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1. SuMMARY

In the conrse of examining the alleged difticulty (J. Singh, 1018, Sankhya, 7, 257-
262) with von Mises definition of probability it was found that the altemative definition
proposed by Singh does not make any difference in the situstion as the existence of a
‘quasi-limit’, as defined by Singh, implics the existence of von Mises limit. A few interes-
ting propertics of the sequence of frequency ratios have also been eonsidercd.

2. INTRODUCTION

Let us consider nn experiment the outcomes of which are classified into two cate~
gories, suecess and failure,  The problem is to define the probability of obtaining a sucecsy
from the experiment.  Now if we repeat the experiment undler identical set up a very large
numbger of times we may get a sequence of 0's and 1t Jike, say, 01100011010011101...where
0 stancls for a failure and 1 stands for a success.

Let a{n) be the number of 1's (i.e. success) in the first n terms of the sequence. Tt
is & common experience that the frequency ratio a(n)/n becomes very stable for large n,
Thus it is very natural to postulate that the frequeney tatio a(n)/n tends to a limit p as
n—»e0 and then to define the probabulity of success by the constant p.  This is the well
known approach of von Mises to the controversial problem of defining probability.

Singh trics to extend the scope of von Mises’ theory by allowing for the existence of
miore than one limit points in the sequence {a(r)/n} and postulating the existence of a limit
point (calied the 'quasilimit'} round which almost all members of the sequence {a(n)/n}
clusters, The main result proved in this note is that the existence of ‘quasi limit” implies the
existence of the limit of the sequence {a{n)/n}. It is not the purpose here toenterintoa
controversy over the problen of defining probability, But it may be noted in passing that
the objection raiscd by Singh ngainst von Mises® theory is wrong and is based on a confusion
between convergence in every particular colleetive with uniform convergence overall the
possible collectives that ean be gencrated by the random experiment.

3. DEFINITIONS

Singh defines & quasi limit g as follows:
Definition 1: Given two positive numbers ¢, 7 as small as we please, then two

numbers 1 and mg can be found such that, of the m terms a(n+4i)n+i (i=1,2,...m),
w terms satisfy the inejuality
I "'_("L.') —7 | <e . {31)
nti

where ®fm > 1= whenever 1 ng, w3 m,, tire value of my depending on ¢, 9 and n.
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Tt is apparent that the above definition somewhnt relaxes the requircinents for the
existence of lim a{n)/n for in that ease given any ¢>0 we eanulways find an ng= nyfe) such
that

|a{n)/n—q| <e forall n > n, . (32)

We shall however prove that the quasi Jimit ean exist when and enly when lim a(n)fn exists,
Tut before that we give a definition ol zera density of o sub sequence and an altcrrative
simpler definition of a quasi limit,

Definition 2: The sub-sequence {f} of the sequence (@,) is saild to have zero
density in {,) il g(n)/n—90 s n—co whore g {n) is the nuniber of £s inthe it n terms
of {as} (here {As) is supposed to be obtained by deleting some terms of {@,) and not by
any alterations in the onler of {a,}}.

Drfinition 3:  The scquence {a{n)/n} is said t1 have a quasi limit q if for every
€>0, nio matter how small, the sub-sequence of {o{n)/n} that sntisfy the incypunlity

Jaln)in—g|>¢c . (33)

is of density zcro.

If lim a{n)/n=q then the incquality (3.3) is satisficd for only a finite number of n's
and the density of a finite sub-sequence is obviously zero, That definitions 1 and 3 are
identical is seen as lollows. If quasi limit g exists (hen from definition 1t follows that given
¢, n we ean always find an 5y such that in the sequence {a(n,+i)/ng+i}(i .l inf)
the proportion of those that satisfy (3.3) is ultimately <% nrnd remains < 9. It then
casily follows that in the entire sequence {a(n)/n)(n= ad inf) the proportion
of those that satisfy (3.3) ultimatcly remains <7 and since 7 is arbitrary it follows thut
the density of the sub-sequence is zero.

4. TIE MAIN TREORFEM

We now prove the ninin theorem namely

Theorem It A quasi limit of the sequence {a(nj/n} can exist if and only if lim a(u)fn
exisis and in that case the two limits orc identical,

We first note that the difference etween two comsecntive terms a{n)fn nnd
o{n+1)/n+1 is<1fn. For

aln) _ alnt1)| . _a(n) or n—afn) . ()
n n+1 n(n41) n{n41)

according as a(n+1) = a(n) or a{n)}41.

Now we show that if g is a quasi limit of {a{n)/n) then g is the only limit point of
the sequence.  Let ns suppose that another limit point p exists such thatp > q. Iete>0
Le an arhitrurily small quantity sueh that € < §(p—g) aml ket @ = p—g—26> 0.
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Now since pisa limit p-int of {a(u)/n} it follows that there existan infinity of n's
sny my{i = 1,2, ... adinf) such that

alm)m > p~6 (i=1,2,...0dinl.) o (4.2)
Sinee the difference between any two conseeutive terms of {a(n)/n} (n > m)is < L
",
follows that just after sy at least [2m,) terms satisfy the inequality
a(r)n > g+e e {49)
where [2im,] stands for the greatest integer not exceeding anm.

Thus in the fiest sy +[2m,] tertus of the sequence {a(r)fn) theee are at Jeast [am,]
terms for which incquality (3.8) is satisfied. I g{n) stands for the number of such terms
in the first a terins of {a{n)/n} then we have

glmy4[am)) ».[am] loralls

glont(am,)) [2m)) « Cioh
or __l'il-i-[?".] ;"|—+[m|.] —»m>0 6s §—» 0,

Thus for the sub-sequence # = m+[2m] (i = 1,2,...0d inl.), g{n)/n docs not tend to zcro
and thus tie definition of a qasi limit is violated, The case where p<g can be similarly
dealt with,  Ience if a quasi limit g exists then there cannot exist any other limit point
of the sequence {a(n)/n} and thus theorem 1 is proved. It is to be noted that theorem
1 is true or the particulnr sequence {a(n)/n} and not for a general sequence,

5. THEOREM AND EXAMPLE OF INCIDENTAL INTEREST

The following theorem and example are of incilental interest.
Theorem 2: IfA = llﬂa(—:)- < fim 'i(:—) = then every point in the intereal (A, x)

is a limit point of the sequence {a{n)/n}.

Since the sequence {a{n){n} is bounded both the limit inferior and the limit superior
exist,

Lev €30 be an arbitrarily small number.  Since Aand g are both limit points of
{a(n)fn} it follows that both the inequalities
a(n)fn < Ate o (51)
and a(n){n > p—c o (52)
are satisficd for an infinity of n's.

Hence we can slways find two inlegers m, and mg such that m <my and 1/m<e

so that (5.1) and {5.2) arc satirfied for 1 = m, and g respectively,

Since 1/m<c it fullows that the ratios a(n){n for m,nmy are e-dense in the iterval
(A, pr) und sinee ¢ is arbitrary it follows that the sequence {u{n)/n} is everywhere dense in
the interval (A, g). Thus theorem 2 is proved.
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That there can exist a sequence of 6's and 1°s where the corresponding seqenee of
frequency rutios {a{n)/n) ure everywhere dense in the interval (0,1) enn be casily scen from
thie following simple cxample.

Example:  Let there be 13 one then 24 zeroes, then 3% ones then 4% zeroes and 5o
on, in general (2k41)%2 ones follow (26)% zerory and then s followed by (2k+2)vd
zeroes.  Now if we stop just at the end of thie kth run of zerues then clearly

k1)1
kT

(2k+l)“'l

> —1as ko .

Thus lim A%/ a(n) =0 and Tim =22 a(n) = 1 and therefore from theorem 2 every point jn the

iaterval (0, 1) is & limit point of {a(n){n}.

My thanks are due to Dr. C. R. Rao and Me. D. B. Lahiri for drawing my
altention to the subject of this investigntion.
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