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Abstract

If 4 and B are matrices such that |4 + zB|| = | 4]| for all complex numbers z, then 4
is said to be orthogonal to B. We find necessary and sufficient conditions for this to be
the case. Some applications and generalisations are also discussed. © 1999 Elsevier
Science Inc. All rights reserved.
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Let 4 and B be two n x n matrices. The matrix A will be identified with an
operator acting on an n-dimensional Hilbert space H in the usual way. The
symbol ||4]| stands for the norm of this operator. A4 is said to be orthogonal to
B (in the Birkhoff-James sense [7]) if ||4 +:zB| = ||A|| for every complex
number z. In Section 1 of this note we give a necessary and sufficient condition
for A to be orthogonal to B. The special case when B = I can be applied to get
some distance formulas for matrices as well as a simple proof of a well-known
result of Stampfli on the norm of a derivation. In Section 2 we consider the
analogous problem when the norm ||.|| is replaced by the Schatten p-norm. The
special case 4 = J of this problem has been studied by Kittaneh [8], and used to
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characterise matrices whose trace is zero. In Section 3 we make some remarks
on how to extend some results from Section 1 to infinite-dimensional Hilbert
spaces, and formulate a conjecture about orthogonality with respect to induced
matrix norms.

1. The operator norm

Theorem 1.1. A4 matrix A is orthogonal to B if and only if there exists a unit
vector x € H such that || Ax|| = || 4], and {4x, Bx) = 0.

Proof. If such a vector x exists then
4 +2zB|* > ||(4 + zB)x|* = ||l4x||* + |z1*|Bx||* = ||4x|* = ||4]°.

So, the sufficiency of the condition is obvious.

Before proving the converse in full generality we make a remark that serves
three purposes. It gives a proof in a special case, indicates why the condition of
the theorem is a natural one, and establishes a connection with the theorem in
Section 2.

It is well-known that the operator norm |.|| is not Fréchet differentiable at
all points. However, if A is a point at which this norm is differentiable, then
there exists a unit vector x, unique upto a scalar multiple, such that
|lAx|| = ||4]|, and such that for all B

d A

& t:O”A +1B|| = Re < IlA“x,Bx>.
See Theorem 3.1 of [1]. Using this, one can easily see that the statement of the
theorem is true for all matrices 4 that are points of differentiability of the norm ||.|.

Now let 4 be any matrix and suppose A4 is orthogonal to B. Let 4 = UP be a
polar decomposition of 4 with U unitary and P positive. Then we have

1P+ 2U"B| = ||Pl| = || 4]

for all z. In other words, the distance of P to the linear span of U*B is ||P].
Hence, by the Hahn-Banach theorem, there exists a linear functional ¢ on the
space of matrices such that ||¢|| =1, ¢(P) = |P|, and ¢(U*B) = 0. We can
find a matrix 7 such that ¢(X) = tr(XT) for all X. Since ||¢|| = 1 the trace norm
(the sum of singular values) of 7 must be 1. So, 7 has a polar decomposition

=

where s; are singular values of 7T in decreasing order, ) 7, 5; = 1, the vectors

form an orthonormal basis for H, and V is unitary. We have
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1P = te(PT) = 3 s, P (V)

n

=S 5P, V' uy < sill Pl <D sillPl = 1P
J=1 j=1

J=1

Hence, if k is the rank of T (i.e., s; # 0, but 5441 = 0), then ||Py;|| = ||P|| for
j=1,...,k; and hence Pu; = ||P|lu;. From the conditions for the Cauchy-
Schwarz inequality to be an equality we conclude that V*u; is a scalar multiple
of Pu;, j=1,... k. Obviously, these scalars must be positive, and so,
V*u; = u; for all j = 1,... k. It follows that T is of the form

k

—_ *

T= E iU,
i=1

where u; belong to the eigenspace K of P corresponding to its maximal
eigenvalue ||P||. Then ¢(U*B) = 0 implies

k
ZSJ'(B*UM_/’ uj) = 0.

i=1

If Q is the orthoprojector on the linear span of the u;, then this equality can be
rewritten as

k
> /(0B UQuj,u)) = 0.
j=1

Since the numerical range of any operator is a convex set, there exists a unit
vector x € K such that

0= (QB*UQx,x) = (B"Ux,x) = (Ux, Bx).

So,
{Ax, Bx} = (UPx,Bx) = ||P||{Ux,Bx) = 0. O

Notice that orthogonality is not a symmetric relation. The special cases
when A4 or B is the identity are of particular interest [3,4,8,10].

Theorem 1.1 says that I is orthogonal to B if and only if W (B), the numerical
range of B, contains 0. For another proof of this see Remark 4 of [8].

The more complicated case when B = J has been important in problems
related to derivations and operator approximations. In this case the theorem
(in infinite dimensions) was proved by Stampfli ([10], Theorem 2). A different
proof attributed to Ando [3] can be found in [4] (p. 206). It is this proof that we
have adopted for the general case.
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Problems of approximating an operator by a simpler one have been of in-
terest to operator theorists [4], numerical analysts [6], and statisticians [9]. The
second special result gives a formula for the distance of an operator to the class
of scalar operators. We have, by definition,

dist(A,CI):m%l |4 +zI|]. (L.1)
zZ€

If this minimum is attained at 4y = 4 +zy/ then 4, is orthogonal to the
identity. Theorem 1.1 then says that

dist(4, CI) = ||4o|| = max{|(4ox,y)|: |lx]| = [[y} = 1 and x L y}
= max{[{4x,y)|: lx| = [yl =1 and x L y}. (1.2)

This result is due to Ando [3]. We will use it to calculate the diameter of the
unitary orbit of a matrix.

The unitary orbit of a matrix A is the set of all matrices of the form U4U*
where U is unitary. The diameter of this set is

dy = max{||VAV* — UAU"*||: U,V unitary }
= max{||4 — UAU*||: U unitary}. (1.3)
Notice that this diameter is zero if and only if A4 is a scalar matrix. The fol-
lowing theorem is, therefore, interesting.
Theorem 1.2. For every matrix A we have

dy = 2 dist(4, CI). (14)

Proof. For every unitary U and scalar z we have
l4—UAU | = (4 —zl) — U4 —2)U"[| < 2|4 ~ 2] |
So,
dy <2 dist(4, CI).

As before we choose 4y = A + z/ and an orthogonal pair of unit vectors x and
y such that

dist(4, CI) = ||4o]| = (4ox, »).

By the condition for equality in the Cauchy-Schwarz inequality we must have
Apx = ||4p||ly. We can find a unitary U satisfying Ux = x and Uy = —y. Then
UdoU*x = —}|4p||y. We have

di = dy, > [[dox — UdUx|| = 2| 4|| = 2 dist(4,CI). O

From (1.3) and (1.4) we have
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max{||[4U — UA|: U unitary} = 2 dist(4, CI). (1.5)

If X is any operator with ||X|| = 1, then X can be written as X =1(V + W)
where 7 and W are unitary. (Use the singular value decomposition of X, and
observe that every positive number between 0 and 1 can be expressed as
L (e + ¢7"%).) Hence we have

ﬁl}ﬁlxl |[AX — XA|| = 2 dist(4, CI). (1.6)
Recall that the operator J,(X) = AX — X4 on the space of matrices is called an
inner derivation. The preceding remark shows that the norm of o, is 2
dist(4, CI). This was proved (for operators in a Hilbert space) by Stampfli [10].
The proof we have given for matrices is simpler. In Section 4 we will show how
to prove the result for infinite-dimensional Hilbert spaces.

A trivial upper bound for d; is 2||4]||. This bound can be attained. For ex-

ample, any block diagonal matrix of the form

Y0
0 —X|

is unitarily similar to

oy 01
L0 x|

A simple lower bound for d, is given in our next proposition.

Proposition 1.3. Let A be any matrix with singular values s\(4) = --- = s4(4).
Then

do = 51(A) — 5,(4). (1.7)

Proof. Let z be any complex number with polar form z = re’. Let 4 = UP be a
polar decomposition of A. Then

|4 —zI|| = |P —zU*|| = inf {|{P — zV||: V" unitary}
= inf {||P — rV]||: V unitary}.

By a theorem of Fan and Hoffman, the value of the last infimum is ||P — #/||
(see [5]. p. 276). So

min |4 — z/|| = min {|# — r/|| = min max |s; — 7|
zeC rz0 rz0
— L(51(4) = 5,(4)).

The proposition now follows from Theorem 1.2. []
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If 4 is a Hermitian matrix then there is equality in (1.7).

2. The Schatten norms

For 1 < p < oo, the Schatten p-norm of A 1s defined as

n

1/p
41, = [Z(S;(A))"} ,

J=I
where 5,(4) = --- > s5,(4) are the singular values of A.

If 1 < p < oo, then the norm |.||, is Fréchet differentiable at every A. In this
case

d

dr
for every B, where 4 = U|A| is a polar decomposition of 4. Here [4| = (4*4)
If p =1 this is true if 4 is invertible. See [2] (Theorem 2.1) and [1] (Theorems
2.2 and 2.3).

As before, we say that A4 is orthogonal to B in the Schatten p-norm (for a
given 1 < p < o0) if

|4+ zB||, = ||4]], forall z. 2.2
p P

|4+ tB|lE = pRe tr |4/~ U"B, (2.1

=0

1/2

The case p = 2 is special. The quantity
(4,B) = tr A*B

defines an inner product on the space of matrices, and the norm associated with
this inner product is ||.||,. The condition (2.2) for orthogonality is then
equivalent to the usual Hilbert space condition (4, B} = 0. Our next theorem
includes this as a very special case.

Theorem 2.1. Let A have a polar decomposition A = U|A|. If for any 1 < p < oo
we have

tr|4P~'U"B =0, (2.3)
then A is orthogonal to B in the Schatten p-norm. The converse is true for all A, if
1 < p < oo, and for all invertible A, if p=1.

Proof. If (2.3) is satisfied, then for all z
tr |4 = tr |47~} (|4] 4+ zU*B).
Hence, by Holder’s Inequality ([5], p. 88),
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e * —1
tr (4 < [[[4P 7, 11141 + zU* BIl, = 1}4P |l l14 +2BIl,
= [tr 4”77 |4+ 2B]|, = (tr |41")"7|4 +2B] ,,
where ¢ is the index conjugate to p (i.e., 1/p+ 1/g = 1). Since
(tr |4])' 7 = (1 |49 = 4] ,,
this shows that
4], < |4 +zB|, forallz.
Conversely, if (2.2) is true, then
€4+ 1Bl > 4],
for all real ¢ and #. Using the expression (2.1) we see that this implies
Re tr(j4f™ e U*B) = 0,

for all 4 if 1 < p < oo, and for invertible 4 if p = 1. Since this is true for all 8,
we get (2.3). O

The following example shows that the case p = 1 is exceptional. If
= 1 0 d Be 00
“\o o) ™ "Tlo 1)

4 +zB||, = ||4]), forallz.

then

However,

tr U'B=tr B # 0.

The ideas used in our proof of Theorem 2.1 are adopted from Kittaneh [8]
who restricted himself to the special case 4 = I.

3. Remarks

Remark 3.1. Theorem 1.1 can be extended to the infinite-dimensional case with
a small modification. Let 4 and B be bounded operators on an infinite-
dimensional Hilbert space H. Then A is orthogonal to B if and only if there
exists a sequence {x,} of unit vectors such that ||4x,|| — |4|, and
(Ax,, Bx,) — 0. Indeed, if such a sequence {x,} exists then
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14+ 2B|* > [|(4 + zB)x |’
= |lAx,I* + 12 {1Bx, |* + 2 Re(2(Ax,, Bx,)).

So,
14+ 2B|* > lim sup||(4 + zB)x, |* > ||4]°.

To prove the converse we first note that Theorem 1.1 can be reformulated in
the following way: if 4 and B are operators acting on a finite-dimensional
Hilbert space H then

min ||4 + zB|| = max{|{4x,»|:||x|| = |l¥|| = | and y L Bx}.

It follows that for operators 4 and B acting on an infinite-dimensional Hilbert
space H we have

min |4 + zB|| = sup{|{4x, )| [|Ix| = ly| = 1 and y L Bx}.

This implication was proved in the special case when B =1 in [4] (p. 207). A
slight modification of the proof yields the general case. Assume now that A4 is
orthogonal to B. Then min ||4 + zBJ| = ||4]|. Therefore we can find sequences
of unit vectors {x,}, {y.} € H such that (4x,,y,) — ||4] and y, L Bx,. It follows
that ||4x,]| — ||4]l, and consequently

Ax,
Wy = o = 0
(4% |

and

lim {4x,,Bx,) = lim ||Ax,||{y,, Bx,) = 0.

R—0OC

This completes the proof.

Remark 3.2. The statement following (1.6) about norms of derivations can also
be proved for infinite-dimensional Hilbert spaces by a limiting argument.

Let H be an infinite-dimensional separable Hilbert space, and let 4 be a
bounded operator on H. Let {P,} be a sequence of finite rank projections in-
creasing to the identity. Denote by 4, the finite rank operator P,4 restricted to
the range of F,. Let min.cc ||4, — zI|| = ||4, — z,I||. For each n we have

sup ||[AX — XA4| > sup [|4P,XP, — P,XP,A|
X<l

ilxi<1
= sup ||P.(4P,XP, — P.XP,A)P,

X<t

= Ssup ”(PnAPn)(PnXPn) - (PnXPn)(PnAPn)“

IXN<1
=2||4, —zI|.
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Passing to a subsequence, if necessary, assume that z, — zo. Then

lim [|4, — 2, = ||4 — zof|| > dist(4, CI).

Hence,

sup ||4X — XA| = 2 dist(4,CI).

Xl <1

Thus the norm of the derivation d, is equal to 2 dist(4, CJ).

Remark 3.3. In view of Theorem 1.1 we are tempted to make the following
conjecture. Let ||.|| now represent any norm on the vector space C”, and also
the norm it induces on the space of n x » matrices acting as linear operators on
C". We conjecture that

4+ zB|| = ||4]| forall z

if and only if there exists a unit vector x such that | 4x{| = ||4| and

|l4x + zBx|| = ||4x|| forall z.
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