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1. IntroductionThe starting point of this paper is a result of Diaconis and Freedman (1986a, b).They consider the location problem Xi = �+�i, where the location parameter � hasa prior distribution � and the �i's are independent and identically distributed witha symmetric distribution F , and where F itself has a symmetrized Dirichlet priorwith base measure �. They then show that, while certain choices of �, for instancewhen � has a density �0 with log�0 convex, ensures the consistency of the posteriorat all (�; F ), there are choices of � for which the posterior fails to be consistent atmany reasonable \true" values of the parameters. More precisely, when � is Cauchy,they exhibit a pair (�0; P0), where P0 has a (in�nitely di�erentiable) density and forwhich, (�0; P0) almost surely, the posterior distribution of � given X1;X2; : : : ;Xndoes not converge to �0. Similar phenomena was also observed by Doss, who in aseries of papers (1984. 1985a,b) carries out a penetrating analysis of the behaviourof the posterior when � is considered as the median of F , and F , independent of� has a Dirichlet like prior concentrating on distributions with median 0. Diaconisand Freedman while contending that discreteness of probabilities in the support ofthe Dirichlet may not be the main issue, construct a class of priors supported bycontinuous distribution and say \ : : : Now consider the location problem; we guessthis prior is consistent when the expectation is the normal and inconsistent with theCauchy. The real mathematical issue, it seems to us, is to �nd computable Bayesprocedures and �gure out when they are consistent and when they are inconsistent."In this paper, we study consistency issues in the location problem when the prioron the symmetric distributions is induced by a Polya tree prior. Though the Polyatree prior is di�erent from that constructed by Diaconis and Freedman, we believethat our calculations throws some light on the issues raised by them. Speci�cally, weconsider Polya tree priors that concentrate on symmetric densities. In Theorem 5.1which is stated informally below, we show that consistency obtains for a large classof true distributions that are supported on the entire real line.Suppose the relative entropy of the true error distribution with respect to thebase measure of the Polya tree is �nite and the parameters of the Polya tree �"1���"mgrow like rm with P1m=0 r�1=2m <1. Further, assume that the operation of shiftinglocations of the true density is continuous in the Kullback-Leibler distance. Thenthe posterior is consistent.In Theorem 5.2, we generalize the above result to remove the last hypothesis sothat the result is applicable to many more true densities including those consideredby Diaconis and Freedman (1986a, b). The main tools in our argument is a theoremof Schwartz and re�nement of a theorem of Lavine (1994).One lesson that emerges from the work of Diaconis and Freedman, and Doss isthat the tail free property, which is a natural tool for establishing consistency, isdestroyed by the addition of a parameter. The methods of our paper indicates thatin semiparametric problems, the Schwartz criterion would be an appropriate tool in2



proving consistency.The results of our paper are stated in the context of location problems thoughmany of the results would carry through to a wider class of semiparametric problems.We do not pursue this aspect.2. Consistency of the posteriorOur parameter space is � � Fs where � is the real line and Fs is the set of allsymmetric densities on R. On �� Fs, we consider a prior ��P and given (�; f),X1;X2; : : : ;Xn are independent identically distributed with law P�;f , where P�;f isthe probability measure corresponding to the density f(x � �). We denote by f�the density f(x� �). Given X1;X2; : : : ;Xn, we consider the posterior distribution(��P)(�jX1;X2; : : : ;Xn) on ��Fs given by the densityQ f�(Xi)R Q f�(Xi)d(��P)(�; f) :On ff� : (�; f) 2 Fsg, we assign the topology of weak convergence. It is easy to seethat this is equivalent to assigning, on (�; f) 2 Fs, the product of Euclidean andweak topologies on R and Fs respectively. The posterior (��P)(�jX1;X2; : : : ;Xn)is said to be consistent at (�0; f0) if, as n!1, (��P)(�jX1;X2; : : : ;Xn) convergesweakly to the degenerate measure ��0;f0 almost surely P�0;f0 . Clearly, if the posterioris consistent at (�0; f0), the marginal distribution of (� � P)(�jX1;X2; : : : ;Xn) on� converges to ��0 almost surely P�0;f0 .Consistency is also related to robustness with respect to the contamination classof priors of Berger (1994). It is a weaker property in the following sense. Suppose aprior P0 on the set of probabilities is inconsistent at P0. Consider a contaminationclass P of priors of the form fP : P = (1 � ")P0 + "�P g containing P1 = (1 �")P0+ "�P0 , with respect to which we wish robustness and let � be a metric for theweak topology on priors. Letting Pn0 and Pn1 stand for the posterior distributiongiven X1;X2; : : : ;Xn under P0 and P1 respectively, we have �(Pn1 ; �P0)! 0 almostsurely by Schwartz's theorem mentioned below whereas �(Pn0 ; �P0) does not go to0, by assumption. Clearly �(Pn1 ;Pn0 ) cannot tend to 0 as n!1.Our main tool in establishing consistency is a theorem of Schwartz (1965). Therelevance of the Schwartz theorem in the present context has been pointed out byBarron (1986). A detailed exposition can be found in Ghosh and Ramamoorthi(1997).Recall that if f0 and f1 are two densities then the Kullback-Leibler divergencemeasure K(f0; f1) is de�ned by K(f0; f1) = R1�1 f0(x) log(f0(x)=f1(x))dx. We nowstate Schwartz's theorem in the form that we need.Theorem 2.1. If for all � > 0,(��P)f(�; f) : K(f�0 ; f�) < �g > 0; (2.1)3



then the posterior (��P)(�jX1;X2; : : : ;Xn) is consistent at (�0; f0).Remark 2.1. The Kullback-Leibler neighbourhoods arise naturally in the studyof general consistency results for the posterior since the posterior is well de�nedin these neighbourhoods. For instance, in the present context if fK(f�0 ; f�) < �gis a Kullback-Leibler neighbourhood of f�0 then the posterior is Pf�0 -unique infK(f�0 ; f�) < �g. On the other hand, when there is no location parameter present,consistency of the posterior can be proved, at least for the standard (but not unique)posteriors for the Dirichlet and Polya tree priors without appealing to the Schwartztheorem.3. Polya tree priorsSome basic statistical implications of the Polya tree prior can be found in Ferguson(1974), Lavine (1992, 1994) and Mauldin, Sudderth and Williams (1992). In thissection we closely follow Lavine (1992, 1994). Let E = f0; 1g and Em be the m-foldCartesian product E � � � � � E where E0 = �. Further, set E� = [1m=0Em. Let�0 = fRg and for each m = 1; 2; : : : , let �m = fB" : " 2 Emg be a partition of R sothat sets of �m+1 are obtained from a binary split of the sets of �m and [1m=0�m isa generator for the Borel sigma-�eld on R. Let � = f�m : m = 0; 1; : : : g.De�nition 3.1. A random probability measure P on R is said to possess a Polyatree distribution with parameters (�;A), we write P � PT(�;A), if there exist acollection of nonnegative numbers A = f�" : " 2 E�g and a collection Y = fY" : " 2E�g of random variables such that the following hold:(i) The collection Y consists of mutually independent random variables;(ii) For each " 2 E�, Y" has a beta distribution with parameters �"0 and �"1;(iii) The random probability measure P is related to Y through the relationsP(B"1���"m) = 0@ mYj=1;"j=0 Y"1���"j�11A0@ mYj=1;"j=1(1� Y"1���"j�1)1A ; m = 1; 2; : : : ;where the factors are Y� or 1� Y� if j = 1.We restrict ourselves to partitions � = f�m : m = 0; 1; : : : g that are determinedby a strictly positive continuous density � on R in the following sense: The sets in�m are intervals of the form fx : (k�1)=2m < R x�1 �(t)dt � k=2mg, k = 1; 2; : : : ; 2m.We term the measure (corresponding to) � as the base measure because of its rolesimilar to the base measure of Dirichlet process. The above conditions are assumedthroughout without explicit mention.Our next theorem re�nes Theorem 2 of Lavine (1994) by providing an explicitexpression for the parameters. 4



Theorem 3.1. Let f0 be a density and P denote the prior PT(�;A), where �" =rm for all " 2 Em and P1m=1 r�1=2m < 1. Further assume that K(f0; �) < 1. IfP � PT(�;A), then almost surely, P has a density f andPfP : K(f0; f) < �g > 0; � > 0: (3.1)Remark 3.1. For any � > 0, the sequence rm = m2+� su�ces for an application ofthe Theorem 3.1. This sequence grows a little faster than Lavine's choice rm = m2.Whether consistency obtains under Lavine's choice is still left open. The choice ofthe parameter sequence and the base measure is likely to play a role in determiningthe rate of convergence and robustness properties.Remark 3.2. In a recent article, Ghosal, Ghosh and Ramamoorthi (1998) showthat priors arising out of Dirichlet mixtures of normals also satisfy (3.1).Proof of Theorem 3.1. By the results of Kraft (1964), it follows that the weakercondition P1m=0 r�1m < 1 implies the existence of a density of the random proba-bility measure P. Considering the transformation x 7! R x�1 �(t)dt, we can withoutloss of generality assume that f and f0 are densities on [0; 1]. Moreover, � is thenthe canonical binary partition. By the martingale convergence theorem, there exista collection of numbers fy" : " 2 E�g from [0; 1] such that, with probability onef0(x) = limm!10@ mYj=1;"j=0 2y"1���"j�11A0@ mYj=1;"j=1 2(1 � y"1���"j�1)1A ; (3.2)where the limit is taken through a sequence "1"2 � � � which corresponds to the dyadicexpansion of x. Since the density f of P exists, it similarly follows thatf(x) = limm!10@ mYj=1;"j=0 2Y"1���"j�11A0@ mYj=1;"j=1 2(1 � Y"1���"j�1)1A (3.3)for almost every realization of f . Now for any N � 1,K(f0; f) =MN +R1N �R2N ; (3.4)where MN = E24log0@ NYj=1;"j=0� y"1���"j�1Y"1���"j�1� NYj=1;"j=1� 1� y"1���"j�11� Y"1���"j�1�1A35 ; (3.5)
R1N = E24log0@ 1Yj=N+1;"j=0 2y"1���"j�1 1Yj=N+1;"j=1 2(1� y"1���"j�1)1A35 (3.6)5



and R2N = E24log0@ 1Yj=N+1;"j=0 2Y"1���"j�1 1Yj=N+1;"j=1 2(1� Y"1���"j�1)1A35 ; (3.7)here E stands for the expectation with respect to the distribution of ("1; "2; : : : )which comes from the binary expansion of x and x is distributed according to thedensity f0, for a �xed realization of the Y -values.By the de�nition of a Polya tree,MN and R2N are independent random variablesfor all N � 1. To prove (3.1), it su�ces to show that for any � > 0, there is someN � 1 such that PfMN < �g > 0; (3.8)jR1N j < � (3.9)and PfjR2N j < �g > 0: (3.10)The set f(Y" : " 2 Em;m = 0; : : : ; N � 1) : MN < �g is a nonempty open setin R2N�1; it is open by the continuity of the relevant map while it is nonemptyas (y" : " 2 Em;m = 0; : : : ; N � 1) belongs to this set. Thus (3.8) follows by thenonsingularity of the beta distribution. Relation (3.9) follows from Lemma 2 ofBarron (1985). To complete the proof, it remains to show (3.10) for some N � 1.We shall actually prove the stronger factlimN!1PfjR2N j � �g = 0: (3.11)Let E stand for the expectation with respect to the prior distribution P and E, asbefore, the expectation with respect to the distribution of ("1; "2; : : : ). NowPfjR2N j � �g� ��1EjR2N j� ��1EE24 1Xj=N+1;"j=0 j log(2Y"1���"j�1)j+ 1Xj=N+1;"j=1 j log(2(1 � Y"1���"j�1))j35= ��1E24 1Xj=N+1;"j=0Ej log(2Y"1���"j�1)j+ 1Xj=N+1;"j=1Ej log(2(1� Y"1���"j�1))j35� ��1E24 1Xj=N+1maxfEj log(2Y"1���"j�1)j;Ej log(2(1 � Y"1���"j�1))jg35� ��1 1Xj=N+1 max("1���"j�1)2Ej�1maxfEj log(2Y"1���"j�1)j;Ej log(2(1 � Y"1���"j�1))jg= ��1 1Xj=N+1 �(rm); (3.12)6



where �(k) = Ej log(2Uk)j with Uk �Beta(k; k). By Lemma A.1 of appendix, �(k) =O(k�1=2) as k ! 1. Since P1m=1 r�1=2m < 1 by assumption, the right hand side(RHS) of (3.12) is the tail of a convergent series. This completes the proof of (3.11)and hence that of the theorem.Remark 3.3. A minor modi�cation of the proof shows that the Kullback-Leiblerneighbourhoods would continue to have positive measure when the prior is mod-i�ed as follows: Divide R into k + 1 intervals I1; I2; : : : ; Ik+1 and assume that(P (I1); P (I2); : : : ; P (Ik)) have a joint density which is positive everywhere on thek-dimensional set f(a1; : : : ; ak) : ai > 0; j = 1; : : : ; k;Pkj=1 ai < 1g. For eachIj , the conditional distribution given P (Ij) has a Polya tree prior satisfying theassumptions of the Theorem. We point out that the priors are special cases ofthe priors constructed by Diaconis and Freedman and consequently the consistencyresults proved later are also valid for the restricted class of Diaconis-Freedman pri-ors. Moreover, it follows from Theorem 1 of Lavine (1994) that such priors canapproximate any prior belief upto any desired degree of accuracy in a strong sense.Remark 3.4. It is not necessary that for each m, �"1���"m be the same for all("1; : : : ; "m) 2 Em. The proof goes through even when only �"1���"m�10 = �"1���"m�11for all ("1; : : : ; "m�1) 2 Em�1, m � 1, and rm := minf�"1���"m : ("1; : : : ; "m) 2 Emgsatis�es the condition P1m=1 r�1=2m <1.4. SymmetrizationA prior P on the set F of all densities can be used to construct a prior on the setFs|the space of all symmetric densities. We consider two natural ways of doingthis.Method 1. Let P be a prior on F . The map f 7! (f(x) + f(�x))=2 from F to Fsinduces a measure on Fs.Method 2. Let P be a prior on F(R+)|the space of densities on R+ . The mapf 7! f� where, f�(x) = f�(�x) = f(x)=2, gives rise to a measure on Fs.Unlike the Dirichlet process, even if the partitions and �" are all symmetric,these two methods yield di�erent probabilities on Fs. However, our consistencyresults hold under both methods, as the next lemma indicates.Lemma 4.1. Let P be a prior on F or on F(R+) satisfying (3:1). Let P� be theprior obtained on Fs by method 1 or method 2. If f0 2 Fs, thenP�ff 2 Fs : K(f0; f) < �g > 0; � > 0 (4.1)Proof. For Method 1, the result follows from Jensen's inequality and the conclusionis immediate for method 2 since, setting g0(x) = 2f0(x) and g(x) = 2f(x) for x inR+ , both g0; g belong to F(R+) and K(f0; f) = K(g0; g).7



5. Location parameter problemAs mentioned in Section 1, our parameter space is � � Fs and given (�; f), letX1;X2; : : : ;Xn be independent and identically distributed. f�.De�nition 5.1. The map (�; f) 7! f� is said to be KL-continuous at (0; f0) ifK(f0; f0;�) = Z 1�1 f0(x) log(f0(x)=f0(x� �))dx! 0 as � ! 0:We would then call (0; f0) a KL-continuity point.Let f�0;� be the density de�ned by f�0;�(x) = (f0;�(x) + f0;�(�x))=2, the sym-metrization of f0;�, where f0;�, as before, stands for f0(� � �).Theorem 5.1. Assume that for every su�ciently small j�j, (4:1) holds with f0replaced by f�0;�. If � gives positive mass to all open sets in � and if (0; f0) isKL-continuity point, then the posterior (��P�)(�jX1;X2; : : : ;Xn) is consistent at(�0; f0) for all �0.Proof. It su�ces to prove when �0 = 0. By Theorem 2.1, it is enough to verify that��P� satis�es the Schwartz condition (2.1), namely (��P�)f(�; f) : K(f0; f�) <�g > 0 for all � > 0. Now for any �,K(f0; f�) = Z 1�1 f0 log(f0=f�)= Z 1�1 f0 log(f0=f��) (5.1)= Z 1�1 f0;� log f0;� � Z 1�1 f0;� log f:Since Z 1�1 f0;� log f�0;� = Z 1�1 f�0;� log f�0;� (5.2)and Z 1�1 f0;� log f = Z 1�1 f�0;� log f; (5.3)we haveK(f0; f�) = Z 1�1 f0;� log(f0;�=f�0;�) + Z 1�1 f�0;� log(f�0;�=f)� 12 Z 1�1 f0;� log�f0;�f0;��+ 12 Z 1�1 f0;� log� f0;�f0;���+K(f�0;�; f)= 12K(f0; f0;�2�) +K(f�0;�; f): (5.4)
8



By the KL-continuity assumption there is an " such that when j�j < ", the �rstterm is less than �=2. For any �, since f�0;� is symmetric ff : K(f�0;�; f) < �=2g haspositive P� measure. Thus we have, for each � 2 [�"; "]; ff : K(f�0;�; f) < �=2g iscontained in ff : K(f0; f�) < �g. This completes the proof.The previous theorem establishes the consistency for (�0; f0) when (0; f0) is aKL-continuity point. This requirement fails when f0 has support in a �nite interval[�a; a]. However, the next theorem shows that consistency continues to hold evenwhen f0 has support in a �nite interval, provided f0 is continuous. We show thisby approximating f0 by a f1 satisfying conditions of Theorem 5.1. The next lemmaindicates the kind of approximation that is needed. The proof is deferred to theappendix.Lemma 5.1. Let f0 and f1 be densities so that f0 � Cf1. Then for any f ,K(f0; f) � (C + 1) logC + C[K(f1; f) +pK(f1; f)]:Theorem 5.2. Assume that for every su�ciently small j�j, (4:1) holds with f0replaced by f�0;� and � gives positive mass to all open sets in � . If f0 is continuousand has support in a �nite interval [�a; a], and log�(x) is integrable with respectto N(�; �2) for all (�; �), then the posterior P(�jX1;X2; : : : ;Xn) is consistent at(�; f0) for all �.Proof. We consider two cases.Case 1. inf[�a;a] f0(x) = � > 0.Let f1(x) = 8<: (1� �)f0(x); for � a < x < a;(�=2)��a;�2 ; for x � �a;(�=2)�a;�2 ; for x � a; (5.5)where ��a;�2 and �a;�2 are respectively the densities of N(�a; �2) and N(a; �2) and�2 is chosen to ensure that f1 is continuous at a.We �rst show that f1 is KL-continuous, i.e.,lim�!0Z 1�1 f1 log(f1=f1;�) = Z 1�1 lim�!0 f1 log(f1=f1;�) = 0: (5.6)It is enough to establish that for some " > 0, the family flog(f1=f1;�) : j�j < "g isuniformly integrable with respect to f1. This follows since for any M ,supj�j<" supjxj<Mj log(f1(x)=f1;�(x))j < CM (say)and whenM is large, for jxj > M , f1;�(x) = (�=2)(�p2�)�1 exp[�(x�a��)2=(2�2)]for all j�j < ", implyingsupj�j<"Zjxj>M f1(x) log(f1(x)=f1;�(x))dx! 0 asM !1:9



It now follows from Lemma 5.1 that, by setting C = (1 � �)�1 and choosing �close to 1 so that (C + 1) logC < �=2, we can choose a �� such that K(f1; f) < ��implies K(f0; f) < �; consequently f(�; f) : K(f1; f�) < ��g � f(�; f) : K(f0; f�) <�g. Theorem 5.1 shows that the set on the left hand side has positive � � P�measure.Case 2. inf[�a;a] f0(x) = 0.By the continuity of f0, we can, given any � > 0, choose a C such that R a�a(f0 _C) = 1+�, where a_b = max(a; b). Set f1 = (1+�)�1(f0_C). Then f0 � (1+�)f1and using Lemma 5.1, we can choose � and �� small such that ff : K(f1; f) < ��g �ff : K(f0; f) < �g. Since f1 is covered by case 1, the theorem follows.Remark 5.1. The above consistency theorem notwithstanding, computation of theposterior for � for the Diaconis-Freedman density shows that convergence for Cauchybase measure is very slow. Even for n = 500, one notices the tendency to convergeto a wrong value as in the case of the Dirichlet prior with Cauchy base measure.Rapid convergence to the right value does occur in the normal case.Remark 5.2. While we have discussed consistency issues, it would be interestingto explore how the robustness calculations in Section 4 of Lavine (1994) can bemade in the context of a location parameter.Remark 5.3. Lemma 5.1 and the Schwartz theorem can be used to yield an ana-logue of Theorem 5.1 for general semiparametric models. Let (�; f) 7! �(�; f),where �(�; f) is a density on R. Suppose a prior ��P on (�;F) satis�es(i) � gives positive mass to every neighbourhood of �0(ii) For all su�ciently small j� � �0j, and all " > 0,Pff : K(�(�; f0); �(�; f)) < "g > 0:Then if (�0; f0) is a point such that(a) �(�0; f0)�(�; f0) � C(�), where C(�)! 1 as �! �0,(b) lim�!�0K(�(�; f0); �(�; f)) = K(�(�0; f0); �(�0; f)) for all f ,then the posterior is consistent at (�0; f0).For a proof, take �(�0; f0) and �(�; f0) as f0 and f1 respectively in Lemma 5.1.Then for each � close to �0, ff : K(�(�0; f0); �(�; f)) < "g will contain a set of theform ff : K(�(�; f0); �(�; f)) < "0g, and this set has positive measure by assump-tions (i), (ii) and (b) above.AppendixLemma A.2. If Uk �Beta(k; k), then Ej log(2Uk)j = O(k�1=2) as k !1.10



Proof. The proof uses Laplace's method. Let �k = Ej log(2Uk)j. In other words�k = 1B(k; k) Z 10 j log(2u)juk�1(1� u)k�1du; (A.1)implying that �k = 1B(k; k) Z 10 j log(2(1 � u))juk�1(1� u)k�1du: (A.2)Adding (A.1) and (A.2) and observing that log(2u) and log(2(1� u)) are always ofthe opposite sign, we obtain2�k = 1B(k; k) Z 10 j log(u=(1 � u))juk�1(1� u)k�1du: (A.3)This implies by Jensen's inequality that4�2k � 1B(k; k) Z 10 (log(u=(1� u)))2uk�1(1� u)k�1du= 1B(k; k) Z 10 f1 + (log(u=(1� u)))2guk�1(1� u)k�1du� 1: (A.4)Now f1 + (log(u=(1 � u)))2guk�1(1� u)k�1 = exp(gk(u)); (A.5)where gk(u) = (k � 1) log u+ (k � 1) log(1� u) + h(u)and h(u) = logf1 + (log(u=(1 � u)))2g:It is easily observed that gk(1=2) = �2(k � 1) log 2, g0k(1=2) = 0 and g0k(u) isdecreasing in u so that gk(u) has a unique maximum at 1=2. Fix � > 0 and let� = supfh00(u) : ju� 1=2j < �g. Thus on u 2 (12 � �; 12 + �), we havegk(u) � �2(k � 1) log 2� (u� 12)22 (8(k � 1)� �): (A.6)Thus4�2k � 1B(k; k) Z 1=2+�1=2�� exp"�2(k � 1) log 2� 4(k � 1)�1� �8(k � 1)��u� 12�2# du+ 1B(k; k) Zju� 12 j>�f1 + (log(u=(1� u)))2guk�1(1� u)k�1du� 1� �(2k)(�(k))2 2�2(k�1) Z 1�1 exp"�4(k � 1)�1� �8(k � 1)��u� 12�2# du+ 1B(k; k) Zju� 12 j>�f1 + (log(u=(1� u)))2guk�1(1� u)k�1du� 1: (A.7)11



Note that the function u(1 � u)f1 + (log(u=(1 � u))2g is bounded on (0; 1) by M(say). Hence the second term on the RHS of (A.7) is dominated byMB(k; k) Zju�1=2j>� uk�2(1� u)k�2du=M (2k � 1)(2k � 2)(k � 1)2 P �����Uk�1 � 12 ���� > ��� M�2 (2k � 1)(2k � 2)(k � 1)2 EjUk�1 � 12 j2= O(k�1): (A.8)The �rst term on the RHS of (A.7) is�(2k)(�(k))2 2�2k+2(2�)1=2(8(k � 1)� �)�1=2; (A.9)which, by an application of Stirling's inequalities [Whittaker and Watson (1928),p. 253], can be dominated by(2k)2k�1=2e�2k(2�)1=2 exp[(24k)�1](kk�1=2e�k(2�)1=2)2 2�2k+2(2�)1=2� 2�3=2(k � 1)�1=2 �1� �8(k � 1)��1=2= � kk � 1�1=2 exp[(24k)�1]�1� �8(k � 1)��1=2= 1 +O(k�1): (A.10)Thus �2k = O(k�1), completing the proof.Proof of Lemma 5.1. We begin with the following inequality which is found inHannan (1960). If f0 and f1 are densitiesZ f0[log(f0=f1)]� = Z f0[log(f1=f0)]+ � Z f0�f1f0 � 1�+ = kf0 � f1k2 :(A.11)Hence if f0 � Cf1,Z f0 log(f0=f) = Zf�f1 f0 log(f0=f) + Zf>f1 f0 log(f0=f) = (I)+(II) (say);(A.12)
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