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Maps on matrices that preserve
the spectral radius distance

by

RAJENDRA BHATIA (New Delni)) PETER SEMRL (Ljubljana)
and A. R, SOUROUR (Victoria, B.C.)

Abstract. Let ¢ be a surjective map on the space of n x n complex matrices such
that r{¢(A) — ¢(B)) = r{4 — B) for all A, B, where r{X) is the spectral radius of X.
We show that ¢ must be a composition of five types of maps: translation, multiplication
by a scalar of modulus one, complex conjugation, taking transpose and (simultaneous)
similarity. In particular, ¢ is real linear up to a translation.

1. Introduction. One of the earliest theorems about maps between
normed spaces is the Mazur-Ulam Theorem [4]. It asserts that if ¢ is a
map between two normed spaces that is surjective, maps 0 to 0, and is
isometric, then ¢ is real linear. The problem considered in the present paper
is motivated by this theorem.

The spectral radius of an element & of a complex Banach algebra is
denoted by r(a). Let ¢ be a map between two Banach algebras A and B.
‘We say that ¢ preserves the spectral radius distence if

r(¢(a) — (b)) =r(a — b)
for all a,b € A.

We note that in semisimple commutative Banach algebras, the spectral
radiug is a norm. Therefore, it follows from. the Mazur-Ulam Theorem that
if A and B are semisimple commutative Banach algebras and ¢ : 4 — B
is a map that is surjective, maps 0 to 0, and preserves the spectral radius
distance, then ¢ is real linear. It is natural to ask whether this assertion is
valid for noncommutative Banach algebras as well.

We angswer this question in the simplest case where A = B = M, the
algebra of all n x n matrices. The answer, in this case, is in the affirmative.
Further, we obtain a complete characterisation of all maps ¢ that satisfy the
three given conditions. We prove the following theorem.
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100 R. Bhatia et al

THEOREM 1.1. Let ¢ : M, — M, be a surjective map that preserves the
spectral radius distance. Then there exists o unimodular A € C, § € M,
and an invertible T € M, such that one of the following formulas holds for
all A e M,:

(A) = X\TAT* + 8,
G(A) = ATA* T + 5,
B(A) = XTAPT! 4 8,

(A) = A\TAT + 8,

REMARK. In general Banach algebras it is essential to impose some re-
strictions as the following examples demonstrate.

1. Let \A be any radical algebra and let ¢ be any nonlinear map of A onto
A that fixes 0. Let A; be the algebra obtained by adjoining a unit 1 to A.
Extend ¢ to A; by putting ¢(Al + a) = A1 + ¢(a). Then ¢ is surjective,
$(0) = 0, and ¢ preserves the spectral radius distance, but ¢ is evidently
not real linear. In this case, the algebra 4; is not semisimple.

2. Let A = C and let B be the algebra of all 2 x 2 diagonal matrices. For
each z, let

#z) = [é in(Re z)} :

Then ¢(0) = 0 and r(¢(z) — ¢(2')) = |2 — 2| for all z,2', but ¢ is not real
linear. In this case, the range of ¢ is not an algebra.

In view of the above, the natural restriction to impose on A and B is
semisimplicity and the question to be raised is whether every surjective map
¢ between semisimple Banach algebras that maps 0 to 0 and preserves the
spectral radius distance is real linear.

Let us fix the notation. For any pair of vectors z,y € C" we denote their
inner product by y*z. Every rank one matrix can be written as zy*. Such a
matrix is idempotent if y*z = 1, and square-zero if y*z = 0. We denote by
{e1,...,e,} the standard basis of C*. Then i, the matrix having 1 in the
{i,7)th position and zeros elsewhere, equals eig. If A is an n x n matrix,
then we write o (4), tr 4, Aijy A™, and A for the spectrum of A, the trace of
A, the (4, /)th entry of A, the transpose of A, and the matrix obtained from
A by entrywise complex conjugation, respectively. Throughout this paper
the spectrum of A4 is understood to be the set of all eigenvalues of A (s0, we
do not count their multiplicities). By A, < M, we denote the subset of all
nilpotent matrices.

A special class of rank one nilpotents plays an important role in our
proofs. These are the matrices zy* with the property that there exists a
subset J C {1,...,n} such that 2 belongs to the linear span of {e;i=i € J}
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while y belongs to the linear span of {e; : 1 & J}. These are called special
rank one nilpotents and are denoted by M.
The set of all diagonal matrices is denoted by D. By diag(Aq,. .., An) we

mean the diagonal matrix with diagonal elements Ay,..., M\,. A particular
diagonal matrix Dy is also often used:.
(1.1) Dy = diag(1,w,w?, ..., w1

where w = exp(2mi/n).

2. Preliminary results. We first prove that every map on matrices
that preserves the spectral radius distance is injective. Then we show that
under the additional assumption of surjectivity such maps are continuous.

PROPOSITION 2.1. Let ¢ : M, — M, be a map that preserves the spectral
radius distance. Then ¢ is injective.

Proof. Let ¢(A4) = ¢(B). Then r(A — B) = r(¢(A) — ¢(B)) = 0, and
consequently, B = A + N with N nilpotent. For every T € M, we have
(A= T) = r(p(A) — o(T)) = r(¢(B) — ¢(T)) = r(B — T). Replacing T’ by
A — S we get r(S) = r(N + 5) for every S € M, This clearly implies that
N =0, or equivalently, 4 = B.

LEMMA 2.2. Suppose {Ay} is a sequence of matrices such that r( Ax+T)
—r{A+T) for all T. Then Ay, — A.

Proof. It is enough to prove that if
(2.1) r(Ag+T) - r(T) forall T,
then Ay — 0.
First note that condition (2.1) implies that r{Ay) — 0. Hence, all the

nonleading coefficients of the characteristic polynomial of Ay approach zero
as & ~ oo. In particular, for each £ > 0, there exists an N such that

(2.2) rZM"j(A’“)’ <e form >N,
i<y
where M;{X) stands for the following 2 x 2 minor of a matrix X:
Ty Tif
My (X} = det [mji m,ﬂ .

We claim that the sequence {Ay} is bounded. If this were not the case,
then there would be at least one pair of indices 7,7 such that the entries
{Ax(4,7)} are not bounded. If ¢ = j for all such pairs of indices, then, by
Gershgorin’s Theorem, {r(Ag)} is not bounded. This is not possible. On the
other hand, if there exists a pair of indices 3, §, 4 # 4, such that the entries
{Ax(3, 7} are not bounded, choose T' = E;;. Then, by inequality (2.2), we
deduce that 33, M;;(Ax+T) is not bounded, and hence it is not possible
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for {r(Ax +T)} to be bounded. This contradicts hypothesis (2.1). So, {4}
is bounded.

Let {An} be any convergent subsequence of A;. Suppose 4,, — A. By
hypothesis (2.1), we have r(A4,,) — r(0). This together with continuity of
the spectrum implies that A is nilpotent. Again hypothesis (2.1) implies
that 7(Apy &+ A*) — r(+A4*) = 0. Therefore A= A* =0, and so A = 0. This
is true for every convergent subsequence, hence A4 ~ 0.

COROLLARY 2.3. Let ¢ : My, — M,, be a surjective map that preserves
the spectral radius distance. Then ¢ is continuous.

Proof. Let Ay — A and let T be any element of M,, T' = ¢(8). Then
r(3(Ar) —T) =r(¢(Ax) = (8)) = r(Ax — ) > r(A - 5)
=r(¢(4) — ¢(5)) = r(¢(4) - T).
Hence, by Lemma 2.2, $(A) — ¢(A).

LeEMMA 2.4. Let @ be a nonnegative real number and let S € M, sotisfy
r(N 4+ 5) = a for every nilpotent N € M,. Then § = AT Jor some complex
number A with |A| = a.

Proof. Suppose S;; # 0 for some i < j. Let N be the matrix whose 2 x 2
principal submatrix corresponding to the ith and jth rows and columns is
[i Klf_ Iﬂ, and all other entries are zero. Then N is nilpotent and the minor
M;;(5 + N) can be made arbitrarily large by choosing K large enough. But
then r(.S4+N) would be arbitrarily large as well. Hence we must have S5i; =10
for ¢ < j. Similarly, Sy = 0 for i > 7 and so § is diagonal. If §;; 5 S;; for
some ¢ # j, choose N with the 2 x 2 principal submatrix [ e %] instead

of the one chosen earlier to obtain a contradiction.
The following two lemmas were proved in [5].

LemMa 2.5 (see [5]). Let N € N, N 5 0. Then the following are equiv-
alent:

(i) rank N = 1,

(i) for every A € N,, satisfying A+ N & N,, we have A+ aN ¢ N, for
every nonzero a € C,

LEMMA 2.6 (see [5]). Let A, B € N,. Suppose that A is not of rank
one. Assume that for every N € N, the matriz A + N € N, if and only if
B+ NeN,. Then A= B.

COROLLARY 2.7. Let A, B € N,. Assume that for every N € N, the
mairizc A+ N € N,, if and only if B+ N € N,. Then either 4 = B, or
there exists o nonzero B € C such that B = A and rank A = 1.
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Proof If A # B, then by Lemma 2.6 we have rank A = rank B = 1.
Without loss of generality we can assume A = Fyy. Clearly, Fia -+ al; is
nilpotent for every o € Cif ¢ < 2 and j > 3. The same holds true if j < 2
and ¢ > 3. So, for such pairs 7, j the matrix B + aBy; must be nilpotent for
every o € C. Hence, the sum of all 2 x 2 principal minors of B + ki must
be zero. It follows that B has the block diagonal form

(B 0
B"‘[o BJ

with By a 2 x 2 matrix. It is now sasy to complete the proof.
The next result was proved in [2].

LEMMA 2.8 (see [2]). Let A € M, let A € o(A), and let z,y € C*. Then
A€ a(A+ zy™) if and only if y* (A~ A)"lx=1.

We recall that Dg is the matrix defined by (1.1), and that M is the set
of “special rank one nilpotent” matrices defined in §1.

COROLLARY 2.9. Assume thot N = zy* is a nilpotent of rank one. Then
the following are equivalent:

(a) r(Dp + aN) =1 for every o € C,
(b) N e M.

Proof. Assume first that {b) is satisfied. Applying a permutation sim-
ilarity we can transform N into a strict upper triangular form while Dy
remaing diagonal. Then (a) follows trivially.

To prove the converse, assume that N satisfies condition (a}). For |A| > 1
we have A & o(Dg+ azy®) for every o € C. By Lemma 2.8, this is equivalent
to ay*(A ~ Dp)~lz # L for every @ € C. Hence, y*(A — Dy)™*z = 0 for
|A] > 1. If p is any polynomial, then

y*p(Do)e =y ( { BAY = Do) N )a =0,

o]
where €' is a counterclockwise orviented circle with center at 0 and radius
greater than 1. In particular, we have y*Eyz = 0, ¢ = 1,...,n, which is

equivalent to zy* € M. This completes the proof.

LEMMA 2.10. Let ¢, 3, k, 1 be arbitrary indices, « € C\{0}, and A, BEM,.
If o(A+~Ey) = o(B -+ avEw) for every v € C, then

Proof. For |A| > R := r{4)+r(B), Lemma 2.8 shows that ve} (A- A) " te;
=1 if and only if ayef (A — B)~leg = L. Thus,
eHA - AV e = aef (A~ B) e
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and hence

e)(I — pA)~le; = aef (I — pB) ey,
for |u| < 1/R. Upon taking the derivative at © = 0, we get the desired
relation eyAei = cvef Beg.

LeMMA 2.11. Let C,G € M, If v(C+ AI) =r(G+ AI) for every A € C,
then the convex hull of o(C) coincides with the convez hull of o{G).

Proof. Let p be an extreme point of the convex hull of #(C). Then,
after a rotation and translation, we may assume that x4 = »(C) and that
o(C) and o(G) are contained in the right half-plane. If u ¢ o(G), then
o(G) C{z € C:0 < Rez < u} since p = r(G). Tt follows that

r(G+I}<p-+1=r(C+1),

a contradiction. Thus, the set of all extreme points of the convex hull of
o(C) is a subset of the set of all extreme points of the convex hull of o(G).
The reverse inclusion follows by symmetry. The equality of the two sets of
extreme points is equivalent to the assertion. of the lemma.

LEMMA 2.12. Let E;; and Ey be motric units such that either both are
diagonal or both are nondiagonal. Let oy be a nonzero complex number, In
the cuse where the matriz units ore diegonal let oy, = 1. Let A and B be
two rank one matrices or any 3 X 3 matrices. If

r{A+vEi; + M) = r(B + you By + AI)
for every A, v € C, and if tr A = tr B, then au By = A

Proof. In view of Lemma 2.10, it suffices to prove that o(A4 + vEi;) =
(B + yariFy) for every v € C. Each of these two spectra contains at
most three distinct points. By Lemma 2.11, the set of all extreme points
of the convex hull of o(A + vE;;) coincides with the set of all extreme
points of the convex hull of o(B + vt E}. This trivially implies that
a(A+vEy;) = (B + your Ex) except when at least one of the spectra has
three distinct eigenvalues and both spectra lie on the same line. In this case
at least two distinct eigenvalues of A + vE; are also in o(B + you By}, I
7 = 3, this and the trace condition prove equality of the spectra. The same
holds in the rank one case since the multiplicity of the nonzero eigenvalues
is at most two.

From now on till the end of this section we assume that b My, — M, is
a surjective map that maps 0 to 0 and preserves the spectral radius distance.

. LemMa 2.13. There exists o unimodular complez number z such that
esther ¢{al) = zal for oll x € C, or ¢(al) = 2al forall o € C.

Proof. It follows from ¢(0) = 0 that ¢ maps N, onto Af,. We have
(N —al) = |al for every N € A, and consequently, (N — ¢{al)) = |a
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for every N € A,,. Using Lemma 2.4, we now conclude that ¢ maps the set of
scalar matrices into itself. The function ¢ : C — € given by ¢(al) = @(a)l
is an isometry of C = R?. By the Mazur-Ulam Theorem, y is real linear.
It is well known that every linear isometry of B? is either a rotation or a
reflection in a line through the origin. This implies the desired conclusion.

LeMMA 2.14. If N € M, is a nilpotent of rank one then ¢(N) is a
nilpotent of rank one and ¢ maps the linear span of N onto the linear span
of ¢(N).

Proof. Let N be anilpotent of rank one and let a € C\{0,1}. According
to Proposition 2.1, ¢ is bijective, and so ¢{N) # ¢(aN). Using Lemma 2.5
we gee that for every nilpotent M the matrix N — M is nilpotent if and
only if aN — M is nilpotent. Hence, ¢(N) — ¢(M) helongs to N, if and
only if ¢(aN) — ¢(M) € N,,. Applying Corollary 2.7 we conclude that ¢(N)
is a nilpotent of rank one and ¢(span N) C span¢(N). Applying the same
argument for ¢~ we get the reverse inclusion.

Until the end of this section we assume that ¢ : M, — M, satisfies the
additional assumptions that ¢(al) = af for every a € C, and ¢(Dp) = Dy,
where Dy is the matrix defined by (1.1).

LeEMMA 2.15. p(M) = M.

Proof Let N ¢ M. By Corollary 2.9 we have r(Dg+aN) =1 for every
a € C, and so, r(¢(Do) — 9(—alN)) = 1. Applying Lemma 2.14 we see that
(Do + a¢(N)) =1 for every complex number c. Using Corollary 2.9 once
again we see that ¢(N) € M. Hence, ¢(M) C M. The same holds for ¢~1,
and consequently, ¢(M) = M.

Levva 2.16. ¢p(A4) = A for every A€ D.

Proof. We divide the proof into two steps. In the first step we prove
that ¢ maps the set D of all diagonal matrices onto itself. Once again, it is
enough to prove that ¢(D) < D. Assume to the contrary that there exist
AeDandije{l,...,n},i#j,such that ef¢(A)e; # 0. Then

M ef(A = () e, A > r(p(A)) = r(4),

is a nonzero function. It follows that there exists g, [Aa| > r(A), such
that e3(Ao — #(A4))"le; # 0. By Lemma 2.8, Ao € o(¢(A) + BE;;) for a
nonzero scalar 3. Since ¢(M) = M, we have —FE;; = ¢(N) with N € M.
8o, r(A — N) = r(A) < |Ao| £ r(¢(A) — #(N)), a contradiction. Hence,
$(D) =D. '

Now, the restriction ¢ : D — D is a surjective isometry, and therefore,
it is real linear. The space D is isomorphic to the real linear space C* with
the sup norm. The real linear isometries of the latter space are well known.
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For example, it follows from [3] that
cling (.-, ) = ding (s (rr()e™ -, 7o oo,

where @1,...,n € R, 7 is any permutation of the set {1,...,n}, and =
is either the identity or the complex conjugation, ¢ = 1,...,n. Because of
#(I) = I we have exp(ip;) = ... = exp(ig,) = L. From ¢(al) = ol we get

7i(e) = a, i =1,...,n. Finally, ¢(Dg) = Dg implies that (i) = i for every
i €{1,...,n}. This completes the proof.

LeMmMA 2.17. For every invertible matriz T there ewiste an invertible
matriz S such that ¢(TAT 1) = SAS™ for every A€ D,

Proof. The map ¢’ : M, — M, defined by ¢'(4) = ¢(TAT™1) is
bijective, maps every scalar matrix to itself and preserves the spectral radius
distance. By Lemma 2.11, we see that the convex hull of o(¢'{Dg)) coincides
with the convex hull of o(Dp). This easily implies that o(Dg) = o(¢'(Dg))
and that there exists an invertible S € M, such that §71¢'(Dg)S = Dy.
The map

Ars ST G(TAT 1S

is bijective, maps every scalar matrix to itself, preserves the spectral radius
distance, and maps Dy to Dg. By the previous lemma, it maps every diagonal
matrix to itself. This completes the proof.

LEMMA 2.18. For every polynomial p and every B € M,, we have d(p(B))
= p(#(B))-

Proof. Assume first that B is diagonalisable. Then there exists an in-
vertible T' € M, such that B = TAT~! with A € D. According to the
previous lemma we have

¢(B) = ¢(TAT™1) = §AS~*

for some invertible S. But p(A) is a diagonal matrix as well, and so, d(p(B))
= ¢(Tp(A)T~) = Sp(A)S~* = p(¢(B)). As the set of all diagonalisable
matrices is dense in My, the general case follows by the continuity of ¢.

LeMMA 2.19. Let B € M, be an idempotent. If A,B € M, satisfy
A =EAE and B = (I~ E)B(I — E) then ¢(A)¢(B) = A BYp(A) = 0.

Proof. T is easy to see that there exist sequences {4;} and {B;} such
that A; — A, B; — B, A; and B; are simultaneously diagonalisable, 4, =
EA;E and By = (I — E}B;(I — E) for every j. Therefore, it is enough
to prove the statement under the additional assumption that A and B are
simultaneously diagonalisable, Thus there exists an invertible T ¢ M, such
that A = TA'T™! and B = TB'T~! with 4’ and B’ diagonal matrices
satisfying A'B’ = 0. Applying Lemma 2.17 we complete the proof.
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3. Proof of the main result. Our main result will follow easily from
the previous lemmas and the following result, proved by induction.

ProrPOSITION 3.1. Let ¢+ M, — M, be a bijective map preserving the
spectral radius distance. Assume also that ¢ has the following properties:

(a) ¢p(A) = A for every A€ D,

(b) $(M) = M,

(¢) if A, B & M, satisfy A= EAE and B = (I-E)B(I -~ E) for some
idempotent B € M, then ¢p(A)d(B) = ¢(B)¢(A) = 0 and ¢~ (A)¢~(B) =
oY B (A) = 0, and

() p(p(A)) = p(¢p(A)) for every A € My, and every polynomial p.

Then there exists an tnvertible dicgonel matriz T € M, such that either
¢(A) =TAT™', A€ M,,

or
P(A) =TA™T™, A M,.

Proof. Let us first observe some simple consequences of our assumptions
that will be used without further explanation in the sequel. It follows from
condition (d) that the minimal polynomial of A is the same as the minim_a]
polynomial of ¢(A4). This implies that ¢ preserves the spectrum, that is,
o(A) = o(d(A)) for every A € My. In particular, tr A = tr ¢(A4) for every
matrix having n distinet eigenvalues. By continuity, ¢ preserves the trace.
The fact that ¢ preserves the spectrum and the trace implies that ¢ maps
every idempotent of rank oune to an idempotent of rank one. This, together
with Lemma 2.14, implies that ¢ maps every operator of rank one to an
operator of rank one. Finally, we note that (d) implies that

dlad + BI) = ad(A) + A1

for every A € M, and for all scalars a, 8. In particular, ¢ is homogeneous.

As already mentioned we prove the statement by induction on. . There
is nothing to prove in the case n = 1. For n = 2 we apply condition (b) to
conclude that ¢ maps Bp either to a scalar multiple of Fyp, or to a sca.la,r
multiple of Eyy. Applying an appropriate diagonal similarity transformation
and composivg ¢ with the transpose mapping if necessary, we may assume
that ¢ satisfies all the assumptions of our proposition and that ¢(Erz) = Fia.
Applying (b) once again and bijectivity, we conclude that ¢(E21) = aBxy
for some nonzero o € C. Using Lemma 2,12 with B = $(A) we sec that

-1
— a1y 112 e o ‘112]
() =2 ([ﬂm wzzD B [ﬂm a22
whenever A has rank one. Since ¢(A) must also be of rank one, it is easy to
see that « = 1. This completes the proof for n = 2.
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Now let n > 3 and assume that the asgertion is true for maps on M,,
with m < n. Let E =] — Eyp, and F = I — Ey;. We have ¢(E,.,,) = Ey,,.
If A satisfies BEAE = A, then using (c) we get ¢(A)En, = Ennd(A4) = 0,
hence E¢(A)E = ¢(A). Also ¢~ satisfles the same condition. Therefore,
the restriction of ¢ to the invariant subalgebra of all matrices satisfying
FEAE = A may be viewed as a map on M, _; which satisfies all the as-
sumptions of the proposition. By the induction hypothesis there exists an
invertible diagonal matrix S € M, such that either ¢#(A4) = SAS™! or
H(A) = SA¥ S for every A € M, satisfying A = EAFE. We may replace
@ by ¢ defined by ¢/(4) = S 1¢(A)S and we may compose ¢’ with the
transpose mapping if necessary. Therefore we may assume that ¢(A4) = 4
for every such A,

Similarly, ¢(B) = S~1BS or $71B' S for every B satisfying B = FBF
where S is a diagonal matrix, say § = diag(1, s2,..., 801, $n)- There is no
loss of generality in assuming that s; = 1. As ¢(B) = B for all matrices
satisfying B = EFBEF, we have sg = ... = s,_; = 1. Moreover, after
applying an appropriate similarity transformation we can assume that 5 = I
without affecting any of the previous assumptions. It follows that ¢(A4) = A
when A = EAE and ¢(B) = B or B when B = FBF.

Next, we show that it is not possible to have ¢(B) = B™ for B = FBF.
This is obvious for n > 4 by applying ¢ to EFM,EF. The case n = 3
requires a special argument.

Assume that n = 3 and that ¢(4) = A and ¢(B) = B™ when A = EAE
and B = FBF. Let G = I — Fas. As before, ¢ maps GM3@ onto itself and

since M N GM3G consists of scalar multiples of Ey3 and scalar multiples of
E31, we have either

B(Er3) = aF13 and @(Fs1) = BB,
or

O(F13) = aBy; and ¢(Ey) = SE13

for some nonzero scalars «, 3. We may assume that ¢ satisfies the forroer
condition, since we may permute e; and ez and compose ¢ with the transpose
mapping.

Now, let A € M3 and B = ¢(A). Then by Lemma 2.12, B;; = A;; for
{6,5Y € {1,2} and for i = j = 3, Bog = Aga, Baz = Ass, Bz = 87443,
and Bsy = o~ 1Ay . In particular, if

1 -1 0
A=|1 -1 o],
1 -1 9

icm
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then
1 -1 0
pA)=| 1 -1 -1
o™l 0 0

But r{A) = 0 and r(¢(4)) = |a|/7*® # 0. This contradiction ends the
special argument for n = 3.

We have now established that there is no loss of generality in assuming
that ¢(A) = A when A = EAF or A = FAF. Let G = Fn + Enn. By a
similar argument, if ¢ = GCG, then ¢(C) = S~1CS for a diagonal matrix 3.
Hence, there exists a nonzero scalar o such that

¢(Eyy,) = By, and  ¢(Fni) = & Ens.

If A is a rank one idempotent and B = ¢(4), then B is also a rank one
idempotent. Applying Lemma 2,12 we see that By, = ®din, Bry = a~tAn.,
and Bj; = A;; otherwise. In particular, if A;; = 1/n for every 1, j, then A
is an idempotent of rank one, and we must have o = 1 in order that B be
also of rank one. So, we have established that ¢(A) = A for every rank one
idempotent A.

Now, if A is a matrix with » distinct eigenvalues A1,...,An, then A =
> iy AjPj where P; are idempotents and Fj = p; (A) with p; the Lagrange
interpolation polynomials. If B = ¢{A), then p;(B) = ¢(p;{4)) = ¢(P;) =
P;. Also, o(A) = o(B). Thus, B = }.7_; \;p;(B) = A. Hence, ¢(A) = A.
Since the set of matrices with n distinct eigenvalues is dense in M, and since
¢ is continuous, it follows that ¢ is the identity mapping. This completes
the proof.

Proof of Theorem 1.1. The map ¢'{A4) = $(A)— ¢(0) is a surjective spec-
tral radius distance preserving map that fixes 0. It is bijective by Propo-
sition 2.1. Applying Lemma 2.13 we see that there is no loss of generality
in assuming that ¢(al) = al, @ € C. It follows from Lemma 2.11 that
a{#(Dg)) = o(Dy). Hence, Dy and ¢(Dy) are similar, and so we may assume,
after applying a similarity transformation if necessary, that ¢{Dg) = De.
Using Lemmas 2.15, 2,16, 2.18, and 2.19 we see that all the assumptions of
Proposition 3.1 are satisfied, and hence ¢ satisfies its conclusion. This ends
the proof.
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Perturbation theorems for Hermitian elements
in Banach algebras

by

RAJENDRA BHATIA (New Delhi)and DRISS DRISSI (Kuwait)

Abstract. Two well-known theorems for Hermitian elements in £ *-algebras are ex-
tended to Banach algebras. The first concerns the solution of the equation az — 2b = y,
and the second gives sharp bounds for the distance between spectra of g and b when a, b
are Hermitian.

1. Introduction. Let .4 be a complex unital Banach algebra. An element
a of A is said to be Hermitian (or conservative) if ||e¥?|| = 1 for all real
numbers ¢. This notion is a natural generalization of self-adjoint elements in
a C™-algebra, and has been of considerable interest in the theory of Banach
algebras. See, e.g., [7].

Several properties of self-adjoint elements of C*-algebras remain true
for Hermitian elements of Banach algebras, while many others do not. For
example, if o is Hermitian then [|a| = r(a), the spectral radius of a. This
was proved, almost at the same time, by Browder [8], Katsnelson [11] and
Sinclair [16]. All the three proofs depended on Bernstein's inequality for
entire functions; in fact this theorem about Hermitian elements is eguiva-
lent to Bernstein’s inequality [13]. Among the properties that are strikingly
different from the corresponding fact in C*-algebras is the following. If a is
Hermitian and invertible, then ¢~ need not be Hermitian. In this case, an
interesting inequality has been proved by Partington [15]: if a is Hermitian
and invertible, then

™) o™l < 5@,

and the inequality is sharp. Partington’s proof used Kolmogorov's inequal-
ities [12] for derivatives of functions. A different proof and a generalization
were given by Haagerup and Zsidé [10].
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