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Abstract

We consider the problem of Bayesian inference about the centre of symmetry of a symmetric
density on the real line based on independent identically distributed observations. A result
of Diaconis and Freedman shows that the posterior distribution of the location parameter
may be inconsistent if (symmetrized) Dirichlet process prior is used for the unknown dis-
tribution function. We choose a symmetrized Polya tree prior for the unknown density and
independently choose 6 according to a continuous and positive prior density on the real line.
Suppose that the parameters of Polya tree depend only on the level m of the tree and the
common values r,,’s are such that >, r,}l/z < 00. Then it is shown that for a large class
of true symmetric densities, including the trimodal distribution of Diaconis and Freedman,
the marginal posterior of  is consistent.
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1. Introduction

The starting point of this paper is a result of Diaconis and Freedman (1986a, b).
They consider the location problem X; = 6+ ¢;, where the location parameter 6 has
a prior distribution u and the ¢;’s are independent and identically distributed with
a symmetric distribution F', and where F' itself has a symmetrized Dirichlet prior
with base measure . They then show that, while certain choices of «, for instance
when o has a density o/ with log o’ convex, ensures the consistency of the posterior
at all (0, F'), there are choices of a for which the posterior fails to be consistent at
many reasonable “true” values of the parameters. More precisely, when « is Cauchy,
they exhibit a pair (6y, Py), where Py has a (infinitely differentiable) density and for
which, (g, Py) almost surely, the posterior distribution of 8 given X, Xo,... , X,
does not converge to fy. Similar phenomena was also observed by Doss, who in a
series of papers (1984. 1985a,b) carries out a penetrating analysis of the behaviour
of the posterior when 6 is considered as the median of F', and F', independent of
f has a Dirichlet like prior concentrating on distributions with median 0. Diaconis
and Freedman while contending that discreteness of probabilities in the support of
the Dirichlet may not be the main issue, construct a class of priors supported by
continuous distribution and say “ ... Now consider the location problem; we guess
this prior is consistent when the expectation is the normal and inconsistent with the
Cauchy. The real mathematical issue, it seems to us, is to find computable Bayes
procedures and figure out when they are consistent and when they are inconsistent.”

In this paper, we study consistency issues in the location problem when the prior
on the symmetric distributions is induced by a Polya tree prior. Though the Polya
tree prior is different from that constructed by Diaconis and Freedman, we believe
that our calculations throws some light on the issues raised by them. Specifically, we
consider Polya tree priors that concentrate on symmetric densities. In Theorem 5.1
which is stated informally below, we show that consistency obtains for a large class
of true distributions that are supported on the entire real line.

Suppose the relative entropy of the true error distribution with respect to the
base measure of the Polya tree is finite and the parameters of the Polya tree aq,...c,,
grow like rp, with Y > r;zl/Q < 0o. Further, assume that the operation of shifting
locations of the true density is continuous in the Kullback-Leibler distance. Then

the posterior is consistent.

In Theorem 5.2, we generalize the above result to remove the last hypothesis so
that the result is applicable to many more true densities including those considered
by Diaconis and Freedman (1986a, b). The main tools in our argument is a theorem
of Schwartz and refinement of a theorem of Lavine (1994).

One lesson that emerges from the work of Diaconis and Freedman, and Doss is
that the tail free property, which is a natural tool for establishing consistency, is
destroyed by the addition of a parameter. The methods of our paper indicates that
in semiparametric problems, the Schwartz criterion would be an appropriate tool in



proving consistency.

The results of our paper are stated in the context of location problems though
many of the results would carry through to a wider class of semiparametric problems.
We do not pursue this aspect.

2. Consistency of the posterior

Our parameter space is © x F* where O is the real line and F* is the set of all
symmetric densities on R. On © x F* we consider a prior u x P and given (6, f),
X1, Xo,..., X, are independent identically distributed with law Py r, where Py  is
the probability measure corresponding to the density f(xz — #). We denote by fy
the density f(z — 0). Given X1, Xs,... , X, we consider the posterior distribution
(u xP)(:| Xy, Xg,...,X,) on © x F* given by the density

[ /fo(Xi)
JILfo(Xi)d(u x P)(0. f)
On {fg: (0, f) € F°}, we assign the topology of weak convergence. It is easy to see
that this is equivalent to assigning, on (6, f) € F*, the product of Euclidean and
weak topologies on R and F* respectively. The posterior (u x P)(-| X1, Xo,... , X,)
is said to be consistent at (6g, fo) if, as n — oo, (uxP)(:| X1, Xo,... , X,,) converges
weakly to the degenerate measure dg, , almost surely Py, 7. Clearly, if the posterior
is consistent at (6, fo), the marginal distribution of (u x P)(:| X1, Xo,... ,X,) on
© converges to dg, almost surely Py, s,-

Consistency is also related to robustness with respect to the contamination class
of priors of Berger (1994). It is a weaker property in the following sense. Suppose a
prior Py on the set of probabilities is inconsistent at Py. Consider a contamination
class P of priors of the form {P : P = (1 — ¢)Py + €dp} containing Py = (1 —
e)Py +edp,, with respect to which we wish robustness and let p be a metric for the
weak topology on priors. Letting Pjj and P} stand for the posterior distribution
given X1, Xo,... ,X,, under Py and P; respectively, we have p(P7,dp,) — 0 almost
surely by Schwartz’s theorem mentioned below whereas p(P{,dp,) does not go to
0, by assumption. Clearly p(P7,Pf) cannot tend to 0 as n — oc.

Our main tool in establishing consistency is a theorem of Schwartz (1965). The
relevance of the Schwartz theorem in the present context has been pointed out by
Barron (1986). A detailed exposition can be found in Ghosh and Ramamoorthi
(1997).

Recall that if fy and f; are two densities then the Kullback-Leibler divergence
measure K (fo, f1) is defined by K (fo, f1) = [*2_ fo(z) log(fo(x)/ f1(x))dz. We now

state Schwartz’s theorem in the form that we need.

Theorem 2.1. If for all § > 0,
(b x P){(0, f) : K(foy: fo) < 6} >0, (2.1)



then the posterior (u x P)(-| X1, Xo,... , Xy) is consistent at (6o, fo).

Remark 2.1. The Kullback-Leibler neighbourhoods arise naturally in the study
of general consistency results for the posterior since the posterior is well defined
in these neighbourhoods. For instance, in the present context if {K(fq,, fo) < 0}
is a Kullback-Leibler neighbourhood of fp, then the posterior is Pf(,0 -unique in
{K(fo,, fo) < 0}. On the other hand, when there is no location parameter present,
consistency of the posterior can be proved, at least for the standard (but not unique)
posteriors for the Dirichlet and Polya tree priors without appealing to the Schwartz
theorem.

3. Polya tree priors

Some basic statistical implications of the Polya tree prior can be found in Ferguson
(1974), Lavine (1992, 1994) and Mauldin, Sudderth and Williams (1992). In this
section we closely follow Lavine (1992, 1994). Let £ = {0,1} and E™ be the m-fold
Cartesian product E x --- x E where E® = @. Further, set E* = US°_ E™. Let
mo = {R} and for each m =1,2,..., let m,, = {B: : € € E™} be a partition of R so
that sets of m,,41 are obtained from a binary split of the sets of 7, and Uyo_qm, is
a generator for the Borel sigma-field on R. Let IT = {7, : m =0,1,...}.

Definition 3.1. A random probability measure P on R is said to possess a Polya
tree distribution with parameters (II, A), we write P ~ PT(II,.A), if there exist a
collection of nonnegative numbers A = {a. : ¢ € E*} and a collection Y = {Y. : ¢ €
E*} of random variables such that the following hold:

(i) The collection Y consists of mutually independent random variables;
(ii) For each £ € E*, Y. has a beta distribution with parameters a.o and a.;

(iii) The random probability measure P is related to ) through the relations

m m
P(Beyoen) = | I Yerers I 0-Yeei )|, m=12...,
j=1;e;=0 j=lig;j=1

where the factors are Yy or 1 — Yy if j = 1.

We restrict ourselves to partitions IT = {m,, : m = 0,1,...} that are determined
by a strictly positive continuous density a on R in the following sense: The sets in
Tm are intervals of the form {z : (k—1)/2™ < [*_a(t)dt < k/2™}, k=1,2,...,2™.
We term the measure (corresponding to) « as the base measure because of its role
similar to the base measure of Dirichlet process. The above conditions are assumed
throughout without explicit mention.

Our next theorem refines Theorem 2 of Lavine (1994) by providing an explicit
expression for the parameters.



Theorem 3.1. Let fy be a density and P denote the prior PT(I1, . A), where a. =
T for alle € E™ and Y °_, 7";11/2 < 00. Further assume that K(fo, ) < oo. If

P ~ PT(IL,.A), then almost surely, P has a density f and

P{P: K(fo,f) <d} >0, §>0. (3.1)

249 guffices for an application of

Remark 3.1. For any ¢ > 0, the sequence r,,, = m

the Theorem 3.1. This sequence grows a little faster than Lavine’s choice r,, = m?.
Whether consistency obtains under Lavine’s choice is still left open. The choice of
the parameter sequence and the base measure is likely to play a role in determining

the rate of convergence and robustness properties.

Remark 3.2. In a recent article, Ghosal, Ghosh and Ramamoorthi (1998) show
that priors arising out of Dirichlet mixtures of normals also satisfy (3.1).

Proof of Theorem 3.1. By the results of Kraft (1964), it follows that the weaker
condition > ° r,-1 < oo implies the existence of a density of the random proba-
bility measure P. Considering the transformation z — [*_ a(t)dt, we can without
loss of generality assume that f and fy are densities on [0,1]. Moreover, II is then
the canonical binary partition. By the martingale convergence theorem, there exist

a collection of numbers {y. : ¢ € E*} from [0, 1] such that, with probability one

m m
folw) = lim_ || IT 20 weres) | (3.2)
j=1;g;=0 j=1ig;=1
where the limit is taken through a sequence €1£5 - - - which corresponds to the dyadic

expansion of z. Since the density f of P exists, it similarly follows that

m m

fla) = lim_ I 2v...,., I 20-v.,..) (3.3)
j=1;¢;=0 j=lig;=1

for almost every realization of f. Now for any N > 1,

K(fo. f) = My + Ban — Ran, (3.4)
where
al Y Al l1—y _
My = E |log (#) (#) , (3.5)
j_};—EJ];_U Y51---5]71 j_};—EJ];—l 1 - YEI"'E]‘—'I |
Rinx = E |log I 26 I 20 =were ) (3.6)
j=N+1;6;,=0 j=N+1;6,=1



and

j=N+1;6;=0 j=N+1;e5=1

Ry =E {log ﬁ 7) PR ﬁ 2(1 ~ Yeyoe; ) } ; (3.7)

here E stands for the expectation with respect to the distribution of (£1,e9,...)
which comes from the binary expansion of = and z is distributed according to the
density fy, for a fixed realization of the Y -values.

By the definition of a Polya tree, My and Roy are independent random variables
for all N > 1. To prove (3.1), it suffices to show that for any > 0, there is some
N > 1 such that

P{My < é} >0, (3.8)
|Rin| <6 (3.9)

and
P{|Ran| < 0} > 0. (3.10)

The set {(Yz: :e € E™,m =0,... ,N —1): My < 40} is a nonempty open set
in ]RQN’]; it is open by the continuity of the relevant map while it is nonempty
as (ye : e € E™,m =0,...,N — 1) belongs to this set. Thus (3.8) follows by the
nonsingularity of the beta distribution. Relation (3.9) follows from Lemma 2 of
Barron (1985). To complete the proof, it remains to show (3.10) for some N > 1.
We shall actually prove the stronger fact

lim P{|Roy| > 6} = 0. (3.11)
N—oo

Let E stand for the expectation with respect to the prior distribution P and E, as
before, the expectation with respect to the distribution of (e1,e5,...). Now

P{|Ryn| > 0}
< 6 '"E|Ray]|
<§ 'EE > log(2Yere )+ Y [log(2(1 - Vi)
Jj=N+1;6;=0 Jj=N+1;g;=1
— 6 'E > Ellog(2Ve,e )+ Y. Bllog(2(1 = Yoy, ,))|
| j=N+1;e;=0 j=N+1ligj=1
<6'E| Y max{E|log(2Vz, .., )|, Ellog(2(1 = Vz,..c; )|}
| =N+1
<5 Yy max  max{E[log(2Y;,...., ,)|, Ellog(2(1 = Yz,...; ,))[}
.- (E]---Ej71)6E171
J=N+1
=5 )" nrm), (3.12)
J=N+1



where (k) = E|log(2Uy)| with Uy ~Beta(k, k). By Lemma A.1 of appendix, n(k) =
O(k~—'/?) as k — oco. Since Yooy r;LI/2 < 0o by assumption, the right hand side
(RHS) of (3.12) is the tail of a convergent series. This completes the proof of (3.11)
and hence that of the theorem. O

Remark 3.3. A minor modification of the proof shows that the Kullback-Leibler
neighbourhoods would continue to have positive measure when the prior is mod-

ified as follows: Divide R into k& + 1 intervals Iy, ls,... ,Ixy; and assume that
(P(Iy),P(I3),... ,P(I})) have a joint density which is positive everywhere on the
k-dimensional set {(ai,...,ax) : a; > 0,5 = 1,... ,k,Z’;Zl a; < 1}. For each

I;, the conditional distribution given P(I;) has a Polya tree prior satisfying the
assumptions of the Theorem. We point out that the priors are special cases of
the priors constructed by Diaconis and Freedman and consequently the consistency
results proved later are also valid for the restricted class of Diaconis-Freedman pri-
ors. Moreover, it follows from Theorem 1 of Lavine (1994) that such priors can
approximate any prior belief upto any desired degree of accuracy in a strong sense.

Remark 3.4. It is not necessary that for each m, ag,...,, be the same for all

(€1,... ,&m) € E™. The proof goes through even when only a;, ..., 0 = Qeye,, 11
for all (e1,... ,6m_1) € E™ ', m > 1, and r,,, := min{ae,..c, : (¢1,... ,6m) € E™}
—1/2

satisfies the condition Y >, rm '~ < oco.

4. Symmetrization

A prior P on the set F of all densities can be used to construct a prior on the set
F?—the space of all symmetric densities. We consider two natural ways of doing
this.
Method 1. Let P be a prior on . The map f — (f(z)+ f(—x))/2 from F to F*
induces a measure on F*.
Method 2. Let P be a prior on F(R") the space of densities on RT. The map
f = f* where, f*(x) = f*(—z) = f(x)/2, gives rise to a measure on F?*.

Unlike the Dirichlet process, even if the partitions and o, are all symmetric,
these two methods yield different probabilities on F*. However, our consistency
results hold under both methods, as the next lemma indicates.

Lemma 4.1. Let P be a prior on F or on F(R") satisfying (3.1). Let P* be the
prior obtained on F° by method 1 or method 2. If fo € F?*, then

P{feF :K(fo,f)<d} >0, 06>0 (4.1)

Proof. For Method 1, the result follows from Jensen’s inequality and the conclusion
is immediate for method 2 since, setting go(z) = 2fo(x) and g(z) = 2f(x) for x in
R*, both gg, g belong to F(R") and K(fy, f) = K(go,9)- O



5. Location parameter problem

As mentioned in Section 1, our parameter space is © x F* and given (0, f), let
X1, Xo9,..., X, be independent and identically distributed. fy.

Definition 5.1. The map (6, f) — fp is said to be KL-continuous at (0, fo) if

K(fofon) = [ o) logfo(w)/ (e — 6))ds >0 as 00,

We would then call (0, fo) a KL-continuity point.

Let f;, be the density defined by fi,(x) = (foe(x) + foe(—2))/2, the sym-
metrization of f g, where fj 9, as before, stands for fy(- — ).

Theorem 5.1. Assume that for every sufficiently small |0|, (4.1) holds with fy
replaced by fi,. If n gives positive mass to all open sets in © and if (0, fo) is
KL—contmuz'ty,pomt, then the posterior (u x P*)(:| X1, Xo,... ,X,,) is consistent at
(Ho,fo) fOT‘ all 90.

Proof. It suffices to prove when #y = 0. By Theorem 2.1, it is enough to verify that
u x P* satisfies the Schwartz condition (2.1), namely (u x P*){(0, f) : K(fo, fo) <
d} > 0 for all § > 0. Now for any 0,

K(fo,fo) — / " Jolog(fo/ fo)

= [ ottt (5.1)
— [ hatogfuo— [ fuatoes.
Since
| oo fio= [ fiatossis (5.2)
and
| oatoss = [ figtoss, (5.3
we have

K (fo, fo) _/ fo,alog(fo,a/fg,a)+/ fo.olog(foe/f)

<5 foatos (%) +3 ) fustos ( ;ﬁf”"g) +K(fipnf) (5:4)
1

= 5 K(fo. fo—20) + K (5 9. ).



By the KL-continuity assumption there is an e such that when |0| < ¢, the first
term is less than 0/2. For any 6, since fj, is symmetric {f : K(f;,, f) < /2} has
positive P* measure. Thus we have, for each § € [—e,e,{f : K(f(’)‘a,f) < 0/2} is
contained in {f : K(fo, fg) < 0}. This completes the proof. 7 O

The previous theorem establishes the consistency for (6g, fo) when (0, fy) is a
KL-continuity point. This requirement fails when fy has support in a finite interval
[—a,a]. However, the next theorem shows that consistency continues to hold even
when fy has support in a finite interval, provided fjy is continuous. We show this
by approximating fy by a fi satisfying conditions of Theorem 5.1. The next lemma
indicates the kind of approximation that is needed. The proof is deferred to the
appendix.

Lemma 5.1. Let fy and f1 be densities so that fo < Cfy. Then for any f,

K(fo, /) <(C+1)log C+ CIK(f1,[) + VK(fr, f)]-

Theorem 5.2. Assume that for every sufficiently small |0|, (4.1) holds with fy
replaced by f;, and p gives positive mass to all open sets in © . If fq is continuous
and has suppért in a finite interval [—a,al, and log a(x) is integrable with respect
to N(u,0?) for all (u,0), then the posterior P(-| X1, Xa,...,X,) is consistent at

(0, fo) for all 6.

Proof. We consider two cases.
Case 1. [inf}fo(.’li) =a>0.

—a,a
Let

(1 =n)fo(z), for —a<z<a,
filz) =4 (0/2)¢_402, forz < —a, (5.5)
(77/2)(:25(1,02’ for x > a,

where ¢_, ;2 and ¢, ,2 are respectively the densities of N(—a, 0?) and N(a,o?) and
o2 is chosen to ensure that f; is continuous at a.
We first show that f; is KL-continuous, i.e.,

})ig(l)/oofllog(fl/fl,o) :/

It is enough to establish that for some € > 0, the family {log(fi/f1) : |0| < €} is
uniformly integrable with respect to f;. This follows since for any M,

élﬂ% filog(f1/f1,6) = 0. (5.6)

o0

sup sup | log(f1(«)/f1,0(2))] < Car  (say)
|0|<e|x|< M

and when M is large, for |z| > M, f1¢(z) = (n/2)(cV2r) L exp[—(z—a—0)?/(20?)]
for all |f| < £, implying

sup [ (o) og(f(a)/ Frala))dr 0 asM - .
|0l<e J |z|>M



It now follows from Lemma 5.1 that, by setting C = (1 — )~ ! and choosing 7
close to 1 so that (C + 1)log C < §/2, we can choose a §* such that K(fy, f) < §*
implies K (fo, f) < 0; consequently {(6, f) : K(f1,fo) < *} C {(0,f) : K(fo, fo) <
d}. Theorem 5.1 shows that the set on the left hand side has positive u x P*
measure.

Case 2. inf}f()(.’li) = 0.

By the continuity of fy, we can, given any n > 0, choose a C such that ffa(fg \%
C) = 1+mn, where aVb = max(a,b). Set fi = (1+n) '(foVC). Then fo < (14+n)f1
and using Lemma 5.1, we can choose n and §* small such that {f : K(fi,f) < §*} C
{f : K(fo, f) < d}. Since f; is covered by case 1, the theorem follows. O

Remark 5.1. The above consistency theorem notwithstanding, computation of the
posterior for 6 for the Diaconis-Freedman density shows that convergence for Cauchy
base measure is very slow. Even for n = 500, one notices the tendency to converge
to a wrong value as in the case of the Dirichlet prior with Cauchy base measure.
Rapid convergence to the right value does occur in the normal case.

Remark 5.2. While we have discussed consistency issues, it would be interesting
to explore how the robustness calculations in Section 4 of Lavine (1994) can be
made in the context of a location parameter.

Remark 5.3. Lemma 5.1 and the Schwartz theorem can be used to yield an ana-
logue of Theorem 5.1 for general semiparametric models. Let (6, f) — o(0, f),
where ¢(0, f) is a density on R. Suppose a prior u x P on (0, F) satisfies

(1) p gives positive mass to every neighbourhood of 6

(74) For all sufficiently small |6 — 6|, and all € > 0,

P{f : K(¢(97f0)a ¢(97f)) < 5} > 0.

Then if (0, fo) is a point such that

(a) % < C(0), where C(0) — 1 as 6 — 6,

»JO
(b) 01i>H010K(¢(9a fﬂ)a ¢(97f)) = K(¢(90a fﬂ)a ¢(901 f)) for all .f’

then the posterior is consistent at (6, fo).

For a proof, take ¢(6p, fo) and ¢(0, fo) as fo and fi respectively in Lemma 5.1.
Then for each 6 close to 0y, {f : K(¢(bo, fo),#(0, f)) < €} will contain a set of the
form {f : K(4(0, fo),d(0, f)) < €'}, and this set has positive measure by assump-
tions (i), (i7) and (b) above.

Appendix

Lemma A.2. If U, ~Beta(k, k), then E|log(2U)| = O(k~/?) as k — .

10



Proof. The proof uses Laplace’s method. Let n, = E|log(2Uy)|. In other words

1 ! - -
"= B | o)t (1 =, (A1)
implying that
1 ! - ~

Adding (A.1) and (A.2) and observing that log(2u) and log(2(1 — u)) are always of
the opposite sign, we obtain

21 = %/0 Hog (1) (1 — w))|uf (1 — w)* ' du. (A.3)

This implies by Jensen’s inequality that

1 1
gt < m/ﬂ (log(u/(1 — u)))?u* 11 — )k Ldu

1 1 . B
- m/ﬂ {1+ (log(u/(1 — u))) }uk (1 - u)k du—1. (A4)

Now
{1+ (log(u/(1 —w)))*}u* (1 —w)* ' = exp(gi(u)), (A.5)
where
ge(u) = (k— 1) logu + (k —1)log(1 — u) + h(u)
and

h(u) = log{1 + (log(u/(1 - u)))*}.
It is easily observed that gy(1/2) = —2(k — 1)log2, ¢,(1/2) = 0 and g (u) is
decreasing in u so that gx(u) has a unique maximum at 1/2. Fix § > 0 and let
A =sup{h/(u) : |[u—1/2| < §}. Thus on u € (5 — 8, + d), we have

(u— %)2

gr(u) < —2(k — 1) log 2 — (8(k — 1) — \). (A.6)

Thus
Anp,

1 ]/2+5 )\ 1 2
< exp |- 2(k — 1) 1o 24k1<17><u—> du
Bk F) /1/“ (b= Dlog2 Atk =D {1 g5=p ) (" 3

# oo (u —u 2ukf] —Uki]u—
B ,/um{lﬂl /(1= )Pt (1= ) -1

D(2k) _ op-1) OoeX o B A u_l 2 )
= T /oo p[ Ak ”(1 Wl))( 2>]d
: — )2 b — )R —
ol M i P (R Y

11



Note that the function u(1 — u){1 + (log(u/(1 — u))?} is bounded on (0,1) by M
(say). Hence the second term on the RHS of (A.7) is dominated by

_ % (kl)(il; 2)P{ Uk—1 — % > 5}
< % (2 (kl)(i’; 2 oy - %\2
=0k ). (A.8)
The first term on the RHS of (A.7) is
(II:EZ;))QQ%”(Qw)]/Q(S(k VI (A.9)

which, by an application of Stirling’s inequalities [Whittaker and Watson (1928),
p. 253], can be dominated by

(2k)%k 12672k (27)1/2 exp[(24k) '] o~ 2k+2
(Kk—1/2¢—F(27)1/2)2

A\ —1/2
x 2732k —1)71/? <1 - 7)>

(27[_)]/2

8(k —1
o\ /2 A —1/2
= — 24k) N[ 1 - ———
(1) oot 1 (1= g7
=14+0( ). (A.10)
Thus 2 = O(k™!), completing the proof. O

Proof of Lemma 5.1. We begin with the following inequality which is found in
Hannan (1960). If fy and f; are densities

+ -
/fﬂ[log(fﬂ/fl)] = /fo[log(fl/fo)]Jr < /fo (% _ 1) _ M
(A.11)

Hence if fo < Cfy,

/ folog(fo/f) = /f , Jotostfor 1) + /f | Folon(fo/ 1) = (+D) (s,
- (A.12)

12



where we have

m < ¢ / filogC + C /f _, Fros(/ )

< ClogC+CIK(fi,f) - /f A
— ClogC—i—C{K(f],f)—l—M} (A.13)
and
() < [ folos(Cho/fo) < log C: (A14)
consequently
K(fo.f) < ClogC +log O+ CIK(f1, f) + iy~ I (A15)
Since [Hannan (1960)] K(f1, f) > ||f1 — f|I?/4, the lemma follows. O
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