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Chapter I

IBTRODUCTION

The collection of prebability distributions en the real line
which is a semigreup under the eonvelutien eperation and a tepelogical
space under weak convergence has attracted, during ths last guarter
of a century, the attentien of such great mathematicians as Khintehine,
Kelmogorov, Bawly, Levy and ethers. Their results constitute a deep
analysis ef the facterisation problems en the one hand and the
asymptotis bebavieur ef infinite cenvelutions en the other. Hewever,

a cemplete and systematic investigation of these predlems is not
availsble in censiderabls gensrality. The aim of the present thesis

is to investigate the tepological and algebraic prepertiecs and the

inter relationship betwesen them in the space of probabdilily distributions
en gensral topological groups.

The starting peint ef the investigatien is a result of Ehintchine
acoerding to which any distribution on the real line is the cenvelution
of two distributions, one of which is the conveluticn of a ceuntable
or & finite number of indecompesable distributions and the ether 1s an
- infinitely divisible distribution without any indecemposable faotors
This gives an indication of the existence of indecempesable distritu~
tions in the real line. Hewever, this dees not say whether there

exist non-atomiec er absolutely continuecus indecemposable distributions.



In the gecond chapter, we show that, under very gemersl cenditions,
any infinite greup contains a large cluq of non-atomic and absolutely
sentimwous indecompesable distributions. The main tool in preving this
result is the fellewing theerem whieh reveals an interesting structural
property of the semigroup of distribtutionssily )& -a » ﬁn for each n
and A is weakly compact, then there exist translates &, B! ef '
a, and B, respestively, wuch that § ui{ and { Bl { are compast.
In ehapter III we study the strusture of infinitely divisible
distrivations en a lecally cempact abelian separable metriec group and
get & representation for their characteristie functionals. We preve
further that limit distributions ef *sums' of uniformly infinitesimal
randem variables are infinitely divisible and can be ebtained as
limits of certain accompanying infinitely divisible distributions.
Ve remark here that these results are well kmom and due te levy,
Khintehine and Bowly in the case of real line. The cass of the
multiplicative group of cemplex numbers of medulus unity was studied
by levy [122] and the finite dimensional vector space by Takane [20].
Regently Kleoss considered seme apecial typu of cempact greups.
Hmt [ 7 ] bas considered the same preblem in the case of Lie
groups but frem a alightly different angle.
The representation of the gharacteristic funotional of an
infinitely divisible distribution that we ebtain here turns eut te be

non-unique in general. Hewever, we are able te get a unique eanonical



representation of processes with independent inorements.

In preving the results mentioned in the earlisr paragraph the lecal
cempaciness of the space plays a crucial rele in the sense that we make
use of the centinuity relationships between the distributions and their
characteristic functienals. If hewever, some suitable cenditions
for the weak compactness ef distributions are kmown in terms of the
characteristic functionals, then we can generalise them te complete
and separable metris groups. Hilbert Space happens to be ene such ease
because of the availability eof such a compactness oriterion due to
Prohorov [16 ]. Chapter IV 1is devoted te the extensien of all the

results of ehapter III in the case ef 2 Hilbert Space.

In the ’mt shapter we generalise Khintchine's theorea (which
we have mentioned earlier) to the cam of lecally cempact greups with
a 8light medification negessitated by the presence of idempetent
distributions which in turn correspend to nmermslised Haar measures
of cempaet subgroups. We alse investigate how far these results

can be extended to a gensral complete separable metric group.



Chapter II -
Indecomposable Bistributions
«1s Introduc

According to a theorsm of AiI. Khintohine [ ], any distribution
‘on the real line can be written as the oonvolution of two distributions,
one o! which is the convolution of a finite or countable mumber of
indecomposable distributions and the other is infinitely diviéible with
out indecomposable factors. Further eny distribution which is mot
infinitely divisible has at least one indecomposable factor. This
result gives an indésation of the existence of a large olass of inde~
composable distributions. It is however not clear from this result
alone that there exists a non-atomic or absolutely eontinuous inde~
oomposable distribution. This question was raised by H. Cramer [ 3 ]
and an answer in the affirsative was given by P. Levy [I3]. Howevar
what is available is only a few examples. In this comnection there
arises naturally the question of the 'size' of the class 1, , of inde~
composable distributions among the olass " of all distributions. MNore
precisely what is the category of M, in N ¢ |

In the present chapter these questions are answered under the
framework of a complete separable metric group G. We consider three
classes of distributions: (1) all indecomposadle distributions, (2)
all noh-atemic indecomposable distributiods (3) all indecompesable
distributions that are absolutely continuous with respect to the Haar

measure when the group G 1s locally compact abelian. It is shown that



under suitable conditions the three classes are of the second category.
A theorsm concerning convergence of distributions when suitably
centered is proved in the present chapter which will serve as a very .
useful tool in the follewing chapters.
The analysis carried sut also throws some light on the existence
.ef non-atomio messures on separable and complete metric spaces.
2:2. Preliminaties. Throughout the chapier we suppose that G
denotes a complete separable metric group. Additicnal assumptions en
G will be specially mentioned as and when necessary. Ve employ the
custemary notation of denoting the group operation as x¥y, x, y 6 G
in the case of gemeral groups and as x4y if G 41s abelian. € always
denotes the uvnit in 6. PFor any two subsets A, B of G we write
AB = [505 =xy, x €A, y € B] amd AL « [515™ € 4] (in case the growp
is abelian ve use instesd the symbols A+B and - A respsctively).
The convolution operation. By a measure (er distribution) we
mean a probebility measure defined on the O~field (> of Borel subsets
of G. Let M denote the collection of all probability measures en (3

For B, Y € M the convolution B*Y is defined as follows

(2.1) @ ¥)(a) = / niax™Y)a v(x).

With this opsration M becomes a semigroup which is abelian if and

enly if G is se. It should be moted that u*Y in (2.1) ean be

written in the equivalent form

@) =/ ¥ Danx)



For esch g€6 and peM ,u*g denotes the right translate of ¥
ky g 1.6, the measure W(Eg ). g* B 14 defined similarly. By s
translate of | Wwe mean a meagure of the form n*g or g* .

Definition 2.2.1. A measure A is decomposable if end only
{f there exist two nondegenerate measures 1 and V such that
A=p*V . In the contrary sase A 1is said to be indecomposable.

’aﬁnition 202020 A nondegenerate measure & is said to be
a factor of a measure P if and only if there exists a measure v
such that either P=a*Y or B =7 * @,

We shall denote by VY[, the set of all decomposable measures and

T, the set of all indecomposable measures. |

Datinition 2.2.3» The spectrum of a measure ¥ is the smallest
closed st A CG such that u(A) = 1.

The existence of the speotrum is well known and it is also easy to Shod”
thet if A, B, and C are the specira of the measures W, and p *Y
respectively then C = closure of (4B).

Tepologies in MM « In the sequel we shall be mainly concerned
with the weak topolegy in T . It is defined through convergence as
follows:

Definitiom 2.2.4. A sequence of measures W, converges weakly
to a measure B Aif and emly if, for every real valued bounded continuous
function f defined on G, / fau -> [ fap.

It is clear that the class of subsets of 7v( of the form

[ws 1/ £an - lfia% I <8, d=1, 2y oee K]



where (f., oeuy £,) is any finite set of bounded contimwous funetions
and (€, ..., 8]:) is any finite set of positive mumbers forus a neigh-
bourhood system for the weak topolegy in MU . It is useful te note that
the sets of the type

[Ren(vy) > Bo(Vg) =&, 1 =1, 8, +o., k]
where Ei>0 for all 1 and Vi are open subsets of G, are open in
the weak topology.

How we shall gather a few resulis about the weak topelogy in MM
which we need in the sequel. | |

Iheorem 2.2.1. (Prohorov [16], Varadarajan [21]). If G s s
complete separadle mstric space, the space " of measures on G becones
& complete separable metrie space under the weak topolegy.

Theorem 2.2.2. (Prohorov [ 16]). If ¢ 4is a complete separable
metric space, a sibset M C M is oonditionally compeset in the weak
topolegy if and only if, for every € > O, there exists a conpact set
KgC ¢ such that u(K.) >1 -¢ forevery p e NX.

Iheorem 2:2.3. (Bangs Hao [17]). In a complete seperable metric
space G a sequence ﬁnS"""‘ converges weakly to § €M if and only if
the following helds: For every class (A of continuous fumctions on ¢
such that

1) Q. 1s wniformly bounded,

11) Q. 1s compset in the topology of wniferm convergence on

compacta,

n sup | [ fap - [ tap = o.
a-)ﬂfaa/ . A



All topological notions in YY{ used in sections 3-6 refer to
the weak topology. Omly in the last section, we find it necessary
to consider the strong topology induced by the norm [Ipil =
sup A €65 u(a)t, pe M.

Indecomposable distributions on the real line. We now state
two results due to P. Levy [ |3 ] coneerning absolutely continuoys
indecomposable distributions on the real line. ¥e shall have muian.
to use the latter one in the last section.

let Z be any real-valued random variable which takes values in
a bounded interval. We denote by [Z] the integfal part of Z and the
conditional distribution of Z given that [Z] = n, Dy LK

Theorem 2.2.4. let Z be any real-valued random variable
taking values in a bounded interval and satisfying the follewing
properties:

(a) [2] is even with probability one,

(b) the distribtution of [Z] is indecomposable,

(o) the family of distributions ¥, n rumming over
possible values of [Z], has no common factor.

Then the distribtution of Z 4is indecomposable.

Theorem 2.2.0. I1et By, L dencte the uniform distributions
on the intervals [a, b] and [, d] respectively. If (bwa){d~c) 4is
irrational then #, and B, have no common factor.

s T+ In the theory of sums of indepen~

dent rmdm variables we often ocome across the situation where a
gequence of distributions fails to ceonverge to any limit but actually

does converge when suitably sentered (see Cnedenke and Kelmogerev [ 4-])

/



In this seection we shall make an analysis of this phenomenon in relation
to the eomluéim operation botn@ distributionson groups. To this
end, it is convenient to introduce the following

Definition 2.3.1. A family YT 4s said to be shift compaot if,
for every seqjence ;tn’f» YT (a=1, 2y «ee), thers is a sequence of
such that (1) 3, 1s a translate of B and (2) %

measures )

has a convergent subssquence.
The main result to this section is the following theorem which

reveals an important structural property of the topelogiocal semigreup
in relation to the notion of shift compactness. This will be used
often in the following chapters.

Theorem 2.3:1. let {A 3 o {w {+{2 f+ be three

sequences ¢f measures on G such that
(3‘1) An - &L‘ )f}n (n = 1y 24 esa )

If the sequence {An} is conditionally compact, then each ome of
the sequences {”n} and { Y, | is shift cempact.

As an immediate consequence we have the following

Corella +3.1. FPor any A€ NT , the family 7 (A) of all
factors of A 4is shift compact.

Before proceeding to the proof of Theorem 2.3.1 we shall
establish the follewing

Temma 2.3.1. Let §A ] 4 {m ] ,{% ] ve three sequences of
measures on G such that A =® * 2, for each n. If the

sequences {An}and {nn} are conditionally cdapact then so is the



seqiemce {)),,L z .
Proof. Since the sequences é;‘n ; and {png are oonditionally
compact it follows from Theorem 2.2.2 that given € > 0, there

oxists a compact set KE such that
NE) > 1-e PE)>1-¢

for 211 n. Then we have

(3.2) 1-e ¢ A K) = /3y T)an ()

§ . %07 Kam () «
or

(3.3) fo YO gap (x) > 1 -2 .

(3.3) 4mplies the existence of a point x € K. with the property

=]
Y xg Kg) > 1 =3¢
and consequently we have
Y G K)>1-3c¢
A
for all n. Since l? I‘ is compact and independent of n, another
application of Theorem 2.2.2 leads to the fact that the sequence

{7, ] 1s conditionally compact. This completes the proof of the lemma.

Proof of Theorem 2.3.1. We choose a sequence er of positive
nuabers such that € ¢ -} . Then the conditional compactuness of
the ssquence { 2\“? implies$ by Theorem 2.2.2, that there exists a

ssguence of compact sets K,, such that

An(xr) >1 - al’, =1, 2, «c.



for all n. HNow choose a positive sequence ”7'L descending to zwre

and satisfying

poe o
31 8rnﬂ s %.

let
| E =[x nn(xrxd) >1 -7 ]
(3.4) )
L r-Q E -

Then, from (3.1) and (3.4), we have

1-¢ gA(K) - IEnr B &y () + /En,“n(‘,-fI) 2 3.0

$ LB+ Q-7) ¥ (E)

where E;r denotes the complement of the set Enr‘ Thus we obtain

&

%WE § 5

and consequently
; = i
)41(’;} sf‘r}?ws 2

Eence Pn-fﬂ e« Let X, be sny element in Fn’ Then, from the

definition of rnr we have

(3.5) B (K,x,n B N

for all n and all r.




Wo now write & =u *x (the right translate of LR

-]
xn) and B, = x

* . Them, obviously, A =a * ﬁ‘ and from
/(3.5) and Theorem 2.2.2 1t follows that both the sequences A I
andf_anj’ are conditionally compact. Lemma 2.3.1 now implies that

{ B_| 1s conditionally ecompact. The fast that « and B are

LR, n
translates of By snd 3 respectively ocompletes the proof of the

theorem.

224 The olaws M is a G,. The purpose of this section is te
prove the following

Theoren 2.4.1+» let G Dbe a complete separable metric group
Then the elass YV of all indecomposadle distributions forms a G,.

Before proceeding to the proof of this theorem we make a |
digression in order to pick up a few auxiliary fa:otn;

et tl’ !'2, ses 5 be a sequence of bounded functions on G
with the following progiirties

(a) for esach 3, f‘(x) is uniformly continmous in both the
right and left uniformities of &.

(b) the sequence gsz separates points of @.

The existence of such a sequence of functions may be seen as
follows. Since G is a separable metrie greup there is a sequence of
meighbourhoods (N, {of o such that (|7 H = {e] . Thenigs
well known result (of. A. Weil [ 2 Z , pp. 13-14]) there exists a
sequence of funotions f, (x) (1 =1, 2, ...) which are wniformly
continucus in the twe-sided uwmifermity (1.e., in both the right
and left wnifornities) and such that £,(0) =0 amd £,(z) =1



for x f N . Let/ xn§ be & sequence dense in G. Then the eeuntable
family S -f ’ijj where ﬁﬁ(x) - 1(113) Jossesses both the preper~
ties. It is enly necessary te preve that the family S separates

points of G. If not let & and b be two distinot elements of ¢

such that ﬂij(a) - yu(b) for all {1 and § er eguivalently

Ii(axj) -ti(bxj) for all i and J. Singe X, s dense it
follews that £,(a5™)) = £,(e) =0 for all 1. mt ! FH tor
seme 1 and bence £,(ab)) =1 for seme 1. This centradietien
shews that S = (’:Lj) separates peints of G.

In all that follews, S = { fjg is'a fized sequence with the
above properties.

It is then olear that a Beagure | en ¢ is degenerate if and
only if the indused measure nf;"‘ on the real line is degenerate fer
e®ash j. For any real valued beunded centimueus function £
and any messures i, we write

Y (em) = wup [ Jr? (xadap ~ (ft(en)an)?],
(4.1) aee

L) = wup [ P (axdan - (fe(ax)an)?)
ats
It is ebvious that a measure B 18 degenerate if and enly if
71(:3.1&) =0 for all j eor equivalently Yz(f;’,n) =0 forall j.
lawma 2.4.1. If £ 4s bounded and uniformly centimuous in
beth the right and left uniformities of the group G and “n is a
sequence +f messures eskvarging weakly te %, then

lim V,(fﬂn‘) - vl(fi ﬁ)

n =) oo

lim V,(fy, ) =V, (£, n)
B~y e 2 n 2V



Proof. For each f which is beunded and wniformly continu-
ous in the right as well as the left uniformity, it is clear that each
one of the families of functions if(n). at GE, {fz(u). at G} .
thax), a & e? R {fz(a). at a§ is wnifoimly bounded and equi-con-
tinuous at each point of @. 3mcqmﬂy, they are conditionally
compact in the tepology eof gniform convergence on compacta. The
lemma is then an immediate congsequence of Theorem 2.2.3.

let Now x“ (¢) ve defined as follows
(42) B () = [mmewrp, Y, @) ¢, VL, B) ) €]

where ri and tj are any twe functions from: S. Then we have
Jomma 2.4,2. For any £ >0 and esch i, § the set
Eu(ﬁ) is olosed. |
Proof. Let B be s sequence of measures in Eu(t) conver-
ging to some measure }. Then by (4.2) there exist measures a and

3;1 such that

i Nl
(4.3)
Ve ) e U, B 2¢

From Theorem 2.3.1, it fellows that there exists a sequsnce 4 ¢ ¢

n
such that the sequences of measures “ * an' and dgl * Bn are

conditionally cempact. Thus we can choose subsequences a‘k * Q and

"k
a" 1. B N converging to some measures % and B o Tespectively.

Py



.15

-1
Since p_ oonverges to¢ B and W =& *a *o"*B we have
» B, By B B
R=a *B . Itis clear from the definition of ¥(f, n) (see (4.1)

that

(4.4) ‘;(f’ “nk’ aik) - ‘ﬂ(f' Nnk)-

From Lemma 4.1 4t follows immediately that
e V(f,, & ) = V(L ).
Nori i U S
8imilarly

) i;uu L 3%) - Vi By)e

Thus frem (4.3) we have

Ve ®) 28 VL B) 2

or p & nu(t). This completes the proof s
We shall now prove Theorem 2.4.1 by shoving that the sst of

all decompesable measures is an 3"_. In fact

(4.5) WM, = JURA rgl, By, (e

It is olear that any measure belonging to the right side of (4.5) is
decomposable and hence belengs to VY(,. let mow ¢ be any measure
in T, » %Then there exist two nondegenerate measures « and §

such that 1 = x % B. Singce & and § are nondegenerate i% follows

" from the remarks made earlier that there exist two fumoctions fi

and fi belonging to 8, with the property



vi(fj.’ a) > Q! %‘fj’ B) > O.

Lot € =min [Y(£,, o), Yf,, B)]- Them for r > e, pe B:u('.l)', T
Thus MM, is contained in the right side of (4.§). An application of
Lemma 2.4.2 completes the proof of the theorem.

Remarks. 1. Iet 7 denote the class of monatomic measures.

It may be noted that the elass of all indecomposable nomatomic nes -
sures is a % in "t . under the relative topology. At the moment,
it is not eclear whether even a‘ single nonatomic measure exists in G.
These points will be clarified in section 6.

2. lst G be a locally compact abelian separable metriec group
and ¢A (G) the class of all abselutely continuous distributions im
G. Since the norm topology im ¢4 (G) 1s stronger than the weak
topoelogy 1t is clear that the set of all indecomposable absolutely
contimuous distributions is a G, in ¢4 (6) (the relevant topolegy
being the morm topolegy).

To determine the category of the various classes of indecemposable
distributions, it is thus sufficient to find their e¢losures. ¥We note
ohe case where the class YV, is of first category. This is the
situation whem the group ¢ is finite, as is implied in the work
of Vorebev [2.2.].

In the rest of the chapter we will study the clesures of three
classes of indecomposable distributions

(1) the general case - the class N, dtaels)

(2) the nonatemic ease - the olass of all monatomic measures in ",

(3] the absolutely memtinucus case - the class of indecomposable

latribuntions ahanlntaty ammdidmermesn wd AL . o - % 2. ax



Hear measure in a locally compact abelian group G.

«5. The ral case. Before we state the main theorem of this
‘aaction we begin with some lemmas, the purpose of which is to cons-
truct indeocomposable distributions in G. To this end we introduce
the following definition. |

Definition 2.5.1. A subset AC G 1s seid to be decomposable
if there exist two sets 4,, A,C G such that (a) each of 4, A,
contains at least twoe elaments snd (b) AA, =2 aset LG 1s
said to be indecomposable if it is not decompogable.

Lemma 2.5.1« let A be any countable indecomposable set and
B & measure such that B(A) =1 and u(f{gf) >0 for every g € A.
Then j 4s indecemposable.

Proof. let us suppose that p is decomposable. Then 1 :pl*nz
where Y and By axe nondegenerate measures wvith mass cencentrated

at s countable or finite number of points. Let
A = [616 2 6y my(g) > 0], 11,2

From the conditions of the lemms it follows that A = Al‘z’ which
eontradjcts the faet that A 1s indecomposabdle.

Lemma 2.5.2. let B be an fnfinite countable set {g,8,s+«s {
with the following property! g6 # g,  for every set of distinet
intergers r, s, t, 4 mo two of which are equal. If F is any finite

subset of G then the set B U F ig indecomposable.



[
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Proof. Suppose the lemma is nat true. Then there exist two sets
4;y A,y at least one of which contalus an infinite mumber of elements and
such that 3U Pm ‘lAze It Al - (xlp 12 P xa oco,) and ’1' ,‘2 [ 4 ‘2.
Since the elements "3’1’ =1, 8 +.. are all distinet all but a finite
-mumber of them belong te B. Thus thiyw exists a finite set H of integers

such that

X, ¥, ¢B for v f N

Take any integer m f§ N. For at most one integer s, say s = K e

can be squal to LS Siailarly, or at most one integer, say s = kzg

X, ¥, o be equal to x Yy« Choose any integer n F ¥ and different
from klandkz. Then x-yl, x.yz,xnyl a.ndxnyz are all

distinet and belong to B. But
xy (xy,)? = xg (xy)
w15 W2\2

wvhich sontradicts the defiming property eof B.
Ismme 2.5.3. If ¢ 4s an infimite group, then there exists a set B
with the property desoribed in lLemms 2.5.2.
Proof. let &)s &ys 33 be any three distinct elements of the group G.

Suppose €10 850 ooy & have been chosen. Consider the set An of all

elements of the form g{- 1 g'-;- 1 g-‘i'- 1 where 11, 12, 13 are any three
1 2 3

positive integers less than or equal to n. Since An is finite and the
'group G 1is infinite AA is nonempty. Choose any element &1 from

A; o The gequence €yr Eyo oo chogen in this way has the required

property.



e et

Theorem 5.1 If the groug G 1is infinito, then 7T, 18 a dense Gb

Proof. Any measure in G 4is a weak limit of measuresconcentrated at
a finite number of peints. From Lemma 2.5.1+2.5.3 it is clear that any
measure with a finite spectrum is a weak limit of indecomposadble distribu
" 4ioms. Thus indecomposable distributions are demse in MU . In view of
Theorem 2.4.1, this completes the preof.

2:6. The monatemic case. To start with we shall investigate the
existence of a mon-etomic measure in an arbitrary complete separable metris
space. This, in itself, is mot with out interest. (ef. [14 7).

Theorem 2.6.1s Let X bve any complete separable mdtric space without
any isolated points. Then there exists s mon-atomic measure on X.

Proof. Lat 1M be the class of all probability measures on X. Then
by Theorem 2.2.1 ™M jga complete separadble metric spage under the weak
topology. Por any given & > O, we dencte by C(€) the class of all
meagures vhich bave at least one atom of mass greater than er equal te ¢.
Then the class of all measures with atomic cemponents can be represented |
as U:-l ¢(1/r). If there does not exist any non-atomic measure, we
have

N - U e(d).
fal

It is not difficult to verify by making use of Theorem 2.2.2 that C(g)
.1: elesed in the weak topology. Thus by Baire category theorem, at least
one C(1/r) has interior. Hence there exists a messure B, with an atom

of positive mass > O > O such that, whenever a segquence of isunrel p,n



eonverges weakly to Bor B, has an atom of mass at least O for suffi-
ciently large n. Since measures with finiu spectrum (i.e., for which
spectrum is a finite set) are everywhers demse we oan, without loss of
generality, assume that By is a measure with masses Pyr Py evcr By
- at the points X :;2, soer X respecotively.

let H (:1), lil(xz), coey l’n(xk) be sequences of neighbourhoods
shrinking to Xy 12. veey T respectively. We can and do assume that
these neighbourhoods are disjoint for each fixed n. Since by assumption
X has no isolated pointe each ci’ these neighbourhoods ocontains an infinite
mumber of points. We distribute the mass p, among the points of K (x,)
such that the mass at each point is less than 3/2. By doing this for every
i and every r we obtain a sequence of measures By converging weakly
te B, and such that the mass of B, & teny point is ¢ b/z, This
contradicts the defining property of B, and shows that C(l/r) has

no interior for any r. The proof is complets.
Corollary 2.6.1. Let X be any complete separable meiric space

with an uncountable number of points. Then there exists a non-atomic
measure on X.

Proof. let Y denote the set of all socumulation points of X.
Then it is well kmown (of. Hausdorff [ &6 pp. 146]) that X ocam be writtem
in the ferm X = YU N where

(2) Y is closed and dense in itself,

(») ¥ is countable.

By Theorem 2.6.1 there exists a non-atomic measure on Y and hence on X.



The proof of Theorem 2.6.1 mtual.ly yields something more. In fact
we haﬁ

Corellary 2.6.2. Ilet X be a complete nmabiu metric space with~
out isolated points. Then the set of all mcn-atomic measures which give
positive mass to each open subset ef R is a dense Gb in M .,

If G is any nondisorete complets metric group, them it is clear
that it is necessarily uncouniable and camnot have any isolated peint.
Gonsaqu-a.tly we have the followingt

Theorem 6.2, let G be any nondiserste complete separable metriec
group. Then the set of all nen-etomic indecomposable distributions which
give positive mass to each open set is a dense Gb in M.,

2:1. The sbeelutely continuous case. In this section we suppose
that G is in addition lecally compact abelian and consider messures
absolutely continuous with respect to the Haar measure on G. Iet
eH = e (§) demote the collection of these measures. The convergence
notion that is appropriate for .4 is the norm convergenced of measures
or the !'1 convergence of their densities. The main object here is to
show that in the sense of this oconvergence the indecomposeble mesasurcs
in c4 are dense.

In the first instance we develop in the following lemmas a general
mothod of construseting absolutely continuous indecomposable distributions

in G.
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lemma 2.7.1. let Al’ Az, A5 be three cliésed disjoint subsets of
¢ satisfying the following conditions ¢
(1 (g -2)0 (g =-n) =9 " for 1=1,2,3 and J ek
@) (4 =4)) 1(a, = 45) = (A = 49) ] (a5 = 4))

-y -a)0) () -n) =9

lat W), Wy, By De measures with ni(Ai) =1 and A= +RM, ¢ ’5“5'
vhere p, >0 (1 =1, 2, 3) asd p) +p, +p; = 1. Then A 1is decomposable
if and omly if “1’ pz. B} have a nondegenerate common faetor.

Proof. If nl, ﬁz, 115 have a nondegenerate common factor, it is
obvious that A is decomposable. Conversely let us suppose that A 1is
decomposable. Then there exist two nondegenerats measures &« and P

such that A = ax * B, Iet C and D denote the spectra of & and P
respectively. It is obwvious that
(1.3) c«»nc_alquuA} - A

For sach ¢ € G, we write

(7.2) .Bi(e)-[azaen and a+asai]-nﬂ (Ai-c)

for i =1, 2, 3. The rest of the proof depends on an analysis of the
nature of decompesition § D, (c) { of D. It is comvenient te divide it
inte three steps.

1. The sets Di(c) possess the following properties.



WU, %) =D for sach o
(11) 3 (e) ﬂbs(c) = for 1 =f 3

(1ii) For any twe disfinet o, and oy Bi(°l) - Di(cz) for
some i, implies that BJ(’i) - Dj“z) for j =1, 2, 3.
v)  4f o) # o5 Dy(e)))) Dy(e,) # § tuplies that 31(01);-33(_02):

The first three properties are very simple. VWe shall prove (iv). Let us
suppose that h‘(a) and Bj(a) have o common point d and ”1(“1) 1‘”3("2)'
Then there exists a goint 4' £ D, (e,) which is not in Dj(ez). From (i)

it follows that there is a k(s j) such that 4' e Dk(cz). From these

faots we have

(7.3 e +d e, o, +d' &4, and

L 1]
ez*dﬁAJ, 32+d EAk.

Consequently
d-are (s -a) ﬂ(Ad -a).
This contradiets the sssumption (1) of the lemma and preves (iv). It should
be noted that the property (iv) implies that the decempositions D, (e) j
for ¢ € C are only permutations of each other.
II. One of the following relations is always satisfied. Either
(a) fer sach e & C, all but ome of Bi(o) are empty, i.e.,
Bi(e) =D for some £, or
(») for any twe ) ‘2» €cC, Bi(cl) - Bi(°2) for 1«1, 2, 3.
The proof of this is quite straightforward and is similar to that
of (iv) above.
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III. Now we suppose that case (a) obtains. let C, = [othi(e),l .
It is then easily verified that (1) C,'s are matually disjoint amd
their union is ¢, (2) ci +DC A; for each 1. Ilet the measyres

@ (1 =1; 2, 3) be defined as follows:

o (B) = a(8 N ¢ )/a(c,)

(Wote that “("1) > 0): It is them easy to see that
ai*'ﬁnai for 1 =1, 2, 3.

Thus for each 1, B 4is a facter of Byo
In ease (b), let D, =D (e).— Obviously D,'s are mutually disjoint
asd C 4+ D C A, for eash 1. Writing Bx(g) - B(E N 91)/3( D,) we get as

bafore

“*ﬂilﬂi | for 1-1.2’ 50

In this ¢ase « 1is the required common factor. This completes the proof
of the lemma. |

lemma 2.7.2. Let G be a moncompact group. Then for any given
compaot set K, thers exist elements g, h € ¢ guoh that the sets K,
K+ g K+h satisfy the conditions (1) and (2) of lemma 2.7.1.

Proof+ It may be verified that conditions (1) and (2) of Lemma 2.7.1
in this oase reduce to choosing g and h such that mone of the elements
€ hy g ~hy, g +h, 2g +h, 2h - g belong to the compact set ‘

C=(E~K)w(K~-X. Let

F=[xi1x«2y,yc¢4¢]



Then there are twoe possibilities.

| Case 1. P has compect closure. In this cams we can choose an
element g such that g€ ¢ and FN\ (C + g) = §. Since ¢ is noncempact
such elements exist. Let h be any element such that h £ C U (C+g) U (C-g)

.U (c+2g). The pair g, h satisfies our requirements.

Cese 2. The closure of F is not compact. let g f£ C be arbitrary.
Since ¥ 1is not compact we oan find an h € G such that 2h f Ceg and
BfECU (Cog) U (Cog) U (Co2g) U (C+2g). As is easily verified the pair
€ h serves our purpose. This cénplotn the proof.

lemma 2.7.3. Iat G be an infinite compact metric abelian group.

~Jot A be a subset such that
(1) 0 < A(A) <1
(@) Iy }y(x)ar(x)4 o for 3=0,1,2 ...

where A is the normalised Hear measure on G and ﬁe'}l’ ss. are the
charsoters of G. If A, A, are defined by

AE) = AG® () A)/M0)

A (E) = MENAY/AGY),

then 11 and 3.2 do not have a common facter.
Proof. Let A  be the identity character. Since for the Haar

meagure /, A@A=0 for §f O amd 0 ¢ A4) ¢ 1, ve have

(7.4) [4s Ry e A 0 for every 3.
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¥ shall now prove that the measures Al and 4\2 eannot haw a ceommon
factor. If this is not true, then 1ot u be a common factor. Then thers

oxist measures al' 0:2 such that

- (1.5) M=ag*m A-a g,

From the definitions of "1 and A, and (7.5) we have
{(71.6) A(A)Al + L(A.")A2 -A= ()((ﬁ.)ml + E\(A')az)*ﬂ..

Taking the eharacteristic fumctionals on both sides of (7.5) and (7.6) we get

TRy an = (] pam)( / Ryam)
(1.0
TRy @ = (] ki) I Ryam)

(M) Kydoy + Aa?) / ARO[ Aam) =0 far 340,

From conditicn (2) of the lemms amd (7+7) we deduce that

/)ijtp * 0 for all j.
Thus frem (7.7) we have
Aa) /}ijtm1 + A(A?) JAde, =0 faranr y4 o

whioh iz the same as saying

(7.8) Ma)a, + Mat)a, = A,
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From (7.5) and the definition of A, and A, we get

[ & (ar - x)an(x) = A, (a1) =0
J ay(a = x)an(x) = A,(4) = 0.

Conseguently
al(j.' -x) = 0 acep)

GZ(A - x) = 0 a.e{nt).

Thus there exists a point x’ such that

(7.9) o (At = x) = &y(a - x;) = 0.

(1.8) and (7.9) imply that

MeN [a=-x])
%(8) - ) = [y * (- x.)1E)

AN [ar -2 1)
R R N

Thus from (7.5) and (7.10) we ebtain
(7.11) N=rh*(-x)*n A=A *(-x)*p.
Taking characteristic functionals on both the sides of (7.11) we have

[ Aot x) = w) =1 for a1l §.

Thus & is a.oéencrata .at the peint X, The proof of the lemma is complete.
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Iemnn).7.4. In any infinite onpsct group G there exisis a set
A pe.@asmg the properties (1) and (2) of lemma 2.7.3.

Proof. Let S(A) bs the measure ring obtained by considering the
space of Borel subsets of G moduloe A=pull nets. This is a complete
metric space with the distance d(E, F) = A(EAF) where E and F
belong to 3(A) (ef. [ 5 pp. 165-169]). let A, Ay .- be the charac-
ters of G, )i° being the identity. We consider the follewing mapping

from S{A) to the complex plane. For any E € 5(A), we write
The mapping f 3 is obvicusly continuous. Hence the sets
vy - (Bs [ ;(Ja;.,l 0}

are open in S(A). We shall now prove that each VJ is dense in 5()A).

Let A € 8(A) and

!, AA = 0

Let A{A) =6 >0, Since A 4s mon-atomic, for any O ¢ & {( ¢ there
exists a set BC A puch that €/2 ( A(B) ¢ €. let C Dbe any subset of

B for which
/e Kgdh o 0.

Sdeh a C exists, flor otherwise /13 will vanish in B almost everywhere

but at the same time 0/‘3 | =1, The set A 1 C!' has the property
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aancr, 4) = A((ANCr)AA) = A(G) € €.

Since this is true for any sufficiently small € it is possible to get A
as a limit of elements belonging to vj. Since the class of gsets A with
A() > 0 is dense in the ring S(A) it follows that the sets V, are
actually dense in S(A). By the Baire category theorem it fellows that

ﬂ:—; V, is dense in S(\). Thus there exist Borel sets with ths

required properties.

Lexma) - 7.5« In any lecally compact separable metric abelian group
¢ there exist two absolutely eontinuous measures with compact supports
vhich 40 not hawe a common fsotor.

We shall prove this lemma in two steps. Firast of all let us
assume that G 1s a finite dimensional vector space. let ‘1 and 12
be twe cubes in G gsuch that the ratic of the lengths of their sides is
irraticnal.

Then the uniform distributions B, and By concentrated in Al. and

A, respectively, oannot have a common fagtor. Per, if they have, then at

2
least one of the one-dimensional marginal dfstributions of 1, must have
a common factor with the corrssponding marginal distribution of Bye Since
the corresponding marginal distributions of LY and B, are rectangular
distributions in the real lime with the #atio of the lengths of their
supports irrational, it follows from Theorem 2.8.5. that they cannet have

a common factor. This proves the lemma in the case when G 1is a vector

apace .
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If G is an infinite compact group, we have by Lemma 2.7.3 twe
absolutely continmuous measures which do not have a cm mfor.
Now a result of Pentrjagin [15 ] states that for any gemeral loeally

compact group G there exists an open subgroup H such that

H=V9 2

where V is a vector group, Z a compact group and @ denotés the direot
sume In V we take any twe absolutely continmuous measures 'ﬂl and v.z
without any common facter. If Z is infinite we take two absolutely

contimuous messures 2 and )} in Z without common factor. If Z is

finite we take ) and ) to be amy two degenerate measures. We form the

prodnot measures

Mem I s ANep X

in H, Singe H is open Al and )\2 are absolutely contimuous with
respect to the Haar measure in G. 3Since none of the marginals of Al
and A, have s common factor we connlude that Al and 7\2 thenselves
cannot have a common fastor. This completes the proof of the lemma.
Theoram).T.1. In any locally compact noncompact complete separable
metric abelian group G the set of all abaolutely contimous indecomposable
distributions is a dense 6, ir o~ ().
That the set under consideration is a Qb fellows from the remarks
made in section 4. It remains to be proved that it is dense. It is alear
that the set of all absolutely continuous measures with compact supperts

is everyvhere dense. Thus it remains only to prove that any absolutely



continuous measure } with oompact support is a limit of a sequence of
absolutely contimuous indecoaposable Ws. Let the suppert of n be
x‘. Let “1 and '9,2 be two adsolutely eontimuous measures with compact
supperts II and 12 and having no common factor. Such measures exist
because of Lemme 2.7.5:. let

L-IU UK
" By ueing Iemma 2.7.3 we choose two points g, h € G such that K, K+g,

E+h satisfy conditions (1) end (2) of Lemma 2.7.1. We write

QTR GEm e Gewmth

R R A R LR YT

From lemma 2.7.1 it follows fhat B, is indgaﬁnpenblo. It is ebvious
that W, oonverges in morm te &, which is the same as h. This complotes
the proof of theorem.

Remark. 1In the adove theorem the assumption of moncompactiness of
¢ bhas played a crucial role. The question arises -~ is this assumption
necessary T 0Or, more precisely, if ¢ is am infinite compact greup,
1s the cellection of indecomposable distributions in oA (G) dense in

6 (G) ? The answer is not kmown.
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Chapter III

THE CASE OF A LOCALLY COMPACT GROYP

*h @ troduct
The celebrated levy Khintchine representation for the sharacteristic

function £(t) of an infinitely divisible distributien on the resl line

is given by

: o
CHV O PRpES PR < L) o ptas ) lfl 6(x) §
where r and O are real constants, ¢ 3 0 and C(x) is a bounded non-
decreasing function of x which is continuous at the origin. r, ¢ and G
are uniquely determined by §(t). Comversely any function of the type (%.1)
is the oharacteristie function of an infimitely divisible distribution.
EKhintchine and Bawly went further and proved that the limit distributions
of sums of uniforaly infinitesimal random variables are infinitely divisible
and that they can be obtained as limits of certain acoompanying laws which
are infinitely divisible. A historical and complete account ecan be found
in Gnedenko and Kelmogorov [ 4-].

Severals attempts bave been made to extend these results to other
situations. K. Takanmo [2C] has generalised both the representatién and the
theorem on accempanying laws to finite dimensional vector spaces. Hunt [ 7 ]
has given representation of one parametric semigroups in lde groups. Very

recently Kloss [ [ O] has extended these results to certain compect groups.
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Boohner [ 2 ] has studied this problem from an emtirely new angle, by
axiomatising the concept of characteristic functions.

In the present chapter we generalise both the representation and the
accompanying laws to the case of a locally compact group. The method although
similar to the classical method in the case of the maQ{:fs slightly different
and more systematic. Seme of the methods are powerful enough to be eapable
of application in monlecally cempact groups as well.

220 8 Notat .

A11 groupe comsidered in the present chapter are locally cempest,
abelian and separable metric. Let X denmote such a group and Y Dde its
character group. Por x € X and y € Y, let (x,y) denote the value of the
character y at the point x. By dﬁality thesory the relation between
X and Y is perfectly symmetric, that is, X is the charaoter group of Y.
Further 1f G is a closed subgroup of X and H is the annihilator of G

in Y defined by the relation
E=[ys (x,5) =1 for all x ¢ & ]

then G and Y/H are character groups of each other. These facts and seme
well known results concerning the siruoture of locally oompact abelian groups
will be used freely. These results are contained in A. Weil [23].

By a measure on X we shall mean 3 non-negative countably additive
set function defined on the Borel O-field of subsets of X. Ve shall refer
to probability measures as distributions. let M denmote the class of all
distributions. Then " becomes & semigroup under convolution. (See section

2.2). Since the group is abelian 45 48 1T . The convelution A * e A
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of the n distributions will be denoted b: ?;L; AJ and if ).1 - 7«2-‘-...1\‘-&
this will be demoted by A .

These definitions can alsc be extended to the case of totally finite
messures alse and we will have occasiom to use them.

For any measure § on X we denots by § the measure defined by
#(A) = u(-A) where ~A 1s the set of inverses of A. Then H is alse a -
measure. We denots by nﬂz the measure B * @i.

The tepolegy in T will be the weak topology which was defined in
section 2.2. All the proparties of this topology which we meed have already
been mentioned in section 2.2. Convergence of a nquamo‘ g in this
topology to 1 will be denoted by g-) B .

For p €U, the charscteristic function B(y) is a function on the

character group Y, defined as follows
uEy) - { (xy 7)a u(x)

Some of the well known properties of the function n(y) are given below.

1) p(y) 4s a unifermly contimmous function of y inm the
group wnifornity

2) n(y) determines 1 wuniquely

3) (r*NG) =nly) Ay) forall yeX and g, AT

8 ) -0

5) B=> B if snd enly if :(y) => #(y) uniformly over compaet
subsdts of Y,

6) it g(y) converges uniformly over compact subsets of Y then

there is & 1 € N7 suoch that g(,y) «> #{y) and hence 1 =) n.
n
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A dlatribution 1 4is said to idempotent if ¥° = p * x for soms x & X.

If we write A = n * (=x) then it is clear that 3 = A so that AMy) =0

or l. From the inequality
( 2| ) [1‘3(3171"72)]‘{1‘3(‘9’1‘72)] £ 2[2‘3(3’¥1)'R(1J2)]

(R denoting the real part) it is clear that the set of all y fer which
AMy) =1 4s an open and oclosed subgroup of Y. The amnihilator G of this
subgroup is cempact and A 1is the normalised Haar measure of G. Tws 1

iz a translate of the Haar distribution of a compaot subgroup.

It follows from theorem 2.3.1 that a family g of distributions is
shift compact 1f and enly if the family | 12 1s compact.

From theorem 2.3.1 ¢an also be deduied the fellowing

let | & { be a sequence of distrilutions such that &  1is a faster
of & ., for each =u. Then if an:; is shift compact, one ean find
translates ﬁ; of G‘ such that “:‘x sonverges weakly.

Proef. Iet P and PB' be any two limits of shifts of subsequences
from o . Then P is a faster PB' and B' s a factor of B. Comsequentl
B and P*' are shifts of one amother and hence we can choose suitable
translates c; of “n such that a;‘ CONVErges.

In an exactly the same way is proved
Theorem 3.2.2. |

It ; «  4s a sequence of distribution such that « contains « .

as a factor for each n, shift compactness being automatically ensured,
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there exist translates a; of « such that a; converges weakly

Bemark
These theorems were proved by Ito [ 3 ] for the real 1line and extendsed

_very recently by Kless [ 10]. They are however valid in complete separable
metric groups as can be seen from the abeve proof.
o3 auxil
In the present section we will prove some lemmas to be used later.
lemma 3.3.1. PFer each compact set C - Y there is a meighbourhood

'G‘ of the identity in X and a finite set ECC such that

sup [l-R(x,y)]g X sup [1-R(x,y)]
yec YEB

for all x €& X Here M 1is a finite constant depending on ¢ and R

c *
denctes the real part.

Proof. From the inequality.
1= R(xl + X0 y) €21~ R(xp y)+1- 3(12: 7]

it is clear that if the lesma is valid in two groups 11 and xz it is
valid for their direct sum 11 o Ia. let nov Y' be the closed subgroup
gomerated by C and ¢ 4its amnihilater in X. If< denotes the eanmonical
map from X on to X' = X/f it is obvious that R(x, y) = R( T(x),y) fer
all x€ X and y € Y'. It is thus sufficient to prove the lemma when the
groups ooncerned are X' and Y' ingtead of X and Y. Since Y! is
compactly generated it is of the form V@G ® I° where V is a finite

ddmensional vector group, G is a compact group and I© the product of the
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integer group takem r times. Hence X' is of the form VO DO K
vhere D is s discrete group amd E* the r-dimemsional terus. Sinse the
lemma is trivially valid for the real line, the discrete group and the
compact group the proof of the lemma is complets.

23.2¢ For amy y € Y there is a oontinuous function

hy(x) on X with the following properties:

1) i1 hy(x)i {x ferall xeX
2) (x, y) = exp (1 hy(x)) for all x € Ny
where
Ny=[xt1(x,5) ~11g%]

Proof: let (x, ) = exp (1 P(x)) where = x ¢ x (X Them
#(x) will be = continnous function of x when restricted to the closed set
Ny and can be extended to the whole of X as a continuous fumstion hy(x)
satisfying the firat condition. Any such extension will serve the purpose
of the lemma.

s3e3e There is a functien g(x, y) defined on the product

space X xY satisfying the fellowing properties.
1) g(x, y) 1s a Jointly comtinuous function of x and y

2) sup sup ig{x,y)l ¢ ® for each compact subset C C Y.
x&X y¢eé

3) ‘(x! ’1"2) - 8(" ’1) + 8(1; ’2) f” .adl xé& x md ylt’z € !
4) If C 1is any compact subset of y then there is a neighbourhhod

N, of the identity in X such that (x, y) = exp[1 g(x,y)] gor

all xf-lc and y € C.



5) If C 4is any compacé subset &f Y ‘thca g(x, y) tends to zere
uniformly over y € C as x tends t& the identity in X.

Preoof. We will reduce the proof of the proposition to the cams of
sinple groups by making use of the strusturs theory. Suppese that the
lemma is true for an open subgroup G of X. let H and Y be the character
groups of G and X respectively. 3Since H ocan be obtained as a quotient |
group of Y Yy taking quotient with rclp;ct te the annihilator of ¢ in Y
there is a ean;moax homomorphism T from Y to H., Suppose g(x, h) bas
been defined for x € G and h &€ H with the required properties. Ve

extend the definition of g as follows. FPor x € G and y € Y we define

ez, 7) = g(x, T (3))
Por x f G, we define
g%, y) =0 forall yeY

Since an open subgroup is closed the continuity of g(x, y) follows immedia~
tely. The rest of the properties is an immediate consequence of their
validity in ¢ x H.

In the case of a genersl group X we take G tobcthempgeuﬁhd
by a compact neighbourhood of the identity. This is both epen and closed in
X. This group G has the simple structure VO C® I where V is the
wvector greup, C a compact group and I’ the product of r eoopies of the
integer group. We now ebserve that if the functions gl(x, y) and 52('4,7)
with the properties mentioned in the lemma exist in groups X and U with

character groups Y and YV, then a function g( §, % ), with the same
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properties exists for 5 ¢ XU and 7] € Y® V. Ve only have te choose

g(£.7 ) = gy(xn 7) + £y(u, )
wvhere x and u are projections of 5§ im X and U respectively and y
and v are projestions of 7 in Y wad V respectively. Thus it is enocugh
t