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Abstract

We consider consistency of the posterior in the context of right censored data. We establish posterior consistency when
the distribution of the lifetime has a Dirichlet distribution and also investigate the case when the prior is generated through
a prior for the distribution of the observable (Z,4). We also show that a naive extension of these methods to interval
censored data leads to peculiar estimates.
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1. Introduction

Susarla together with Blum and Van Ryzin mitiated the nonparametric Bayesian analysis of nght censored
data. Starting with Dirichlet process prior they obtained the form of the postedor {Blum and Susarla, 1977) and
the Bayes estimate (Susarla and VanRyzin, 1976) and explored the connection with the classical Kaplan—Meier
estimate. This note is devoted o a brief exposition and elaboration of their work.

Let XX, . X, and ¥y, Vo, ¥, be positive Lid. random varables with distributions F, 7 respectively.
We view the X7s as life times and the ¥'s as censoring times and also assume that the X7s and the ¥'s are
independent. What is observed is the set (2, 4 ), (Z2, A2),. 0 ZL Ay ) where Zi= (XA ) and 4, =X <¥;).
The goal s to make inference on F.

Section | has a brief discussion of Dinchlet process and Polya trees. In Section 2 we follow Susarla and
Blum, and Susarda and VanRyzin and consider a Dirichlet process prior for F. 1F (£, ) are independent under
the prior, the marginal postenor distnbution of F given (2, 4y L (Z, A2 ). (2, Ay ) does not depend on the
prior for & and hence the prior for & plays no essential role m the analysis. It is shown that the posteror
can be represented as a Polya tree and this representation 15 used to establish consistency of the posterior
{Lavine, 1992; Muliere and Walker, 1997; Srikanth, 1997).



256 LK Ghosh er al ) Statistics & Probability Letters 41 (1990 255265

We then generate priors for (F, ) through priors for the distribution of (Z A) and show that the posteror
is consistent. This method of constructing priors 15 closely related to the work of Tsai (1986), who considers
Dirichlet process for the distribution of (£ A) to construct self-consistent estimates.

Another popular method is to construct priors for £ via the cumulative hazard function. Eardy examples of
such construction can be found in Ferguson and Phadia (1979); Dykstra and Laud (1981). Related processes
are the elegant Beta processes (Hjort, 1990) and their generalization to Beta-Stacy processes proposed by
Walker and Muliere (1997) and the mixture of Dinchlet models due to Doss (1994). We do not study these
processes in this note.

The last section is somewhat tentative. We note that a naive extension of the analysis to interval censored
data has serious limitations and recognize that the nice connection with frequentist methods that obtains when
() — 0 in the right censored case, fails here. This is not surprising since Dirichlet process is not a natural
conjugate prior i this context.

2. Preliminaries

Let # denote the space of distribution functions on B, If o is a finte measure on BT then D, - the
Dirichlet process with base measure = — 15 a probability measure on # such that for any f < < --- <1,
(Fn )L Fita ) —=Fif)... . 1=Fif)) has a k-dimensional Dirichlet distribution with parameters (o —oo, 6 ], 2 —
fila.oszlt.00)). It is well known that if F~ D, and of given F, X X5, X, are 1i.d. with distnbution F
then the posterior distribution of F given Xy, X5, .. X, is D, 5y . Itis also well known that the posterior is
weakly consistent in the sense that for any Fy the posterior pr{]EahiIity of any weak neighborhood F of F
goes o 1 almost surely Py, In view of the Glivenko Cantelli theorem it 15 not surprising that the following
stronger result holds. For a proof we refer to Srikanth (1997).

Theorem 1. Let D, be the prior on F If U ={F : sup,_ |F(1)—Fyit)| <z}, then as n— o0, the posterior
probability of U given X1,X5,. .. X, goes to 1 almost surely Pg,.

For a detailed account of the properties of Dirichlet process we refer w Ferguson (1973,1974), Ferguson
et al. (1992) and to Schervish (1995).

Polya tree processes are a generalization of Dinchlet processes. A detaled study of these can be found in
Mauldin et al. (1992), Lavine (1992,1994) and Schervish (1995). Here we confine ourselves to just the basic
propertics.

Let E; be the set of all sequences of 0's and 1's of kength j and let £% = | ) E;.

Let T ={T,, nz1} be a sequence of nested partitions of BT into intervals such that |J, T; generates the
Borel g-algebra. Formally, T'; = {8, : &€ £;}. At the (j+ 1)th stage cach B, is partitioned into By and B,
We want cach B, to be an interval and the g-algebra generated by |, p. B. o be the Borel g-algebra on 7.

Definition 1. A prior g on # 15 sad to be a Polya tree prior with respect to the patition T oand with
parameters @ =4{%:: &€ £°} if under p -

1. {P{By|B.): e E*} are a set of independent random variables.

2. For each & € E*, P(B,|B.)~ Beta( 29, %: ).

A Polya tree process (PT(T.2)) is determined by both the partiion T and 2. Some of facts about Polya
tree processes that we need are:
e Dirichlet process can be charactenized as processes that are Polya trees with respect to every sequence of
nested partitions,
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o If PT(T.2)is the prior on #, and if given P, X, X5,. .. X, are Lid. P, then the posterior given X, Xs,. . X,
is again a Polya tree process with respect to the partiions T and with parameters 2, +#{.X; € B, }.

One feature of mterest to us s that Polya tree process permit casy posterior updating even i the presence
of partial information. Proof of the following proposition is routine.

Proposition 1. Let p be o PT(T.2). Given P, X\, X5, X, are iid P. The posterior given 13_1{X|}|,
Ig, (X3).. . da (X)) is again a Polya tree with respect to T and with parameters o, = o, + #{i : B, CB,}.

£, -

3. Right censored data

The setup that we consider can be described as follows: X and ¥ oare nomegative random vanables
comresponding to hifetme and censoring time, with distnbution functions F and G, respectively. If F oand &
are mdependent under the pror it s enough to specify the pror for F oand treat & as fixed and hence we
consider priors of the form D, = dg, .

This model was first mvestigated by Susarda and Van Ryzin (1976), who obtained the Bayes estimate for F
and showed that this Bayes estimate converges to the Kaplan—Meier estimate as 2([R7 ) — 0. Blum and Susarla
{1977) complemented this result by showing that the posterior distribution 1s a mixture of Dirichlet processes.
Lavine (1992) observed that the posterior can be realized as a Polya tree process. The mixture representation
is somewhat cumbersome and we feel that the Polya tree approach is more natural for the censored data
framework and makes the computations transparent (Muliere and Walker, 1997, Snkanth, 1997).

Let £=(zy.z5,....5,), where 2y < --- = z,. Consider the sequence of nested partiions {m (& )}, = given
by

m(Z): By=(0z]. B =(z1.00)
m(Z): B, Bor.Bio=(21.22), By =(z2.00),

and for f={n — 1), let

w1 Z) - Boo.Boja.. . Byp=(zLzi11). By =(z11.00),

where 1 s a string of 17s of length /£, and 0, is a string of # 0"s. The remaining 8;s are arbitranly partitioned
into two mntervals such that {m,(£)}, =, forms a sequence of nested partitions which generates #([27).

Let a2, =a(B, . ) For any {(zi.8) ). ...(ed,) ) let £7 denote the vector of distinet values of the
censored observations (those for which the comesponding § = 0), armanged in an increasing order.

To evaluate the postenor given (21,81 ),.. (20, ) first ook at the posterior given all the uncensored
observations among (21, d¢),....(z,.d, ). Since the prior on M(X' ) — the space of all distnbutions for X — is
a Dy, the posterior on M(X') is Dirichlet with parameter x+3% ;. 5, dz.

Since a Dirichlet process 1s a Polya tree with respect to every partition, it is so with respeet to TZ7).
Proposition 1 ecasily leads to the updated parameters o , . . We summarize these observations in the fol-
lowing theorem.

—

Theorem 2. Let p=D, = dg, be the prior on M(RY) = M(RT ). Then the posterior distribution p({(z1.d8, ),

vl Zea00) i @ Polyva tree process with parameters i ={niZ" V= and bl {10 o b where g,
ol D:"-I-—i'- + ZJ‘, =1 "'rl.zl € Eﬂ—--’-‘.] + Z;i._= u‘f[{—_hx} c B.'.'h_...-.-.]-

Remark 1. Note that it 8,
. and for every other 8, 3

¢
e BT TR Ef

=(z.00) then o, . =a(B,__,) + number of individuals surviving at time

=8, )+ number of uncensored observations in B

E ] *
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We will denote this posterior by PT( Tlf,z‘m, Jf,z"“}.

For any distribution function F let F(r): =1 — F(t), for t € [. Since for any z; with §;=0, the posterior
distribution of F(z;) is a product of independent beta random variables, the Bayes estimate of Fiz;) given
the observatons {(z, 8 ). ..(z.d, )} 18 given by

= . 00) + my
Fa|{;g'}= H [ il

Benpegts a(zf;_p00) + i+ A

where n;=#{z; _L}:ﬁ.'}, and i; =#{z & (Z1p 3 dg=1}

For zj;_yy < < 7, a similar expression can be obtained by viewing the posterior as a Polya tree with
respect to a slightly modified sequence of partitions — at the (i+ 1 )th stage, instead of the intervals (z;_ .2
and (z;,. o0), we use the intervals (5;_ . #] and (f.00) for our partition sequence. Agam F(1) is a product of
independent beta random vanables.

Let 5 g % be the class of all distribution functons F, such that
1. F and Gy have no points of discontinuity in common, and
2. Support( F ) C Support( (g ).

Let Fy € #y. and consider the set Vi, of all sequences {(z,.dy ) fu=1 such that
1. For any (z.d;) with d; =10,

1.1 (1/n) Y _ol{z= =z} — Folz;)Golz;—), and

L2, f;',,{:_,-— ) —>E“{:_,-—}, where G, is the Kaplan—Meier estimate of .

2. {z;: 8, =0} is a dense subset in the support of Fy.

It follows from the SLLN that, (1/n) 3  [{Z =z} — Folz)Golz—), a.s (Fg. Gy ), whenever z is a point of
discontinuity of Gy, Also the SLLN for censored data ( Stute and Wang, 1993 ), implics that f}',,{:— ) — Gglz—).
Therefore PE5; (Ve ) =1, where P2 - is the 1id. product measure corresponding to the joint distribution of
the entire sequence (X7, ¥ )0AS, Ya ). 0 We next show that the posterior is consistent when the observations
are in Fg,.

Theorem 3. Ler oz be such that D Fy =1 Let {{z 8, ) ezt € Vi, then the Bayes estimate of F,
ﬁ‘!l{,-!{,:|7|§| :L- - -7{—_"1 Iil }} — [F{_'}P'T{_{_ﬂi;j's D:i;j'}{_d-F ::L

converges weakly to Fyl-).

Proof. Consider a fixed sequence {(z;.8,)}, 21 € Vi, and let (2,4, ) be a coordinate such that d; = 0. By our
assumptions on Vg, it is enough to show that F (1) — Fyir), for t =z).2z2.... . For simplicity of notation we
will assume that 4, =0, and show that F () — Fglzi).

Let 0=z0y < z1y < --- < gaiiy =21, be the 2"s among {(z1.8; L.... (2. 8,0} for which the corresponding
d's are (), and are =z;. By Theorem 2 (and the remark following it),

a1y
alz . 20) + By

F‘u Z| )= )
{. | } H J{:q_;'—l},x} + n..l. + ;'_.'.

=1




LK Ghosh er al ) Statistics & Probability Letters 41 (1990 255265 259

where ny= 3 Hzvzzntoand 4y =3 05 Hze € (55-1).5) b Rewriting the expression on the right-hand
side of the last equation, we get

F-u";—_l ) = i _!_...ZI{:I = X “‘ﬁ | - #(2().20) + n; s
') + n 1 alzp 20) + R + A
= A z1) x Buy(z1),
where
- e mf 1 p—1 g .
AJI{‘__I}=:{—|$m}+zf{—13—l_} H.'I:I'I'j H“{_'|}= H 3:{__{”,3C}+HJ

BT+ n i 0a) R+ A

i=1
Since {(znd )= € Fg, and 4, =10, Auz1) — Golz1 —)Fy(z1). Let d;=#{z : §;=0 and z =z}, then
Ry + Ajog =n; — oy, and hence

{1 p—1
=z 20) + 1;

-B.u{.:|}= H 5:{_-”},1'}':}"‘”_.!'_&]..".

i=1

Therefore
"*1'_'["”). 4 (B2 T AR 4 —dy
i=1 ni n i=1 w(R*) + n;

Since as n— oo, of BT )(2{R*) 4+ n;) — 0, and since H;!LI 'l_l

G(zi—), (Bu(z1))~! converges to Go(z;—). Therefore, F,(z )=Audz1) % Bui(z1)—= Folz1). [0

(n; —d;)/n; is the Kaplan-Meier estimate for

Theorem 4. Let pn=20, = dg, be the prior on M{RT ) = M{[E"), where % (F )= 1. Let Fy € #Fy, then the
margingl posterior on M{RT)Y iy weakly consistent at Fy.

Proof. We will show that the marginal posterior P'T{{n}.‘"‘ﬂ}, 5:.{."““} = dg,, for all {(z;d;)}hz1 € V. Using
an argument along the lines of Theorem 3.1 of Sethuraman and Tewart (1982) and the last theorem it follows
that the posterior sequence PT{U:},""“}, :f,‘_‘"”} 15 a tight family of probability measures on M(E™ ). To complete
the proof, it is enough to show that for any continuous function § on BY, with a compact support and for

any 4 = (0, PT{nf,‘_““, 5':';‘“}'[{"';?.. )— 1, where

U;‘.“={F: ‘fde—ff‘dFﬂ ::a}.

Let us fix the sequence {(z;.d;)},=1 € Fr. For the remaining portion of the proof, we will write n, for
2= and a, for oY Also, let D={z;: §;=0}.

Let § have support [0,4], and let ¢ be such that [x — v| < 7 implies | f{x)— f(v)| < 4/3.

Let 0=a <as < --- <ap =k, be such that |a —a| < 7/2, and letzy < 52y < -+ <z, with 75 €
D, and =iy = (@ a1 ).

: ! . . ; .

Let f4(z):= |+|f(—'~m}”—' € (ZmipZnlls with zg,=0, and 7y =k Then || £ — f; | =sup,|f -
f;il < i—:

Further,

‘I[_r'dF— [ rar,

24 . .
£T+‘[LidF— [f<1dFﬂ
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Let U] ={F : | [ fsdF —[ fsdFy| < %}, then U] Uﬂ;l. Forany F, [ f;dF = Z_{'{_—M}F{:“_”}—F{:“”L
and hence

‘ f far— [ _mdﬂ.‘ <21 £ 1Y Folzn) — Flany)l

Since that PT(m,. 2, }{Uﬂ“ )2 PT(n,. %, )L} ), to complete our proof, it is enough to show that PT(m,., 2, N F :
[Fiziy — Falznl = 5)—0, for every = 0. This would follow by an application of Markov's inequality,
if we show that E(F(O)|(z1,61).....(Zuedn)) — Folt), and E((F(O (2101 Lo (2080)) — (Fylt))* for all
fe D

We have already seen that E(F(6)[(z1.81).....(20 82))— Fo(t) for all 1 € D. We will now show that
E((F(OP 21,610 (20 8) — (Fo( ) F for all £ € D. For simplicity, let us assume that z; € D, and we will
use the same notaton as i the proof of Theorem 3. Using the properties of Polya tree processes and the
Polya tree representation for the posterior, we have

EQFGEO 18 )2 (Zas80)) = A5(21) % Bi(z1),

whire

15 (z)= a(zo0)+ Y Hzzzl " a(z.oa)+ ¥ Hzzo b +1
e AR Y+ n 2RT)+n+1

and

=1 =1
. Zin.00) +H;
meo= [[ oSty

I{:{I.'h'.'JC':I + H_I.'+| + .-:._I.'J_. |

afzy.o0)+n; + 1
#(z),00) + Mjp) + A4 + 1

Computations similar to the one used in_thc proof of the last theorem now yields 47(z) —>{_E;'“i:| — Wiz )
and B:(z)) —(Go(z1)) 2, and thus E((F(z) ))* (21,81 ) ..o (20, 84)) = (Fo(z1 ))*. Similarly E((F(1))?|(z1.61 )
e s(ZnsBa)) = (Folf)) forall r €D, O

It might be argued that in the censoring context, subjective judgements such as exchangeability are to be
made on the observables (2, 4) and would hence lead to priors for the distribution of (2 A4). The model of
independent censoring can be used to wansfer this prior to the distribution of the lifetime X.

Fommally, let My < M{X ) = M{(¥) be the class of all pairs of distribution functions ( F, ') such that
1. Fand & have no points of discontmuity in common, and
2 forall i=0, Firy <1 and (1) < 1.

Denote by T the function Tix, v)=(x & vliz,) and by ¢ the function on M{X) = M(Y) defined by
PN =(P.0o T, ie, ¢(P.0) is the disribution of T under (P, (). Let M = i My). The following
properties of ¢ can be found in Peterson (1977) and Tsai (1986).

1. On My, ¢ s 1-1.
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2. The maps ¢~ ' (respectively, on My . M) are continuous with respect to the supremum distance on
distnbution functions, 1.c.,

sup [P, (1) — Po(t)| + sup | Qui(t) — Quit)| — 0
i I
iff
sup | (P, G W (0.1] x 0 — g Py Qp((0.1] % 0)] + sup [ Po @ )((0.2] x 1 — ¢ Py Qo 0, £] 3 1)] — 0.
i F

Peterson (1977) and Tsai ( 1976) provide explicit representation for ¢, b ! While we do not need the explicit
representation, we note that every prior on My gives nse to a prior on M via ¢ and every prior on M
induces a prior on My through ¢!,

Theorem 5. Let p be a prior on My and p* = pog™" be the induced prior on My If 1 (J(Z).4) W (22 42, ...
(Z A0 on My is wealdy consistent at Py Oy), Py, Oy continuous, then the posterior wl [(Z),4;),
(Zayda ) oo A Z AL ) on My is weakly consistent ai ( Py, Oy).

Proofl. Immediately follows from the continuity of ¢! and Theorem 1, by noting that p(.[(Z, 4 L (&, A2), ...,
(Z,. 4,00 on My is just the distribution of ¢! under p*( (2 A0 (22, Ao Z A0

Sethuraman’s (1994) construction shows that it is possible o have a Dinchlet process on M and the last
theorem shows that the mduced prior on My has good consistency properties. A result like this was proved in
Ghosh and Ramamoorthi (1995, Theorem 1), However, in that paper Dy = Dy, and Dy ., were inadvertently
mixed up. A careful look at the proof shows that the theorem applies to the set up just considered but it 1s
a little weaker than Theorem 5 since the result of Peterson and Tsai were not fully exploited.

In addition to consistency, if the empirical distribution of (Z, A) is a limit of Bayes estimate on M then
s0 is the Kaplan-Meier estimate. This method of constructing priors on My 15 on the one hand appealing and
merits further investigation — for instance the Dirichlet process on M arises through a Polya urn scheme and
it would be of interest to see the corresponding process for the induced prior. On the other hand any prior
on M induces a prior for both F'and 7. While this prior would be supported by product measures it is not
clear that £ and & will be independent under this prior.

Going back to the Susarla—Van Ryzin approach since the Dirichlet process picks discrete distributions with
probability 1, it is desirable w have a consistency result for priors that would be supported by densities.
However, even for Polya tree priors the argument of Theorem 2 does not go through. We next provide an
indirect argument which establishes consistency for Polya ree priors with carefully chosen parameters.

Theorem 6. Let p be a priov on ¥y — the set of densities of all (P, Q) in My which are absoluwrely continuous
with respect to Lebesgue measure. For any fy.ge in &y if, p{(f.9) : [ fologfuo/f + [ gologge/g <&} =0
Jor all & =0 then p([(Z, A0 Z Aa) o A2 A i weakly consistent at  Fo.go )

Proof. Simce under T the Lebesgue measure gets transformed to a non e-finite measure, we will view the

clements of #, as densities with respect o an equivalent probability measure 4. If we denote by ¢ f.g) the
density of the distabution of T under (f, g) with respect to Ao T then

[ Fologfo/f + f gologg'g = [ i _Fo.go Mogd fo.go)/dl FLg).

Consequently Schwartz’s theorem (Schwartz, 1965; Barron, 1986; Ghosh and Ramamoorthi, 1998) gives
the postenor consistency of p* at ¢f fy. g4 ), and hence by Theorem 5 consistency of poat ((f. 09).
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Remark 2. It is shown in Lavine (199%4) and in Ghosal et al. (1997) that for suitable choice of parameters
of the Polya tree the condition of the theorem is satisfied.

4. Interval censored data

Susarla and Van Ryzin showed that the Kaplan—Meier estimate, which is also the nonparametric MLE | 15
the limit of Bayes estimates with a D, prior for the distribution of X The observations in this section show
that this result does not carry over to other kinds of censored data.

Here our observation consists of n pairs (L, B ]; 1 =i=n where L= R, and comresponds to the infonmation
X (L, B;). We assume that (L, B;]; 1<i<n are independent and also that the undedying censonng mecha-
nism is independent of the hfetime X so that the posterior distribution depends only on (Lp 8] 1€i<n.
Let #; <if: =< --- =< 3y denote the end points of (L; 8], 1<i<n armnged in increasing order and let
Iy ={(t;. 101 ] For simplicity we assume that ¢ = mingL; and ;. = maxR;.

Our starting point 15 a Dirichlet prior D eay. oo, .0 ) for (pr.pa.. ) where py=PLY € L} Tun-
bull (1976) suggested the use of the nonparamedric MLE obtaned from the likelihood function

M

H Z Py

i=1 Wi, c{L&]

I (pr.pos.. o pi) has a Dexy, exa,. ., o) prior then the posterior distnbution of (py, pa... .. ) given
(LR 1=i=n is a mixture of Dinchlet distnbutions.

Call a vector @ =(ay.a2,....4,), where a;, is an integer an impwtation of (L, B 1<i=n if I, C(L,R;].
For an imputaion a, let ny{a) be the number of observations assigned to the interval f;. Formally ng(a)=#1{i :
a=jl

Let the order (Na) of an imputation be #{j: n(a) = 0}, Let A be the set of all imputations of (L, ®]; 1 =i
<n and let m=minge4O(a). Call an imputation a minimal if {a)=m.

It 15 not hard to see that the posterior distribution of (py, pa... o) given (L B, 1<i<n is

Z ColMeoy) +nyla) con +nala). o ooag + ngla)),

ac A
where
Il Fesy +ny(a))
ZH’EA HIT '!I{.'ED:.I 7 ”_.l‘[ﬂr }}

The Bayes estimate of any p; is

R oo+ ngla)
= Z Ca c+n ’

oy +ngla) . nila)

c+n H

cl0,

The behavior of O, is given by the next proposition.

Proposition 2. hm,. 4, = 0 iff a is a minimal imputation.
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Proof. Suppose a is not minimal. Let ay be an imputation with (Na) = ().

H| f{(j!_l. +HI.{_|I!I}::I H,u =1 I {[D! ::I H_.l nhrb;'ﬂ{l_[“ﬁ"?{'cj:.f + f.}
HI ica; +ndag)) H, 1 Flea;) l'L 5 1--..r;ﬂ'[n“'m”{”_.-'+ }_”.

Since (Na) = Nay) the ratio goes to 0. Conversely if @ 1s minimal it 15 easy to see that

_ ZH,I{(:_,+H{¢I}}
aed II{::: + nglal)

ﬂ'
converges to a positive limit. [
Thus the miting behavior 1s determined by minimal imputations, A few examples clarify these notons.

Example 1. Consider the right censoring case, 1.e., for cach 1 cither L; = & or £ = ;. Any minimal imputation
is given assigning cach censored observation z; to one of the uncensored {z;} greater than z; (and to fg if the

last (largest) observation 15 censored ).

Example 2. Consider the case when we have current status or Casel interval censored data. Here for cach 1,
cither L; =1 or B; =1, so that all we know is if X; is w the night of L; or to the left of &

1. I maxL; < min®; then the mmimal mputation allocates all the observations to the interval (maxL;, ming&;].
2. In general the minmmal imputations have order 2. For cxample, a consistent assignment of the data to

(o, mingR ) (e Ly, g | would vield a minimal imputation.

A couple of simple numencal examples help clarify the different cases. In the examples below the prior of
the distribution s 0, where o s a probability measure. The limit is taken as ¢ — 0, Comesponding to any
imputation &, we will call the mtervals 1;'s for which n(a) = 0, an allocation, and an allocation corresponding
to a minimal imputation will be called a minimal allocation,

Example (a). This cxample illusrates that the limit of Bayes estimates could be supported on a much bigger
set than the NPMLE. The observed data consists of the four intervals (1,20), (2,00, (0, 3], (4,00). The lmit
of Bayes estimates in this case twrns out to be,

Flo)1=4,  F21=3, F2.3]=%, Féx]=4,
while the NPMLE is given by
F(23]=1, F4,]=1i.

In the example above, cach mmimal allocation consists of only 2 subintervals,

1. (0, 1] and (4, o0}, with the comesponding numbers of X:"s m the submtervals being 1 and 3, respectively,
represents a mimmimal allocation.

2. {2.3] and (4,20) with the corresponding numbers of A7's in the subintervals bemg | and 3, respectively,
represents another minimal allocation.

3.02.3] and (4,20) with the corresponding numbers of X}'s in the subintervals bemg 2 and 2, respectively,
represents yet another minmal allocation.

Example (b). This example shows that the limit of Bayes estimates could be supported on a smaller set
than the NPMLE. The observed data consists of the intervals (0,1], (2, 00), (0L3] (0.4], (5.0¢). The himit of
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Bayes estimates in this case turns out to be
F0.11=%,  F(5,00)=%,

while the NPMLE is given by
F(0,1]1=3, F23]=;  F(50)=1.

As ¢ — 0 while Dirichlet priors leads to strange estimates for the current status data the case ¢ =1 seems
to present no problems. Even when ¢ — 0 we expect that the limiting behavior wall be more reasonable when
the data are Case 2 mterval censored, in the sense described in Groeneboom (1995). In this case the tendency
to push the observation to the extremes would be less pronounced.
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