity 1s definitely imporant.

In Ref. [7], another interesting variation of the comidor problem, called the guery
problem, was also studied. The objective was to report the widest k-dense comridor
containing a given query point g. They proposed an algorithm which answers the
query in O{# + min(nlog” n..% log n)) expected time. In order to answer each query,
they construct the necessary data structure afresh, which requires O(%7) space. We

S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639 6249

show that, the O(n”) space data structure, which was proposed for our earlier problem,
can easily be used to answer the guery problem with deterministic time complexity
%), As the query point need not be inserted, we may avoid the quadratic storage
cost by {ollowing the same principle of constructing the necessary data structure afresh
for each individual query as suggested in [7]. We show that, it may cause an increase
in the query answering time by a factor of log([s/k|) n the worst case.

2. Geometric preliminaries

Throughout the paper, we assume that the points in 8 are in general position, i.c.,
no three points in 8 are collinear, and the lines passing through each pair of points
have a distinet slope. Theorem 1, stated below, chamctenzes a widest comidor among
the points S.

Theorem 1 (Chattopadhyay and Das [1], Houle and Maciel [4], Janardan and Preparata

[5]). Shin et al. [7]). Let CF he the widest corrvidor with bounding lines ¢ and .

Then CF must satisfy the following conditions:

(A) & passes through two distinet points p and py and " passes through a single
Point p. or

(B) &' and &7 pass through the points p; and p; respectively, such that ¢ and /"
are perpendicular to the line joining p; and p;.

From now onwards, a k-dense comridor satisfying conditions (A) and (B) will be
referred to as fype-A and fype-B comidors, respectively (see Fig. 1)

2.1, Relevant properities of geometric duality

We follow the same tradition [1,4,5,7] of using peometric duality for solving this
problem. It maps (i) a point p=(a.h) to the line 2 p): yv=ar —bh m the dual plane,
and (i) a non-vertical line /: y=mx — ¢ to the point 24¢) = (m,c) in the dual
plane. Needless to say, a point p is below (resp., on, above) a line ¢ in the primal
plane if and only if 24 p) is above (resp., on, below) 2(¢) in the dual plane. A line
passing through two points p and g in the primal plane, comresponds to the point of
intersection of the lines 29(p) and %(g) in the dual plane, and vice versa.

Let 4" and /% be the two bounding lines of a non-vertical coridor C in the primal
plane. As ¢ and /" are mutually parallel, the corresponding two points, %0(¢") and
204" i the dual plane, will have the same x-coordinate. Thus, a corndor C will be
represented by a vertical line segment joinmg %9(¢") and (/") in the dual plane, and
will be denoted by %(C). The width of C is (| ¥(Z(¢))—y(Z(2" NTHE(EE NP,
and will be referred to as the dual length of 24(C). Here, x(p) and v p) denote the
x- and y-coordinate of the point p, respectively.

Let H=1{h;=%p;)| p; eS8} be the set of lines in the dual plane corresponding Lo
the n points of § in the primal plane. Let p be a point inside the corndor C. In the

63 S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639

dual plane, the points 24(4") and 24(¢"") will lie on the opposite sides of the line 2 p).
Now, we have the following observations.

Observation 1. Let C be a corridor bounded by a paiv of parallel lines &, 7"

Now, if C is a type-A corrvidor, &' passes through p; and pg, and " passes through
Pue This dmplies that S0047) corvesponds fo a vertex of «/(H), which is the point of
intersection of the lines hy and h; (denoted by h; 0 hy) in the dual plane, and S(¢"")
corresponds to g point on the line hy, satisfying x(200 = x(h: 0 hy).

If C is a type-B corrvidor, /' and /" pass through the two poinis p; and pg.
respectively. Thiv implies that 2047 and 2057 will correspond to the two points on
the lines fy and hy. respectively, satisfving x(5(¢)) =x(2(") = — (1alh 0 AL

Thus, a non-vertical fype-4 corndor may uniquely correspond to a vertex of o/(H),
and a non-vertical fype-8 corridor may also uniquely comrespond o an edge of /(i),
on which its upper end point lies.

Observation 2. 4 corvidor C is said to be k-dense i and only i there are exactly k
lines of H that intersect the vertical line segment 20(C), representing the dual of the
corridor C, and will be commaonly veferved 1o as a k-stick.

Thus, recognizing the widest f-dense non-vertical comidor in the pnmal plane is
equivalent to finding a k-stick in the dual plane having maximum dual length.

3. Widest vertical k-dense corridor

We cannot apply geometric duality theory for vertical comidors. So, in order to get
the widest vertical corndor in a dynamic environment, we mamtain a balanced binary
search tree, say B8(z)-tree [6], with the existing set of points in the primal plane.
Here each point in § appears at the leal level, and 1s atached to the width of the
widest k-dense vertical corridor with its left boundary passing through that point. At
ecach non-leal’ node, we attach the width of the widest vertieal &£-dense corndor in the
subtree mooted at that node. 1t can be easily shown that for each insertion/deletion of
a point, the necessary updates in this data structure and the reporting of the widest
k-dense vertical corndor can be done in Ok + logn) ume.

4. Widest non-vertical k-dense corridor

We now explain an appropriate scheme {or maintaining the widest non-vertical £-
dense comidor dynamically. Let «/(H) denote the arrangement of the set of lines A
[2]. The number of vertices, edges and faces in «/(H) are all O(n”). In the dynamic
scenano, we need to suggest an approprate data structure which can be updated for

S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639 63l

Fig. 2. Demonstration of levels in an armngement of lines.

insertion/deletion of points, and the widest k-dense corridor can be reported efficiently
in the changed scenario. As the deletion is symmetric to insertion, we shall explain
our method for insertion of a new point in 8§ only.

4.4 Data structures

We dynamically maintain the followmng data structure which stores the armngement
of the lines in M. It is defined using the concept of levels as stated below.

Definition 1 {Edelsbrunner [2]). A point 7 i the dual plane is at level 0 (0=0<n)
if there are exactly @ lines in £ that lie stictly below m. The O-level of «#(fH) s the
closure of a set of points on the lnes of H whose levels are exactly 1 in «/(H), and
is denoted as Lyp(H). See Fig. 2 for an illustration.

Clearly, Lp(H) i1s a monotone polychain from x= — oo to oo In Fig. 2, a demon-
stration of levels in the arrangement «/(H) i1s shown. Here the thick chain represents
Ly #H). Among the vertices of L (), those marked with empty (black) circles appear
in level 0 (2) also. Each vertex of the armngement «f(f) appears in two consecutive
levels, and each edge of «/(H) appears in exactly one level. We shall store Lg(H),
O=0=n, m a data swructure as descnbed below.

Level-structure: 1t is an armay of size 7, whose (th element consists of the following
three fields:

Level-id: An integer containing the level-id 0.

Root-pir: Pointing o the root node of a height-balanced binary tree 7, defined
below.

List-pir: Pointing to a linear link list, called change-lise, whose each element 5 a
tuple (#,#) of pointers. The change-fist data structure will be explained after defining
Fa.

Fy- 1t 15 a height-balanced binary tree (AVL-tree), whose nodes correspond o the
vertices and edges at level in lefi-to-right order.

Two integer fields, called LEN and M A X, are attached to each node. The LEN field
contains the dual length of the f-stick anached to . We explicitly mention that, if a
node corresponds to a vertex of the armngement, it defines at most one k-siick, but if
it corresponds to an edge, more than one k-stick may be defined by that edge. In that
case, the LEN field will contain the length of the one having maximum dual length

ik S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639

among them. A node (corresponding to an edge) defining no k-stick will contain a
value 0 its LEN field. The MAX field contains the maximum value of the LEN
ficlds among all the nodes in the subtree rooted at that node. This actually indicates the
widest one among all the &-dense corndors stored in the subtree rooted at that node.

Apart from the child pointers, each node of the tree is attached with three more
pointers.

Parent-pointer: 1t helps o traversing the tree from a node towards its root. The
parent-pointer of the mot node points to the corresponding element i the Jevel-
structure.

Neighbor-pointer: It points to the in-order successor of the node.

Self-indicator: As a verex of the armngement appears in two consecutive levels,
say f and 0+ 1, it appears in both #; and 7, |, and each of them is connected to
the other one using this pointer.

By Observation 1 and succeeding discussions, a fype-A k-dense corndor corresponds
to a vertex of the arangement. A vertex v € .o/ (H) appearing in levels, say 0 and 041,
may correspond to at most two £-sticks (corresponding to two different fype-4 f-dense
corndors); one end point of both of these f-sticks are positioned at vertex v, and their
other end pomts Le on some edge at levels 0—F—1 (il 0—&k—1 = 0) and 0+ £+ 2
(if 0+ & +2 < n), respectively. These k-sticks are attached o the vertex v appearing
in two consecutive levels, 0 and 0+ 1. An edge ¢ appearing at level @ stores at most
one k-stick which is defined by it and another edge in the (— & — L)th level which
appears vertically below the edge e

Change-list: After the addition of a new point p in 8, its dual line h=2(p) is
inserted in /(4) o get an updated armngement /(K" where H'=H U {h}. This
may cause redefining the f-sticks of some vertices and edges of «#/(H"). In order to
store this mformation, we use a linear link hst at each level @ of the level-structure. Each
element of this list is a tuple (4, 7). Here ¢ and r point to two elements (vertex/edge)
at level 0, and the wple (¢, #) represents a set of consecutive elements (vertices/edges)
in #y such that the k-sticks defined by all the vertices and edges in that set have been
redefined due w the appearance of the new line # in the dual plane. Note that, the
list attached to a particular level, say f, of the armngement may contain more than
one tuple afier computing the k-sticks for all the vertices and edges of «/(H) which
are affected by the inclusion of . In that case, the set of elements represented by two
distinet tuples, say (¢, 7) and (#5,72) in that list must be disjoint, and the elements
represented by m oand 45 must not be consecutive in .

Lufises A lnear link list created dunng the processing of an insertion/deletion of a
ling /i in the amangement /(). This contains the vertices and edges of o/(H")— ./ (H)
in a left-to-right order.

4.2 Algorithm for the insertion of a new point

Let p be a new point added in S, and h =24 p). Below we explain the different
steps of updating the fevel-structure and computation of the widest f-dense corridors
in the changed scenario.

S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639 it %)

Fig. 3. Pmcessing of a new vertex of 2/ (H").

We first compute the lefimost intersection point of the newly appeared line A with
the existing lines in ff by companng all the lines. Let the intersection point be # and
the corresponding line be f. In order to find the edge ¢ € #/(H) on which o hies,
we traverse along the line Ay from its lefi unbounded edge towards the right in the
tree, say 74, in which the edge € belongs. The neighbor-pointers and self-indicators,
attached to the nodes, facilitate this traversal.

Next, we use parent-pointers from the edge ¢ up to the root of 74 and finally,
from the parent-pointer of the mot, we may reach the 0%th clement of the level-
structure. The level of the left unbounded edge ¢ on the newly inserted line & in the
updated armngement </(H") will be @ (= 0% or (0% + 1)) depending on whether &
intersects ¥ from below or from above,

We update the old level-structure by copying it in a new army of size n+ 1, and
inserting a new level corresponding 1o the left unbounded edge ¢ i the approprate
place. The list-per Tor all the levels are imtialized to NULL, This step requires O(n)
time.

4.2.1 Updating of 5

Let the level of ¢ (the unbounded portion of # to the left of 2) be f i /(H"), and
the edge ¢*(€ .o/(H)., which is intersected by f, be at level % (=0 —1 or 14+ 1). We
now deseribe the creation of the new edges and vertices generated due to the inclusion
of h m «/(H).

The portions of & to the left and right of « are denoted as ¢ and &', respectively, and
the portions of ¢* 1o the left and right of the pomnt = by &, and E':I__,J”, respectively.
Mote that, the vertex =« appears in both the levels 0 and %, we need to make the
following changes in (1) and #(0%) for the inclusion of the new vertex o and its
adjacent edges in the level-structure. Refer to Fig. 3.

¢ and the vertex z are added in F. e, remains in its previous level 0%, so ™ is
replaced by &5 in Fy.. ‘:’::igln zoes Lo level . So, first of all E':I__,J” is added 1o .

Let ¢ be the vertex at the nght end of &% (recently modified to e;) in Fp-. The
tree Fp- 15 split into two height balanced trees, say # and 7, where 7 contains all
the elements (vertices and edges) i that level to the aght of ¢ including itself, and
FL contains all the elements in the same level to the left of e, and including itself.
This requires Oflog n) tme [6].

s S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639

Next, we concatenate F5 to the nght of &, in 7. The neighbor-pointer of ey,
is mmediately set to point ¢, and the parent-pointers of the affected nodes are appro-
priately adjusted. This can be done in Oflog) time [6].

Finally, the vertex 2 15 added in . as the rightmost element, and 37 15 renamed
as Fp-. Note that a portion of ¢ will be the right neighbor of the verlex =« in ..
Now, i we have already considered all the » newly generated vertices, the right end
of ¢" will be unbounded. In that case, ¢ is added in 7. as the rightmost element.
Otherwise, the right end of ' is yet 1o be defined, and its addition in 7, is deferred
until the detection of the next intersection. In the former case, the updating of the data
structure is complete; however, in the latter case, we proceed with ¢, the portion of h
to the nght of 2.

Now two important things need to be mentioned:

e For all newly created edges/vertices, we set the width of the &-dense comridor w 0.
They will be computed afresh after the update of the level-structure.

e During this traversal, we create the #-list with all the newly created edges and
vertices on f in a lefi-to-nght order. The edges are attached with their corresponding
levels. As the newly created vertices appear i two consecutive levels, they show
their lower levels in the #-list.

Lemma 1. The time requived for constructing «/(H") from the existing «</(H) is
Nn log n) in the worst case.

4.22 Compuiting the new k-dense corridors

We now descrbe the method of computing all the k-sticks which intersect the newly
inserted line . The #-list contams the pieces of the line A separated by the vertices in
(o (H) —a/ (), which will guide our search process. We process edges in the #-list
one by one from left to right. For each edge e € %-list, we locate all the vertices and
edges of «/(H") whose comesponding k-sticks intersect e.

We proceed with an armay of pomters P of size 2843, indexed by —(k+1),....0,.. .,
(& +1). While processing an edge e € Y-list, P((}) points o the edge e; P(—1).....
P(—k — 1) pont to &+ 1 edges below the left end vertex of e and P(1),....P(E+ 1)
point to k + 1 edges above the left end vertex of e

In order to evaluate all the k-sticks intersecting ¢ and having its bottom end at level
ifi=0—k—1,....0), we need to consider the pair of levels (i, i +k&+ 1). Consider an
x-monotone polygon bounded below (resp. above) by the x-monotone chain of edges
and vertices at level ¢ (resp. i+ &+ 1) and by two vertical lmes at the end points of ¢
{see Fig. 4). This can easily be detected wsing the pointers P(i— 1) and Pi+k+1—0).
The LEN fields of all the edges and vertices on the above two x-monotone chains are
initialized to zero. We draw vertical lines at each vertex of the upper and lower chams,
which split the polygon into a number of trapezoids.

Each of the verical lines drawn from the convex vertices defines a fype-A k-
stick. Wts duwal length 15 put in the LEN field of the comesponding node of 5 or
-ZF:'+.E+I .

S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639 f(is

IMe cars I reprasests
3 o e in b T

Fig. 4. Computation of type-4 and type-8 comidors while processing an edge ¢ € 5-list.

In order to compute the fype-B k-sticks, we consider each of the vertical trapezoids
from left to right. Let A = vyrawswy be such a trmpezoid whose vpwy and vaws are two
vertical sides, / denotes the x-range of A. Let vyea be a portion of an edge ¢*, which
in tumn lies on a line &A% € H', and wyw lies on A% € H'. We compute — 1 x(B* 0 k™)
and check whether it lies in /. If so, the vertical line at x = — 1/x(h"MA**), bounded by
vira and wyws, indicates a type-B k-stick comesponding to the edge ¢*. We compute
its dual length; this newly computed k-stick replaces the current one attached with ¢
provided the dual length of the newly computed k-stick 15 greater than the LEN field
attached with e* in the data structure 7.

Let 4 and #; (resp. #4440 and v) denote the edges at level @ (resp. i + &+ 1),
which are tersected by the vertical lines at the left and right end points of the edge
el e ¥-list), respectuvely. Note that, the definition of k-sticks for the edges and vertices
of the ith level between #; and »; may have changed due to the presence of e & </ H").
So, we need to store the wple (4.0;) in the change-lise atached w level 7 of the fevel-
structure. But, before storing it, we need to check the last element stored in that list, say
(%"). If the neighbor-pointer of #* points w0 4 i F, then (/% 7)) 1s a continuous
set of elements in level @ which are affected due to the mserton of A So, the element
(£*.r") of the #-list attached to level i, is updated to (¢%.r); otherwise, the new
tuple (#*.#%) is added i the change-list. We store (g 0.r0) in the change-list
attached to level i +4& + 1 of the level-structure in a similar way.

At the end of the execution of edge e, if ¢ 15 right unbounded, our search stops;
otherwise we proceed by setting P(0) to the next edge ¢ of #-list. Each of the pointers
Pli), i= —k—1,.. .k + 1, excepting P{0), needs o point to an edge either at level
(i+0—1) orat level (i +0+ 1) which lies just below or above the current edge pointed
by Pii) in the level-structure, depending on whether ¢ lies at level # — 1 or 1 41
in the fevelstructure. From the adjacencies of vertices and edges in the fevel-structure
(maintained using neighbor-pointers), this can be done in constant time for each P(i).

Lemma 2. The time required for computing the k-sticks intersecting the line h in
S HYY s O{nk)

Proof. Follows from the above discussions, and the fact that the complexity of the
< f-levels of n half-lines lying above (below) the newly mserted line & in /(H") 1s
Oink) [7]. O

iR 5.C Nandy et al) Thearetical Computer Science 255 (2001] 627-639

M
Bk 145 é
= -
s = b
levels Y I
Bkl 5] 7

W

4
i
e—edumi o h—— 3

Fig. 5. Grid . estimating the mumber of elements in the change-fist.

423 Location of the widest k-dense corvidor

The change-list for a level, say 0, created in the earlier subsection, is used to update
the MAY fields of the nodes of the tree 5, by considering its elements from lefi
to right. Let the tuple (4, 7) be an entry of the change-list at level . Let g be the
common predecessor of the set of nodes represented by the tuple (4,7). Let Py be a
path from the root of & to the node g, and P and Py be two paths from g to ¢ and
g to v, respectively. In 7y, the MAX fields of all the nodes in the mterval (4,), and
the set of nodes in Py, Py oand Py may be changed. So, they need w be inspected
in order to update the MAX fields of the nodes in &, Now we have the following
lemma.

Lemma 3. For each entry (£,r) of the change-list of a level, say 0, the mamber of
nodes of Fy which need to be vivited to update the MAX jfields is Oflogn + »)
where y is the monber of consecutive vertices and edges of the arvangement at level
il represented by (£, r)

In order to count the total number of elements attached to the change-lise at all the
levels let us consider an n x n square grid & whose rows represent the n levels of the
armngement and each of its columns represents an edge on A in a lefi-to-nght order
{see Fig. 5). Consider the shaded portion of the gnd; observe that its ith column spans
from row 00—k —1 to 04+£+ 1, where (15 the level of g in o/(H"). This corresponds to
the levels which are affected by e The shaded region is bounded by two x-monotone
chains. Now, let us define a horizontal sirip as a set of consecutive cells on a row
which belong to the shaded portion of the grid A honzontal strip which spans from
the first to the last column of the grid, 15 referred to as long stap. The stnps which
are not fong, are called short sirips. Note that, each strip attached to a row represents
an element of the change-list attached to the corresponding level. It is easy to observe
that the number of such short strips 1s O(n), and the number of such fong strips may
be at most 2k — 3 in the worst case. Now we have the following lemma.

Lemma 4. The time required for locating the longest k-stick in o/ (H") v O{nk +
n log n) in the worst case.

S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639 637

Proof. By Lemma 3, the tree traversal time for all the entnes of the change-lises of

all the levels is equal to 3>, Z_';i_’,{}[,_-,- + log n), where m; 1s the number of entries in

the change-list of the ith level, and z; 15 the length of the strip represented by the jth

entry m the change-fise of the ith level. Now the lemma follows from the following

two arguments:

o the number of k-sticks 2%, which are newly defined due to the inclusion of h in
sH(H), is >0, Z’:’;I i =O(nk) (by Lemma 2), and

» as discussed above, 377 | m; is equal to the total number of long and short strips in
the matrix ., which may be O(n) in the worst case. [

Finally, the roots of the trees at all the levels need to be inspected o detennine the
widest f-dense comidor.

4.3. Complexity

Lemmas 1, 2 and 4 lead to the main result of this work stated in the following
theorem.

Theorem 2. Addition of a new point requires

(a) Ofn log n) time for updating the data structure.

(b) Q{nk) time to compute the k-dense corvidors containing that poini.
() Oink +n log n) time to report the widest k-dense corridor.

As we are preserving all the vertices and edges of the arrangement of the dual lines
in our proposed level-structure, the space complexity is O(n”), where n is the number
of points on the floor at the current mstant of time.

5. Related problems

In this secton, we study two different schemes for the guery problem, considered
in [7]. Here, given a query point g, the objective 5 to report the widest k-dense comridor
containing it.

3.4, Scheme-{

Let us assume that the fevelstructure is already available m the dual plane. As in
the previous problem, we find intersections of the line &= %(g) with the other lines
in ff. These pieces of & intersected by the lines in the armngement /() are stored
in the #-list along with their levels in a lefi-to-right order. Next, we proceed through
the arrangement /() o compute the set of vertices and edges whose corresponding
k-sticks mtersect f, as desenbed in Sections 4.2.2 and 4.2.3. Note that, as & need not
be mserted in A H) here, 7 may be represented wsing linear link lists, instead of
height-balanced binary trees, for storing the vertices and edges in different levels of the

ik S.C Nandy et all Thearetical Computer Science 255 {2001) 627-639

armngement. Thus an O(log ») time s saved while processing cach edge of #-list.
Moreover, we need to report only the k-stick having maximum dual length among
the members of the aforementioned set, which can be done in time proportional to
27, where % 15 the combinatonal complexity of { & Flevel of an amrangement of n
half-lines, each of them belonging to and touching the same side of the line %(g), the
dual line of the point g. As ¥ may be O(nk) in the worst case, we have the following
theorem:

Theorem 3. Given a set of poinis, we can maintain an O{n>) space data structure,
which can report the widest k-dense corvidor containing a guery point g in O(nk)
time in the worst case.

3.2, Scheme-2

As the stomge requirement of Scheme-1 is O(n”), it seems worthwhile not to main-
tain the arrangement /() permanently. Below we desenbe a divide-and-conguer
strategy which constructs a data structure afresh for cach query, in O(nk log(|n/k]))
tme and Of{nk) space.

We have the set H ={hha. . k)t of lines in the dual plane, where & = %0 p;).
Let H'={h.h.. . .y} denote the set of hall lines, where /7 is the portion of &
above h =%(q). Similarly, H" ={h{. 45, ...k} is defined below the line h=%(g).
As in [7], we also denote the (<=k)-level above (resp. below) b by Lo H0T)
{resp. Loy(H" A7), Below we desenbe a divide-and-conguer approach to construct
L;_;&{Hr,ﬁ"']_

First, we split #' into two parts H| and H) of size at most [#/2]. Then compute
Log(HhT) and Lo (H3. h") separately. Next, we construct L o((H'.h") by overlay-
ing Log(H[A7) and Lop(H5 A7) The time of computing the overday of two simply
connected planar subdivisions is O(m; + ma) [3], where m; is the total number of
edges in the two subdivisions, and ma is the number of intersections that oceur among
the edges of different subdivisions during overlay. Note that, O{m; + ma) is the com-
plexity of Lo (H'. A7), which is O(nk). Thus, if T(n) denotes the mnning time of the
algorithm for a set of » half-lines, we have the following recurrence:

{o{ﬁ if n<k,
T(n)=
2F(n/2)+ Oink) if n =Lk

The solution of the above recurrence 1s O(nk log(|n/k|)). Similady, Lo (H".h7) 1s
constructed. Surely, the space requirement of this algorthm is the total complexity
of Loy(H R)y and Lo (H". A7), which is O(nk). Next, we compute all the f-sticks
from L (A AT) and Lo (H".h7)) using the method desenbed in Section 4.4, The
tme required for this step is O(ak). Thus we have the followmg theorem:

Theorem 4. Given a sef of n points, we can report the widest k-dense corvidor con-
taining a query point g in O(ak log(sk) time and using O(nk) space.

5.C MNandy et al ! Thearetical Computer Science 255 (2004 | 627-634% 639

References

[1] 8. Chattopadhyay, P.P. Das, The &-dense corridor problems, Pattern Recognitions Lett, 11 (1990)
463469,

[2] H. Edelsbrunner, Algonthms in Combinatorial Geometry, Springer, Berlin, 1987,

[3] L. Finke, K. Hinrichs, Cverlaying simply comnnected planar subdivisions in linear time, Proc. [1th, ACM
Symp. on Computational Geometry (1995 119-126.

[4] M. Houle, A. Maciel, Finding the widest empty corridor through a set of points, Report SOCS-88.11,
MeGill University, Montreal, Quebec, 1958,

[5] R Janardan, F.P. Prepamta, Widest-corndor problems, Nomdic J. Comput. [{1994) 231245,

[6] Dv kKouth, The Art of Computer Programming: Sorting and Searching, Addison-Wesley, Reading, MA,
1973

[7] C.-5. Shin, 8.Y. Shin, K-Y. Chwa, The widest b-dense corndor problems, Inform. Process. Lett. 68
(1998) 25-31.

	dynamically-1.jpg
	dynamically-2.jpg
	dynamically-3.jpg
	dynamically-4.jpg
	dynamically-5.jpg
	dynamically-6.jpg
	dynamically-7.jpg
	dynamically-8.jpg
	dynamically-9.jpg
	dynamically-10.jpg
	dynamically-11.jpg
	dynamically-12.jpg
	dynamically-13.jpg

