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We consider Bayesian inference in the linear regression problem with an unknown error distribution
that is syvmmetric about zero. We show that if the prior for the error distibution assigns positive
probabilities to a certain type of neighbourhood of the true distribution, then the posterior distribution
is consistent in the weak topology. In particular, this implies that the posterior distribution of the
regression parameters is consistent in the Euclidean metric. The result follows from our generalization
of a celebrated result of Schwartz to the independent, non-identical case and the existence of
exponentially consistent tests of the complement of the neighbourhoods shown here. We then
specialize to two important prior distributions, the Polya tree and Dirichlet mixtures, and show that
under appropriate conditions these priors satisfy the positivity requirement of the prior probabilities of
the neighbourhoods of the true density. We consider the case of both non-stochastic and stochastic
regressors, A similar problem of Bayesian inference in a peneralized linear model for binary responses
with an unknown link is also considered.
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1. Introduction

This paper addresses the consistency of the posterior in regression problems when the
unknown distribution of the error variable 1s endowed with a nonparametrie prior. Thus our
observations are Yy, ¥a, ..., where

Yi=a+ Bx+ ¢, RS [0 . (1.1}

here the errors ¢ are mdependent and identically distributed (11.d) f, with f a density
symmetric around 0, and x, xa, ... are the values of the covariate X These may arise as
fixed non-random constants or as L1.d. observations of 2 random variable X with a known or
unknown distribution.

The unknown pamameters are f, «, § and formally the pammeter space s
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& =F xR xR, where F is the set of all symmetric densities on B. We start with a prior
IT for { and, independent of f, a prior g for (e, ). Let IT stand for the prior T1 = g

Fix { fy.ag Bg) in ©. The sequence of posterniors [I{-|Y, ¥a, ..., ¥,) is said to be
consistent for ( f, a, §) at { fo, eo, fo) of THU| Y, ..., ¥,) converges to 1 almost surely as
n— oo for any neighbourhood & of { fy, ag, Bg), when the distribution goveming
¥i, Ya, ... has the ‘true’ pammeter { fg, ¢g, Go). An exactly similar definition holds if we
want posteror consistency only for the parametric part (c, 8) at { fy, ag Sg). It will turn
out that the sufficient condition for the latter 1 weaker than that for the postenor
consistency of ( f, a, ).

The idea of posterior consistencey 15 due o Freedman (1963), though, in a sense, it goes
back to Bayes, Laplace and Von Mises. The relevance of posterior consistency o Bayesians
15 explained well in Diaconis and Freedman (1986a). Diaconis and Freedman (1986a;
1986b) also provide an example of inconsistency, in a relatively simple setting, for location
models with symmetne emor distributions. A similar example of meonsistency for the
location problem with error distribution having median 0 is given by Doss (19835a; 1985b).
The problem of mterest then is to identify all or at least a larpe class of pammeter values
where consistency obtains. In this paper, although we approach the problem in some
generality, it 1s geared to handling two classes of popular priors on densities — the Polya
tree priors and Dirichlet mixtures of a normal kemel.

Recent reviews focusmg on general wssues of consistency are Ghosal er af. (1999a),
Ghosh (1998) and Wasserman (1998). In Ghosal ef af. (1999a; 1999b) and Ghosh ( 1998) it
15 argued that a theorem of Schwartz (1965) 15 the nght tool for studying consistency in
semi-parametric problems. The same 1s true of the present paper. However, since the
observations are mdependent but not wdentically distributed, major changes are needed. We
begin with a vanant of Schwartz’s theorem for independent, non-identically distributed
variables. This is discussed in Section 2, while in Sections 3 and 4, we discuss how one can
verfy the two conditions of this theorem. The lack of 1id. structure for the ¥; necessitates
assumptions on the x; to ensure that the exponentially consistent tests required by
Schwartzs theorem exist in the present context. Also certain conditions on fy are required
to venly a condition analogous to Schwartz’s on the support of the pror. In Section 4, we
relate the properties of the prior on F to that on the regression parameters and obtain a
theorem on consistency. We show in the next section that Polya tree priors of the sort
considered in Ghosal e af (1999b) fulfil the requirements. We then turn to Dirichlet
mixtures of normal kernel prors. The postenor consistency of these in the context of
density estimation was studied in Ghosal ef al. (1999¢). In Section 6 we explore similar
problems i the regression setting, In Section 7 we discuss a sumilar problem of generalized
linear models with bmary responses and an unknown link function. This may be viewed as
a nonparametric generalezation of the logistic regression model. A Dinchlet process prior s
put on the link distnbution function and the consistency of the posterior is briefly discussed.
Section 8 indicates the modifications necessary to handle the case of a stochastic regressor.

Although we prove consistency when the covanates are one-dimensional, the argu-
ments casily generalize to more than one dimension. For that we will only need to
modify Proposition 3.1 by looking at quadrants under the appropriate modification of
Assumption A.
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Nonparametric and semi-parametric Bayesian methods are now being used more and
more. In view of the example of Diacomis and Freedman (1986a; 1986b), it scems
approprate to see if some validation can be provided through posterior consistency. It will
be also mteresting to study the rate of convergence of the posterior distribution, as 15 done
in Ghosal et af (2000). In particular, it is of substantial interest to see whether the posterior
distribution for the pammetric part converges at the classical % mte. We have not
attempted to answer this question here, and will retum to it elsewhere.

2. Consistency of posterior

Fix fy, ay, Sp. For a density f, let
Fapi= forpe(¥) = fly —(a+ Bx)) (2.1)
and put fo; = fou 4, For any two densities f and g, let

. oy 2
K(/f, 8) = [f' log é‘ V(f.g)= [f'(IUL-',+ ‘3 ; (2.2)
where log, x = max (log x, 0), and put

KJ{ _f.: o, ﬁ} ] K{ fl:'lu% f;g,,"i.f}- PJ'[ f: L, ﬁ} e~ P{ _.ﬁh', f:;,l'i.f}- {23}

As mentioned o the Introduction, the main ool we use 5 a vanant of Schwartz™ (1965)
theorem. The following theorem 1s an adaptation to the case when the ¥ are independent
but not identically distributed. Here the x; are non-random. We start with the definition of
exponentially consistent tests.

Definition 2.1. Let W C F = R x R. A sequence of test functions & (¥, ..., ¥,) is said to
he exponentially consistent for festing

Hy : (f, @ B) = (fo, @, Bo) against H, :(f,a,feW (2.4)
if there exist constants Oy, Csy, C =0 such that

{a) E"r_lr“rﬂ‘!“ = CjeC

(®) H.ti?!f(—_h- E“i‘.-"m.i,{ @) =1 - Cae” o

Theorem 2.1. Suppose Il is a prior on F and u is a prior for (o, §). Let W C F xR x R If
(1) there 15 an exponentially consistent sequence of tests for
Hy:(f.a, ) =(fo, @, fo) against Hy:(f.a f)eW,
(i) and for all & =0,

i

ﬂ{{f', @B Kif,a py<b foranti, Y LSO :':c:} ~ 0,

=1
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then with ([[2, Py, )-probability 1, the posterior probability

[ .H{ f}g‘.-g;{ }"‘-}I.-"_f;h.[ ¥ d n{f o ﬁ}
(W Yy, ..., Yol = e

n —-() (2.5)
j T fepd ¥/ S YDAIL £ a, )

FrRxR =

Mote that Fi [/, a, 8) bounded above in i is sufficient to ensure the summability of
i VL a, B
The proof of the theorem is similar to that of Schwartz (1965). If we write (2.5) as
flll{}.|: LR }.-JI}

W[ Y. ..., }a.}=m,

(2.6)
the proof mvolves showing, as is done in Schwartz (1965), that condition (i) implies that
there exists a d = 0 such that ™7, (Y, ..., ¥,) = 0 as., and that condition (ii) implies
that for all d =0, e™l3,(Yi,..., ¥,) — 20 as. A sketch of the details is given in the
appendix.

It should be noted here that the theorem could have been stated in much more generality,
for any semi-parametric problem. Consistency of the postenior holds as long as there 1s an
exponentially consistent test for testing the point null against the complement of the
required neighbourhbood and (1) holds. In Section 7 we apply this idea to a binary response
regression model with an unknown link.

3. Exponentially consistent tests

Our goal is to establish consistency of the posterior distnbution for ( f, o, 5) or for (o, 5)
at { fy. g, fg), and thus the set W oof interest to us is of the type W =4, where I is a
neighbourhood of ( fy, ag, So). In this section we write W of this type as a finite union of
Wis and show that condition (1) of Theorem 2.1 holds for each of these Ws. Note that
condition (1) does not involve the pror.

We begin with a couple of lemmas.

Lemma 3.1. For i= 1,2 ... let gy and g; be densities on B If for cach i there exists a
Sfunction B, 0= d; = 1, such that

Ep(®)=a; =y, =E (), (3.1)
and if
. i 1 n
I|"n1_|_Ef = ;{g; — ) =1, {32)

then there exist a constant C, sets B, CR", n=1,2. ..., and ny — all depending only on
(yi. ;) — such that, for n > ny,
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]:I|: 'P?-I'll.-
I~

=1

(By) <€

{EJI} =1-— C_“{.-

Proof. Set B, = {3, ®; =% (yi +@)/2}. Then by Hoeffding’s inequality (Dudley
1999, p. 14)

L

[17a

i=]

(By) =

|
=1

{Z{ mj’ e 'E;i\"u.-{,q}l'}} = Z{?J — LE,}}
i=] =1

2
1 Ll
E - P S [ L 1 J— “
Y (;{/, u,}) g {3.3)
On the other hand, applying Hoeffding's inequality to 0= 1 —dy; = 1,

HF ¢ H P, {Z{fl — D) —(1 —E, $) = Z{:,‘. — u;}f}!}
= = et =1

(8,) =

2
1 M
= eXp | — n (;{;; — u,-}) :
Taking € = %Iim inf,_oe{(1/n)> 1 (¥ — a2, the result follows. O
For a density g and 0 € B, let gy stand for the density gol(y) = gi{y—0)

Lemma 3.2 Lef gy be a continuous symmetric density on B, with go(0) = 0. Let  be such
that inf|yge(y) = C =0

(1) For any A=), there exists a set Bp such thar
Py (Ba)=3— ClAny)
and, for any symmetric densitv g
Po(Ba) =1, for all 0= A.
(i) For any A < 0, there exists a set By such that
Py (Ba)=3- CAAY)
and, for any symmetric densitv g

P (B =1 for all @ = A.

Proof. (i) Take Ba = (A, co). Since 8= A and gy is symmetric around 8, P, (Ba) = :.'!
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On the other hand,

1 1 hy 1
Py(Ba)=>— rguu-}d_v =-- r go(y)dy = - — C(A A ). (3.5)
2 L 2 o 2

{

Similarly, Bs = (—o00, A) would satisfy (ii). O

Remark 3.1, By considering [ g (v — £y), it is easy to see that Lemma 3.2 holds if we replace
£o by gog and require 8 — By = A or 6 —fy < AL

We retum to the regression model.

Assumption A. There exists gy = 0 such that the covariate values x; satisfy

Ll

. . 1 ” ; . 1
minf > Hersaph>,  Vmist o Huvm} 0.

Remark 3.2, Assumption A forces the covanate x to take both positive and negative values,
that is, values on both sides of (0. However, the point 0 is not special. If the condition is

satisfied around any point, then by a simple locaton shift we can brng that to the present
case.

Proposition 3. 1. If Assumption A holds, [y is continuous at O and fy(0) = 0, then there is an
exponentially consistent sequence of tests for

Hy : (f,a, B) =(fo, oy, fo) against H:(f,a, fleW
in each of the following cases:

) W={(f.a, B :a>=ay, f— s = Al
i) W={(f.a.f) : a<ay f— o= A},
() W={(f, o B):a>=ayB—F=-A}
(W) W={({f.a. 0 :a<a, f— < —-A}L

Proof. () Let Ky ={i: 1 =i=n,x =g} and #K&, stand for the cardinality of K,. We
will construet a test using only those ¥; for which the corresponding i is in K.

Ifi € K, then (& + Bx;) — (o + Boxs) = Axg, and by Lemma 3.2, for each § € &, there
exists a set A; such that

;1= Pr(4;) < :I?_ Cin M Axg)
and

yii= _inf Py {.4,-}33',

= 1
R U

where =" denotes equality by definition.
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Ifi=nand i¢ K, set 4, =R, so that a;, = 3, = 1. Thus

L

Iim_i_nf(n_' Z{y,-— u;}) = Iinlinf(ﬂ" Z Cin ﬁx‘lr,-})

i=l1 FI=

= C(y A Aegliminf #K,/n = 0. (3.6)

With @; = 7, the result follows from Lemma 3.1,
{il) In this case we construct tests using ¥; such that i e M, :={l=i=n:x; < —g}.
If i € M,, then

(e + Bx) — (oo + foxs) < Axg < —Asg.

Now using (ii) of Lemma 3.2, we obtain sets 8; and then obtain exponentially consistent tests
usmg Lemma 3.1 as i part (1).
The other two cases follow similarly. i

The union of the Ws in Proposition 3.1 1s the set {(f, a, 8) - |8 — Sy = A}, The next
proposition takes care of {(f, @ #) : |a —ag| = A} The proof is along the same lines and
is omitted.

Proposition 3.2 Under the assumpiions of Proposition 3.1, there exists an exponentially
consistent sequence of tests for testing

Hy - (f, a0, 8= (fo., g, o) against Hy - (f, o, f)e W

when W is

() {(f.a. B):a—ay = A 8 = fie},
(i) {(f.a. f):a—ay = A, B < B},
(i) {(fF, e ) ot —eg <= —A § = Fal.
) {{(foae. B o—oy=<-A <Kl

Remark 3.3. If andom s are not symmetrzed around zero, @ 1s not identifiable. So the
posterior distrbution for & will not be consistent. Consistency for § will hold under
approprate conditions. To prove the existence of uniformly consistent tests for 5, we pair ¥is
and consider the difference ¥; — ¥, which has a density that is symmetric around Six; — x;).
We can now handle the problem in essentially the same way as in Proposition 3.1 to construct
strictly unbiased tests. A result analogous to Proposition 3.2 then follows immediately. The
verification of the other conditions in Sections 4, 5 and 6 is along exactly similar lines.
The next proposition considers neighbourhoods of f to obtain posterior consistency for
the true density rather than only the parmmetric part. We need an additional assumption.

Assumption B. For some L, |x;| < L for all i
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In practice, the range of interest of the regressor i1s often a bounded interval, since the
lmeanty of the regression function can only be expected on a range of values. Therefore,
the assumption may not be very restrictive from a practical point of view.

Proposition 33. Suppose that Assumption B holds. Let U be a weak neighbowrhood of fy and
fet W =W % {{a, 3) : | —ag| < A, |§—Fe| < A}, Then there exists an exponentially
consistent sequence of fests for festing

Hy: (o, B)y=(fo. og, o) against Hy - {f, e f) e W

Proof. Without loss of generality take
U= {f : IWJ-'}I'{_1-'} = l¢{1’}fﬁdj-'} = i‘}- (3.7)
where 0= @ = | and @ is uniformly continuous.
Since & is uniformly continuous, given &£ = 0, there exists & = 0 such that [y — | < d

implies [y ) — D )| < &/2.
Let A be such that

[(ee — ex) + (B — Bodxil <0
for a, 8 = W. Set 'i!',-{;l-'} = W v — {ezg + Boux;)). Then

E_.f..,':r":' - E_.I’u"-hs E_.f [I"'I - E_,r.,,.ml..»:,fi—,:?.. j.jm- (3.8)

e fd

MNoting that
]'1‘{,1-' — (e — ao) + (B — Bo)xd) fra—ayy+i—e ()Y = j‘-’ﬂ{ Vi fvidy,
we have, by the uniform continuity of d,
]'ih{J-'}f;g.;m_v}dy = I‘T*{J-'}f{y}dj-' — [Ifh{y} — Dy — (o — erg) + (fF — Fodx )|
# .ﬁu— iy ::|+1|'i—|'"||:l.v,.'[ _1"}d_'|'"
. £
= [ﬂ*{y}f{ﬂd}' s

£
=E;d+-
a + 2

for any f = 4% An application of Lemma 3.1 completes the proof. O

4. Prior positivity of neighbourhoods

In this section we develop sufficient conditions to verify condition (i) of Theorem 2.1, A
similar problem in the location-parameter context was studied in Ghosal ef af. (1999b).



Posterior consistency for semi-parametric regression problems 299

There, the authors managed with Kullback—Leibler continuity of f, at £, — the true value
of the location parameter — and the requirement that TT{ K{ _,f'::”, N =0l =0forall #ina
neighbourhood of 6 and for f, close to but different from fy. However, this approach
does not carry over to the regression context since, even though the true parameter remains
(e, Bo), for each i we encounter parameters 8; = g+ Spx;. Here we take a different
approach. Since we have no assumptions on the structure of the random condition f, the
assumption on fy is somewhat strong. This condition is weakened in Section 6, where we
consider the Dirichlet mixture of normals. In that case, the random /15 better behaved.

Lemma 4.1. Suppose fy € F satisfies the condition that there exist =0, Cy, and a
symmetric density gy such that, for |q'| < n

Ffoly — ') < Cygyly), for all y. (@.1)
Then,
(a) for any f € F and |0] <1,
K(fo, fo) =(C,+Dlog C, + C,[Kig,, N+ Kigy, N
{(b) if. in addition, V{g,. /) < oo, then

sup F( fo. fa) < oo
||y

Preof. Part (a) 15 an immediate consequence of Lemma 5.1 of Ghosal er of. (1999) and the
fact that K{( fop. /)= K fu. fo), which follows from the symmetry of fy and .
For (b), note that

fo]’ fos]’ Cygy)’
[fh[bg+ fﬂ = [ﬁr_a [Ing+ ;] < ﬁ}fjg:; [Ing+ ’}"’] ; 4.2)
which 15 fimite under the assumed condition. O

We write the assumption of last lemma as follows:

Assumption C. For 5 = 0, sufficiently small, there exist g, € F and constant Cy = 0 such
that for '] <4,

fﬂ'{‘ == ??J} = E':,-g:,{)-'} for all ¥
and
Erj:ll — 1 as f — (.
Proposition 4.1. Suppose that Assumptions 8 and C hold. Let T1 be a prior for f, and u be a

prior for (o, B If (o, Bo) 5 in the support of 1 and if. for all w sufficientfy small and for all
3 =0,
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T{K(gy. ) <d, V(gy N <o} =0, (43)
then, for all & = 0 and some M =),
M X (f, e, By : K f, e, BY< O, Vil f, er, fY < M for all i} > 0. (4.4)
Proof. Choose 3, dq such that (4.3) holds with & = dy and

(Cy + Dlog Cy + Cyldy + /o] < 8.

Let
v={@p):la—awl<i. 18-l <55}
MNote that
K fo, &, 8) = K( fo. fia-aunrip-pos)
and

Fﬂ'{ _.f::h o, IS} = V{ _lf;ﬂ‘r .flﬂe’a—<’¢||:|+1|".|—|"*|:l.'r.- },
and (e, #) & F implies that [(c — ag) + (5 — Bodx;] =< o for all x;. An application of Lemma
4.1 immediately gives the result. O
Theorem 4.1. Suppose that:

(1) the covariates x, xa, ... satisfy Assumptions A and B;
(i) fu is continuous, fyl0) = 0 and fy satisfies Assumption C;
(1) for all sufficiently small v and for all & = 0,

T{K(gy. /) <9, V(g ) <oc} =0,
where g, is as in Assumption C.
Then for any weak neighbourhood U of f,
M{(f.a.8): fel.la—a <9, |f—Fo| <d|¥, F2,..., ¥y} — ] (4.5)

as. [[=, Py, In other words, the posterior distribution is weakly consistent at { fo, ., o).

Proof. MNote that
ey :feld la—m| <d,|B-fyl < d® (4.6)

is the union of sets considered in Propositions 3.1, 3.2 and 3.3, The required exponentially
consistent test therefore exasts, Proposition 4.1 shows that condition (1) of Theorem 2.1 holds
and hence (4.5) follows. O

Remark 4.1, Assumption (ii) of Theorem 4.1 1s satisfied if fy i1s Cauchy or normal. If £ is
Cauchy, then g, = fy satisfies Assumption C. If £ is normal, then Assumption C holds with
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gy = Soye = s Fly =07V + fol—y — 7)) .7

where % — 0 as 5 — 0 but 5% /5 — 0.

Remark 4.2, Assumption B is used in two places: Propositions 3.3 and 4.1, For specific s
onge may be able to obtain the conclusion of Proposition 4.1 without Assumption B. In such
cases one would be able to obtain consistency at (o, Gy) without having to establish
consistency at ( fy, og, fy).

Remark 4.3, In order to strengthen Theorem 4.1 to vanation neighbourhoods & of fy, one
also needs to find, for all £ = 0, a sequence of subsets F, < F with H{F:} exponentially
small such that, for some & < £/2 and § < £*/8, the L;-metric entropy J(d, F,) < nf. See
Theorem 2 of Ghosal ef al. (1999%) for details.

5. Polya tree priors

In this section we show that Polya tree priors, with a suitable choice of parameters, satisfy
condition {#1) of Theorem 4.1 and hence the posterior distnbution is weakly consistent. To
obtain a prior on symmetric densities, we consider Polya tree priors on densities f on the
positive  half-line  and  then consider the symmetrization  *(v) = f(|»)). Since
Ei(f, g)=K(f*, gand F(f, g) = Vi /", g*), this symmetrization presents no problems.

We briefly recall Polya tree priors; for more details the reader should refer to Lavine
{1992; 1994) and Mauldin ef af. (1992).

Let £=1{0,1}, £ ={0,1}" and E* = |J_, E™ For each m, {B, :¢€ E™} is a
partition of B, and for cach ¢, { B, B} 1 a patition of B,. Furthermore, {8, : ¢ € E*}
generates the Borel o-algebra.

A rmandom probability measure £ on B is said to be distributed as a Polya tree with
parameters (I1, .4), where T1 15 a sequence of partitions as described in the previous
paragraph, and A = {&, : ¢ € E*} 15 a collection of non-negative numbers, if there exists a
collection {¥, : ¢ € E*} of mumally independent random variables such that:

(1) cach ¥, has a beta distnbution with parameters o and oy ;

(1) the mndom measure P ois given by

AR )= | T Tosl | TE@=Fee 0]
f=1¢ =0 F=le=1

We restrict owselves to partitions 1= {I1, :m =10, 1, ..} that are determined by a
strictly positive, continuous density « on BT in the following sense: the sets in I, are

{_].l X ‘:-2—”'1 <= j.;:k{_'_{f}df = %}.

intervals of the form
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Theorem 5.1. Let I1 be a Polya tree prior on densities on RY with a, =r, forall c € E" If
Ty o 12 < oq, then for any density g such that K(g, @) < oo and E, llog gy < oo, we

m=1" mr

have, for aff & =0,

Jim THf:Kg H<d Vg H<=MI=0 (5.1)

Proof. We will show that

Jim I{f: ¥ NH<M}— 1. (52)

This, together with Theorem 3.1 of Ghosal ef af. (1999b), where it is shown that
T f: K(f.g)<d}=0when 5 ».!/* < oc, would then prove the theorem.
Since

V(g. f)=Egllog (¥ + E(logg)’ +2\,-IE,;UUH}'F Eylogg)y, (53)
it is enough to show that, as M — oo,
M{E, (log /¥ = M} — 0. (5.4)
If v has the binary expansion ¢ = ¢y¢3 - - -, then, for almost all y,

a ar

foy=1lim [ T] 2¥a.o || JI 20-Fiol)]. (55)
_,l'=|,¢l.=ﬂ _,l'=|.:l.=l
so that
Eflog /P =Eg| > log2¥ .., )+ Y log(2(1—Y, .. 0| . (5.6)
_,l'=|,¢l.=ﬂ' _."=|.=.-=|

where E, now stands for the expectation over ¢ when y has density g
Now letting £ stand for the expectation with respect to I, we have, by Chebyshevs
meguality,
2

MO[E(log /)’ > M] <= M '€E, | > log(2¥.,.. )+ log(2(1 — ¥oe, )
J=1.5= o= le =1

(5.7)

Interchanging the order of expectations and exploiting independence, the nght-hand side of

{5.7) can further be bounded by
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2
IMTE, | Y Elog@Y., WP 4| Y Ellog(2Y. .., )
=1z .'='" = .'=“
+ > E(og(21 — Yoo 2+ | Y Elop(2(0 — Y., )
J=Le;=1 =lei=1

Since ¥, .., and | — ¥, .,  have the same distribution, the last expression is equal to

o o 2
EM‘IE,‘, ZE{I{}E{}_’}’,,...,; ,}]3 + (ZE{I{]E{Q}"I_‘_ I}}) i

4=l =1

Note that the terms mside E, do not involve the particular sequence ¢ Letting
(k) = E|log{2L5)| and 4(k) = E(log(2U)), where Uy ~ Beta(k, k), the last expression
can be written as

=] =

o0 o 2
2MY ) + ( qa{ru.})
|

It is shown in the Appendix that (k) and 4(k) are respectively (k') and (& "'?). Since
S V% < oo, both infinite series are summable and hence the last expression goes to 0
as M — oo O

Although Polya trees give rise to maturally interpretable priors on densities and lead to
consistent postenior, sample paths of Polya trees are very rough, having discontinuities
everywhere. Such a drawback can easily be overcome by considering a mixture of Polya
trees. Posterior consistency continues to hold in this case since, by Fubmi's theorem, prior
positivity holds under mild uniformity conditions.

6. Dirichlet mixture of normals

In this section, we look at random densities that arise as mixtures of nommal densities. Let
¢y, denote the normal density with mean 0 and standard deviation A, For any probability P
on B, /e will stand for the density

fuply) = [qu.{y — ndP(n). (6.1)

Our model consists of a prior i for h and a prior IT for P. Consistency issues related to these
priors, in the context of density estimation, are explained in Ghosal ef al. (1999¢). Here we
look at similar 1ssues when the error density f in the regression model is endowed with these
priors.
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To ensure that the prior sits on symmetric densities, we let P be a random probability on
B* and set

1 1
feply) = 5 I@u.{_v — ndPr) + 3 [fﬁ Wy + OHdPf). (6.2)

We will denote by TT both the prior for P and the prior for fj

The following lemma shows that the modom f penerated by the prior under
consideration is more regular than those generated by Polya tree priors, and hence the
conditions on fy are more tansparent than those m Section 3 or those in Ghosal e al.
{1999h).

Lemma 6.1. Let fy be a density such that
IJ-'“‘f'u{y}dJ- <00 and [fh{y}llngf'u{y}ll‘* dy < co. (6.3)

K f(3) = [y — DdP(1) and [ dP(1) < oo, then
(i) limg_g K( fo. fo) = K(fo. 1),
(ii) limg_g ¥(fo, fo) = V(fo. 1).

Proof. Clearly f(y) 15 positive and continuous, and

llog fa(3)] = llog v2mh| + ‘lug [c"-"""*f-"“'“dP{r} . (6.4)

Since log I[c"‘-"'”'”:””'l:'d.“{f}{{}, by Jensen’s inequality applied to —logx, the last
expression is bounded by

(y—80—1ty

llog v/25h| +I yE dPi1).

The dominated convergence theorem now applies. O
We now return to the regression model.

Theorem 6.1. Suppose Il is a normal mixture prior for f. If
(i) Assumptions A and B hold,
) Y fF - K(fo. <0, F{fo. FY<oc} =0 foralf 6 =0,
(i) Eg(y*) < oo, Eg(log fo)* < oo,
(iv) [ [ dP(e)dIl(F) < =,

then the posterior distribution TN-|Yy, ..., ¥,) is weakly consistent for ([, a, B) atf
{ fo. g, Bo) provided (g, Bo) is in the support of the prior for (o, §).

Proof. By (iv), {P: [dP(f) < oc} has M-probability 1. So we may assume that
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i} =0, (6.5)
where U = {f : f = fe, (ii) holds, [ dP(t) < oo}
For every f €. using Lemma 6.1, choose &, such that, for 0 < d,,
K(fo. f) <0, Vifo. f) <o (6.6)

Now choose &£y such  that o —ag+(F —fFodx] = 3 whenever o —ag| < £,

1B —Pol <er/L.
Clearly if f €l and | — | < &7 and |§ — fo| < &7 /L, we have

Kif. . B)<<2d, VAf, . B)<V(fo. f)+0 (6.7)
Since
T{(f, . B): f €U, | —cto| < £/, |B— Pl <er/L} =0, (6.8)
we have
ﬂ{{_,f'. a, B) - Kl fo, a, B) < O for all i, ZM = ‘DC.} =1 {6.9)
=1
An application of Theorem 2.1 completes the proof. O

It is shown in Ghosal et al. (1999¢) that if f; has compact support or if fy = fp with P
having compact support, then TI{f : K(fy, f) < 8} = 0 for all & = 0. The argument given
there also shows that in these cases condition (1) of Theorem 6.1 holds when IT 1s Dirchlet
with base measure . Ghosal er gf. (1999¢) also describe fiys whose tail behaviour 1s related
to that of ¥ such that TI{ £ : K{ fy. /)< &} = 0. In the case when the prior is Dirichlet, the
double integral in (iv) is finite if and only if [+* dp(f) < oc. While normal fy is covered by
these results the case of Cauchy fy cannot be resolved by the methods in that paper.
However, Dinchlet location and scale mixtures of normmal should be able to handle Cauchy
S which is a normal scale mixture. This scale mixing measure does not have a compact
support 50 the results of Ghosal er af. (1999¢) stll do not apply.

7. Binary response regression with unknown link

A distinguishing feature of the regression problem considered in this paper is the change in
the parameter value with i A similar situation anses in other models such as the regression
of the Bernoulli parameter with an unknown link function. This may be viewed as a
nonparametric version of logistic regression problems and the methods developed here can
be used to handle these problems too. We give an indication of how this can be done
without going mto much detal.

Consider & levels of a drug on a suitable scale, say x, ..., xg, with probability of a
response (which may be death or some other specified event) pi, 1 =1, ..., k. To study the
effeets at different levels, n subjects are treated with the drug. The ith level of the drug is
given to n; subjects and the number of responses »; noted. We thus obtain £ independent
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binomial vanables with parameters »; and p, where n = n; + ... + n;. The object usually
15 to find x such that p = 0.5 Often, p; 15 modelled as

pr = Fla+ fx;) = Hx;), (7.1)

say, where F 15 a response distnbution and ¢ and § are parmameters. Here p; may be estimated
by #;/n; but if the n; are small, the estimates wall have large vanances. The model provides a
wiy of combinmmg all the data. In logistic regression, F is taken as logistic function. Other
lmk functions such as the nomal distnbution function are also used. The choice of the
functional form of the link function is somewhat arbitrary, and this may substantially
influence inference, particulady at the two ends where the data 1s sparse. In recent years,
there has been a lot of interest in link functions with unknown functional form. In
nonparametne problems of this kind, one puts a pnior on F or H. Such an approach was
taken by Albert and Chib (1993), Chen and Dey (1998), Basu and Mukhopadhyay (1998,
20000 among others. If one puts a pnor on F, one has to put conditions on F such as
specifying the values of two quantiles to make (F, «, §) identifiable. In this case, one can
develop sufficient conditions for posterior consistency at (Fy, g, fy) using our vanant of
Schwartes theorem. However, in practice, one usually puts a Dinchlet process or some other
prnor on F and, independently of this, a prior on {«, ). Due to the discreteness of Dirichlet
selections, many authors actually prefer the use of other priors such as Dirichlet scale
mixtures of normals; see Basu and Mukhopadbvay (1998, 2000} and the references therem.
Because of the lack of identifiability, the posterior for (e, §) is not consistent. This will show
up m simulations as flat, rather than peaked, posteriors. On the other hand, a Dirichlet process
prior and a prior on (e, ) provide a prior on & and one can ask for posterior consistency of
H~'t}y at, say, Hy'(}). This problem can be solved by Theorem 2.1 as follows.

Without loss of penerality, one may take n; = 1 for all i, and hence &k = n To verify
condition (n) of Theorem 2.1, consider

(Holx:))"(1 — Holx,))' ™"
(H{x:))W(1 — Hx)) = 7

Zi=log {(7.2)

where #; 18 1 or O with probability H{x;) and 1 — Hix;) respectively, and the tue H 5
denoted by Hy Then

Hﬂ{.l’,'}l los HH‘[-TJ'}
Ey £ = Hyl x)log Hi) + (1 — Hylx)log I——H{r} (7.3)
and
2 2
Hylx; 1 — Hyix;
EnlZ]) = an'[-Tf}(lﬂf_—!. %:;) + 2(1 — Holx;))log (I_—h:'{{:;') ; (74)

Assume that the x; lie in a bounded interval containing Hq';'{}'}, and the support of &
contams a bigger mterval. Since the mange of the x; 15 bounded, the sequence of formal
empirical distobutions = '3 7 4, of x, ...,: x, is relatively compact. Assume that all
subsequential limits converge to distnbutions which give positive measure to all non-
degenerate intervals, provided the mtervals are contained in a certain interval containing
Hy '{:L}. Therefore, a positive fraction of the x; lie in an interval of positive length if the
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mterval 15 close to the the point Hfj'{_{}. Also assume that &y i1s continuous and the support
of the prior for H contans Hy. For instance, if the prior s Dirichlet with a base measure
whose support contains the support of Hy, then the above condition is satisfied. Mixture
priors often have large supports too. For mstance, the Dirichlet scale mixture of nommal prior
used by Basu and Mukhopadhyay (1998, 2000) will have this property if the true link
function 1s also a scale mixture of nommal cumulative distnbution functions.

If H, isa sequence converging weakly to Hy, then, by Polya’s theorem, the convergence
15 unmform. Note that the functions  plog(p/g) + (1 — pllog((l — p)/(1 —g)) and
pllogl p/g)Y +(1 — pilog((l — p)/(1 —gnN) in g converge to 0 as g — p, uniformly in
p lymg in a compact subinterval of (0, 1), Thus given & =0, we can choose a weak
neighbourhood 4 of Hy such that if & €U, then Eg(Z) <0 and the E”,,{zf} are
bounded. By the assumption on the support of the pror, condition (1) of Theorem 2.1
holds.

For the existence of exponentially consistent tests in condition (1) of Theorem 2.1,
consider, without loss of generality, testing H'(3) = H, '{1'} against H™'(3) = H.;I'{z'-’.l +&
for small # = 0. Let

Ky={i: H\(1/2)+&/2=x; = H;'(1/2) +¢}.

Since
Eul(r) = Hix) = HH; (1/D)+ &) =1 (7.5)
and
Eum(r) = Ho(x) = Ho(H'(1/2)+&/2) = §, (7.6)
the test
% Zr]-{l+n (7.7
#K. 7 2

for 5 = (Hy(Hy'(3) + £/2) — 5)/2 is exponentially consistent by Hoeffding’s inequality and
the fact that # K,/ n converge to positive limits along subsequences. Therefore Theorem 2.1
applies and the posterior distrbution of A~ '{_l,} 15 consistent at HJ'{_l,}_

8. Stochastic regressor

In this section, we consider the case where the independent vanable X is stochaste. We
assume that the X observations Xy, Xa, ... are Lid. with a probability density function
gix) and are independent of the errors ¢, ¢, ... . We argue below that all the results on
consistency hold under appropnate conditions.

Let Gix) =.|‘_T-L glu)du, denote the cumulative distribution function of X, We shall
assume that the following condition holds:
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Assumption D. The independent variable X & compactly supported and 0 < G(0—) =
G0y = 1.

Under these assumptions, results will follow from a conditionality argument and the
corresponding results for the non-stochastic case, conditioned on a sequence xp, xa, ... such
that Assumptions A and B hold. Note that it g satisfies Assumption D, then P -almost all
sequences xp, xa, ... satisfy Assumptions A and B.

Observe that for a stochastic xy, &, ... with a known density g, the expressions for the
posterior probabilities are still given by (2.6), as the factor TT7, g(x;) is cancelled m the
numerator and the denominator. As g has no mle, we need no knowledge of it provided
that it 15 a prori independent of the other parameters. We need not specify a prior
distnbution for g, but assume that the sampled gs are compactly supported and satisfy
Assumption D If £ and the prior I satisfy conditions (i1) and (iii) of Theorem 4.1, it then
follows that, for any neighbourhood 4 of fy,

N{(f, apf): feldla—al <d, |8 —Pfol <X, Y1) oooy (X, Ya)} = 1

=

as. Pp o pes where Py poagpe 15 the distribution of (X, Y), X has density g
¥ =y + X +¢, X 15 independent of ¢ and ¢ has density

Thus if X is stochastic and Assumption D replaces Assumptions A and B in Theorems
5.1 and 6.1, postenor consistency holds.

Appendix

Lemma A.l. Let { and g be probability densities. Let |f — gll) = [|f — g| stand for the
Li~distance and let K'(f, g)= [flog(f/g) and K (f,g)=[flog_(f/g) where
log_x = max (—log x, 0). Then

K(f.2) =:lf — gl = K[, g)/2 (A1)
and
K'(f.o=if —gl+ K. g2 = K(f. g)+ VK. g)/2 (A2)

Proof. Using logx=x—1, as in Hannan (1960), we obtain K (f, g)=
[g=rfloglg/ N = [o=rlg— N =|Ff—gli/2. The second part of (A.l) follows from
Kempermans inequality (Kemperman 1969, Theorem 6.1). Relation (A2) follows because
Kt =K+K- =

Remark A. 1. Using the inequality logx = 2(,/x — 1), the following alternative bound can be
denved:

K (f, 0 =|f - &l - #(/, 8, (A3)
where H2(f, g) = [(f"* — g"/?)? is the squared Hellinger distance.
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Proaf of Theorem 2.1. The proof proceeds along the same lines as in Theorem 6.1 of
Schwartz (1965). Here s a sketch of the argument.
Write the postenor probability in (2.5) as

ﬁﬁ_ ﬂh.+{1 q}ll}fhl

——— AL
I, {2, ’ { )

where [y, and f., are as in (2.6).

Clearly, in view of the Borel-Cantelli lemma, condition {a) in Definition 2.1 implies that
$, —0as J[Z, Py

MNote that

Eng g, (1 — ®,)01,) = [4;1 ,.}j ]'[f :;:j[‘f;‘}dn{f ., ﬁ}Hfm{h}dJJ

[ [{1 — @) [[ fups iy AT £, @, )
FHE i=l

= supEnyy, (1 —P,)
W

= (Che T,

There fore,

"1 — D)y, — 0 (A.5)
as. [T2 Py,

Let V be the set displaved in condition (11) of the theorem. Note that with W; =
log ( foi/ fap (Y5, we have var(W;) = Vi f, @ f3), and hence 3 2, var(W; 3P < oo for
all f =V, Applying Kolmogorov's strong law of large numbers for independent non-
identical vanables to the sequence W; — E(W;), it follows from Lemma Al that, for each

eV

P l = _-f:’a,l"i.f[ }l} ~ _1: - _fﬂu{ } }
"F-"-'-Ef(n =Z. OB ) ) 2 I'T_fp( le 5 Fu ks })
= —lim sup — Z.‘L (f, e B)
1 a 1 L
= —lim sup (;Z Kdf, o B+ = Z W Kl S, ,L"']L"'E)
H—+ =1 i=1

1 Ll |II]. M
—lim sup (;Z Kd{f,o B+ 1”.'; Z K [, a, ﬁ}fz) {A.6)
=1 =1

H—00

as. [[Z, Py Sinee, for f €V, n7'Y._ KA S, e, f) < 0, we have, for each f €V,
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lim inf ~ Z log j“ "J‘-’{-- }} - —(d + y@}l- (AT)

H—+00

Choosing & so that &+ +/d/2 = /8 and noting that

- .lf-u.H.J'{. }:} .
he= | [R5 any, o B,
. .L- 7m0 «h)

it follows from Fatou’s lemma that
L‘"{:.H IEJI —+ o0 {.A-H}

as. [, Py . Combining this with (A.4) and (A.5), we obtain (2.5). Indeed, the convergence
is exponentially fast. This proves the theorem. O

Remark A. 2. Condition (1) of the theorem can be weakened. It can be seen from the proof
that 1f the prior assigns positive probability to the set

A &0 r v -2 .
{lz,‘n{f a, B) <4 for all m, Z i/, & ﬁ}tﬂ"{‘f’ « B) = ::c:}
n]‘=|

i=l g

then the posterior is also consistent.
We state Lemma 5.1 from Ghosal ef af (1999b) for easy reference.

Lemma A2, Jf fy = Cf\, where fy and i are densities, then, for any f,
K( fo. £) = (C + DlogC + CIK(f1, N+ VK(F1. N (A9)
Lemma AJ3. [’ Uy ~ Betalk, k), then
E(log(2Ux ) = O(k ™). (A10)

Proof. Let

Iy = E(log(2 Uy))? —E{ﬂl 5 (log(2w)y u* (1 — w)* ' du, (A1)
1]

where Bk, k) = E: w1 — uy* Vdu is the beta function.
By a change of wvariable,

1 I 3 k-l =1
Iy = mL{Iﬂgz{l — )t —u) du. (A1)
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MNote that log{2u) and log(2(1 — u)) are always of opposite sign for 0 << w <0 1. Therefore,

1
20 = mlﬂ{{lng@u}}z + (log(2(1 — w))*}u* (1 —w)* ' du

1
o L{mg{zu} —log(2(1 — ) Pu* Y1 — u)* ' du

1
+ m . “2{|{}g{2 w)ilog(2(1 — w1 — "' du

1 ' TR
= log I — ) d A3
Bk ff}l.l.u({}bl—h') [T | i) I { ]
Usmg the Laplace approximation, it has been shown in the proof of Lemma ALl of Ghosal et
al. (1999b) that the rght-hand side of (A.13) s (k') This completes the proof. O
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