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Ahbstract

With the help of two-dimensional numerical models this paper investigates three aspects of heterogeneous deformation
around rigid objects: (1) the nature of particle paths: (2) the development of strain shadow zones: and (3) the drag patterns of
passive markers. Insimple shear, spherical objects develop typically a concentric vortex motion, showing particle paths with an
eye (double-bulge }-shaped separatrix. The separatrix has no finite dimension along the central line, parallel to the shear
direction. Under a combination of pure shear and simple shear, the particle paths assume a pattern with a bow-tie shaped
separatrix. With increase in the ratio of pure shear to simple shear (5,), the separatrix around the object shrinks in size. The axial
ratio of the object (R) is another important factor that controls the geometry of particle paths. When £ < 1.5, the loci of a
particle close to the object form an elliptical shell with the long axis lying along the central line, With increase in axial ratio R,
the loci form a doublet elliptical shell structure. Objects with 8 > 3 do not show closed particle paths, but give rise to elliptical
or circular spiral particle paths.

The development of strain shadow zones against eguant rigid bodies depends strongly on the strain ratio 5. When 5§, =0
{simple shear), they develop opposite to the extensional faces of the object, forming a typical e-type tail. The structure has a
tendency to die out with an increase in the pure shear component of the bulk deformation (5,). The initial angle of the long axis
of the object with the shear direction (¢b ) and the axial ratio of the object (R) determine the development of strain shadow zones
near ineguarnt rigid objects. Objects with large & and o between 60 and 120° form pronounced zones of low finite strain, giving
rise to strain shadow structures. A geometrical classification of diverse drag patterns of passive markers around rigid objects is
presented along with their conditions of formation.

Kevwords: rigid objects; Newtonian matrix: pure shear, simple shear: hetermogeneous strain; letfery s theory

1. Intreduction

Deformation of a rock system consisting of rigid
objects floating in a sofier matrix gives fse w a varety
of geological structures, such as porphyroclast tails, inclu-

sion trails in synkinematic porphyroblasts, strain shadows
and foliation drag around large, rgid mineral grains or
pebbles. All these siructures are extremely useful in the
kinematic analysis of deformed rocks (Spry, 1969; Rosen-
feld, 1970; Willis, 1977; Simpson and Schimid, 1983; Bell,
1985; Passchier and Simpson, 1986; Ramsay and Huber,
1987, Bjomerud, 1989; Hanmer, 1990); Simpson and De
Paor, 1993; Johnson and Bell, 1996). These structures
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Fig. 1. Co-ordinate systems for theoretical analysis,

develop essentially in response o the instantaneous strain
fields in the immediate neighborhood of an object during
progressive deformation. The strain field around a ngid
object 15 always beterogeneous (Ghosh and Ramberg,
1976; Masuda and Ando, 1988; Mandal and Chakraborty,
1990 Hdefonse and Mancktelow, 1993; wen Brink and
Passchier, 1995; Masuda and Mizuno, 1996q4), and the
types of paricle paths and deformation structures that
would develop in rocks strongly depend on the nature of
flow heterogencity.

Numerical  modeling  based  on
mechanics, is a convenient and wseful wol for under-
standing the particle paths and other geological strue-
tures associated with nigid objects. For a Newtonin
matnx, Lamb’s (1932) theory has been utilized 1o
model particle paths (Masoda and  Ando, 1988),
manted  porphyroclast  systems  (Bjornerud  and
Zhang, 1995; Masuda and Mizuno, 1996b), nclusion
trail patterns of synkinematic porphyroblasts (Masuda
and Mochizuki, 1989), strmuin shadows and dmag
pattems of foliation (Masuda and Ando, 1988)
However, all these models apply only to sphencal
objects embedded in & matrix undergoing deformation
either by simple shear or pure shear,

Jeffery (1922) has given an elegant mathematical
treatment on  the motion of ellipsoidal object
embedded in a viscous medium and from his theory
one can also obtain functions for the instantancous
velocity field ouside the rigid object. Jezek et al.
(1999) have shown that Jeffery’s equations can be
used for numerical modeling of heterogeneous flow

continuum

around non-spherical rigid objects under deformations
mvolving both simple and pure shear. Mandal et al.
(2000) have utilized leffery’s theory w0 model
progressive development of mantle structures around
ngid porphyroclasts in two-dimensions by consider-
ing the rigd object as an elliptcal body. Following
the same approach, this paper investigates the nature
of particle paths, sirain shadow structures and folia-
tion drag patterns associated with equant and ineguant
rgid objects under different ratios of pure shear and
simple shear rates in the bulk deformation.

2. Theoretical consideration

We develop numerical models in two-dimensions
using the velocity field in the neighborhood of an
elliptical object hosted in an infinitely extended
Newtonian  viscous medium  following  Jeffery’s
(1922) theory. The bulk deformation is considered
to be of plane strain type with the direction of no strain
at aright angle 1o the elliptical plane of object, which
is assumed to be the axis of rigid rotation. The analy-
sis does not take into account any effect of third
dimension of the object. Let us choose a Carlesian
reference frame, oxy, at the center of the object with
the x-axis parallel o the bulk shear direction. The
medium is subjected to a bulk deformation with a
shear rate ¥, and a flatlening rawe é,, at a right
angle to the shear direction. We set another reference
frame, ox'v', with x'-axis along the long dimension of
the rgid object (Fig. 1). This reference is fixed in the
object, and contmuously reorients isell in the course
of progressive deformation. In the foregoing analysis
parameters that comrespond to the ox'y' coordinate
system are represented by pnmed symbols, The posi-
tion of a point near the object can be expressed by
defining an elliptical coordinale system as:

12 [}
X ¥

3 T o =
a+ A b+ A

1 (1)

wherea and b are the major and minor semi-axes of the
object. BEqg. (1) mplies that points with coomdinales A =
O and co lie on the surface and far away from the object,
respectively. Let the long axis of the object be at angle
¢ with the bulk shear direction. At this instant the
object motates with an angular velocity w. The velocity
functions must satisfy the following boundary
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conditions:

g =8x' + 5ay" and vy = S5,x" + Sy
(2)

when A = oo

5

TS —a.l_r" and v, = ar’ when A =10 i3)

5

S"j‘i 15 the mstantaneous bulk strain-rate tensor. Using

the rule of tensor transformation, we have:

541 = (5, cos 2 + 4 sin 2¢)

83 = —¥iS, cos 2p + 3 sin2¢)

54 = Jylcos” @ — 5, sin 2¢)

§h = —ju(sin’ @ + S sin 2¢), (4)

where S, is the ratio of pure shear (éy,) and simple shear
{¥y) rates. The instantaneous velocity field in the neigh-
borhood of the object can be described in terms of the
elliptical coordinate systems in Eq. (1), and the expres-
sions of the velocity components (derived from Egs.
(Ala) and (Alb) in Appendix A) are:

u' =854l —24(a+ B + Fyx' + $(51; +55))
X [2(aD — BC) + Eyly’ + Sy

5
2Ax'y

- 7] ]
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where o' = va® + A, =k +hand A=a't . In
such a situation ¢, B and y have the following expres-
sions:

B 2 [ at —b o
o= s o : ]
2 [ &' — b ]
A (a” — b%) PO (6b)
e 52 (a' — b'y’ 6
= (a — B2y a'b’! ’

Accordingly, the constants A—F in Egs. (5a) and (5b)
are:

i +b)’ __a+by
S T = T
abla + .fJ}l2 (a+ b}lz
v ooy NS TR SR T (7
C o 4{{; +b_j::| E ab 2 5 ::'
3 h)
24 g2
F=12 (a + by

The derivations of the expressionsin Egs. (6a)—(6c) and
(7} are given in Appendix AL It may be noted that «, 8
and -y in Egs. (6a)—(6¢) tend 0 be zero as A lends Lo
infinity and Eqgs. (5a) and (5b) simplify 10 Eq. (2). This
implies that Eqgs. (5a) and (5b) satisfy the boundary
conditions.

Now, 1o find the instantaneous velocily at a point
{xv) we first perform the following coordinate trans-
formation:

il cos g sing [ x
' —sing cosg || v
and determine the velocity components (1',v') from

Eqs. (5a) and (5b). Finally, the velocity field with
respect 1o the fixed reference, oxy, is obtained by the
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Fig. 2. Particle paths around equant rigid objects in bulk deformations with increasing mtio of pure shear to simple shear rates (%), {2) Simple
shear, {hi—{d) Comhbination of pure and simple shear; straight lines pamllel and inclined to the shear direction are the extensional and
comractional apophyses of the bulk deformation, respectively. 5: stagnation points in the flow around the rigid ohjects,

inverse trmansformation:

] cosg —sing [ o

v sing  cosg@ v

The velocity at a point (xv) will depend on the posi-
tion of the point with respect wo the object boundary.
This relative position can be determined from one of
the elliptical coordinates of the point, A, which s
related o the Cartesian coordinates by:

A= g {[.1"'1 +y%) — (@’ + b

il

+1,..'|[.1"'1 + _1."'1 —a* — B — At — PR - E!J_I"'J:I}
()

A = (indicates a pomt outside the object boundary,
whereas A =10 and A< 0 indicate points on the

surface and inside the object mespectively. Al an
mstant, points lying outside the object will move
with velocity components as in Eg. (8), while points
either on the suface or mside the object will move
with velocily components:

= — wy and v =

e 15 the mstantaneous angular velocity of the object,
which can be obtamed from Egs. (A10) and (4) as:

a {¥g 5N ¢ + &g sin 2¢) + B 008T ¢ — €y sin 2¢)

W= .L i
a- + b

(107

3. Numerical simulation

The heterogeneous deformations of the matrix mate-
nal around a ngid object were analyeed by considenng
mcremental displacements of matenal points dunng
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Fig. 3. Variation in the long dimension of separatrix (radial distance of stagnation points ), normalized to ohject’s dimension, a, with increase in

the ratio of pure shear and simple shear rates (5.

progressive deformation. Let the position of a point is
(xp. i) at the ith increment; the point 1s displaced
during an incremental time interval &:

Xip) =X; + w; Bf

¥ +v; Br

i+l
w; and vy are the velocity components at the ith incre-
ment. During this incremental deformation the object
rotates o a new position, and so does the reference
frame 0 remain in coincidence with the axial directions
of the object. The new position of the reference is:
. = oy + w, B, where w; is instantaneous velocity
of the object at ith increment (Eg. (10)). In the next
mcrement, e (f+ 1ith increment, the displacement
of the point is calculated by taking the new position of
the point with respect o the object. We ran numencal
model experiments for a large number of increments
using Microsofl Visual Basic computer software.

3.1, Particle paths

In order o charmcterize the heterogencous flow

fields around a rigid object during deformation it is
essential to describe the possible pattems of particle
paths under varying conditions of deformation (e.g.
Ramberg, 1975). In rotational deformations the
presence of a spherical rigid object induces concentric
particle paths in the sumrounding matrix. Two types of
paths have been predicted — one with eye-shaped
separatrix and the other with bow-tie shaped separa-
trix. which develop in Newtonian and non-Newlonian
matrix, respectively (Passchier, 1994), Masuda and
Mizuno (1996a.b), however, have shown that the
flow with double-bulge shaped (ie. eye-shaped)
separatrix may develop in both the rheological van-
eties. Recently, Pennacchionm et al. (2004), on the
other hand, have proposed that bow-tie-shaped separ-
atrix develop under simple shear irrespective of
matrix rheology. Our analysis reveals that the geome-
try of particle paths are sensitive o the shape of rgid
objects (R = afb) and the ratio of pure shear and
simple shear rates (8) in the bulk deformation, and
desenbes some new types of particle paths armound
mequant objects.
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Fig. 4. Flow patterns around: (1) equant, and (h) inequant rigid objects. In (b} the long axis of the ohject was initially parallel to the shear

direction. & axial mtio of the ohject.

F.1.1L Influence of the strain ratio (5,)

Acset of numencal simulations was performed with
equant ohjects (R = 1) under different ratios of pune
shear and simple shear rates (50 in the bulk defor-
mation. When 5, =), the object mduced particle
paths with a typical eye-shaped separatnix (Fg.
2a). The separatnx has a finite dimension across
is longer direction, but becomes asymptotic along
the length (Fig. 2a, of. Masoda and Mizuno, 1996a).
The absence of stagnation points (zero velocity) is a
charactenstic featwre of the flow pattern around the
object. When 5, 15 mcereased the separatrix becomes
finite both along and across its length and two
diametrically  opposile  stagnalion  poinls  appear
(Fig. 2b). With further imcrease in 5, particle
paths in the immediate neighborhood of the object
become elliptical and those away from the object
are hyperbolic. The separatrix of the two types of
paths assumes a bow-te shaped geometry (Fig. 2e).
The line joiming the stagnation points bisects the
extensional and conwractwomal apophyses of bulk
deformation (Fig. 2¢). The distance between the
stagnation points determines the longer dimension
of the separatrix. When 5 15 very large ( =10.5), the
separatrix shonks in size and becomes more equant,
as the stagnation points shifl close wo the object (Figs.
2d and 3).

To summartee, the fow pattem armound an equant
rigid object in simple shear 15 characterized by a
semi-infinite eye-shaped separatrix, which in bulk
deformations by a combination of simple shear and
pure shear assumes a bow-tie shaped geometry with

finite dimensions. The inclination of the longer
dimension of a finte separatrix with the bulk shear
direction can be given by:

6=—1tan"'(28,). (11)

Eqg. (11 shows that the long axis of the separatrix will
be parallel 1o the shear direction when the bulk defor-
mation 1 under simple shear (5 = 0), as seen n
carlier models (Masuda and Mizuno, 1996a; Passch-
wer, 1994). In general deformations (5, #= () the long
axis 15 at an angle with the shear direction and the
inclination will be close w 1357 when 5, is very large.

I A2 Influence of the shape of the rigid object

Numerical maodels with inequant objects show
more complex partick paths than those in models
with equant objects. The paths are mutoally dishar-
monic, and ntersect one  another, implying an
unsteady flow around the object. In case of equant
objects, each particle lying between the separatrix
and the surface of the object moves along a closed
path and reverses its movement direction twice. The
pomts of meversals lie on the central shear plane,
diametncally opposite o each other (Fg. 4a). In
contrast, a particle in the vicini by of an inequant object
reverses the movement direction several tmes while
moving along closed paths (Fig. 4b). The reversal
pomts are generally located away from the central
shear plane.

Numerical models reveal that the trajectory of a
partick close o the object 1s sensiive o s axial
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Fig. 5. Loci of o particle (5) contmlled by the axial ratio (&) of rigid object. {a) Individual particles tmeking repeated elliptical paths. (b) Loci of
a particle forming an elliptically spirl path. o) Particle path amound aninequant object defining a shell. (d) Particle path defining a doublet shel |
{see text for detai ). (e) and { ) Outward- and inward-spimling paths of a particle initially located near the extensional and contractional faces
of inequant objects, rspectively. (g) Distorted spirl path of a particle initally located near the tip of the object. B axial ratio of the ngid
objects. It may be noted that the objects shown in the figures are in their initial positions.

ratio, K. When the object 1s equant (8 = 1), the parti-
cle racks a single closed, elliptical path throughout
progressive deformation (Fg. 5a). With a shght
departure from the equant shape (R = 1.1), the parti-
cle racks an elliptically spiral path (Fig. 5b). Dunng

progressive shear the spiraling partcle executes aler-
nate outward and mward movement with respect o
the center of the ngid object with a penodicity
(Fig. 5¢). However, the outward and imward move-
ment remains confined  within a specified  zone
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Fig. 6. Initial model with circular strain markers in a Cartesian grid
around a A gid object to be deformed under varying mtios of pure
shear and simple shear mtes.

surrounding the object forming a kind of shell
structure around the object (Fig. 5¢). The shell geome-
try is simple when the axial ratio of the object is small
(R = 1.3, Fig. 5¢) but assumes a complex, doublet
configuration for larger values of axial ratio (R = 1.5,
Fig. 5d).

Particles do not follow closed paths, or define shell
structures, when the axial ratio of the object is larger
(R = 3). In the close vicinity of the object they track
more orless hamonic oval or crcular spiral paths (Fig.
Se and ). Two types of spiral paths are recognized:
cvelone (Fig. 5e) and anticvelone (Fig. 53f) paths
defining continuous outward and inward movement,
respectively, depending on the position of the parti-
cle. Partcles with their initial position near  the
surface of object in the extensional field show cyclo-
nic, those at the other side anti-cyclonic movement.
The first path type indicates that a line can undergo
continuous stretching in progressive shear. This 15 in
contrast o the cases the lines were alternately shor-
tened and extended, defining a pulsating deformation
(Ramberg, 1975 With fuwther increase in axial ratio
of the object, a different type of particle kKinematics is
noticed. Particles near the tip of an object with R =
10 move inward following altemately circular and
curvilinear paths, giving rise o distorted  spiral
paths (Fg. 5g).

3.2, Strain shadow zones around rigid ofyjects

The development of strain shadow zones around
rgid mineral grains or pebbles is clearly manifested
in the preferential localization of equant guartz grains
surrounding  the ngid obpect o many  naturally
deformed rocks (Spry, 1969; Ramsay and Huber,
1987). This work anal yees what controls the develop-
ment of strain shadow zones around rigid objects and
describes ther morphologies.

The strain distribution patterns around rigid objects
can be visualized by analyzing the deformation of
numerous, small, mmibally circular markers, distnbu-
ted around the object at an equal spacing in a Carte-
stan grid (Fig. 6). The strain shadow zones were
defined as zones where the mto of local and far-
field finite sirains was less than (0.5, The development
and distribution of sirain shadow zones were investi-
zated with the help of numerical models involving
three principal variables: (1) the ratio of pure shear
and simple shear rates in the bulk deformation (5,); (2)
the axial ratio of object (R); and (3) the initial orienta-
tion of the long axis of object with the shear direction

().

3.2 1L Influence of the strain ratio (5,)

A set of simulations was pedformed with eguant
rigid objects under different values of 5, When §, =
0, strain shadow domains develop against the two
extensional faces of the object describing a o-type
geometry (Fig. 7a). The zones of high strain occur
near the contraction face of the object and along
long bands at an angle less than 457 with the shear
direction (Fig. 7a and b, cf. Masuda and Ando, 1988).
The low-strain zones tend o shrnk, as 5; s increased
iFig. 7b and ¢), and when the deformation is entirely
by pure shear no strain shadow zone occurs as defined
in the present study (Fig. 7d).

The effect of 5 on the development of strain
shadow structures can also be understood by the strain
path of a particular material point in the neighborhood
of the object. For low values of S, (0-035), the finite
strain of a material point initially located near the
contractional face of the object increases o a maxi-
mum and then decreases with progressive mmerease in
finite bulk shear (Fig. 8). Upon increasing the value of
S (=1), the finite strain of the materdal point, on the
other hand, continues o increase with increasing bulk
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ar=0.2

(b)

Fig. 7. Strain distibutions around equant (R = 1) rigid objects for different ratios of pure and simple shear mtes (3,). Finite bulk shear = 411

Strin shadow zones (shaded) are shown in insets.

shear (Fig. 8). This again implies that stmin shadows
would be prevalent where simple shear component
dominates in the bulk deformation, and that material
points definming a high-strain zone at one moment may
enter a zone of strain shadow in the course of progres-
sive deformation at low values of 5.

3.2.2. Strain shadow around ineguant objects
Numencal simulations were made under simple
shear by varying the initial axial onentation of the
object with respect to the shear direction () and
the axial mto of the object (R). Strain shadow zones
formm when the long axis of the object makes an angle
between 60 and 135 with the shear direction (Fig. 9).
When o 1s close to 607, the strain shadow zone forms
a narrow tal, emerging from the tp of the object
(Fig. 9a). With mcrease o inclination, the shadow
zone becomes wider and longer (Fig. Yb), and at
¢ = 1207, they form bands giving rise o an overall

pattern sumilar to that of augen structures (Fig, 9¢).
The lww-strain zones die out as the inchination of
the object 1s further increased (Fig. 9d) and imstead
strong  strain - concentration
appears  sub-parallel o the long axis ol object
(Fig. 9d).

For a given ¢, with increase in axial ratio of
the rigid object strn shadow zones progressively
merease in length as well as change ther pattern
(Fig. 1), When the axial ratio s low (R = 1.5), the
strain shadow zones resemble o-ype tals emerging
from the nodes of the object. With merease in axial
ratio, R, the zone forms wings, which finally form a
band surrounding the object (Fig. 10d).

a narow  zone  of

3.3 Distortion patterns of passive markers

F. 2L Initial model
Numencal models imbally had a set of parallel
marker lines at an angle # with the shear direction.
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Fig. 8. Strain paths ata point initially located near the contractional

face of an equant object in progressive deformation under different
ratios of pure and simple shear rates (3],

A line in xy-space can be represented by:
xsinf—yeos B —p=1,

where pois the normal distance of a line from the
center of the object. The distortion pattem of a lne
wias simulated numencally from incremental displa-
cement (Eg. (8)) of equally spaced points on the line.
Three factors — (1) the imtal onentation of marker
ling (6}, (2) the axial moo of object (B) and (3) the
strain ratio (5,0 in bulk deformaton, were taken into
account in the simulations. For convenience, we first
classily the drag patterns, which were obtamed by
varying the above three parameters.

3.3.2 Types of drag pattemns

Type 1: Markers form bi-convex curvatures around
the object (Fig. 11). Type 2: Markers are distorted in
the form of folds on either side of the object (Fig.11a).
Depending upon the degree of relative curvature, the
drag folds can again be classified mto three sub types:
Types 2a-2c. The first two Lypes are characterized by
larger curvatures of folds with inward convexity, and
they dilfer from each other by the opposite sense of
arrangement  of folds with inward and  outward
curvatures. Type 2¢ has dmg folds with outward

Fig. 9. Strain distributions around inequant objects (8 = 2) with different initial inclinations of their long axes to the shear dirsction { ) Finite

bulk shear = 4.0 Stmin shadow zones {shaded) are shown in insets,
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Fig. 10, Stmin shadow patterns near inequant ohjects of differsnt
axial ratios (8], The long axis of the objects was initially at an angle
¢ = 1 30" with the shear direction.

convex curvatures much greater than mward convex
curvatures. Type 3: Markers are distorted with inward
convex curvalures, giving rise o oa geometry very
similar 1o that of the millipede structures of Bell and
Rubenach (19800, They have cither smooth, rounded
isingle-hinged) (Type 3a) or flat (double-hinged)
(Type 3b) crests (Fig. 1le). Type 4: The drag effect
of object 15 such that the markers are distorted in the
form of overturned folds on either face of the object
(Fig. 11d). This type of drag patems has been
produced n analog model experniments (Van Den
Driessche and Brun, 1987).

3.3.3. Drag patterns around eguant obfects

Earlier workers have shown that the imitial onenta-
ton of passive markers 15 a4 controlling factor in the
development of different types of drag patterns around
spherical nigid objects (Ghosh, 1975; Masuda and

Type | (| Type2 (b
"'"'{.rﬁ u] e e
| -
i Wfﬂ:’é =5 “i“{g:—:-;.—
Type 3 ft) I%@f %
2 =l |5 =
TN Il G YOI
i || T~
|3t 'n‘*h}\ | Type 4 W
e S ||

Fig. 1 1. Types of drg pattems obtained from numer cal simulations
{see text for details).

Ando, 1988). In this section we present some detals
of the distortion patterns revealed in our numerical
models by varying the mmbal onentaton of markers
at different mtios of pure shear and simple shear mates
in the bulk deformation (5,).

For §, = 0, markers with an mitial inclination #
between (0 and —457 developed Type 2 drag folds
(Fig. 12a), as in analog model expeniments
(Ghosh, 1973) and earlier numerical simulations
(Masuda and Ando, 1988). For any other orienta-
tons they produced Type | — distortion patterns
(Fig. 12a), which are frequently noticed around
rigid objects in deformed foliated rocks. Markers
at a low angle to the shear direction produced
Type 2a fold pattern, which s replaced by Type
2b when # is between —20 and —457 (Fig. 12a;
cf. Masuda and Ando, 1988). The axial traces of
mwardly convex folds on either side of the object in
both the Types 2a and 2b patterns show a side step-
ping with the sense in consistence with that of bulk
shear (Fig. 12a).

Under a combmation of pure shear and simple
shear, the strain ratio S, influences mainly Type 2
drags (Fig. 12b). With increase in 8, Type 2a folds
tend to die out, whereas Type 2b folds are progres-
sively accentuated (Fig. 124 and b).

3.3.4. Drag patterns around ineguant obfects
Each of the three factors mentoned earlier was
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0=85"

d=il3s”

Fig. 12, Distortion patterns of marker lines amound equant rigid objects. # is the initial inclination of marker with the shear direction. {a) Simple
shear, (b} Combination of pure and simple shears. 8, is the ratio of pure to simple shear mtes.

vaned independently in different sets of numencal
simulations with inequant objects. We discuss the
results separately in the following paragraphs. The
simulations were performed under simple shear, Le.
&, =1

(1) The axial rato of object was vared, keep-

mg the passive markers and the long axis of

object parallel w the shear directon. Objects
with R= 1.5 developed Type 2a folds (Fig.

13a). With increase n R, the mward curvatures
tend to have a double-hinged geometry, giving
rise 1o a Type 3b pattern that resembles millipede
structures. The other types of dmg pattern did not
change significantly with mcrease in axial ratio of
the object.

(2) The inclmation of the long axis of object with
the shear direction (¢h) was varded, keeping markers
parallel o the shear direction. When ¢ is between 45
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Fig. 13 Drag patterns of marker lines around inequant ohjects. () & was varied, keeping # = O and ¢ = (0. (h) ¢b was vaned, keeping £ = 3 and
# =11 {c) & was varied, keeping & = 1.5 and ¢ = (1. In all the cases &, = (. & axial ratio of object; ¢ initial inclination of the long axis of

object with the shear direction; #: initial inclination of marker with the shear direction.

and —435°, Type 3 drag folds fonn (Fig. 13b). This
drag pattern is replaced by Type 4 when ¢ is larger
than 457 but less than 907 For ¢ = 907, this drag
geomelry assumes the Type 2e pattern, charactenzed
by outward convex curvature, which 1s higher than the
mward convex curvatures.

(3 The imual inchnation of marker, &, was
varied, keeping the long axis of object parallel o
the shear direction. For # around 9P, the markers
bowing around the object are distorted with a Type
I pattern, whereas those abutting agamst the object
show a transition between normal and reverse dmgs
(Fig. 13¢). The points, where this transilion occurs,
show a sideswepping with respect w0 the general
trend of the markers, and the sense of sidestepping
15 consistent with the bulk shear sense (Fg. 14)

With increase in 6 Type 2b pattems appear at around
#= 120", which is replaced by Type 2a pattern at
around # = 1707,

4. Summary

The principal factors governing  the nature of
heterogeneous deformation around rigid objects float-
mg in 4 Newtonin matrix are: (1) the axial mto (R)
and the initial orientation () of the long axis of the
object; (2) the inital orientation (8) of markers show-
g distortion patterns; and (3) the muo (8) of pure
shear and simple shear rates in the bulk deformation.

Equant objects perturb simple shear flow in the matnx
fomming vorlex moton with eye-shaped separatnx, as
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Fig. 14. Transition between normal and reverse drags along the
surface of ohject. M is the mall point marking the transition.

shown by Passchier (1994) and Masuda and Mizuno
(1996a,b). The separatnx tums o 4 bow-tie shape
whenthe bulk deformation takes place by acombination
of simple shear and pure shear. The long dimension of
the separatrix is inversely proportional o the strain ratio
& (Fig. 3). The numerical analysis reveals some new
types of particke paths associated with ineguant objects.
For a slight departure from the equant shape of object,
particles do not rack single close paths, but show loci
forming an elliptical shell about the object. Objects with
axial ratio between 2 and 3 show pulsating movement of
particles along differently orented close paths forming
doublet elliptical shell structure. Objects with lrge axial
ratios (R = 3) perturb the flow resulting in elliptically or
circulardy spiral inward or outward motion of particles.

Rigid mineral grains or porphyroblasts are often asso-
crated with strain shadow zones in ther neighborhood
forming tails of segregated minerals, like quanz. Our
numerical models suggest that, if the rigid objects
have a coherent interface with the matrix, straim shadow
zones can develop only when the ratio of pure shear and
simple shear rates in the bulk deformation is low. The
analysis refines earlier numerical studies (Masuda and

Table 1

i TR

Fig. 15, Drag patterns as shear sense indicators. (a) Sidestepping of
mull poimts (M) separating normal and reverse drags. (b Sidestep-
ping of axial traces {dashed line) of imwardly convex drags. (c)
Wergence of overtumed drag folds on the long faces of objects
with a large axial mtio.

Fields of different types of drag patterns around inequam ngid objects (8 = 3) in the ¢ — # space

Inclination of Inclination of long axis of object ()

murker {#}
i} 45 Qi 135 18
i Type 3b Type 4 Type 4 Type 2c Type 3b
45 Type 1 Type 1 Type 4 Type 1 Type 1
Qi Type 1 Type 1 Type 1 Type 1 Type 1
135 Type 2¢ Type 2b Type 3 Type 3b Type 2c
180 Type 3b Type 4 Type 4 Type 2c Type 3b
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Ando, 1988; Masuda and Mizuno, 1996a.b) by mcor-
porating the shape and initial orentation of the object as
additional controlling factors. Low-strain zones develop
if the initial inclination of the long axis of the object with
the shear direction lies between 60 and 1357, and the
zones tend to be more and more prominent as the axial
ratio of object is increased.

Analog model experiments (Ghosh and Ramberg,
1976) have revealed different drag patterns around elon-
gaterigid objects. The analyses are, however, himited 1o
moderate bulk sirain, Numerical simulations of Masuda
and Ando (1988) indicate that complex drag patlerns
may develop during a large straim. Our study presents
the probable drg pattems around elongate ngid bodies
at a large bulk strain. The patierns are classified broadly
into four types (Fig. 11). Table 1 summarizes the condi-
tions atwhich different types of drag patterns develop, as
revealed from the numerical models. Our simulations
reveal that Types 2¢, 3b and 4 develop around ineguant
objects under specific conditions, whereas rest of the
Lypes 15 common Lo both equant and inequant objects.

Some of the featres in the drag patterns discussed
above can be used in determining the sense of bulk
shear: (1) shifting of null points separating normal and
reverse drags from the general trend of foliation in
Type 1| distortion pattems (Fig. 15a), (2) sidestepping
of the axial traces of inwardly convex drag in Type 2
patterns (Fig. 15b), and (3) vergence of overturned
drag folds in Type 4 patterns, (Fig. 15¢).

The prncipal limitations that adhere to the present
model are: (1) The analysis is two-dimensional | and
based on the assumptions of plane sirain type of bulk
deformation and elliptical rigid object instead of an
ellipsoidal body. However, some of our numerical
simulations (e.g. paticle paths, distortion pattems of
passive markers) conform to that obtained from 3D
considerations (Jezek et al., 1999) of Jeffery's theory
(1922) that satisfy Stoke’s equations for viscous flow.
(2) The rotation axis of the rigid object is assumed 1o
remain always in coincidence with the direction of no-
strain. The numerical modeling of heterogeneous
deformation involving rigid rotaton in a 3D space
would be much more complicated than that presented
in this paper, and the application of special computer
software would be necessary, as shown by Jezek et al.
(19993, (3) The matrix 15 assumed to be of Newlonian
rheology, and does not experience any volume change
during the deformation.
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Appendix A

This section presents mathematical details of the
velocity functions (Egs. (5a) and (5b)), based on
which the numerical experiments were perdformmed.
We follow Jeffery’s (1922) mathematical procedure
in expressing the velocity functions outside an elon-
eate rigid object floating in a Newlonian matrix of
infinite extension. Jeffery has presented the mathe-
matical formulation for the velocity field in three
dimensions. His final equations (Egs. 22 and 23)
basically represent converging functions, which
tend to have finite values at o large distance from
the objpect. In analogy with this  approach, we
consider Jeffery’s differential equations (Egs. 18
and 19) of the velocity field in two-dimension satis-
fying the condition of continuity, and obtained simi-
lar velocity functions for ow 2D model, assuming
that the bulk deformation is of plane strain type and
the ngid object 15 an ellipse with ils mtation axis
along the direction of no-strain. Under this condi-
tion, the expressions of velocily components are
obtained as follows:

u" = [S'I” — 2.4,(0: + |B::| - lFf}"l-r|l + [Sfll -2

2x' P
— 300 4+ . 49
il — BC) + Ejyly 7 —"'l}'ﬂI:‘EI P

1
X(a® + A0, +2(0° + D | —————x'y
(@ + ANB + A)

2.-."'PJ .
—— | [F, — 2a" + A)A
(a + A}.ﬂl:‘ ! a )4,
2 1 "2
HUAP + DB}y (Ala)
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v = [Shy — 2Bi(a + B) — Fiyly' + [Sh — 2(aD,

§ oy

v P

— By Mg -
ﬁc’l} EITI! fb2+.-:|.::l."j
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1
A, N DY ey
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2y' P’
+m[|F, — 2(a® + A,

1 1
gl o
2B+ DBy} o ] (Alb)
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1 X' e

BT @ AR B

A—=F; m Eqgs. (Ala) and (Alb) are constants; these
are indexed to distinguish from the constants A-F in
Egs. (54) and (5b). The constants are comparable,
espectively, with A, B, H, H'l, T, Win Eqgs. (22) and
(23) of lJeffery (1922), the expressions of which
have been given in Egs. (25)-(27). We, however,
derive the expressions of these constants indepen-
dently because the velocity functions in our case
are writlen in two-dimensions. o, B and p are ellip-
tic integrals that can be expressed as (cf. Egs. (9)-
(11) of Jeffery 1922):

= dA
Y . . A2
= ) @ +Ra S
= dA
R A2b
F=|, F+ra (AZb)
e dA
= S A2
Y= ) @+ 0+ 04 Loxe)

where A s a geometrical parameter that relates o
the geometrical dimension of the medium enclosed
within & A contour. In Jeffery (1922) this parameter
is a measure of an ellipsoidal volume of the medium
amound the rigid object. As our analysis s mestncted
o two-dimension, we lake the pammeler as a
measure of area represented by a concentric elliptic
contour amund the elliptical object. Thos, whereas

Jeffery expresses A as +f (@ + A + A + A,
we express it as: A= ‘\."Ifﬂj + A}lfbl + Al Substutut-
ing this expression of A, the integration in Eg.
{A2a) can be solved along the following steps:

J‘ da
(@t + A

da
— - -
(a® + AV b + A

Let us put Z = /b~ + A Then dA =22 dz and the
e gralion 15 rewritlen as:

2dZ2
= {.42 e 2’3 }3."!

where A’ =a" — b We again meplace by Z=
Atan #, which after differentiation gives, dz =
A sec” @d#, and get

J‘ 24 sec” 8d#
(A% + A% tan® 6)**

After simplification we have:

o
= ﬁ J-uu-:ﬁldﬁl

3

S
= .
A\ a4 72

Afu:m‘plauingngyb! + A andAzbyﬂ! — b, we can
now gel the solution of definite integral in Eg. { A2a) as:

(A3}
The expression of 8 in Eg. (A2b) can be obtained by
solving the integral in the same wiay as:

2 Vet A— VB + A
a* — b VB + A )

In order o find the expression of 3, we solve the inte-
eration in Eg. (A2¢) along the following steps:

J' da
(a® + Ak + 0a
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dz
= ) ZHA ¥ oy
whereZ =B + Aand A’ =a* — b,

AY ) secd
20 15"
=5 e (—cus g+ H,é) de
J sin~
e

2 Ve + A b2 vas + A
Vet + A VEE+ A |

The expression of y then follows:

2 I:-».-"'b-’+,i+-».-"'ﬂl+ﬁi|m
e A

Y= @- JEIR LR
2 (-».-"'ﬂ? +A— Vb + A):
— "‘p T 2 — o, e ————————————————————— fAS}
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Egs. (Ala)and (Alb) contain six unknowns, which can
be determined by imposing boundary conditions. If the
instantaneous rotation rate of the object is w, the velo-
city of a point on the surface of object, A = 0 will be:
W= —awy and v\, = ax’ [ AB)
Substtuting A = Oin Egs.( Ala)and { Alb) and compar-
ing the m with those in Eq. { A6), the following equations
can be formed:

S+ Fy—2Aa,+B)=0 (ATa)
S+ Eyy+2a,D, —B,C)=—w (ATh)
E +2a°C, +26D, =0 (ATc)
Fi—2a°A, +26°B, =0 (A7d)
Sh+ Ejye — 2Dy — B,C1)=w (ATe)

S — Fiy,— 2Bi(a, + B,) =0 (ATf)

Now, solving these six Egs. (AT7a)—{AT[) the coeffi-
cients are obtained in lerms of known guantities.

5 7
A| — 11 : . :
e, + B) —(a” + &)yl
o S
' 2[(a, + B,) — (@ + Byl
L _ 38y +51) — b (S — Sy — o)
T E{a,,ﬂl + ,B”b-j}l?,,
s LB, (5 + 81 + ya LS — Sh) — w)
' Aa,a + By,
_ 381t S
]
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4 Shiat + b4
' (e, + B — @+ By, a

(AH)

1t may be noted that the expressions of constants, C), D,
E; are identical wo that of H, H', T(Egs. 26 and 27) of
Jeffery. Substitting A = 0in Egs. (Ad4)-(AO), we gel:

2
Dy T e,
ala + f)
AY
5 . ) (A9
y = = — A = — e
Fo= tat b Ye™ ha + bR
From Eq. (37) of Jeffery (1922) we can get,
2l 2l
Say — B8
w= 222 1 (A10)

as + b

The constants in Eq. { AB) are now oblained in terms of
known guantities, after substituting them in Egs. (Ala)
and (Alb) and some algebra we can have the expres-
sions of the velocity functions in Egs. (5a) and (5b).
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