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In this aeticle we study # (! -automgta on finite mltidimensional grids with different hound-
ary conditions, We obtain 3 natural reprosendsiion of the global linear map of such automaly tn
temis of Kronecker products of matrices having a simple structure. Using this represcotation and
propetties of binary Chebyshey palyoomials, we obtain secessary and sufficient condition for the
invertibality of this map. Also in cor@in cases, we relatc this condiion to the number theorstic
propertics of the number of dimensions and the lengths of the dimcosions. We gencralisc the
notion of nearest neighbourhood to many dimensions and characterise invertihilite of r-antomata
with such peighbourhonds.

1. Imtroduction

Recently, there has been a tremendons amount of interest in the siudy of cellnlar
automata {(CA) (see [16, 17] for bibliographies). This sternmed mainly due to the sem-
inal work done by Wollram [16]. In [168], an extonsve (empirical) study and analysis
of the dynamics of CA was done mvealing several mieresting phenomena. The book
by Wolfram |17} shows applications of CA in several arcas. Martin ot al [7] ob-
taingd the basic results of a class of CA known ax lincar CA using purely algebraic
means.

A wpogial class of binary cellular automata is the s-automala where the next state
of any cell is the sum (modulo two) of the previous states of all itz neighbouring
cells, Such mpomata over arbittary praphs have been studied in Weralure and were
first stalied by Lindenmayer |6). Siady of g-aulomata is related to the stody of o-
game, which i3 2 combinatorial pame first introdoced by Sutner in [13] and s baged
on the battery-vperated 1oy MERLIN [9]. In [13], Somer reduces the study of &-game
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tor that of a suitably constructed q-auomaton. Combinatorial technigues are then used
to obtain expressions for the dimension of the kemiel of s-automats on product graphs
of the form € = (f (sec also [18]). For the special case of product graphs of the
formn £y = P, where P, is a path graph on § vertices. 1t was shown that the automaton
is inveetibie i mei b oand p--1 are relaovely prime.

Barua and Rwmakrishng i |3] consider ihe product graph P o« P, oas o lwo-
dimensional grid and reduce the a-pame (o the study of mvertibility of cellular
automata on {wo-dimensional arvay, The global CA rule is considered to be a linear
transtormation of the form AY | AR, where & s a two-dimensional CA conliguration,
regarded as a t+ 1 matrix, and 4 and B arc special kinds of rridiagonal watrices, which
we calt S-matrices (see Scoton 2% Analysis of this equation provides an algebraic
proof for the dimension of the kemel of the Linear map.

The atrix equation representation provides a necessary and sufficient condition fix
invertibility in terms of the characteristic polynomials of 4 and &, In special cases the
invertibility is related to the lengths in both the dimensions. The charscteristic poly-
nonmial for an S-matrix satisfics 4 nice recurrence, and has many interesting propertics
(see 13, 14]) [o [13] these polynamials are called binary Chebyshes polvnomials and
fallowing [14] we will call them =-polynomialy

A matural comsequence is to consider m-games (and hence s-mnomata) on multi-
dimensivonal prids. Sutner in [10 13] introduced combinatorial techiques to tackle the
mugtidimensionat case. For product graphs of the form & = £f 2 F, (where £, 1s 2 path
graph on a-verlices) there is an expression relating the coranks (dimension of kernel)
of & and K. viz.,

eork v = cork ma (e 1L

where «({7) denotes the globat rule for d-autcanaton on graph & and =, (x) s Lhe
charactenistic polynomial fov the global rule of the o-automaton on P, Howewver,
analysis of M,y (a{H V) seems to be complicated. Thouph this iz a general result, for
the spocial case where & is @ multidimensional grid, we use a suitable transformation
1 oblain a ouch more elegant representation of the elobal mle in terms of Kro-
necker products. Using this representation we attack the question of invertibility of &-
aulorati.

invertibility is an imporiant questipn since this means that the State Transiton -
agram consist entirely of cyeles with oo ree conBigurations, Iu other words, starting
from any configuration it is possible lo evolve rhe antomaton over a finite nymber
of steps and pet back to the origival configunstion, Here we note that oven if a -
nite cellular automaton is invertible, its inverse need neither he uniform nor nearest
ncighbourhood. Finie lincar cellular automata on multidimensional grids have been
considered belvre [7]. Manio 2t ab, Y] ssed polynomials ol several variables o ackle
multidirnensional configuration. It iz a difficult lechnigue and known results on finite
multdinensional cellular automata are few. However, our approach yiglds interesting
resubts on the imvertibibily ol fintte multidimensional Hnear celtular qutonusta. Using the
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Kronecker product represeniation of the plobal rule. we obtain the characteristie roows
ol the global mle in termis of the roots of p-polynomials. In special cases this s then
telated 1o the number theoretic properties of the oumber of dimensions and the lengthy
in cach dimension.

The article 1+ organised as foflows, We [t prosent some new rosults om the global
map of one-dimensional r-automatz, Next we go on fo study 0, g automata on
tinite orthogonal multidimensional grids with different boundary conditions, We use
aleebrae methods akin to that in [3] aod obtain 4 general representation of the cor-
rosponding [iear irensformation. Lsing this representalion we obldin necessary und
sullivient conditions for the invertbility of such aototnata. We use several proper-
tics of the m-polynomials from |[14] o relute the invertibilily to the oumber theorclic
properties of the number of dimensions and the lenpths of the dimensions. Both sym-
matric {equal lengths} and asymnnetric arids with nwyll, petiodie and mixed boundary
conditions are considered. Lastly, we tackle morc general cases of multidiensional
nearesl-neighbourhood F-automata.

2. Preliminaries

In this section we make precisc certain terms and wlse present sume basic resulls
requited in later scetions. We will denote the ficld of two clements by GF(2) and
by GF(2'Y we will depote the extension ficld of dimensiom ¢ over GF(2) The set
Foo= [0 £ 2GR, 1544} with the usual 4 apgrator is i veetor space
of dimension £ over &F(2L Under suitably defmed mulbplication V; is isomombic
1o (F{2'). Heace, we will drop the distinction between the two and use the notation
G727) throuphout, The exact meaning will be clear from the context, Throughout the
paper. the buse ficld is (2} and we will denote the identity matrix of order # by
foo Also ghiny i the Luler totien whose value is the number of positive (ntegers less
than a and copome w

Definition 2.1, (1} A & dimcnsional grid 1s a multidimensional amray 0.0, — 1]
.0 1100 - 1] with length f; i the fth dimension. 10 will be denoted by
Ol fe ) Any cell of the areay is uniquely identilicd by a tuple (... f ), wilth
st =, amd 1= f £ & and has a finite sct of neighbours as defined below.

{2) The neighbours of any cell {#i,. .. &) are given hy (4.8 £ Lo A ) with
L jeik, IF the jth component has a periodic Topdary conditiom, then i1 is gvaluated
aodule £, 1 the jth component has a null boundary condition, then there are no
neighbows corresponding to | and [, in the fth comsponent,

(3 If all dimensions have nyll boundary condition then the grid s 2 nell boundary
arid. If all dimensions have perindic boundary condition then the prid is a folded grid.
Tt some dimensions have nulf boundary conditon and sume have periodic boundary
eondition then we will call thwe prid a moxed grad,
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(47 The grid is symmetric if the lengths of all dimensions are equal. Flse it is an
asymmelric grid. A f-dimensional symmeric grid of length [ will be denoted by G {1

A k-dimensional grid &(},.... 1) has ]_[4_’,‘ {, cells. It is alse possible to define a
k-dimensionul prid (folded, null or mixed) as a finile product of path or cyele graphs
fsee [1]).

Defipition 2.2, {11 A m-automaron on a multidimensional grid is a cellular automaton
where
v ¢ > the state of each cell belongs fo GF(2).
e b = the next sate for any cell is the sun (module 2% of the current stales ol its
veiphbours {this specifies the local rule for the s-sulomalon).
{27 A g -aulomaton s delined similarly, the only differenee being the fact that
thix casc the cell isclf is also considered to be 1 neighbour.

An assignment of values 0 or | to the cells of a F-dimensional grid is called a
conjiguration. We define % 1o be the set of all configurations. The gfobel trunse-
rion rute [or 4 s-qutomaton is a map ¥ % - @, whers T{¢) s the confipuranon
obtained Trom configuration « by applying the local rnle w each eell. The global dx-
namicg of & g-autoanaon iz determined by ¥ oand is besi expressed in tenms of the
xlafe dransition dicgrarm (STD ) which is a directed graph £ — (F, 4 where FF — %
andd (e.oz) & A G0 Tiey ) — oo 105 casy o see thul the ST for a o-automaton
consists of digjpinl componenls, where cach component has 2 eyele with trees of
height = Q0 rooted on cach eyele verex |[7]0 The g-sulomaton is said to be favers-
irdie il T 15 a bijection, Also we can consider % 10 be a vector space over GF(2) and
then T is a linear trapsformation from % to %, S0 T is invertible iff dimker 7 — 0.
With respect to the standard basis, T is vniquely determined by a mateix A, Then
T is mvertible of M iz invertible. Thiz M is called the trarnsirion matrix lor the -
automaton. In this paper we will be concerned with the representation and invertibility
of M.

For baszic algebraic properties of CA see [7).

Deefinition 2.3. {1} An S-inatdx of order [, 8), s & aquare irdiagomal matnx of order {,
detined ax

1A li—j, =1,
byl = { 0 elsewhere.

(27 A C-malrix s a square matrix of order {, denoted by O, and is defined as
1oitii—j - L

o] — < 1 W{i=1and j="Lyorii—{ and j— 1),
0 clsewhere.
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Thus, the forms of S-matrix and O-matmix are

0 1 0 ... 6 ¢
I 0 s seen G W0
b — | . ; ] I | I

1

i 1 0]

O 1 0 0 17
10 0 0
e ¥
i
] 10

Tt is easy o see that a C-malrix is circulant.

Defigition 2.4. The m-polymomials sre & scquence of polynomisls over G2 ) defingd
a5

rple)— 0,
mley=1,

mlsy=wm _{x}y i m_aix)] for i=2,

This definition of T-polvnoniais was inroduced in [F4], and in | 15] they are called
binnry Chebyshey polynomials, Similar polvtnomials were studied in [37].

The global rule for a r-auromaten on a one-gdimensicnal array of length /. is given
by 5; for nuli bommdary condition and by O for petiedic boundary condition. For the
g -automaton the comesponding toaps are given by 8 =8 — S and £7 = & + 10
The chamcteristiv polynomial for 8 s mppg(x) and for O i is emie) (see [3]) Also
in [14] it 1% shown lhat the nimmal polynomdal fur &) 08 mepdx) and the minimal
pobynamiat for ) s xmele) tor oven ¢ and is v /rm{x} for odd { The minimat
polynomial tor & was also obtained in 112§ in the context of hybrid BFISD CAL We
shall use these facts in later sections.

Definition X.5. The exponent of an invertible o= » matrix A4 15 defined o be ihe least
positive toleper & sach that

o e e

Since we are cotnsidering matrices over tinile fields. the existence of such an ¢ is
goarmreesd. Mext we have the fallowing result from [7],

Lemma 2. Fov odd 1, there exists an integer p = 0, sweh thut for any x © GF2',

cf! I:i':' =0
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and the least swch integer p divides 27999050 1 where sord {2) is the leqsr integer
Fooauch that % = lmod ! Conseguently. CF7 — (),

In what follows, we will yse cortain propertics of m-polynomials, all of whivh can e
found in [ 14]|. We will dencte the Kronecker (or dirgct  prodact of two mutrices 4 and
Hby 4% B and the resultant of two polynomials pix) aod glx} by Resd plo), g}
The reader is referved to [2] for a discussion on Kronecker producrs and tw [8] for a
discussion on resultants,

3. S-mafrix

The ¢’-malrix operawyr corresponds w the global rule for an wniform one-dimensional
periodic boundary conditen A with rule 20 [15]). Basie properties of Lhis transfor-
muation have been studied in 7). The S-marix, on the other hand, eormesponds tw
an uniform null boundary condiliom CA with rule W™ In [15] it is noted that the
global dymamics of mull boundary CA is similar to that ot perodic boundary Ca
The null boundury CA s of speeial importance in VLS applications, sinee it mam-
tains local ¢opnection. Hence, the mull boundary ©A have been studied for VLSI
applications [4].

In this section, we present some new results oo the inverse and exponent of the
§-matriz operator. First, we note that §, is iovertible iff » s even and 5} iz invertible
il w7 2moed 3 {xee [3]) MNexl, we have

Theorem 3 1. For iven n, the feerse of S, satisfier the recwvence

o 1 o 1 g1 (¥

I N0 o 0 0 a0 o0
0 0

b6

5=
Sia

0
_1 .




Proof. By induction one can show that
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l 0 1 4 0 0 0
0 1 0 1 0 g 0
oo
i+ o
SR—Z
o 0
¢ 0

Remark 3.1, The above theoremn not only gives an algorithm for Ginding the inverse
of 5; but also an algonthm for finding the predecessor of a given configuration.

Mext we obtain a similar result for generalised inverse of S-matrix when # s odd.

Theorem 3.2. For odd n, the marrices obtained by the following recurrence are gen-
eralised fnverses of the corresponding S-matrices.

o

8 =

— T e

[ B o T o B

]
a0
i

Proof. By induction one can venify that

5,87 8 = S,

|

101
¢ o
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Theorcm 3.3, For even n, X, sufisfies

Aldeey e
2 al!

52 e,

Thuss, the exponent of Sy divides 2119 0t2) 3 where the siborder function Is as in

Lemme 21,

Frool. The minunat polynomial for 5, 15
Tl tl[.ﬂm”i where py Js as in [14]
— il
o

The minimal polynomial fur . is mir) = xp (see [14]). Alsa we koow ftom
Lemma 2.8,

BT

— bus 1. |:*J

=1

Let ¢ = 278013 Then (#) yickds
mixyix® —x

= xpixx! -1y

— (T - 1)

i ARV

—

¥ I{x}g[’.l.dpr.._z B 1}

= .SEL’"? e

L TN R

= 5

- I i

Corollary 3.1. For even n, §) saéivfies

{S+ Jazu.-f.-.f_,“-::-

SEE
IFalso 0 & 2mod 3, then

{3}

al=swd i

"= T
In {acl, wo can prove 8 stronger rssalf,

Theorem 3.4, For gnan n, the expopent & of 8, equids 2e — 2, where ¢ &8 the smallest
fmteger sueh that 05, — Cagr
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Ta prove the theorem we require the following lemmu, which can easily he proved
by indoction.

Lemma 3.1, fer 5; F = N m be the vow vectors for 55, where S ix the ith power
of 8o Ther i {1 iv odd we hape

iy | oepry = ety o for odd §.

| 1 2
carh +enr) — - opr) for evem j,

el B 5 L5 even,

| 2 7
_{.f. = "x:f + fr4f’1 - rn'.”.{_q | -'ﬁ‘?;l odd S

g CaE, CATy — = i Sfor vven §,

where cp S L 15/ Snand 1 8k 5

FProof of Theorem 3.4. From the proof of the above thearem it is clear thar ¢ e —
This implics /2 -+ | e

Using the sbove lemma, we can say that for even i S 2 S,. This is so since (o
cven ¢, the first rnw iz a linear combination of _5}} for even &, Bul Tor all cven &, the
sceond ooy of £ ”i is ) and hence the second entry in the firse row ol 8¢ cannol he 1.

Thus it follows that the exponent & of 5, must be even. For il & is odd, then S5 — f,
implies 8¢ ' — &, and z — 1 15 even which is a contradiction to the above.

Now we can complete the prool:

Si=15
= 1
= st 1 =(xi 1Y where p is as in the proof of Theorem 33
SRR |
11

L . . . . ; -
=+ 0277 = Oy wince xp is the minimal polynamial of €,

Then 1t follows that ¢ — /2 —l and so 0 — 22 20 [

The fact that & (s even can also be proved using a nice trick introduced in [7]. Let

{ar,....ax ) be any configuration of an & cell null boundary CA 4,. Then the evolution
tfrom thiz configuration will be eguivalent to the evolution from a 2% + 2 cill periodic
houndary CA 47, which starts from the mitial conflguration (0,a, . ., P TTI 2SR DR

i)} {we are assuming m-gutomaton gvalution which is rule 90 of' [713. Ler £, be the
lenpih af the largest cyele tnoan & cell nell boundary CA and let £ be the length of
the largest cyele in a & cell periodic boundary CA. Then by the above embedding we
have Li, == Lyvyo. Again, from [7], we bave Law_s — 2Ly and this implics that L
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and hence & must be even, Mowever, the lemma that we have used 15 intoresting in its
own right.

Lot Ky = 29l 0 §7) 3L is noted that for abmost all cven o (e £ i3
odd), ¢ — K.y + 1. By the above theotem, the expunent of §, js 24 wmhe-i(2) _ 3,
exceptions ncowming exactly at values tor which sacentions ocour for K,_;.

4, Generalised S-matrix and higher-dimensicnal g-antomata

Iu this section we obtmin a representation for the hnear trunsformation defined by
ihe global rule of @ s-automaton on & mell bonndary mirdisdimensiona! grid. For the
one-dimensiooal case this 15 given by an S-maddx of order 7. For the two-dimenssonal
case, a representation was obtained in [3] as AX © AS, where A and & are S-malrices
of proper order. We will show that for a &-dimensional grid, the global rule can be
ropresented a3 a sum of Kronecker procduct of matrices. We will use this reprosentation
in later sections to perform an algebraic analysis of the linsar map,

In the following discussion, we will consider a inuitidimensional configurution as a
vectar in a saitable vector space, To do this we will need 1o map a maltidmensional
coafiguration to a one-dimensional vector. For this we use the standard one-to-ane cor-
respondence used by complers [1]. Consider & k-dimensional grid €., 4% Then
the coordinate {i. ..., B0 i £ f.- 1 becores the jsh compemnent of 2 vector whers

_Ji:[__.[(h 4 a0l - B+
_—!.| !r_:lfj...fj: | IIZI]....IIk |"'+-i*"|"l;- " 'I.":-' {'i'}

In other words, 7 is the position of (i.....4) in the lexicographic ordering of the
k-tuples. Thus, cach such k-dimensionz] configerstion is wdemtified with 8 vector in 2
vector space of dimengion L = H:_L .. Henee, we cun consider the global role of a
g-autntnaton to be represenied by a square binary matrix of order £, We characterise
this mareix as a sum of Kronecker products and refer to as a geseradised S-mutrix,
The name is justified as it s out thaé the matix is biock tridiagonal. We obtatn the
matrix as tollows. For each cell (f,..., 6 of the array, we have the jth row in the
matrin, where ; is given by {1). The L entries in the row correspond o the £ cells m
the array and the ofh column m the Ah cow s ) it the oth cell §s a neighbour of the
Jih cell. It is easy to sce thal a generalised S-roatrix is sparse, symmetric and has all
critries on the main diagonal to he sero.

Next we prove a lechnical leouna, which will be gsed in this sud lawr sections to
express 4 generalised S-maeix as s som of Kronccker products. We denote the entry
in the rth wow and cth column of a matix 4 by A(r e}

Lemma 4. E Consicder o b-dimensionaf grid G081 wad let of be the mup from
k clfrension tor i divmernsion. fo

d i) O < L TSk — 0SS < B

4
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givim by
i =1 Fids — ) W+ {11

Cimmsbeder the wurtrix T — 4 8- 60 Ag, Where A, 15 o Square maiviy af order 7,
Lot g w1 Sisk Osx, 1 = L} be o set of ordered paivs and T

X - ez, ..o, Fo—el{v..ov )
Then TEX ¥ — 1 if Adxe vy — 1 for alf £

Proof. The prool is by mduclion on o, with 1=r <4 For # - 1, the result s mvial
Assinme that the result holds for # — 1. Then we have to show thal the resall halds Tor

To=dg® @l = A0 - F e s B AL
:T:, 1% A,

where T is a square mateix of order A, - = {00 o (iven v pairs (x, %), ...

v 1 with 0=y, 1y < 1ot X o = Ay, (Jand ¥ = Al 8 L
Then, X, = &{v,....0. )= X x and B —d{m,....0)=L¥F. 1 — % B,

£, flads v i Ar T T
fa A, dnd, e v Ay R T it

¥ e sawg, s e

) ’ T T N Y £ T Y. U TS S o
R E: RS, P (R T SRR T __E

where r; - Too(f ) lrom this we get that LA Y) — 1 i o v —1 and
Alx vy — 1, This is so iff 7, 0% Vo)) — 1 and Adxe 1) =L i 4w 0 =1,
Wleige — | (by induction hvpothesis) and 406, 00 ) — 1l A0, g0 — LFEirse

=)

Mow we can present the mam result of this scotion,
Theprem 4,1, For the g-aweonrator o GUEy with andl bowndary condition, the
transitiont paateiy £y g gereraibved Yemirie T, defined by
T=n &l o -mi ~f &b, =T
TIREEE VAR IR R (Hl)
Proof. Let f = (i,.... 4 ) be any cell of the underlying &-dimensional gnd. Then its
neighbours are given by (7,0 = L. W 1=f <k,

Ler ¥, be the global transformation corresponding to the lacal rule where we comsider
neighlors in the fth dimension only, Then by linecarity we can wrile

i

-

fi=T - T

i
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If we can show that T, =1, % .- 28, & -+ 2 f; then we are done,
Let X = d{f;,....0....0) where & is as in {II} above. Let

Xy=d{i,....i; = 1,.. k)
Xo=dlin,.. i+ L. i)

Here we assume that both ; — 1 and i; + 1 lie between O and {; — 1. The other cases
are similar, Hence, we have

TAX,¥)=1 iff ¥ =X or ¥ =X,

Let the entry (X, C)in Py = Jp %@ 5, & - @0y be 1 Then O = d(x),....x ) for
some xy....,% with 0<x < /. By the above lemma PAX.C) =1 iff [ (inx) =1
forr # j.1=t<k and S (i, x/) = 1. But this happens iff x, = for 1 # j. =14k

and x; = i, £ 1.
Thus, PAX. Cy=1if C =X, or C = X,. Bul this means that each row of P, and
T; are equal. Therefore, 77 = [ & - @ 8 «--- & [;, and hence the result tollows,
[

The proof actually provides a recurrence for the generalised S-matrix. This recurrence
become particularly interesting when the lengths are equal (a symmetric grid). In this
case,

™ = feahe &5+ +52h& &l

From now on we will follow the convention of dropping the subscript { when the
lengths are equal. Also we will denote by /' the identity matrix /;, ®--- & f; = [p.
Then we can neaty write the recurrence as

P =7 g% 4 54, L

Thus, our investigation of the invertibility of a symmetric e-automaton is reduced
1o the study of non-singularity of 79" as given by (1V).

In [3], the global transformation of a two-dimensional CA is represented in the
following way. For an m = n grid the global map T is given by T(X) =5, ¥ + X§,
where X is an m x n mairix representing a particular configuration of the CA. This
matrix equation is completely equivalent to the map T'x = (8, @ 1, + 1, 8 5§, L&, where
x 18 a vector formed from X' using the map given in (I). This result can be found in any
standard book on matrix algebra [2]. Thus, our representation for the multidimensional
case is a matural generalisation of the two dimensional case as wsed in [3].

Mext we note several basic propertics of generalised S-matrix on symmetric grids.

Proposition 4.1, a> (TP = ]z (Th-1) 1§27 5 j-11
b= TUHY — iR} g TR Uk g plkY
o FLik+D =;[H.¥, ik+1h 14 Tk @fﬁwlp_
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Proof. {a) For square mairices 4.8, C, 0 we have (4@ 8K C % D) — (A0 7 B, The
prect follows from this and the fact that we are working over u ficld of character-
istic 2

{b) and {¢) follow from (TV)} by induction on & .|

Proposition 4.2, et plx) be an annihilaring polvnosial for 5, sueh that the powers
af x ave of the forer 2 Then plx) annihilates 1% ux given by (IV), wnless & is even
and p{xY has o constant tertm, in which case p{x) — | arrthilares THY

Proof.
TR = BTG B84 BB B E 88 B &
which is a sum of & terms. Then.

(T =t slo o8 pdwlw.esd al

e e Ty B T

Using this the result follows, To see the special case, just now that when £ is odd,
1% added & times in fust £, This however i¢ nol possible when & is even, [

Llsing the shove propasition it can be shown that for § — 2,46, 8 g-autgmaton on 3
kadimensional mall boundary grid Is invertible iff & is odd. For the case § = 2, there is
a nice geometric argument. In this case, any cell is idemified by a L-tople fa,...., @)
where gach g; is 0 ar |. Since we are considering null boundary condition any cell has
exactly & neighbours. Moreover, two cells &) = (x),. . x ) and 2 = {p,.... ¥ ) can
either share tweo neighbours or oo neighbours. To see this note that it the Hamming
distance between # and vz is greater then two, Lhen they share ne neighbours and if it
is one lhen they are adjavent cells and hence also do not share any neighbour. Thus, )
and t» share neighbours il their Hameming distance is two and in this case they share
exactly two neighbours, Now it T be fhe matrix representing the global translormuation
of the m-automaton, then 72 is 7 or & according as 4 is 0dd er even. This i because to
findl 72, we have to consider the inner product of the ith row £ and the jth eolumn g,
and by the above discussion and symmetry, this product is & mod 2 10§ = § glsg it is
. S0 if & is odd the STD consists of digjoint eyeles each of length one ov two and if &
15 cven then the ST consists of a single tree rooted on the null configuration having
height 1. Also the structure of the ST in this cese is independemt of the number of
dimenzigns.

The above can also be proved nsing the following result from [10]. For product
graphs & = i = I, the coranks of mule ¢ on & and ff are related by

cark (5] — corkm, [ A ).

Then by induction it can he shown that for a f-dimensional structurs the corank 1s
U or & gecording as & 15 odd or even.
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Let 7% be invertible, Then, as we will prowe in the next section. it necessarily
follows that [ 15 even and & is odd. Since 7 15 even we know Ton Theorem 3.3 that
the expouent of §; divides 2° “°% %) _ 2 and §; satisfies

P o
Thus, x* plx) i a polynomial where the powers of x are of the form 27 (such poly-
nomials are called hnearised potynomials [5)). Henee, 797 satisfy x* pix} and sinee it
is inverohle it alse satisfics pix). Thus, in this case the cxponent of ¥ alsa divide
Fimserd: 0203 Nowe that i0 4 is even, then T satisfies x'pix) whether & iz odd or

CVEN,

Remark 4.1. The marrices 7% have another mteresting feature. The above discussion
implies that if ¢ i lixed then for infinitely many &, 7% will have the same minimal
pelynoimial.

5, Symmetric grids

T this section we consider ofe ' J-automata oo speimeiric sl bonndar v grids.

3L fnvertibding of o-aeomta

We oblain necessary wnd sulficienl condition for the invertibility of F-agtomata oo
sytrunetric. null boundary perids and relate this condition w0 the nunber theorstic prop-
erties of &, the number of dimensions and £, the length 10 any dimension,

Theorem 5.1, For the a-amtomaton om G, the folfowing hold,
o 2 81 iy odd, then the automaton (5 nor-incerribfe.
o b= Ik iy epen, thew the auromaion is non-ineeribfe,

Proof. (2} By induction on &, When & — 1, ¢ is odd implics 7% = 5, is singular. So
asaume & = 1. By (fF ) we have

Tl pe TR g Bpp 08 U

By ioduction hvpothesis, 7' ' iz singular and so x divides the chanscteristic polyng-
miat pfx) far 7 ' Also, singe 7 is odd x| &7 ). Therefors, plx) und #;_; share a
conmmmon oot and hence T iz non-invernible (see [2]).

(h) Supposc & = 2¢. Then,

ol I o oy R L0 I SRR L L

Hence, it casily follows that 4 is a characteristic coot and hence 7™ js not-inverlible.
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The vase when f iw even und £ is odd, shows mare interesting behaviour. fr is the
only vase under which T ran be invertible. To amalvse the behaviour of ™ we
need the following result.

Theorem 5.2, f.et
T = S Sk [ 8o 885 5l e S Bl R ool
Then w is a root of its claracteristic polynomied plc) OF 2 0 of the form
S IO . 7
where 8 are the rools of fp, over the splitting field of mi_\.

Proof. By inductiom on k. For £ — 2 this 15 a standard resylt [2]. Assume it to be tne
lor & — 1 dimensions. Then,

TH‘] eve, }r.', o T{Jr L1 +S.‘ &= ll|'I'.'i’ '._II

S0 2 15 avoul of p{x)yiff il is of the form f+2,. where § is any root of the characteristic
polynomial fiw T~ and 2; is any oot of 7, ; (see [2]) Bur by induction bypothesis
fiis of the torm & + --- 4 2 5. Hence, # is a root of p(x) i &t is of the form
ao— - oy, T

Corollary 3.1, 3% given by (1F ) is aoa-imertible ifY for some choice of 31, % at
ffte Pois of mpoy, we fee 2+ - 4 o1 = AL

Prool. 7! iy non-invertible ilf 0 is a raot of the characteristic polynomial for T iff
4o+ g =0 for somme choice of &'s, T

This corollary provides 4 necessary and sufficient condition for 7% 1o he invertible
in terms of the rools of m;_ . We know thal fovertibility cun goenr ondy when ! s
even amd & s odd. Note that the other cases can also be derived by examining the sum
& + - + oo Thiv constitures un altermative proot to the approach in Theorem 5.1,

The following can cusily be proved by induction,

Lemma 5.1. When @ is coen, 1y ) contains Dol the terins & and <2

Remark 5.1, Tlence for 7 = 2r, plr) — /(3] containg both Lhe terms 37 und
) and so the sum of the roats of pix) s 1.

Theorem 5.3, Conxider the meantomeion on G 1 I the following conditions hold,
fhen e g-aquionion i inverible.

1. & is odd,

2.7 1 s an edd prime,

3. 2amed, (20 = B(F | 1) = L In this case. m | = 07 with g frreducible,
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Proof. Tor the lag ohservation see [14]. To see the first, note that the rootz of the
characteristic pobynomial pixy for 7% are of the e % 4 - 4 34, where a's are
roots of ;7. To show that 718 1 inverible we have o show thatl the sum o 4 %
cannet be 0 for any choice of o« and for any odd &, Now,

7. =p° where pr is an imeducible pohynomial.

Suppose { = Zr. Then hy the ahove lcmma. p hus both fhe torms » and X', Also
all the distinet voors of ;| are piven by all the distinet voats of g Since degree of o
15 #, and p s irmeduciblz. it has # distinet roots 2 ... % aod the sun

@ | oo 2. =1 since p has the term <",

When analysing the sum 27 - | 2, we can consider all of them to be distiner.
Since, in a teld of characteristic 2 equal roots cancel in pairs. without disturbing the
oddity of &

Thus, we have o showr that 2y — -+« & cannct be O for odd & = ¢ and for distinet
#7s

Since o is itreducible all its roows ate of the form #, 02, 67 ... F% ', where £ is
any rool of p. Then it [bllows that g is the minimal polynomial for §.

1t possible Tl for some odd & ¢, 2 — - —o— 0 Then, §7 ~---4 g =0,

Henee, f satisfies g(x) — %' + -~ + x* and therefore p| gx). So all roots of p
are roobs of g{x} wndl we pet the following » relabions:

it i

P POl
AR 1)

ﬂz'llu'—l S 'H_:I'.\I-"—I _ 0
Sumuming up left- and rpght-hand side we pet

Tl - 1=0

Here we use §5° 4+ %7 . — g ' —
But there arc £ (odd) 1's on the lefi-hand side and s the sum is 1. This gives us
the required contradiction, 1

MNete that there exist primes £, such thar glu) = 2sond,(2) In Tact, this will hold
for uny prime of the form 2 = 1.

Lemma 5.2, I for some even fewgth §, odd dimension kL o c-anfomiaion iy mor-
fopertihle, then i is now-invertible for all odd dimensions = &

Proof. Il ix nun-invertible for & implics that there exists roots a;,..., % of m, . such
that @ + -+ | ap — 0,
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But ther [or any odd dimension o greater than &, we know that & - & is even and
wit can form the sum o> — -4 a2 + - + 2 — 0 where ) is repeated o 4
times, But this shows thatl the m-aulomaton on & dmgnsions 15 also pon-invertible. 1T

Theorem 8.4, Ff fior some voen fengéh [ 0+ | has two factors comprnent fo 1 mod
4 g Imod 4, then rhore exisrs an ool drreger &, och thar the o-auromton on
dirensions v nan-fmeriide.

Prool. Lt ¢ | | have at lgast two factars g, and pp. with
pr=Ftmodd and pr; =3 med d

Then comesponding to Lthese fagtoms py and pe. 7o fx) has two factors =g (1) and
Tp(x) with 1, — pf and =, = pi for some polynomials p{x) and po(x) [14}. Since
2 = 1modd, degree of o(x} is even (say 2¢) and since p: = 3Imodd, degree of
faled s odd fsay 2 + 173 Also since p) and gy are both odd, by Remark 5.1, we get

q T — % =L
fr+- e i = 1

where &% are roots of g oand 878 ame roots of o0 Let & — 27, — 2 + 1. Then,
Fipmons— St s ek el

and hence the o-putomaton on & dimensions is non-iovertible,

Theorem 5.5, If for some even fength {8 Bl twe relavivedy prime fuctors both
corgraent to 3 mod 4, ther tere exisis an odd integqer kL such that the o-qutormaton
et & elimensions 15 Ron-intertible,

Proof. Tet pp |7+ 1 and pz | {1 |, with g and g both congruent t0 3 mod 4. Letr —
mp: = Imed4, Since ged(p, p2) — 1. we can write, mix) — 2, (X maix)( plxl)
for some polynamial px) (of. [14])

Now degrees of both | /m, and /Fp, are odd, so p{x) must be an cven degree
palynomial. {Since /7, 15 of even degreel.

Let the degrees of /mp,, /Wg and plx) be rp.7ara. respectively, with » =
(g —1W2r=(pz 1)2and #y+ry tes = (n 1)/2 By Lemma S0 mp /Ty
and /%, contain the terms ¥ 'L X T, VM7 respectively. But this implies that
plx) has the term x5 1,

Let ..., %, be the roats of 71" and [1,..., 0%, be the roots of p(x).

Then for & —r + 3,

a4y 14110

and & is oedd. T
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Remark 5,2, By Lemma 3.2 i follows that such m-automata are also non-invertible
for all odd dimension = & and bence for a1l dimension = & (since if & 15 even It is
in any case non-invertible), This however does nor preclude the fact that it may be
invertible for some lower odd dimension. Thus, in these cases, invertibility has to be
checked only for finiely many dinensions.

Thizs method does not work if all prime ftacters of [ | 1 are congruent o 1 mod 4.

Examples
(1} fodd, & even, I — 3 & = 4, g-automara non-invertible,
(2} odd, £ ol F — 3 & = 5 g-automata non-invertible.
(31§ gven, & gyen, ! — &4 & — B, m-aytomata non-invertible,
(43 7 even, & odd.
@) =10, 0+ =, ALy = 10 = 2 x5 = 2eo0d) ((2). Tlence, o-automara
invertible for all add dinpensions.
by P =34, 1 +1 =3 =5=7 5 = lmod4 and 7 = Imod4 Then for
b =2 -3 =3 dimersions s-automata 15 non-invertible,
Y i=71Irl=T1=7=11.T7T = 3modd and 11 = Imodd. Then for
A — 320 — 33 dimensions d-autoroaty s non-imvernble,

-

52 Meertibifiiv of o™ -tomtia

In (his subseetion we will consider sT-automaton on a 4-dimensional synuuetric
orthogenal perid G:(f}) The analysis is similar to that in the case of ¢ antomaton. We
start with the fallowing

Theorem 5.6, The global trunsformation of o o —awomaton on GO, T2, 18 given
brv e generalived 55 -petrivc writier ux

5 = T — s, w8
For the special case of symmetric ¢~ -automaton, this reduces o

Tl ikl 4 ikt
=F & FE=D g g i1 (V)

From this we get a result similar ©o that in Thearem 5,20 Flowever, in (his ¢ase Lhe
recuttence irsell is difffcull (o analyvse brcause of the asymmetry in the expression.

Theorem 5.7, The sywemetric (fength 1Y 0 <autornaton on Ge(T) s ron-inverdible §ff
Dt by=1

Jor serre cheice of 2, .. o, where 275 are Fuots of w0 ocer its splitting field
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Proof. The proof is similar to that of Theorem 3.2, The right-hand side is 1 because
of 81 in Eg. (V). Since the characteristic polvnomial for §' is mrp{x - 1), its roots
are of the form # — 1 where ¥ i3 any rool of 1, (x) [

Remark 8.3, Analogous o Lemmu 5.2 we can dedoee for the 6% -automaton that it
it is non-inpvertible for & dimensions, it is alse non-ipvertible for & | 2¢ dimensions
i = E2,...0

Lemma 5.3, /01 - 0 fas o divisor congrient ro 3mod 4, ehren there oxioty an odd ko
stech whd he o -aulontgton o §odimensions {5 yoR-ineertible,

Proof. Lot a| /=1 and ¢ = 3Imodd. Then m, | gy and so the ooty of =, wre the
roots of oy . Alse m, — pilx), where plxd has odd degree o - (e — 1172 and sum
of roots of pix} is | (by Remurk 5.2% Then the ¢ -autmmaton on @ dimensions is
not-invertible,  —

Arpling sitilarly, we have

Lemma 5.4, If I+ 1 has a divisor congraent to L mod 4, then rhere exists an cven &
sueh thet ot -aulomaton on kb dimensions iv non-imeriife,

The ahove twa lemmas and the romark yigld
Lemma 5.5 5771 1 has rwo dicivors g and b witha — Tmodd and b = Imod 4, then
there exists an Breger & such that o ~mromwran on @ danensiony i non-beriihiy
for ol i k.

Remark 5.4. Thus, invertibility has 10 be checked only tor tnitely many dimensions.

Lemwna 5.6. If7 is of the form 27— 1 for some a, then the o~ -gquiomaton s invertible
S el dimensions

Proot. In this case, %, —x* ! und henee the only rt of w15 0, so it is impossible
to have a subset sum of roots ta ha 1. |

The following is an analopgye of Theorem 5.3
Theorem 5.8, Lot { | 1 he g priwe syeh that mp (0 fas onfy ore irveducible focior
Chen, gt 1 1y=2Zsoede (200
o [+ 1=3modd, ther o -gutomearon i moertible for aff even dinmensions.

s [ — =1 modd, then ot-anfomaton is inveriible for all odd dimensions,

IMroof. Let rp =,|1:-l with p irreducible and of degree r —= /1,
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Then there are # distinet roots 2., 3. of 7 1, und by Remark 5.2,
#oF o o=l
Since p is irreducible its roots are B A%, f% and so
gop o F =1

Let 10 posable for some & < ¢ such that A mod2 £ romod 2,

o+ —x — L
Then tor some §..... i,
W et 2 VD)

and by an argement sunilar to the one in the proof of Theorem 5.3, (V1) will be
satistied by all roots of 7 and hence we will get the » equations,

R e )
N

o R =

g e R By

Summing up we get fmod?2 = rmed? which is a contradiction. Henee, for
dimensiom & such rhat, finod 2 £ rmod 2, 1t s not posaible w obtain 5.,
are roots of g and hence of 750 such that o) — - --— 3 — 1. But this means that the
ot-automamn om Gp(7) s inverlible, Now & mod 2 £ rmod 2 meaons that of f+1 =
Jmod4, then ~ i3 odd and & must be even, And if f+1 = 1med 4, then # 15 cven
and £ must be odd. 1lemes the rewlt, L

zp [(which

Examples
(17 — 6, I4+1 =7= 3mod4 Then for & — 3 + 2i dimensions ot -automany is
non-invertible,
2y IF7 — 8 I+1 = 9% = tmod4 Then for & — 442 dimensions o-automata is
no-invertible.
(3 IF7 = 134, 741 = 135 = 9= 15 with %4 = Tmed4 15 = 3modd. Then for
& = 7 dimensions ¢ -auloimala 15 non-invertible.
(411 =7=2. 1. % =% and & -auromata is invertibke for all dimensions &.
(Sifa) i =6, 7t 1 =7 =3modd, @l + 1) = 2rord, 2 So o -automara 1s
inverlible for all cven dinnensions.
iy =4, {41 =5 =1modd, {41 = 2sord, (2} S0 7! -aytomata is
mvettible Tor all odd dimensions.

Sorme mwre resulls on ot -automala are oblained 1o the next subscction.
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34 Characteristic polvnonidal of gereralived S-mgtrix

W now derive an expression for the characteristic polynomial of a generalised §-
matx i lerms of resultant of two polyvnomials, First we seed the following which van
casily ba prived using the identity 3.6(r) of [8] for the tesultam of two podynomizls

lemma 5.7, {f Plxy and o) are twe Hon-constan! polpromials with cogfficicnis in
a feld KN ownd with voors o, we and B, B, respectively, then the voots of ihe
potvmenid

ALy = Hewo Plx 4+ v), O0—x))

are M elernents w, + B, laism 15f <n

Theorem 5.9, For @ fixed fength 1 define o sequence of polvnoraiols frv the filiawing
FECUHEFEIILE

i) =
hix)= Reg {his + v) Oy qld) & > L

Thew Wix) & fhe characteristie polvmomial for the transitéion matrix T% 0f the
w-cuina et o Ol

Proof. By induction on £ we prove thal 2 is 4 root of yix) ifl 2 i of the form
= eor iy, wher s are roots ot m o (x), Then using Theotein 5.2 we are done.

For & = | the result is casy,

S0 assomne the resubt to be tue far & - L

Then Quix) = Reso(Or(x + 10, (¥} and & 15 a root of Chis) UF it is of dhe
form fi + ay, where #f is any root of €. {x} and 2 is any root of &)(x) Bl by
indvection iypathesis § is of the form ) - - Lo Hentee the reaolt follows. L

nEl

Corpllary 8.2 (41 | x) iy the characteristie pofpnonsad for TV 5+ P9 the maeriy

Jor o —mborneton o G

We will write 711 for TU2 | [0 and OF(x) for Qell ¢ £). The characteristic
potynomdal can be wsed to settle a few more cases for the non-inveribabity of 07 -
AUEOIDATA.

Theoren 500, 7 f = 2mod 3 gnd c-paapatan on (K - 1) dimersiors & pon-
incertthle e so iv o ~cuboimaion on & oimeryions

Proof. Since f = 2modd, /41 = Umod 3 and s0 3|+ 1. Heoee, noting thal m:(x) —
14+ 2% we gel, {5+ 17 fag ) and wo can wrile mrix) — (0 + l}jnj_](.r}. S,
el = Resy(fx | ¥+ 17 wh x  0y 0N)
= {1+ viRendrl (x + ¥l v} {sec [3]
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Bul this shows G 1( )| Gl 1~ 1) Thus, if 741 is non-invertible then v | Qe (1)
Hence v €401 + 1 and so ¥ |5 non-invertible, |

Covellary 5.3, ff | = 2mod 3, then nt-muomuaton is non-invertible for olf odd i
miersions k.

Proof. Follows from the above theorem and the fucl thal m-awtomaton is non-invertible
for £ -1 (gince £ — 1 ds even),

Theorem 308, I f = 1mod 2 awd i 0 ~idomalent on & dimensions & Ron-iiteriitle
thes o B oT-andomiarion on k1 1 dinsessiony.

Proof. Since ! = 1mod 2 we have =) (x) — x =) (ch Hence,
Qea1{ )= Resol{x — 3hm), x + ¥} Gl )
= Chi{ ) Resm s (x + 30 hix)) (e f[8])

But then £ 004 v Qe (1= v Hence, if 75 is non-imvertible then so 1s FREl
| .

Carnllary 54, Jf [+ 1 = Omod 6, ther o -aefomaton ix noa-tnvertible for all diveen-

Llims.

Prood. Since {1 = Omed 4. it tollows thut § is odd and hence by the above theorem
it s sufficient 1o prove that x| {1 | x). Put this happens §0 {1 + x| mg (o) Again
smee {41 = Omod6 we have 3:7 1 1L so {1 +x0® | my {x). This proves the resull.

L

&. Generalisations

fi.f. Asynunetric grids

I thiz subsection we extend the resylts of provious scelions t cover q-aulomala on
aall bowrdury asymmetric grids, Wost of the proofs are plain generalisations and will
be omited.

Theorem 6.1, A o-gutomaton {resp, o -gutomaron) on Gl L) Iy nor-incersible

it
[T R i TR 0 l:?'{!.’i‘,rl. |}

Jar soine clioice of w8 witewe 3, i any roor of o over a field fnowhich off T
spliE
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fn 13| this result is obtained lor two dimensions by showing thut m-automaton s in-
vortitle i (o) and a4 a0} ane refalively prime snd Jor the 7 -sulomaton 7, x)
and my, 1 - ) muast be relatively pome. L tumes oot that 7 L (Y and g (x) ane
telatively prime iff §) + | and £2 =1 are so (soe also |13, 14]), For the o1 anlomaton
such complete result could not be obtained. For certain special cases sufficiency condi-
liotis for tnversibility based on oumber theorstic properties of [) and 7> can be derived.
Bui a geperal characerisation of this nanire seems wo be difficuit, The zbove theo-
tem indicuies the cause for this dithcuity. To obtain a chavacterisation of inveitibility
in lenms of number theorclie propertics we have 1o charmelerise m terms of number
theoretic properlies when a sybsel sum of roots will lie in the base ficld Since the
poots in general He in mn extension Redd. answering this guestion in general will be
difficuls.

Lemma 6.1
o g= UL fe sree afl pdd, ther Teautomeaton of & dimendons s nom-inceriible.

o G Jf for even & godtdy - b, 4 1) = | Bren ganiteinalon on sich g gricd iy
M- F TR,

o o ffthe {06 wre of the form 2% 1 for soine ks, Firert M o —giiteeraton o el
o gridd L Bmeertfiie.

6.2 Fildded end mived geih
Here we will allow some or gl dimensions 1o have pedodic boundary condition

The fillawing is similar to Theorem 4.1

Theorem 6.2, Consider i b-dimensioned grid S{f, . 10 with peviodic boundary com-
dition in some ¢ (08 e 2 kY dimensions. Then the sransiion mairiy of e o-
cntrnaient on Wiy geicd Iy géven fy

Pz lr " f'- Fooe "J": + "rlll ® "r-"z SRR AJ‘.‘. SR ‘r"-‘
R . DI SRR S
where

% Seodf there i mdt howndary condirion in the ith dimension
€5 I there & periodic bowndary camdition itk dimension

The pagtrix for e o -agtomgion B gioen by

T+ = 7o foo@® Ty = @ 0

Theorem &3 Coavider o mived qrid as In rthe ghbote theovene The a-quto-
miafon (resp. o-gutomaron) on sech q geid i non-trrertible 3 for sowe 20 3y

oo — e =0 (resp 1),
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where & B any root af pilx), the churacteristic polynomial for A, and so,
R lx} i the ith dimension has pull boundury condition,

PRV {xm.{xj if the ith dimension has periodic boundary conrdiiion.

Mote that in the above theorem. we can teplace the characteristic polynomial for
Ar by the minimal polynomiad for 4,. This is because the minimal and characteristic
polynomials have the same sct of distinet coots, Thus, pex) can be wrilen as

moela) if the fth dimension has oult boundary condition,

Xy (%) it the fth dimension has periodic boundary condilion and

pix) = ’ I, is even,
x4/m ) if the ith dimension has periodic boundary condition and

¢, Is odd.

Lemma 6.2. In the wndertying grid, if a dimension has fength 27 1 wivh mull frosend-
ary condition or length 27 with periodic boundery condirion, then we can ignore the
effect of thiv dimension on the Tnpertibility of @ or o7 -automaion

Lemma 6.3, For o mixed avvsametric geid, i afl dimensions with nufl boundory con-
dition have lengths of the form 20 — 1 and all dimensions with periodic boundary
condition five tengtls of the forme 2% then a-automaton on such o grid iy non-
freertible and o sautomaton iy inveriible.

Similur do Theorem 3.2, ong gets

Theorem 6.4, Considder o k-dimensional mixed geid on GU L 0L Then the char-
acteristic podynomial Oux) for the transition matrix of d-anfomaion o Such @ grid
is feen by

Oiixy= pdx)

Ox) = Res  pilx + yL i 1(0)) | < i<k

wheve pux} ioas it Theorem 6.3

6.3, Ovher neighbourioody

We peneralise the concept of nearest neighbourhond tw higher dimensions. For the
two-dimensional case there are two kinds of nearest-neighbourhood condition  the
orthogonal neighbourhood and the diagonal neiphbouwrhood. Our generalisation is based
upon the following observation. The orthogonal neighbourhood cormesponds to tuking
onhe step in ong dimension. The diagonal neighbourhood corresponds to taking one step
each in two dimensions. Generalising, for a cell in a k-dimensional grid, we let its #-
dimensional set of neightours be the cells which are reachable by taking one step each
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n exactly #-dimensions, Since in any dimension we do not allow more than one step
the notion of nearest peighbourhood is preserved. Anv neighbour of a cell / can also
be visualised t0 be lying on some byperplane unit distance away from /. We fommally
cxpress this idea in the following,

Definition 6.1, Tor a cell (4),....4) in a k-dimenstonal grid, the set of r-dimensional
{r-I?} nearest neighbours s given by

Ny = {0 gyt du e Lo b 15 < Lk

where {; £ 1 is taken modulo [; if the fth dimension has a periodic boundary condition.
It the jth dimensicn has a mull boundary condition, then the values —1 and {; + 1 are
ignored for the jih dimension,

[t is easy o see that the definition exuctly comresponds to the idea described sbove.
Also it is clear that IN.(i),..., 00 = 2’{-:’.} where equality holds for all cells ifT all
i = 1 and all dimensions have pericdic boundary condition. Such neighbourhoods
for mmlridimensional CA have not been considered before. Marlin ct al. |7] introduced
Type 1 und Type 1 neighbowrhoods for multidimensional CA. Type 1 neighbourhood
correspumds o our 1-D neighbourbood. Type I neighbours of a cell J = {i,....4)
are given by the set {J} o0 L L., MelJ ) Thus, our definition captures a finer sense
of multidimensional neighbourhood.

We now obfain a characterisation of the plobal rule of an #D uweighbourhood &-
autornatan in terms of Kronecker produet,

Thetrem 6.5, Consider an v-d neighthourbond o-auicmeaton on o k-dimensional mived
gricd CULL L i)y Ther the global rule Is given by the follawing marrixc:

T, = V5 Ry & o2 R
Tafym ooz k
where
"r.l'_: ipf-fg{j!l"'!jf}s
a. S ic{h,. it and the ith disension has null boundary condition,

Co i ie i g b and the ith dimension has periodic boundary
cofitici,

For the ¢t -mutomatun the corresponding global rule is T8 = 1% - foa

Proof. Let I:IH ;, b the matrix which comesponds to the local rule which considers
neighbeurs oaly in the dimensions fi...., . Then by linearity it follows that

J'-'r-r{'lrl = E r.l[;“ et

[EA TR -
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Using Lemma 4.4, we vun consteuct a proot similar to that of Theorem 4.1 1o show
tlaat

oy RI f e R R.h
where K, s ax delined o the theorem. Heoce the result Follows.

Anatogeirs v Fhoorem 52, we have

Theovem 6.6, Convicder an r-IF neighbourliood aacutomaion or o k-dinwensional mived
gricd G{E L R Then @ iz a roor of the charocreristie polyaveial of the rransition
matrix of the d-aninmaton [ % 15 of e form

b Ay, ... i for some chotce of 2,005

D3 i<t ajoome cnih

Here x; 76 o roor af plx), where pde) 05 as in Theoren 63
Proof. Lot & be an arbitrary scalar and comsider the product

W, wed VR R £ ad dae - % - ndL)
= .l'_.-! S -'r.'._ — sy, G Ay - Ay R f.': S f_.-,:I
— A o w A,

whers 4, & %) o ) gocording a5 the 8 dimeasion has nell or periodic baundary
comdition, Fhe characteristie rools of the left-kand side are

(1 s Ml Femab (14 eapd—1 « o |-t ox) Nl T

where o 1 o oot of plx)
Let 1 be an cigenvector comesponding o0 a root, Then,
(g —(dn oo 8 0y Jued = (o 4o by dp
—-{!T_.' W 'r.fg Wi r.“. Jisr ;fh I SRR .-';-.jl." LI:I:]
e EM = 4, A ey = O

Since i i3 arbimrary, ail coefflcients of & are 0 {F=2i </ ) From this fhe result fallows.

Corollary 6.1, Au r-0 neighbouriond o (resp. ob automaton on o h-dimensiona!
mixed grid is ron-trvectible i for seme chelve of a0 we e

—
2 Ty

Ve qpae 0T

Gy, —Qlresp 1)

where w8 are ax descrifed i the afote theorem
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In particular, we have

Proposition 6.1, For Gy with sull bonsdary conrdition, aen r-f) neighbourliood o
{resp. @ N-autoraaron is Ren-inveriible if the coefficient of x'=° & om, ix) is Oiresp.

ih

Proof. Iere we have to consider only miy {x) — ' —a >’ + gy with T, =
G lh PLEEI = By z. .. #0080 — dg, where 27w are tools of T (x) From this
the resulr follows.

Remurk 4.1, If in the above propesition all dimensions have petodie boundary con-
dition, then we will have to consider the charmelenisiic polynomial for ¢ instead of
Erp:lx }.

7. Conclusion and open problems

[n this articte we have developed necessary and suffictent conditions for the invert-
ibility of & {¢' J-antomarn oo switidimensional otthopenal prids with dilferent boundary
canditions. These conditions have been oblained in terms of the roos of m-polynomials.
Alsa we have tried 1o relate this to the numnber theoretie properties of the number of
dimensionsz and lenpths of the dimensions.

For symmetric {all dimensions having cquatb lenpihs £ m-automaes, we have o con-
sider only one m-pobynomial (xp 3 In this cuse the invertibility is directly related
o a sum ol subscl of the oots of my . In trving t©o relate this to number theoretic
properlivs, we are able w sellle for & (dimension) even or f odd, The case for & odd,
f even could not be settled completely {see Section 5,13 This is intimately related to
the suhsct sum of roots of &, . and settling the invertibility question will also selile
the question of when such an arbitrary subset sumn will take values in the base ficld

For symmetric a -putomata. we could obfan similar regults, though a lfew cases
remain nosettled. We were able to extend the subsel sum neccssary and sulMicient
condition to asymmerric 45 well as folded and mixed prids Also for those prids we
have been able to point out special ecages where the invertibility can be settled in
terms of number theoretic properties. Other cases which remam unseilled can form the
subject of further research. We have also peneralised the concepl of nom-urthogzonal
nearest neighbourhood. Inverthiliey of s-awomata with such neighbourhood have heen
characterised in terms of the roots of m-polynomials, Lowever, in s cuse number
theoretic characterisation of invertibilty remains open.
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