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Some aspects of recovery of inter-group information are extmined
in this thesiss The mdin results are concerned with the variance of
the combined inter and intra-=block estimaitors in incommlete block
designs § recovery of infer-rav and inter-column information in two-way
designs 1aid out in rows and columns, and recovery of inter-block
information in a second experiment when residutl effects from the first
are present. A short description of the major findings will be faund
in the Introduction.

The thesis consists of seven chapters and a 1ist of references.
The detdiled plan of each chapter is given in the table of contents.

A few ofvthe results in this thesis have already been published
in Sankhyd, the Indian Journal of Statistics and in the Amals of

Mthematical Statistics. A lis
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of these publications of the author
and some other papers awaiting publication is given at the end of the

thesig,. .
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Chapter I

=~
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NYRGDUCZICH

This thesis extmines problems in the recovery of
inter-group information in experiments with on e-wly or
orthogonal two-wiy grouping of experimental material.
The main contributions of the thesis are as follows s
(1) M exact expression is obtained for the variance of
A combined intrd- and inter-block estimdtor for any
tredtment contrast in an incomplete block design.

Yhis result is valid for any incomplete block design
and for a general class of procedures for combined
estimition which includes Yates! procedure. (ii) A
combined estimator osbtained by any of the above
procedures is shown t0 hive variance smaller than
that of the corresponding intra-block estimdtor, if
the ratio of inter- to intra-block variance does not
exceed two. (iii) Instances are obtained where
recovery of inter-block information by the traditional
procedure results in loss of efficiency. (iv) For
some important incomplete block designs, a methad of
recovery is obtained which gives, for all treatment
contrasts, combined estimators that h¢ve uniformly
smdller variance than corresponding intra-block
estimators., (v) Metuods are developed for the recovery
of inter-row and inter-column information in two -wly
designs 1aid out in srih weondl rows and columns.
(vi) A procedure is obtoined for recovery of inter-block
informdtion in a second experiment when residunl effects
from the first are present.

U

1.1. Recovery of inter-group information.
The science of design and andlysis of planned experiments has grown

out of the pioneering contributions of R. A. Fisher. One of his principal

contributions there is the elegant teclhnique of arranging heterogeneous

experimental materinl into several homogeneous groups so that without any
.




sacrifice of the inductive scope of the experiment, treatment effects can
be estimited with high precision. In thé basic designs (fhe randomised
block design and the Latin Square design) developed by him each grouy
contains a1l the treatments exitetly once and hence no informition on
tredtmert effects can be obtained from comparisons between the total
yields of the groups.

Since the groups are to be homogeneous, the size of a group would
depend on the nature of the experimental material and miy at times fall
short of the number of treatments to be compared. For this reason, Yates
(1936) introduced designs with incomplete groups, i.e. designs where each
group does not contain all the treatments. In such a design different
groups contain different sets of treatments. Thus total yields of the
groups can also be used to compare treldtment effects.

In the case of one-way designs, Yates (1939) pointed out that when
the fOrmatioh of groups has not succeeded in controlling the within-group
\Memgeneity, it would be worthwhile 4o recover the information contained
in the between-group comparisons and gave a procedure for doing this for
three dimensional lattice designs. This procedure involves use of cer-
tain weights which are estimited from the cbservations. In this thesis
consequences of such a recovery procedure in an incomplete block design
are critically extmined and similar procedures are obtained for recovery
ot information (if any) from between-row and between-column comparisons

in an experiment 1aid out two-way in orthogonnl rowd and colunns .,



1.2, Incomplete block desigus,

Since the introduction of the bilanced incomplete block (BIB)
designs by Yates (1936), a2 number of useful incomplete block désigns
have been contributed by various authors including Yates himself.
The precision of the estimated tredtment differences in one-way designs
is related to the within-block variance and the use of incomplete block
designs is motivated by the reduction in the within-block variance
that is usudlly attained through the use of smallier blocks.

However, if the formation of blocks is not successful, i.e.,
if the inter-block variance is nearly the same 4s the intra-block
variance, use of an incomplete block design would result in a loss in
efficiency which might be severe for designs with low efficiency factors.
S0 prevent this loss in efficiency, Yates (1939, 1940) suggested the
use of informition available from inter-block comparisons. The procedure
given by Yates for three dimensional lattice designs (1939) and for BIB
designs (194C) wos adopted by Hair (1944) for PBIB designs and was later

generalised by Rao (1947) for use with any incomplete block design.

The procedure is called recovery of inter-block information and
consists of the following stages. The method of least gquares is applied
to both intra and inter-block contrasts, assuming that the value of @,
the ratio of the inter-block variance o0 the intra-block variance is

known. This gives the so called 'normel' equitions for combined



estimdition. The equitions involve ¢ which is estimated from the
observations by equating the error sum of squares (intra-block) and

the adjusted block sum of squares in the standard analysis of -ariance
to their respective expected values, This estimite is substituted for

¢ in the normal equations and the combined estimdtes are obtained by
8olving these equations. A priori, the inter-block variance is expected
to be larger than the intra-block variance and hence it is customary to

use the above estimitor of Q, truncated at unity.

The error sum of squares in the inter-block analysis has at
times been used in place of the adjusted block sum of squares in the
above andlysis (Yates (1936) for a cubic lattice design, Graybill and

Deal (1959) for o BIB design).

We note that all attempts so far, at the study of the properties
of combined estimditors of the trediment contrasts have been mide under
the assumption that the block effects and the errors of observation are
independently Normally distributed (Yotes 1939, Graybill and Deal 1959,
Graybill and Weeks 1959, Grayhill and Seshadri 1960). In the absence
of any assumption on the distribution the problem is very complex. In

chipters IT to V we shall assume Normality.

We first comsider wnbitsed quadratic estimitors of inter and
intra-block variances. Variances of these estimators turn out to be
quadratic in Q. Since 9 is expected to be large, one might search

for an estimdtor of the inter (intra)-block variance for which the term



involving 92 in the expression for variance is minimised., Tt turns
out that the customiry estimator of the intra-block variance has this
property but the same is not true for the customiry estimator of the
inter-bloak variance. An estimitor of the inter-block variance with

the above property is put forth in section 2.4,

It is shown in section 2.5 that the ratioc of inter to intra-
block variance estimites does not provide an unbiased estimitor of Q.
A simple correction is obtained which eliminates this bias. 7The
problem of constructing an Yabiased estimator of 9 1is examined. For
the class of estimators considered, the variance turns out to be again
O quadratic expression in 9. s before, we obtain an unbiased estimator

o
. s . . . ., b . oy ey ® .
which minimises the term in ¥ in the expression for variance.,

Information limit for the variance of agy unbiased estimator
of Q is obtained in section 2.6. The method of maximum likelibood
for estimating the parameters gives rise to a somewhat complicated
equition for estimation. A computationil procedure for 80lving the

equition by iteration is presented,

If Q were known, the combined estimdtors would have all the
good properties of leagt-squares estimates, Since only an estimite of
9 is used, the properties of the combined estimates have to be eritically
eximined. One would expect these to depend on the type of estimator of
9 useds To use the combined estimator of a tredtment contrast with

confidence one would like to know if it is wmbiased and if its wvariance



is smaller than that of the corresponding intra-block estimator,
uniformly in Q. .

The question of unbifsedness has been exdmined by some authors
under the assumption of Hormality. Graybill and Weeks (1959) showed
that for & BIB design, the combined estimator of a tre&tment contrast
baged on the Yates! estimitor of ¢ in its wtrunctted form is
wnbiased. Graybill and Seshadri (196C) proved the same with the Yates

estimitor of @ din its usual truncated form, again for BIB designs.

We show here that for awy incomplete block design, if the estima-
tor of Q@ 1is the ratio of quddratic forms of & specidl type, the
corresponding combined estimitors of treatment contrasts are unbiased,
It is also shown that the customory estimator of 9  (as given by
Yotes (1939) and Rao (1947)) is of the above type and hence gives rise

to unbiased combined estimdtors.

The variance of the combined estimttors has also been eximined
by some authors, aghin under the customiry assumption of Normdlity.
Yates (1939) used the method of numerical integration to show thot for

twentyseven troatments and with
8 cubic lattice design withAsix replications or more the combined
estimdtor of A trettment contrast has variance smaller tlhnn that of the
intro=block estimitor, wniformly in Q. Graybill and Deal (1959) used
the exict expression for the variance to establish this property of
the combined estimdtors for & BIB design for which the number of blocks

exceeds the number of treatments by ten or moree*(or by nine if in



addition, the aumber of degrees of freedom for the intra-block error
mean squire exceeds eighteen). In both the cases, the estimdtor of ¢
is based on the inter-block error mean square and is not the usual one

based on the adjusted block sum of squares.

In this thesis we present &4 number of results concerning the

Ariance of the combined egstimttors.

In the first place, we derive an expressicn for the variance of
the combined estimator of a treatment contrast based on Quy estimdtor
of Q@ Dbelonging to the class described above. Though in general this
expression is not easy to evaludte in terms of well-known functions,
nmerical quadrature methods can be applied for evaludtion. A compd-
rison with the variance of the intra-block estimitor shows that the
combined estimitor of any tredtment contrast in any incomplete block
design has wvariance smaller than that of the intra-block estimdtor if

Q deoes not exceed 2.

The question that now arises is whether & combined estimator for
a treatment contrast can be constructed which is 'uniformly better!
than the intra-block estimdtosr , in the sense of hdving o smaller
variance for all values of 9, It is shown in Section 4.3 that for a

1B

linked block/design with 4 or 5 blocks,; recovery of inter-block informi-
tion by the Yates-Rao procedure mily even result in loss of efficiency
for large values of Q.

We present & method of constructing a certain estimator of Q,



applicable to any incompiste block design for which the asgociation
mitrix has a non~zero latent root of multiplicity p > 2. For any
tredtment contrast belonging to a Sub=-space associated with the multiple
latent root, the combined estimdtor based on this estimitor of @ is
shown to be uniformly better than the intra-block estimdtor if and

only if (p-4)(eo -2) > 8, whers e, 18 the number of degrees of
freedom for error (iutra-block).> For almost all well-known designs,
the association mitrix has multiple latent roots and this method can
therefore be applied to many of the standard designs, at least for

some of the treatment contrasts,

We note that, in generil, this estimator of Q is different from
the customary one given by ates (1939) and Rao (1947). For LB designs
however, this estimitor of @ coincides with the customiry one. We
show that for a LB design the usunl procedure of recovery of inter-
block information gives uniformly better combined estimdtors for all
treatment contrasts if the number of blocks exceeds five. As we have
pointed out before, if the numier of blocks is four or five and if @
is large, recovery of inter-block informatisn by the uswrl procedure

results in loss of efficiency.

Using the above methad, we obtain an estimitor of 9 which pro-
duces o combined estimator uniformly better than the intra-block estimi-
tor for any treatment contrast for the following designs : (i) a BIB

L]
design with more than five treatments (ii) a simple lattice design



with sixteen treatmemts or more and (iii) a triple 1attice design with
nine tredtments or more. Applications to some other two=associate
rartially balanced incomplete block designs and to inter and intra-
group bllanced designs have alss been worked out. A computational

procedure for obtaining the estimite of ¢ has been given for each

©

case,

Yable 2.2 of chapter 5 shows acfu:ll gin in efficiency due to
recovery of inter-block infarmation by the above method fof some selec-
ted designs for ¥ =1, 2, 4 and 8, The results appear to indicate
that even for designs for which combined estimitors are wiiformly
better than the intra-block estimators the guin in efficiency is slight
except when ¢ is small. This indicates that recovery of inter-block
inform2tion may be worthwhile only if the formation of blocks has not

been effective in controlling the heterogeneity.

Yhe criterion of efficiency used in the above discussion is the
efficiency factor of an incomplett block design as defined by Yates
(1936). This is known to be proportional to the harmonic mean of the
latent roots of Cy the mitrix of co-efficients in the intra-block
normil equations (Kempthorne 1956, Roy 1958). Two other criteria by
Wold (1943) are given in terms of the latent roots of the matrix ¢,
vone being the minimum root and the other the geometric mean of the
L’itent roots. With any of these measures, the designs for which the

atent roots of ¢ are not widely separated, will have high efficiency.
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This suggests the use of a fourth criterion based on the dispersion of

these roots.

By o slight modification of these criteri® one can compare designs
with the same number of treaiments and the same block size but using
unequdtl amounts of experimental miterial. Values of the four criteria
evaluated for ten two-associate PBIB designs from the list prepared
by Bose, Clatworthy and Shrikhande (1954) happen to give similar order-
ings of these designs. The fourth criterion based on the dispersion of
the latent roots of C-matrix can be expressed in terms of the sum of

squares of the elements of C-mitrix and is easy 40 compute,

Kshirsagar (1958), Roy (1958) and Kiefer (1958) have proved the
optimdliity of a BIB design (with the first three criteria) among designs
with the S'l“l(‘ number of tredtments, the same block size and the same
number of blocks,., It is shown that even in the wider class of designs
where the number of blocks is unequal a BIB design is optimtl with any

of the four criteria described above.

l2e Two-wny designs with orthogonal grouping.

Designs vwith two-wdy eliminttion of heterogeneity have been consi-
dered by various authors (Latin scuires by FPisher (1935), quasi-Iatin
squires by Yates (1937), Youden squires by Youden (1937), partial ¥
Wlanced Youden squires by Bose and Kishen (1939), Y, class of designs
by Shrikhande (1951). A general methsd of anmilysis of such designs

given by Shrikhande (1951) is based on the so called fixed effects Normal
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model and does not utilise the information awailable from differences
of row or column totals.

We derive an analysis of such designs using
of additivity of plot cad treatment effects and the distribution induced

by the randomisation procedure. The equitions for estimition in +he

interaction amalysis where one uses only the contrasts orthogonal to

rows and c¢olumns turn out o be the same as obtained by Shrikhande
(1951) wder the Normal model. When one also u8e® the information
aailable fnom between-row and between-column comparissns the equations
for estimdtion inwolve three variances § the between-row variance, the

between-column variance and the interaction-variance. These are usudtlly

wiknown and have to he estimited from the obServitions themselves.,

An estimite of the interaction-variance is provided by the error
medn squire in the interaction andlysis.  We obtain here +two es timdtors
of the between-row variance. Cne is based on the mean square of rows
Adjusted for columns and treatments. To obtain this one has to carry
out & separate amdilysis of variance where the classification by rows
is ignored. This is an extension of the traditisnal procedure of
Yates (1939) and rao (1947) for estim miting the between-block variance
in an incomplete block designe, This involves rather hedwry computations
in the general case and hence‘the following procedure is recommended,
We first consider the row-totals of the corrccted yields where from the

5]

Yield of each plot the estimite of the tredtments parameter (as given
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L3
by the interaction and}ysis) is Subtracted. The sum of squares of
.
deviations of these row-totals from their mean is used in estim@ting

the between wow variance. This obviates the need for an additional

anlysis of variance to be performed,

Conditions under which a two-way design compares favourably with
the corresponding one-wiy designs are exdmined in section 6.5 and the
relative efficiency factors are worked out,

le3. One-way design with two sets of trectments

N
An illustration of a one=wiy design with two sets of treatments
is given by the following. Suppose we have experimentdl material
consisting of Dy blocks haviag r, plots each on which an experiment
involving Py tredtment was performed in the recent past. If the
sime miterial is to be used for comparing some D, treatments the
yield on each plot might be affected by a) the treatment received
by it in the previous experiment and b) the treatment applied in the
current experiment. One my Gssume the effects of these two treatments
to be additive. A similar Situation is obtained when we have a one=-way
design involving two factors and when the intertctions are known to be
Obsent.,
Designs of these type are considered by various authors (Pearce
and Taylor 1948, Hoblyn, Pearce and Freeman 1954, Freeman 19572, 1957v,

1958, 1961, Pothoff 1962),



For the special designs considered by them,Freeman (1957a) and
Pothoff (1962) gdve & method of intra-hlock analysis brsed on the
Normdl model.,

In chapter seven, we derive a method of analysis for any such

design with experimental wnits arranged one-way in blocks, and invol-
ving two sets of treatments whose effects are additive. We use onlw

g v
the distribution induced by the usual two-stage (within and between
blocks) randomisation and the assumption of additivity of plot and

12 y b
treatment effects., In addition to the intra<block analysis we ive a
¥

rocedure for recovery of inter-bloeck information. The estimatiy
p L7

equtions in this case involve the intrd and inter-bloek variances,

A procedure for estimiting these unknown variances is given in
section 7.3. The results are obtained in symbolic forms, in terms of

pseudo-inverses of certain mririces.,

When the design is not chosen properly, even the intre-block
W lysis is somewhat loborious for mwnual computations, An illustra~
tion given in section 7+4 serves to demonstrate tht with a careful
choice of the design, the Y lyeis ineduding recovery of'interzblock

information does not involve wmduly hedvy computations.

13
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Chapter II

ESTIMATION Cs INTuWR TO INTRA-BLQCK VARIANCE RATIO

2.1 Motivation and summary,

The key role played by the estimtitor of ¢, the ratio of inter to
intra-hlock variance in the process of recovery of inter-block information
was brought out in the previous chapter. In the present chapter we shall
be concerned with the problem of estimating Q.

In the study of this problem it is much simpler to deal with the
canonical form of the observations rather than the observations themselyes.
Thus, in section 3 an orthogonal transformation of the following type is
#Me. From the original observations one transforms to o set of mutud 11y
orthogonal normalised inter~block contrasts,a set of mutually erthogonal
normdlised intra-block contrasts and a constant times the grand mean of
all observations. A corresponding transformation is made of the parameters
medsuring the effects of the v treatments, one being the average and the
other (v-l1) mutually orthogonil parametric contrasts. The whole trans-
formation is so chosen that each of the first (v-1) intra-bleck contrasts
of observations has sxpectation proportional to one of these transformed
mranetric contrasts and all other intra-block contrasts of observations
have expectation zero., Similarly, of the inter-block contrasts of
observations those whose expected vdlues are not identically zero, again

~ have expectation proportional to some »f these same set of parametric
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contrastse This provides o suitable froamework for developing the methods
of this and the succeeding c}mpter.. Gf course, in every case the numerical
procedure for the actunrl application of the method does not necessitate the
transformaition o be physic@lly carried ocut. Canonical form is uwsed only
to simplify the derivations,

Using the canonical fb'rm, a set of minimdl sufficient statistics for
the treatment contrasts and the inter and iantra-block variances is derived

for any incomplete block design., A set of minimnl sufficient statistics

“for a BIB design under the voriance components model was obtained by

Weeks and Graysill (l96l)o

Unbiased quadratic estimators of inter and intra~block variances are
considered in section 4. The expressions for the variances of these
estimitors turn ocut to be quadratic in Q. When homogeneity within blocks
is aghieved, @ is likely to be large and lence to compare two estimators

t and t', one may take lim  V(t')/V(t ) as a criterion.
g =

It turns out that with this criterion of all wbiased quaddratic
estimitors of intr@-block variance, the customdiry estimitor is 'best', The
same is not true for the customory estimitor of inter-block variance. An
estimditor of inter-block wvariance which is 'best' in this sense is obtained
in section 4. Computationdl proaedure to obtain this estimite turns out
to be fairly simple. It would be desirable to compare this estimator
of inter-block wariance with the customiry estimator when § is

moderately large. For asymmetrieal BIB designs listed by Fisher and
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Yates (1%7) it is found that the customary estimator has larger
variance for values of ¢ exceading five. For Symmetrical BIB designs,
the two estimators are identical,

It is customary to take as an estimdtor of 9  the ratio of inter
to intra-block variance estimates. In section 5y We show that when these
variances are estimated from the C;)'l&l;fsis of variance, the ratio does not
provide an unbiased estimator of ¢, A Simple correction is obtained
which eliminates this bias, The problem of constructing an unbiased
estimdtor of @ is examined. For the class of estimators considered; the
variance turns out to be Again a quadratic expression in ¢. As before,
on unbiased estimator of ¢ obtained, which is 'hews! according tgq
our criterion.

Information limit for the variance of ny unbiased estimator of Q
is obtained in section 6. The method of maximum likelihood for estimating
the parameters iz considered. This gives rise to a somewhat comyplicated
equation for estimotion, 4 computational procedure for solving the equa-
tion by iteration is presenteds This procedure is illustrated with the

“help of & numerical example in section 7.



2+2+ Preliminaries and notations.

Consider an experiment iy which v treatments are applied on
bk experimental units or plots, themselves divided into b blocks of
k plots each. OUnly one traatment is applied on every plot, the actual
8llocation being done in the following manner.

First, we consider a design, that is an drrangement of v symbols
(one corresponding to e:&:h treatment) in b rows sach having k cells.
The arrngement is characterised by the numiers n,. , j = 1,2y00., v¢

jin

1=1,2,000y b u=1,2,..., k where mjiu = 1 or O according as the
J*h symbol (treatment) oceurs on “hLe uth ¢coll of the ith row or not.
It is customary to perform randomisation as follows«The blocks

are numbered 1, 2,..., b at random and the plots in 2 block are numbe-

red 1, 2,..., k again at random cud independently for differeat blocks.

The uth plot in the ith block then receives the treatment corresponding

to the symbol which occurs in the ubh cell of the i*h row of the design.

et ¥

ju denote the yield on this plot. Let further € = (91,92,...,9v)

denote the row-vector of raal valued pirameters measuring the effects
of the tredtments.

A linear function £ S
Lu

z aiu = 0. A contrast is suid to belong to blocks, or simply called
i
8n inter-block contrast if A . =a. = .., = a.. holds for all i. A

Yy is said to be a contrast if

il il ik
soatrast is sait to Le wn intra=block contrast if ) aiu =0
. a

holds for all 1. A linzar fuaction

17
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% a, . is said to be normalised if b2 3.2 = 1., Two linear
. iu Yiu . iu
imu i,u
. bl a 1 ™ - Fe P ()
~ functions .2, a . Yjo 20d 2 biu Yiq re said to be orthogonal if
iu iu
z % Py = O« Tt is easy to see that any inter-block cantrast and any

iu
intra-block contrast are mutually orthogonal. The rank of the vector space

generated by all inter-block contrasts is (b-1l) and of that generated by
41l intra-block contrasts is b(k~1).

We shall construct (bel) mutually orthogonal normalised intereblock
contrasts and b(k-1) mutudlly orthogonal normalised intma-block constasts,
For these contrasts we shall assume that (a)  the expected value of any
contrast is obtained Yy replacing in the contrast every obsarvation by the
gorresponding tredtment parameter, (b) the voriance of any intra (inter)-
block contrast is 0(2) (Oi) and (e) the covariances are all zero, Thus
we may cadl oi (Oi) intra (inter)-block variance per plot. Dvidently, if
these assumptions hold for one set of mutually orthogonal inter amd intri-
block contrasts they will hold for any other. We shall define

Q = oi/ oi . eee (2,1)
¥e shall assume that @ » 1,

It is implied in Rao (1959) that the above holds when one assumes
the additivity of plot and treatment effects and considers the distribution
induced by randomisation. In this case Oi and 02 are respectively the

1

‘wean squares (of plot effects) within and between blocks.



It is easy to see that the 2bove assumptiong hold good under the
so called 'Wormal! medel where in addition, the joint distribution of
theme contrasts is multivariate Normale TFrom section 4 onwards we

ghall further dssume Hormality.

k
Let 5 m,, =1, , the nunber of times the j-th treatment

ue] Jiu ji

occurs on plots in the i-tn block. Thus n. o= 1l or O and
3]

v b '
2 n.. =k, 2 n., =r. The v b matrix N = ((n)) is called
j=1 i jo1 9% ji

the incidence matrix of the design.
We shall denote by Emn a matrix of the form m X¥n etch element

of which is unity. The matrices

. 2
1 1 . T
= - =N N' and = =N N' @« =—F .
9 rI i N N* and Cl X N N o E {2.2)

play important roles in the analysis. We shall assume that the matrix
C is of rank (v=1): this is equivailent to the assumption that the
experimental design is connected.,

| Let Bi denote the total yield for the i-th bLlock and Tj that

for the j-th trectment and let G be the grand total, so that

B, =2y. s T,= 2y, m,. and S= 2 y. = 2.
1% 2Ty j 2 Y5y jiu & Ty (2.3)
u i, u i,u

~ We shall use the row-vectors 3 = (Bl, BZ""’ Bb) and

I= ,(Tl’ Tys eeey Tv) . The adjusted totals for the treatments are

19
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defined ag
Q-Z-%E‘N' . (2‘4)

Let, further

1 o
Co Rl A sl (2.5)

It can be seei that the elements of & 2re intra-block coatrasts and
those of 9y are inte:-block contrasts.

It is known (see, fc: example, 2nc 1947) that minimum variance
unbicsed linear estimates of the trectment effects © = (91, 02,...,Gov),
based on intra~block contrasts only, J-I'b cbtained from the equations

8Cc=gq. (2.6)
These shall be called the intra-block normal equations for es_timation
or simply the intra-block equations. We shali write 8% for the
solution of these equations. If the ratio ¢ = oi / Gg is known,
both intra-block and inter-block contracsts can be used together, and

cinimum variance linear unbiased estimates in this case are obtained
from the equation

se+ge) =grdg. (2.7)
These shall be called the combined normal equations for estimation or
simply the combined equations. The solution of these equations will

be denoted by é(?). When §Q is not known, an estimate 9* for ¢

18 substituted in (2.7) ana §_(9*) is takeu as an estimate for Q.
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For estimating @, the following procedure is generally regommended
(See Yates, 1939, 1940 or for a general treatment, Raq, 1947). First
the following table of analysis of variance is prepared,

Table 2,1: Amdlysis of Variance

Source Jofe Se 8o
blocks (unardjusted) bl 5% = £ ppe. G?'/bk
' B k==
treatmants (adjusted) Vel 88, . = QO*!
= 1 - -\ 1 \ = Qo - o
error 8, = M =b - v+ 1 SSE S5, SoB SS tr
total bk-1 S5.= 2 y° Gz/bl
A T <
: i,u
The adjusted sun of cquares due to blocks is then camputed as
1 2
S5y = 88§ + 85, - (T T I - G7/bk). 2.8)
2 2 .
Then 8, and sl defined by
2 - 2 2 .
5, = S5, /eo, v(r-—l)sl: k 555 = (v-k)so (2.9)

provide unbiased estimators of oi and oi respectively$ and as an

estimite of Q@ ocne takes

_ 2 2

Resy /s . (2.10)
Since the blocks =rc formed so as to achieve hmogeneity within blocks,

- We have assumed § > 13 but depending on fluctustions of sampling, R

may not satisfy this inequality. For this reason, a modified estimate



R' (which we shall eall the truncated form of R) given by

1 if
R!' =
= R if

o=
N

1
1 (2.11)
is uwsually recommended.

2.3, Canonical form.

The assumption that the rank of ¢ is (v-1) implies that there is
exdctly one latent root of the matrix Wi which is equal to rk, and
All other latent roots are Strictly smaller than rk. Iet 5&

8§ =1, 2,..., g be a set of orthonormal latent vectors of NI y
corresponding to the q positive latent roots ¢_J, all smaller than k.
Let £/6 sy 8 = q+ly4.0, =1, be a set of (v-l)-q orthonormal 1 y¢v
vectors, each orthogonal to gt !él ger e e gq/ and also to

Elv' We then define (v-l) intra-block contrasts x 4 s = L,2,..., w1

a8 follows

1 4
k= (rk-%) ‘95‘; for s = 1,2,..., q
X = : » . ( .
> I‘-% 9._2'/:, for s = q+]_’..', =1, \3..‘.)

Since the rank of the vector-space generated by all intra-block contrasts
ia b(k-1), we can find e = b(k-1) - (v-1) mutually orthogonal
i)

normilised intra~block contrasts, call them 2 $8 = 1,2,.4.4 @

08 o’

edch orthogonal to x Kemgeosy X .
& 01’ “g27* "1 g,y

Next we define q inter-block contmsts

4 ’ )
x = (& ¢S)‘:"’ BN'é‘ 5 =1, 2,00., q. (3.2)

22



Since the rank of the vector-space generated by inter~block contrasts

is (b=1), we can find e, = (b-1)=q mutually orthogonal normalised

inter=block contrusts, call them 2y $8 = 1,2,00., €y eaoh orthogo-
nal to x Pinally, let

ll, xlz,-.., xlqc

o* = (bk)‘% ¢ - (3.3)

We shall also consider an orthogonal transformation from

9 = (01’ gz’ ®e vy gv) tO Tl ""‘t)’, oo ’Tv defmed W
»;,l
T 9 g for s = 1,2,..., vel (5.
s = 3 3.4
e - - for 5 = v .
© E, /v

Since 1}, is not estimable in our set-up, We can assign to it an
arbitrory valué. rfor computational convenience we shall always take
Ty = 0.
By straightforward algebrt, one can easily verify the following

resultse.

2¢3¢1s The linetr transforaation frcn» yiu's to
G*, X g (8 = 1425004y v=1), g (8 = 1425004y q)y Z.q (8 = 1424440, eo)
and  zy (s = 1,250a., el) is normalised orthogonal.

2.3.2. The transformed variables are mutually .acorrelated and their

expectations nd variances are:

23
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'y
(rnﬁg/k)f for s=1,2,...,

q
E(XOS> " Yos Ts\ mhere Yos { r% for s=q+l1,q+2,¢..,v=1
- (;.5)
E(xls) = als'ﬁs where a, = (f /k z for s =1,2,..., q
(3.6)
E(zos) =C for s =1,2,..., e s E(zls) =0 for s = 1,2,...,e,.
V(xos) = Oi for s = 1,2,..., v=l, V(zos) = Oi for s =l,2,...,e0
V(xls) = Oi for 8 = 1,2400.y q V(zls) = Oi for s = l,2,...,e1 .
e (3.7)
2.3.3. The equations (2.6) are eguivalent to Ta=t,
where
t's = X g /aos for s = 1,2,..., v=1. (3.8)
2.3.4. The equations (2.7) are equivalent to Tg = is(g)
where.
Es(g) _ {?gaosxos 1s lsl/(%a ot i Js for s=1,2,..., q Gio)
Xoo / S for s =q+l,q+2yee.y V=1
2.3.5. The error sum of Squares in the table may be expressed as
%o 2
S8 = _Z Zog = S.» Sty . (3.10)
8=1
2.3.6., The adjusted sum of Squares due 10 blocks defined by (2.8)

mdy be exgressed as

(3.11)
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vhere
4 2
- > .
Sl s le (5.12)
8=1
and
B, 0= X, =8 X /al For 8 =1,2,e..5 q. (3.13)
2.3.7. Let
ICUES A £ %510 o5 (3.14)
B.(¢) =Zw, (8). (3.15)
u
Then
- 3 2 1. .2 2
3, + (xlb - als'fs) =2 51(9) -G /o (3.16)
T og=1 i
and
vl 2 12
S+ B (xyy =oTg) =24 wy (8) - 2 5 (6)
s=1 izu i
. -2 1.2
- 5 - S In > ———
.Z Yiu 22 Ojij +T “gj - {.BiQQ),
i,u J h) i

2.3.8., If the joint distribution
is in addition multivariate normdl,

tistics for the parameters Tg (s

of the contrasts of observations
a minimald set of sufficient sta-

. . 2 2
== -‘.92’ 0oy ‘.f—.(u)j OO and 01 18

providsd by x_ (5 = 1,25000y v=l), 3 (8 = 1,250044 q)y s, and S,.

If 9 is given, ES () (s = 142,04y v=1) and V are complete suffi-

cient, where



~

V4
S

7e) IHU)

(3.18)

M

+
2 2
s=l 1+¢9 aos /als

T - Wnen § is known ES(Q) as defined by (3.9) is the unbiased

minimum variance estimator of 'rs and its variance is given by

QOJ(QG‘ a’ ) fOI‘ S = 1,2’000, q
v (5@} - ;

O /(LOC“ for s = q+l, q+2,¢--, vel .

(3.19)

2.4. @adratic estimators of inter and intra-block variances.
In this section we shall consider quadratic estimators of Oi
2 . . e .

and 0. We notice that the varialles 2. (5 = 1,2,..0, eo), 2y
(s =1, 2,..., el) and  z_ (s =12, «.., q) defined by (3.13)

each have expectation zero and they are mutually uncorrelated. The

variances of Z g and zls's are given by (3.7) and the variance of

s 18 given Ly

8
. 2 2
V(zs) =0, +c O (4.1)
where
¢ =a’faf < ek g )g - (4.2)
s 09/ 1s s s
We shall consider only the quadratic forms of the type
q 2 \
i 1. [a]
VW = UODO + blol + %§1 3:8 ZS (4-5/

where b , b, and a_ (s = 1,2,..., q) are the coefficients to be
0 8
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determined. For any quadratic form in these variables, we can find one
of the above type having the same expected value and having smaller
variance. The expectation of W ois

q g
- 2 < 2
E(W) = (boeo + sza us) o + (blel +Siiascs)01 . (4.4)

The variance of W, uunder the assumption of normality stated earlier,
is

ar2 & 4
V(W) = 2[(vSe+ 2 a%) 4 2 22

q
2 2,2 = .2 2\v.4
a e, + 9 (b e, + Z a ¢ )]6 o(4'5)
s=1 3 = 171 s=] $ s °

1
It is therefore possible to choose by b, and a (s = 1,2,..., q) so
; , . 2
a8 to make W an unbiased estimator of 00 (or of oi) with a variance
2
which is minimum for a given value of 9 = 01 /Gi o This gives for

2
estimating Oo

b
o

2
and for estimating 01

[}

(el + Bl)/A, b, = - BO_;(A (4.6)

by = = Ay /8 by = (e, + 2)/0 . (4.7)
In either case

2 2
a = (bO +9Q blcsl/(l + 9 cs) (4.8)

27
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where
9 - 2 2 -
A= o (149 )7, A =9 & ¢ (1+9c)
0 <] 1 g S
Szl S=l
(4.9)
3 - 23 2
B=2¢0(1+90)2,B=92,c(l+90)-2
0 3 8 1 s s
S=l S::l

and A = (eo + Ao)(el + Bl) = 3B, A

The case where ¢ is large is of special interest. In such a case
. . 2 . - . .
the term involwing ¢  in V(W) would be dominant, and we may like
. - iy . . 2 2
to minimise this term. The optimum unbiased estimates of 00 and O

1

in this sense are given by

v, = S, /s (4.10)
2
1 4 'S - So q 1
1 (v=1) X1 501 Ca eo(b-l) o1 S

respectively. In actunl computation we may make use of the fact that

2
4 2
<« 8 1 2 G
——— g - T % - ——
S;+2 oy Tk B; (%) Tk (4.12)

where Bi(Q) is defined by (3.15) nd &* is the intra-block estimite

of & obtained from (2.6). Thus, to compute v. one may use the

1

formula

__1__ [odar d - - ' /. __'...l 2
v, = (b-l)[ouB + SStr-(z_E‘ ~rg*)ox' - (v-1)(E _1)9,0] (4,13)



where E is the efficiency factor of the design (Kempthorne, 1956 3

Roy, 1958) given ly

gv-lz v=1 g ?
Ttk /[ rk Z:l Tk -a ] (4.14)

Once, the intra-block estimites €% are obtained, this is easily

computed.
The variance of vy is
04 2
V(vl) = (b-1)2 [(v-1)9° + 2(x_j= q)9 + %, = 2a_,
+a+ (aq = a)/e] (4.15)
where o = s%l(l - —f—.s-l" o, (4.16)

We may compare this with the customary =stimater si of oi as

defined by (2.9). The varionce of this estimator is

2 4
2
V(a ) = -—z;—z;—- [(a + a2)9 + 2(oc1 - a2)9
+ 1 = 2al T + (%'- l)%/eo]- (4.17)

As one would naturally expect, V(si) - V(vl) is positive for

somewhat large values of Q. By Qo, we denote the vAlue of @ such
2

that for 9> 9 , V(sl) > V(vl). The values of ¢ = are given in the

table below for all asymmetrical BID designs listed by Fisher and

*



Yates (1957). For each of these designs 9, happens 10 lie between

4 Ofnd 5.

Table 4.1&%alues of Qo for all BIB designs listed by Fisher and Yates

(Other th~n symmetrical designs)

k r L v ‘ 90 k r ‘b v 90
3 6 10 5 4. 3429 5 10 18 9 4.1795
3 5 10 6 443328 5 9 18 10 441875
3 4 12 9 44179 5 & 30 25 44190C
3 6 206 13 4.6270 5 10 82 41 443435
3 9 30 10 4.6801 6 G 12 9 4.0822
3 7 3 15 4.7680 6 9 15 10 441062
3 9 57 19 4.8091 6 9 24 16 4.1584
3 10 170 21 4.8463 6 9 69 46 4.2142
4 7 14 8 4.2520 6 10 85 51 442406
‘4 10 15 6 4.2044 T 10 30 21 4.1304
4 6 15 10 F.2640 7 9 36 28 4.1290
4 8 18 9 4.3016 7 8 56 49 4.1157
4 5 20 16 4.25864 8 9 T2 64 4.0976
4 8 50 25 4.4464 9 10 90 81 4.06T2
4 9 63 28 4.4832
It is easily seen that for éymmetrical BID designs in both v, and si,

identical is this

1
Eb-— is L]

chise.

2.5. Unbiased estimators ef thé varionce rmtio.

A% a4 convenient unbidsed estimator of @

statigtic of the form

2
Hence these two cstimators of ©

are

we may consider a

30



P = +d o (5.1)

where a, bs(s = 1L,2,..., q) and 4 are constants to be suitably
determined . Snce for eo > 2

ae G+ > bs(l + 9 cs)
E(P) = (e = 2) + d, (5.2)
°

%o make P en unbiased estimator of 9, we must have

Sy
Ly
3
e 2 * d =0
0
amd a e + 2 b ey = &, = 2. (5.3)

If eo > 4J the variance of such an unbiased estimator turns out to

be
. ~ 2
7(B) =D_+D; 9+ D, 9 (5.4)
where
2 < bs 2
Do=32bs+zaelgbs-("€;;:"2-)
6 2 b2 c., +2%e. 2 bc 230D
D. = 8 s 1 £ 8
1 (90-2)(e0-4) (90-27
aae (e, +2) + 3% b2 02
D = 171 S s 1
2 (e,=2)(e,-4)
If we like to minimise D2, the coefficient of 92 in (5.4), we have
to take
3(e -2) (e; + 2)a

— (543)

- 3el + (e1 + 2)q’ by = 3¢

3
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It can be scen that R given by (2.10) is not an unbigsed estimitor
of @, but & simple correction cmi be applicd to make it unbia sed.

We thus get

2 2{v - k =
R e (5-6)
O o]

&s an unbiased estimator of Q.
Similzrly, if we start with v, ud v, defined by (4.10) and

(4.11) as estimdtors of Oi and 02

1 Tespectively, we get, as another

unbiased estimator of ¢

v
G- th G- (5-1)

where, as before, B is the efficiency~factor of the design.
Since with positive probability these unbmassed estimators of
9 may turn out to be less than unity, we may use their truncated
foms instead, as indicated by (2.11). Let x be an unbiad sed esti-
mator cf 9 and == its truncated form defined by =x' =1 if x<l
and x' = x otherwise. Then, even though x' is generally a biased
estimator of @, it can be easily seen that its mean square error can
never exceed that for x,
B(x' - 9)° ¢ B(x - 9)°-
2,6, Maxdmum likelihood estimates.

Under the assumption of normality stated in seection 2 it follows
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that the likelihood function L is given

2
Log, L = const - -21- [(b-l)lage o, + b(k-l)IOge oi

. 2 5 (x a T)2 S
2 & 1s "M 's/ TP

01 g=1

R Vz'-:1<x -wT)2+S}] (6.1
2 os os S o *
Oo s=1

where S and 8, are defined by (3.10) and (3.12) respectively.
The likelihood equations obtained Ly equating to zero the partial

derivatives of LOge L with respect to the parameters, turn out to be

Tg ™ %S(Q) for 8 = 1,244.0y v=1 (6.2)
2 vl 2
b(k-l)oo =5+ & (xos -a Ts) (6.3)
8=1
(=1} = 8. + 2 (x, -a. Ty ) (6.4)
1 175 5 ls S * :

The diagonal elements of the information mdtrix are

- 2 ‘ -2 2 =2 _ .
I - o5 %0t M1s °1 for s = 1,25..0y @
T, T (6.5)
} ] \ 2 =2
s s A\x\ aOSOO for S=q+1’q+2,0lo, V-_l
2 2 1 _4
I (64 0, ) =3 blk-1)o, (6.6)

2 2., 1 -4
I (01’ ol ) = 2 (b-l)cl (6‘7)
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and a1l non-dicgonal elements vanish.
We thus se€ that the maximum likeliihood estimate of 'r is

A
Tg = (9) where 9 is the midimum likelihood estimate of 9. To

™~
compute Q@ we note that it can be expressed as

q "o
pk=1)[s; + 3 (x; =a, TL)® ]
~ 1 S=1 1s 1s ‘, . (6.8)
9 =
V"l ~ 2
(b=D)[s, + 2 (x, -a T) ]
s=]1

We therefore use an iterative procedure. Starting with some suitable
e .
approximation for TS »We obtdin a first approximation for Q using
~ e
(6.8). This value of @ is used o obtain improved values of - Tg

which, in turn, when used in (6 8) provide & second better approximation

for 9. This iterative procedure is contimied till one gets stable

s

wlues for Ty and .

In actual computation, we do not work with the canonical varia-
bles, but make use of the result 2.3.7 in section 3. The iteration
formula then is |

. 2
o)) [ 23] o)y . L

(@)

(b-l)[ 2 yi -2 2: G l').) 4_', + r Z [ng)]z- 1%-2 Bi(e(n))]
' ! J i

i,u
(6.9)

yoouy G(n)) is the n-th approximation for

where g(n) = (O{n), Oén)

8, obtained Ly solving the equations



39

1 1
e(C + ;zﬁ:iy Cl) = g'+.:;G;:I) Q- (6.10)

As o firet approximdtion for © we may take its intra-block estimate.
Iy 3 A - : L3 - -
The asymptotic varitnce of ¢ obtained from the information

matrix is ¢
wf N . 2 ‘2
v(ge) = SZE%ET 9 . (6.11)

The right side of (6.11) serves as a lower bound for the variance of
any unbia ed estimator of ¢.
2.7, Numerical example.
The following data reproduced from Davies (196C) relates 4o an
experiment on four tyres. The tyres were built up each in three parts
using three of the treatments, one for each part.

Table T.l. Wear values of tyres.

Treatments . Ty;es (b100§s) 4 Total
A 238 196 254 - 688

B 238 213 - 312 163

v 279 - 334 421 1034

D - 08 367 412 1087
Total 755 717 955 1145 3572

The parameters of this BIB design are given by DbL=v=4, r=k=3, A = 2,
For the intra-block equations (2.6) in @ = (eA, 655 8s OD)

a solution is given by #* = (~45.375, -41.000, 30.875, 55.500)
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Analysis of variance is given in Table T.2.

Table Te.2. /Malysis of variance.

Source d.f. SeSe SeSe d.fT. source
Blocks 3 S8 = 39122.67 S8, = 21037.75 3  Blocks

(wnad justed) (sdjusted)
Treatments 3 SSt = 20729.08 SS§r= 38814.00 3 Treatments
(adjusted) ¥ (unnd justed)
Error e5=5 88y = 1750.92 S8 = 1750.92 §  Error

Total 11 SST = 61602.67 SST = 61602.67 11 Total

Customary estimates of oi and oi as defined bty (2.9) are

found to be
S(‘
2 “E
s, =3 = 350.187
(<]
and : 2
o K85, - (v-k)so
8 1) ~ = 7845.383

1° v(r -

respectively. This gives

2
s

R = —3 = 22.404
SO

as the value of the customary estinator of ¥.

Computational details of estimation of ¢, the ratio of variances
and of the treatment contrasts by the method of maximum likelihood are
given in Table 7.3.

The purpose here is only to illustrate the nature of computatsiens.

The number of blocks appesars to be too small to recommend use of inter-

3

block information.



pable T.3. Camputational lay-out for estimtrtion hy the method 37
of moaximam likelihood.

e O B B O B O B Y O SR O PR
1 - 45.375 - 4L.CCO 30.875  55.500 810.50C 747.875 914,000 1099.625  36.046
2 - 46,089 - 41.073  3L.377T  55.765 810.785 T48.317 913.927 1098.911  35.751
3 - 46.095 - 41.073 31.381 55.787 81C.787 748.381 913,927 1098.905 35.748
4 - 46.095 - 41.073 31381  55.167 (we have obtained etable values & amd 3.)

(9* for n =1

-

o)

39 + g1 (59) “
148 .;.(n-l) for n 2 [Ref.(6.10)]

where 3%‘—‘ ("3659 '328’ 247’ 444)T and 3@].: (?2521 - 62) 1769 138)

o ()

3™ -3 - )
1 1 Jiua J

e bV

2 m
J 2
bk-1) [ 1%% B?. (g(n)) - -I-JG-IE ]

o)

W

" & - (a ' n
(b-l)[:i,g,u ¥§. =2 ? G:E ) Tj + r? [9§ )]2 ‘%?Bi (E( ))]

T The value of Q was computed earlier to obtain &%, the solutions of the intra-block equations
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Chapter BII

UNBIASEDNESS AND VARIANCE OF COMBINED ESTIMATORS
3¢1l. Introduction and summory,

When in the weighted least squares equations (2.2.7) for estima-
tion one substitutes for the variance-ratio Q@ an estimate for it,
one has to examine afresh whether all 'good properties' of the least
squares method still hold or not. Conceivably these properties would
depend on the kind of estimator of ¢ used., In this chapter, we
shall exdmine this point in some detail,

First, one would like to examine if the combined estimator of a
treatment contrast is unbiased. This problem seems to have been first
examined by Graybill and Weeks (1959) for special designs. They showed
that for BIB‘designs Yates! estimator of Q in its untruncated form
gives rise to unbiased combined estimators of treatment contrasts,
Inter, Groybill and Seshadri (1960) proved the same result for Yates!
estimator in the usual truncated form, agein for BIB designs. In this
chapter, we obtain in section 2, a very strong generalisation of this
result applicable to all incomplete block designs and for a whole class
of estimators of Q. It is shown that for any incomplete block design,
if the estimator of @ is the ratio of quadratic forms of a special
type, the corresponding combined estimators of treatment contrasts are

unbiaged. It is also shown that the customary estimator of ¢ (as

(2.2.7) refers to equation (2.7) of chapter twe. Similar netation
will be adopted throughout the thesis,
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given by Yates (1939) and Rao (1947)) belongs to the above class and
hence gives rise to unbiased combined estimators.

Mother point worth examination is whether the combined estimator
of a treatment contrast has variance smaller than that of the intra~
block estimator. In section 3, we derive an expression for the vari-
ance of the combined estimator of a treatment contrast based on any
estimator of ¢ belonging to the class considered in section 2.
Though in general, this expression is not easy to evaluate in terms of
well-known functions, numerical quadrature methods can be applied for
evaludtion. A comparison with the variance of the intra-block estima-
tor is made in section 4 and it is shown that the combined estimator

~ design
of any contrast in any incomplete block/has variance smaller than that
of the intra-block estimator if ¢ ¢ 2.

It appears however that for large ¢ the combined estimator may
bave o larger variance for some designs. This raises the problem of
‘8earching for a combined estimator with vairiance uniformly smaller than
that of the intra-block estimator. Graybill and Deal (1955) have
oblained such combined estimators for BIB designs satisfying (1)
b=v3>»1 or (2) b=-va=09, . 2 18. The estimitor of ¢ wused
by them belongs to the clags comsidered in section 2 but is different
from the customary one. A mueh stronger result in this direction is

obtained here. Ilethods presented in section % are applicable to -
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any incomplete block design for which the association matrix has a
non-zero latent root of multiplicity p > 2. Using an estimitor of ¢
constructed as in section 5, a neat expression is obtained for the
variance of the combinéd egtimator of a treatment contrast if it
belongs to & subspace asgsociated with the multiple latent root of the
association matrix. It is shown that this is uniformly smaller than
the variance of the corresponding intra-block estimator provided that
(p - 4)(eO - 2) > 8, It is also shown that when p > 2 but (p - 4)
(e0 - 2) ¢ 8, for large values of @ the variance of the combined
estimator exceeds that of the intra-block estimdtor.

For almost all well~known designs, the association matrix has
multiple intent roots. Applications of the methods of section 5 to

such designs are dealt with in the next chapter.

3.2. Unbiased combined estimntoré.

We saw in the previous chapter (result 2.3.8) that when Q is
given, the unbiased minimum variance estimators of treatment effects
are obtained from the equations 'Ts = 58(9), s = 1,24..., v=1, where
the right-hand side is given by (2.3.9). In this section we shall
show that when ¢ is replaced by an estimite Q¥ of a certain type,
the combined estimators are unbiased for their respective parameter

values. For typographical simplicity, we shall write
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- - Te LT (on
t, = ts(Q), t* ts(g*).
(e* - 9) =,
Let , Ve T T oRe 0 8 1,25 000y Qo (2.1)
5]

It is easy to verify that

o
- - g v _
t; = ts + a 1+ Cc') W, . (2.2)

Since Es is unbiased for TS y unbiasedness of %; is equivalent
to v having expectation identically zeroc. Let P be any statis-
tic of the form(2.5.1)nd let ¢* be defined as

P if Py 1

9x = (2.3)

1 otherwise.
It can be easily seen that Q9% is an even function of CR
(8 = 1,2,44., eo), Z1q (s = 1,2,..., el} and 2 (s = 1,2,..., q) and
consequently, w is an odd function of these variables. Since the
z's are mutually independent random variables each having a normal dis-
tribution with mean zero it folilows that E(ws) = 0 and consequently,
E(Eg) =Tg . This is only an extension of Graybill and Weeks (1959)
argument for BIB devigns to the general case of incomplete block design.
The class of estimators of 9 defined by (2.3) appears to be very wide .
It seems to include all truncated estimators of Q considered in the

literature us olsc all truncated estimators of 9 considered in the

previous chapter. In particular, it includes the customary estimator
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R' defined by (2.2,11), .

3.3. Variance of combined estimators.

When an estimator of 9 of the forn (2.3) is used, we have
shown thrt E(WS) = 0. It can be eisily checked that in this case,
2y . o ; . . . . .
E(Ws) is finite and hence ws 18 a zero functione Also, when ¢ is
given, ts is the unbiased minimum varionce estimator of 'Ts e By

Stein's theorem (1950) %s md W are uncorrelated and we have

2
V() - v(E) S ). (3.1)
-8 8 aoi(l +9c )t @

In fact, this holds for alj eéstimators Q#* satisfying the condi-
tions

E(WS) = O,. V(Ws) <o, (3.2)

The second term in (3.1) By be called the additional variance
due to the sampling fluctuation in y*.

A1 argument similar to the one employed in the previous section
gives

C

if

E(wS ws')
for s f 8t =1, 2,..., q. Since ES and €s' are independent, it

follows that Eg and E;, are uncorrelated for s # st = 1L,2,...,v=1.
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: q
Now, any treatment contrast T can be expressed as T = 3 % Ts
=1

where ') (s = 1,2,64., v-l) are some coustants. The minimum variance
I

L]
unbiased estimator of T  when 9 1is known is t =2 “ ts. When ¢

s=1 q
is not known, for a combined estimator of T y We take t* = 2 2%:
s=l ®

by substituting 2 suitable estimator 9* for ¢. If % satisfies

the conditions of (3.2), %* is an unbiased estimator of T and its

variance is given by

5 a4
q  c 25\7(\48)

v(E*) = V(E) +

. (3.3
s=1 ais (249 08)2

34, Compariscn of variances of the intra-block estimator and the

combined estimator.

It is easy to check that the variance of t, defined in (243.8)

oan be expressed in the fornm

2 2
- CS — ZS
V(t,) = V(%) + 5 —, E(—%)- (4,1)
a’ (1+9c) e,
This exceeds V(E*S") given by (3.1) if
2
[ee (-9 )
E =3 - 7 »>o0. (4.2)
Leg  (1+9xc) )

It is readily seen that the term in the parenthesis is positive if

. 1
9<2‘9*+To (4.3)
s
Since 9* defined by (2.3) is truncated from above at unity (4.2) is
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satisfied provided that

1
9 ¢2 + s

8

In view of (3.3), for an arbitrary treatment contrast T , a similar
argument leads to the following result.

For any treatment contrast 7T , tk;e combined estimator %(9*)
will ha+we smallier variance than the. intra-block estimator t provided

that @ ¢2 and @* 1is of the fom (2.3).

3¢5. Construction of combined estimators with uniformly
smaller voriance.

The variance of a oombined estimator of Tq is given by (3.1).
In ‘th.is section we shall construct a suitable estimitor ¢* and eva-
luate this variance in terms of incomplete Beta functions.

Supposé the association matrix MV' hos a latent root @ of
maltiplicity p (p > 2). Without loss of generality we may say that
the positive latent roots of NN' are g, g1 Poreeey VD’ ﬂm—l""’¢q
where, P, ~¢ for s ¢p and f # P for s > p. Denote the common
value of‘ 2017 Bppree s Som by 50, of 8y1y Bypyensy %0 by 51 and

of 01', 02, se oy Cp Yy 5. Also let

P ’ .
Z ’2 - Zo (5.1)
8= &

We tdce 9* as defined in (2.3) where, to obtain P we shall

put
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a = 0
s
bss--_ fOI‘ S=l, 2, co ey p
P (5.2)
0 for s = p+tly..., g
and d = - —%—-
C
in the defining equation (2.5.1). This gives
e Z :
> .1 ir 5 ¢xz
5.3
1 otherwise
where
K=e, /p(l+ ¢ ) (5.4)
and ¢ is the common value of C1s Chaveny o
It can be easily seen that this gives us
z _
> (1 -p(1+2c9)s, /e, 2) if S, ¢Kz
Wy o= ) (5.5)
-Z'j (1 -p(1+ 9 K/eo) otherwise

r°r 8 = l’ 2,0:-, pn

Bvidently, Wys W5y e.., W aTe identically distributed and hence

P

2 2 D
E(w?') = B(W)) = 000y = B(w) = E(l Z w2). Using (5.5) one gets
1 2 e P S
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2
- - \2 S
1 2(1+eQ) o . p(lecQ) O . 4
sy Z . ot TS o Z 1foo_(_'KZ
re e ¢ e ¢
. o o
1 S W = (5.6)
P gy 8
- -~ 2
. (]
1 Z - 2-L"ﬁ—g-)K Z + I;QJ:C_‘_?_)__ K2 Z otherwise.
-2 -2 2 =2
rc e e ¢
o]
We shall now use the following lemmn.
Lemma 3.5.1.
Q
Iet S and Z be two independent random variables, —35 being
Z %
a Xz with e d.f. and —5 Dbeing a )(2 with e, d.f.
ez OZ
et m ¢ <+ 1 be a positive number and let K > 0 be a given constant,
Consider a function F(S, Z, m, K ) defined by
& gt if S¢K7
F(S, 2, m, K) = (5.7)
K"z otherwise .
The expectation of F(S, Z, m, K) is given by
2 ez s
E ‘{_F(S, Z, m, K)}> = Oz Knez I:c (—2——+ 1, “'2—-)
> e_ e,
(e, + e,)0, . B(—= + m, < - m+l) ( e e, N
+ (02 /02>m e e Tlex V2 Ty T T om#
4 8 B(Ei ’ 2 )
LI t(5.8)
2
OZ
where x = - 5 B(p, q) denstes the Beta function with arguments
6.+ K OZ

p and q and I (p» Q) denctes the corresponding incomplete Beta

function.
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Proof :

The joint distribution of S and Z is given vy

2)-1 2)-1
/ z(ez/) a

ne oxp [ =(3/202) - (z/263)} s 542

/2 e_ /2
where —-‘],t= F (eS/Z) I—‘(ez /2)(2 oz)eS/ (2 Oi) A

Consider a transformation from S, Z to U, V given by

_S_ - S =+ 4“2 S
20 20
s z
The Jacobian is giwven by
o(s, 2 U Lo \=-2
- 7( + —) .
o(u, V) > & o 2
8 Z

Hence the joint distribution of U and V is given by

( )/2-1 (e, /2)=1 a_+e_)/2
-V v €g*e, / U es/ ’ U 1 )( gt s)/ aus

Ae © av \ +
2 02 2 02
8 2
It is easily seen that
VUm(U2+ 12)"1 if U ¢K
7(S, 2, m, K) = ¢0, =9,
! 1 -1
i v Km( g 5+ ) otherwise,
& 20, 2 u;

Hence we have
(o =V (e +e_ )/2 7
E{F(s,z,m,K)J‘ N A

. o QT,
\7=0 |

. 2 -1 2)-1

fK U(GS/ i + /oo K U(es/ ) avu

= , : (e_+e_+2)/2" (e +e +2)/2
\‘U 0 (__1_7.5.4___1.5_) s = U =K (.‘.1_2.4,_.}.5) z

20 20 . 20 20
] 2 s 2
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eS + ez + 2
The integral in V is F( 5 )e Using the substitution
2 .
OS
f = and integrating we.r.t f the result is readily
0. +06_U
S Z
obtained.,

2 2 -
In the lemna, we set § = SO, zZ =12, O: = oo’ OZ =0 (l+c9),

& = €, and e = p. Using (546) and (5.7) we get
1 2 o2 1 2(1 + ¢
S W= ~=5 F(S,s 2, O, K) = *_2 F(S,s Z, 1, K)
8=1 pc e ¢
o
l+c a
+ 2 - 2 F(oo, Z, 2, K)‘ LR oo o (509)

e ¢C

M application of lemmt 3.5.1, gives us

- 2
P (1+ c9) o e e +2 D
l 2y ) p+2 )
E( s=l WS) = 6 2 1+ X(X-2)IX( 2 ? 2 )- 2I1-X ( 2 b 2)
p(eo+ 2) e +4

(L D2
¥ eO p-2) II’X \ 2 ' z ) } 'vo(s.lO)

where X - Luf-.g' and

l+ ¢
P

p+eoX

The following expression for variance follows from (3.1) and (5.10) s

2
0 ( e e +2
] Rin ot N p
VE (%) = 5—2—~ J 14+ 30 + K(x=2)1 (e o D21, (22—
214 39y | LA lex V2 23

ple +;‘) e t4 p=2 )

m L. (-—5-, - ? eeo{5.11)

for s = 1,2,..., p.
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We note that as @ =) o0, X =5 0 and x = C. It is easy to prove

that

lim v(%s(g*)) = oi /5\2 for s =1, 240ue, p. (5.12)
x=> 0

It can also be shown that for s = 1, 2,..., P,

- 2 2
av(t, (9*%)) o ( p(1-x) p+2 eo)
= - I
- - 2 ’
dx a2(1+ c)(l-x)2 e x= X 2 2
o o
2 e, eo+2 o) e _+2 e +4 p-2

+

I I (S ——-)j e (5.13)

D 1-x(2’§)-p2

We note that this is always negative if 2 go(p-Z) > p(eo + 2) or
equivalently if (p-4)(eo - 2) > 8. On the other hand if (p—4)(e0-2)< 8,
the derivative is positive for sufticiently small values of X. An
examination of (5.12) and (5.13) leads to the following.

(1) 1r (p-4)(e0-2) 28y for s=1,2,..., p, v('t's(g*)) <V (ts)
uniformly in Q. This is a consequa'xce"‘ of the fact that v('t's(g*))
increases with 9 and reaches the limit V(ts) = Oi /5(2). as Q= oo,

(2) If p>y>2 and (p-4)(e0-2) ¢ 8, for s=1,2,..., p, v(%s(g*)) 5
V(ts) when @ is sufficiently largej i.2, the combined estimator
considered does not have uniformly smaller variance as compared with
the intra-block estimator. This follows from the fact that for

incyeases.
sufficiently large values of 9, V(tS(Q*)) decreases as 9 [ Thus the

limit as 9 =) o (which coincides with the variance of the intra-block

A
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estimator) is reached from above, We have already seen in the previous
gection that for values of Q9 not exceeding 2, the combined estimdtor

has smaller varimce.
In view of (3.3), it is clear that the above analysis holds for
' P

any treatment contrast T which is of the form T = 2 ls’rswhene
s=1

"I.Szre gome constants. It is clear that such treatment

I PYPRE
contrasts form a vector space, call it V, with the following proper-
tiess

i) rank V= p,

ii) wvarionce of the intra-block estimdtor of any normalised
contrast in V is the same,

iii) for any pair of mutually orthogonal treatment contrasts o:f'
which 2t least one belongs to V, their intra-block estima-
tors are uncorrelated.

We thus have the following theorem:

Theorem 3+De1.

Consider an incomplete block design for which the dssoeiation matrix
has a nen-zero latent root (other thir Trk) of multiplicity p,

let 1 be o latent vector associated with this root. TLet 9% be the

estimator of Q@ constructed as in (5.3) based on this latent root.

[y

let T = lg', t 1its intra-block estimator, and "E(Q*) the combined

estimator using 9*. Then



V(% (%)) ¢ V(t) for all values of 9 (5.14)

provided that

(p-4) (e, -2) 28. (5.15)

Further, if

p >2 ad (p-4) (e, -2) ¢ 8 (5.16)

V(o (%)) > V() for sufficiently large
value of 9. (5-17)



Chapter IV

U IFORMLY BETTER COMBINED ESTIMATORS
FOR STANDARD DESIGNS

401‘ Slmmar:j-o

A general procedure for constructing & combined estimator of a
treatment contrast with variance uniformly smaller than that of the
intra-block estimator was developed in Chapter 3. In this chapter
we shall discuss applications of this to some well-known designs.

Throughout this chaptér, a combined estimator of a treatment
contrast will be said to be 'uniformly better' if its variance is
smalley than that of the intra-block estimator for all values of ¢.
Further, any statement relating to cémbined estimators will apply only
to those treatment contrasts on which inter-block infommation is
available. The symbol e, will always indicate the number of degrees
of freedom for intra-block error.

A class of designs for which the association matrix has only one
non-zero latent root (other than rk) is considered in Sectiom 2. The
multiplicity of this root is denoted by gq. TFor a design in this class
satisfying (q-4)(e 0'2) > 8, uniformly better combined estimator is
constructed for any treatment contrast. A computational procedure for
obtaining 9% (an estimator of ‘the variance-ratio 9), to be used in
building up the combined etimdtors is suggested for a design beloﬁging

to this class.

22



The BIB and the linked bleck (LB) designs belong to this class
and are dealt with in section 3. Uniformly better combined estimators
are obtained for all treatment coitrasts in a BIB design with more
than five treatmeﬁts and for all treatment cont:g'asts in & LB design
with more than five blocks. It is shown that for a IB design the
estimator of Q@ wused here coincides with the customary one., It is
shown that for LB design with 4 or 5 blocks if ¢ is large, the variance
of the traditional combined estimator is actually larger than that of
the intra-block estimator.

Applications to two-associate PBRIB designs are given in section 4
A necessary and sufficient candition for the @ssociation matrix to have
exdctly one non-zero root is obtained in terms of the parameters of
this type of design. A simple expression is obtained for this latent
root and also for its multiplicity, It is shown that uniformly better
combined estimator can be constructed for any treatment contrast in
the following special cases: (1) Singular group divisible (GD) designs
wiﬂu(ﬁ-ﬁ)(eo-Z) 2 8 and semi-regular GD designs with (mn-m-4)
(eo-z)‘z 8 where m denotes the number of groups and n the number
of treatments in a group in a GD design (2). Simple lattice designs
with sixteen treatments or more (3) Yriple lattice designs with nine
treatments or more.

Applications to designs for which the association matrix has

two or more distinct non=-zero latent roots are given in section 5,

A

23



In & inter and intra-group balan ced dégign, uniformly better cembined
estimitor is obtained for any intra-group treatment contrgst provided
that p, the number of treatments in that group satisfies

(p-S)(eo-Z) 2 8. In a regular GD design with "(mn-m-4)(eo-2) > 8,
wiformly better combined estimators are obtained for intra-group

treatment contrasts.

4.2, Construction of uniformly better combined estimator for any

treatment contrast in a certain class of designs.

In what follows, we shall denote ty Dl’ the class of incomplete
block designs for which the association matrix has only one none-zero
latent root (other than rk). We shall use theorem 3.5.1 +to construct
& uniformly better combined estimator for any treatment contrast for
ay incomplete block design belonging to the class Dl . |

For any design belonging to the class Dl’ we shall denote by d,
fhe non-zero latent root of NN! (other than rk). Thus the multi-
Plicity of f is given by q = (rank IN')-1. As before, let T1,
1'2, e o o 9 Tq denote the canonical contrasts corresponding to (¢,
If (q-4) (e,-2) 2 8, we can apply theorem 3.5.1 to obtain a uniformly

better combined estimator for a tretitment contrast T ef the form T =

q
T . - ) - .
s§1 ls g°*/\8 is evident from (2.3.9) for 1q+l’ Tq+2, cees TV-.].’ the

(v-1=q) canonical contrasts corresponding to the zero root of WN', no

inter-block information is available. Hence, %s (9*)_5 t, for

24
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8= q+l, gq+2,..., v=1ls How any tredtment contrast T is a limear com-
binetion of Ty, 72’ ceey "Pv-l and for ¢* defined by (3.5.3),
;S(Q*) anad %s,(g*) are uncorrelated for s # s's It follows from
theorem 3.5.1 that for any treatment contrast T which admits of
inter-block information, V(¥(9*)) ¢ V(t) for all values of Q.

Po compute 9* defined by (3.5.3), we note that with the help
of equations (2.3.11) and (2.4.12), 7 = %& zi may be expressed in the

s
form

z=o(l+

Q

e 2
- omm 3
) (- aE) - @T-re)en ] (2.1)

-

- rk .
where as before c¢ = F; - 1. Thus, 9% may be written down as

' $ ( z Y., .2 Tk
{rk-ﬁ | — - 1 Y TR
Q* = { L8, j so
- (2.2)
1 otherwise :

where si denotes the intra-block error mean square.

For a design in the class D, @ and q may be evaluated in
the following manner. Since the association matrix is symmetric, the
sum of the latent roots is equal to the sum of the diagonal elements,
and the sum of squares of the latent roots is equal to fhe sum of
sguares of all the elements. Since only non-zero latent roots are
rk and @ with multiplicities 1 and q respectively, we have

af = r(v-k) . (2.3)
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| L2 2.2 ’
and q 92 .vils & }\,j.j' -r k (2.4)
i {3
where A. denotes the mumber of blocks containing both the treat-

33!
ments j and J'.

We tms have the following theorem.

Theorem 4.2.1.

Consider an incomplete block design belonging to the class Dl'

When 9* as given by (2.2) is used, for aBy treatment contrast i

V(E(9%)) ¢ V(t) for all values of g (2.5)
provided that
(@ -4)(e, -2) 28 (2.6)
where q is obtained from equations (2.3) and (2.4). Further, if
¢>2 ond (q-‘4)(eo—2) ¢ 8, (2.5) does not hold for all values of 9.
Applications of this theorem to some well-known designs are

given in the next two sections.

4.3, Applications to BIB desigus and to LB designs.

It is implied in Bose (1949 ) that for a BIB design the associa-
tion matrix is of full rank and has only one latent root other tham rlk.
Thus any BIB design belongs to the class Dl' Since q = v=l, it
follows that inter-block informatiin is available for all tredtment
contrasts and hence when (2.6) holdé we get uniformly better combined

estimators for all treatment contrasts.
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For all BIB designs with more than 5 treatments, the condition
(2.6) holds. It may be noted that the estimator of @ given by (2.2)
differs from the customary one proposed by Yates (1940).

Linked hlock{IB) designs were obtained by Youden (1951) by
dualising the BIB designs. It is shown by Roy and Laha (1956) that
for a LB design the association motrix has 4 non-zero latent root
(other than rk) of multiplicity (b-1). Since ramnk NN' ¢ b, all other
latent roots must be zero. Thus a LB design belongs to the class Dl'

Condition (2.6), which in this case amounts to (b-5)(e042) > 8,
holds for all LB designs with b > 6.

It is readily checked that R, the untruncated form of the

customary estimator cou be expressed as

Q
eok i 8, + sfl ¢é zg /rk} -
= = (3.1)

vir - 1) S, T v(r-1) ¢
r(v-k)

A S = - ) o = b '!_ = = Laee = = .
For a LB design e beleq = 0O and ¢1 ¢é ﬁq b=1

R =

Consequently ¢ = (vk - ¢)/¢ = !$§§ll- Substituting these in (3.1) it
is readily seen that the customary e g¢imator of ¢ coincides with the
one given by (2.2). It is also easily seen that linked blecks are the
only designs for which these two estimdtors coincide.,

It follows from thecrem 4.2.1 that for a LB design the tradi-

tional combined estimators are uniformly better than the intra-bleck

estimitors if b » 6, but not so if b =4 or 5.
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4.4. Applications to PBIB designs with two .associate classes.

In this section we shall search for PBIB designs with two asso-
ciate classes belonging to the class Dl' We shall adopt the standard
definition and notation for these designs as given in Bose and
Connor (1952)-

Comor and Clatworthy (1954) have showa that the association -
matrix of a PBIB design with two associate classes has exactly two
distinet latent roots other than rk. From the values of these ronts
given there it can be deduced that o necessary and sufficient condis
tion for one of the roots to be zero (i.e. for the design to belong
to the class Dl) is:

(T-}\l)(r'}‘?)
N R p12 (r-A;) - rlz(x -A)- (4.1)

Evidently if b ¢ v, rank Ny! < v. Consequently zero is a

latent root.

For any two-associate PBIB design in Dy» @ and q obtained from

(2.3) and (2.4) turn out to be

¢ = { v(r2+ n1A§ + n2A2) - r4° } / r(v-k),

5 2. . (4.2)
q= 1 (vek) / {‘v(r +n A + n2A2) N }

Two-associate PBIB designs have heen classified by Bose,

Clatworthy and Shrikhande (1954) as (1) Group Divisible : (a) Singular
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(b) Semi-regular, (c¢) Regular, (2) Triangular, (3) Latin Square Dype ,
(4) Simple and (5) Cyclic. l

(1) For a Group Divisible (GD) design Bose and Comor (1952)
have shown that the two distinet latent roots of NH!' are (r-Al) and
(rk-vAZ) with multiplicities m(n-1) and m=-1 respectively. Thus a

GD design belongs to the class D. if either r-xl = 0 i.e.y if the

1
design is singular or if rk-v)\2 =0 i.e., if the désign is semi-
regular. For a regular GD design r > Al and rk > vAz and heﬁce no
regular GD belongs to Dl' In a singular GD design wniformly better
combined estimators are obtained if (m-S)(eo—Z) > 8. A corresponding
condition in the case of a semi-regular GD is (m(n-l)-—4)(eo-2) > 8.
For the next two types,use of (4.1) gives the following conditions on
the parameters which ensure that they belong to the class Dl' In
edch case to apply theorem 4.2.1, condition (2.6) may be verified
with the help of q given by equations (4.2).

(2) In a Triangular Design defined by Bose and Shimamoto (1952)
V= % n(n-1), n, = 2(n=2), n, = %(n-2)(n-5), p%z = (n-2). A necessary
and sufficient condition for a Triangular Design to belong to the class
Dy is that r = 2A-A, or (n-}}Az - (n-4)A1.

(3) For a Iatin Sguare Type design with i constraints v = n%
n, = i(n-1), n, = (n=1) (n=i+1) ana p%l = i(i-3) + n. A Iatin Square
Type Design belongs to the class D1 if and only if r = (i~n)(A1—A2)+A2

or i(Al - AZ) + AZ' In particular, the simple lattice is o two-
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associate PBIB design of the Latin Square Type with i = 2. Since
Ay =1 and A, = O the above condition is satisfied. Condition (2.0)
holds for =n > 3. 3Similarly the triple lattice is a two-associate
PBIB design of the Latin Square Type with 1 = 3. Since }‘l = 1,

A Condition (2.6) in

5 = 0 the design 2gain belongs to the class D

10

this case is sa tisfied for =n » 2.
4.5. Some other appliontions.

In this section we shall consider two applications of theorem
3.5.1 where uniformly bhetter combined estimators will be constructed
only for treatment contrasts of a certain type.

(A) Inter and intra group balanced (I IGB) designs: I IGBdesigns
were first introduced by lair and Rao (1942). An IIGB design with
equal number of replicatidns for all treatments may be defined as
follows. In an incomplete block desigm let there be m groups of
treatments, there being vy treatments in the ith group. Let each
pair of treatments in the ith group occur in }\ii blocks and let
eich pair of treatments one of which belongs to the ith group and the
other to the jth group occur in }\ij blociks. Such a design is

crlled an IIGB design.
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The association matrix WN' is given by

(r=A, )T +A,. B A, B A, B 1
(- 11 Vl 11 vlvl 12 Vl'r2 oo eee 1m Vl vm !
xl 1
j )
V — I s 0 »
! Ao “vzvl (x AZZ)Ivn+A22h*Zv2 AZmEv v ‘
Niit= | a 2'm i A
‘\ . .o P po0.1)
| |
AE
, ™ -
| Im m'1 A2m“v v .o ( Amm)lv +}\m)nEv v
i m2 m mm
o

It is easily seen that the vector of co-efficients g correspon-
ding to any treatment contrast T = { ©' involving treatments from
the ith group only is a latent vector of Ni!' corresponding to o
latent root of multiplicity (vi-l). By theorem 3.5.1, we can cons-
truct uniformly better combined estimdtor for any intra-group contrast.
involving treatments from the ith group only provided that

those
(vi-S)(eo—a) > 8 (we comsider only/groups for which r - Ayi #0).
An estimator of @ as in (5.7 3may be computed as follows, Let
91, 92..., Gvi dénote the t;eﬁtmant ef fect parameters for the treat-
ments in the ith group. Let further Gi,..., G;. denote the solutions
(corresponding to these treatments) of the intra-block equdtions and
let Oi, Oé,..., QG. the corresyponding part of the solutions of the
inter-%lock normal equations namely @ t:1= Q- We shall put

dj = 9; - 93. To obtain 97, we substitute in (3,5.3) :



(rk = 7 + ?\i_d Vi (Zd.)Z 1
TR R R
J=1 i
_ Tk -1 + Aii
and ¢ = : . (5.2)
ii

(B) Regular GD designe s 3ose and Connor have shown that o GD
design is a special case of an I1IGB design where, Aii = Al, v, =n
and Aij = A2 for alli, j = 1,2,..., m (i £ j)s The association
matrix of a4 GD design is obtained by substituting these in the right

hand side of (5.1).

It is easy to check that the vector of co-efficients | corres-

{ e

ponding to any treatment contrast T = 6' involving treatments
all from the sdme group is a latent vector of NN! coxr responding to the
root (r - Al). Thus the vector space of treatment contrasts associa-
ted with (r = Al) consists of all intra-group contrasts and this has
rank m(n-1), In this section we consider only regular GD designs so
that r - A, # 0.

I (m(n-1) - 4)(eO - 2) > 8, by theorem 3.5.1, we can construct

uniformly better combined estimator for any intra-group treatment

contrasgt,
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T

The following computatiomal procedure may be adopted to obtain
the estimate of ¥ as defined by (3.5.3). Let gij denote the
tredtment effect parameter for the Jtbh treatment in the ith group
Let further G’i*j and Gij (i=1,2y0e., m3y j= 1,2,..., n) dencte
the respective solutions of the intra-block wnd the inter-block
normdl equations. Put dij = G*i*j - Qij. The estimate 9* is obtained

by cubstituting in (3-5.3)

P =m(n - 1)

L 2
rk = r + A L(,?_. dij)
R T O A M S
< i3 ij n
- rk-r+?\1
and c="-"—__—)\—---'—.
e

When (m - 5)(e0 - 4) 8, a similar procedure can be adopted to obtain

uniformly bet.er combined esiimators of inter-group contrasts,
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Chapter V

J.1. Introduction ané summary.

Yates (1936 ) introduced the concept of efficiency of an incom~
plete block design. His measure of efficiency is based on the average
variance of intra-block estimators of paired treatment comparisons.

The following aspects of this efficiency measure are considered
in this chapter. for a given design what ;s the improvement in effi-
ciency when intér-block information is also utilised? Iu ordering
designs from a given class (withk the sume number of treatments, the sage
block size etc.) how do;s this measure of effieiency compare with
other optimality criteria given byiwald (1943)? Can one obtain other.
measgures of efficiency which are simpler to compute, but result in
similar orderings of & set of designs?

The efficiency factor of an incomplete block design, based on
the variances of combined inter and intra-block estimators is defined
in section 2. Computational procedure for evaluating this when the
variance ratio ¢ is estimated as in (4.2.2) is illustrated for a BIB
design. An upper bound to this efficiency factor is obtained. Values
of the efficiency factor with recovery are presented for some values of

9 for a few BIB designs and for the simple lattice design with sixteen

treatments.
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Kempthorne (1956) has shown that the efficiency measure of Vatos
is based on the harmonic mein of the positive latent roots of C, the
matrix of co-efficients in the intra-block equations., Two other crite-
ria by Waid (1943) are also given in terms of the latent roots of the
matrix C, one being the minimum root and the other the geometric mean
of the latent roouts. ‘hus, with any of these measurem the designs for
which the latent roots of ( are not widely separated, will have high
efficiency. This suggests the use of dispersion »f these roots in
obtaining a measure of efficiency s this is our fourth criterion.

In section 3, the four criteria of efficiency based on the above
considerafions are made comparable by slight modification, so that one
can compare designs with the same number of treatments ang the same
block size but using unequal amounts of experimental material. Valyes
of the four efficiency criteria evaluated for ten two-associate PBRIB
designs froﬁ the list prepared by 3ose, Clatworthy and Shrikhande (1954)
happen to give similar orderings of these designs. The fourth criterion.
based on the dispersicn of the latent roots of the Cematrix can be evim
luated without finding the rocis and is easy to compute. It is shown
in section 4 that in the class Dv,k of designs where v tredtments are
applied on blecks of & plots each, a BIB design (there is at least
one in the class Dv,k)‘has miximum possible efficiency with any of the

four criteria. For the first three criteria, this is an extension (to
the class D k) of the earlier results of Kshir’ sagar (1958), Roy (1958),
b4

and Kiefer (1958). .
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5¢2. Improvement in efficiency due to recovery of inter-block

ixformation.
Let us denote by V the average of variances of the intra-block
estimitors of all paired contrasts of treatment effects (i.e. contrasts

of the type ©, - 6.) s0 that
f . 3 .

2067
Q

V= —F (2.1)

where E is the efficiency factor of the design, as introduced by
Yates (1936 ). An expression for E was obtained by Kempthorne (1956)
in terms of the latent roots of the association matrix of the design
and is reproduced in our formula (2.4.14). From this, it is readily
Sseen that E ¢ 1 for any incomplete block cesign. In fact, the
variance of the intra-block estimator of any normalised treatment
contrast can not be less than Oi /r.

In o similar manner, one can define the efficiency factor T of
an incomplete black design, when inter-block information is also used

in terms of the relationship.
Vo= —2 ... (2.2)

where % denotes the average variance of all estimated paired contrasts
(when inter-block informatim is used). To be more specific, if in the
recovery process an estimator 9Q* is used for ¢ y the efficiency
factor with recovery will be denoted by E*, By Eo we s8hall denote

the corresponding value when the combined estimators are based on the

~
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known values of Q.
One would intuitively expect the following inequality to hold
for all designs and for all values of Q%
E(E*<ﬁogl. .. cee (2.3)
It was shown in section 2.3 that when Q 1is known, the combined
estimator of a treatment contrast has minimum variance among all
unbiased estimrtors. Thus Eo Serves as an upper bound to both E

and E*. Using an approach similar to one adopted by Kempthorne (1956),

we derive the following expression for Eo:

I'éo = (v—ﬁ/[% {1 - "?1% (1 - 91)3» . +v-l-g].  (2.4)
s=1 S

Since ¢é are all non-negative it follews that Eo £ 1 for all values
of 9 > 1. Thus (2.3) would hold if E ¢ E'. It turns out however
that for some designs o is actually smaller than E for large values
of Q. This is shown in section 3.5 and will be illustrated later in
this section by comparing actual values of = and ﬁ* for a suitable
design.

For the qlass of designs D1 considered in section 4,2 and for
the eétimator of Q@ given there one can compute ﬁ*. To illustrate
the nature of such computaticns we shall evyluate ﬁ* for one BIB
.design, using values of incomplete Beta functions as tabulated by
Karl Pearson (1934)., For a BIR design, an expression for R¥* obtained

with the help of (3.5.11) and (2.2) turns out to be
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_ - e, v+ 1
Br= B(1+ o0} {1459 + X(X =21 -1 (52 —)] -

e t2 V=l (v—l)(e°+2) e t4 V=3 -

I )4 (2.5)

Ip 2 » 3+ (v-3)e, “lex (=

-2

where ¢ = %é%i%l, X = li;:ég s, and x = Z;:§Y::lg;i .
Tt is also easdily seen that for a BIB design, EO =B+ é (1 -18).
Details of computations are shown in Talle 2.1.

Values of E* and io for a few BIB designs and for the simple
lattice design with 16 treatments are presented in Table 2.2 for
9 = 1,2,4 and 8. TFor the simple lattice design we also give the corres-
ponding values relating only to & set of mutually orthogonal normalised
treatment contrasts on which inter-block information is available.

When @ = 8, for the first design in Table 2.2 (b = v = 4, -
r=k=3) E* ¢ E and for others E* - B is very small. When 9 (4,

gain in efficiency appears to be appreciable for designs with low

values of E.



Table 2.1.

Computational lay-out for evaluating Ef for a BIB design.
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e, v+l eo+2 vel eo+4 v-3 -y -

Q 1439 B(14c9) X  X(X-2) 1-x 1-11_3:( =5 -~—) I I \_( '3 —) 1 L (5= E E,

R G @ B (6) (7N (8) (9) (10) (11)

1 5 4,6 1.0 =1,00 0.75000 G.338%5 0. 38059 0.13259 0.9636 1.CC00

2 9 7.2 1.8 -0.% 0.84375 0.11049 0.67969 0.34651 0.8722  0.9000
4 17 13.6 3.4  4.76  0.,91071 G 2238 0.88569 0.61011 0.8249 0.8500
8 33 26,4 6.6 30.3% 0.95192 0.00325 0.96931 0.8108G G.8079 G.8250

b=10, v=6,k =3 1r=5 A=2,

, k-1) (v-1)(e +2) -
L3 -3K) - - vl = - i(____ _ o a1 _ 14c@

E = ( 1/V) = .80 ’ eo = bk - b 7+l = 15, C = vk = 4 Py ('\"3)90 = 1.88889 I X = 7 +-é
- e vl e 42 v-1 (v-1)(e +2) e th V=3 -
nIY py - : o -
¢ = B(1 + c9) {1+ o9 + X(X-2) [1-1, (5 ,»—3)]=1,_( 02 A (.,_3520 Il_;.,:( -—)}

- 1

EO=E+§-(1-E).



Table 2.2. Values of E* and EB for some melected designs.

Design 9 B E, B

BIB design with 1 0.9691  1.0000 0.8089
b =v =4, 2 0.9225 0.9445
r=k = 3 4 0.8958  0.9167
and A = 2. 3 0.7156 0.9028
BIB design with 1 0.9641 1.0000 0.7500
b=12, v=9,k=3 2 0.8351  0.8750
r=4 and A = 1. 4 0.7929 0.8125

8 0.7642 0.7812
BIB design with 1 0.9901 1.0000 0.85714
b =21, v=15 k=5, 2 0.9177  0.9286
r =7 and A=2. 4 0.8857  0.8929

8 0.8714 0.8750
Simple lattice 1 0.9396 1.0000 0.7143
design with 10 treatments 5 0.8398 0.8824
(overall efficiency). 1 0.7732 0.8065

8 0.7327 0.7627
Simple lattice Q0.5000
design with 16 treatments 1 0.8616 1.0000
(efficiency relating to a 2 0.6771 0.7500
set of treatment contrasts 4 0.5770 0.6250
on which inter-block infore 8 0.5231 0.5625

mation is available).
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5.3. Other criteria of efficiency.

Though Yates! measure of efficiency of a design defined by (2.1)

was the first optimality criterion to be introduced, two other measures.,.

were proposed by Wald from the viewpoint of the power of the F-test for
comparing tredtment effects. In this szction we shall examine these
three criteria and propose a fourth new criterion which has got some
operational advantages.

Let T = (Tl, T2, °"’Tv—l ) denote the row-vector of the cano-
nical treatment effects defined by (2.3.4 ) and let Ag =T = ¢S /k,
8§ = 1,2,000y v=1 denote the latent roots of the matrix Co It is
known that (see for example Tang, 1938 ) for the customary F-test of
the hypothesis J'= O, the power is a monotonically increasing func-

. 2 . . .
tion of B = ( ’H?,AS)OO. The three criteria may be deseribed as

w <
NN
T

follows.

(1) If we wish to minimise the avwerage variance of all paired treat~
ment contrasts, we should minimise 2 A;l (Kempthorne, 1956,
Kshirssagar, 1958, Roy. 1958).

(B) wald (1943) argues that it is not possible to maximise the power
of the customary F-test for all volues of :f . Hence we would minimise

2
B subject to TT' /6 = const. This leads to maximising Ahin

(Ehrenfeld 1955, Wald 1943).

(C) Wald (1943) further argus that from certain mathematical conside-
v=1

~———
-

A "¢ This minimises the

rations it would be simpler to minimise S

11
s=1

/1



generalised variance. Also, as Nandi (1951) has pointed ocut, this has

the desirable effect of minimising the volume of equipower ellipsoid

vel -
= 2
given by & ( *r‘)%)/o = constant. It should also be noted that
s=1

the design which minimises = A;l gives certain optimum properties for
the usual F test associated with it (Kiefer 1958).

Kempthorne (1956) and Kshir_sagar (1958)considered only equi-repli-
cate designs while Roy (1958) considered the more general case where the
number of replications need not be the.same for all treatments.

Since efficiency should relate to the manner of utilizatidn of
resources, in framing an efficiency criterion, it seems natural to take
into account the amount of experimenttl material used. This would enable
us to compare designs with different sizes. Hence, we consider the class
of designs, Dvﬁg,for fived values of v and k (v > k), where v
treatments are arranged in blocks.of k plots each. Denote by T,
and R, the number of replicatims for the ith treatment and the average

number of replications r2spectively. Further, let hs’ 8 = 1,2504.9 V=1

denote the latent rooks of C ,the co-efficient @mtrix in the intrme<block

normal equaticns. The efficiency criteria, analogous to those in (A),

(B) and (C) above would be 1

] - —— v-1,= |
Ll=(v-1)/R z, Ay By = A, /R, By =(n >\S) /R. (3.1)

The above three criteria are based on different considerations
and need not necessarily result in the same ordering of two given designs.

Which criterion should be adopted depends upon our aim in eceriductin
T i g
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the experiment.

It should be noted that, for each of the three criteria, higher
values are associated with lower dispersion in the A's. In fact in
the first and the third criteria, we are concerned with the harmonic
and the geometric meaﬁs subject to the arithmetic mean being constant.
When the A's are all equdl, the three means coincide. This suggests
the use of J ()\.S - A )2/(v§l)with > As = constant as a criteria for
optdmality, i.e. among designs of given size, we should make J Ag as
small as possible, subject to existence of a design. To elininvte “whe
effect of the size of the design we note that J; A, = Trace C =(k-1)yR/k

is linearly related to the total number of plots; Thus we define

1 “,'2 1
By = N/URCZ R /=0 - (=) 5 0 )[R 3 A (3.2)

Though this criterion does not agree extctly with apmy of the three

criteria given alove, generally large (or small) values of this criterion

73

will be associated with large (or small) values of the other three crigeria,

Though the contours of equal efficiency (in the space of A's) are not
identical with those of the other three criteria (which themselves are
not identical), our criterion will be quite useful. For the points on
the line given by Ay = Az = e = Av-l all give the same result and

for the class of designs with higher efficiency, i.e. for A's not too
widely spread, they will not differ much. This is the region where our

criterion will be quite effective, AS shown below this criterion has



the advantages of simplicity and practicdl usefulness. To compute B

4
- 2 2 - 2 . .
we note that 2 A = Trace € = 2, 2 ¢, .- This gives us
; (k-l)z R (3.3)
4T 2 2 oo 2\ ’
4y (v-l)B/ (22c; )"
R T
i 7]

A further simplification is obtained for PBIB and circulant designs,

- 2 ] .
where 2, ¢, . 1is the same for all i.
i

For the other three criterin, elegant expressions are seldonm
available. Gince E4 follows directly from the C matrix we do not
have to solve the normal equations or to evaludte the A's.

o agess the comparability of the ordérings (of the desigus)
obtained in dccordance with these criteria, we consider the cliss of
designs with v =9 and k = 3 and take ten two-associate PRIB
designs from the list prepared by Bose, Clatworthy and Shrikhande (1954).
Values of El’ Ez, E3 and E4 are obtained for each of these and the
designs are ranked according to each of these criteria. The results

are shown in Table 3.2.



Table 3.2. Values of El, E2, E, and B, for ten

3 4
PBIB designs.

w0, peterence B 5 e B

1 R 9 0.7385 (6) 0.600C (8) 0.7445 (6) 0.7450 (5.5)
2 R 10 0.7143 (9) 0.5000 (9.5) 0.7334 (9) 0.7365 (8.5)
3 R 11 0.7453 (3) 0.7143 (1) 0.7476 (3) 0.7475 (3)

4 R 12 0.7467 (1.5) 0.6667 (5) 0.7484 (1) 0.7485 (1)

5 R 13  0.7412 (4) 0.7000 (2.5) 0.7454 (5) 0.7450 (5.5)
6 SBI2 0.7273 (8) 0.6667 (5) 0.7378 (8) 0.7365 (8.5)
7 Ls 3 0.7407 (5) 0.6667 (5) 0.7455 (4) 0.7454 (4)
8 Ls 4 0.7292 (7) 0.6250 (7) 0.7395 (7) 0.7398 (7)

9 LS 5  0.7467 (3.5) 0.7000 (2.5) 0.7483 (2) 0.7483 (2)
10 Ls 6 0.6667 (10) 0.5000 (9.5) 0.7071 (10) 0.7115 (10)

For each criterion, figures in the brackets dencte the ranks.

It is seen that rankings in accordance with El’ E5 and Eh do nst

differ appreciably.

]
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5¢4. Optimality of DBIE designs.
It is easily seen that for a fixed R, the theoretical maxima
‘ attained w = = see = . i
of E,, E2, EB’ B4 are 2ttained when Al Az Av—l Since
this maximising solution is independent of ﬁ, it is also the uncondi-
tional maximising solution.
It is well known (Rao, 1958 ) that for any incomplete block
design in which all blocks have the same number of plots,
- = eee = i Q 1 nly i #6351 33 is ¢ I ) .
Al %2 Av-l if and only if the design is a balanced one
Now in the class of desigas Dv g & BIB design always exlsts.
’
Hence, judged Ly any of the four criteria, within the class of designs
ka the BIB designs have maximum possible efficiency. It can be
asi C anv BI 39 1 1] ) = = = =
edsily seen that for any BIB design in Dv,k’ El Eb E3 E4
1 1 .
(1 - Eﬁ/(l - ;ﬁ. md as is to be expected, this mdximum increages
with k. In the limit when k = v, i.e., for randomised completa bilack
designs, E1 = Eé = E3 = E4 = 1.
The above is an extension (to the class D, k) of the previous
b

results of Kshir sagar (1998), Roy (1958) and Kiefer (1958) on the

optimality of a BIB among the designs using the same number of plots.
Ry proved this with E, a3 the oriterion, Kshir bagdr with both By
and Eé while Kiefer preved this with each of the three ¢riteria El’
E2 apd EB' Kshir Bagar and Kiefer considered equi-replioate desjigns
On]y.
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Chapter VI

ANALYSIS OF TWC-WAY DESIGNS WITH CRTHOGONWAL GROUPING

Gelse Introduction and sSummiry.

In the previous chapters, we discussed situations where the experi-
mental materinl is classified in one way into homogeneous groups called
blocks, classification being made on the basis of some prior information
about the nature of the experimental material., In some situdtions Just one-
way classification may not be adequdte and one may with advantage use two,
or even multi-way classification of the experimental units (eu's). Such
designs have been considered by verious authors (Latin squares by Fisher
(1935), quasi-Latin squares by Yates (1937), Youden squares by Youden
(1937), partially balanced Youden squares by Bose and Kishen (1939), Y
class of designs by Shrikhande (1951), Graeco-Iatin squares by Dunlop (1933)) .

In this chapter, we shall confine ourselves to designs where the
eu's are classified in two ways such that there is exdctly one unit which
belongs to the ith class of one classification and the jth class of the
other. For simplicity of description the first way of classification may
be called rows, and the second columns. Shrikhande (1951) gave a general
method of analysis of such designs using only the informdtion available
within rows and columns. This analysis is based on the so called fixed
effects 'Normal' model and does not utilise the information available

from differences of row or column totals.
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The same analysis is obtained in gection 3 of this chipter using
only the assumption of additivity of plot and treatment effects and the
distribution induced by the randomisation procedure. We use an ortho-
gontl transformation from origintl observations %o (1) a constant times
the grand mean of all observations (ii) @ set of mutually orthogonal
normalised row-contrasts (iii) o set of muturlly orthogonal normalised
colugn-contrasts and (iv) o set of mutwlly orthogonal normilised
interaction-contrasts. All the contrasts are mutually uncorrelated
and contrasts belonging to the stme set have the same variance but
the contrasts belonging to different sets have different variances.

mo estimate treatment differences we can apply the method of least-

squires to any of these sets of contrasts, If one uses the set of
interaction-contrasts, the equations for estimation turn out to be

the same as obtained by Shrikhande (1951) uader the Nermal model.
Since contrasts in different sets have different variances in
order to use all the contrasts for estimiting the treatment differences
one miy use the method of weighted least-squares. bquations for
estimition are derived in section 4. As in the case of incomplete
block designs the weights in the above equitions are wsutlly unknown
and have to be estimated from the observations themselves.
If the weight for a (normalised) interaction-contrast is taken
to be unity that for a row=-contrast :would be the ratio of the varidnce

o

of an interaction contrast to that of & row-contrast. Estimdte of the

N
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variance of a interaction-contrast is provided by the error mean square
0

in the analysis of variancezgnteractionfcontrasts. In section 4, we
obtain two estimators of the variance of a row-contrast . One is based
on the mean square of rows adjusted for columns and treatments. To
obtain this one has to carry out a separate analysis of variance where
the classification by rows is iwmored. Tt mly be noted that this
procedures is an extension of the traditiomal procelure of Yates (1939)
and Rao (1947) for estimotin: the inter-block variance in the case of
one-vly designs. However this involves rather heavy computationsin the
general case and hence the following procedure mdy be recommended.
Consider the row totals of the corrected yields where from the yield
of each plot the estimate of the treatment parameter (as given by the
interaction analysis) is subtracted. The sum of squares of deviations
of these row-totals from their mean mly be used in estimating the
variance of a row-contrast. This obviates the need for an additional
analysis of variance to be performed,

Finally as an estimator of the ratio of variances we take the
ratio of their respective estimators.

The weight for a column-contrast can be estimated in like manner.

Conditions under which a two-way design compares favourably with
the corresponding one-way designs are examined is section 5 and the
relative efficiency factors worked out. It is shown in section 6 that

if the columns of the design, ignoring rows, form a BIB Jesign, the



analysis is much simpler. The special case where in addition the rows
are partially bnlanced is discussed in full and a numerical example is
worlced qut in section 8.

Some results which @re used in sections 3 and 4 are derived in

section T.

6.2. Preliminaries.

Suppose there are mw® plots or experimental units (eu's) on
which & comparative trial involving v treatments is to be carried out,
The eu's are arranged in @ m x n two-way classification, so that
each eu is determined by a pair of co-ordinates (t, u)
$ = 1,2,000y my U = 1,2,0.., n. with the (t, u)-th eu is associdted
4 number T to be called the plot effect and we assume that if the

k-th treatment is applied on the (t, u)-th eu, the 'yield'! would be

X G( where the parameter Gk is to be regarded as the effect of

tu” )
the k~th treatmenty k = 1,2,..., v. This is the so=-called additive
or no-interaction model. The purpose of the experiment is to compare
!
the Qk 8.,
We now define
b=2a Xin /mn, the general mean,
=q 2, a2 / (m=1), the between-row variance,
t (21)
A
-m.z,); /(n=1), the between-column variance,
a2
=§:2,WX./[(m—l)(n-l)] the interaction variance,
A

- 1 -
= ) - = ) - ay ’ = - - - .
Where &, = 3 : Xou ~ W yﬁ m ? Xy ~ W ond qxut tu T % YQ s

80
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We shall write
Qi = Oi /Oi i=1,2, C - C2-2)
for the ratios of the variances. It will be assumed that Qi > 1,
for i =1,2 ,
The treatments are allocated to the eu's in the following
manner. First a two-way design, that is, an arrangement of the v

treatments in m rows and n columns is taken. The design is thus

completely characterized by the numbers & sy 1= 1,2,..., m}

ijk
J=1,2y000y ngy k = 1,2,¢.4y v where Eijk = 1 if the k-th treat-
ment occurs in the intersection of the i-th row and the j~th column of

the design and 8"k = 0, otherwise. The keth treatment thus occurs

n m
: = \ a . . ; > N - . a - . = bal 8
in mki jzi 1jk positions in the i-th row nd in nkj ii& 14k

positions in the j-th column. We shall restrict outselves to equi-
replicate designs, that is to those designs, where each treatment occurs
altogether in r positions. Thus ? mes = ; B s =T and of course,
E;mki = 1, E:nkj = mf We shall call N = ((;ki)) and N = (<nkj)) the
row incidence-matrix and the coluvmn incidence-matrix reSPectiveLy.l
The rows and the columns of the design are then allotted to the two
ways of classification of the eu's independently and at random.

Let us denote the yield of the eu corresponding to the i-th
row and the j-th column of the design by Fij The randomisation

procedure ensures that

' v
E(yij) TR L O Eiae 8 oo - (203)
k=1
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and that 2 02

)= (og- Y 2 537 ) 20 B6, - B

COV(le J—l J t

where bi is the Kronecker symbol, bii' = 1(0) if i = i'(i # i),

it

Since the yij's are correlated, it is convenient to make a

linear transformation and obtain uncorrelated random variables. For
this purpose, we use the following definitions. A JHnear function of
the form 1 = 2 2, 113 Vi is said to be a contrast if 2 5 113. = 0. A
contrast 1 is said to belong to rows, or simply called a row-contrast

if lil - 112 X s00 = lin holds fOr i = 1,2,000’ Me Similflrl:f, a

constrast 1 is said to be a column~-contrast if 1., =1 . = ... = 1 .
1j 2j mJ
holds for j = 1,2,..., n. A contrast 1 is said to belong to inter~
action or simply called an interaction-contrast if 3 lij = 0 for
i
j=1,2,e.., n and 2, lij =0 for i=12,..., me A contragt 1 is «
3
said to be normalised if 2, 2 lig = 1, Two contrasts 1 and

! = > ' 3 o 5 i . i ! = * i
1 22 lij yy; are said to be orthogonal if X, 3 lij 1ij 0 holds

If then we make a linear transformation from yij's to
V = 0 18 2 Ll 4 i &
(1) * = ¢/ Jam ’ where G Zuuxij is the grand total, (dii) a kSet
of (m=1) mutually orthogonal normalised row-contrasts (iii) a set
J .
(n-1) mutually orthogonal normalised colum=-contrasts, and (iv) a set

of (m~1)(n-1) mutually orthogonal normalised interaction-contrasts, it

can then be shown as in Section 7 that the transformation is ortho-

gontl and that these transformed variables are uncorrelated, the variance ?

2
of ¢ny normalised rowecontrast being 01, the variance of any normalised
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2 . . .
column-contrast being 0. and that of any normalised interaction=~

2

. 2 . _ . .
contrast being Oo' Since the expectation of each contrnst is a
linear function of the Gk's, the method of least sculdreszan be used
" for purposes of estimation.

We shall write Ri for the total yield of the i-th row, Cj for

that of the j~th column, and 'l’k for that of the k-th treatment s thus

n m m n
R, = 2 ¥..,C,= 2 y.. and T = 2 2 €. ¥...
i j:l i3t 73 ii’l JlJ k 1-2_-'1 ji'l ijk le

We shall use the matrix notations: R = (Rl, Ryyeens Rm),g = (01,02,...,011),
7T = (Tl’TZ""’ Tv) and @ = (Ol’ TRRY Ov). As before, a matrix of
the form p x q with all elements unity will be denoted by qu .
If A is a positive semi-definite matrix of form n xn and
ramk b, it Ims b positive latent roots, say ai, i=1,2,40.y bs

Let X;of the form 1 xn be o latent vector of A corresponding

to the latent root o, i =1,2,..., b such that %3 %) = bij. Then

k-
the matrix A% = 2 Tlc X;').(i will be called & pseudo~inverse of A,
i=1 i

in the sense of Rao (1955).

6+3. Egtimation of treatment effects from interaction
contrasts.
Since row-contrasts, column-contrasts and interaction-contrasts
have different variances, it is not convenient to use them simultaneously
for estimation of treatment effects in an efficient way unless the

relative magnitudes of these variances are known. We shall, therefore,



consider first the problem of estimgtion from interaction-contrasts
only. Recovery of information provided by row-contrasts and column-
contrasts will be taken up in the next section,

As we have pointed out in section 2, any set of (m=1)x(n-1)
mutually orthogmal normalised interaction-contrasts are mutually
uncorrelated and each of them has the same variance Oi. Also the
expectation of eeoh is a linear function of the Ok's. Consequently,
the method of least-squares can be used to derive linear unbiai:éd
estimators with minimum variance ('best' estimators) of linear func-

tions of treatment effects. As will be shown 1ater in section 7 the

method of least-squares gives the equations s

Q_K:Q_ s - (3’1)
where the elements of
1 1 r G
= T o = ' - - — .
8=z n BN mgn"-mn Elv ot C3-2)
are called the adjusted yields of the treatments and
1 1 r2
K=rI «ZMM ~-=¥H + g - - - (3°3)
n m mn - vv

will be called the coefficient-matrix of the two-way design.

Since K B , = 0, rank (K) ¢ v-1. A two-way design will be said
to be doubly connected if its coefficient matrix K is of rank (v-1).
In whatever follows, we shall assume that the two-way design is doubly

conected.,

It is well known from the theory of least-squares (see Rac,1952)
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v
that any lidear parametric function of the form (H) = X lka with
v k=1
2 ]k = 0 admits linear unbiased estimators, and “mongst them the
k=1
one with minimum varismce is T = 2 ;ktk where 1

(b tyreeny 1)
is any soljtion of (3.1). To obtain the variance of T express it
v v >
.. s m o3 - ar my o "
in the altemative form T -1%& m § and then v(T) (kza ]kmk)oo
It may be noted that the equation (3.1) are the same as obtained
by Shrikhande (1951) from the so-called !'Hormal' model. The present
approach demonstrates the robustness of this procedure. To estimate
oi and to carry out an ommilus test of significance of treatment
differences, the analysis of variance of interfction-contrasts is to
be done as shown in the following table,

Table :3,1. Analysis of variance

source degrees of freedom sum of squares
(1) (2) (3)
13 2 g
rows (unadjusted) m-1 SS* = = 3 R, - =
n ., 1 mn
i=1
1 0 2 G2
columns (unadjusted) n -1 SS* = = 3 ¢ - ==
C m J mn
. J=1
treatments (:djusted v
for rows and columns) vel 88, . = k§1 Q
error 2 = (m=1) (n=1) (v=1) Soo SoI Sstr
interaction (m=1) (n-1) SSI = SST - SSE -SSE
mono, G2
total mn - 1 SST =.Z 2 yij -

i=1 j=1
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M unbiased estimator of oi is provided by the error mean
square MS_ = SS_ /,» To examine the significance of tredtment diffe-
rences, one mly use fhe cw: tomary ratio of meadn squares NBtr /MSo
where MS, = S5 /(v=1) is the treatment mean square. The sompling
distribution of this statistic under randomisation, when the treatment

effects are identical, is usually approximated by the Snedecor

F-distribution with (v-1) and - degrees of freedom.

6.4. Recovery of inforpmation from row-contrasts and column~contrasts.
In the previous sectdon, we had simply thrown away the row-con=
trasts and the columme=contrasts. JE the ratios Qi = oi /Oi, i=1,2
are known, the method of weighted least sguares can be applied on all
the three sets of contrasts simuitaneously. If the weight for the
normalised interaction-contrasts is taken as unity, the weight for

. . ) 1 .
normalised rowecontrasts will be 5 and that for normalised column-

contrasts will be l§ o As will belshown in section 7, the method
of weighted least-squifes now gives the equations
ek =3 (4.1)
where
T =7 1 RM'---1—-—CNv+3-9- 1- S ——f—)E (442)

Qni“ruAl - m+A2 - 2 nZlAl ﬁ; v
Rarl-—— MM -—2— w4+ == (

n+£ﬁ. m+£h mn - n+£l m+£b vv

< (4.3




and

n A = L (4.4)

A=-———_,
1 9y=1 2 9,-1

If 91 = 1, the analysis should be performed ignoring the row-classi-
fication. Similarly when 92 = 1, we shall completely ignore the
classification by columns.
- v v
The best estimator of (H) = 2 L 6, vhere Z L =0, is given
¢k <
- v _ - k=1 k=1
f"ln = i PYPERS Y ] 4Ny i . .
by T kél Lot vwhere % (tl, treeey tk) is any solution of (4.1)

The wariance of T is most easily obtained by writing it in the form

v v
vy - - - 4 - 2
% m 3 ond then v(2) = (2 1 mk) G e
k=1 k=1

Generally, however, the parameters Z_\.land Az would be unknown
and estimates Dl and D2 for them may have to be substituted. In this
case, of course, the 'bestness! of T as an estimater of (E) would
no longer hold, but if Dl, and D2 are good estimators of [sland‘A2?

T might yet be better than T especially when 91 and 92 are not large.

We shell propose two methods for estimiting the O's. First, we
shall make use of SSR, the adjusted row sum of squares. To compute
SSR one has to carry out another amalysis of variance ignoring rows,

Let gl be any solution of the following equations in e

0K =Q (4.5)

where
=7 = -J-'- cnt O,nd K. =r I - "1' NI (4 6)
) m - mo ]

Then
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= S5*% + 85, = L. o)
88, = Ssk + 85, - Q %, (4.7)
We shall show in section 7 that writing MS, = SS; /(m-1) for

the adjusted row mean square, the expectation of MSR is given by

a a
. 2 1 1 2
E(MQR) = 0 (1 - ” ) + = o, (4.8)
where
a, = tr K% M u/ (m-1) (4.9)

in which tr denotes the trace of a matrix and K*l* is a pseulo-inverse

of the matrin Kl'

M estimate of O:ZL may be obtained from equation (4.8). Based
on this, we can take

(n=a 1) S

1 MSR-MS A

as an egtimator of Alin the sense that the ratio of the expectation

D (4.10)

of the numerator and the denominator of Dl is equal to Al. However,
D, as defined in (4.10) shall be used only when MSp > MS_. fhen
MSR L M5, Wwe shall decide to ignore the classification by rows and
perform the analysis as in the case of one-way grouping (by columns
only).

In an alternative procedure for estimation of oi proposed below

one does not need to perform a separate analysis ignoring rows, ILet

v n
‘3 =¥, = 2 € (@) = 2 y..(6) ¢
i3 @) =y, 2t & (9) Z ¥;;(8) and let further

Ty= s RO -2 B ) R() (4.11)

88
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where t is a solution of (3.1).

It is easy to check that

’ 2 2
g = * '
B(VR) =0, +8% 0 (4.12)
where
ai = tr K* Md'/n(n-1). (4.13)

2
Equation (4.1c) may be used to provide an estimator of ¢, and

hence of A]f This estimator of Cslmay be written as
n g

D* = o
1V - (1+ a% US|

(4.14)

Again, this estimate will be used only when V> (1 + a{) S, .

Similar procedures may be adopted to abtain estimators D2 and

%
D2 of Az.

It may be noted that the estimator of 02

1 based on MSR correse

ponds to the traditional sestimator of between block variance in an
incomplete block design given in our formula (¢.2.9) while the esti-

2
mator of 01 based on Vh corresponds to the estimator of inter-block

varionce given by the formula (2.4.11).

2
It may be noted that the estimator of ©

1 obtained by any of the

above two methods is not positive-definite. The following procedure

2
gives positive-definite estimator of G

1 for certain types of designs.

As will be shown in section 7, the least squares equations for
estimation of Q{'s from row contrasts are

!
r2 rG
o' - =E ) = (RM' - == E ). (4.15)
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If t* is any solution of the above equations in © and if

2
p = rank (MM' - %T E,) <m -1 (4.165

the residual sum of squares in the analysis of variance of normalised

. 2
row=contrasts can be used to estimate Ol. Thus,

(ZE - ¢°/n) - mirgs’
(4.17)

1 n(m—l-p)

2
is a positive-definite unbiaged estimater of 01. The corresponding

3 3 % . 2
estimator of A, is n L-Bo/(sl - NEO).

6.5. Efficiency,

It is known [Kempthorne (1956), Roy (1958)] that the average
variance of interaction estimators of differences of the type gk-gk"
is 2 oi /h(K) where K is the coefficient-matrix of the design and
h(K) denotes the harmonic mean of the positive latent roots of K. If
instead of the two~way design, & one-way design using columns as blocks
were used, the gverage variance of intra~block estimates would then be
2[(1 - '%')Oi + i—l-} /h(Kl) where Kl= ri- n% N ¥*. As a measure of
the efficiency of the twoe-way design in comparison with the one-way
(column) design, we propose the ratio of the reciprocals of these
average variances., This turns out to be

E =ef 4 (5.1)
where e = h(K)/h(Kl) will be called the efficiency-factor of ilic iL.wo=

way design relative to the one-way design using columns as blocks and
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1
¢=l+‘A_lo

To prove that the relative efficiency factor e camot exceed
unity, we need the following result in matrix theory,

Lemma s If A apnd 3 are positive-delinite matrices of the
Sdme order @and C = A = 3 jig positive definite (semi-definite), then

-1 -1 . L e . o
D=3"7" = A" is positive definite (seml-deflnlte).

Proof : je observe that if P and g are Symmetric matrices of
the same orger and P is positive definite, a necessary ang sufficient
condition for ¢ to pe positive definite (semi-definite) is that the
roots of the determinantal equation | § ~ AP] = 0 are all positive
(non-negative). Now, the determinantal fquation | C = AA| = 0 1is

. . -1 . N ;
equivalent to the equation | D -~ A3 | < 0. “his follows by pre and
C e v ) . -1 -1 .

post=multiplying the fomer equation by A T and B respectively.
Alsc € being positive definite (semi-definite) implies that the roots
A are all positive (non~negative) whicn in turn implies that D is
positive definite (semi-definite).

Next consicer a (ve1) x v matrix p Satisfying PPt = 1 ana

E
vv . . . .
PrP=1. v ¢ Since our design is doubly connected it follows

that 4 = FE)P' and 5= P KP' are botn positive definite g
A=Ba= % PMM'PY 4a positive definite or gemi~definjite,
. - | v 1 1
How H(Kl) - fI(K) = H(/\) - H(D) = (V-l}(—"—: - h—f )
trA tr3

J(e=Der (gt
(trA“l)(trB'l)
from which it follows that e ¢ 1.

20



6.6. Two-way designs with column balance.

A two-way design will be said to have column-balance if each
treatment occurs in a column at most once, and any pair of treatments
occurs together in the same number, say A, of columns § or in other
words if the columns of the design regarded as blocks form a Blanced
Incomplete Design. A column balanced design is said to be & Youden
Square if the row incidence-matrix M = E%m and an extended Youden
Square if M = pEvm where p 1is a positive integer, p > 2,

Shrikhande (1951) claims that all known column=~-balanced designs
can be arranged in rows in such a way that (i) a partially balanced

association scheme with two associante classes can be imposed on the

tredtments and (ii) the m ;'8 satisfy .

uo if k = k!
e M=
. 1 '3 .
i = £ uu if k 7’k' are u-th agsociatesy
u=l,2. (6«1)

For a defipition of a partially balanced association scheme, the
reader is referred to Bose and Shimamoto (1952).

If By ¥ B the designs satisfying (6.1) are said to belong to
the class Y, (Shrikhande, 1951).

The analysis of designs belonging to the class Yl is particu-
larly easy, being similar to that of rartially balanced incomplete

block designs with two associnte classes. The analysis based on orly



the interaction-contrasts under the 'Normal' model is given by

93

Shrikhande (1951) : here we give the complete andlysis including recovery

of information from row-contrasts and colum-contragsts .

For the parameters of the partially balanced association scheme,

. . i .
we shall use, the standard notations D e nj; i, Jy k = 1,2.

Let now,
AV 1 .
=== (=)
1
b = n (ul - p‘z)
! 2
¢ =Py = Py
2
d = nl - pll.

Then a solution of the equations (3.1) for a design of the class

turns out to be
t, = [4 Q + bSl(%k)] /D

where Sl denotes summation over first associates and

A=2a + be

2

D aA-bdc

i

(6.2)

B

(6.3)

(6-4)

Since the variances of estimates of treatment differences nre given

by

[2(A - b)/D]Oi, if k, k' are first associctes

V(tk- tk') - R
[24/D] S s otherwise
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the relative efficiency factor of this design turns out to be

(v-1)D
© = v [I?vtl)j\-nlb] : (6:3)

For combined estimation, a solution of the equations (4.1) is

t = [A Q +D sl(q%)] /D (6.6)
where A = a4 1-30

b -ai-T%a (6.7)
and = Av+r A?_ 1 (< )

I A, nr o, W

> l \ -

b n + L’Xl (ul it u’24 e ((')'8)
To obtain I)1 and DZ as estimatorg of Al and AZ one my proccc? Ne
follows.

A solution of (4.5) turns out to be

% (6.9)

m
kT v Sk

where Q, ~ 1is the k-th eledent of &, defined by (4.6). 88, and hence
MSp ctn be easily obtained with the helj ol (4.7) and (6.9). Since in

; Av Ey it ie easilv s ; w2 Bor1o 2, oo
this case K, = = (I - - ), it is easily seen tuat K =3 v[I- Sl e

KA I = X%? MM - gglé E. Substituting this in (4.9) one gets
AV
*muo-r'
1 Am - 1)

Using IVISR and 3y as obtained above Dl is easily obtained.

a (6.10)
To estimate AZ’ one needs M3, the adjusted column mean sqwir>

given by

- S . = S8% 3 - So11)
(n 1)MQC 8% + S5, . - Q) (Co11)
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t2 being any solution for € in

-—

o, = Q, (6.12)
where
Q=T = -l RM! and K. = r I - —1- M, (6.13)
-2 = n - 2 n
In this case t, = (tZl,,.., tZk) is given by

= ' a Fqo 7 Y
by = [4'Qy + b3, [, 1 /D (6.14)
where A' = A+ (r = A)/m and D' = [a + (r—A)/m]A'-bZd.

In this case since W'= (r-A)I + AE, we have tr KSN N' =
(r=A)trK®, low if L =& Y beany solution in € of equations (6.12),
it can be shown that tr K: = tr(y) - % (sum of all elements of Y).
Since (6.14) provides a solution of (6.12), it follows that

tr X8 W (r - A)[(v - LA - n, b]

a. = = <~ . e 6.15)
2 (n-1) (n - 1)D (6.25)
D2 mdy now be obtained using the formula
(m = ¢ S
\n '12) lT.)o
D S (6.16)

= M - s
2 M\t Moo
To obtain Dﬁ and D; we shall need tr KFMM' and tr K*NN!.

From (6.3) it can be deduced that the (k,kt')th elemunt of K* is given

by
[(v-l)A - 1‘11b] /VD if k= It
KK
Y = [-A + (v-nl)b} /D if the k-th and the k'th  (¢-17)
tredatments are first
associates

[-A = nlb]‘/vD otherwise.
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where A, b and D are defined by (6.2) and (6.4). Trace of R* 1141
is obtained by taking the sum of products of the corresponding elemonts
of K* and MM'. This gives

" tr K* Mq! ) V(Alt)+ nlulb) ~ (A + nlb)
1 n(m-1) - Dn (m - 1)

. (6.18)

Using aﬁ as given above Df miy be computed from formula
(4.14).

Similarly to obtain Dg we use the formula

m MSO
F )
D2 = VO _ (1 + QE)M:SO ¢« oo 0 (Oa-9)
where
1 " 2 . 4
Ve=C ($)(1 - S B )c(t)/m(a-1) ... (6.20)

the j-th element of ¢ (t) being given 1y Cj(t = /Y j(t? and

tr K* WY v(Ar + A nlb) - rm(A + nlb)
a¥ = =
2 m(n=1) Dm (n - 1)

. (6.21)

6.7« Derivation of results.
In this section we prove some of the results Stated earlier. Wo
shall use the following lemmas.
Lemma 6.7.1.
If l§gﬁ), i, €= 1,2,.0.., my Jy B = 1,2,y it are
real numbers chosen to satisfy (a)iﬁ l§?ﬁ) L§§!B’)= aa(x'bwﬁ

where 0 is the Kronecker symbol,



mn — %m «m) )
(b) 1§j‘ ). 1/ ./mn, (c) 1555 ). 1:50 y & = 1,2,¢0., m=1 and
(d) 11(1315) = lg? BJ) B=1,2y4.., n=1 then we have:

1 1
Z. 1§3‘n) il(“;‘,) =5 DPsr - 3)
=1

gl ((@B) @B L 1y

B=1 ij 1 'l m i n

m:l 11-1 (QB) (O(f.))) (D _ l)(o N }-)
oc:1 31 1 gr T Viiv T ji' n

and

[

- - 1
52 @B @p), PO vhen B=B
L RRL iir =
ij irsr 4 113 %11 0 otherwise
5 3 1(&3) (OC'L‘S ) ,{m bbﬁ' when o = o! =
Y] '
ij i'j' 1 1 J JJ O otherwise

Z Z l(aB) (a'B') ‘b =0

o JRN
f 1 39! ' t
i itge ij 13 11 33 aat BB

n

(7-1

(7.2)

These follow easily from the properties of orthogonal matrices.

Lemma 6.7.2.

(T+3)

et 2 .= l(OCB)’ .+ Then
aB iy
i3
1 . bl y _
Vi (mnp + r 1? Ok) when & = m, B = n
m(ZaB) = ~ (a Q))
Zoart Ok otherwise
k &
where
(oc B . 5 (aB)
13 ® jk°

ij

Also, these Z(x B's are mutually uncorreloted ané they hove variances

given by
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]

O ifau=m3yPB =n

O?_L if ﬁ = n“, x = 1,2,¢.-, m-l (744)
B)z 2 ,

o, if x =myP = 1,25000y =1

Oi if & = 1,2,1--, m"'l; B = 1,2,.05, Il"'l.

These results are obtained by direst computation using the expectations

ad covariances of v. .'s given by (2.3) and (2.4) and the properties
Y lJ B o r r

of li(?B)'s given by (7+2).

Lemma 6.7.3.
()

With ZaBand ak 's as defined i1n Lemma 6.7.2, we have

m=1 m .
G- sz &Jgam:% LomgR - o
C =1 aARAn i=1 14
n=1 n
- (m 1l <« rG
Q}n{u = 2 ZmBLng B) == . ; Cj - (7.5)
B-1 5=1 ‘
m=1 nel : m n
= 1 - 1
Qk = & 2 ZOLB l(caB) - Tk ) & mkiRi_F— o IkJ n ;(‘Il
aal B-— l=l J
-l
' _ n (ocn) (oc n) 1 Z r2
kik! a‘_‘_"l K n mk 1mk ' mn
n- 2
o L(mB) (m BY_ 1 ..z_
ykkn Lﬂ 1 S m Z 1kJ Jk' - (7.6)
m=1 n-1 m n 2
l I
y ] = Z 2’ 'i(((x B) (aB) = - 2.1 Z 1 T .+ L-
kk w=1 P=1 LL 1.7y Mei™ery j=1 ]kJ ]k'g mn

These results are obtained by direct computation using (7.1) and (7.2)
We shall now derive the ledst sguare equations. Jdiccording to

the method of weighted leaste-squares, we have to minimise
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2 V—(—;-;Ej [Zoc o E(ZULB)]Z’ where the summation is over all values of «, P

)

excep’ G = m, B = n. On multiplication by OO, this reduces t6 mini~
mising

mel n-1 > o mrl 5 oy -l P
L=y X [zaﬁ-m(zaﬁ)] + 51 ag; [z -8(z, )]+ %B%‘l[zm B-E(sz)J_

el Bl -, an  an

Equating the partial derivative of L with respect to 6 (k = 1,2,.0.,v)

to zero, we get the equations:

v .
LW . I . 1
( -S| = . ytt - —
T g+ 9 e g ) S =& I

kK = Lycyaeey, Ve

where Qir and Yk etce, are given by (7.5) and (7.6). his, in matreix
-

kt’

notation is our equation (4.1) for combined estimation. If we want
estimates from interdction~contrasts only, the equations would be
v
% Y. .8 = q  Which is the same as squation (3.1). Similarly if
kk' k! <

K=1
we want estimates from row-contrasts only, the equations would be
v

t - . - . - . B
DI 4 , 8, = Qi' which, in matrix notation, is our equation (4..:0),
K'=1 kik' Tk < ) '

Expectation of the adjusted row sum of squares is obtained as

follows. Since the fdjusted row sum of squares 58, defined by (4.7)
v

v . 4
is invariant under the transformation y!. =y.. - 2 €., 8,
1 ij k=1 ijk k

distribution and therefore its expectation does not involve 91 s,
<

its

Consequently in computin E(SS we can ignore the terms involving
q D g R gn &

Ok 's. ilow, since
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L 4
|
E(Ss*) = (m-l)02 + terms in 6 's
O\R 1 ~ I
. (7.8)
c 2
and E(Sstr)z (v-—l)oo + terms in GK’S

it follows from (4.7) that all that we neecd now to compute E(““ ) is
E(Qlt'l) where Ql’ tl are defined by (4.5) and (4.6). 1Iet K"*l be

a4 pseudo~inverse of the matrix K . defined by (4.8), s0 that a parti-

L@H

cular solution of (4.5) is t

ty= K*l. Hence

1

E(g1

f‘—‘-'
SN

= E(@lK*l_@'l) = E(tr(K* G 94 Qy )
tr [K*1 F(@'l 9y )]

tr F* D ( )+ terms in Ql[s (7.9)
N

]

1

where D (91) stands Tor the dispersion matrix of Qe+ To compute D (Ql)
rE

. 1 . o ;
we express 9_1 in the Torm _@l= E + by R (M' - mv). oince the ele-

. . I 1l
ments of Q are interaction-contrasts and those of e R(1'- are
N —

row-contragts, these are uncorrelated, and therefore

r

s
=

: . 2
)], Since D() = K ¢ ana

D(99=D(Q)+D[;l-g(li' -

ot

2
D (E) (I - B ) n Ol y we et on simplification

2 2 ,
D (\:‘g"l)= (Kl+ - .- OO>. ({.IO)
Using (7.8), (7.9) and (7.10), we get finally

WR) -L(m*) + :’(Sstr) - E(::izl:c_'l)

N

1, 1 2 . 2
= [ (m=1)- = R o) (e KX W lr)e /a

from which (4.8) follows.
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6.8. llumerical ewunple.
Table 8.1 gives the yields ond the lay-out of a design of the 7

class with treatments indicated vy numbers within braclkets.

Table 8.1. Yields and the lay-out 2t 2 design of the Y1 clasg

(with treatments indicated by numbers within brackets).

4 5 6 ) 8 9 10 R,

i/ 1 2 3 i

1 140.1 161.8 112.2 153.9 116.5 189.2 160.3 152.7 178.0 134.9 1499.6
@ G O @ @ 6 @ 3 6 @

2 102.6 129.2 89.5 97.4 103.9 142.5 1%8.8 106.9 133.3 87.9 1132.0
W © & O 6 6 © @ 6B @

3 15549 165.8 138,3 141.6 79.8 141.6 161.2 136.1 155.8 107.1 13683.2
€ G © 6 @ W @ @O @ )

Zj 39846 456.8 340.0 392.9 300.2 473.3 46C.3 395.7 407.1 329.9 4014.8

The parameters of the design aresm = 3, v = 10, v = 6, r = 5y A= 2,
) . 1 2
ny = 1, 1y = 4, U'o =9, ul =9, u2 = 8, pll = 0, Pyq = O
Av 1 . 1, _
Ce R By m) =39 b2 (- p,) =00l
1 2 2
¢ = pll - Pll = ( d = ny = pll =1
' 2
A=3a + be = 3,9 D=2ap-bd= 15,2

The computational details of estimation are given in Table 8,2.
If we want interaction estimates only we need proceed onl; upto
column (7) in Table 8.2. The analysis of variance table may Dbe prepared

at this stage as shown in Table 8,3,



Table 8.,2. Computational lay-out for interdction estimates and combined estimidtes.

treat-lst asso- 1 , . A e - - =% .
ments ciates of "k [RJk [C]k ank mnDtk ‘nQ]k nQQk nD 2k Qk Dtk Qk D tk

(1) (2) (3)  (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)  (14)

583.,2 6646.4 1857.1 = 940.2 =3543.4 -107.5 -814.4 -3965.3 -37.12 -145.29 -37.25 -145.89
623.9 6897.6 1956.1 -1462 .8 -5748,9 - 84.4 -658.6 -3 3%6.8 -50.04 -202,.24 -50.08 -202.54
689.9 6646.4 1959.8 1233.8 4717.8 109.9 252.6 1156.3 39.20 153.82 39.16 153.75
680.1 6897.6 2622.4 - 43908 -1861.5 1709 - 9606 - 539.2 -15045 - 58085 “15'43 - 58.82

(S N R R SY N

686.3 6530.0 2120.0 - 127.0 = 2L7 = 61.1 333.0 17%0.1 - 0.51 3,93 - 0.42 4.3

751.4 6530.0 2129.0 173%6.0 6757.7 125.2 984.0 4854.9 61.92 248.63 62.02 249.18

4014.8 106=  3G= Gx*  OR% oxk oM g g oM gi g
4014 .84 12044 4¥¥

*x penotes check.

[R]k =2 Mei B [C]k =2 ™ Cj 5 mig = man o - m[R]k - n[C:lk + G
mDt, = A mng + b3y (ank); mQy, = n7 - [C]k;
'nQ2k - nTk - [Rjks nD't‘Zk B /\“IHQQR + bsl <nQ2k):’
D D
- A 1 1 G rq 1 _ 2 = - - -
% T % T 4D [R]k - m+D, [C]k Taw Lt S ] Dby = ARy + bYy (“ia;)'
1+ 1 ‘
% ,
% 1 1 rG Dl D’Zr

- _ ; 1 _ - X —1-___-__ ——=~\-~ —__L—.o-
QK Qk n+D% [F]k m+D1'2e [C Jk Yoo I n+D% m+D§] be tlt e Qlt s P71 (Q{);)



Table 8.3.

/nal;sis of variauce.,
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source degrees of sum of mean

souree freedom s quires 8 quares F
rows (unadjusted) 2 SSE = T059.34
colums (unadgusted) 9 S5 = 11753.55
treatments (adjusted for
rows and columns) 5 Sstr = 2204.15 Mstr = 44G.83 3,39
error 13 SSO = 1690.66 MSO = 130.05
interaction 18 SSI = 3894.81
total 29 S5, = 22707.70

For recovery of information from rew-contrasts and co lumn-contrasts, if

one uses Dl and D2

defined by (4.10) and (6.16) as estimites of &,

and_éxz respectively the computations

D!

columns (8) to (12) of Table 8.2.
below,
A" = A+ (r = A)/m = 4.9,
2
mp -r
a = o =05
17 A(m-1) o
We obtain
[ -
glgl 1402.40
SSR = s<;§ +Sstr -@131 = 786
(n~11)MSO .
D 0, 3251
1 M3, -MS
R 0
- =Av+h% 1 )
m+D2 n+Di\uo By ) =
A =34+ be = 4.01579

mdy be made as shown in the

“he constants required are given

2
= [a+(z=A)/mA" - b7d = 24.
(r-A)[(V—l)Aﬂ-nlb]
= n=1)D! = 0.3389.
Ly = 4607.75
U9, 83, =SS + S5, L = §11=9349.95
(m-a2)IS
T Ig,-us_ < 03608
o 0]
01579 —— (. ) = 6.09685
S n+D1 172 ¢
=a 7 -Db4d = 16.11719,
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Yhe procedure is somewlt simpler if one uses Di and Dg
defined by (4.14) and (6.19) ag estimators of A1 and &) respectivelr.
- [
Computations in this case may be made as shown in ¢olumns (13) ana (14)

of Table 8.2. The constants required are given below.

V(‘A-U'o + nlulb) -ra( A+ nlb)

k* - = A'n 2
v (/\I‘ 4 7\’11})) - 4 m (A + 1'11b)
* - L.
*2 Dm (n - 1) U.14181
n MSO
D* = l T = 003551
1 VR ~ (1 + O'*l:> % SO ’
.m S
D* . = (..3905,
2 Vo - (1+af)us
AVv+rT D"2e 1
L’* == e - -
: —— T (M, - B,) = 4.01841
2 1
. — (M, = 1) = 0.09685
n o+ D’%‘ 1 ) .

A= 3¢ ¢ BFe = 4.01841

Dr = &% R - $%% 4 - 16.13818 .
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The three sets of estimates are given below in Table 8.4.

Table 8.4: FHstimates of tredtment effects.

+ T Ead
k uk uk

(1) (2) (3) (4)

1 - T7.77 - 9.01 ~ 9.04
2 - 12,61 - 12,55 - 12.55

3 16.35 9.54 9.53
4 — 4408 - 3.65 - 3.65
5 - G.71 C.24 0.27

6 14.82 15.43 15.44

= 65.03, if k and k' azre fip:

A8soCishoes

= 66,74, otherise.

If the combined estimites are obtained as shown in columus (8)
to (12) of Table 8.2 and if scue ignores the effect of the samp ling

fluctulttions in Dl and D2 on the variance of El - tl"
Y <

2(A - D ,
—LA:———). HS = 63.24 ok, k' are firset

D U
- associotey
Hat V(t -t b . 550Cc13te
¢ 1(‘ / -
2 A )
M3 = 6:.81, othermise.
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If the combined estimates are obtained as shown in columns (13)

and (14) »f Table 8.2 and if one ignores the effect of sampling

fluctuations in D§ and DX on the variance of % - ti,
< 5

}25A* ~- b*) i . . ; .
s ja - . e c =) St
-t wo = 63 20 if k, k are fir

)
- = D C e o
st {V(t* - t* ﬁ:: asgsocittes
k k! o

I/[ SO = 64076 Ot}ler"fx'is [T
D

The above shows that in this cise recovery of information from
row=contrasts and column contrasts has not resulted in appreciable
gain in precision,

Next we compire this design with the design formed by taking
columns as blocks. The relative efficiency factor e turns out to be

- . - _ . 1
0.97938. If Al is reploaced Ty Dy (Di), ¢ =1+ j&: = 4.07598(4.G759%") .

Hence T = e X ¢ = 3.99 (3.99) dis the efficiency of the two-way desimm
relative t5 the column~design, which shows that the gain in precision

is appreciable.
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Chapter VII

CIE~-WAY DESIGIS WITH TWO SETS CF TREATMENTS

T«else TIntroduction and summdry .

Pearce and Taylor (1948) and Hoblyn, Pearce and Freeman {(1954)
considered the problem of designing an experiment which is to run over
successive periods of experimentation. Treatments are applied to the
experimental wiits in every periocd with the provision that the set of
treatments may change from period to period. In such experiments a
treatment applied on an experimental unit may affect the yield for
that wnit in succeeding periodse Such effects are called the residual
effects of the treatments. Hoblyn, Pearce and Freemin (1954) consi-
dered the case where the residudl effect is operative only in the
period following the period of application. They further assumed that
the residunl effect and the direct effect (effect due to the treatment
applied in the current period) are additive.

e

In this chapter we shall consider experiments for two periods

only., Suppose we have p, tredtments in the first period (4o be

4

called the first set of treatments) and r, tredtments in the second
period (to be called the second set of tredtments) and suppose that the
plots (experimental units) are grouped in one way into p, Dblocks.,

The design for such an experiment can be specified by the numbers

nijk' i=1,2, ..., pog Jg=1,2,..., Py 3 k =1,2,..., Dy 3 where
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0y denotes the mumber of times the j-th trextment of the first set
ijk
and +the k=th treatment of the second set occur together on a plot in

the i+h block. We shall restrict ourselves o the most important class

of binary designs (desigas where every wn, ., can take only the values

i K
G ar 1).
The three-dimensionaliy ordered set of values <<<nijk))) will be
called the incidence cube and will be denoted by We. Let ny. I R
Jk - 1jk
i
St N % -~ oo
g, = 20 N, . and 0, g = 4o, e Thus n, . denotes the number Of
1%k 3 ik 1iJ oijk iJ
FAS

plots in the i~th block on which the j=th treatment is applied.

Following Pot:hoff (1962), the matrix Hoq = <<nij*>> will be called a

marginal mitrix. Cther margin®l mttrices are defined as Niz = (<“*jk
SN

[} n —_ T 1
) ’ iy (JVCZ)

)

1

and sz = ((ni*k))' We shall also define ]

and W,y = \Nl2)'

16 (N()l

The morginal matrices play & key role in the andlysis of such
designs. Though the estimating equations obtained in section 2 cin
always be solved in theory, unless the margindl mitrices obey certain
restrictions, the numerical procedure ig likely to be unwieldy. The

roblem of counstruction of designs for which the estimiting equations
are edsy to solve deserves some dttention. Diven if one succeeds in
finding o set of mitrices satisfying the easy solvability conditions

on the margindl matrices, the existence of the incidence cube with

these a8 the morginal matriaces does not follow.
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Hoblyn, Pearce and Freemin (1954) classified such desiugnms

according to the properties of the mirginal matrices taken separately.

The construction of designs for which NTG is the incidence matrix

of a4 randomised block design while HEG and NZl are incidence matri-
ces of a PBIB design hds been denlt with Ly Freeman (19572, 1957,
1958, 1961) in a series of pipers.

Pot_hoff (1962) derived the analysis of designs for which
(i) Hoq Mpp = BB, T, 0y =JrE or (ii) Moy g = I+ B E where

™

B denotes a4 matrix with all elements unity

-~
=
o
“+
e
—
o
[N
o
]
—
ot
t

D%
?

+
e}
=
L

and U, 27, o, B Are some constants. Pot_hoff noted that it is
sufficient that the above conditious hold for some permutation of the
indices 0O, 1 and 2. He give some illustrations for each of the two
types of designs considered by him.

For the special desigas mentioned above, Freedan (1957a) and
Pot ot f (1962) gave method of intra~block ana Iysis based on the Nermal
model.

In this chapter, we derive the method of analysis for any such
design with experimental units arranged one way in blocks, and involwving
two sets of treatments whose effects are additive. We use only the
distribution induced by the usual two-stage (within and between blocks)
rindomisation and the assumption of additivity of plot and treatment
effects. In addition to the intro-block analysis we give & procedure

for recovery of inter-block information.
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randomisation gives rise to two sets of contrasts such that all con-

game set have the same

=
[¢¥)

trasts are uncorrelated and countrasts from th
wariance. The expected value of cich contrast is obtained by replicing
every obssrvation by the sum of the parameters corresponding to the two
treatments (one from each set) associoted with it. In section 2 we

apply the method of weighted leastesquares to these two sets of con-

trasts and obtain the normal equations for estimdting the parametric

ot
18]

wo sets of tredtments. The proeedure for

contrasts for any one of the
estimiting the unknown weights is given in section 3. As is to be

expected, the results are obtained in symbolic forms, in terms of

pseudo-inverses of certiin mitrices.

—

f the design is not chosen properly, even the intra-block

is somewhat laborious for monual computations. But witlh proper

=
e8}

ant lys
choice of design, the analysis including recovery of inter-block infor-
mation does not involve unduly hedwy computations. An illustration is
given in section 4 with o particular design where both the sets contain
the same number of tredtments, the same BIB design is used for both
the sets and pairing of treatments from the two sets is done in a

gpecinl way.



1.2, timdting equatio

Ig

onsider an experiment

Co

are divided into p_
]
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There are two cots of

tredtments and two treatments, ono from etch set, are applied on each
plot. The first set consists of 1 trectments each ceccurring ry
times and the secoud set consists of P, tredtments etch occurring
r, times. The actunrl allocation is done in the following mumer.
First, we consider a design cousisting of P, rows hiving r,
cells each wvhere, the u~th cell in the i-th block contains the J-th
treatment symbol of the first set ajiu times, J = 1,244.., Py 5
i=1,2,..., b s u-= Lydyenny r and the k=th tredtment symbol of
the second set bkiu times, k = 1,2,..., Py 31 = 1,2,..., po,
us=1,2,..., T_. Here ajiu =1 or G according as the j-th symbol

(treatment) of the first set

or note. Ividently 2 a.. =1, Similor remarks will apply to b . .
- Jiu - kin
J
We shall perform the two=-stage rundomisation ag usucrl, i.e., the
blocks are numbered 1, 2,..., P, a4t random and the plots in & block
are numbered 1, 2,..., r, agadin 4t random, independently for different

blockss. The u pl in the i=th block then receives the treatments

from the two sets corresponding to the two symbols which occour in the

u-th cell of the i-th row of the design. Lot V. denote the yield
in v

on this plot. Let, further, 8, = (@%, Gg,..., @1) and

2

62,

2
(e
1’ ' b,

) denote

€& row vectors of real—vﬂluod



parameters measuring the effects of the firgt and the second set

treatments respectively. We shtill assume that
X 2 el + 2 62
F.ooo= X, o+ 2 4., L+ S
Jin iu T % jiu T 7 ¢ kiu Tk
J I
where S denotes the effect of the plot which hag been called
u=th plot in the i-~th block. We shall write T =(T s D ysenny
ns Ty Togpeesy T o= (T Toyyeeey T
: ( 11 71277 T1p ) =2 Ner? T2ty An,>
<1 CA
where
T=2F 7 S0 0.y, 5 T =2 ab .
oi < Yiu’ Tl 0 T Tiiu Yiu’ 2k T Y Tkiu Yiuw f
Pl iu iun
Let, further, G =2 .7%. .
: in
iu
It is easily verified that
= 2
Ly =W+ 20 ; . &
(1 ) < u o J T Tkiu k
J ¢ >
OL
: 1 .1 1.
2l cov (7, s 7, ) m (0, -E)=Ee (0 =20
in® "itu! 1i! it T uu! r ii!
o o o}
where
l L a
U‘ o= oK
pr T 7Hu’
oo 1iu
2 X
u
o2 o1 A u )2
= z \-t. 0= 5
o) r =1) T 7 Yiu r
po( o ) in o}
2y . >, 2 X,
5 r “~ Miu <2 Hu
o) 0 Z ( 33 1 U )l—
- ’
1 (po-—l) 5 T, p T

112

[\
e

Ty

[
\
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Ho: o = g! (g
is the Kyonecker s;ymbol, o s = a'(s4s').

N - '| o v Y 1
Lot O 4, 00 = 1,2,000, ro—l, u r_ be real numbers

oqu
satigfying the conditions
>, =0 > a a = . eee (L o))
“ Tou 2 Txu atu wo!
u u

(2.6)

=G, 2 Di3i067i = @B'

= O]

<’
w
P

i
Define 2z, =490 ¥, 1,2900ey D% % = Ly2y00uy v =1,
: i < Tgudiw o
1
Tt con be shown that
- ) - = gi T 1 2
Bz, = 2, 20 a., IS TR SN
( i ;‘5 ou Jiu § 7 S Tom kiu Tk
> X
[y -
‘ ee (2.7)
and  cov (2, , 2., ,) = 0.. , O% .
Yid ito! iit! oo o
1 . aon . - . -
We shall alse define zB = > ) Dﬁi iy B = 1,2,0.., Ilo_l'
iu
It can ¢ shown that
Ty 1 o T - 2
(2 = 5 3w, .. > o2 b b, . O
5( B) - ; ’“j” 3i  jiw Gj * ‘; = TBL ki Tk
1 u K
2 o8
( V- 5 (2.8)
and ooy (2. Z, C. e
B %prY T s

The method of weighted least-squares canm now be applicd o the
twn sets of variables, 25 o i=1,2y000, p 50 = 1,2 5000y ro—l (intro-
block contrasts) and Zg B = 1,2,e.., p~1 (inter-block contrasts).

O



The weights for countrasts from these two sets
1 . : . 2
and  w, = respectively, Putiing 9 = O]

1 2
o,

1

i B

Q_’
-

WeTeto and 6 The noratl equdiions

2 .

114

are given by

-~

2
/o2,

turn out to be

Q =8y Vg v G by
(2.10)
% =€ % % O
where
) G
- 1 A 1, L
Q =9 ==7T d .+ 7= (Z J\.T»,-—j"i‘_._\)
- - I'o "‘() O_‘. b I’C / C :.'O .4-1;1
- 1 , L, e
2% T e T o T T T My
c C - Py T2
2
6 I 1 =7 . -l_ 3_ . rl . ) (,7 11}
117 71 r. 16 o1 T gr M10 Yot o b7y o
< 1 1, “172
Co = H,y = — W, i +o— (. 0., ~——E - =
12 2 "7, 71002 T gr. 16 T2 Pg _p,.lka),a,zl = (CL&)'
2
and O £,T - =i, W w ——— (N, 2 )
e /22 = o - - N . T_- )‘2 N - Ty . .
T 2G U2 G T G G2 Dy Db
Here qu denctes & m > n matrix with all elements unity.
Gliminating @, we got
1% 5% (2.12)
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where

1
i
151

l\,‘f_

1
151

o]
X
[.s‘

(@] |
‘-—l
o

w1
u
1
i
2
¥

Sre {We shall

and for & symmetrix A, AF denotes its psondo-inverse.  {d

adopt the sime definition of pseudo-inverse ag given ia sectiou Ga3).

)

- - , - P
Do ocompute  Q, o and Ko oo one necds the knowledge of 0 and

i 2.1 2el G
2 B, . . .- 2
0, As in the case of incomplete block design g0 8hall replace O

and 0, by their respective estimttes obtained from the observatims

J J
- - . . ,{- &~ L : = 1 -
themse lves. A procedure for estimdting 6. and 0. iz given in the
A -

next section.

To obitain estimates based on intra-block contrasts, we minimice

only the first term in the expression for ¢ given by (2.9). In this

case, the normal equations are
Ql=610..‘+9 C

9‘2:‘2.0, +@2C

where

2
H
=
=
!
! I ]
pet
~~
N
.
)
(S
~

and
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Eliminating €., we get

1

D "% K, (2.16)
where
,0°% "9 0

ces (2.17)

and

I

- %
K1 = Cp =Gy €4y Cpp -

If 82_ is & solution of equation (2.16), a solution of equation
7% F
3o 3 - - e » - . % .
(2414) is given by (91 T -8 Cyq Oy 92)
® L C " the matrices . < ) t
For edich of the matrice Cll’ 012 and CZZ’ the gum of the
elements in any row (column) is zero. From this it can Dbe easily
deduced that
rank -Cll 012
C,, © £ Pyt Py -2 (2.18)
21 T22

We shall assume that the left hand side of (2.18) equals

Py + P, = 2. This implies;

rak C.. -1, rank ¢ (2.19)

22 = Pyl

It also implies the estimabi ity of any treatment contrast
involving treatments from the first (second) set only. A design

with this property will be called a fully connected design.



703.

Dstimation of variances.

~

Fal
Let (8,, &) dencte a solution of

block analysis

)

Table 7.1: Andl

of Aariance mdy

nade ag

he

117

follows,

VAr1ance.,

sourde degrees of sum of sguires
freedom
(1) (2 (3)
- “—
blocks =1 V8% = DT - G /Ay
) P BTS00 / cVe
. ; .y AN sy i ”
first set of p.=1 I8 =060 + 9, 6,- Q o!
1 tr <1-1 0 A2 2 2.1 =2
tredtments
adjusted for
blocks
> l ~
R Penikd ~
secomd set of p,-1 o3+r =9 4 @2
treatments c y -
adjusted for
blocks and the
first set of
tredtments,
i 2.l
error € =p.0 =P =Dy~ + 2 39, = 03, - 88% - 8530 - 88 "7
PREIOACEE VIS N 0 7 B tr T UViy
2
total p. . = 1 S8 = o) 0 V; - GL/:jL -
G U T T Yiu GG
~e SSW J
- 2 3 * 9 3o “ S~ aa Y y o ~ N ¢ s &~
An estimtte of O is provided by O, = ——7/ . To estimdte Oy
€

we first compute

*
%

ok
“Cp

) LICIEY

”~ . 7~ .
TLoo=6. i e 1.
=¢ 21716 22 2c

2 .
. 18 gilven by

defined by
G

(3.1)

(3.2)



118

~er)
Wi

ere

'\+/’ = 2

a=r. (p, =1

<

r ,
and = trice J K i o LN L 'Q I i
ind b raced K5 0. o+ (Vlzﬁ 04, G, KX, O (ﬁl)“'- i1

- ) by - . ne .
Onece 0?1 and Kg 1 are obtoined, O, 1is elasy 4o compute., 1t
e L4 e

myy be wmoted that C%. and k¥ . are either computed for the

(SN N

f

bt
=1

intra=block analysis or can Lo easily comstructed from @ solutioson of
(2.14), the intra-block normal equations .

At Qn estimdte of Q9 we tuke
C . (3.6)

Tede Tllustrative cxample.
A extmple discus wd here vill serve +o demonstrate that with a

35 not involve voery

heavy computations .,

We shall consider the case vhere bLoth the sets contain the same

number of treatments. Suppose we have o JI5 desien for the first sot

o

of tredtments. We shall further assume that for the second set, treoat-

ments bearing the same numbers 4o the 4rentments from the first set

are put in & block and that the piiring of tredtments in +the +w

Lo



11§

4 - Tin o d e o | N Q10
is done in such A way that ench of the matrice Ho, o+ N and

Woo . is of the form
21 12

™

Direct computations show that for

i e an e the estimating

K, 1 and K2 , are of the above form. S0 solve the estimiiling

— o *

3 : 1 ~ 77 P . PR B e enel

equations for such a design the following lemmie miy be used
Lemmt [odele

Lot I be o matrix given by

l I +m noEo :

(4.1)

c1

satisfying the conditions

of 1 is given by

—
kS
—
4
N
Lo
L ]
~
p—
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where
. (n=n)(w+p)+1
e = % , mF = = —
W+ 3L+ m=n )
1 ; (g=n){o+B) + v
n* = - p* == and gf = - -
i \

(B) (1 + m-n o) , p o) (eemmn )

™
. . . o P L)
The proof consists in verifying that IGF = L = I - —~ ¢
- o+ P
e shall eonsider here the following design.
Llock Treatments
. oo .
1 (1,3) (2,1 (3,2)
. - iz S
2 <2;9) (3’4) (‘HL>

3 (3,9) (4,3) (5,4)
4 (4,1) (5,4) (1,5)

5 (5,1) (1,2) (2,5)
6 (1,6) (3,1) (6,3)
7 (2,4) {4,6) (€¢,2)

8 (5?6) (5:5) \/6’5)
9 (+,6) (L,4) (6,1)

16 (DaL) (236) (6’5)

The first symbol refers to the tredtment from the first set the rocond
refers to the tredtment from the second set. We have p. = 16,

P']=p2:6’ rG:5’r1=r2=5.



It i easil

which glves

Thus the desi

Tor intra=blo

This gives

e
t—

v oseen b

1 N.o.o= 01, i, =3
16 oL IV IV
T - e 1
e C

1 G

1 1

; ]

i i

: |
= o - -T [
Jle ‘lr_{ 1__5 4+ 4

gn belongs

Lysis, we comput

>

ck and

T - — 5, !:],\ = L
- r 16 ¢t L 6
G
1 L
012 = Z (I) + Wzl llzﬁ
1 ',"‘.) 2
EE S B ¥
i
!
5 21

&

=
=J

e

21
-2 I

p—t

=

(@]

to the type considered
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An application of lemmd 7.4l gives us

B4 =32 1Wiz= 3 By -3 Egp

-3 K 24 T, =5 By |
33 3 35
” N
A solution of (2.14) ig given Ly (61, 62)
where
N
= 0 0 e Iy nx
& = (& = 5,1 .1 %)
Pl
and &. = Q, o K, ..
2 T 2.2l
For recovery of inter-block informdtion we conpute
A =7 o} 1 = 2
o (bg = 1) =27
b= tr K; H, N\ + {C% Ck.CL KE L C C* o, . I
1 e (€4, + T410,K8 1%10%1) Tag oy
- 20X C, Kr i b= 17.
11010K g Hopy= Y
~ng . . A2
OO ig obtained from the analysis of ~Ariance sable and 46, cin
. A
be obtained with the lelp of &4y &,, @ and b given above. An
R A ne N2
estimate of Q@ is provided by 9 = O, / OC .

To write down equation (2.12), we compute

- "l 4‘+ g ~ ™

Cpp= (4+9 )T = T Bge s

- 1

C*‘] = = 1 - - - B -y

H 4 + 9 ° 6 6(4+9-l) 66
= 1 - 1 Y-

¢, % Cp, = - [0, = (=9 )0, + M)+ (L=-9 )7 I
4+ 39
~1.2
(4 + 9
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Lemma 7 . 4. 1

(2.10) is given Ly

where

and

§ may now Le replaced by

iy be applied %5

(g*l? %‘k

-]
~2(1+9 ‘)EB

the computed value of ¢ and

Ahtain K?;‘ . o+ Asolution
[ -~

\
2}

NFY
(9]
~
Qt
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