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PREFACE

There are many important statistical problems of the
following kind, The family of probability measures CP is
parametrized by a vector parameter n varying in a g-dimen-
sional domain, 03 can be represented as an exponential
family of probability distributions with k canonical para-
meters where k 1is greater than ¢. The canonical parameters
dg not vary in a domain in Rk, but are restricted by polyno-
mial or analytic equations. They vary on a curved surface
defined by the polynomial or analytic equations within the
natural parameter space of the exponential family, The present
work is concerned with the problem of point esﬁimation of para-
metric functions in such statistical problems, This work is
done in the spirit of R,A, Wijsman, Ju, V, Linnik and

A, M, Kagan,

In Chapter 1 we present the basic facts of the theory

of exponential families, Several examples are given to indi-
cate the importance of the kind of exponential families we

study.

In Chapter 2 we prove a theorem of A,M, Kagan and

V.P. Palamodov characterizing the class of wniformly minimunm



ii

variance unbiased estimators in an exponential family
dominafed by the Lebesgue measure when the canonical para-
neters are restricted by polynomial equations, The proof

we give brings about substantial simplifications in the
original proof of Kagan and Palamodov, We use this theorem

to prove two conjectures of J. K., Ghosh,

In Chapter 3 +the variance components models, under
the normality assumption, are treated as exponential families
to characterize the uniformly minimum variance unbiased esti-
mators, We consider this as a very important application of
the theorem of Xagan and Palamodov, Explicit likelihood

equations are also derived,

In Chapter 4 we extend and strengthen a result of
A M, Kagan on the inadmissibility of certain estimators which
are functions of the minimal sufficient statistic, This result
has an important application to a special type of location

parameter family,

In Chapter 5 we prove an interesting theorem charac-
terizing the uniformly minimum variance unbiased estimators in

a family of normal distributions with an unknown integer mean,



As a2 corollary, the mean itself is shown to have no uniformly

minimunm veriance unbiased estimator.

In Chapter 6 we discuss the problem of unbiased esti-

mation in a censored gamma family of distributions,
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CHAPTER O

PRELIMINARIES

A statistical model is a triplet (X,®,¢ ) where X
is a set, (3 a o-algebra of subsets of X and P a femily
of probability measures on (X, ® ), We shall be concerned only
with Euclidean statistical models, i.e,, X is a Borel subset
of an N-dimensional real Euclidean space RY and 3 is the
Borel o-algebra of X, A k-vector statistic t = (t4,..., tk)
is a .CB-measurable mapping X -> Rk. The mean or expectation

(vector) and variance-covariance (matrix) of + with respect

to P e (? will be denoted by Ep‘t and th respectively,

If @& is a subset of a Euclidean spacze R ana if 7
is a one-one mapping from @& onto ¢ then n 4is said to be
a paremetrization of § . The value of n at Q¢ @ is
denoted by Po and thus £ = {PO : Qe @} . In this case
the mean and variance-cvovariance of the statistic 1t will bde

denoted by:. E t and V. t, rather thandby E_ t., and V_ t.
° © Po Pg

Let (X, ®, ) be a fixed statistical model with a

fixed parametrization & = {PO: Qe @} . The set @

is called the set of parameters for the model (with respect to
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the given parametrization), A real valued function of the para-
meter (parametric function) g is said to dve (unbiasedly) esti-
meble if there is a statistic G I X -> R such that EG = g(Q)
for all 9 in @ and in this case we call G an unbiased
estimater of g, We shall denote by Ug’ the set of all unbiaseé
estimators of the parametric function g, For the case g(Q0) = O,

UO will be the set of all unbiased estimators of zero,

G e T, is a locally minimum variance unbiased (L,M.V.U.)
estimator of g(Q) at the point 0, ¢ @ iff for all Gy ekUg
we have V, G < Vo Gy, or equivalently, Eg G2 L E G?.

0 0 0 0

If G ¢ Ug is an L.,M,V,U, estimator of g(8) for each

0 in @ , then G is called the uniformly minimum variance

unbiased (UM,V.U.) estimatcr of g(0).

The‘following well-known lemma will be used in the segquel,

Its proof can be found in C,R, Rao (1965) p,257,

Lenma 0,1, An egtimator G ¢ Ug such that EQ G2 < o
[e]
is L.M.V.U. at o ¢ @ ifrf EQO(G F) = 0 for each F e Uj
such that =g P < o, /4
(¢]

Vectors are row or column vectors, The r-th coordinate

of a vector x will be denoted by x,. For a matrix 4, A



is its transpose, <x, y> 1is the notation for the inner pro-

duct of the vectors x and y. C 1is the complex field.

For two measures Hy and Ko, Ky & My means Ky
is dominated by ¥,. A relation holds except «n a p-null set
is denoted by writing [x] after the relation, Mostly the

repetitiows use of [#] is omitted without mention.,

The Laplace transform of a probability measure P on

0.1) g(o) = {0t g
Xk

R

ihich is defined on the set dom g =16 ¢ R 5 g(9) < o} .
If @ is the interior of this set then g can be extended as
an analytic function to the domain in C° defined by

(0.2) 1% ={a:a=@+in,@€®,n63k}

~/
If f(t) is a function on Rk, its Iaplace transform is

<9, t>

(0.3) 2@ = 5§ £ e at

Rk

defined on the set of 0O € Rk for which the integrol on the

right hand side of (0.3) exists, If @® is the interior



of this set, then f(¥) is an analytic function on the domain

® in ¢ where @® isas in (0,2),

If ®B(z) = P(2qy..., zk) is a polynomial with complex
coefficients in the k variables zg,..., 7 then the corres-

ponding partial differential operator P(D) = P(Dy,..., Dk) is

obtained by substituting Dg.‘ for ng Whoro DY £(ty, e, 1)

» - J k

i . .
f(@ /6t§) f(t1,..., tk). This gives a one-one corrcspondence
between polynomiéls with complex coefficients and partial diffe-
rential operators with complex constant coefficients,

The generalized Leibniz formula is given by
(0,4) P [u@®.v(] = £ D] ()] 2 () ()]
a

where o = (og4,,.., Gk) is a multiindex and

a _ 1 k
D - D1 Py . Dk
(a) , N a
Pr(z) = DPR(2)
a: = a‘}: ee e ak:

For a proof, see Hormander (1963) p.10,

In (0.4) when u(t) = e<O’t>



p(0) [¢9 P ()] = = 1% &P @)1 (P @) v

a

= $o P g gt P(a) (D) v(t) (Cll)"1

a

From Taylor's expansion for polynomials

P+ 0 = = 0% @) (any!
Thus ¢

(0,5) PO [ O P v()] = 9P Ce@ + 0) v(®)] .

We shall need some elementary results from the theory of

Schwartz distributions, See Donoghue, Jr, (1969),

The support of a function f is the closure of the set
of points for which f 1is nonzero, For an open set U in Rk,
Cz (U) 1is the set of all functions on Rk supported by some
compact set contgined in U and whose partial derivatives of

all orders exist, PFor TF(t) ¢ d: (Rk),
0.6) § pem r] 9P ar = p0) 20

The above result is easily proved by integrating by
parts for P(D) = D and then by induction for P(D) = DX,
Now, for a general ©P(D), the result fullows from the linearity

of an integral +transformation,
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We shall say that the sequence £, (1) in T (B
converges in dz(Rk) to O iff (1) +there is one compact set
K such that fn(t) = 0 for all t ¢ X and (2) fn(t) and

its partial derivatives of all orders converge uniformly to O,

A distribution G on Rk is a linear functional on the
vector space 'CZ (RX) such that if -fn -> 0 in CZ (RE)  then
G(fn) -> 0,

A locally integrable function G(t) on RY, i.e., a

function G(t) which is integrable on any compact subset of

Rk, defines a distribution as

(0.7) o) = Soem £ at, £ 0 (ED.

When G is an arbitrary distribution it is customary to
write  G(f)  symbolically as in the right hand side of (0,7)
even though there may not ve a locally integrable function G(%t)
corresponding to the distribution G. We shall follow this

custom,

The Dirac's ©6-function 6(x) and its translate
Ga(x) = 6(x~a) are the symbolic functions corresponding to

the distributions defined by

£(0)

I

(0.8) 5(f) = js(x) f(x) dx



(0.9 5 (£) = S 5(x-a) f(x) dx = f(a)

Notice that 6(x) and &(x-a) are the symbolic
densities of the one-point mass at O and a respectively

with respect to the Lebesgue measure.

The partial differential operator P(D) applied to the

distribution G is defined by
(0,10) 2 ¢J]f = ¢[p(-D) ], f e c°; ¢

Lemma 0,2, Iet G Dbe a distribution on R such

that (&/4t) G = O, Then G is a constant,

Proof. Of course, the statement of the lemma means
that G is the distribution defined by G(f) = f k £(t) dt

for some constant k.

For each f in CZ (R) we have
S G (df/dt) = O
Now, h e C_ (R) is the derivative of another function

fe ¢ (R iff § () at = o

Let g e €T (R) such that { gt at =1, for £ e L@

f(t.) = [f(t) - jf(x) dx. g(t) ] + jf(x) dx. g(t).
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-

Since f(t) - ~gf(x) dx, g(t) is in dz ®) and its integral
vanishes, it is the derivative of same function in Cz(R).

Therefcre,

e = § £ ax. 6@,

Thus G corresponds to the constant G(g). V4

The following lemma is immediate from the preceding
 yesult,
Lerma 0.3, 1f (@P/atP)ec = 0 for a distribution G

on R, then G is a polynomial of degree less than p. /

Lemma 0,4, If G(ty,.00 tk) is a locally integ-
rable function cn.iRk and (6/5t1)G = Q0 in the sense of dist-

ributicns on Rk, then G is independent of 1,.

Proof, Let C(bqy.aes t,) be a locally integrable

function and let for each  f(t) e Cz (Rk)

& o =
ij 6(ty, wees B T, T (bqy weey B = O

Now from the abuve, and also from Fubini's theorem,

X-RK"] [jR G(t‘l,oo-, tk) (6/5t1) f(t19 ooy .tk) d't.]] ><

B(tyy..ey ty) dby ... db =0



for eny h(t,, ..., tk) £ Cog (Rk"1),

This implies that for any fixed 1, ..., t, and for

each T(t) ¢ C°; (Rk)

(0] C O o] _
SR G(bys 3 wuey BD(6/68) £(ty, 3 ... ) dty = O

Now from Iemma 0.2, we conclude G(%,, tg, e ti)

is a constant, V/4
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CHAPTER 1.

THE EXPONENTIAL FAMILIES

In this chapter we present the basic facts of exponen-
tial families, Information on exponential families can be
fornd in Iehmenn (1959), ILinnik (1968), Chentsov (1966) and
Barndorff-Nielsen (1970), We define algebraic and analytic
exponential families and give some examples to indicate their

importence, Apart from this, we follow Barndorff-Nielsen,

1.1, The Basic Facts

et (X >, ® ) be a fixed (Euclidean) statistical

nodel,

Definition 1,1. £ is said to be an exponential

family provided there exists a o-finite measure # on (X 33,
2 positive integer k, real valued functions ¢, 904, ..., &
on (P and real valued measurable functions h, By, ..., Y

on X such that h > 0, 7 « # and for every P e (¥
(1.1) (@/a) (x) = o(®) h(x) ¢LEHTE> - n

where 0 = (04,..., 9 and t = (ty, ..o B .
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In this case (1.1) is called an exponential represen-

tation of the densities of & with respect to K,

The probability measures in an pronential family

are mutually equivaelent, TLet P_ e (. Then for all P« o,

(1.2) ae/ap, = [e(®)/c(®)] SP(PI-R(R), B> o]
when (P is exponential then to any o-finite measure

¢ dominating &’, there exists a representation of the form

(1.1)., TFor each dominating &, let k(&) denote the smallest

integer such that the densities of the probability measures

in  with respect to # are representable as in (1.1,

k() is an integer which is independent of K, This integer

is called the order of the exponential family (?. An expon-

ential femily whose order is k 1is also ca}led a k-variate

exponential family, Any representation (1,1) where k 1is

the order of (P is said to be a minimal representation,
For proofs of the following theorems 1.2 through 1.5,

see Barnﬁorff-N;e}sen (1970) or the references cited there,
Theorem 1.2, Let (P be an exponential family of

order k with (1.1) as a minimal representation, Tet
/fzgsﬂFA}fNSTﬁ;?l
R N
Eddnﬁg
“Jutt 1935 2
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(@/a) (x) = c(@®) h O £ (x)> (4]

be another representation, Then there exist two linear tran-

sformations A and A and vectors a and a such that

At + a = %
A5+ 3 = 0
and
- 7 N
A A = Ika
Theorenm 1,3, The representation (1,1) 1is minimal

iff both of the following conditions are satisfied.

(1 1, 8, ..., & ere linearly independent functions

on & .

2 1, t., ..., t, are linearly independent functions
b 1’ ’ k y

Theorenm 1.4. If (1,1) 4is a minimel representation

then t is 2 minimal sufficient statistic,

Theorem 1.5. Let

(py/dp, ) (x) = c(9) e<o_oo,t(x)>
0

Then the family of induced distributions of 1, (?t = {PB}
is also an exponential family with order of (Pt = order of & ,

and
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a PZ / d PEO = c(9) e

Fox: an exponential family % , -consider the represent-
etion  (1,1) and let @0 = {Q(P) tPe @} The mapping

9:P-> 6(F) from (¢ into @O is one-one and onto, i.e.,
1

{6-0, t>

"' is a parametrization of & .

Definition 1,6, A paramei_:rization of the exponential
1

femily % , Trepresented as in (1,1), by O is called a

canonical paramefrization of 6) end © 1is called the cancnical
perameter of the representation (1‘,1), This parametrization
is called minimal canonical if (1,1) is minimal and in this
case O is called the minimal canonical parameter, The sta*t;—
istic t occuring in the various possible representations (1,1)

ere called canonical statistics. t is said to be minimal

canonical if it occurs in a minimal representation,

et & nave an exponential representation with respect

to a o-finite measure 4, Consider a minimal canonical param-

. . . 7 k
etrization of & = {pg 10 ® b where ®, C r.
We shall denote by Py @ chosen version of the density of
PQ with respect to 4, We have

(1,3) <G t(X)>

-

po(x) = c(9)
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If the Ieplace transform
g(0) = eSO T iy

is finite for 0 e RX, then py in (1.3) is a probadility
density with c(9) = [(g(8)] ~', Thus for O ¢ & = dom g,

% as defined in (1.3) is a probability density.

Definition 1.7. The set {) as defined above is

called the natural parameter space (qf the minimal canonical
perameter) in the representation (1.3) of the exponential

family (? .

The natural parameter space &  of &’ should be

distinguished from its set of minimal canonical parameters @O.

Theorem 1,8, The natural parameter space of an expon-

ential family is a convex set. /4
For a proof of the above theorem, see Lehmann (1959) p.51.

The statistical models of importance in exponential fami-

lies are of the following three types,

(1) Canonical Models, The set of minimal canonical

parameters ®o coincides with the natural parameter space @ .
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(2) Convex Models, ®o is a convex subset of @,

(3) Curved Models, ®o is a smooth conpected

nanifold contained in @ .

If q 4is the dimension of the manifold ®o then 0§
is called a q—-dimensiohal exponential family, Notice that

in canonical and convex models the order and dimension of an

exponential family coincide,

The curved models arise in the following way. Let a
statistical model be specified as (X, @3, P,) N where the
family of probability measures is parametrized by an open conn-
ected set A in R, Let the family ® = {P, 1 xe A}
be an exponential family, Suppose in a minimal canonical para-
metrization ©71, the functions ©0,(A), ..., §(A)  are smooth
with differentials of full rank at each point, Now the set of
ninimal canonical parameters @o = 0(®) has the structure

of a g-dimensional smooth manifold embedded in the k-dimensional

Euclidean space,

We mention in passing that Effron (1970) has made use
of one-dimensional curved exponential families in defining the

curvature of a statistical problem,
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k is called an alge-

Definition 1.9. A set N (: C

braic set in Ck if it is the set of common zeroes of a finite

nmber of polynomials with complex coefficlents in k wvariables,

in enalytic set in CX is a set of the form
U N fzeck: £.(2) =0 £ (2) = 0}
C . 1 9 o0 e ‘Lr

vhere U is an open set in ¢® and £4(2)y .00y f.(z) are

analytic at least on U,

Definition 1,10, A k-variate exponential family {§°

is called an algebraic (analytic) exponential family if the
set of minimal canonical parameters of ' is of the form
®,= @, (Y M where M is an algebraic (analytic) set

in ¢ and GD1 is an open set in RE  contained in the

natural parameter space of 67.

Lemma 1,11, Iet t have an exponential family of

densities

po(t) = @ T nw

with respect to the Lebesgue measure on Rk. We assume that
n(t) > 0 for all t in some open set S in Rk. Then if
the canonical parameters satisfy a nontrivial polynomial equa-

tion 'P(O1, cees Ok) = 0O then t 4is not a complete stat-

istic,
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Proof. We can find f(t) ¢ Cz (s) such that
P(=D) £(t)/ h(%) , t e S

F(1) =
0 , t £ S

is nontrivial. Now

0, ¥ gt

coy § PCD) £(®) e
S

c(o) P(o) £(O

Eg F

Which vanishes for all canonical parancters Q.
1t follows that 1 is not a complete statistic, /4

The fechnique used to construct a nontrivial unbiased
estimater of zero in the above lemna is known as Wijsman's
D-method. See Wijsman (1958), where he uses this method to
construct test functions satisfying the property of similarity
in some important problems., Wijsman's D-method will find

applicatioﬁs in the sequel.
4
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1.2, Exanples of Algebraic and

Analytic Exponential Pamilies

Example 1,12, Sampling from a normal distribution

vith a known coefficient of variation, Let xq,..., Xy De

independent and indentically distributed (i.i.d.) randon var-
iables ard let Xy A7 N(u, 02), i,e., x; has a normal dis-
tribution with mean # and variance 02. We assume that the
coefficient of varistion r = Kfc is known but o is
unknown, The family of joint distributions of the sample
(Xqyeuey xy), parametrized by o > 0, is an exponential family.

It has a minimel representation with respect to the Lebesgue

neasure MN on RN, given by

| N
- - 2
(1.4) p,(x) = (27E02) N/2 exp | -(1/2 %) T (xi-#) ]
i=1
2,-N/2 2. 2 o, ¥ oo
= (2no") exp(-47/2 %) exp [(~1/207) = X
i=1
> N
+ W/eT) 5 ox.]
. i
i=1
The minimel canonical parameters are 91 = -1/202,
N
02 = M/02 and the minimal canonical statistics are t1 = Z xi
N ’ ’ i=1
and t2 =z X;. The exponential family (1.,4) 1is a two-variate

i=1
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aponential family of dimension 1, The natural parameter space
3 .

g (1.4) is @ = (05, 8 1 04 <0, Oy R} and the

set of minimal canonical parameters is G@(D = O f\ly where

K= {Kz1, zg} T ozqs 2980 and Zg + 2 r2 zq = O}'. Thus

the fanily (1.4) is an algebralc exponential family.

The minimal canonical statistic t = (%4, t,) has the

density
(1.5) po() = o® &% T n®

vith respect to the Iebesgue measurc On RZ, where

2\N/2 ~ 1 2
- t5) , 1y 2 15

‘ (-t1
(1.6) n(t,, t,) = {
g . 1 72 2
0 . 1, <5

Exanmple 1.13. The Behrens - Fisher Problen,

Let Xq,...% XN1 and  Yqyeees yN2 be two independent

sets of repeated samples from N(, 03) and N(4, cg) respe-
ctively where the unknown parameters are & and 02, v e R

end 0% > 0. The joint density of the sample (x, y), with

respect to the ILebesgue measure On glq*N2 , 1s

1.7 p o o (x y) = (2%)-(N1+N‘2)/2 exp Ef(1/2°$) 21(x.-u)2
. ,01,0'2 i=1 1
(172D 12 (3,7
2’ 2, V1
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= (2n)-M*i)/2 [;(gz/zof) - (u2/20§)] x

N N
exp [-(1/2 of) 5! xi + (u/of) 5! X5
i=1 i=1
N N
2 2 2 2
~(1/2 03) % yT + (W/e3) =€ y. ]
2 i=1 1 2 i=1 1

(1,70 is a ninim=al representation with minimal canonical

perameters 0, = —(1/2 05), O, = (4/ o2), 05 = -(1/2 o3),

9y = (M/Og) and minimal canonicel statistics t; = 2 x§ '
= - 2 =
tp= Zx;, t3= Ty; and t,= £y,. The natural para-

meter space of the family (1.7) is
® = {o: 0,<0, 9,¢Hp, 0; <0, 0, ¢ R} .

The minimal canonical paraneters of (1,7) satisfy the polyno-

mial equation

so that (1,7) 4is an algebraic exponentiizl family with parame-
ter GDO = ® M M where M is the algebraic set defined
by the equation (1.,8)., In this example we have a four-variate

exponential family of dimension three,
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Example 1,14, Multinomial distributions with cell

probobilities as functions c¢f a parameter.

In genetics it is assumed that under random mating
conditions an off-spring belongs to the genotypes AA, Aa ox
c2 with probabilities p°, 2pq, q-, where 0 < p < 1 and

p+taqg = 1,

In a fixed number N of individuals the probability

that ry 1s A4, r, 1is Aa and ry 1is aa, 1is given by

Cn: v/ Tal Tl r33] (pg)r1 (2pq)r2 (qg)TB. Consider the
femily of probability distributions on the set of triplets of
positive integers (ry, T, r3), Ty * T, + T4 =N, generated
by varying p. The family has an exponential representation
with respect to the counting measure ) on the set of triplets
of positive integers, A minimal representation is given by the

densitics
— | N log 2pg _r4(log pe-log 2pq)
(1.9 fp = (N! / rylTol rsl) e I
2
< er3(log q- - log 2pq)

with respect to J , since the functions 1, 1log p2 -~ log 2pq,

log q2 -~ log 2pqg are linearly independent and 1, Ty, Ty are
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linearly independent, The family is of order 2 ond dimension 1.
The ninimal canonical parameters are given by 91 = log p -log 2pc¢
92 = log q2 - log 2pq and the nininal canonical statistics are
r and T,
% 2
We have e = P / 2pq = p/ 2(1-p) and

802 = (1=-p)/ 2p = (1/4) ¢%1 . The natural parameter space of
the exponential family (1.9) is R2 and the ninimal canonicel
paraneters form the set (94, 0,) ¢ R° : %2~ (/) %1 =0

so that the randon meting model is an analytic exponential

family

Exanple 1,15, - Location parameter exponential families

A location paramcter exponential family of distributions
on R is dominated by the Lebesgue measure &, with respect to

which, it has a density of the form

(1.10) f(x, ) = exp .
i

nmg

1 exp [ai(xi-O)] pi(x—Q)

where Ciyeoey O are complex numbers and Diseces Py are
polynomials with complex coefficients, Naturally if £(x) is
to be a probability density then the complex constanis in (1.10)

nust Be chosen so that the function f(x) is real, positive and
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satisfiecs the condition_ J.f(x) dx = 1, Under these conditions,
conversely, formula (1,10) is the density of an exponential
femily of distributions in a location parcmeter 0. Soo
Ferguson (1962), It 1s a univariate exponential fanily iff it
is a family of the type WN(9, o2 , J), introduced by Ferguson,
for some fixed positive 02 and real nunber )Y, Otherwise,

it is o nultivariate exponential family of dimension 1 with

the minimal canonical parameters varying over the curve

8 = (exp(-0,0)0, exp(-3,08°, ... , exp(-2,0)8, ... )

When (1,10) is of the form exp [ P(x-9)] for a poly-

nonial P then we have an algebraic exponential family with

the minimal canonical parameters satisfying the equations

2
. k ~
Qk - Q1 = 0
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CHAPTER 2.

UNBIASED ESTIMATION
IN ALGEBRAIC EXPONENTIAL FAMILIES

) 1n this chapter we prove a theorem due to A/M, Kagan .
and V.P. Palamodov characterizing the class of uniformly mini-
num veriance unbiased estimators in an algebraic exponential
family dominated by the Iebesgue measure., The main arguments
in our proof arc based entirely on the ideas of A.M, Kagan
and V.P, Palamoccv but at the same time we bring about subs-
tantial simplifications in the details of the proof, See
Xagan and Palamoder (1968), A point worth mentioning is that
we completely avoid the use of sone difficult results of H,
Whitney and J. P. Serre in algebraic and analytic geometry
which are used by Kagan and Palamodov, As a result, the proof
given in this chapter should be mc2 easily accessible to

statisticians,

In 2,1, we prove the necessary results on polynomizls
of several variables which are needed for the proof of the
main theorem, The resu}ts in this section also seem to be
of independent interes%, Given a set of polynomial constrai-

nits on Ck we show how to obtain the meximal subspace of
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&c where these constraints do not apply. We obtain the equae-
tions defining this subspace in terms of the ideal of all poly-
nonials vanishing cr the set of points satisfying the constr-

aints,

In 2,2, we state and prove the main theorenm, The
statenent is slightly changed from that of Kagan and Palan-

odov to make it suitable for direct applications,

In 2,3, +the theorem is applied to prove two conjec-
tures of J,K, Ghosh, namely, in the Behrens -~ Fisher problen
and in the problem of normal sanples with a known coefficient
of variation the unifornly minimum variance unbiased estimators
are trivial, An application of the theorem to variance compon-

ents models is given in the next chapter,

2.1, Some Results on Polynomials

of Several Variables

Polynomials in k variables with complex coefficients

form a ring P, under the usuzl addition and multiplication of

polynomials,
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Definition 2,1, An ideal in the ring of polyno-

mials P, is a set of polynomials I ( B, which has the
properties
(1 Pel, Qel = P+Q e I

(2) PelI, Rep => RP & I

Definition 2,2, A C gk is a set of generators

for the ideal I in 'gk if I 1is the smallest ideal in gk
containing the set A, We denote this fact by I = id A,

Note that id A is the set of all finite sums of the

forn I P, Q; where P, e B and Q; ¢ A,

The following two theorems in algebra are well-known.

Theoren 2,3, (Hilbert), Every ideal in P, hes
a finite set of generators, //

Let N Dbe an algebraic set in Ck defined as the set
0f common zeroes of the set of polynonials A, This is deno-

ted by N = V(4), Notice N = V(id A),

Theoren 2,4. (Hilbert's Nullstellensatz) Let

N = V(4), A C gk’ Suppose P ¢ By vanishes on N,
J M

®hen for sone positive integer n, Pt e id A, /Y
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The ideal of 211 polynonials vanishing on a set

1 C ¥ will be denoted by id N.

Theoren 2,5, Iet N Dbe an algebraic set in Ck
and I = id N, TLet
0 I, = 1a{e+e): P eI, el
and
(2,2) . L = V@),

Then L 1is a linear subspace of Ck, It is the lar-
gest subspace of Ck such that
(2,3) L + N (C N

Proof, Let

I, = Pz + ¢ ) 1 P(2) e I}

Then V(I, ) = N -¢_. Therefore
(2.4) I = WI) = M §¥-c¢

el
To show L is closed under addition ., Let Eqs Ep
be in N, For arbitrary ¢ e N, from (2,4), we can find
Nys Mo € N such that £q =My - & and 1N, =My - ure

Therefore, £4 Y Ep TNy - B E L.



-28—~

To show L 1is closed under scalar nultiplication:
Fix ¢ in L . Fron the previous’part of the proof, for
each positive integer n, n ¢ ¢ L, For P e IO, consider
the polynomial in one complex variable a, Py(a) = P(ag),
Since P1 vanishes at all positive integers, P1 =0, i,e,,
P(ag) = 0 for each complex «, It follows that a ¢ ¢ L

for each o e C,

Now, fron (2,4) we have, for each ¢ in N

tH

C N-¢

or
Thus

On the other hand, if M 1is a subspace of Ck such that

M+ N ( N, then obviously M is contained in N - ¢ for

each ¢ in N, Thus M ¢ ) N -t =1. Thus the
il U AN =

Jgee

theoren is proved, /

Let N Dbe a fixed algebraic set in ¥, Let I, I,

L Dbe as before, We shall assume that we are working with
an crthonormal basis (e1,.,., €r1 Cpiqrenes ek) for  so
that (e1,.,{, er)‘ is a basis for g‘ and (er+1,.1., ek)

is a basis for L . We shall identify gz = Z1 €1 * ee.t oz, e



~29-

with the ordered r-tuple (z4,..., 2z,) and so on,

et V = }f M N, If (z?, eoes zi) e N, then,

fron (2,3, (z?, coes z;) e ¥V and for arbitrary

o)

o} .
Zrsls eoey Zk’ (Z1g..¢, 21y Zpeqr eees zk) € g, This shows

that N can be identified with the cylinder V X L.

let P(zy, "tl_zk) ¢ I, Then the polynomial in
Zyr evay Zyy P(z1, coes Zyy Oy Louy 0) will vanish on V.
It is also clear that such polynomials form the ideal 1I', in
gr’ of all polynonmials vanishing on V. To see this, consider
P(21y wouy zr) e I' as a polynomial in B, with zero coeffic-

ients for = Then obviously P vanishes on

r+1, ® e e Zk.
VXL and consequently it is in I, In fact, I' 1is noth-

ing but the set of all polynomieals in Zys ey Zp which are

in I,
Lerme 2,6, I' generates I in gk‘
Proof, First, consider P(z;, ..., Zr+1) e I.
We can put
(2.5) P(Z1,,..,Zr+1) = QO(Z1,¢o.er) * Zr+1P1<Z1!‘O"Zr+1)
Putting Zopq = O, we see that Q, ¢ I'. It follows that
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e I, DNow for any 2% € N such that 70 # 0

Zpep B T+
P1 must‘vanish. If ;;+1 =0, 1let Z(n) = (zgi,.,,z;,% ,,.,,zi
From (2,3), z(n) e N, Since z(n) -> z° we have P1(zo) = 0,

Thus P1 e I,

Deconpose P1 as in (2,5), Continuing this process,

finally, we obtain
(2.6) P(Z»],..., Zr+1) = QO(Z']"c., Zr) + zr+1Q1(Z1’.“,ZI‘)+
n
e e e + Zr+1 Qn(z-‘i,o-o’ ZI\)
where Qi e 1T, i=1, ...y 0.

Thus P is in the ideal generated by I' in _Ij:k,

Now, by induction on the number of variables, we obtain

the result, /
let
2.7 I8 = id {P(z +¢) T P(z) eI, ¢ y},

In the above definition of I, since P(z) is a polynomial

in 24, ..., 2, only, we can replace ¢ ¢V by ¢ eV X L=V,

Arguing as in the proof of theoren 2.5., V(Ié)' is a subspace

of I which is contained in V - ¢ for each ¢, ¢ N and hence
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contained in L , It follows that V(Ié) = 0 ., It is also

clear that I generates the ideal I, in 2.

Lemma 2,7, The set of vectors

f(62/ 624, ..., 62/ 62) : Pe It}
spans QL,

Proof, Suppose a # 0 is in‘ QL'and for each
Pell, a _| (88/ 6z, ..., 6P/ 62.) . Then for P ¢ I' and
¢eV, the directional derivative D, P(¢) = 0, This shows
D, P e I', Repeating the above argument for D, P e I'y etc,,
finally we have for ¢ e V, DQ P(¢) = O for each positive

integer n, This implies that Ié vanishes on the vector space

generated by the vector a, This is a contradiction, /4
Theoren 2,8, I is the ideal of all polynonials
S —————— O

venishing on L.
Proof, It is enough to show that the polynomials

21, Qoo" Zr aI‘e in Ié.

Fron Lemma 2,7, we can choose Pyy ooy P, In I}
so that the inverse function theorem can be applied to obtain

an analytic isomorphisnm
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(21’.°.,Zr) < ~> (P"’an, Pr)

in a neighbourhood of zero, Iet

(2,8) zq = F(P1, eee s Pr)

in a neighbourhood of zero, where

(2,9 F(Pyy veey Pr) = 3 aii...irP1 .. B

If we expand the righthand side of (2.9) as a pcyer series in

Zyy eeey Dy then the coefficient of each form (mononial)
i1 T ir ’
Zqs ese 3 B nust vanish, except that of Zq.

From Hilbert's Nullstellensatz, we can find n such

that if a form in 24, ..., 2 is of degree at least n then

r
itis in 10, Also, except for a finite number of indices, all

) i, i
other ~ai1.,.ir Py ... P
Ty eeey 2y of degree at least equal to n, Let the sun

r
r

is a finite sun of forms in

i i
igeeei, F1oeee Fr
of indices, In this sum, the coefficients of each form, other

r

DAY P correspond tc these finite number

than Zqy whose degree is less then n nust vanish, So we have

i _
T
P = ozt A(z1,...,zr)
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where A(z1, ..., 2z,) is a finite sun of forms in z4,..., 2z,
of degrce at least n, So A(z1, oo ey Zr) is in I}, It

follows that Zq € Ié. /Y

2.2, Unifornly Mininun Variance Unbizased Estination

in Algebraic Exponential Families dominated

by the Iebesgue Measure,

Let (X, ®, &) be a statistical nodel where X is

N

a Borel subset of R and & an algebraic exponential fanily

doninated by the Lebesgue measure MN. In the canonical para-

netrization 0"1 suppose  has a nininal representation

ACH t(x)>

(2,10) po(x) = c(0) hy (x), 6« &,

with respect to MN,

Clearly, in the problen of unbiased estimation, we neced
consider only estimators which are functions of the sufficient
statistic t = (t1, oo s tk). Suppose the statistics ty,..., 1,
are continuously differentiable and functionally independent.

Then the induced fanily of joint distributions of the statistic

t is an exponential family and has densities



(2.11) pg(¥) = o@ 2P nw), o @,

with respcect to Mk,

In the rest of this scection we assune

(1)t = (44,..., tk) has a fanily of densities of the
forn (2.11) where the set of canocical parameters
@bo = 651 M M. QD.1 is an open sect in ¥  contained
in tﬁe natural paraneter space ® and M is an algebraic

set in Ck.

(2) 45 £6 1 n@) >0} = #S)  where S is the

interior of the set {t © n() > O} .

(3) h(t) is bounded cway from zero on every compact

subset of &,

If h(t) is a continuous function then assunptions (2)

end  (3) are trivially satisfied.

The problen is to characterize the class of UM,V,U.
estinators in the family (2.11), Without loss of generality

wve assurc all estimators vanish outside S,

Iet X be any compact subset of S, Fron assunption (3),

ve can find 6 > 0 such that h(t) <% ¥ at > 6 for all t
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in X, Now

=5 § e nw 9 Par s s § e at.
X X

Thus G is alocally integrable function emd as in (0.7)

G can be considered as a distribution,

Lemnna 2,9, Tet G(t) be an L,M,V,U, estinator for
its expectation at the point O e G o- Then G(t) satisfics
the partial differential equations (in the sense of distri-

putions )

0

(2,12) P(D + 0)C

for any polynomial P(z,,..., z,)  (with complex coefficients)

which vanishes on @Dcf

Proof, Iet P(z) e any polynomizl vanishing on

B Take f(t) ¢ Cz (S) and put

o
F() = P(-D) £(t)/ n(t) , te S

Since

O, 44

§ 7 nw A L T { BCD) £(1) e
S S

P(0) 2(9),

F(t) is an unbiascd estimator of gzero, i,e., F(t) e U_,
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Since h(t) is bounded away frem zero on conpact subsets of

K, EyF° < « for cach 0 in H .

Now let G(t) Dbe LM, V.U, at QO, Fron Lemma O,1.
we have for each f(3t) ¢ Cog (s)

O
i

Jew e )] %Cor® gy

J oo+ 0 eI £(1) for® gy

The second part of the above equality follows from (0.5)‘ and
the definition of differential operator on distributions, Since
£(4) = f£(t) e$For ¥ is one-one onto Cog (8Y and G(t) =0

outside 8,
P(D+OO)G=O. V4

Theoren 2,10, (A.M, Kagan and V,P. Palanodov). Let

¥ be the smallest algebraic set in ck containing @ o and

let L be the largest linear subspace of Rk such that
L + N C N, An estimator G(t), Eq 6° < e for all

9 in ®

G(t) is a function of s only whewe s is the projection of

o’ is a UM.V.U, estimator for its expectation iff

t into I,

Proof, (1) Sufficiency. Iet
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L
Q = B+ n, Pe L, ne L

Consider‘an estinator G(s) such that EQG2 < e for

5 :
2all & in @ . Iet P(%) e U, and EF <=, 0e¢ @ .

Fix 0 =8+ n  in 43 o- Let U, Dbe a neighbour-
4
hood of Bo in L and U, a neighbourhood of n, in L

such that U, X U, C @1. Since

B, X L C N

o)
we have )
Po X U, C &, N
Since N 1is the smallest algebraic set containing
®, N M, where M is an algebraic set, it is clear that
1 ok e b4
Put
F.(s) = S- F(r, s) e“Po, > h(r, s) dr
L‘L

Since P e Uo' we have
§F1(s) <M g5 = 0
for 211 n = U2. This inplies

F1(s) = 0
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Therefore, for all O in @o,

i
(@

Ey L 6(s) F(x) 1

which shows G is a U,M.V.,U, estimator for its expection,
from Lerma 0,1,

- . 2
(2j Necessity. Suppose G(t), Ey G < « for

all 6 in @, isa U.M.V.U, estimator for its expectatior,

Consider a fixed polynomial P vwvanishing on N and a

fixed (%) ¢ cﬁ (8). DNow

§ 20+ 2 o] £ at = S6() [P(-D + 2) £(] at

is a polynonial in gz which, from Iemma 2,9., vanishes on @O

and consequently on N, Thus, for all ¢ in N,
(2,13 PO +¢) G = O

Now, let I ©De the ideal of 21l polynomials vanishing

on N and

I, = 1d{pz+) 1 P(@) eI, xc- N}

Then, fron (2,13), for all P e I_

(2,14 P(D)G = O
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L

v(I,)
k

n

L I N R

where we assume we are working with an orthonormal basis

(845 eees ek) so that (ey, eeer er) forns a basis for

L L

L = L N ﬁgc and (e ,qs.-0) ek)_ a basis for L. Fron ’
Theoren 2.8, the polynonials z4, ..., z, ¢ I, Now fron (2,14)

56/ 6ty = 0,..., 5G/ 5%, = O.

This shows that G 1is independent of 14, ..., tr' The

theoren is proved, /4
Renark 2.11. If L = {0}, then the only U.M.V.U.

estinators are constants,

Renark 2,12, The fact that the set of nminimal canon--
ical paraneters GD o is of the fornm H 1 M is used in

the sufficiency part of the proof, If @, is any set and
I the smallest algebraic set containing @, then the neces-

sity part of the theoren is trre,

2,3, EIExanmples
Exanple 2,13, In the problen of N independent scmples

fror a normal distributions  N(4, o) with o fixed standardized
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nean, considered in Exanple 1.,12,, we have
= . 2 2 _

Iz r=0, then L= {(0, 8) 1 9 =R’ &= 0} eond

UM, V.U, estinators are functions of t1,

Case r # 0, For any fixed (B, 52) such that

2

2
B, +2r” By =0, By <0, B, ¢ R and for (04, 8,) ¢ L we

2 2 _ . 2 2.
nave (8, + By)" + 2r (o * B = 0, i.e., 05+20,B,+2r 0y = 0.
Since r # 0, the a%ove equality 1s true for any arbi-
trary BZ e R, But then if 92 # 0 this equation deternines
Py, uniquely. So 0, =0 and consequently 04 = O, It
follows that L = &O}. So constants are the only U.M.V.U.

estinators,

Exanple 2.14, The Behrens-Fisher problen,

See Exanple 1,13, We have
QDO = {p : Dy <0 Oz < 0, @ ¢R, 94 &R, 0194_9293 = o}
For © ¢ L, we have

(0, + B0, + B = (9 + B (05 * B5) = 0
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bitrary £, < 0 and B3 <0

1

0104 + 9401 - 9293 - 9293 = 0,

For a fixed (91,

or arbitrery B, < O and B4 < O,

i} Singe O e M, O 13 a 1linit point of @ , and so

'khus, for 01

) 0,9, = 80 = 0

;%o, for arbitrary B, <0, By <0, we have
i

i 048, - 8,85 = 0.

this implies O, = 0, 0, =0,

Now, arguing as before, we can show 01 = 0, 93 = 0,

It follows that the only U,M.V,U. estinators in the

i
&

Behrens-Fisher problen are constants,

The same result is true also for the multivariate

=

éiaiogﬁg of the BehrenS—Fisher“pfoblem which can be proved

by similar methods.

}ere ﬁ1, BQ’ 33, 54 are any nunbers such that ﬁ1 £ 0, BB < 0
;54 = ﬁ233 = 0, Now, taking B, =0, 34 = 0, we have for

9,, 95, 94) e L, the equation holds

e N
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CHAPTER 3.

ESTIMATION IN VARIANCE COMPONENTS MODELS

Iect y be a randon p-vector with a nultivariate nornal -
distribution Np(O, G) where G is unknown but is assumed to
bein a fixgq convex cone of positive definite (p.d.) matrices,
Let Vi1 eees Iy be N independent observations of y. N
may be one, We give a representation of the joint densities
of  (Fqseeey yN) as an algebraic exponential fanily. Making
use of this fact, an elegant characterization of the class of
T.M.V.U. estimators is obtained, The same point of view also
lzads to an interesting derivation of the explicit likelihood

equation,

The nodels we consider arise from the variance conponent
zodels x ~n N (X8, i uh V;) when we are interested in estin-
stors which are invariant under translation by ZXPB., Iet
y = Px where P 1is the projection of y on the orthogonal
conplenment of the colurn space of X, Then y is a maximal
invariant for the group of translations by XB and y ~2 Np(O,PGPT)
In traditional variance conponents models N is one, but repli-

c2ted nodels are also studied under the nane linear covariance

m>dels and they are of interest in some problems in psychonetry
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and econonetrics, These models occur also in the study of

sutoregressive processes with noving average residuals,

_ The literature on variance conponents models is extensive.
Z.R. Rao (1971) has characterized the class of quadratic esti- -
zztors which are of uniforn nininun variance in the class of
quadratic estimators, It turns out that for gquadratic estina-
“ors uniforn minimunm variance in the class of all estimators is
zquivalent to uniforn mininun variance in the class of quadratic
zstinators, U,M.V,Ut estimatorg are functions of UM.V.U,
guadratic estimators, For U.,M.V.U. quadratic estimators our
sariterion reduces to the condition given by Rao, The likeli-
=50d equation we derive resembles the one given by Herbach(1959)
“or the two way classification randon effects model, The like-
Zihood equation for the model is also derived by Srivastava(1966)
“sr the case when all the covariance matrices are sinultaneously
:jagonalizable, and by Anderson (1969) in the more general
sase, Our likelihood equation is explicit in the sense that
<ne equation does not contain the inverse of the unknown natrix,
me of the advantages of this is that an iterative solution by
substitution is possible in our case whereas one has to resort

4z nore difficult techniques to solve Anderson's equation,

Our use of Jordan algebra in the problem is influenced by
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Seely (1975), Also, our techniques have something in common
with those of Srivastava (1966),

3.1, Jordan Algebras of Matrices

Ierma 3.1, Iet A bYe a real linear space of p X p

zatrices with real_entries. The following conditions on 4
are all equivalent, |
' _ 2
(1) Geg => G ey
(2> Gy Gye 4 ==> G0, + G0y ¢ 4
(3) For each positive integer n,
Ged = Gea
Definition 3,2, A real linear space A of natrices

satisfying any of the conditions given in ZILemma 3,1, is

said to form a (real) Jordan algebra of matrices.

Renmark 3.3. In fact, such a linear space of matrices
Jorns a Jordan algebra under the usuwal definition of a Jordan
_lgebra with the usual matrlx additlon and tks multlpllcatlon

0 deflned by A OB = (AB + BA)/2
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In the rest of this section we shall denote by 4 2
fixed Jordan algebra of p X p symnetric nmatrices containing

the ddentity matrix I.

Lemma 3.4. If Ged ond G is p.d, then e 4.

Proof, Let G e A and G be p.d., For suffici-

ently small a > O

(3.1) ¢

a[I - (I -a®T"

a [T+ (I -20G) +(I- @) + ... ]

i

For each positive integer k, (I - GG)k e 4. Since 4
is a finite dimensional linear space, it is closed. Therefore,

71e g //

A linear space of symmetric natrices ¢an be made into
zn inneq_product space by the inmer product <4,B> = tr AB, Let
(Gyy eeer G,) ©be an orthonornal basis with respect to this inner
product, Now we can identify R® and A by the isonetry

(3.2) n = (n1, veey nn) e D GT) = niGl

TR

i=1

Iet @ be the convex cone in“R>n defined by

(3.3) ® = {nerR*: G c4, G is p.d.}
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For ne¢ &, from Lerma 3.4., we have a unique 0 ¢ ®

such that |

(3;4) (Gn)"1 = 6
let U : @ —> @& ve the map
(3.5) U(n) = 9

It is clear that U> is the identity mep on ®.

Theoren 3,5. Let U be the map defined in (3.5).
Then U is a rational map, i.e,, each coordimate of © 1is

given by

(3.6) Qi = Ui(n‘], eoc e nn)

where Ui is a well-defined raticrel function of Nqseees Ny

on @ .

Proof, We shall assune (G;) i =1,..., n is an
srthonormel basis for § and Gy = (1/{p)1 . The modifica-

tion in the form of Ui when this is noct the case is clear.
We have

(3.7) To= G

+ G Ga)/2
g n)\.'. « ;;n ?.O-? {.@ ey

B Rt W

For a -p.d. G’ﬂ ¢ 4, if Gye & satisfies (3.7) then it can
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be easily shown that

~1
Gy (Gn)

Now, the equation (3.7) can be written as

(3.8) I = g 0; [jg ny (G305 * jSi)/ZJ
In terms of the coordinates with respect to the basis ( Gy )
this becomes
. 1 = 50, [ £ 1. tr (G.G, + G.G,)/2
(3.9) ilEj‘nJI‘(lJ 564)/20]
0 = o, [=n tr (Gic;j + GjGi) Gk/2], K =2,,..,0,

1 J J

The equation (3.9) can be put in matrix form as

(3.10) A(m).0 =

Osee O

where the (k, i)th element of the matrix A(n) is

GJD e () ;

8

(1/2) Zony tr E(GiGj+GjGi)GE] y, k=2,,..,n

(1/2p)z n..tr E(GiGj+GjGi)]

aq;(n) >
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For ne &, from Lemme 3.4,, equation (3,10) .has a

unique solution © ¢ @ . From Cramer's rule for the solution

of linear equations
(3.12) Oi = 'Ui(n1,..., Tln) = IA']i(n)l/IA(n)'- ’

,.Obviously |4, (n)| and [A(W)] are polynomials in
Ns eees n, and for ne @&, J|A(m)]| # O,

This proves the theorenm, /4

3.2, The Minimal EXponen‘Eial Representation

In the following S dgnotes a convex cone of p X p
p.d. matrices, Y = {G"T T Ge g?} . ILet §, and ¥, den-
ote the affine spaces generated by § and Y respectively,
Since § 1is a convex cone the affine spaces are actually seen
to be linear spaces, Unless otherwise stated, we shall assume
g is openin g o @and § contains the identity matrix I,

In the sequel 4 will denote the smallest Jordan algebra of

sympetric matrices which contains 8,

Lemnz 3.6, S50 C L C & 8L, iff § =4

Proof, Clearly ¥, (C 4. For a> 0 and Ge¢ Sy
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I +ae6 is in §., Now, for a > O small enough,

(I + aG)”1 = I - aG + a2G2 — e

which is in ¥ .. Therefore,

-G + a2G2 oo e Y

Now letting @ —> O we obtain Ge Y. Thus § 6 C ¥, C 4.

From the same argument we also have, for G e 3, Ll Y.
ror Gy, Gy € § we have G, + G, ¢ § and consequently,
' 2
(G4 + G,)° e ¥,. Thus, for Gy, Gy e §, GGy *+ GGy ¢ Y.
2

This implies that for any G ¢ §O, G~ e go. Thus if §O = Xo

then §o is a Jordan algebra.

On the other hand, if §, is a Jordan algebra, then fron
Lemma 3,2., ¥, C §, and consequently Y, = S,e /N

We fix an orthenormel basis (G1,...,qm,...,Gk,...,Qn)

for A so that §G1,,..,Gm) is a basis for §, and (G1”°°’Gk)

is 2 basis for Y, . We shall find it very convenient to iden-
tify Gﬂ and 1n via the isometry (3.2) Under this identif-

lcation §o = Rm, I = Rk and 4 = R? with, of course, the
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embeddings R® C RS C R%.

Let M be the algebraic set defined by the polynomial

equations .

(3.13) 'A1i(zi,.“’ Zk’ O,O '°'O)l = o’ i = m+1, oo 0 no
where A4, is as in (3.12).

The set of p X p p.d, matrices is open in the set
of all p X p matrices with the usual topclogy. The Euclidean
topology on A is the relative topology inherited from the
topology on the set of p X p matrices. Therefore, we can
conclude that @ , the set of p.d, matrices in 4§, is

an open set in 4.

Now, consider the map @ PECIEN ® defined in (3.5).

It is a2 rational map and hence Dbicontinuous, We also have
(3.14) ® N g = ®Nu

Since § is open in §, and s C &®@n g, § is

also openin @ M §o° Therefore, U(g) is openin ® N M.
Now & O M C B= y. Thus @ ,=U(g) is of the form

(3.15) @, = ®,; N ¥

-where ®1 is an open set in R¥,
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Lemma 3,7, The functions 1, U1(n), cees Uk(n) are

linearly independent functions on §.

Proof, Suppose, for all n e § and some constant ¢,

we have
k
£ oo, Ui(n) = c

i=1
Since § is a convex cone, for Ny & 8 'K n, € § where

K is any constant > O, This implies that for arbitrary ¢ > O

Eaia Ui(‘no) = ¢
Thus ¢ = 0, But the set of vectors

{ Uy, ooy T e g}

spans gb = Rk, This implies ay = o, i=1,..., k. V/4
lemma 3.8 1, y* G Ta are linearl
Lild DJ,0, y ¥ 1y9 eeey ¥ ky re Y

independent functions on Rp.

Proof, Suppose, for all y e RP and for some

constant ¢

k

T =

o 1Y BV = oe
or

yT (s a, G,) = ¢

i 5’y
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This implies

Since  (G,) are linearly indepcndent we have

i"i=1..., k
@ =0, 1i=1, ..., k. /
_ Theorem 3,9. let y ~» NP(O, qn), GT) e 8. Let

Jq1e+es ¥y be independent samples from y. Then the family of
joint distributions of (yqy..., ¥y) has minimal exponentiel

representation with respect to the Lebesgue measure in RPN

(3.16) pQ(y1’ coey yN) = ¢(Q) e<O, t(y‘]’ oooQYN)>
where ‘
(3,17 B3(Fqs eees ¥ = -Ntr(6;0)/2, 1=1,..., k
N T /
C = I y.y; /N
i=1

and the canonical parametrization is by

(3,18) o, = TUiln), ¢, ©

nn

The canonical parameter @ varies in the set B, = @, M

defined in (3,15).

+4 is a complete statistic iff __S__o = A,
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Proof,

(1)2) . o1 ¥tz ¢)/2
- Vi % Ji B n

-k
(-N/2) 2% tr(G,3)

where o = Ui(n).

The mininality of the exponential representation follows
’ ’ k

from ILemmas 3,7 and 3,8, Notice &% a; tr(GiC) = ¢ for
. i=1
k
. . . T —
all T1r0ees Iy implies, in particular, ii1 éi y1Gi yq = c.
The set of minimal canonical parameters QD(D is of the

form (3,15) is clear,

If §,=4 then QD(J contains an open set in R®

and therefore t is a complete statistic,

1f

i

o * 4, then S8 # ¥ . In this case the minimal

canonical parameters span ‘Rk

~ but they are zeros of the non-
trivial polynomials in (3,13), Now, from Iemma 1,11, it

follows that the minimal sufficient statistic t 1is incomplete. //

Remark 3,10, Suppose ¥y A2 Nb(O, G)y, G e g% where
I £ $*%; Pix 7V e S* and look at
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1 1
s = {vgav—? :Geg*}

Then it is easily seen that the above theorem is true with the
set of minimal ceuonical parameters y=1/2 ®, v 12 nere

(4]

@Do is as before.

Example 3,11, We shall obtain the mininal canonical
exponential reprgsentation of the two way balanced random eff-
ects model as an illustration of the method of this section,
Herbach (1959) has obtained the same by simultaneously diago- .
nalizing the covariance matrices, The unbdalanced case can
also be treated by our method but the Jordan algebra generated
by the covariance matrices will depend upon the unbalanced

nodel we consider,

The following model i issumed for a two way classification

with K0 observations per cell,

= A B AB
(3.19) Vige =# T et S5 g T i
i = 1,;.., Io; j = 1,000’ JO : k = 1, eeo o Ko V{here yijk

is the k th observation on the (i, j) th cell, The

main effect £ is assumed to be a constant and the components

eA ’ eg ’ eAB y ©:. are assumed to be independent normal
ir. 7§ ij ijk > o 5

. . 2
variables with mean zero and variances 0_, Oy, 9.4y O
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respectively, In a self-explanatory matrix notation, (3,19)

can be written as

Ju + Ua + Vb + We + Ie v

(3.20) Y
put @ =00r . @, = VWY, Gs. = WW'. The matrices I, Gq, Gp, G
1 ’ 2 ’ 3 ) P [ 1! 2’ 3

do not generate a Jordan algebra, We have
GiGy = GpGy = 2G4

where G, is the matrix with all its entries unity., We have

2 2

6] = (5K, G = <10:K0>G2, 65 = K5
G,Gy = GpG, = K G,y G105 = G0y = K Gy,

GGy = GyGq = (JOLKO)G4, GoG5 = G50y = K G,
GGy = GGy = (IO;KO)G4, GzGy = G4G5 = K .Gy

so that Gy, Gy, G3, G4,I span a Jordan algebra, Iet

2 2 2 2
oeI + oaG1 + ch + cabG3

z 2

g1

OOI + O1G1 + 0,6, +’O3G3 + O4G4

Then. we have
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2 - 2 2 2
(3.21) I = o001 +GH(O1 [ﬁe +J Ko, ¥ Kooab]
2 2 2 2
* o Co, + K005])+G2(02 [be + I .Kop * Kocab]
2 2 2 2
* % l:oo * K003])+G3(O3 EOe * Kocab] ¥ oabod)
2

' 2
+G4(O4 Ebg tI0e KTy * Io°Kba§ * Kocabj

+ K, [050, + &9p1)

Put
- 02
no = e
- 2 2 2
M= T *dgK, 9 K %ab
2 2 2
o = 97 Io‘Ko 9y * X %ab
_ 2 2
M3 = g * Kj 9y
‘=02+JK0+IKG+K02
N4 e o*7 o & o*70 b o ab

Then we have the following linear relation
Mg = M % M- M3

Also we have

02 =
e - o
2

Q
)

ab ('fl3 - 1')o)/Ko
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o O

Now, fronm the equation (3.21) we obtain

OO = 1/no
2 -
03n3 Y % % = 0
oY 2 ’
05 = =ggp O/mg = -(ng = Mgl/Kgngns
R, ~1
= Ky (ng' - mg ).
~1 1 =1y o =1
O, * Ky 85 o oz -mg) = s
c2(o, + K 85 = (ng - n3)/I K, ms
Therefore,
_ o N -1
o, = -(ny = mng)/I K g3 = (J,.K,)7 (n
Similarly, . |
_ -1, -1 ~1
0, = (I,.K)7 (mp - m3 ).
2 oy

Solving the above equation,

- -1, =1 =1 -1 -1
04_ = (IO.JO.KO) (T)4 + N3 - N> - T)1)

(n1 - n3)/']0'_Ko = (n4 - HZ)ZJofxﬁ

(ny = n3)/1,.K, = (ng = n)/15.K,

-1

N3

)
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For the time being let us assume # = 0, We shall eval-

2ate the quadratic form yT ol y. First observe

T 2
Yoy = i (yi“)
yTGgy = o )°

j ; oJo

T 2

yey = = (y;:)
3 1,9 H-
yTG4y = (y )
Sow,
T o1 T
v Iy o=y L2 o8]y

_ T =1 .1 ~1 -1 -1
=y [ (To- K5'65) + n7 (T K716y = (I,.9,.K)7 Gy)
et ke, - (1.7 .k)""e,)
T)2 o* o 2 o*Yo0* "o 4
-1 -1 -1 -1
* N3 ((Ko) Gg - (JO.KO) Gy - (IO.KO) G,
4 -1 ~1. \=
+ (1,.K,.3 )7 6p) + 17 ((T,.9,.K) 600 ¥

wmere |
S, = Ty -2 (yyy VK,
S; = (3 k)7 : (v; % - @0k )y ®
s, = (IO:Kb)‘1 z (y 407 - (IO.JO;KO)"1(y...)2
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R 2 =1 © .2
S5 = K % (yij.) ~ (J,.K)T L (yi")
o y=1 -2 21, 82
- (IO.KO) z (y.j.) + (I,.95.K,) (y“.)
= -1 2 ’
Sy = (IO.JO.KO) (y..')

Thus we have an exponential family with the nininal cano-
nical statistics S, and minimal canonical parameters n;1 with

the non-linear relation (for n;1)
Mg = M o - N3
restricting the parameters, The fanily is inconplete,

Now let 4 be unknown in (~=, ), Then replacing ¥jjy

by Yisk - 4, obviously S; (i = 0,1,2,3) remain the sane.

= : -1, 2 s .
Sy = (Io’Jo'Ko), (y.o. - IO.JO.KO.M) . The minimal canonical
TS B I BT By i
parameters are 1, My s Mo s M3y Ny s M/n4 and the oin-
inal canonical statistics are S_, S, Sy, Ss (y-- )2, Ng .

The minimal canonical statistic is not a 'proper’ nininal suff-
icient statistic since y;Q;z. is a function of y;.. . The
ninimal sufficient statistic can be shown to be complete in
spite of the non-linear gelation restricting the paramecters,

See 'Gautschi (1959).
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3.3, Uniformly Minimum Variance Unbiased Estimation

Theorem 3,12, et ¥y ~= Nb(O,_G} , Ge§
where § 1s a convex cone of p X p p,d. matrices conta-

ining the identity matrix. Suppose yq,..., yy Bare N indep-

endent observations of y, Let

(3.22) L, = {Geg, : AGheg§ forall Ace g}

1

16 e g, 16566, + 6566; e §, 1=1,..., n}

Suppose R1, ceny Rr is basis for the vector space IL.. Then
the class of U/M.V,U. estimators,with finite variance, is the
sorie as the class of estimators, with finite veriance, which are

Zunctions of (tr (R4C), ..., tr (R.C) ).

Proof, Since § is a convex cone the interior of
2 in 8§, 1is dense in J. Therefore we assume, without loss
:I generality, that 3 is open in §o' In the minimal exponen-
tial representation (3,17) the minimal canonical statistics
Ry eeey t, has an induced family of distributions which has an
exponential representation with respect to the Lebesgue measure

X

<0, t>

pe(t) = c(@) e h(t), 0¢ ®@,= ®; NN
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h(t) is continuous,

Suppose N is the smallest algebraic set containing @

k

and let L be the largest subspace of R~ such that T + N =‘N

o
-

Now, appealing to the theorem of Kagan and Palamodov,

we are done if we show 1 = LO.
To show 1 C L,. Suppose G e L, Take F e @,

Yow, from the property of L, F + aGe N. But since @y

is open, for small enough ¢ we have, F + aG e @,. Therefore,

F+GG{—:®1HH= ®1HM= ®O

Again, for small enough a,

(F+a®” ! = [F(I + o )T
= (I -ar g+ oFlorlc-...) !
= 7' _arlor! ¢ Crlerler - Ll

Since FP+ate @, (F+o®  eg, Also Fleg. It

fo0llows that

Floa™ - arlorler! + ... ¢ g

YNow, letting « > 0,
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Thus, for each Ae

KN

Gel ===> AGA ¢ §

Since § is a convex cone, the above implies that AGA ¢ g,

for all A e §o'

To show L, C L. Iet Ge I, Take Fe @ N M

Now, we can find @n such that Jo| < ¢n  implies

F+aGe QD1 and

2~1 1

(F+ o)™l = 51 _ ap-lgr! + o2p=Tgp!

G‘F GF- - LR
— -1
F e ®o ==> F € §O
=1 — =1 -1
G ¢ LO’ F £ §O == F'GF € §0.

But we 2lso have

A T e

-1 -1 =1 .
F-le g, F GF , S8, Ge L, ==> F GF 'GF Soe
and so on, To see the above, notice
A B e §,, Gel, = (A+B)GMA+B e g

==> LGB + BGA & §_
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Thus we have

(® + )" ¢ §

=0

Also, for fa] < ep
(F+ed™ ¢ @

where @ is, as before, the set of p.d, matrices in the
Jordan algebra generated by §,. Thus for e} < ep
®+a0)” ¢ @ O 8,

It follows that

P+rac & @ O M

and, since for |e¢| < op, F <+ aG isin @ 4
F+ac ¢ @, N Y, le] < a
or
F+aG e N, | lel < op

But, since N is an algebraib set, the above implies that

for each real a

-

Thus we have shown that for each real a .
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@, N ¥+ ¢ CX

and since N - oG is also an algebraic set

N C N - «G
or -
N + ac C N
Thus G e L or L, C L. /
Remark 3,13, If I ¢ S, then from Remark 3,10, it is

2asily seen that the change in the definition of I, should

be the following,

1, = {Geg, : AVIGVacg, forall Ae 5.3

R N

{oeg, s oviorie; + 6, eve; = g, )

where V is any fixed matrix in 3. V4

The parametric functions of most interest are the linear
functions on §,. Notice the linear functions on §  are
of the form #r(AG), A e §, or in terms of the coordinates
Ty eeer Mo g P3Ny where p; = tr AG;. The simplest esti-
amators for the linear parametric functions are the linear func-

 tions of the sufficient statistic C which are of the form

4
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tr RC, Since they are the quadratic functions of the observ-

=tions they are called gquadratic estimators,

Corollary 3.14. tr RC is a U,M,V.U, estimator for
tr AG, A e § iff R=A and BAB ¢ §o for 211 B e 3.
tr AG, A ¢ §o is UM,V.U, estimgble by a quadratic estima-
tor iff BAB e S, for all B e §.

Proof. ~ tr RC is a2 U.M.V.U, estimator implies,
from Theorem 3,12 R € §o and BRB e § 3 far all B e §O.
Since Re § and tr RG = tr AG for all G e §_, we have
R = A, / |

—
It is interesting to note that a quadratic estimator is

.M. V.U, iff it is UM,V.U, within the class of quadratic

zstimators,

Theorem 3,15, tr RC is UM,V, U, for its expectation
«ithin the class of quadratic estimators iff BRB e §, for
211 B e §o, ~

Proof, tr FC is an_upbiased estimator of zero iff

T FG=0 forall Ge g, , i.e., Feg§,. Now trBRC is
T.M, V.U, within the class of quadratic estimators iff
ecv(tr RC, tr FC) = 0 for all F e §i1 But Cov(tr RC, tr FC)
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= 2%tr PGRG when the covariance matrix of thg observation

7ector is assumed to be G, Thus tr RG is U.M.V.U., within

the class of quadratic estimators iff tr FGRG = O for all |
‘ 3
e g, andfor all Fe g ., Or forall Ge §, GRGe §.. /4

The above result is obtained by C.R. Rao (1971) by
ilirectly minimizing the variance at a fixed G ¢ §o and then

zoting the condition for the estimator to be independent of G,



-67-

3.4, Maxinun Idikelihood Estination

Let us ossume that § is the convex cone of all p.d,
metrices in §, or §= @ N §,. Then fron the shape of
the likelihood function it is clear that it attains a nmaxinun
in §, A necessary condition for G 1o be a nexinun is

that it satisfies the likelihood equation derived beiow,

The logarithn of the likelihood function is proportional
to_ .
(3.23) (2/1) log L(G) =-p log 27 + log|C™'| - tr G~ '¢

where G varies in the set ® N S,. Consider the function

2s a function of G"'1

(or as a function of Osenny Ok) where
G-1 e ® M M. The necessary condition for a point 0 to be

a maxinun of the above function is that

' n
{3.24) 6 [(log 1(G) + = BiUijg /GOj =0, Jj=1,..., k

i=m+1
Ui(O) = 0, i=n+, ..., n

where U, 1s the function n; = U;(Q) defined in (3,12) and
Praqteses P, are the Lagrangimn nultipliers for the conditions

‘.‘;m+1 = O’ eec e 9 nn = Oo



-68-

We nake use of the following two well-known fornulae,

(3.25) 5 log |G“1|/soj = tr oy
(3.26) 5 G/aoj = - GGjG,
Now,

2 . = 6(Z n.G, . = I . (0)/60. G..
(3.27) 5 G/50; ( 2 “1G1)/5°3 1'EbUl( )/ 3:k1
Therefore,

(3.28) 6 Ui(o)/soj = - tr GG4GG;.
Iet Ayj be the matrix whose (r, k)th element is given
by tr [(6.G.6, *+ GG.G.)G,]. Then (3.28) can explicitly

rjk kjri
be written as a quadratic form

T

(3.29) 6 Ui(o)/csoj = - AL,

J
Now we can write down the likelihood equation (3,24)
explicitly as

’ n
~ T = f o
(3.30) g ni tI‘ GiG- -— tI‘ G’-'l - 2 Bin A-ijn - ) 3_1’ LN J

J . J i=m+1

ni = O, i=m*1,oo¢’ no

Or in terms of an crthonormal basis Gi
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T
.31 - C - = B.mA..m=
(3.31) N5 tr GJC Bim Alan

|
O
()

1

- 1"00, n

T .
- tr G;C - EBmA;n =0,  §=oml, L., om,

' We can_attemﬁt a solution of (3.31) by iteration by )
substitution, Get initial values of "5 (which nay be taken

as tr GjC),_ j=1,..., 8. Then from the second set of equa-
p

tions in (3,31) compute B Now we can obtain new

m+1?°°*? ‘n°

values of N3 from the first set of equations in ‘(3.31).

In an actual computation of the likelihood equation the
following points may be noted, (1) It is not necessary to
compute the matrices Aij‘ At each stage we can compute
tr GGiGGj directly, (2) It is not necessary to obtain an
orthonormal basis, (3.30) can be used., (3) If the Jordan
algebra A is not easily recognized, it is not necessary to
find it, We can consider the Jordan algebra of all p X p

symmetric matrices with its natural basis Gij where Gij

has its (i,j)th element and (j,i)th element 1 and all
other elements zero. In this case §, 4is the kernel (or

null spacd of certain linear equations = [ég) =0 in
i,3-

the algebra of p X p symmetric matrices, So the constrai-

nij

T = - AT
nts n_,4 =0, ... , N, =0 will be replaced by ifjxij M4 5 0.



-70-

Tet
( | ) z
3,32 F = - ¢ B. G..
m+1 i

Then the equation (3.31) can be put in the matrix form as

(3.33) G + GFG = c|A

where G E.go’ Fe §;L and denotes the projection of

°l4
C into 4. (3.33) can be written as an orthogonal sum

-1

(3.34) I +« PG = G C‘A .

From (3,34) we immediately gect
(3.35) tr 61C =

for any solution G of (3,34), a result obtained by
Anderson (1969).

Also, it is clear that the likelihood ratio criterion

for the hypothesis that G ¢ §o versus the unrestricted alte-
1

rnative is the 5 N th power of
(3.36) lc1/1§ = |T+CF|
where G is the maximum likelihood estimator,

" It is interesting to compare our equation (3.31) with

the likelihood equation obtained by Anderson, Anderson's
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equation is

(3.37) tr [(zniGi)"1ij = tr E(zniGi)’1c(zniGi)'1Gj],

j = 1, eseceo 93 my

or in matrix form as

‘ -1 =1 ~n=1
(3,38) G = (GT'¢ce™) .
18, 18,
Now putting
F,o = 6 Ccad - el
we have
G + G F1 G = C
for F1 in the orthogonal complement of §o with respect to

all symmetric p X p matrices whereas we have from our

equation

for F in the orthogonal complement of §O with respect to

&. Thus our equation is of smaller dimension than Anderson's,

Finally the question of uniqueness of the solution of the
likelihood equation leads to the following interesting question,

Let §, be a subspace of a Jordan algebra of matrices A.
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Under what conditions we have a uhique dicomposition for the

(p.d.) matrices C e 4 as
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CHAPTER 4.

INADMISSIBILITY OF CERTAIN ESTIMATORS WHICH ARE
FUNCTIONS OF THE MINIMAL SUFFICIENT STATISTICS

In this chapter we extend and strengthen a result of
AM, Kagan on the inadmissibility (in the class of unbiased
estimators) of certain estimators which are functions of the
mininal sufficient statistic, This result has an importan@

application to a special type of location parameter family,

4,1. Introduction

Consider the family of exponential densities on Rk, with

respect to the Lebesgue measure uk on Rk

(4D pg® = @ PP ), o0 @,

We assume
(1) h(t) is a continuous function of .

(2)  The set of canonical parameters @@ , is a subset

of the algebraic set M in Ck

y defined by the polynomial

| equations
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P1(z) = 2, - z3 = 0
(4.2) ; °
- k _
Pk_1(z)- zZ, - Z; = O

~ Under the éssugption. that @ , is a bounded set,
A.M, Xagan (1968)-p, 86-89  shows that any nonconstant polyn-
omial estimator Q(t,,..., tk), which is independent of t,,
is inadmissible in the class of unbiascd estimators of EqQ.

We extend the result of Kagan from polynomial estimators
to continuously differentiable estimators, But what is more
inportant is that we discard the unnaturql asgumption of the

boundedness of the parameter space @& .

An exponential family with the canonical parameters sati-
sfying the equations (4.2) appears, for exanple, when a sanple
Iy Xoreeey Xy is taken from an mn-dinensional population whose
srobability density with respect to the Lebesgue measure in R™
is of the form

nr1(x)+n2r2(x)+...+nkrk(x)+ro(x)

o

In the canonical paranetrization, we have 01 = n,...,ok =1,

4.,3) £f(x, n) = c(n) e , N eR,
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Our mnain theorem has a very interesting consequence to

= special case of the family (4.3). Iet
] 2k

4,4) fx, n) = ¢ ¢~ (x-m)
«here X e R, neR 1is a location paraneter, and, k 2 2
is an integer, For a sanple of size N, where N is at least
<k, the theoren implies that none of the sanple moments is an
zdnissible estimator for the corresponding population noment,

:xcept one (which is in fact adnissible),

4,2, An Elementary Lemma on Adnissibility

et (X, 8,% ) pe a statistical model and
£={r,: 0¢ @O}

Definition 4.1, We say G 1is an inadnissible unbia-

:2d estimator of g(@) (in the class of unbiased estimators Ug)
** @e Uy ond there fs sone Gy = U, such that EQG- < Eg6°

-rall 0 in @ ,. with strict inequality for some 0 ¢ @ ..

> 1s adnmissible if it is not inadnissible,

Lemna 4,2, G e Ug is inadmissible in the class of

‘=biased estimators of g(Q@) iff there exists an unbiased esti-

zztor of gero F and a constant r > 0 such that



-T6-

2

GF > rEF” forall © in @,

E 0

’ o
(4.5) )
EOOQF'> T EQOF2 for some O, in @ .

Proof, (1) Suppose G ¢ Ug is inadnissible, Then we have

sone

where F e U  and for all © in @

0
2 2
Eg(G - F)" & EG
i.e.,
2
~2 Eg GF + EgF° < O
or
1B, F° & Eg GF.
For some O ¢ @, all the above inequalities nust be
strict,

2
(2)  Suppose that for some r > 0, ELGF 2 r EF

for all Q¢ @, with strict inequality at & ¢ ® ,. Notice

2

that this inplies EQF > 0,

For @« > 0, put f = F/a, Then we have
EGf > or Ef°
Q = Q9

Yow shoosing @ > 1/2r, EGf > 5 Egf°, and hence
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2 2
Eg(G - £)° & EG

with strict inequality, of course, at 0 =46, //

4,3, The Main Theoren

Theoren 4,2, In the exponential family (4.1)
satisfying the assunmptions (1) and (2), a continuously diff-
erentiable estimator G(t,,..., tk), wherg_‘G € Ug and G
is a function of only the statistics t,,..., t, is inadniss-
ible in the class of unbiased estimators of g(®) unless G

is a constant,

Proof, Suppose  G(t,,..., tk) € Ug is adnmissible in
the class of unbiased estimators of g(@)., Iet S be the

open set
- ko— "
s = {teR ¢ n(w) > o}.
Without loss of generality, we assume G(t) = O for 1t £ S.
To show
5G(t)/5t2 = 0.

If possible, let (6G/6t2)(t*) > 0 for some t* € S, We

can find an open neighbourhood U of t* contained in S
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such that for all t ¢ U, 8G(t)/6%, > O,

et V be an open sphere of radius ¢ with centre at t¥

such that the closure of V, TC U, let forall teV,
(4.6) (6G6/6t,)(t) 2 y > O
h(t) > e > O

Now, for the polynomial P, as in (4.2) and for a

fixed O ¢ ®o’ we have

P+ 06 = [(6/6t, + 0, ~ (6/5%, + 0)°] G
Since (8/6t4)G = O and P,(Q,, 8,) = 0, we have
(4.7 P, (D +0) G = 06G/6%,.

Now, we shall find a function F e U, and a constant
r > 0 such that ELGF > rE@F2 for all © in @ _, which

will be a contradiction to the assumption that G is admissible
For f e C: (Rk), support of £ ( V, we have
F(t) = P,(-D) £(t)/h(t)

isin | U and
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(4.8) E ,GF fot) [p,(-») 2] ™ as

{Cp,0 + 26T (1) <O gy
[fron (0.5)]

Jearst ety 9P at [eron (4.1

Since EOF2 =~[ {[:P1(—D) f(t)]2/h(t)} eSO dt, it is enough
to choose f(t) v and r > O such that '

(4.9) (56/66,) (+) £(+) h(¥) > r [P, (-D) 2T for te 7V,
or because of (4,6), for some constant ry >0
(4.10) £(8) > o, (B (D) £, teT.

Now choose

2, .2 2
e~ /(I oy

£f(t) =
0 , t gV,
For any polynomial P(9), clearly, P(-D) f(t) is of
the forn f£(t) Q(t) where Q(t) is a ratiomal funciion, Also,
2
f(t) Q(t), —> 0 as ||t-t*]| —> o, 1i,e., we can choose

T, > 0 such that

(4.11)° 1 > 7, £(t) Qz(t)
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so that 1, can be chosen to satisfy (4.10),

If 5G/6t2 ¢ 0 for some t* ¢ S, take

cr) o et e 1)

in the above argunment,
Thus , it follows that GG/5t2 = 0,
As before, we can show that
P;(D + O)G = 5G/5til, i=2,..., k.
The same kind of argument as before will show
6G/06t; = o, i=2,...y ke
This shows G 1is a constant; The theoren is proved. //

Corollary 4.3. For the location parameter exponential
fanily (4,4), for a sample of size N > 2k the sample moments

Dqy Hoy eees Hop oo Oops Bojesqs eoe are ingdmissible esti-

mators of the corresponding moments Hq, Hoyeees Hop o9 ﬂgk,'

M2k+1, co e in the class of unbiased estinators of these

population moments,
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Proof, For a sample of size N > 2k, the canonical
statistics of the fanily

2k~1 2k-2 ——

by =T AT, by =B XT s oeee s boeg i

have a joint distribution of the type (4.1), satisfying the
assunptions, So from our thecorem, the sample noments,

nq = z x% ’ q = 1,.,,,_2kh2 are inadnissible, The san-
ple moments Doy Dppeaqr oo are inadmissible because they

are not functions of the sufficient statistics tq,...stoe g/
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CHAPTER 5.

UNBIASED ESTIMATION IN A NORMAL DISTRIBUTION
WITH AN UNKNOWN INTEGER MEAN AND A KNOWN VARIANCE

In Chapter 2 we have»seen that in an aigebriac expongn;
tial fenily, doninated by the Lebesgue neasure, the U.M.V.U,
estinators form a oc-algebra in the sense that there is a sub-
gs-algebra of the Borel c-algebra of the sanple space with the
property that the estinmators measurable with respect to this
c-algebra are cxactly the U.M.V.,U., estinators. In an analytic
exponential fanily, dominated by the Lebesgue measure, the
U.M.V.U. estimators may not forn a c-algebra, However, one
nay expect, that the U.M.V,U, estinators will be a nmathena-

tically interesting cless of functions,

Ih this chapter we characterize the UM.V.U, estina-
tors in the case of a normal distribution N(x, 1) on R with
an unknown integer mean # and variance 1. As a corollary,
we show that the parametric function ¥ has no UM, V.U,

estinmator,

Notation, By a 27 i-periodic function we shall mean
a periodic entire function of period 2mni. The set of inte-

-

gers will be denoted by Z.
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Theoren 5.1, For the family N(u, 1), # ¢ Z, the

-lass of U.M,V,U. esyimators coincide with the class of 2m i-

zriodic functions G(x), EMG2 < o for # ¢ 2, of the forn

o 2
(x) = I c, o0 /2 BX  here the function of the complex
—riable # defined by E(W) = I o, ¥ is unifornly conv-

b

:rgent on compacts. We have E,G E).

Proof,  Let G(x) Ybe a fixed UM.V.U, estimator. Let
2(e) = E,G. Then

‘ : 2 2
5.1) By = (I TF) e 7% Jax) e ¥ /% M ax

z(#) is an entire function, We shall show that it is a 2Ti-

zeriodic function, -
We know
= -x2/2 (25,4 u2)2
5.2) J e e = 21 e .
Tnerefore,
- 2mnix -x2/2 Kx (#*2751)2/2'
5.3) J e e e = \J27T e .

Tmus, we have for K e Z

' 4 2 . . _
35.4) E,w[: 2" e2n1x-1] = 2™ L 91 = 0

T-is shows

5) (e2 E

Lh
[ ]
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Therefore, since G is UM,V,U,, we have for & e Z
” 2 n2 2mix

(5.6) B, [e@). (e e -] = 0

It follows that

(5.7 EG= T g

p G=EW +2ni), e Z,

u+2 i

Now, to show that E() = E(# + 2ni) for all complex K,

it is enough to show that for each positive integer n
(5.8) P EW/ P = aE@ + 2ni)sadt, Le g

Iet us suppose that we have shown (5.8) for positive

integers less than or equal to n-1, From (0,5) we have

2 . _ 2 s
(5.9 e /2 v2Tmidy @+ 2ni)? e /2] e,
Now, |
' 2n? n 2mix n -x2/2 Hx
(5.10) I'lTe X e - (x+2mi) Je e dx

2 . 2
ol [2 7 Q2 Tix -x7/2 Hx ax ]

2 _
(D +2nD)P[ Je X /2 HMX ay]

2,5 4 o
Drl[ 27[6/“/2*““1“]/

»
-~ @+ 2ni)" (27 72
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R
[+ 2n )P (27 & 72 ] 2T

.
@+ 2nd)® (TR D

' 2
L I F- e R E D L Call Ao W

Thus we have,

2
(5.11) [27 P 2™ix _ (x v 2m1)P] e U,

Therefore, again we have for & e Z,

‘ 2 ) 2
(5.12) Ta) [2 ™ B e2™X | (x + 271?167 ¥ /2 ¥ ax
= 0
That is, |
‘ 2 2 .
(5.13) [ fe(x) 2T ezniX e~ X /2 X ax]

.
=@+ 2n)fa(x)e™ /2 gHx dx, M e i
’ . 2' . .
(5.14) DAL TmeH /22T g+ 271)]
2. -
=@+2nDEr HPEW] , ke,
But we have

- 2 rl
(5.15) P[H/2* 2T gy s 214) ]

.
=5 M [B@ + 271) [ pTeH /2 * 2Ty ]
r
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- 73 .
=z O [FB@ + 27D 1@+ oq )T H/2] 2T

T

- 2‘
(5.16) @+ 2z /2 EW ]

,
=z (" EW IO+ o )T H /2]

Ncw from the induction hypothesis that (5.8) 1is true

for positive integers less then n, it follows that (5.8) is

true for n also,

~ Thus we have shown that B(u) is a 2mi-periodic func-
tion,
Since E(#) is an entire periodic function of period

2 i, it has the (complex) Fourier expansion

(5.17) E(r) = £ oc,e

\

where the series converges uniformly on conpact sets,
' 25 1 iu w22
(5.18) I o) e*/c1e  ax =27 e E(is).

Since E(&¢) is bounded,

. 2 ) P 2 '
5.19) G(x) e~* /2 1/J2n ) e /2 g(in) e-iﬂx au

. oo 2 ' . -
/2 ing =1ux
17J2n., & Je c, © g ax,

-0

It follows that
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2
o1 /2 oIX

(5.20) G(x) = = c,

and G(x) satisfies the conditione stated in the theoren.

on the other hend if G(x) satisfies the conditions

stated in the theoren, it is clearly U.M.V.U. //

Corollary®5.2.  In the family N(, 1), # e Z, the

paranetric function g(#) = 4 has no U.M,V.U. estinator,

Proof, If possible, let G(x) be a U.MV.U,

estimator for K,
It is easy to see that in N(g, 1), for any estimator R(x),
(5.,21) E, R(x+1) = E, 4 R(x).

Thus we have

G1(x) G(x + 1) -1

and
Gz(x) = G(x - 1) + 1

both are unbiased for # and therefore for K e Z

' 2 2 2
(5.22) E 6 = Byy6 -2¢-1 ¢ E, G
' 2 _ 2 2
(5.23) E G, = E, 6 +2-1 < B, G

* The same result has also been obtained recently by
Professor Morimot4o and a student of his, . Kbéj*nau
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But (5.23) can also be writien as

' 2 2
(5.24) E, G° + v ¢ T & Buyq G

Now, from (5.,22), for K &%

E, G

2 2
©

Since TU.M,V.U, estinator is essentially unique we have

G, = G, or

(5;25) Gx+ 1 = Gx) + 1,
However, since G(z) is a periodic entire function, let
1G(z) | < A
for 0 rez £ 1, 0% inz < 2ni, Then for 2z ¢ C

(5.26) l6tz)] <& A+ lzl.

But (5.26) will force G(z) 1o be a polynonial of

degree at nost one and we have a contradiction, /
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CHAPTER 6,

ESTIMATION IN CENSORED GAMMA MODELS

Consider a censored sample from a gamma distributicn ‘

P, A with a known form parameter p > 0O and an unknown
scale parameter A > O, In this chapter we treat the problen
of unbiased estimation in this family, This generalizes some

results of E,N, Torgersen,

6.1. Introduction

Suppose our experiment is to observe the time of death
where the observation has a gamme distribution [(p,A) whose

density is
(6,1) G/ ) 2T e™ . x>0

We assume p > O is known and A > 0 1is unknown, Suppose
our observation is limited to a fixed time interval (O, t).
If death does pot occur before time t then the observation
is taken as t. In this case the observation is said to be
censored at time t, Without loss of generality t can be

taken-as 1, Such experiments occur in the study of life .-
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testing models. A minimal sufficient statistic for this model
is the total number of deaths recorded together with the sum of

lifelengths of individuals dying before time *t.

For the case p = 1, and the number of observations
¥ > 2 Torgersen (1973) showed that the minimal sufficient
statistic is incomplete. Generalizing this resuli Unni (1976)
proved that this holds for any integer p 2 1, TUnni also showed
that when p is irrational the minimal sufficient statistic 1is
complete, Finally Torgersen (1977) completed this result by
showing when p 1is rational r/s where r and s are rela-
tively prime the minimal sufficient statistic is conplete iff
the number of observations ¥ ¢ s, See also Torgersen and Unni

(1978).

For the case of integer b, Unni has also characterized
the class of U,M.V.U, estimators generalizing similar results

of Torgersen,
In this chapter we present the results of Unni (1976).

Notation. In this chapter 4 and J will denote
the Lebesgue measure on R and the counting measure on the set

of positive integers respectively. Ga will denote the one-



-91-

point mass at a or the distribution defined by 6(x-a) where
8(x) is the Dirac's 6-function, - fxg denotes the convolution
of the functions f and g and f*k denotes the k-fold

convolution of f with itself,

6.2, The Exponential Representatién

For a censored observation x, the distribution function

F(x) 1is given by

. (AP ﬁ;)f WPl e Mgy . o< x <
(6.2) F(x) = {

1 ’ x =1
et
' 1, x <1
(6.3) d(x) = {
0o, x =1

Then the censored observation x has a density with respect

to u + 61 given by

(6.4) p,(x) = (\P/ ) (P-1d(x) -Ax d(x) EA()\)T'MX)

where

o0

j BT oM gy
1

(6.5) AN
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Note that A(A) is the Laplace transform of v1(x)-v2(x)
where
‘{ xP~1 ’ x>0

(6.6) V1 (X) =
0 ’ x<£O0

‘ 21 o< x<
(6.7) v, (x) {

0 , otherwise

Clearly A(z) is an analytic function for re z > &,

_ 4 censored sample of size N is a repeated sample
X1 9 ece s Xy from F, The sample has Joint density with res-

pect t6 the measure (v + 61)N on RN given by

(6.8) Aoz = P/ Y xgp-T)d(x1) . xrgp-T)d(xN)

e e—kT(X1,...,xN) EA(A)]N_D(X1"°‘XN)

where
’ - N
(6.9) D(xT,..., xN) = 3 d(xi)
i=1
’ N
T(Xqpeusy x) = 121 x5 d(x;)
Sigce
(6.10) EA(K):W;D = ¢(N-D) log A (A),

the formula (6.8) gives a canonical exponential representation
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of the joint distributiorsof the cemsored sample with respect
to the measure (v + 51)N on RV y Since 1, 0, = -r and
@, = - log A(A)  are linearly independent and 1, D, T are
linearly independent, the representation (6.8) is minimal
canonical, It is easily seen that the -natural parameter space
of the family is @& = {(9;, 0,) : 0, <0, 9, ¢ R}

and the minimal canonical parameters are © in & which

-~

satisfy the analytic equation

) 2,
6.11) e - A(—z1) = 0

defined on the set re z; < 0O, z, € C  so that the family

(6.8) 1is an analytic exponential family,

6,2 The induced family of distributions of

the minimal canonical statistic

For any statistic R(x1, cee s xN), let PA(R) denote
the induced family of probability distributions of the statistic
R,

Since the probability of the event d(x1) =1 is
[1 - P/ 2)AM], D is binomially distributed with the
success parameter 1 - (AP/[p ) A(A), i.e.,



(6.9) P,(D =4) = (g) [1_<xp/|7§)A(x):F-gxp/ o )a) P-4
Now, for D =1,.,,, N, P,(T <t, D=4d) is given by

oz Px(xi1+ cee * xid < 4, Xi1 < 1,

all other xi

1)

where the summation is over all combinations of d elements

i1,..., id from 1y eeey N,
It follows that

P,(T<t, D=a)

. .
(d)P}\(x1 teotxy <y xy <1,

e o0 xd < 1).Pk(xd+1 = 1’.0., xN = 1)

Py(xg + cea¥Xy B x <1, ,x5 < 1),

(g) [:P}\(x1 < 1):P'[?x(xa+1 = 1) P-4

or
(6,10) (<Y, D=d) = Py (x4* ... x5 <t x4 <1,
coer X < DLUP [1-0F7 B a0] 4

COPs praon -4

.Now, the conditional probability distribution of ,
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Xy ¥ oo v X4 given xq < Ty eeey x5 < 1 is the d4-fold
convolution of the conditional probability distribution of X4

given x4 < 1. Px(x1l x4 < 1) has the density

(6.11) AP/ 2 ) C1-a AP/ [p )~ &M

?-l
x5 & _ _
with respect to the uwniform measure;on [ 0, 1]. Therefore,

Px(x1+ eee v xgl X <1000, % < 1) has the density
(6.12) (A7 [p)A[10P A/ B M nrca, v

with respect to the Lebesgue measure 4 on R, where h'(d,t)
is EPe density of the d-fold convolution of the wniferm meas-
-l .
Fdx
ure on (o, 1] with respect to #, For an explicit express-
ion of h'(d, t), se Feller (1966), We shall only need the

fact that h'(d, t) is supported by the closed interval [o,d].

The conditional distribution of T given D =0 |is

concentrated at the point O,

Now, it is clear, the induced family of distributions of
(D, T) has a density with respect to 6(0,0)* J X K where
§(0, 0) is the onc-point mass at (0, 0), This density can

be formally written with respect to Y X 4 as

(6.13) p,(d, ©) = OF/ ¥ nea, v CacF e~
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where  h(0, t) is the Dirac's 6-function and for g = Tyses, N

(6.14) hg, ¥ = (D n'(a,t)

which is supported by [0, 4] .
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6.4 Unbiased Estimators of Zero

Let g(4,%t) be a statistic and for all A > 0 1let
Exlg(d,t)| < =, Then we have

6.15) E, [a(a, )] = P/ N z Cao ¢ d} g(d, e~ Matide
=0 ~

Let us put
(6,16) G4(t) = g(d,t) h(d,t).

Notice E,|g(d,t)| <= iff for each d G4(t) is integradle

Fron (6,5), (6.6), (6,7) and from the familiar prop-

erties of the Laplace transforn
- p, = N[ Y N-d At
6.17 B, [Le(a, 0] = O/ ) {2 e, e (0 at
d=0

Expanding (v;=vp) "~C by the binomial theoren (which
is easily seen to be applicable loocking at the laplace trans-
form) and collecting the same convolution powers of vy in the

sum in (6,17) we obtain

6.18) &, (g(a,0] = (/)" z f[v*N"d R ()] e at
where
’ a
(6.19) Ryt = = (0%t Ahelt e .
1=0

Notice Rd(t) is supported by [0, d.
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Since we know f vye "t at = /2P, we have

- ’ N , A
6.200  Eg = OF/[pOY 3 (/TR M)
d=0

where

R0 = JRgw) M at

Thus we obtain

N A ‘
(6.21) Ex8 - g(0,0) + d81 \Pd Ry (M) / (o).

Iet g(d,t) be an unbiased estimator of zero,

As A —> 0, s AP/ ()% ,ftd(x) — 0,

Therefore, from (6,21),

(6.22) g(0, 0) 0.

Thus it is clear that for the case N =1 (D, T) is complete.

Since Rd(t), d=1, ..., N are integrable functions

supported by [0, d], ﬁd(x) are entire functions,

Now suppose p is an integer., Then it is well-known
that Rd(}\) / ([p )% is the Iaplace transform of the
compactly supported distribution ( D = (dpd/dtpd) ER (t)] .



To find the most general unbiascd estimators of Zero,
take integrable functions Ry(t) supported by [0, d] satis-
fying the differential equation (in the sense of distributions)

(6.23) 2 ([p)%aPYatPh [Ry(0] = o0
a

That there exist nontrivial Ry(t) , 4 =1,,.,,§ N> 2,
satisfying (6.23) is obvious -and in any case examples are

givén in the proof of Theoren 6.2,

The question remains about the case of =2 noninteger p.
A complete answer to the question of completeness of (D,T) is

given by the following theoren,

Theoren 6,1, Let X{s «.ey Xy be 2 repeated san-
ple from a distribution function FA where
X
TP/ ) uP~! o-Mu dy, 0<x g1

PG = {
1 x 2 1

with an unknown parameter A > O and a known parameter p > O,
Then the family of joint distributions of X{seeey Xy adnits
a éomplete and sufficient statistic iff it adnits a boundedly
complete and sufficient statistic and this is the case iff

either
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&) p is irrational
or ,
(2) P is rational = 1r/s where the integers

r and s are relatively prime and the number of observations

N < s, /

For a proof of the above theorem, see Torgersen and

Unni (1978),

_ Notice the - fragility of the property of complete~
ness, Although the distributions are strongly continuous in
P, the situation when p is rational is.entirely different

from the situation when p is irrational,

6.5. Unbiased Estination

Next theorem characterizes the class of U.M, V.U,

estimators in the censored gamma families when p is an integer

A similar theorem is true 2lso in the inconplete rational case,

This is proved in Torgersen and Unni.

Theoren 6,2, Let Xiseeer Xy » N>1 bea

L3

repeated sample from a censored gamma family with an inteéer

P. Then an estimator ¢ with everywhere finite variance
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7

is 2 UM, V.U, estimator for its expectation iff ¢ is a
function of the minimal sufficient statistic (D,T) of the

forn

¢ (0, ) = ¢

i
O

(6.24) 0 (a, %) , a=1,.,.., N-1

o (v, )

]
Q
-
-

<t <N

where ¢ and ¢, are arbitrary constants and O(N, t) ,
0<t<1, is an arbitrary function satisfying the square

integrability condition
1
(6.25) S Do, 9P -1 Mgt ¢
0

Proof, (1) Sufficiency. Note that for a statistic

¢ of the given form, the existence of variance for each A > O
is equivalent to (6,25) from the fact that @(N, t) is
defined on X, + L., *+ Xy < 1 and fron the additivity pro-

perty of the gamma distributions,

If g(d, t) is an unbiased estimator of zero then

from (6,17)

- .
(6.26) Eo(vy - v) g8 = 0
d=0
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Now, (vq - vz)*N;d

x G3(t)  has support in [N - @, «),
Therefore, we have

(6.27) g(N, t)

i
(@]

0Lt <1

Also, fron
g(o, 0) = o,

Now, let ¢(d, t) be a function of the form (6,24),

For any unbiosed estimator of zero g(4,t), E}\g2 < o for

A > 0,

EA@g = cExg = 0,

Thus, ¢ is U.M. V.U,

(2) Necessity. FProm (6.17), g(d, t) is an
unbiased estimator of zero iff g(0, 0) = 0 and

)*N-d

L=

vy - v, x« Gg(¥) = 0

d=1

Suppose  g(d, t) is an unbiased estimator of gzero

(U.E.Z.) such that. g(d, t) = 0 for d # 1,2. Then we

zave from (6,27) (v1-v2)*N—1 » Gg * (V1'V2)*N-2 x» G2 =0 and

iooking at the laplace transform we see
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(6,25) G (t) =  —(vq - v, « Gy
t-1
- J[ (t-w) P! Gy (0) du t <2
0
- J =P 6w au £ 2
0

since G, is supported by o, 1] . Now, the fact that

G, is supported by [0, 2] implies

’ 1
(6,26) Jf (t-w) P~ Gi(w) du = O forall %22
0
or
. 1
(6.27) Jr uk G1(u) du = 0 for k=0, ..., pP-1.
0

Conversely, for G, satisfying (6.27) 4 we define
Gz(t) by (6,25) and g(4, t) = 0 for d# 1, 2 then

gld, t) is a U,E.Z.

Now, 1let us suppose that §(d, t) is a UM.V.U.
estimator, Again, 04, t) g(d, t) is a U,E.Z, and it
vanishes for d #1, 2, where g(d, t) is any U.E.Z. van-
ishing for 4 # 1,2,

This inmplies
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(6.28) J W e 00, wan=0 for k=o0,...,p-1
0

for any G, satisfying (6.27).

Toke Fe CJ (0, 1) and put G, = (aP/atP) (1) .

Then we have

- 1 . 1 .
(6.29) jo o C(®/a®)F(WTeu = S C(-1PaPu*/auPP(w) du
0

= 0 for k = O, Ry p-1.

Therefore, from (6,28),

. 1 , .
(6.30) { w001, w [aPP(w)/awPJdu =0, k =0,...,p-1.

But (6,30) inmplies, in the sense of distributions,
(6,31) (@®/au®) [u¥0¢1, wl=0, k=0,..., p-1

The differential equation (6,31) shows that uw P(1, w)
is a polynonial of degree less than p in the variable u for

k=0, ..., =1, It follows that (1, u) is a constant,say c,

. Again, from (6,25), since g(d, t) O, t) is a
U.E.Z.," for a U.E.Z. g(d, t) of the above type
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-1
(6.32) 6, (8) P2, 1) = - 6[ (-wTe () (1, au
t-1
= _¢ */ (1:-\;1)1)"1 G1(u) du
0

—c [~6,(t)].

For any t e (1, 2) we can take G, and G, 8O

that 62 # O, Therefore,

02, t) = ¢, te (1, 2).

Now use the same argument replacing G1 by G, and

G, by G Then we obtain that (2, t) is a constant, This

3.
constant nust be the same as §(1, t) becamse for t e (1, 2),

0C1, ) = 0(2, t).

Proceeding in the same mamner, the necessity part of

the theoren is proved. /Y

The next theorem characterizes the U.M,V,U, eétimable

functions,

Theoren 6,3, In the censored gamna family with an
integer pﬁ;parametric function g(») is UM,V,U, estinable

iff it has the form
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(6.33) gd) = a+d0P /Y aw]¥

N -
+ P /)Y bff(t)t-‘P T ™M a4
where

. 1
(6.34) f 22T Mgy ¢«
0

Proof, Suppose  g(A) is 2 UM,V,U, estinable
function and let ¢(d, t) be a UM, V.U, estinmator for g()),

Now ¢ is necessarily of the form (6,22), So,
‘ ‘ _ p' N = N
(6.35) E, [0, 9] = o WP/ )" Ca)]
1
+ e 1-0%/ ) CaWT-087 ¥ 6[ 2Hp-1-2t
1
+ WP/ )Y 6[ ocm, $)tVP=1 M a4,

Put a=¢ b= c,~¢ and f(t) = {(§, t)-c for 0 < t <1,
to obtain the form (6,33)

The sufficiency part is, now, clear, V/4
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