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ApsTRACT, This paper is concemed with a Cauchy-Poisson problem in a weakly stratified
ocean of uniform finite depth bounded above by an inertial surface (15). The inertial surface
iscomposed of a thin but uniform distdbution of noninteracting materials. The techniques
of Laplace transform in time and either Green's integral theorem or Fourier transform have
been utilized inthe mathematical analysis to obtain the form of the inertial surface in terms
of an integral. The asymptotic behaviour of the inertial surface is obtained for large time
and distance and displayed graphically. The effect of stratification is discussed.
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1. Introduction. The classical two-dimensional problem of generation of unsteady
maotion in deep water due to initial surface disturbances in the form of initial eleva-
tion or impulse concentrated at a point on the free surface was studied in the treatise
of Lamb [4] and Stoker [9] assuming linear theory. Fourier transform technigque was
used in the mathematical analvsis and the free surface elevation was obtained in the
form of an infinite integral which was then evaluated asymptotically for large time
and distance by the method of stationary phase. Kranzer and Keller |3] considered
the three-dimensional unsteady motion in water of uniform finite depth due to initial
surface impulse or elevation applied on a circular area on the free surface. Chaudhuri
[1] and Wen [10] extended these results for surface impulse and elevation across ar-
hitrary regions.

When an ocean is covered by an inertial surface consisting of a thin but uniform
distribution of non-interacting materials such as broken ice, a number of problems of
unsteady motion created due to initial disturbances at the inertial surface were con-
sidered by Mandal 5], Mandal and Ghosh |G, 7], Mandal and Mukherjee [8]. Study of
these classes of problems involving inertial surface has acquired some importance be-
cause of increase in the various types of scientific activities in antartica in the vicinity
of which the ocean is sometimes covered by broken ice.

In all the above studies, the ocean is assumed to be a homogeneous fluid. However,
because of salinity the density of the ocean increases with depth and itis thus realistic
if one models an ocean as a stratified fluid.

For a weakly stratified fluid with constant Brunt-Vaisala parameter, Debnath and
Guha |2] formulated the problem of wave generation due to prescribed initial
disturbance of the free surface in terms of an acceleration potential and obtained
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the free surface profile asympiotically for large time and distance far away from the
region of disturbance. However, their modelling a deep ocean by a siratified fluid of
infinite depth with constant Brunt-Vaisala parameter is questionable since the density
at very large depth becomes very large even if the Bruni-Vaisala parameter is small.
In the present paper, we study the problem of wave generation due o inital disr-
bances in a weakly stratified fluid of finite depth covered by an inertial surface. The
initial disturbances are prescribed at the inertial surface. Assuming linear theory the
problem is formulated in terms of pressure under Boussinesg approximations and
constant but small Bruni-Vaisala parameter. By using Laplace transform technique,
the initial value problem is reduced to a boundary value problem which is then solved
by two methods, one based on an appropriate use of Green's integral theorem and the
other on Fourier ransform. The form of the inertial surface is then obtained in terms
of an integral. This integral is evaluated asympiotically for large times and distances
by the method of stationary phase when the initial disturbances at the inertial sur-
face is concentrated at a point taken as the origin. The asympiotic form of the inertial
surface profile is depicted graphically and compared with the result for an ideal fluid
covered by an inertial surface. It is found that the effect of weak stratification is not
of much significance.

2. Formulation of the problem. We consider an incompressible inviscid weakly
stratified fluid of uniform finite depth h covered by an inertial surface composed
of a thin but uniform distribution of disconnected floating materials of area density
pollie (e =00, where py(0) is the density of the fluid at the top. It may be noted that
€ = 0 corresponds to a fluid with a free surface. We choose a rectangular cartesian
coordinate system in which the y-axis is taken vertically downwards into the fluid,
3 = 0is the position of the inertial surface at rest. The motion in the fluid is penerated
due to an initial dis mrbance prescribed on the inertial surface in the form of an inital
depression of the inertial surface or initial impulse. We assume the resulting motion
to be two-dimensional. We denote by pix, v,0) and pix,y,t) the perturbed pressure
and density of the fluid, respectively, while py(3) denotes the density of the fluid at
rest, wix, ¥, t) and v{x, y,0) are respectively, the horizontal and vertical components
of velocity.

Under the assumption of linear theory the relevant equations satisfied in the fluid
region are

My + thy =10, pe+upgly) =0, folle = —px,  Polt =—py+gp. (2.1
Combining the kinematic and dynamic conditions at the inertial surface, we find
p—€py =mg+Ill—-egp—gpen ony=01z=10, (2.2)

where ij(x, 1) is the depression of the inertial surface, g is the gravity and IT is the
atmospheric pressure. The initial conditions are

u=uv=>0, att=0 nixd)=nolx) att =10, (2.3

where ng{x) is the prescribed initial depression of the inertial surface.
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Let gix,¥;5), flx;s), flx,w; ), and ©ix,3;5) denote the Laplace ransform of
plx, v, 0, nix, ), plx,y, 0, and vix, ¥, 0 in time, respectively.
Under Boussinesq approximation, equations (2.1) produce

Pox + Py =0, 0=v=h, —w<x <o, (2.4)
where & = 5/(5° + N*)"* is chosen such that Red = 0, and

N =9 i) (2.5)
2o

is the Brunt-Vaisala parameter which is assumed to be constant and small. The small-
ness of N characterizes weakly stratified fluid.
We now solve (2.4) along with the boundary conditions

2
: 0
i—z'ﬁ'{x.ﬂ:ﬂ —(g+es*)py = _M

fy =0 ony=h

on: =0, (2.6)

plx,; %) is obtained in the next section by emploving two methods, one based on
an appropriate use of Green's integral theorem and the other on Fourier integral
transform.

3. Methods of solution

3.1. Method based on Green's integral theorem. We use the transformation x = X,
3 =AY and denote P{ X, Y)=p{X,AY), then P(X,Y) satisfies

VER=0 innngg,—m{X<m, {3.1)
with
2 o 01y (X
S BX,0:5) — (g +es?) By = - 22201 D0X) g,
o . A (3.2)
By=0 on¥=o =N

A

The boundary value problem described by (3.1) and (3.2) is now solved by an appro-
priate use of Green's integral theorem to the functions G(X,¥; X", Y";5) and P(X,Y),
where 7 satisfies

ViG=0, 0=Y =h exceptat (X" Y"),
2 .
STG—[Q+E_':2]|GY -0 onY=0,
i P R
G—InR asR=[(X-X) +(¥Y-v)*]" —o,
Gy =0 on¥ =h',
G—0 asR — oo,

(3.3)
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Then, X, Y; X, ¥";5) can be obtained as

GIX,Y:X',Y":5)

-:‘nshk[h’ Y')ycoshk(h' —Y) Ap?

=UX,¥X. Y- 2 cosk(X —X")dk,

Dik)(s+Ap?) ksinhkh'
(3.4)
where
. L R J coshkih'— ¥ )coshk(h' - Y)
X VXY )=In—-2A
[ )=Ing [ Dk)
. exp(—kh')sinhkY’sinhkY | cosk(X-X")
k cashkh’
(3.5
with
. 2 2l
R =[(x-X)V+(r+y)*] ", (3.6)
D(k) = coshkh' + ekAsinhkh', = 9XSIDKR 3.7)
Dik)
Thus we find
Py = 000 Jm G(X,0:X', Y5 §) o (X) dX. (3.8)
m{g+es®)A o
Using (2.4) and reverting to the original variables we find that
F}{xr.})j EP(X',%)
: (3.9)
gl " coshk(h' - MJ’
= I o DRI Mol X ) cos kix— X" dX dk.

3.2. Method based on Fourier transform technique. Emploving Fourier transform
in x, the boundary value problem described by (2.4) and (2.6) reduces to

>
ﬂ{yi—i—zﬂ 0, 0=y=h, i3.10
¥ -
%ﬁ—tg+ﬂz}ﬁ'{_}*)=—w ony =10, (3.11)
P (¥) =0 ony=h, (3.12)

where p = p(E,3;5) and f,(E) are the Fourier transform of pix,y;s) and ngix),
respectively. Equation (3.10) is an ordinary differential equation and its solution sat-
isfying (3.11) and (3.12) is given by

P =—sgpol0)fIE )Rl E), (3.13)
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where
oy coshiE/A) (h—¥)
FEY) = DiEN(s2+ AP E))
so that f(E;3) Is an even function of §. Using Fourier inversion, we find f#{x,3), which

is the same as given by (3.9).
MNow 7{x;5) can be expressed in terms of §ix, ;%) given by

(3.14)

fl{x:s) = N fﬁza—ﬂ{x,n;sh—ﬂ{x.n;sh] {3.15)
apo dy
so that, after using (3.9), we find
L= &

jlx;s)=—

) _I;T+‘u_.|2‘[ MolX Jcoskix — X" )dX dk. {3.16)

By Laplace inversion, equation (3.16) will produce n(x,t) in principle.
Now let us choose the initial displacement of the inertial surface to be concentrated
at the origin, then ny(X") is aken as [*5{x), where [ is a typical length, then

™ s
Mix;s)= P L] Em(‘ﬂﬁkx‘dk (3.17)

which, when written fully, is equivalent to

R s(1+N2)s1) " +ekstanh [kh(1+ N2 /s2)' ]
x;8)=—

o g2{1+N2js?) " +(eks? + gk)tanh[kh {1+ N*js2) 7

13.18)

For the purpose of Laplace inversion, we note that ¢ = =iN are not branch points.
This can be ascertained by noting that an even function of (1 + N?/s%)1 results
after expanding the hyperbolic functions. Thus the only contribution to the Laplace
inversion integral comes from the zeros of the denominator in the complex s-plane.
The denominator has no real zero, and the only zeros are purely imaginary given by

£ =xiwilk), (3.19

where wik) > N and
2gktanhkh + N°(1-2kh /sinh2kh)

k) = QN 3.20
ik 21l+ektanhkh) +O(N7) ( )
Thus,
& m
nlx,t) = % X %msw{kjtmskxdk, {3.21)
where
" 2_ pp2y iz
F{k}=[wZ—N‘?}+£kw[w2—N2}l'zlanh[w1,
5 % 3 i khiw?-N2)'*
Gik) = (2w?—N?) +2ekw (w? —N?)'“1anh “"—w}] 3.22)

g 2 _pr2y i
+ (Ek— g—ﬁ)mkh sech’ [M]

w
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Thus the depression of the inertial surface is obtained in terms of an infinite inte gral.
We note that in the absence of stratification, N = 0, and for deep water (3.2 1) produces
iz m ,gk ] 172
nlx,t) = = L ms[ Trek tcoskxdk, {3.23)
which coincides with the result obtained by Mandal [5] earlier except for the scaling
factor 14,
In{3.21) we use the non-dimensional substitutions & = x/ 1 [ = (g/1)!' ", o obtain

the non-dimensional form of the inertial surface depression as

A(R) < MO0 _ 20 [ F(k)

l o Glk) %

1/2
ms[w{k‘.l(é) f]msl:ikf]ldk.
In the next section, asymplotic form of fiz%, 0 will be obtained for large X and large
[ such that %/ remains finite.

4. Asymptotic expansion. To obtain the asymptotic form of f{%,0), we use the
method of stationary phase. Now (3.24) can be written in the equivalent form

L ["Fk)
II:'EDE'”_ETI‘ o Gilk)

o v ke
{Exp[:t(w{k‘.l(g) +T

)

i 172 =
+exp —if(w{k‘a({) +-H~1-‘)]
g [
: IV ke -y
+ exp -II(W{FC\J(EE) = T):I
r 12 -
+exp —:'E(w{k‘.l(i) —H—,x)”dk.
| g f
Let
- AT RIR
¢{k1—¢tk.x.tl—uiki(§) = 4.2)

The first two integrals in (4.1) have no stationary point in the range of integration
so that they do not contribute. The third and fourth integrals have stationary points
given by

¢’ (k) = 0. (4.3)
MNow
) iyl A I %
:p{m=tﬂ(£) (1+ 39) ]—f}=:(m—f). (4.4)
where
Y2 NEpy e : % "
M= |i(£-) (l+":'%§—) i cp{m):——s. (4.5)
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Also we have verified that ¢ (k) < 0 for 0 < k < = s0 that (k) is monotone
decreasing for 0 < k < c. Now for £/ > M, both ¢'(0) and ¢'(=0) are negative.
Hence there is no zero of ¢’ (k) for 0 < k < o so that there is no stationary point in
this case. However, for £/1 < M, ¢'(0) is positive while ¢p"(20) is negative and since
b’ (k) is a monotone decreasing function for k > 0, ¢’ (k) has a unique zero in (0,00
so that there exists only one stationary point at k& = k;, say. Finally when ®/ =M,
¢b" (0) = 0 5o that there is a stationary point at k = 0. But as ¢""(0) = oo, it gives a
smaller contribution than Ihei‘,-'f < M case, s0 that its contribution can be neglected.
Now applying the method of stationary phase to the third and fourth integrals and
combining we find

g% e = —

I [ 2r 13212 " Fky)

. T
t|" (ko) Cr (k) -’.‘ns(n;:-[k“}—z)‘ (4.6)

We may note that in{4.6), k; isa function of % and {, and can be evaluated numerically
for given ® and f for which ®/f < M from the transcendental equation

@' (ko;%,E) =0 (4.7)

and thus 7%, [) can be obtained numerically. In Figures 5.1 and 5.2, 7(%,§) is depicted
graphically against % (for fixed [) and [ (for fived %), respectively, for various values
of other parameters. We note that for a homogeneous fluid of infinite depth, equation
{4.6) reduces to the classical result

12

e 1 i o
nix,t) = Y (E) Cﬂﬁ(q—f _E) {4.8)

When the disturbance is in the form of an impulsive pressure fix) per unit area
applied to the inertial surface, then the condition (2.6) is to be replaced by

2 2
%ﬂ{x,ﬂ;s) —(g+est)py = STI{x‘.I on y=1{ 4.9

so that in this case, following the same procedure, we obtain instead of (3.9),

_ s " coshk(h'—yjA) ™ . , ;
plx,¥) = 7 )y D2+ Ap2) _mfl[x Jeosk(x —x ) dx" dk. 4.10)

Thus instead of (3.16), we oblain

1 = g2 =
(x,5) =— : : _ J’ Ix"jcosk({x—x")dx"dk. 4.11)
” mgeel0) Jo s2+Ap2 | o (x) ( )

If we assume the impulse to be concentrated at the origin, then

Tx")=Ad(x"), 4.12)
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where, A is the total impulse per unit length so that

A A
Sens kx dk. i4.13)

ﬁ{xp.';:l:_"gp{n-:l 0 33+Aj.lz

Laplace inversion gives

24 [PwikFk)
0= G Slw (ki cos kx dk. 4.14)

We apain use a similar non-dimensional substitution in (4.14). We get the non-
dimensional form of the inertial surface depression as

s 24 "ul k) Fik)
ﬂ‘gﬂ:]{ﬂu 0 Gk

LT

&, o)

I 'I."Z_'
sin [W{H(;;) i] cos (Tkx) dk. 4.15)

By the use of stationary phase, the asymptotic form of §(%,) is given by

_ A [ 2gtt M wilke) Flko)

e ) = e
) = o | 12T [ " (ko) | G ko) sin| i (ko) - | @16

We note that for a homogeneous fluid of infinite depth, (4.1 5) reduces to the classical
result
A £ o

A& =~ e moEe e (E - I)' gy

£ul0) being the density of the homogeneous fluid.

5. Discussion. To display the effect of stratification and the inertial surface on the
wave motion generated by the inital disturbances, the non-dimensional asymptotic
forms of §(%,[) are depicted graphically against % for fixed [ and apainst { for ficed
% such that %/f < M. We need to compute koh, where ki is the unigue positive root of
the ranscendental equation ¢’ (k) = 0. This root is obviously a function of £, and
other parameters. A representative set of values of kyh for different values of % and
N*h/ g choosing [=8¢e/h=0001,1/h=1is given in Table 5.1 while in Table 5.2 for
various values of [ and £/h, choosing £ = 1, Nzh,-'g =001, I/h=1.

TabLE 5.1. £ =8, ¢/h = 0.001.

NZh/g 0 0.01 0.1 0.5 1 2 3

X kyh kyh kyh kyh kyh kyh kyh

1.5 6964902 6959943 6915305 6717025 6469552 L9772092 5493912
2.5 2750016 2.7478BLY 2729317 2658495 2592053 2508299 2462785
3.5 1777404 1777614 1779624 1.789G25 1.803501 LE832352 LBG0D293
4.5 1305230  1.306351 1316251  1.356073  1.398425 1466803 1521161

3.5 08972679 0974439 09857659 1049553 1110611 1204210 1.275214
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TABLE 5.2. # =1, N*h/g = 0.01.

c/h 0 0.001 0.01

i koh koh koh
20 1518101 1.514281 1.481504
4.0 4033437 3.0B8572 3653465
6.0 005004 B.762423 7.283130
7.0 12.244996 11.820537 0360162
8.0 15.094992 15.283113 11527638

From these tables it is observed that the variation of koh with N*h/g is to some ex-
tent insignificant compared to the variation with €/ h for fixed values of other param-
eters. Thus it appears that an exponentially stratified liquid with small Burni-Vaisala
parameter bounded by an inertial surface does not affect the wave motion set up by
initial disturbances at the inertial surface significantly.

To visualize the nature of the wave motion set up, the form of (&%, ), obtained from
{4.6) (due to an initial depression concentrated at the origin) is plotted in Figure 5.1
against ¥ between 1 and 6 with fixed [ = 8 and in Figure 5.2 against [ between 2 and
8 with fixed & = 1 for the following four cases:

i e/h=001,N-h/g=0.

(i) e/h=001L,N*h/g=0

(i) e/h=0,N*hfg=0.1

{ivi e/h=0,N-hjg=0.
Similarly, (pog'/?I** JA){(%,[) (= *, say) obtained from (4.16) (due to initial distur-
bance in the form of an impulse concentrated at the origin) is plotted against % for
fixed [ in Figure 5.3 and against [ for fixed &% in Figure 5.4. Figures 5.1 and 5.3 depict
the wave profile at a particular instant. As the distance increases, the amplitude of
the wave profiles asympiotically becomes zero, which is plausible since the initial dis-
turbance is concentrated at the origin, and they die out ar large distances. Figures 5.2
and 5.4 show the variation of 7j at a particular place with time. As  increases, the am-
plitudes are seen to be increasing which is rather unrealistic and arises due to strong
singularity at the origin. Thus the qualitative feature of the wave motion at the inertial
surface of stratified fluid are almost similar to those of the wave motion at the free
surface of a homogeneous fluid.

Now in the figures, I and IIl correspond to a weakly stratified fluid with an inertial
surface or a free surface while Il and IV correspond to a homogeneous fluid with an
inertial surface or a free surface. Itis observed that in all the figures, the curves [ and I
are almaost similar and similarly for 1 and IV. Thus weak stratification does not affect
the wave motion significantly. However, the figures demonstrate that the presence of
floating materials on the surface affects the wave motion significantly.

We may note that we have confined our study only on surface waves. So weak stratifi-
cation does not affect the wave moton much. However, this affects the internal waves,
which however, has not been studied here.
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FiGure 5.1, Wave profiles due to an initial disturbance in the form of an
initial depression (f = 8.0}, ¢/h =001, N*h/g=011¢/h =0.01, N°h/g =
00T e/h=0.0 Nhjg=010E¢/h =00, N2hjg = 0.0 V.

d
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FIGURE 5.2, Wave profiles due to an initial disturbance in the form of an
initial depression (£ = 1.0}, e/h =001, N2h/g=01Lc/h =001, N*h/g =
00T e/h=0.0 N hjg=010E¢/h =00, N2hjg=0.01V.
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FIGURE 5.3, Wave profiles due to an initial disturbance in the form of an
impulse {f = 8.0}, e/h = 001, N*h/g=01Le/h =001, N*hjg = 0.0 1L
£/h =0.0, N°h/g =011 ¢/h = 0.0, Nihjg =001V,

10

=

FIGURE 5.4, Wave profiles due to an initial disturbance in the form of an
impulse (% = 1.0), ¢/h = 0.01, N2h/g = 0.1 L c/h = 0.01, N2h/g = 0.0 IL
£/h =0.0, N*h/g =011 ¢/h = 0.0, N hjg =0.0 V.
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