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Abstract

Genome-wide screening for localization of disease
genes necessitates the efficient reconstruction of haplo-
types of members of a pedigree from genotype data at
multiple loci. We propose a genetic algorithmic ap-
proach to haplotyping and show that it works fast, effi-
ciently and reliably. This algorithm uses certain princi-
ples of biological evolution to find optimal solutions to
complex problems. The optimality criterion used in the
present problem is the minimum number of recombina-
tions over possible haplotype configurations of mem-
bers of a pedigree. The proposed algorithm is much less
demanding in terms of data and assumption require-
ments compared to the currently used likelihood-based
methods of haplotype reconstruction. It also provides
multiple optimal haplotype configurations of a pedigree,
if such multiple optima exist.

Introduction

Because of the tremendous successes in localization of
disease genes using multipoint mapping techniques, ge-
nome-wide screening has become very popular. Genome-
wide screening studies yield data on sets of several linked
polymorphic marker loct in members of families. These
data usually necessitate the reconstruction of haplotypes
for identifying, among others, the smallest genomic region
containing the disease gene and also genotyping errors.
Several systematic methods for haplotype reconstruction
have already been suggested. Some of these are rule-based
[1, 2], while others are based on likelihood com putations
[3-7]. While there are some advantages of using likeli-
hood-based methods over rule-based methods [8], rule-
based methods are, however, usually less demanding In
terms of data and assumptions, and can be computation-
ally much faster than likelihood-based methods, especial-
Iy for large pedigrees.

In this study, we propose a rule-based method for
haplotype reconstruction in pedigrees using a genefic
algorithmic approach for optimization. We also provide
results on the efficiency of the proposed method: The on-
ly data that are required in the proposed method are
(1) pedigree structure, and (2) genotypes of family mem-
bers at the various loci. Estimates of allele frequencies and
map/recombination distances and the assumptions of



Hardy-Weinberg equilibrium and hinkage equilibrium
that are generally required by likelihood-based methods
of haplotyping are not required by the proposed method.

Multilocus Haplotyping

Consider a set of linked loci. Given data on genotypes
of members of a family, the problem of haplotyping is to
assign alleles to each of the two chromosomes of every
individual in the family in some optimal way. For exam-
ple, if 4,41, BBy, C\C: denote the genotypes of an indi-
vidual at three linked loci, then the possible haplotypes
of this individual are: (1) 4,8,C\/4:B.C3, (2) A1B)Cy/
A:B-CL(3) A B,C A8 Cy, and (4) 4 | B:Cy A8, Cp. (We
have used the conventional notation (1) 4,8 C)/4:8:05
to denote that the alleles, 4,, 5, and | are on one chro-
mosome and the alleles 4., B> and ; are on the homolo-
gous chromosome.) Now, suppose the haplotypes of the
parents of this individual are 4,8, C/4: B:C> and 4 B\ C\/
A:B:Cs. Then, for the possible haplotype assignments for
this individual, the total minimum numbers of recombi-
nations(R)are: (1) R =0,(2)R=2,(3)R=4and(4)R=2.
One way of determining haplotypes optimally is to choose
that combination of haplotypes of members tor which the
total number of recombination events in the entire family
15 the minimum. Hence, the optimal haplotype assign-
ment 1s (1 ); haplotype assignments (2) and (4) are equally
suboptimal and haplotype assignment (3) 1s the “worst’.
Obviously, as exemplified above, optimal determination
of haplotypes involves a complicated search procedure. If
the numbers of loci or/and family members are large, an
exhaustive search of the set of all possible haplotypes of
the family members for determining the optimal haplo-
type configuration of the family is practically impossible.
We propose a genetic algorithm (GA) approach to deter-
mine the optimal haplotypic configuration of a family
which, as we shall show, 15 computationally extremely
efficient.

GAs: Philosophy and Basic Principles

G As [2, 10] are robust and efficient search and optimi-
zation technigues that are motivated by evolutionary
principles. In Darwinian evolution, starting with a large
number of individuals with differing genotypes and,
therefore, differing fitnesses, new generations are formed
by reproduction. Relative frequencies of fitter genotypes
increase in every generation. The average fitness of the
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population, therefore, increases over generations. The
biological system thus converges to an optimum, in which
all members of the population are of the same maximally
fit genotype. (We, however, note that there are situations
when these general evolutionary properties may be vio-
lated. With linked epistatically interacting loci, for exam-
ple, mean fitness may not increase.) Mutation and cross-
over introduce genetic variability in the population over
generations, ensuring thereby that the system does not get
stuck at a local optimum.

The basic steps in the actual implementation of GAs
are described below. Suppose a function f{x) is to be
optimized (say, maximized) over a closed bounded set 4.
For simplicity of exposition, let us assume 4 = [a, b] on the
real line. Then for any level of precision of maximization
€ > (), there exists an integer N such that s = zﬁ'_“l <e Let
m = 2V The search space [a, b] can now be modified to a
search space comprising a finite number of points a = ay <
) < ... < ay = b, by dividing the interval [a, 5] into subin-
tervals [ap, a\], [a1, 2], ..., [@m — 1, @m], Where gy - a;_, =h<
e(i=1.2,..m) If €ischosen to be sufficiently small, then
optimizing f{x) over the discretized search space ensures a
small margin of error.

The modified search space comprises the population;
g, d1,....0, are individuals of the population. The individ-
uals are represented by binary strings; a; 1s represented by
the binary representation of ¥, appropriately left-adjusted
by zeroes so that the string is of length N. Having initial-
ized the population, GAs comprise the following steps
until convergence: (a) generate a random sample of 2n
individuals (strings) and obtain their fitness values [val-
ues of f{x)]. (b) Perform ‘reproduction’ which is a ‘genetic
operator’ in which 2n strings are first selected from the
initial population with probabilities proportional to their
fitness values. These strings are then paired at random
(mating partners) and entered into a mating pool. (c) To
individuals 1n the mating pool, two ‘genetic operations’ —
crossover and mutation — are performed with probabili-
ties p, and p,,, respectively. For implementation of the
‘crossover’ operator, a string is first selected with proba-
bility p.. Then, an integer position k along the string is
selected uniformly at random between 1 and N - 1. Two
new strings are created by swapping (i.e., interchanging)
all characters between positions & + 1 and N inclusively.
The *mutation’ operator is implemented by changing the
value of a character in a particular position of a string with
a probability py,. In the binary coding, this simply means
changing a | toa 0 and vice versa.

Both operators, crossover and mutation, introduce and
sustain diversity in the population. The choices of p, and
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P are known to critically atfect the behavior and perfor-
mance of the GA [10, 11]. Typical values of p, are in the
range 0.5-1.0. However, p, is typically chosen in the
range 0.005-0.05 because large values of p,, transform the
GA to a purely random search algorithm. For multimodal
functions, such as the number of recombination events in
a family, it is recommended [12] that instead of holding p,
and p,, at fixed values, these probabilities be varied adap-
tively in response to the fitness values of the solutions. We
have used this recommendation as will be explained sub-
sequently.

A Genetic Algorithm for Haplotyping

In this section, we shall provide details of the proposed
GA for the haplotyping problem. The data given are:
(1) the family structure, and (2) genotypes of every mem-
ber of the family at each of L loci. Inthe GA, an ‘individu-
al’ will be a family of the same structure as given. As
stated earlier, the fitness function f{.) will be defined on a
tamily as the number of recombination events required to
explain a specific haplotypic configuration of the mem-
bers of this family inferred on the basis of the genotypic
data given. Qurobjective is to obtain a haplotypic config-
uration for which f{.) is the minimum.

The Binary Representation and Some Basic Strategies

To apply GA, we have to define a binary string for ev-
ery member of the family. But first we provide a possible
scheme for coding the positions of crossover. Consider a
nuclear family comprising two parents and an offspring.
Suppose the parents are artitrarily numbered as | and 2,
and the offspring as 3. For ease of exposition, we label two
alleles at locus { of each member of the family distinctly:
AB; for parent 1, CD; for parent 2 and EF; for the oft-
spring. We construct haplotypes of each parent by ran-
domly assigning an allele to a chromosome for everylocus
{{{=1.2,...L), consistent with her/his observed genotypes.
Without loss of generality, we may assume that the haplo-
type of parent 1 is 4, 42,41/ BB, By and that for parent
2is CC1...C/D DDy (We, however, emphasize that
knowledge of parental haplotypes is assumed at this stage
only for ease of exposition of the algorithm. In actual
implementation of the algorithm, all possible parental
haplotypes will be considered and evaluated.) Given the
haplotypes of the parents, we wish to determine the haplo-
types of the offspring in some optimal way. Let us consid-
er the chromosomes of an individual as an ordered pair
(O, On), where () is the chromosome transmitted by par-
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ent | and (% 1s the chromosome transmitted by parent 2.
We shall call @, the 1st chromosome and 5 the 2nd. If
the individual is a founder, the parental origin of chromo-
somes remains indeterminate.

Define 5:(/) = identity of the chromosome of the ith
member used to haplotype the /th locus of the offspring;
i=12;1=12,.,L.(We shall use the phrase ‘haplotype the
{th locus’ to mean *assign alleles of the /th locus to specific
chromosomes’.) Based on different genotypic possibili-
ties, we discuss a sequential procedure to haplotype each
of the L loci of the offspring, and in each case, prescribe
an optimal strategy in terms of 5;(/). 5;(/ ) can take values
0. 1 or 2. Rules for assignment of these values are dis-
cussed in the paragraphs that follow.

Initially, prior to any assignment of chromosomes, we
set 5 (0)=0;7=1,2. We present in table | the strategy to
haplotype the /th locus of the offspring separately for the
cases 5;(/ - 1)=0and 5{/- 1) # 0. Note that the genotypes
of the two parents at the /th locus are 48 and CiDy repec-
tively, while that of the offspring is E,F).

We need a separate treatment for the case when 48, =
Ciy=EFand 4; # B, G # Dy ) # F,. In this case, we
first examine whether the strategies 5(/) = 5(/ - 1) are
consistent with Mendelian compatibility. If consistent, we
use this strategy. If not, we randomly allocate E; and F; to
chromosomes 1 and 2 of the offspring. It E; is assigned to
chromosome 1, then 5,(/) = 1 or 2 according as 4; = E;or
Bi=E;and 52(f) = 1 or 2 according as Ci = Fyor D= F. If
Fiisassigned to chromosome 1, then s,(/ )= 1 or 2 accord-
ing as 4;= Fyor By=Fyand s2({ )= 1 or 2 according as Cy =
E;or Dy = E;. However, we note that one random assign-
ment of' the alleles to the two chromosomes may lead to an
increase in the number of recombinants at a subsequent
stage, when it might be avoided for another random as-
signment. Thus if for a subsequent locus, assignment of
alleles to chromosomes at that locus can be done without
randomization, we retrace back those loci at which alleles
were randomly assigned and examine whether any other
random assignment can reduce the number of recombi-
nants.

We note that unambiguous assignment of alleles to
chromosomes may not be possible at every locus. There-
tore, starting with the first locus, we refrain from actually
assigning alleles to chromosomes until we reach a locus at
which unambiguous assignment is possible. When this
unambiguous assignment is completed, then we fix that
chromosome for all previous loci. If 5;(L )= 0, that is both
chromosomes are *feasible’ for all loci, we set, without loss
of generality, 5(/) = 1, vl =12,.L; i = 1,2. Moreover
5(1) = 5(l - 1) indicates that while assigning alleles to
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Tabla 1. Strategies for assigning alleles at the fth locus of an offspring to chromosomes when alleles at the (f - 1)th locus have alreadv been

assigned

Condition on genotypes

Strategy

when 5(f- 1) =0

Ar=8. C.l' = [
Ar=8; (.'.r = D,r. E,i-”'.l' = l[ﬂ,r

5 |{.Ir]' =.i]{.lr— 1)
sy = -‘l_'[f— 1)

A= Hu{-‘.r & ﬂ.r. EJJL} = D_r
Ay = By, Ci=Dy, EfFi= A;
Ay = By Ci=Dy EfF;= B

.?|{.Ir:|' = .F]{.Ir— 1 :|'
sify=Lv; =/

sliy=21v; =1

Ai # Bi, Cr & Do (A= Cily = EiF)s sifi=1v; = !
EiFi= A EdF=C;
Ap = By, Co (4 Bi= Coily= EiF e sli=1 ¥ = f

EdFi=Ap EdFr= Dy

Ay = By Cp = Dy (48 = Ciy= EdF e
E¢F;= B, EfF;=C;

Ap = By, Cr = Dy (A= Ciy= EfFy)e
EjFi= By, EfF= Dy

sliy=21v; =1

sliy=21v; =1

Strategy Strategy Strategy
when 5i1(/- 1= 0 whensi{/-1)=0 wheng{/-1) =0
H5iy=5(-1) sy =50l = 1) ) =mill- 1)
siy=5(-1) sliy=lv; =1 = =1
sly=sl-1) slfl=2w; = sy =2

sl =1 sdf) =il - 1) soll) =il = 1)
5iH=2 =50 = 1) sy =5ill- 1)
sih=1 s{fiI=Livi=<{ =1
HiN=1 sdj)=2w, =1 =2
5iH=2 sliy=lv; =1 = =1
siH=2 sliy=2iv; =1 sl =2

At the fth locus (£, Fj) denote the genotvpes of the offspring with parental genotypes (A, B)and (Cp. D).

chromosomes at the /th locus, we assign the same parental
chromosome as for the ({ — 1)th locus, that is, there is no
CIOSSOVET.

Following the above procedure, we determine haplo-
types for the nonfounders given the haplotypes of their
parents. Suppose we number the members in the pedigree
as 1,2,...K. Let the set of nonfounders in the pedigree be
denoted by F. Clearly F = |1,2,....K). Consider an individ-
uali € F. Let the parents of individual / be I, and I; where
fi<hL. Foreach i € F, we now define 2L - 1) binary
variables Xy j=1,2,...2(L - 1).

Forj=1,2,..,L- 1, Xjis defined with respect to /, and
forj=L.L+1,..2(L - 1), Xj; is defined with respect to I>.
We assign values of Xj;as follows:

Ny=0.if s (j+ D=5, 0j)j=L-1lor
splj+2-Ly=s,(j+1-L)j= L
= |, otherwise,

Let X;=(X;1.Xi2.... Xi 2 _ 1)) i € F. The objective func-
tion of our problem can be expressed in terms of X;. Let X
be a vector of 0s and 1s given by (X, X2....). Then the
objective function is given by:

HNL=1}

X=X X ¥
e j=1

=number of recombinants in the pedigree.
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Thus using the binary strings X', X..... we implement
the different genetic operators of GA to arrive at an opti-
mal solution to our problem.

Some examples: Before proceeding further, we provide
some simple examples to clarify concepts and notations.
Consider a three-member nuclear family with one off-
spring. Suppose each individual 15 genotyped at three
autosomal codominant loci. Let the genotypes of the fa-
ther(ID 1) be: 11, 11 and 12 at the three loci, respectively.
Let the genotypes of the mother (ID 2) be 22, 12 and 34;
and those of the offspring (ID 3)be 12, 12 and 13 (fig. 1a).
Since we do not know the phase of the parents, we begin
by randomly assigning their alleles to their chromosomes.
For such an assignment, we attempt to determine haplo-
types ofthe oftspring. (This procedure is repeated with all
other possible assignments of alleles of parents to their
chromosomes in order to arrive at optimal haplotype con-
figurations.) Suppose the random assignment of alleles to
chromosomes yields the haplotype 111/112 for the father
and 213/224 for the mother (fig. 1a). We now wish to
determine haplotypes of the offspring.

At locus 1, the offspring is of genotype 12. While it is
clear that at this locus the offspring has received the allele
I from the father and the allele 2 from the mother, at this
stage the identities of the paternal and maternal chromo-
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somes received by the offspring remain unclear. That is,
the offspring may have received either the 1st or the 2nd
chromosome from the father. (We recall the convention
that we have followed: if an individual's haplotypes are
written as 111/112, then we label the ‘11 1"-<chromosome
as the 1st and the ‘112’ -chromosome as the 2nd.) Hence,
at locus 1 of the offspring, the identity of the chromosome
derived from the father (ID 1) is inderminate (that is, ei-
ther chromosome of the father is “feasible’); therefore,
si( 1) = 0. Similarly, 5:(1) = 0, since both chromosomes of
the mother are ‘feasible’ at locus 1 of the offspring.

At locus 2, the offspring is of genotype 12. It is clear
that allele 1 is of paternal origin and allele 2 is of maternal
origin. It is also clear now that the offspring has received
allele 2 from the 2nd chromosome of the mother. We thus
set 52(2) = 2 and reset 52(1) = 2. Since the identitiy of the
maternal chromosome was indeterminate at the previous
state (locus 1), we had set 52(1) = 0. But because we have
now identified that the offspring has received the allele at
locus 2 from the 2nd chromosome (that is, the “224’chro-
mosome) of the mother, we reset 5,(1) from 0 to 2, since
this is the most parsimonious solution at this stage.
Because even at this stage, the identity of the chromosome
transmitted by the father remains ideterminate, we set
51(2)= 0 [= si(D)].

The genotype of the offspring is 13 at locus 3. Clearly,
allele 1 1s paternally derived and allele 3 is maternally
derived. Allele 1 is on the Ist chromosome of the father;
hence, we set 5,(3) = 1 and, for reasons stated in the earlier
paragraph, we reset 5(1) = 5(2) = 1. Allele 3 is derived
from the 1st chromosome of the mother; hence, we set
51(3) = 1.(No turther resetting is done as all 5;(/ ) values are
non-zero at this stape. At any stage, only such 5{/}s are
considered eligible for resetting that have values equal to
0, L.e., ‘indeterminate’.)

Now, assi(1)=51(2), Xz =0;a55(2) = 5(3), Y32 =0; as
.51{]] = .51{2].. X33 ={; and as 51{2] - .51{3].. X3,4 = 1. Then,
fIX)= X3 + X3z + X3z + X3y = total number of recombi-
nants = 1 (fig. 1a).

To explain how we deal with a possible complication
that arises when both parents and the offspring are hetero-
zygous for the same alleles at a locus, we consider another
small example of a similar three-member nuclear family.
Suppose the randomly assigned haplotypes, at two co-
dominant biallelic loci, are 11/22 for the father and 13/24
tor the mother. Suppose the genotypes of the offspring are
12 and 14 (fig. 1b).

At locus 1, the offspring and parents are all heterozy-
gotes 1 2. Hence, determining which allele in the offspring
is derived from which paternal chromosome is clearly not
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1 2
1 2 2
1 T -2
i 2 3 4
3
i 2 1 2
1 2 bt 4
a 1 3

Fig. 1. Muclear family used for exemplifving the basic strategies (a),
and a possible complication of the proposed genetic algorithm for
haplotyping (b). Reconstructed haplotypes are depicted under each
ndividual.

possible. We consider two possible scenarios to indicate
how we have handled such situations.

Casel: 5(1) =2 and 5,(1) = 1; that s, atlocus 1, allele 2
is transmitted via the 2nd chromosome of the father and
allele 1 is transmitted via the Ist chromosome of the
mother. Now, at locus 2, the offspring’s genotype is 14. At
this locus, clearly allele 1 15 paternally derived and allele 4
1s maternally derived. Hence, 5(2) = | and »(2) = 2.
Therefore, X3, =1 as /(1) # 51(2)and X3 = 1 as s:(1) =
52 and fiX) = X3, + Xaa=2.

Casell:5(1)=1and 5{1)=2;that 15, at locus 1, allele 1
is transmitted via the 1st chromosome of the father and
allele 2 via the 2nd chromosome of the mother. At locus 2,
5(2)= 1 and 5:(2) = 2. Hence, as 5(1) = 5(2), X3, =0 and
as 5a(1) = 52(2), X3z = 0; thus, f{X) = 0. Ascase Il yields a
lower value of f{X) than case I, we accept this scenario as
the more parsimonious one.

Thus, in ambiguous situations, we exhaustively consid-
er all possible cases in our algorithm to arrive at the most
parsimonious solution. If multiple cases result inthe same
value of f(X), we choose one of them randomly with equal
probability. The arguments used for haplotyping pedi-
grees are straightforward extensions of those exemplified
above for nuclear families. To each founder in a pedigree,
we assign all possible phases and determine haplotypes of
offspring as exemplified above using strategies provided
in table 1. Minimum total number of recombination
events in the entire pedigree is used as the optimality cri-
terion.
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Fig. Za-d. Pedigrees used for exemplifving the methods and applica-
tions of the reproduction and crossover operators,

To arrive at an optimal solution in a com putationally
efficient manner, that is, without exhaustive enumera-
tion, while simultaneously ensuring that only a locally
optimum solution is not declared as the final solution, we
introduce several operators.

Reproduction Operator

We start with a number of binary strings representing
the candidates in the first GA peneration. To obtain an
initial string, we randomly assign phases to founders of
the family. Then for any other member, we assign the
haplotype by considering his‘her parents as described 1n
the previous section. In this manner, we generate a possi-
ble haplotypic configuration for each member in the fami-
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ly and obtain the binary string containing the information
about recombinations. In the first generation, we simulate
2M such candidate haplotypes, where Af = 0 is a suffi-
ciently large integer.

MNext, we select the fitter strings and introduce them in
the mating pool where crossover and mutation operators
can act to produce the second generation of candidates.
The aim is to design a scheme to choose fitter strings. In
our definition, fitter candidates are those with lesser num-
ber of recombinants. Therefore, a candidate with a fewer
number of recombinants is chosen with a higher probabil-
ity.

We propose the following scheme to choose fitter can-
didates:

Define ¥;= number of recombinants for ith candidate
string, = 1,2....20M

Let:

Z,- = l.. if}",-= ”Tﬂ.‘fj}'}
1= (Yi= max;¥;), it Y; # max;Y;

The fitness function is defined as:

§s Z;
In this scheme, candidates with a low number of
recombinants have high fitness values and those with a
high number of recombinants have low fitness values.
Thus, maximizing F(.) is equivalent to minimizing f{.).
{We note that an alternative and a more intuitive scheme
would be to define the fitness function to be;

1Y

2 M r;
28 1y,

Fi(Y) =

However for high values of ¥, this fitness function
does not exhibit a substantial increase with decrease in Y;
which is reflected in our proposed scheme.) Under the
proposed scheme, the ith candidate string 1s selected with
probability F{Y;). Thus we randomly select, with replace-
ment, 2M candidates as the tentative new population and
introduce them in the mating pool.

An example: We now provide an example with a 5-
member pedigree as shown in figure 2. We emphasize that
only genotypes of each member are provided as input
data. Thus, the genotypes of 1D 1 at the three loci are 12,
12 and 12; those of ID 2 are 12, 12 and 13, etc. To keep
the example simple, we choose M = 2; that is, four families
(fig. 2a—d). (We emphasize that we have chosen a small
value of M only to keep the example simple. Our recom-
mendation, discussed in later sections, in actual practice
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is that M should equal at least the total number of individ-
uals in the pedigree.) In each family, in the first GA gener-
ation, we randomly assign phase to founders, and deter-
mine haplotypes of other members using the principles
and procedures outlined earher. Figures 2a-d provide
these results for 4 candidates. The values of ¥; = number
of recombinants are, for the candidate families drawn in
figures2a—d, ¥, =1, ¥>=3, ¥; =2 and ¥, = 1. Therefore,
max; ¥;=Y:=3 Hence, Z,=1-(}Y,-Y1) =3, Z»=1,
2321—{Y3— ¥2)=2,84=1-(Y;-Y)=3.2,+ L+ 1+
Z4=9. Thus, the fitnesses of the candidates are: F(Y)) =
113, AY:) = /9, A(¥:) = 2/9 and F{Y,) = /3. YY) +
HY:) + HY:) + HYy) = 1. It may be noted that Z; and
F(Y;)increase as ¥; decreases. Thus, the fitness of a candi-
date family is higher if this family has a smaller number of
recombinants.

To form the new mating pool, we draw four random
numbers from Uniform[(,1] distribution. If a number
drawn lies between 0 and 1/3, we choose family 1; if
between 1/3 and 4/9, we choose family 2; if between 4/9
and 2/3, we choose family 3; and if between 2/3 and 1, we
choose family 4. Suppose, for the purpose of exemplifica-
tion, the families chosen are 1, 4, 3 and 4. (Obviously,
candidates with higher fitnesses will be overrepresented
in the mating pool.) To form the new GA generation, we
consider two further operators.

Crossover Operator

A direct application of the crossover operator used in
conventional GA does not work for the present problem.
In conventional GA, the crossover operator, introduced
toenhance genetic diversity in the population, comprises
choosing two binary strings and swapping portions of the
strings. For the present problem, such a swapping opera-
tion is meaningless for enhancing genetic diversity in the
population and may also result in Mendelian incompati-
bility. We thus need to suitably modify the conventional
CIOSSOVEr operator.

We choose a pair of candidate strings and apply the
crossover operator using a specified probability mecha-
nism. We assign a probability p, to the occurrence of a
crossover, that is, with probability (1 — p,) the crossover
operation is not performed and the candidate strings are
passed on to the next generation. For performing the
crossover operation (with probability p.), we choose a
founder randomly from the given pedigree and find its
mating partner. If there is no mating partner, both the
candidate strings are passed on to the next generation. If
the mating partner is also a tounder, then this crossover is
similar to the conventional GA crossover. We interchange
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Table 2. Adjustments prescribed after performing ‘crossover’ opers-

tion

Case Prescription
A= H.r=£_r .'!T|{.Ir} =.F]{.Ir— 1}
Aj=E;, By = E; Hilr=1
Bi=E; 4y = Ej Hify=2

["}= D_r= f‘.r .'Fg{f}=.13{.lr— 1}
ﬁr = F.r, ﬂ = Fr .13{.!’} =1
Di=F, C; # F; w=ily=2

the haplotypes of these members and make necessary
adjustments for their descendents to maintain Mendelian
com patibility. If the mating partner is not a founder, we
perform the crossover operation using the following
scheme. We observe the number of offspring ( Ny) of these
two members. We interchange the haplotypes of these
mating partners with probability No/(Np + 2) and make
the necessary adjustments (as exemplitied below) for the
parents of the nonfounder mating partner. Similarly with
probability 2/(N, + 2), we interchange the haplotypes of
the founder only and thus need to make adjustments for
only the descendents.

Recall the set-up of a nuclear family of 3 individuals
described in an earlier section (*Haplotyping’). Note that
while performing the crossover operation, the haplotype
of member 3 is already fixed, that is, we know that
E\Es Er and FiF2. F; are transmitted from member 1
and member 2, respectively. Let 5;/1) be as defined earlier.
We prescribe the required adjustments in terms of 5/} in
table 2_ If 51} = 5;{! - 1), we assign 0 to the respective
element in the binary string and if 5;/1) = 3 - 5,(/- 1), we
assign 1 to that element in the string.

While implementing the crossover operator, we use
adaptive p, values as:

pe= I = Jmin R =f

=], otherwise;

where f* = minimum of the number of recombinants of
the two candidates (nuclear tamilies) between which the
crossover operation is to be performed. f = average num-
ber of recombinants in the previous generation, and f,, =
the minimum number of recombinants attained in the
previous generation. Note that p, is a bivariate function of
the numbers of recombinants in the two candidates (nu-
clear families) between which the crossover operation is
to be performed.
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Fig. 3a-d. Post-crossover example pedigrees (fig. 2a—d) which are
also used for exemplifving the method and application of the muta-
tion operator.

An illustration: To illustrate this operator, we continue
with the example described in the previous section. The
mating pool comprised families 1 (fig. 2a), 4 (fig. 2d), 3
(fig. 2c) and 4 (fig. 2d). Before forming the new GA gener-
ation, we introduce ‘genetic diversity’ through the cross-
over operator. For simplicity of illustration, we assume
pe=1.

First we consider families I and 4 (fig. 2a, d). In family
1, we choose a founder randomly. Suppose ID 1 is chosen.
This individual's mating partner, ID 2, is also a founder.
We then swap these two individuals’ haplotypes with
those of the corresponding individuals of family 4. Ra-
taining the haplotypes of all other founders in these two
families, we determine new haplotypes of the nonfound-
ers using the principles and procedures stated earlier. We
now get the post-crossover families given in figures 3a, b.

hil] Hum Hered 2000; 304 3-56

Next, we consider families 3 and 4 (fig. 2¢, d). Suppose
the randomly chosen founder of family 3 is 1D 4. The mat-
ing partner of ID 4 is ID 3, who is not a founder. We now
consider two options. Option I: swap haplotypes of both
ID 3and ID 4 of family 3 with those of the corresponding
individuals of family 4; and option II: swap haplotypes of
ID 4 between families 3 and 4. Each option has a different
implication. For option I, the 5; values of ID 3 will need to
be adjusted, but swapping both ID 3 and ID 4 tanta-
mounts, albeit implicitly, to swapping their offspring (say,
Ny in number) too (since the haplotypes of the offspring
depend on the haplotypes of their parents only). Thus,
adjustment of 5; values of ID 3 requires only the consider-
ation of haplotypes of two individuals - parents of ID 3.
For option 11, on the other hand, when the haplotypes of
only ID 4 are swapped, no adjustment of 5; values of ID 3
is necessary, but adjustment of 5; values of all & oftspring
ArE NeCessary.

Since the idea underlying the crossover operator 1s to
introduce ‘penetic diversity’ to some, but not too large,
extent, we recommend that options I and II be chosen
with probabilities Ny/(Np + 2) and 2/ N, + 2), respectively.
In the present illustration, options I and 11 are chosen with
probabilities 2/3 and 1/3, respectively.

Suppose the randomly chosen founder of family 3
(fig. 2c) was indeed ID 4, and the randomized procedure
stated above resulted in choice of option II. Then, after
swapping with family 4 (fig. 2d), the resultant families will
resemble figures 3¢, d. Now s; values of members need to
be adjusted. For ID 3 of figure 3¢, 5(1)= 1, 5,(2)= 2, 51(3)
=1,5(1)=2,52(2)=52(3) = 1; for ID 5, 53(1) = 53(2) = 5%(3)
=1, 85(1)=542)=2,54(3)=1. Hence, X3 = Xu=XAu=1,
X3 =0, X5, = X5; = X353 =0, X54= 1. Theretfore, f{X)=4.
For ID 3 of figure 3d, si(1) = 5,{2) = 51(3) = 1, (1) = :2(2)
=53)=2;for ID 5, 55(1)=s5x(2) = 5:(3) = 1, 54(1) = 54(2) =
s4(3) = 1.Hence, X3 = Xz = N3 = Ay = X5, = X52=Xs53 =
Xsy = 0. Therefore, /iX)=0.

Muration Operator

In conventional GA, mutation i1s a simple random
alteration of 0 to 1 and conversely. But in the present
problem, we cannot perform the mutation operation ran-
domly as 1t might lead to Mendelian incompatibility. So
we need to modify the mutation operator appropriately.
We propose two types of mutation. In type I mutation, we
select a member randomly from the set of founders. We
next choose a heterozygous locus randomly from that
member and interchange the two alleles of that locus
along with any necessary adjustment required to maintain
Mendelian compatibility. The type II mutation is similar

Tapadar/Ghosh/Majum der



to the conventional GA mutation operator. Here, we find
out the locus at which a recombination has taken place in
a particular candidate. We choose a locus randomly from
the list of such loci, interchange the alleles at that locus
and make the necessary adjustments required for this
change. The type II mutation rate used is varied dynami-
cally as:

Pl 1) =% >< % iff=7

, otherwise;

ok | o=

where /= number of recombinants for the particular can-
didate for which the mutation rate is to be calculated, f =
average number of recombinants in the previous genera-
tion, and f,,; = the minimum number of recombinants
attained in the previous generation. The rate for type I
mutation is taken to be 1/10 of this rate. This rate is con-
sistent with the usual mutation rate adopted in conven-
tional GA.

An ilfustration: To illustrate the mutation operator, we
consider the post-crossover family depicted in figure 3c.
To decide on the type(s) of the mutation operator to be
applied, we choose two random numbers from Uni-
form[0,1] distribution. If the first random number is
=(.5, thenwe apply the type I mutation; otherwise not. If
the second random number is ={.5, then we apply the
type II mutation; otherwise not. Suppose the random
numbers were so chosen that only the type [ mutation
needs to be applied. To apply this mutation operator, we
randomly choose a founder and a heterozygous locus of
this founder. Suppose the random numbers are so chosen
that locus 2 of 1D 4 is selected. We then interchange alleles
at this locus between the two chromosomes of ID 4 to get
the new family of figure 4a. Then, forID 3, 5,(1) = 5,(2) =
5i(3) =1,5:1) =52(2) =52(3) = 2; for ID 5, sa({1 ) = 1, 52(2) =
.53{3] =2, 54{]] 2.54{2] = 54{3] =2, HEHCE.X3| =X_u =X33 =
X}.:].:{]..Xﬂ = ]..anl:.-rj} =X:-,4={]I.}'ielding_f{}£] =1,

To illustrate the type I mutation operator, we consider
the post-crossover family depicted in figure 3a. In this
tamily, as we have noted earlier, there were 4 recombina-
tion events. These were: one between locl | and 2 and
another between loci 2 and 3 in ID 1; one between loci 1
and 2 inID 2; and, the fourth crossover was between loci 2
and 3 in ID 4. Therefore, type II mutation operator can be
applied to any of the locus positions 1, 2 and 3 of ID 1;
positions 1 and 2 of ID 2 and positions 2 and 3 of 1D 4.
We randomly choose any of these 7 possible positions.
Suppose the position chosen islocus 3 of 1D 4. Then, after
application of the mutation operator, the family in fig-

Haplotvping via a Genetic Algorithm

i 2 i -
2 1 2]
1 2 i 3
4
2 5
5 3
i3
5
1 2 R
2 3 g 32
a 1= 3 b 1 3

Fig. 4. Post-mutation example pedigrees. a Post tvpe | mutation.
b Post tvpe [l mutation.,

ure 3¢ is transformed to the family depicted in figure 4b.
In this family, forID 3, 5(1) =1L s(2)=2.5(3) = 1, s2( 1) =
2, 52(2) =52(3) = 1; for ID 5, 53(1) = 53(2) =52(3) = 1, 5(1) =
54(2) =54(3)= 1. Hence, X3, = X3, = Xaa = 1, Xy = 0. X5, =
Xﬁl = XS_'-!, =X54 =], }'mldmgf{){] =3,

An Overview of the Algorithm

The proposed genetic algorithm for haplotyping in
pedigrees is an iterative scheme. Each iteration comprises
several steps. At each step a specific operation is per-
tormed in the following sequence. In the first step, we ran-
domly select many possible haplotypic configurations
from the given genotypes of the pedigree. These form the
first-generation candidates in our GA. In the second step,
we apply the reproduction operator. In the third step, we
apply the crossover operator. In the fourth step, we apply
the mutation operator. In the fifth step, we examine
whether all the candidates (families) have the same num-
ber of recombinants. If 50, we have arrived at an optimal
solution; else, we go back to the second step and repeat the
steps till we obtain an optimal solution.

Results and Discussion

We have implemented the algorithm in a computer
program, HAPLOPED, written in C, and have tested it

successfully on numerous pedigrees of varying structures
and with different numbers of loci. (HAPLOPED is avail-
able by writing to PPM and will be sent via electronic
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Fig. 5. Example pedigree used for illustrating the proposed genetic algorithm for haplotvping. Reconstructed haplo-

tvpes are depicted under each individual,

mail.) For brevity, we shall discuss the results based on
one particular pedigree (fig. 5) comprising 54 members.
Reconstructed haplotypes are presented in figure 5, al-
though the input to HAPLOPED comprised only the
genotypic information at each of the ten loci for every
pedigree member. We have also artificially and randomly
introduced recombinants in the pedigree and have ana-
lyzed the effects of having 1, 2 and 3 recombinants. In
each case (0, 1, 2 or 3 recombinants), we have run
HAPLOPED 100 times to estimate some essential bench-
mark parameters. In each run, we have used 160 (=3 x
54, per our recommendation, see below). The resulis are
presented in table 3. The following salient features are evi-
dent from this table: (1) the estimated number of recombi-
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nants upon convergence of the algorithm generally equals
the actual number of recombinants, provided that the
number of replicate families is reasonably large, (2) the
number of iterations to convergence generally increases
with increase in the number of loci and actual number of
recombinants, (3) the average CPU time (which is directly
proportional to the average number of iterations to con-
vergence) taken over 100 runs on a VAX-8730 machine
running VMS Ver. 5.5-2 is reasonably short, and (4) the
variance of the CPU time is also small.

In addition to the pedigree structure and genotypes of
individuals, the only other input to HAPLOPED 15 N =
the number of replicate families (candidate strings) to be
considered in each generation. If N is small, the algorithm
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Tabla 3. Results of 100 runs for obtaining

haplotypes of mem bers of the pedigree True num ber Estimated Aveg. number  CPU time to convergence
ted n 6 5 using HAPLOPED of recombinants num ber of ofiterations to :
i recombinants CONVErgence mean varance
0 0{100) 67 24331 21.64
1 1(9%) 113 IRTAY 608
21
2 2(99) 145 43362 49.57
3
i (99 205 G68.04 6063

4(1)

Figures in parentheses are frequency of muns.

may converge to a local minimum, while if ¥ is large, con-
vergence to the global minimum is almost guaranteed but
the computing time required will be considerably higher.
Based on the results of haplotyping using HAPLOPED in
a large number of pedigrees of different structures and
with varying numbers of loci (results are not present for
brevity), we suggest that N should be at least twice, prefer-
ably three times, the number of members in the given
pedigree in order to ascertain a high degree of precision of
the final haplotyping results.

We note that occasionally the algorithm may converge
to an incorrect optimum value even when the number of
replicate families used is large. In our experiments (fig. 5),
in each of the rare cases when an extra recombinant was
inferred by the algorithm, we have discovered that a foun-
der was haplotyped incorrectly which, in turn, resulted in
the incorrect inference of an extra recombinant. For
example, among the 100 runs with true number of recom-
binants equalling 2, in the only run when an extra recom-
binant (at locus 6 in individual 13) was interred, we tound
that haplotypes assigned to the founder individual 1 (a
parent of 13) by the process of random assignment of
alleles to chromosomes was different from the other runs,
which incorrectly forced a recombination event in indi-
vidual 13. Normally, such errors are expected to get cor-
rected during the iterative process, but in rare instances
(=< 1%) these do not get corrected.

It is, however, theoretically possible, albeit quite im-
probable tor large pedigrees and/or several loci, that there
are multiple haplotypic configurations with the same min-
imum number of recombinants. If there are multiple opti-
ma, then the proposed GA will find only one of these in a
single run. However, multiple runs of the algorithm are
expected to detect the multiple optima.

Haplotvping via a Genetic Algorithm

We have used HAPLOPED to determine haplotype
configurations of the family that was used to exemplify
haplotype reconstruction by GENE-HUNTER [7, fig. 9].
Figures 6a,b provide the haplotype reconstructions of this
pedigree obtained in two separate runs of HAPLOPED.
Asisseen, figure 6a is exactly the same as figure 9 of Kru-
glyak et al. [7]. There are 4 recombinants in figure 6a -
individuals 5 (paternal recombination between loci 2 and
3), 7(paternal recombination between loci 9 and 10), 10
(maternal recombination between loci 1 and 2) and 11
(paternal recombination between loci 6 and 7). However,
figure 6b presents an interesting deviation. In this set of
reconstructed haplotypes there are 4 recombinants as
well. However, 1n this case the recombinant individuals
are: 5 (paternal recombination between loci 2 and 3), 7
(paternal recombination between loci 9 and 10), 9 (mater-
nal recombination between loci 1 and 2) and 11 (paternal
recombination between loci 6 and 7). The reason for the
deviation in the set of reconstructed haplotypes in fig-
ure 6b is that in this particular run of the algorithm, the
reconstructed haplotypes of individual 4, who is a found-
er, is different from the run based on which figure 6a was
drawn. Thus, HAPLOPED provides multiple optimal
solutions which is extremely desirable for purposes of
genetic analyses especially when estimates of allele fre-
guencies are not very reliable and/or assumptions of Har-
dy-Weinberg equilibrium and linkage equilibrium may
not hold.

Comparison of the present algorithm and HAP-
LOPED with existing algorithms and programs (GEN-
HUNTER., SIMWALK) for haplotyping is not possible
because of the differences in assumptions and input data
required by these difterent procedures. Existing computer
programs for haplotyping use likelihood-based methods
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that require as inputs locus-specific allele frequencies and
pairwise recombination fraction estimates, in addition to
those required by the present algorithm, which are pedi-
gree structure, locus order and locus-specific genotypes of
pedigree members. Further, unlike the present algorithm,
the existing methods assume that each locus 15 in Hardy-
Weinberg equilibrium. Thus, in experiments to com pare
HAPLOPED with other existing programs, differences in
inferred haplotypes of members may not reflect relative
efficiencies of the procedures, but may simply be due to
differences in assumptions and input data. Comparisons
of CPU time may also not provide a good measure of rela-
tive efficiency. The present algorithm (and HAPLOPED)
belongs to a class of algorithms that is not comparable to
the class of likelihood-based algorithms on which the
existing haplotyping programs are based. We emphasize
that the present algorithm is much less demanding in
terms of data and assumptions, works fast and etficiently,
and provides multiple optimal haplotype configurations
of a pedigree, if multiple optima exist. We also recognize
that in the class of GAs, the strategy suggested in the
present study (e.g., defining GA individuals as pedigrees,
etc.) may not be unique. That 1s, there may be other ways
to implement a genetic algorithm for pedigree haplotyp-
ing; the present algonthm is only one in the GA class.
Finally, we would like to point out that as in likelihood-
hased methods, missing data result in increase of compu-
tational time and complexity. We have not yet been able
to solve the problem of missing data to our complete satis-
faction and have, therefore, not yet incorporated any
modifications in HAPLOPED for handling missing data.

We are currently working on protocols for handling of
missing data within the proposed framework and algo-
rithm. We outline below the possible strategies we are
considering for solving this problem and also provide
some relevant comments. When genotype data at specific
loci are missing for some individuals in the pedigree, our
overall strategy is to logically impute the missing geno-
types. Imputation of missing genotypes for individuals
with relatives (parents/offspring/siblings) available in the
pedigree 15 done by considering their (relatives’) geno-
types. Sometimes this leads to inference of missing geno-
types with certainty. But more often, it only reduces the
set of possible genotypes at those loci for which data are
missing in such individuals. No reduction in the set of
possible genotypes can be made if data are missing in
tounding individuals who have no relatives in the pedi-
gree.

It missing genotypes are uniguely imputed, we need
to deal with only fully penotyped pedigrees, which is
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straightforward using our algorithm. No changes in pre-
scribed values of any of the parameters (e.g., M) are neces-
sary. However, as already mentioned, imputed missing
genotypes are almost always nonunigue; therefore, a pedi-
gree with missing data almost invariably results in multi-
ple ‘imputed, fully-genotyped’ pedigrees. If only one pedi-
gree can be chosen from among these ‘imputed, fully-
genotyped’ pedigrees which 1s in some sense optimal or
most probable, then the com plications arising out of miss-
ing data are completely solved. We are currently examin-
ing two strategies for making such an optimal choice.
These are: whenever multiple imputed genotypes are pos-
sible at a locus for an individual (even after taking into
consideration the genotypes of relatives), (1) assign only
that genotype which is the most frequent at that locus in
the population (if population data are available) or among
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the set of founders in the pedigree; or (2) compute the pos-
terior probabilities of the various possible genotypes using
the genotype information of first-degree relatives and
assign that genotype as the imputed one for which the pos-
terior probability is the highest. Strategy (1) is computa-
tionally simpler than strategy (2); however, strategy (2) 1s
statistically sounder (at least in the sense of local optimali-
ty). Either strategy yields a single, fully genotyped pedi-
gree which can be haplotyped using the proposed algo-
rithm. We are currently carrying out extensive simula-
tions to examine the performance of these two strategies;
results will be reported in a forthcoming publication. We
emphasize that, whatever the results of the simulations,
the proposed protocol for handling missing data will not
require any change in the genetic algorithm for haplotyp-

ing.

Haplotvping via a Genetic Algorithm
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Fig. 6. a Example pedigree used in Kruglyak
et al. [7]. Haplotvpes depicted under each
individual were reconstructed using the pro-
posed algorithm which completely agrees
with the haplotvpes reconstructed using the
algorithm given in Kruglvak et al, [T]. There
are four recombinants in this pedigree, b Al-
temative haplotvpe reconstruction of the
same family with thesame genotvpes of indi-
viduals using the proposed algorithm. There
are four recombinants in this pedigree.
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