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Abstract

Mapping a locus controlling a quantitative genetic trait (e.g. blood pressure) to a specific genomic region is of considerable
contemporary interest. Data on the quantitative trait under consideration and several codominant genetic markers with
known genomic locations are collected from members of families and statistically analvsed to estimate the recombination
fraction, &, between the putative quantitative trait locus and a genetic marker. One of the major complications in estimating &
for a quantitative trait in humans is the lack of haplotype information on members of families. We have devised a
computationally simple two-stage method of estimation of & in the absence of haploty pic information using the expectation-
maximization {EM) algorithm. In the first stage, parameters of the quantitative trait locus ( TL) are estimated on the basis of
data of a sample of unrelated individuals and a Bayves’s rule is used to classify each parent into a TL genotypic class. Inthe
second stage, we have proposed an EM algorithm for obtaining the maximum-likelihood estimate of & based on data of
informative families (which are identified upon inferring parental QTL genotypes performed in the first stage). The purpose
of this paper is to investigate whether, instead of using genotypically “classified” data of parents, the use of posterior
probabilities of QT genotypes of parents at the second stage vields better estimators. We show, using simulated data, that the
proposed procedure using posterior probabilities is statistically more efficient than our earlier classification procedure,
although it is computationally heavier.

[Ghosh 8. and Majumder P P 2000 An improved procedure of mapping o quantitative tmit locus via the EM algorithm wsing posterior

probabilities. f. CGiener. 79, 47-53]

Introduction

The rmecent identification of highly polymorphic DNA
markers has resulted inoa resurgence of mterest in develop-
g statistical wechmgues for quantitative trait locas (QTL)
mapping (Haseman and Elston 1972 Amos and Elston
1989; Lander and Botstein 1989; Goldgar 19940; Haley and
Knott 1992; Kruglyak and Lander 1995; Olson 1995
Almasy and Blangero 1998). Many common human dis-
orders (e.g. hypertension, diabetes) are inherently gquantita-
tive in nature. Therefore, QTL mapping 15 of considerable
interest in human  genetics. Many currently wsed QTL
mapping methods, especially those that bave been devel-
oped in the context of plant genetics or genetics of inbred
animal s, assume knowledge of linkage phase in individuals,
which imposes a severe restnction on the applicability of

‘For correspondence. E-mail: ppmi@isicalac.in.

these methods in human genetics. One of the major
problems in QTL mapping s to accurately infer the geno-
type of an individual at the major locus controlling variton
of the gquantitative trail. Ghosh and Majumder (2006) have
proposed o method o estimate, via the expectation-
maximization (EM) algorthm, the recombination fraction
between a marker locus and an autosomal major locus
controlling o guantitative trait from data on noclear families
without any assumptions on hinkage phase and haplotypes.
The proposed method s a two-stage strategy. In the first
stage, individuals are probabilistically classified into the
major locus genotypes, and in the second stage, the recom-
bmation fraction is estimated wsing the inferences made in
the first stage. Monte-Carlo simulation studies showed that
this method works well only when the percentage of comect
it locus classification is high and that the performance of
the method s guite poor in presence of high degree of
dominance in the QT. In this paper, we modily the
estimation procedure proposed by Ghosh and Majumder
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(20000, Instead of classifying each parent into a specific
trait locus genotype, we use the posterior probabilities
corresponding to each parental genotype in the second stage
of our algorithm. We show, using simulated data, that this
procedure performs better than the classification procedure.

Model

Consider an autosomal biallelic locus with alleles (4 ,.a;)
determining a quantitative trait ¥, Suppose the distnbution
of ¥ conditoned on the genotype 15

Y|AiA; ~ N{a, o)
YA @ ~ N(3,c°)
Y|aja) ~ N(—a, ),

where 7 <2 o and a2 includes the environmental variance.

Suppose the allele frequency of A is p. Then, assuming
Hardy-Weinberg equilibrium proportions at the QTL, ¥ has
a mixture distribution given by

PN, )+ 2p(1 — pIN(3,02) + (1 — p)*N(—a, o).

Consider an autosomal biallelic codominant marker locus
with alleles (M, m) possibly linked to the QTL. The aim is
to estimate the recombination fraction, #, between the two
loci, which are assumed to be in linkage equilibrium.

Data description

We consider data on nuoclear families. Suppose
{vwya):i=12,..., K1 are the observed values of the
quantitative wait of K pairs of parents such that, in each
pair, ¢ither one parent is MM, and the other Mym; or both
parents are Mymy. (Obviously, if neither parent is hetero-
zygous at the marker locus, the family is not informative for
linkage. ) For the ith par of parents with n; offspring, the
known trait values will be denoted as (v, vig, ..., Vinit2)s
F=1,2,..., K. We further assume that the marker genotype
(MM Mimy, or mymg) of each offspring 15 known. Thus,
the data compnse tmil values and marker genotypes of
parents and offspring in nuclear families.

An outline of the classification procedure

Estimation algorithm

Although the proimary aim is w0 estimate @, since the trait
parameters o, 3, o and p are unknown, one can estimate
these also o facilitate estimation of /. Knowledge of
a, 3, o and p facilitates estimation of # because using the
estimated values of rr, 3, o and p, and the chserved values
of the gquantitative trait, one can classify each parent, albeit
probabilistically, to a specific trail locus genotype. When
trait locus genotypes are known for the parents inoa nuclear

family, then obtaining an estmate of # from the remaining
data (marker genotypes of parents and offspring, and values
of the guantitative trait of the offspring) becomes much
simpler. The estimation procedure 15 based on this two-stage
strate gy,

Let fi{x), probability density function (pdf) of

w1, prior probability of f .= p°,

falx), pdf of N(8,0%),= - {.'xp( e 1_,",'.') ,
w2, prior probability of f, = 2p(l — pl,

fi(x), pdf of N{—a, ), = ?_:?:{rxp(— “—_T:_-.—r) and

my, prior probability of f, = (1 — sz_

.Thus lhu‘pdl' of Yij i=1,2,..., K:j=1.2)1s given by
Fig) =30 mufulvig)-

The parameters to be estimated in this mixture model are
o, o and p. One can estimate these parameters by the
maximum-likelihood method.

The likelihood of the parental data is Lin, 3, rr!_pl_vu-j -
§ Hi‘=| E.i::l Tuful¥ij)-

A computationally simple and elegant procedure of
estimating the pamameters is based on the EM algorithm
(Dempster et al. 1977) corresponding to a mixture of
normal populations (see McLachlan and Krishnan 1997). A
sketch of the algonthm is presented below.

The mixture distribution can be viewed as an ‘incomplete’
sctup in the sense that we have no a prion knowledge of
which of the three component distnbutions any particular
observation belongs to. The first step (E-step) in this algo-
rithm is therefore to estimate the probabilities with which an
observation may belong to any of the three component
distributions. The second step (M-step) uses these estimates
w build up the ‘complete’ likelihood function, which is
ecasily maximized to yield relevant parameter estimates.

Define:

i = 1, if ¥; 15 an observation from pdf f,,

= (), otherwise,

where | = 1,2,..., K:j=1,2:n=1273.
The E-step of the EM algonthm is
:_:le — E':::djlll_""fj:l
rﬂﬁl{}‘:ﬂl’j
3 3 ’
Y a1 Taful¥ig)
where 1 =1,2,..., K: j=1,2:n=1,2,3 We note that
these estimators are Bayes’s.
Having obtained the T 55, we can easily obtain the closed
form expressions for the maximum likelihood estimate
(mleh of p, o and o in the M-step of the algonthm:

K. 2. 58

Lip, at, 3,6 |¥ij, Zija) = HH

i=] j=1n=

{mafalyi )1
|
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The mle’s of the pammeters are given by

a - -
Ef—l Z_j—l l:“_-".l'| +_l:a5f.l'3:'

P=
7 ol ZJ II:“-JJ| Zialyif
E:;'l Ej:l':.;:jl +Z4a)
Al

Zf:l EJ |“de
: K2 : -
F =5 Z ZL,J. vij— &P+ 205 — B)

+Zialyi + rx]l' L

As this algorithm s an ilerative procedure, one requires
initial estimates of p, o, 3 and o* (pl%, G0, 3O, "lm:l Lo
implement this iterative algonthm. As an mitial approxima-
tion of 4, one can assume that there is no dominance effiect,
1. _d'“-' =0.As0 < p < 1, one can fix 5% = py within this
interval. One can obtain the initial estimates of o and o
using the method of moments.

In the next stage the parents are classified (ie.
v, val)i=1,2,. . K}) into one of the three compo-
nent distributions. One wses the usual classification rule
given by:

Classify v ; into f if and only if
a'j.u - mxl:l_’..:lz_;j' l:.]':I
where i = 1,2,..., K:j=12,n=1273, the T ;s being
the final (converged) wvalues in the above EM algo-
rthm. This 15, in fact, the Bayes's classification rule
comresponding to the 0-1 loss function and thus minimiecs
the error in classification under such  loss
(Fergusson 1967).

functions

Table 1.
offspring with marker genotype MM

Having estimated o, 3, o, p and having classified the
parents into the rail genolypes, one s now in a position 1o
mmplement another maximum-likelibood procedure to esti-
mate &, One uses the condiional trait distribution of the
offspring given the tmit genotypes of the parents and the
marker genotypes of both parents and the offspring in order
o estimate #. We provide these distributions in tables 1 and 2.

Let

M;; = marker genotype of jth individoal in ith
family, i=1,2,..., K;j=12,..., n+2

(5. G = classified trait genotypes of the parents in ith

family, f =1,2,..., K:;j=1,2
H;; = trait genotype of jth individual [i.e. {j —2)th

offspring| in ith family, i = 1,2,..., K:
i=34..., n;+ 2
Pijw = P{H;; = v,|Gi1, G, My, M2, M;; b, where

v =AA e = A,y = Asda,

i=1,2,..., K:j=3.4,..., n+2n=1,2,3.

The Pjjs are obviously functions of f. However, for the
same genotype, P, may be different for different
haplotypes. Thus, in estimating #, one has to consider the
different possible haplotypes separately for given trait and
marker loci genotypes of cach parent. Next, one classifies
the offspring into their rail genolypes.

Define:

QJ'}'M — P'::Haj = r:"“lﬁil 3 GE:MII -MJ'E-MU'-. _I"J'J':I
ey Pajlf.;l{_vjjj
= e

Eu:l "El‘l..‘.“-'rc*lI {-‘IJJ.:I

i=12,....K; j=34,..., m+2in=12273

Trait locus mating types among MM, = Mym; parents, mating probabilities, and probabilities of trait locus genoty pes among

Ty

g Mating type Probability Ay A a1

1 Ajdg = AgA Pt 1 0 0

2 Ards x Ava pi°p: 31— 6) 1 0

3 AAy = a Ay Il')|3p3 E = iI:l_“ E'ﬁ 1]

4 ApAy % ag 2pips? 0 i 0
dyery = AjA

3 Ay = A, Zp|3p3 i ZI L]
aiAy = AjA,

] Ajay = Ay lpjzpf il:l - &) i Ilﬂ
Al ® A

7 Ajay = ap Ay Ep|3p33 .{& i il:l — &)
Ay = mAy

] Ajay = apay 2{)”}33 L] i 1'
ay Ay = apay

E dyery = Ay p”’)g'? L] -_.I:l - H':I i

10 dyeny * apAg Il')]pg" L] ﬁ I: &‘:l

11 ey X ey [ L] U ” —.!,

‘Probabilites of trait locus genotypes among offspring with marker genotype Mymy can be obtained by replacing & by (1 — ) in this table.
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Table 2. Trait locus mating types among Mymy = Mymy parents, mating probabilities, and probabilities of trait locus genotypes among offspring with marker genotype MM and
Mim®,

FEKM]JH]} J'I‘I,‘.I:M].I'H]]I

g M-’lti.ﬂg ype Pl't'lbﬂhi.[i.f}" Ay Ay el el Ay Aja ey

1 AjAy = AjA, p]d' i 0 L] % L] 0

2 A1A; x Ara 2p1 1 -8 # 0 : 1 0
Ajay = AjA,

3 Ay xady 2;!]3_[}3 i& il:l b E}I 0 i i 0
ap Ay = AjAy

4 AAy = apay ?.pjngz L] i L] L] % L]
dyery = AjAy . -

] 2 Y

5 Ay x Aja piipst 11-8 1001 — 8) A 0(1 - 6) i1 —26(1 - 8)] 3001 - 8)

6 Avai % i 2i2ps? o1 -6)  Y1-2601-8)] (1 - 8) 41 — 2001 - 8)] o1 - 8) 1 - 201 - 0)]
ayAy = Ajag

7 ey ® Apag 2yt 0 j1-8 ol 0 i ]
Ajany = apay 5 4

]

8 A aA piipy’ & 1 -8) JL=0) 01 - 8) 3l —26(1 - 8)] (1 - 8

9 ayay ¥ apdy 2y’ 0 # Hi=8 0 4 4
Ay ¥ apa

10 ey pat 0 0 i 0 0 4

‘Probabilites of trait locus penotypes among offspring with marker genotype sty can be obtained by replacing & by (1 — &) in the block corresponding to the genotype MM, in this
table.

AIPUMIBRY o DYLIDG PUD YEoyn) ygnanng



Mapping a QTL

In the computation of ;. one uses a, ;.E and 7 obtained
using the EM algorithm described previously.

The wsual classification rule 15 given by:

Classify y;; mto f; if and only if

QJJ'H = TMdX = |—’--:'Q‘-'."

i=1,2,..., K:j=34,..., m+2n=1273
The likelihood of # is given by

K
Lig) =[] (o). (2)
=1
where L (#) is the likelihood of the ith family based on the
classified genotypes of the ny offspring of that family. Note
that as haplotypic information 1s usually unavailable from
nuclear family data, L{8) would be a mixwre of the
different conditional trait distnbutions of the offspring
comresponding to the different possible haplotypes. In fact
Li{#) is a mixture with components of the form cf"
- 2 1y 20 B i E
(1 =8 oregt' (1 —87°{6F + 1—8)}1, where oy issome
constant. Since a direct analytical maximization procedure
is complicated, one implements an EM procedure. L;*(#)
would be of the form (1 —8)", where ¢; is some
constant while ; and v; are functions of #. Thus,

'8 = {ﬁq}az‘f.““ — g™,

=1
which 1% easy o maximize, giving

Zf;“:
SR ()

Since ws and ws depend on 6, one needs an initial
approximation for implementing the EM algonthm. As
0=¢=05 #=025 may be used as an imitial approx-
imation. If the final (converged) value of # exceeds 0.5, one
takes § = 0.5.

We finally note that families in which neither parent is
classified as a heterozygote at the major QTL can be
discarded even before marker-typing because these families
will not provide any information for estimating #. This
strategy will be cost-effective.

=

Efficiency of the estimation procedure

Assessment of the efficiency of the estimation procedure 1s
of obvious imporance. Before providing the resolts, we

describe the simulation procedure for fixed values of

p. o, 3, o and #. In the first step, we randomly generated

the trait values of a fixed number (NOBS) of pairs of

unrelated parents fronm appropriate (selected randomly using
a rinomial random number generator with cell probabilities
. 2pg and g*) normal distributions (see Model section
abowve). In the second step, using the data so generated, the
trait parameters (o, 3, 0°, p) were estimated using the EM
algonthm. (We emphasiee that, for the purpose of estimat-
ing the trail parameters, it not essenbal o obtain data on

pairs of parents; only data on mndomly sampled unrelated
individuals suffice.) In the third step, the QTL genotypes of
the parents are inferred wsing the Bayes’s rule. For further
computations, only those pairs of parents with at least one
inferred QTL helerozygote are retained. In the fourth step,
for cach parent in the retained pairs, marker genotype wias
determined using a rinomial random number generator. For
substquent computations, only those parental pairs with at
least one double heterozygote were retained. In the fifth
step. we mandomly generated the marker genotype of an
offspring by sampling either from a binomial distnbution
with success probability 1,2 for a parental mating in which
one parent s MM or MM and the other parent is MM
at the marker locus, or from a trinomial distnbuton with
cell probabilities (1/4,1/2,1/4) for a parental mating in
which both parents are M) M5, In the sixth step, based on the
conditional probabilities of offspring genotypes given
parental mating type as provided in tables 1 and 2, we
generated, using a trinomial random number genermtor, the
genotype of the offspring with respect to the tait locuos.
These steps were repeated until the mequired number of
informative familes (VFAM) were obtained. Using the data
so generated, we again used the EM algorithm to estimate #.
Replication of this procedure a large number of tmes
(NREF) yielded the empirical frequency distribution. For
every set of parameter values, we have evaluated the
pedformance of the estimator with five offspring per family,
NFAM = 100 and NREF = 100N

Classification of parents with respect to QTL genotypes

As mentioned earlier, in the Arst stage of the procedure
parents are classified into genotype classes on the basis of
their observed trat values. Soccess of estimating the recom-
bination fraction accurately by the present procedure depends
crtically on the classification performance at the first stage.
We hind that when there 15 no domimance (Le. 7 = 0) more
than 95% and 99.5% of the parents were correctly classified
mto their true genotypie classes. The percentage of comect
classification increased as p deviated more from 0.5, The
percentage of correct classification decreased as the extent of
dominance (F) mcreased. The worst classification  arose
when the ovedap between distributions of the A4 and Ay ay
genolype classes was the largest.

Mean and varianee ﬂfﬁ and confidence interval for 9

To examine the behaviour of the estimator in respect of
variation in values of p and 4, we have performed simula-
tions for fixed parameter values o =5, ¢ =1, and for
values of p= 09,0.7,05; 7 =0,2.4; and § = 0.1,0.3,0.5.
We have evaluated the means and variances of § and have
obtained 95% confidence intervals of #. The results are
given in lable 3. These results indicate that the performance
of the estimator is poor when pis close to (0.5 and the degree
of dominance (3) is high. When p is close 10 0.5, the mean
of # is more deviant from the true value of § and the 95%
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Table 3. Mean and variance of # and 95% confidence interval of
# using classification procedure for o =35 o° = 1; p=109,
07,05 3=0,2.40=00.1.03.05

p True# 4 Mean(d)  Var@) 95% C.1. of 8
0.9 0 0 0015 0000174 (0.009, 0.026)
2 004 000432 (D.017,0.048)

4 0075 00006YS  (0.051,0.097)

0.1 0 0103 0000084  (0.099,0.114)

2 0117 0000277 (0.095,0.126)

4 0172 0001008 (0.131,0.195)

0.3 0 0303 0000452 (0291, 0.311)

2 0313 0000747 (D286, 0.328)

4 0368 0001739 (0.345, 0.401)

0.5 0 0478 0000397 (0.438, 0.500)

2 0471 0000902 (D415, 0.500)

4 0409 0001335 (0395 0.487)

0.7 0 0 0021 0000154 (0.019, 0.041)
2 0053 0000312 (0023, 0.057)

4 0081 0000BES  (0.063,0.101)

0.1 0 0107 0000087  (0.095, 0.122)
20122 0000290  (0.097, 0.128)

4 0182 0001064 (0.143, 0.204)

0.3 0 0308 0000497  (0.293, 0.317)
20317 00DD6E3  (0.284, 0.321)

4 0373 0001867 (0.357, 0.408)

0.5 0 0491 00DDOR3  (0.477, 0.500)

2 0487 0000118 (0.472, 0.500)

4 0413 0001146  (0.401, 0.494)

0.5 0 0 0.038 0000186  (0.022, 0.058)
2 0067 0000299 (0.035, 0.073)

4 0105 0001018 (0.071,0.112)

0.1 0 0113 0000129 (0.097, 0.123)

2 0015 0000283 (0.089, 0.124)

4 019 0001153 (0.162, 0.208)

0.3 0 0314 0000512 (0.291,0.325)
20321 0000630 (D.287, 0.329)

4 0381 0001794 (0.358, 0.416)

0.5 0 0497 0000056  (0.486, 0.500)

2 0491 000006 (0.478, 0.500)

4 0421 0001062  (0.411, 0.498)

confidence interval of @ is wider, particularly when # is very
close to (1.5, We also note that for fixed values of a, o, p
and # the estimator is adversely affected in 8 nonlinear
fashion by increase in 3.

Effect of using posterior probabilities at
the second stage

As desenibed in the previous section, Ghosh and Majumder
(20000 classified each parent into a most likely trait
genotype using Bayes™s 0-1 classification ruke. As we note
from our simulation resuls in the previous section, the
performance of the estimator i$ strongly dependent on the
percentage of comect genotypic classification of the parents.
The estimator does not perform well for high degrees of
dominance in the tril.

In this section, we investigate whether the perfformance of
the estimator can be improved by using postenor prob-
abilities of the three possible parental rait genotypes given

the trait values of the parents in the second stage of the
proposed procedure instead of classifying cach parent into
one specific trait genotype [which 1s equivalent to using ong
of posterior probability  distributions (L0, (0, 10) or
(0.0, 1)].

As mentioned in the previous paragraph, we do not use
the classification rule given by equation 1. We note that the
postenor probability of the jth parent of the ith family
belonging to the fh trait genotype 15 given by
ami=12,..., K:j=12;1t=1,273, which will be used
in the second stage of our estimation procedure.

In the present setup, we need to redefine Gy, G and Py,
a5

(51, Ga = trait genotypes of parents in the ith family.

Pﬂlr = ':Hu' et M -""ﬂ-’“"fu':'-
where 7 = 414,71 = Aja), vy = a1a,.

Similarly. {2, has 10 be redefined as:

T | Gy = Tis Go = Vo

Qﬁ:: ='F|:.HU =" |GJ| =7n GJE s T”r'!'ll"f”'.MJ!'MJ"I"_FJ"I-:I

in
. Pj'j.u“”_uf.;l '::_""Jj:l
= 3 - R
a1 Pign ™ (i)

Thus, at the it genotype classification stage of cach
offspring, we need to classify the offspring for every
possible rait genotype combination of the parents (i.e. for
cach combination of ({m), f.m = 1.2 3). The likelihood
function L{#) is identical to equation 2 except that each

L (#) comprises more complex mixture components than in
the classilication procedure, with the mixture proportions
being functions of the product (3 % Zam). for cach
combination of {{,m), ie. the postedor trait genotype
probabilities of the parents in the ith famly.

We use simulated data with the same sets of trait and
linkage parumeters as in the previous section W compare the
performances of the estimators under the two strategies. The
results based on the present strategy are given in table 4.
Comparing this table with table 3, we find that means of the
estimates of # are, in general, more close o the true values
of § and have less vanance compared W the earlier
procedure based on parental classification. Moreover, the
confidence intervals of # are less wide under this strategy.
The two procedures perform similardy when the proportion
of homozygotes s high and dominance at the rait locus is
loww. However, as the proportion of heterozygotes or the
degree of dominance at the trait locus increases, the
performmance of this procedure becomes increasingly better.
This 15 due to the fact that unlike our proposed procedure,
this procedure does not depend on the performance of
parental trait genotype classificaton. Thus, the perdformance
of this procedure is not affected by parameters that increase
the misclassification probabilities like trait locus hetero-
eygosity and dominance. The estimator under this strmatlegy
has more desirable statistical properties than the carlier
estimator (Ghosh and Majumder 20000, though data ana-
Iysis using this strategy is computationally more complex.
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Table 4. Mean and variance of # and 95% confidence interval of
# using posterior probabilities for o = 5:07 = 1 p= 0.9.0.7,0.5;
F=0240=001,03025.

p True# 4  Mean ()  Var#) 95% C.1. of &
0.9 0 0 0018 0000182 (0011, 0.028)
2 0040 0000234 (0021, 0.044)
4 0053 0000316 (0.038, 0.067)
010 0.104 0000091  (0.098,0.116
2 0.116 0000274  (0.096, 0.124)
4 0.131 000457 (0115, 0.143)
03 0 0305 000471 (0294, 0315)
2 0310 0000619 (0292, 0.323)
4 0331 0000715 (0316, 0.347)
05 0 0484 0000384 (0458, 0.500)
2 0477 0000353 (0443, 0.500)
4 0465 0000505 (0432, 0.500)
0.7 0 0 0014 0000106  (0.008, 0.024)
2 0025 0000165 (0.017,0.032)
4 0036 0000255 (0021, 0.052)
01 0 0102 0000082  (0.098, 0.110)
2 0111 0000227 (0097, 0.120)
4 0.119 0000336  (0.109, 0.130)
03 0 0302 000404 (0295, 0311)
2 0311 0000508  (0.294, 0.322)
4 0320 0000609 (0310, 0.335)
05 0 0495 0000084 (0485, 0.500)
2 0490 0000281  (0.474, 0.500)
4 0479 0000362 (0455, 0.500)
0.5 0 0 0010 0000082  (0.005, 0.018)
2 0017 0000112 (0010, 0.025)
4 0023 0000194  (0.014, 0.038)
010 0102 0000075 (0.098, 0.107)
2 0.105 0000186  (0.098, 0.115)
4 0.111 0000265  (0.102, 0.120)
03 0 0300 0000257  (0.297, 0.308)
2 0305 0000338  (0.296, 0.315)
4 0313 0000426 (0301, 0.326)
05 0 0498 0000064 (0491, 0.500)
2 0494 0000167 (0485, 0.500)
4 0491 0000245 (0477, 0.500)
Discussion

The classification procedure for inkage detection proposed
by Ghosh and Majumder (20007 exploits the fact that
knowledge of parental genotypes at the QTL greatly eases
statistical estimation of §. Since for a quantitative character
the QTL genotype of an individoal cannot be inferred with
certainly because of ntrinsic variability within genotype
classes, Ghosh and Majumder (20007 had wvsed the EM
algonthm coupled with a Bayes™s elassification procedure 1o
classify parents into QTL genotype classes. Here we have
modified this procedure by introducing postenor proba-
bilities of each parental trait genotype in the second stage of
ow algorthm instead of classifying each parent into a
specific trail locus genotype. In this procedure, estimates of
trail parameters and recombination fraction are obtained.
The estimates of trait parameters are used in obtaining the

posterior  probabilities of the parental QTL genotypes,
which are then used in obtaining an estimate of the
recombination fraction. The estimation of tril parameters,
in the first stage of the proposed two-stage procedure, can
be based either on data of a random sample of individoals or
on data of pareots (assumed o be unrelated) in families.
We have shown vsing simulations that our proposed
method provides very good estimates of & for a wide range of
parameter vilues and reasonable sample swees. Momover,
unlike the carlier procedure proposed by Ghosh and
Majumder (200M)), which 1 strongly dependent on the
quality of classification of parental QT genotypes. the present
procedure does not involve any parental trait locus classi-
fication and performs well even when heterozygosity is less
and dominance 15 high in the QT. Compared to numencal
maximization of the likelibood (Lincoln ef af 1993) of
parental and offspring data, on all families jointly with
respect to all parameters (recombination fraction, trail para-
meters and allele frequencies), the proposed stagewise proce-
dure using the EM algorithm is computationally moch more
efficient and provides reduction of data collection costs.
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