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Abstract

In this paper we introduce a quantile dispersion measure. We use it to characterize
different classes of ageing distributions. Based on the quantile dispersion measure, we
propose a new partial ordering for comparing the spread or dispersion in two probability
distributions. This new partial ordering is weaker than the well known dispersive
ordering and it retains most of its interesting properties.
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1. Introduction

The stochastic comparison of distributions has been an important area of research in many
diverse areas of statistics and probability. Many different types of stochastic orders have been
studied in the literature; a comprehensive discussion of them is available in Shaked et al.
(1994). It is often easy to make value judgements when such orderings exist. For example,
if X and Y are two random variables with their distribution functions FX and FY satisfying

FX (x) ≤ FY (x) for every x , then we say that Y is stochastically smaller than X (Y
st� X).

Stochastic ordering between two probability distributions, if it holds, is more informative

than simply comparing their means or medians only. If Y
st� X , then every quantile of the

distribution of X is smaller than the corresponding quantile of the distribution of Y , and any
reasonable measure of location will be smaller for Y than for X . It is well known that Y is
stochastically smaller than X if and only if E[h(Y )] ≤ E[h(X)] for every non-decreasing
function h, provided the expectations exist.

Similarly, if one wishes to compare the dispersion or spread between two distributions, the
simplest way would be to compare their standard deviations or some such other measures of
dispersion. However, such a comparison is based only on two single numbers, and therefore
it is often not very informative. In addition to this, the standard deviations of the distributions
may not exist or they may not be the appropriate quantities to compare in some situations. A
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more informative way will be to compare their interquantile differences of all orders at the
same time.

Let QX (QY ) be the left continuous inverse (quantile function) of FX (FY ) defined by
QX (p) = inf{x : FX (x) ≥ p}, 0 < p < 1. If

QY (q) − QY (p) ≤ QX (q) − QX (p) (1.1)

holds for every 0 < p < q < 1, then we say that Y is less dispersed than X and denote this

partial ordering by Y
disp� X . It requires the difference of any two quantiles of Y to be smaller

than the difference of the corresponding quantiles of X . An equivalent definition of Y
disp� X

is to require (QY ◦ FX )(x) − x to be non-decreasing in x . Dispersive ordering can also be
expressed in terms of failure (or hazard) rates (if they exist). Let rX (·) and rY (·) denote the

failure rates of X and Y , respectively. Then Y
disp� X if and only if

rX (QX (p)) ≤ rY (QY (p)) ∀p ∈ (0, 1). (1.2)

A consequence of X
disp� Y is that var(X) ≤ var(Y ). Also X

disp� Y implies E[|X1 − X2|] ≤
E[|Y1 − Y2|], where X1, X2(Y1, Y2) are two independent copies of X (Y ). For more details on
dispersive ordering, see Chapter 2.B of Shaked et al. (1994).

In this paper, we introduce a new partial ordering for spread which is weaker than dispersive
ordering. For this we introduce a quantile dispersion function: the right spread function. We
study its properties in Section 2. In Section 3, we use RS functions to characterize various
ageing classes of life distributions. In the last section we introduce a new functional partial
ordering to compare two probability distributions in terms of their dispersions and study its
properties. It is seen that the new ordering is weaker than dispersive ordering.

2. The right spread function and its properties

Let X be a random variable with distribution function (d.f.) F and with finite mean µF .
The right spread function (RS function) of X is defined by

S+
X (p) = E[(X − QX (p))+]

= E[max{X − QX (p), 0}]
=

∫ ∞

Q X (p)

F X (t) dt, (2.1)

where F X = 1 − FX denotes the survival function of X and QX (p) is the quantile function
of X .

We shall call S+
X the right spread (RS) function of the random variable X to distinguish it

from the spread function SX (p) = E[|X − QX (p)|] as studied in Muńoz-Pérez (1990).
The RS function is non-decreasing and, if µF < ∞ and X is a non-negative random

variable, then its limit is µF when p ↓ 0. The RS function of a random variable X is closely
related to its mean residual life function, which is defined by

µF (x) = E[X − x |X > x] =
∫ ∞

x
F̄(t) dt/F̄(x).

In this next theorem we give some important properties of the RS function.
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Theorem 2.1. Let X be a continuous random variable with d.f. F which is strictly increasing
on its support. Then:

(b)

µF (QX (u)) = S+
X (u)/(1 − u); (2.2)

(c) ∫ 1

0
[S+

X (u)/(1 − u)]2 du = var(X), (2.3)

provided QX (0) = 0;

(d) if X1 and X2 are two independent copies of X, then∫ 1

0
S+

X (u) du = 1
2 E[|X1 − X2|] (2.4)

(e)

rF (QX (u)) = −
[

d

du
S+

X (u)

]−1

∀u ∈ (0, 1). (2.5)

Proof. (a), (b) These are easy to show.
(c) ∫ 1

0
[S+

X (u)/(1 − u)2] du =
∫ 1

0
µ2

F(QX (u)) du

=
∫ ∞

0
µ2

F (t) d F(t)

= var(X).

The last equality follows from Lemma 7.4 of Pyke (1965).
(d)

E[|X1 − X2|] = 2
∫ ∫

x1≤x2

(x2 − x1) f (x1) f (x2) dx1 dx2

= 2
∫ ∞

−∞

∫ ∞

x1

(x2 − x1) f (x1) f (x2) dx2 dx1

= 2
∫ ∞

−∞
F̄(x1)

[ ∫ ∞

x1

(x2 − x1)
f (x2)

F̄(x1)
dx2

]
f (x1) dx1

= 2
∫ ∞

−∞
F̄(x1)µF(x1) f (x1) dx1

= 2
∫ 1

0
(1 − v)µF (QX (v)) dv

= 2
∫ 1

0
S+

X (v) dv.

(e) This is easy to show.
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3. Characterizing partial orderings of life distributions in terms of right spread
functions

We shall assume in this section that all distributions under consideration are life distri-
butions with the property that F(0) = 0. In reliability and survival analysis, several non-
parametric classes of ageing distributions like increasing failure rate (IFR), increasing failure
rate average (IFRA), new better than used (NBU), decreasing mean residual life (DMRL), new
better than used in expectation (NBUE) and so on, have been studied. In all these criteria, we
compare the relative performance of a unit under consideration with that of an exponential
distribution with the same mean. Remember that a unit with exponential life distribution does
not age with time. See Hollander and Proschan (1984) for an excellent review of different
notions of ageing. Kochar and Wiens (1987) and Kochar (1989) generalized these notions of
ageing to compare the relative ageing of two arbitrary life distributions. We review some of
them here. We assume throughout that all distributions being considered have finite means,
and are strictly increasing on their supports.

Definition 3.1.

(i) X is said to be more IFR than Y ( X
IFR� Y ) if

rX (QX (p))

rY (QY (p))
is non-decreasing in p for p ∈ (0, 1). (3.1)

Or equivalently, if the function (QY ◦ FX )(x) is convex.

(ii) X is said to be more DMRL than Y ( X
DMRL� Y ) if

µX (QX (p))

µY (QY (p))
is non-decreasing in p ∈ (0, 1). (3.2)

(iii) X is said to be more NBUE than Y ( X
NBUE� Y ) if

µX (QX (p))

µY (QY (p))
≤ E[X]

E[Y ]
∀p ∈ (0, 1). (3.3)

In the above definitions, if Y has negative exponential distribution, then

X
P� Y if and only if X has ageing property P

for P ∈ {IFR, DMRL, NBUE}.
Now we show that these partial orderings of distributions can be conveniently expressed

in terms of their RS functions. The IFR ordering as given in the Definition 3.1 is also called
convex ordering, a concept initially introduced by van Zwet (1964). If (3.1) holds, we say that
X is convex ordered with respect to Y .

Theorem 3.1. Let X and Y be two non-negative random variables with RS functions S+
X and

S+
Y , respectively. Then
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(a)

X
IFR� Y ⇐⇒

d
dp S+

X (p)

d
dp S+

Y (p)
is non-increasing in p for p ∈ (0, 1) (3.4)

⇐⇒ (S+
X ◦ S+

Y
−1

)(t) is convex in t for t ∈ (0,∞). (3.5)

(b)

X
DMRL� Y ⇐⇒ S+

X (p)

S+
Y (p)

is non-increasing in p for p ∈ (0, 1)

⇐⇒ (S+
X ◦ S+

Y
−1

)(t) is star-shaped in t.

(c)

X
NBUE� Y ⇐⇒ S+

X (p)

S+
Y (p)

≤ E[X]

E[Y ]
. (3.6)

Proof. (a) From (2.5),

rF (QX (u)) = −
[

d

du
S+

X (u)

]−1

∀u ∈ (0, 1).

The required result follows from this and (3.1).
(b) From (2.2),

µF(QX (u)) = S+
X (u)/(1 − u).

The required result follows from this and (3.2).
(c) From Kochar and Wiens (1987), we have that

X
NBUE� Y ⇐⇒ µF(QX (u))

µG(QY (u))
≤ µF

µG
(3.7)

The result follows from this and (2.2).

Note that the RS function of the negative exponential distribution with mean µ is µ(1 − u).
By taking Y as an exponential random variable in the above theorem, we get the following
corollary.

A real-valued function φ defined on [0, 1] is said to be convex at 1 if and only if

φ(λu + (1 − λ)1) ≤ λφ(u) + (1 − λ)φ(1) ∀u ∈ [0, 1] and ∀λ ∈ [0, 1].

This means that any chord joining (1, φ(1)) to any other point (u, φ(u)) in the curve φ lies
above it (see Figure 2).

Corollary 3.1.

(a) F is IFR if and only if S+
X (p) is a convex function of p.

(b) F is DMRL if and only if S+
X (p) is a convex function at 1.
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FIGURE 1. FIGURE 2. FIGURE 3.

(c) F is NBUE if and only if S+
X (p) ≤ (1 − p)E[X].

Proof. (a) We have that

rF (QX (u)) = −
{

d

du
S+

X (u)

}−1

, ∀u ∈ (0, 1).

Now F is IFR if, and only if, rF (QX (·)) is a non-decreasing function, so d
du S+

X (u) is non-
decreasing in u. Therefore, S+

X (u) is a convex function. Any chord joining two points on the
curve S+

X lies above it (see Figure 1).
(b) F is DMRL if, and only if S+

X (u)/(1 − u), is decreasing in u. If S+
X (u) is a convex

function at 1, then
λS+

X (u) ≥ S+
X (λu + (1 − λ)) ∀λ ∈ [0, 1].

If we take u = u1 and λ = [(1 − u2)/(1 − u1)] with u1 ≤ u2 we obtain

S+
X (u2) ≤ 1 − u2

1 − u1
S+

X (u1),

so that S+
X (u)/(1 − u) is decreasing in u.

If S+
X (u)/(1 − u) is decreasing in u, then

S+
X (u2) ≤ [(1 − u2)/(1 − u1)]S+

X (u1) for u1 ≤ u2.

Note that [(1 − u2)/(1 − u1)] varies from 0 to 1 as u2 varies from 1 to u1. For fixed λ and u,
taking u1 = u and u2 = λu + (1 − λ), we have that

S+
X (λu + (1 − λ)) ≤ λS+

X (u).

Any chord joining (1, 0) to any point on the curve S+
X lies above it (see Figure 2).

(c) Since for the exponential distribution with mean µG , S+
Y (u) = µG(1 − u), the required

result follows from (3.6).

4. Right spread out ordering

Muñoz-Pérez (1990) has shown that Y
disp� X if and only if the random variable (X −

QX (p))+ is stochastically greater than the random variable (Y − QY (p))+ for every 0 < p <

1, where (Z)+ = max{Z , 0}. If, instead of stochastic ordering, we compare the means of
(X − QX (p))+ and (Y − QY (p))+, we have the following new notion of dispersive ordering.
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Definition 4.1. Y is less right spread out than X ( Y
RS� X) if

S+
Y (p) ≤ S+

X (p), ∀p ∈ (0, 1). (4.1)

It follows immediately that Y
disp� X implies Y

RS� X . Thus the RS ordering is weaker than
the dispersive ordering. In the light of (2.2) the RS ordering can be equivalently expressed in
terms of the mean residual life functions as

Y
RS� X ⇔ µY (QY (p)) ≤ µX (QX (p)), ∀p ∈ (0, 1). (4.2)

Compare this with (1.2), which expresses dispersive ordering in terms of failure rates at
quantiles of the same orders.

It is easy to see that X
RS� aX for a ≥ 1. The RS ordering is location-free in the sense

that Y
RS� X ⇔ Y + c

RS� X for any real c. It follows from Theorem 2.1 that if X and

Y are non-negative random variables with finite second moments, then Y
RS� X implies that

var(X) ≤ var(Y ) as well as E[|Y1 − Y2|] ≤ E[|X1 − X2|], where X1, X2(Y1, Y2) are two
independent copies of X (Y ). The next theorem states that even dispersive ordering can be
conveniently expressed in terms of RS functions.

Theorem 4.1. Y
disp� X ⇔ S+

X (p) − S+
Y (p) is non-increasing in p ∈ (0, 1).

Proof. Since
d

dp
S+

X (p) = −[rX (QX (p))]−1, for p ∈ (0, 1),

the required result follows from (1.2).

We have seen earlier that there is a close relationship between the RS function and the mean
residual life function of a random variable. We show below that, under some conditions, RS
ordering implies mean residual life (mrl) ordering and vice versa. First we recall the definition
of mrl ordering.

Definition 4.2. A random variable Y is said to be smaller than another random variable X in

the mean residual life ordering sense (Y
mrl� X) if

µY (t) ≤ µX (t), ∀t.

See Joag-dev et al. (1995) for properties of mrl ordering.

Theorem 4.2. Let X and Y be two random variables such that Y
st� X. Then

(a) if Y
mrl� X and either X or Y has increasing mean residual life (IMRL) distribution, then

Y
RS� X;

(b) if Y
RS� X and either X or Y has decreasing mean residual life (DMRL) distribution,

then Y
mrl� X.
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Proof. (a) Assume that X is IMRL.

Since Y
st� X , QY (p) ≤ QX (p) ∀p ∈ (0, 1).

Now

Y
mrl� X ⇔ µY (QY (p)) ≤ µX (QY (p)), ∀p ∈ (0, 1)

�⇒ µY (QY (p)) ≤ µX (QX (p)), ∀p ∈ (0, 1)

⇔ Y
RS� X.

(b) The proof of this part is on the same lines.

Bagai and Kochar (1986) proved similar results for relations between dispersive ordering
and hazard rate ordering. The next theorem gives sufficient conditions under which NBUE
ordering implies RS ordering.

Theorem 4.3. Let X
NBUE� Y and E[X] ≤ E[Y ], then X

RS� Y .

Proof. It follows from (2.3) that X
NBUE� Y if and only if, for p ∈ (0, 1), we have

SX (p)

SY (p)
≤ E[X]

E[Y ]
.

Since E[X] ≤ E[Y ], it follows that S+
X (p) ≤ S+

Y (p), for all p ∈ (0, 1). Hence the result.

This theorem extends a similar result of Ahmed et al. (1986) from super-additive ordering
to NBUE ordering.
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