DEFINING THE CURVATLURE OF A STATISTICAL PROBLEM
(WITH APPLICATIONS TO SECOND ORDER EFFICIENCY)
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Statisticians khow thal onc-parameter exponential familics have very
nice propertics for estimation, testing, and other infercnce problems. Fun-
damentally this ia because they can be considered to be ““straight Hpes'”
thraugh the space of all possible probubility distributions oo the sample
space. We consider arbitrary pne-parameter families .« and try to quantify
haw nearly “‘exponential” they are. A quantity called "“the statistical cur-
vature of 57" iz introduced. Statistical curvature is identically zero for ex-
ponential families, positive for nonexponential families. Qur purpose is to
show that families with small curvature enjay the good properties of ex-
ponential familics. Large curvature indicates s breakdown of thess prop-
ertier.  Statistical curvature turna out ta be closely related to Fisher and

Rao's theory of second order efficiency.

1. TIntroduction. Suppose we have a statistical problem involving a one-pa-
rameter family of probability density functions .5 = {f,{x)}. Statisticians know
that if .5 is an exponential family then standard linear methods will usually
solve the problem in neat fashion. For example, the locally most powerful test
of # = f, versus # » #, is uniformly most powerful in an exponential family,
The maximum likelihood estimator for # is a sufficient statistic in an exponential
family, and achieves the Cramér—Rao lower bound if we have chosen the right
function of # to estimate.

In this paper we consider arbitrary one-parameter families .#”and try to quan-
tify how nearly “expomential” they are. A quantity j, called “the starisiical
curvature of 5 ar @ is introduced such that 7, is identically zero if .= is ex-
ponential and greater than zero, for at least some # values, otherwise.

Our purpose is Lo show that families with small curvature enjoy, nearly, the
good statistical properties of exponential families. Large curvature indicates a
breakdown of this favorable situation. For example, if Ta, 15 large, the locally
most powerful test of # = 8, versus # > &, can be expected to have poor operat-
ing characteristics. Similarly the variance of the maximum likelihood estimator
(MLE) exceeds the Cramér—Rao lower bound in approximate proportion to ;%
{See Sections B and 10.)

For nonexponential families the MLE is not, in general, a sufficient statistic.
How much information does it lose, compared with all the data x? The answer
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1150 BRADLEY EFRON [AND DISCUSSANTS}

can be expressed in terms of ¢,*. This theory goes back to Fisher {1925) and
Rao (1961, 1962, 1963). They attempted (0 show that if . % is a one-parameter
subset of the k-category multinomial distributions, indexed say by the vector of
probabilities f(x) = P,(X e category x}, x = 1,2, --., k, the following result
holds: let i, be the Fisher information in an independent sample of size n from
f1s 1,7 the Fisher information in the maximum likelihood estimator f(x,, x,, - - -, £,)
based on that sample, and i; the Fisher information in a sample of size one (so
i, = ri;). Then

{111} lim, . (ig — iﬁ.‘;:} = i, {F"ﬂz = 1:“:1 + fo 1 = _F:I + Fgl:rf_n__ z_ffli.nulql_

o ]

where

1.2 ey s = 'Ig f“'{x_} i fg('_r} fﬁ
tHe) mi= 5 (43) Mxt-)

the dot indicating differentiation with respect to #. Moreover, for any other
consistenit, efficient estimator T(x,, x,, -+, x,) the asympiotic loss of information
lim, .. (1, — i,7) is equal or greater than the right side of (1.1). Fao has coined
the term “second order efficiency™ for his property of the MLE which gives it a
preferred place in the class of “first order officient” estimators T, those which
satisfy the weaker condition lim,__1,"f1, = 1.

It turns out that the unpleasant looking bracketed term in (1.1} equals 3,
This leads to a straightforward geometrical “proof™ of (1.1}. The quotes are
necessary here since, as the counter-example of Section 9 shows, the result is
actyally not true for multinomial families. However, the difficulty arises only
because of the discrete nature of the myltinomial, and can be overcome by deal-
ing with less lumpy distributions. More importantly, a similar result of Rao's
for squared error estimation risk holds even for the multinpmial, as discussed
in Section 10,

Under our definition an exponential family has zero curvature everywhere
50 in some semse it is @ “‘straight line through the space of possible probability
distributions,” (This is intwitively plausible since linear methods, that is, meth-
ods based on linear approximations to the log likelihood funciion, tend 1o work
perfecily in exponential familics. The fact that locally most powerful tests are
uniformly most powerful is an example of this.) We will make this notion precise
by considering families . which are subsets of multi-parameter exponential
families. If the subset is a straight line in the natural parameter space of the
bigger family then # jsa dﬂe»-pa.ramelcr exponential family.. If the subset is a
curved line through the natural parameter space then 5% is not exponential, and
it tarns ont that the statistical curvature exactly equals the ordinary geomeiric
curvature of the line, the rate of change of direction with rospect to arc-length.
For the sake of cxposition we actually start with this latter definition in Section
3 and show in Section 5 how it leads to a sensible definition of statistical curva-
ture in the general case.
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There are really two halves to this paper. Sections 3-7 introduce the notion
of statistical cufvature, Sections 8§-10 apply curvature to hypothesis testing,
partial sufficiency, and estimation. Seclion 2 consists of a brief review of the
notion of the geometrical curvature of a line.

2. Curvature. If ¥ = Y{X) defines a curved line 227 in the (X, ¥) plane then

. {Y”'}i 4
(2.1) pgass [['1”1'#"'(?"};5}?1
is defined to be the curvature of 5 at X, where V' = J¥Y/dY, ¥ = &V [dX"
are assumed to exist continuously in a neighborhood of the value X where the
curvature is being evaluated. In particular if ¥ = 0 then ;. = |¥"]. An exer-
cise in differential calculus shows that . is the rate of change of direction of
47 with respect to arc-lenpth along the curve. The “radins of curvature”, py =
1/, is the radius of the circle tangent to = al (X, ¥) whose Taylor expansion
about (X, ¥} agrees up to the quadratic term with that of 7. Struik (1950) is
a good clementary reference for curvature and related concepts.

The concept of curvature extends to curved lines in Euclidean k-space, E*,
say =7 = |ng & O], where © is an interval of the real line. For each &, x, is
a vector in E° whose componentwise derivatives with respect 10 # we denote
fp = (86 §p = (768, These derivatives are assumed (o exist continu-
ously in a peighborhood of a value of § where we wish to define the curvature.
Suppose also that a & X k symmetric nonnegative definite matrix X, is defined
continuously in . Let M, be the 2 x 2 matrix, with entries denoted vy(f), »,(),
V() as shown, defined by

(2.2} M, = (L:u{ﬁ} ""1;{"?}) = (}?u’Iﬂ Be 7' X, ??ﬁ')
Luld)  l#)) T Le Mg ﬁﬁrzy He

and let
(2.3) 7o = {|Ml0(8)) .
Then y, i3 “the curvature of 27 ar & with respect to the inner product X,. (If we
take k = 2, # = X, 5, = (X, ¥{X)), and ¥, = T, then (2.3) reduces to (2.1).)

Again it can be shown that 7, is the rate of change of direction of r, with
respect Lo arc-length along 2. The relevant quantitics are illustrated in Figure

w_ a2

1, where the arc-length from a given point Tg, 1O %y is called "5, and the angle

Fii. 1, The curvatore of = at fy is das/daslsca,
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between 7, and 7, called “a,”. Then
: da,
(2.4} e
dsy ja,

or equivalently y, = dsina,/ds,, . Both s, and a, are defined relative to Lhe
inner product X,,

(2.5) G = 03

| (Tl
zrﬁ = 'I . 0 1} .
(2.6) Sin a, |: (%%, Lo, Yo Moo Eg, 7o) J

(%,, can be replaced by I, anywhere in (2.6).) As Figure 1 indicates, for the
purpose of evaluating ;,, the k-dimensional curve =7 can be considered locally
as a two-dimensiona! curve in the plane through 4, spanned by 7, and %, .

3. Curved exponengial families. In thissection we define statistical curvature
for one parameter families ¥ which are curved subsets of a larger k-parameter
exponential family, “curved exponential families” for short. Denote the multi-
parameter family by

(3.1) g {x) = g xpemreem

a family of denpsities with respect to some given measure m{.), possibly dis-
crete, on Euclidean k-space E¥. Here pe.4 the subset of E* for which
§ ok (X087 dmix) << co. The convex set .} is called the narural parameter space
of the exponential family. If we define

(3.2) Mp) = E x

the components of i can be obtained by differentiation of ¢, 4%} = (8/d%;)d(%).
Moreaver the covariance matrix E{r} of x under g has ijth element equal to
B2yt A, We denote by A Lhe set of all mean vectors 4,

{3.3) A ={im: e s}

The mapping (3.2} from .4 to A is one-to-one, and we will often wrile 2 instead

of A{x), recognizing that 4 indexes the exponential family as well as ¢ does. X}

has the same rank r for all ¢, and we will cssame rank r = 2 10 avoid rivialities.
Now suppose that

(3.4) & = (g, 0 € 6]

is a ong-parameter subset in the interior of .47 where 7, is a continuously twice
differentiable function of # ¢ 9, an interval of the real line. Define the density
fa 1o be

(3.5 fox) = g, (x) = g{xjers—ie,
where J, = d(z;). (Likewise 1, = .}, £; = E(z,).) It is easy to verify that
(3.6) 29 = Tty fhy = %' 2 = Eyte'x .
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J# will stand for the family of densities | f,(%): # =0}, our curved exponeniial
{amily.

DEFINITION. 7,, the statistical curvature of (%" at #, is the geometrical curva-
ture of =% = {x;: # = 8] at § with respect to the covariance inner product I,
as defined in {2.2) and (2.3).

ExaMpLE |, Bivgrigie mormal. x is & bivariale normal random vector with
covariance matrix I and mean veclor 5, = (&, (3,21, § 20 = (= oo, o),

{3.?} X - -’;';{_FE! I} .
Then 5, = (1, 7Y, 5y — (0. 1), and

o g 28
1.8 M, = [ i
(0 J ( S 3’03;]
20
(3.9) RS ()

R

In particular y,* = 7% justifying the notation. This artificial but very simple
curved cxponential family will be used for illustrative purpeses in Ssction 8.

ExaMrLE 2. Poisson regression. X, Xy, ---, & are independent Poisson random
variables, x, having mean g - @b, b, b, -+, by and ¢ > 0 being known param-
eters. B is the interval of # values such that @ + 6, = 0 for i = 1,2, ..., k.
Since x = (x,, -- -, x,)’ has a k parameter exponential family of distributions if
the k& means are unconstrained, we apply definition (2.2) to get the elememts of
M,

310 = T2, s =3k,
a -+ fh, {a + b,
B!

vl f) =

(=1 {a ik ﬂbi:lé .
The formula {2.3) for ¢, simnplifies at # = 0 wo

(3.11) e LI ElbS AR B
2 L{Zia A (L 0

That the cntries of M, are summations follows from the independence of x,,
Xy ey X, 85 mentioned in Section 6. A very similar formula holds for the
analogous binomial regression model.

The Neyman-Davies model, x,, x,, -+ -, %, independent scaled 3! random vari-
ables, x "2 (1 .| 84} A, A, - -, 4, known consiants, has the same structure.
(Davies (196%) uses this model, which originates inan application duc to Neyman,
to investigate the power of the locally most powerful Lest of & =: O versus & = (,
We compare our results with his in Section 8.) By direct calculation or by the
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remark at the end of Section & we pet that M, has elements
(3' 12’) ”:U{GJ =S }5 E?:l 5:n , "’11{:']} =i Ef—l 53 ’ ""0:{0] =1 E.:Li 3;

and so

(3.13) pr= ] _Zimfl (NG G
LiZiaf  (En07°

ExaMPLE 3. Adutoregressive process. ¥y, v, - - -, ¥p a7 observations of the auto-
regressive progess y, = 8, ¥ = M 4+ (1 — 0w, t= 1,2, .-, ¥, Here
K, “’JL./J‘/"{G, 1y, t=0,1,.--, 7 and & = (-1, 1). Writing out the likelihood
fonction of (y, -+, ¥;) shows that this is a curved exponential family with
k = 3, the 7 vector being »,' = (—(1 + e, #, —1)/(1 — ), with correspond-
ing sufficient statistics x' = (5,7~ *v" DF vy 0w+ ¥:5. For # =0 the cal-
culations are easy, yielding
. _{F g . BF—os8
(3.14) ﬂ{,_.(ﬂ SI'—-E)’ =320
Much messicr sipressions are found for otber values of #. 7y, is of the form
tof T 4- LT as T - oo, with e, = 8, ¢, = 6.25, ¢, = 3.07, ¢, = .96, (For
any I, y_p = yg i_y = {p since the mapping (ru ¥y ¥e -0 ) = (Fas —Fa ¥ -0 1)
takes ¢ into —¢& while preserving the curvature and Fisher information.) This
farnily is least like a onc-parameter exponential family al § = @,

IT =7 is a straight line through .47 4, = @ - fo(ff) where @ and b are known
vectors and #(#) some real-valued twice differentiable function of #, then y, = 0
for all § since the curvalure of a siraight line is zero. In this case fiix) =
(e’ =y exp[r(fx — o] is a one-parameter exponential family with patural
paramsier of#) and sufficient statistic #x. Undet our definition all one-parameter
exponential families &7, and onty such families, have statistical curvature every-
where egual to zero. This desirable property would still hold if we defined the
curvature with respeet to an inner product other than X,, say £, or I. The
[ollowing discussion and Scction 4 add support to the choice X,.

Let f(x) denote the logarithm of f(x),

{3.15) (21 = log fi(x)

and denote the first and second partial derivations with respect to # by
B s a4

{3.16) Lix) = 5 FES Livy= S falxh .

The mement relationships

{3.17) Edo== 0, Elf=—Fl =i,

where i, is Fisher's information, hold because the exponential family structure
(3.1}—(3.5) allows us 10 differentiate under integral signs with impunity. (We
will suppress the random element “x” in much of the subsequent notation.)
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Notice that Li{x} = x,'x — iy 3- log g{x) so that
(3.18) ¥} = 'ix — 24) Il %) = §'(x — 5} =~ 5T s

where we have made use of (3.6) in taking the derivatives. Remembering that
I, is the covariance maltrix of x, wo scc that (3,17} holds with

{3.15) iy = 15" Es Ty -
As a matter of fact the covariance matrix of (§, {;) is
. . | S PO MR W
(3.20 By (0 Y do iy = (Bt Tt

; ! by + 1a e i T oy T Wy flg
which is just the matrix M, defined at ({2.2). Therefore
(3.21) uglf) = 1, = Eer'ia! ’ wif) = ‘E&jﬁ‘}# = Cov, {'fas fa} ’

vel6) = E, It — & = var, k. .

These definitions make no explicit reference to the peometrical structure of the
curved exponential family. We will use them in Section § to provide the curva-
ture definition for an arbitrary one-parameter family.

4. Invariance properiies of the curvature. The two definitions of M, the
geometrical one Following (3.6) and the statistical one (3.21) give two useful
invariance properties of the curvature .

i) Statistical curvature is an intrinsic property of the family .5 and does not
depend on the particular parameterization used to index 57, If we let § = gi{#),
where g is any strictly monotone twice differentiable function, and fiix)} =
Somng (%), then 5 = 3, 1, for every e 8= (8. This follows from the same
property of the geometrical curvature (2.3), [Wote: this is not true for the Fisher
information: &; = i, 5,(d8/dd)".]

iiy IF ¢ = Fix), is sufficient for & then [2{t) = 8/af log £,7(1) = L{x), where
Jfo¥ indicates the density of T, implying by (2,18} that MY = M, and 3,7 = 7,
The statistical curvature is invariant under any mapping to a sufficient statistic,
including of course all one-to-one mappings of the sample space. This property
would not hold if we had chosen an inner product other than X, in the definition
of statistical curvature.

We can use property (ii) to transform an arbitrary curved exponential [amily
into a form particularty convenient for theoretical calculations. Let #; be some
value of # at which we wish to iovestigate the local behavior of 55, Wrile
¥;, = A'DA, Dan r x r diagonal matrix with positive diagenal elements and
A an r ¢ k matrix with orthonormal rows, AAM = I_{rank £, = r, [ ther x r
identity matrix). Let $ = TD-'A(x — J,)where I is an as yet unspecified » X r
orthogonal matrix. % is an r-dimensional sufficient statistic for the family (3.1).
For # @ it has a curved exponential lamily of densities where we can take
s = TD*A(5, — 5, ). (These statements are easily shown in the full rank case
r =k and are not difficult for r < £.)
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Notice that f, = 0, i, =0, and EH =T, Pruper choice of the rotation ma-
trix I makes ¢, pmpurtmna] toe = .[I 0, -.., 0y and %, a linear combination
of g ande, == (0. 1,0, ..., 0. By (3.6, iﬁu is then also proportional to e,.

DeeNrTION. The family 7 is in standerd form at # = &, if k = r, the dimen-
sion of &F,

(4.1) Goy =Ty =0,  Ey =T,
and
. - .. v () L.
(4.2) T, = ’Esu = iy te,, By = - ];::: f" € by T T -
n

{The constants in {4.2) are necessary to satisfy (2.2).) We will use standard form
1o simplify proefs in Sections 9 and 10. If %7 is not in standard form at 7, the
above transformation makes it so, and by property (ii} M, and hence all informa-
tion and curvalure properlies remain unchanged. We could use property (i) to
further standardize the siluation so that #, = 1, »y(f,) = 0, but that does not
simplify any of the theoretical calculations which follow. Property (i) is useful
for calculating curvalures, as will be shown in Section 7.

5. General definiilon of statistical curvature. Leaving exponential families,
let

{5.1) = [ fi{%). 8 e O}

be an arbitrary family of density funclions indexed by the single parameter
# 8, a possibly infinite interval of the real ling. The sample space %" and
carrier measure for the densities can be anything at all so we have not excluded
the possibility that ..# consists of discrete distributions. Let

"!

(3.2} Lix) =Tlogflx),  fix) = — fa(x}1 Llx) = <

Z g Lol x)

as in (3. 15), {3.16). We assume the derivatives exist continuously and can be
uniformly dominated by integrable [unctions in & neighborhood of the given 8,

s that B ly =0, Bl =kl =4an _in__{S.]Tj. Finally, as in (3.200—(3.21)
we let M, be the covariance matrix ol {f,, {;),
(53) = () WON (B bl )

: et vl ) E by E by — i

and define the statistical curvature of . at §f to be

, w7 EE I
(54) e = (| Ml{s") = [TLH} - :"'1;[1} | ’
- 'l —_

In making this definition we assume 0 < i < o0 and 1, () < oo, Properties (i)
and {u} of E.cclmn 4 are verified Lo hold for y, as defined in (5.4). Substituting
fa = falfs &5 = falfs — (f3lfs¥ inte (5.3), (5.4 shows that 7, equals the bracketed
term in (1.1}, the crucial quantity in the Fisher-Rao theory.
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What does y, measure in this general situation? Tt is a measure of how quickly
Fisher’s score statistic is changing (more precisely, “turning™) as & changes. An
argument along those lines is given next, further support corning in the calcula-
tions of Section 8.

Comparing (5.3) with (2.2), we can connect the two definitions by thinking
of & = {I;, # £ B} as a curve through the space of random variables on 2" The
inmer product {u, 3, = #'X, v of (2.2)is taken to be the covariance inner product
in (5.3). (Sectivn 3 makes the analogy precise in the exponential family case.)
All of the quantities in Figure 1 can now be given a statistical interpretation,

The element of arc length along .=, by analogy with (2.5), is dsgfdff =
(Eel®) = it Defineg
(5.5) Uyix) = 50 g

ta
Uiy, 1s the version of Fisher's score statistic /, that is the best locally unbiased
estimator for ¢ near #,: Yar, 'y = 1fi,, the Cramér Rao lower bound, and
£y Vs, = 8, dE Uy [y, = 1. Therefore
(dfdNE, U, | ds,

(5.6} fual i =_
(Varg L )? s, it

A=y

{The quantity on the left of (5.6) is called the “efficacy”™ of the statistic I, )
We see that
(5.7) -y %

iy _ i{""-_& Lig = £y Uy
i

o6 (Var, U}
Therefore 5, of Figure | can be interpreted locally as the number of (#,) standard
deviations from F, Uy to EU i

By analogy with (2.6)

- T u o
(5.8) wing, —i 1 — [“:“:"\‘a,‘J (fr-'.;.‘_.{’f'ﬂ__ ' o [l — eort (t . L.

var, f, Yar, f,.

— O — ¥

s0 sin® g, is interpreted as the uvnexplained fraction of the variance in &) after
lineat regression on &, (x}, under density f, .

From (2.4) we get the following interpretation of the statistical curvature:
Tu, 15 the derivative at 8§ = &, of the unexplained fraction of the standard deviation
of U, given U, . the derivarive being taken with respect to the efficacy distance
(E U, — Ey Uy )i(Var, U0t along 2 TF this quantity is large then the locally
best estimutor (also the locally best test statistic) is changing quickly as J changes
and .5 is highly curved in a statistical sense. At the opposite extreme are one-
parameter exponential families for which @, = 0, 80 U, is statisucally equivalgnt
to U, for all # and f,. We pursue this interpretation of y, in Section 8 to decide
what constitutes a seriously large value of the curvature.

In a certain sense any smooth one-parameter family . ¥ can be embedded in
a suitably large exponential family. Suppose at some point &, in 8, {, is k times
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differentiable. Consider the k-parameter exponential family
(5.9)  g(x) = explly(x) + 7dy(®) + mlyf®) + - + 0L - ¢t

f§(x) = (BN X} _p,» $(5} being chosen 10 make (5.9) integrate to one over
A% with tespect 10 the carrying measure for .5 . Chooesing

4 k

Ty = ({g — o, (4 —:,-ﬁ'n} i (¢ ;!ﬁln} )

gives a one-parameter family of densities f; = g, approximuating f, near # = #,.
If the Taylor expansion for {, converges at #, this approximation becomes in-
creasingly accurate as k.~ oa. For any value of & = 2 definitions (5.3} and
(3.21) show that 4f y = Map 308 =1, and f, ==y, It is reasonable to expect
results proved in the context of curved exponential familics to hold for sufficicatly
smeoth nunexpunentia! farnilies, though no justifying theorem has been proved
to this effect. This is in the same spirit as approximating an arbitratry family
by a multinpmial with a large number of calegories, as in Fisher (1923) and
Barnett (1966), but scems Lo make the approximation in a smootber way.

L]

6. Repeated sampling. Suppose we sample x,, x, - -+, X, independenlly and
identically distributed with density f,., We will use boldface letters to indicate
quantities connected with the repeated sample, x = (¥, X, -+, x,), LX) =
S L), Ugxy = I(x)fi; + 8, ete, In particular
(6.1} M, = nM,

since M, is the covariance matrix of (I,(X), (X)) = 1%, (I{x} {(x,)). Besides
the familiar relationship iy = wi, this gives

3

o

{6 .2-} rﬁ =

=

The curvature goes to 7ero at rate 1/n® under repeated sampling. This makes
sense since we know that linear methods work better in large samples.

In curved exponential families, (3.18)—(3.19) combine with 1,(x) = o l(x)
Lo give

(6.3) L(x) = mp/(x — &), L(%) = Ali/(% — 4) — wil},

% = Y1, x/n being the sufficient siatistic for the complete family (3.1}

If the x, are independent but not necessarily identically distributed we still
have L{x) = 37, I, (x,), the superscript indicating the distribution for x,, and
so M, = ¥7, M;% This explains the simple form of M, in Examplec 2 of
Section 3.

7. Some examples. Before discussing the statistical propertics of 4, we will
capand our catalog of examples to include several noncxponential families.
Those results illustrate some simple principles that make ;, easy to calculale in
familiar statistical situations. In the first three examples we assume that the
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densities given are with respect to Lebesgue measure on the real line, ié., that
we have just one observalion of a continuous variable., For an independent,
identically distributed {i.i.d) sample of size n the curvature is obtained from
formula (6.2}, This last remark applies also to Example 7, and to the examples
of Section 3.

ExawpLE 4. Transiation famifies. Let g(x) be a probability density function
and fo{x) = g{x — 7). Also let Bx) = log g(x). Then ifx) = —aA"{x — 8),
fix) = B9{x — 8), where BO{x) = d'B{x)/dx', s0 E Lti = = [—AW(x)] %
[ g(x) dx. Obviowsly M, and 1, do not depend on & in a wranstation famiiy.

For the ¢ rrunslation famify, f degrees of freedom,

£l
r‘( ) (1 % ITS) LF e

2

{7.1} gx) = m

we calculate

(7.2) il ) = i) = %
gy = T[S+ 2+ 8+ 19+ 1]
vyl 8) = :
f+3L RF+3MS+T) f+3
and v, (#) = 0 {by symmewry), giving
(7.3) SR 6[3f* -1- 181 + 19]

TERVUER TR,
a monotone decreasing function of f. Some values are as follows:

f 1 2 5 10 20 G
;¢ 2.5 1.063 306 .107 .033  ~ I8

(7.4)

The case { = 1 is the Cauchy tronslation family, and the value § for ;,° agrees
with a closely related calcwlation in Fisher (1925).
For the Gamma translation family

= (x—fyTleteh
(7.5) Flxi= o) ~ xz

g > 4 g fixed constant, we calculate

1 2
S | {a —3)
7€) Micgask 3 . Aesio
e — 3} (a— 2)a — g — 4
2 2 a— 1
s e _3ya_4

(For a =< 4, v, is infinite.)
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EXAMPLE 5. Scale families. x ~ 8 .z where 7 has a known density, #c® =
{0, o=). If z isa positive random variable then log x = log & + log z isa transla-
tion family. By Section 4 the curvature will be the same for this family as for
the origioal one, and by Example 4 it will not depend on #:  For scale families
vy does not depend om 8. (The argument above applied separately to the positive
and nepative axes gives the result in general. It can also be derived directly
from {5.3).)

A particular example is the normal with known coefficiens of variation, X ~
AR, o8y, e known, Here x ~ 2, z ~ 71, ). Wecaloulate §y = 2(c = £)/(e®)
and

8 _ o
(7.7) S e T
{Notice that x ~ ..#7#, ¢#)" is a curved exponential family, & = 2.) The curva-
ture is near 0 for all values of ¢, taking its maximum a1 ¢ = 1.

¢ r 3 12 4 o

(7.8)

s L0370 0625 .0740 .0640 .0439 ~ ljde

Examprii 6. Weibull shape parameter. fyx) =fx* e for x = 0, #e0 =
(9, o0). That is x ~ 2" where P[zr < 7} =1 — e @ lor z, = 0. The transfor-
mation log & = 1/ log z makes this a seale family in 1/#, s0 once again r,° does
not depend on €. Taking # = 1 for convenience gives Ix)=(1 — )logx + 1,
Lix) = —(xlog® x 4 1}, EF7 = 12 [L(5)[f{x)])%e~* dx. Numerical integraticn
pives
(7.9) et = .T04.

ExampLe 7. Mivire proMems. f(x) = {1 — Nglx) + Phix). g and & known

densities on an arbitrary space 27, The parameter space 8 contains [0, 1]. We
see that :

h_g - Fes
7.10 N 1 i LI L = -1
{ j L H+ﬁ{l&—g} vl [
and for # =0
(7.11) ==kl LE—F1F

where rix) = A(x)/g(x). Defining o, = Ejr — 1) gives

(7.12) M, = ( @ = ) N S P

—ary, o, — ot o, irt
If g and & arc normaldensities, say g(x) = ¢(x) = e 20, A{x) = wix — p),
we have (&) = exp(pe’— pf2) and

.13 M:( : -1 & — 3F + 2] )
TN 38 2] B4 B4
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when § = ¢, Therefore j, = & — 1 and
(7.14) n' =85 - 1)

The curvaturc approaches 2 for ¢ near 0 but becomes enormous as ¢ increases,

£ .5 .332 1 1.048 1,180 — o

(7.15) 7l 4.84 24 T4.68 108 320 o~ et
i 284 1 1.714 2 3 e

8. Ilypothesis testing. 5o far we have not tried to say what constitutes a
“large” curvature—a value of y, (or, in repeated sampling situations of y,, the
curvature based on all the data) of sufficient mapnitude to undermine techniques
based on lincar approximations o the log likelihood function. We can obtain
a rough idea of this valuc by considering 1he problem of tesling H,: # = #, versus

A d =8,
Define
_ 2
{E‘U I!';"1 = IE;"u -+ I_;'I L.

s0 that j, !(#, — #) = 2. From the discussion (5.5}—(5.7) this means that,
approximately,
8.2) EgUs, — EgUs, _
{Var, U,

(where in (5.7} wo have uscd dagfdf|,_s = {5 7). The locally most powerful level
o test of H, versus A, LMP,, for short, rejeets lor large values of Uy, From
(8.2) we would cxpect LMP, Lo have reasonable power at &, for the customary
values of w. That is #, should be a “statistically reasonable™ alierpative to 4,.

The discussion following (5.8) shows that the uocxplained fraction of the
variance of {7y afier linear regression on U, . calculated under f, . is approxi-
matcly 45 . II this quanlity is large, say 454 = 3, then I differs considerably
from L'y, and the test of M, based on L7, will substantially differ [rom Lhat based
on Ly . Under these circumstances it is reasonable to question the usc of LMP,.
Based on those very rough calculations a value of v§ = & is “large”.

In the repeated sampling situation of Section 6 a sample of sizc n > n,,
(3.3 no= 8.
makes yj = ri/r < §, and therefore roduces the curvature below the worrisome
peint. For the Canchy translation family, Example 4, m, = 20, For the Weiball
shape parameter, Example 6, n, = 5.6. For the normal with known coefficient
of variation, Example 5, s, <L 1 for all ¢. At the opposite extreme we have the
normal mixtuee problem, Example 7, with ¢ = 1, for which n, = 597.4. Wo
cxpect lincar methods te work well in Example 5 for any sample size, and poorly
in the last example, even for large samples.
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Moving from the vague Lo the specific, consider Example 1, Scction 3, a
bivariate normal vector x = (x,, x,) with mean (#, 1,#%2) and covariance matrix
I. Assume we wish (o test H,: # = 0 versus 4,: # > U on the basis of cbserving
x. The LMP,_, which rejects for large values of x,, has power function (probability
of rejection) 1 — S8 = M@ — z), where z_ and @ are the upper n point and
cdf of 4 standard normal variate.

The Neyman—FPearson lemma says that the most powerful level o test of # = 0
versus some specific positive altermative # == #, MP,(#) for short, rejects for
large values of #f x. It has power function

(B.4) 1 — () = QA1 4 r'Fj4P cos {4y, — Ag) — 2.},

A, being the ungle from the x, axis to 3, illustrated in Figure 2. As#, approaches
0, fi,(#} approaches §,(7) for all #, justifying the notation 1 — §4#) for the
powet lunction of LMP,_.

For a given value of § > 0 the power is maximized by taking #, = &, giving
“power envelope™

{8.5) 1 — 5%(8) = OF(1 + 7,080 — 2,)

Figure 3 compares the power envelope function, for four values of ;,, with the
power function of LMF,_, & = .05 (which does not depend on ;). As predicted
the difference between 1 — F*(#) and 1 — 5,08} increascs with the curvalure 7.
In this case we can actually see that vy, measures how fast the locally optimum
lest statistic £/, (x) becomes nonoptimal as the allernative # increases from {.
Alse according to prediction the LMP, has reasonable power properties for
7i° = 75 and poor properties for 3! = .

§ = \ Reection | Rejeckon
5 icn j Redion
VMR LEY g LMR
i

o ===
|
=4
3 i
1
|
i
i
i

:E:-—-—[T

Fi. 2. Bivariate Wormal, Examnple 1, testing # = 0 versus # = 0, The rejection re-
gion for the locally most powerful level o test, LMP,, is compared wilh thal for the
most powerful level o Lest of & versus 8, MPgith),
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100 —
= Power Ervelopg
OB — e
060 —
DAl —
0,20 b=
et I L | !
4] 4.5 1.Q L5 20 2.3 30
g
Fic. 3. Power of LMP,, o = 05, compared with power envelope function, Example 1.
TABLE 1
Pawer comprrison, Exampie 1
a) Power envelope by Power MP_1g2) c1 Power LMP e
8
T 5 1.0 1.5 2.0 2.5 3.0 3.5
- L 25 _05= 126 262 453 662 LR35 L4l ]
.25 05 L1285 L2680 AA32 JBE2 B L9938 V983
25 05 126 260 L4492 639 ) 912 .ag
5 .08 T R o4 on2 999
5 05 A2 261 .4 T3 LS LBE0 L9DE
5 .05 126 i) a4 (B39 B4 212 _9ng
1.0 05 12 L300 L5l JBE2 el 1003 1.000
1.0 i A1F 250 L5813 LaE2 LBl L.000 1.000
1.0 05 126 260 42 639 B0 A2 D3
2.0 05 .19 L 833 JoaR 1.000 1.000 1.000
2.0 05 15 L3t JR50 .5ag 1.00 1.000 1.000
2.0 .05 26 260 L2 639 -] o 963

. B0

Of course no level « test can achieve the power envelope for more than one
value of # = 0. MP {7} achieves it for # = #, while LMP, optimizes for # near
0 in the sense that df,()/dd|,_, = df*(#)jd#],_, . By lollowing prescription (8.1)
in choosing @, we get a test which matches Lhe power envelope at what should
be a statistically interesting value of #, one where the power is reasonably but
not unreasonably high. In our example this means choosing #, = 2, since §; = |.
Table 1 shows that 1 — 34#) stays remarkably close to | — 3%(#), and that
MP {2) has betler powet characteristics than LMP ,, especially for large values
of .

Davies performs similar evaluations for the Neyman-Davies model of Example
2. The curvatures for the upper and lower cases graphed on page 532 of Davies
(1969) are y* = 488 and ;' = .244 respectively, while the two on page 533 are
74 = 00629 and ;F = 0364, lgnoring the “Wald's test” curve, ome sees that
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the magnitade of ;* is indeed a good predictor of the relative performance of
IMP, comparcd to MP(#). His resultls are quite similar to those for our Ex-
ample 1. (Davies chooses 4, so that 1 — 3%(#,) = .8. This 1s a morc precise
way of accomplishing what (8.1) is intended to do, but is computationally dif-
ficult in most situations. )

Section 10 shows that the Cramér-Rao lower bound for the variance of an
unbiased estimator errs roughly by a factor of | + 7 rejustifying the definition
of yif = Lasa “large” curvature.

9. The Fisher-Rao theerem, Weagain assume an L.i.d. sample x,, x5, -+ -4 X,
as in Section 6. Result {1.1), originally stated by Fisher in his fundamental
paper on estimation theory (1925) can be restated as

(9.1 lim,_ il — i,%) = fo7s
since j,® equals the bracketed term in {1.1). (9.1} is derived from {1.1) and (5.4}

by means of the relationships vy () = py — &, valf} = 2, — f and » () =
thyy — 28ty | — #a these following from (1.2), (5.3) and

(9.3 lo = fsifs s I, = fulfs — (fulfe?
To wse Fisher’s evocative languape, asymptotically the MLE f{x,, x,, -+, x.}
extracts all but i, y,* of the information in the sample x = {x,, - --, x,). Since

a single ohservation contains an amount /, of information this is equivalent to
a reduction in effective sample size [rom n 10 a — 3, for example from x to
n — § in the Cauchy translation parameter problem. This is the price one pays
for a one-dimensional summary of the data and, also according to Fisher, any
summary statistic other than the MLE would pay u grealer price. (Rao’s substan-
tial contributions to this argument are discussed toward the end of the section. )

The geometrical argument which follows shows clearly why the curvature y,
plays the role that it does in (9.1). It also leads quickly to a counterexample
te (9.1 and shows that by working within multinomial families, Fisher and Rao
chose pethaps the feast tractable curved exponential families, We will work
with a general curved exponential family in the standard fors (4.1)—(4.2). For
notational convenience we let 7, & particular value of # where we wish Lo
cvalvate lim, .. (l, — i,.,."f}, equal 0. Then we have 3, =24 =0, &, =1, 5, =
4y = fte,, and §, = (v (0)it)e, + Lrye,

Fisher's atgument depends on two useful results which we borrow:

1y TF T(x} is any statistic, with density say f,"(f) and score function (log
derivative) [,*(r) = 3/30 log f;%(r), then L7(6) = Ey[l4x)| T = £} {(where we recall
from Section 6 that 1,{x) is the score based on all the data). This implies that
the loss of mformation in going {rom x to T(X) is

(9.3) i, — 1.7 — F Var {li(x)| 7]

since i, — i = Var, I, — Var, 1%
2} Tet L; be the set of values of £ = 3%, x /e for which igfx} = (; L, consisis
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€5
Aoond the Sample Spoce of T
Lz
Mg
"
{x;.B:8 |
o
h““"“'—-_ 5 E
20 8 g

Fro. 4. A curved exponential family of dimension r — 2. Lj is the set of ¥ for which
& is 4 solution to the maximum likelthood equations, Ad¢ is the level curve Mfor another
consislent efficiant estimatar,

of those valugs of the suthicient statistic £ for which # is a solution to the like-
lihood equations 14x) — 0. Then, since 1, = n7,/(% - As) s

(5.4) Ly ={7: 3% — 4 = 0]

the r — I-dimensional hyperplane through 4, orthogonal to #,.

Figure 4 illustrates the situation for the case r = 2. {Notice that the sample
space, the space of possible % values, has been superimposed on A, the space of
possible mean vectors 4.} Actually this two-dimensional piclure is appropriate
for any dimension since curvature is [ocally & two-dimensional property, as
pointed out at the end of Section 2. A heuristic proof of (2.1} based on this
picture now follows in five easy steps:

(i} 1(x) = n(i)*%; (by (6.3)).

(i} mi — A0, asn — oo il # = Oy(since 4, = ¢, I, = L, and central limit
conditions are satisfied inside an exponential fumily).

(iiiy Let # be the MLE and ¢ the angle between 7z and ¥, = 1e;,. Then d =
ird |- O). (Since 53 = 87, — O _ iide, + O(f?), the element of arclengih
in Figure 1 is 5 = ||m.| O(ﬁ"} = i 4+ O, By (2.4) we have a3 = d =
Ilni?'aﬂ“ + G[l’-‘?u}}

{iv) Var, {I(x)[#} = r¥%, tan* & . Var, [&,|6}. (In the case r = 2 this follows
immediately [rom (i) and the geometry of the sitvation. For r = 2, &, is replaced
by v"%/||v|| where » = 75 — ||34]| cos d - 7, the part of #; orthogonal o ¥,.)

(v} Var,[%,|f} = ljn 4 o(1/n). (Thisis plausible because of {ii) and the fact
that near # = # the partition of the sample space generated by the “lines” L,
looks like the partition generated by lines parallel 1o £;.)
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Steps (iii) and (iv) together give Var, [i,| 8} = a1 + O{)) Var, [z, |},
which, combined with (v}, gives

{9.5) Var, {1,()| #} = ni% (1 + 0@ + o,(1))
o,(1)— Dasn— co, O(f) > 0asf — 0. The heuristic proof of (9.1) is completed
by (9.3), giving

(9.6) lim, . b, — 1,7 = lim,_.. B, Var, {L,} 8} = i,y
Here we have used
(9.7} i, nF 6 == 0, lim,__ aEf = i,

which one might hope for in view of atf — _#70, i;-%.

All of the weak links in this chain of reasoning can be made solid except lot
{v). Tts fatal flaw is shown by a counterexample (o (9.1) based on the trinomial
distribution

(2.8} flobserved object is in category j} = 4;, i=123
(30 2, =0, 4+ 4, + 4, =1).

The trinomial can be considered as an exponential family of form (3.1) with
k=r=LAi={4A4) s =(x. ), 5= log [A4(1 — 4, — 4}, j=1.2, and
¢in) = log (1 + en + en). The x vector takes on three possible values: (1. 0),
{0, 1), (0, 0%, cortesponding to the observed object being in the first, second, ot
third categories respectively. The carrier measure m(+) puts mass one at cach
of Lhese three x values,

The counterexample is a one parameter family %~ with L, passing through
the Axed point ¢ = {—2%, —1) as illustrated in Figure 5, the parameter # being

Li
Lo, 1 4

Fie. 5. Countercxample to (9.1) based on trinomial. Each line Ls contains at most
ang pomible sample poinit X,
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the angle between £, and L,. Sucha family does exist, as the following con-
struction shows: Tew 2, = (4, %) and

(9.9) Ao, = Ao + § sl 5) A

where pr, = |25 = ¢||/(||£s994]| sin By), T, iz the covariance matrix of x under f;,
the vector ¢, and the angle B, being defined as in Figure 5. Definition {9.9)
gives 4, € L, and also that, by (3.6), #;ocdds. the normal vector to L,, as neces-
sitated by (9.4).

S is a curved exponential family having the following property: if %, and
X are two values of ¥ = ¥ x,/n giving the same MLE #, then both %,,, and

% lie on Lz But %, = (mm mypfn), § = 1, 2 the ny,, being nonnegative in-
tegers. This implies either x,;, = &, ot
(9.10) fygy = Moy _ Myy + 17

flyg — My Ry + 2. n

Since (9.10) would make 2! a rational number, £,, must equal £,. In short
there is at most one possible £ value corresponding to any f, and so the MLE
is a sufficient statistic in 3, implying i — ¥ =0 for all n. But & must be
positive for all # values since 7, is always changing direction. This completes
the countercxample.

REMARK 1. Let ¢f) = E &% be the characteristic function of f,. If ws(n)|” is
integrable for some p = 1 then #!% hasa density function converging uniformly to
{2=)-* exp(—||¥|#/2). See Efron and Truax {1968}, Gnedenko and Kolmogorov
(1954). Under those conditions (9.1} can be verified. The technical details,
which depend on an exponential bound to the density of %, arc indicated in the
Appendix.

REMARK 2. Instead of working with the MLE § itself we can consider the
coarser statistic which only records which interval # lies in, among intervals of
the form (ie,, {(f + 1)e.), i =0, =1, =2, --.. The line L; in Figure 4 {s now
replaced by a pair of lines L, , L,;,,,, . and step (v} can be weakened to say only
that the conditienal distribution of %,, given that £ is between the twa lines, has
variance 1/n 4 o{1/n}. However in order for statement (iv) to still have meaning
we need to take s, = o(1/n} (so that the conditional variance of I, will still be
due mainly to the slope of the lines L., , L,,,,,, , and not to the distance between
them}). It turns out (Efron and Truax {1968)} to be possible to choose £ in this
way and to get the proper convergence of the conditional variance if £ is non-
lattice, |e(f)| < 1 for all y £ 0. (This excludes the multinomial.} In this case
it is possible to show that lim sup, . (i, — i) = eyl

REMARK 3. If #(%) is any other consistent efficient estimator of #, and M, is
the set of £ values having E{f} = #, then as in Figure 4, M; passes through
4; and is tangent to f; at that point. See Section 10. The increment of
[lim, . (i; — §,7) — i;y,"]above zero is due to the quadratic term in the expansion
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of M; near 4;. The details are almost identical to those of Section 10 and will
not be given here. {See (10.25).)

Remark 4. 1t is passible for two of the surfaces (9.4), say L, and L;, to in-
tersect. If % ¢ £, 1 L; then both 0 and § are solutions to the likelihood equation,
A3 f decreases to zero in Figure 4, T, L; converges Lo a point (in general an
r — 2 dimensional flat) on L, = {ce,} a distance o, = 1y, above 0. Values of £
on £, which lic above this point are local meximg of the likelihood function,
while those lving below are local minima.

REMaRk 5. Rac (1961, 1962, 1963) uses a different definition of the informa-
tion which avoids the difficulty illustrated by the counterexample. (2.3) can be
written as i, — ;" = infl E{I,(x) — A(T{x)}, the infimum being over all choices
of the function £(.). Rao redefines i,” by restricting the function # to be quad-
ratic. Rao states that he believes the two definitions to be eguivalent, but the
counterexample can be used to show that they are not.

REMark 6. [s (3.1} a useful fact, assuming it is true? Fisher seemed to think
of Fisher information as a perfect measure of the amount of information available
to the statistician., For ordinary “first order efficicney™ ealeulations in large
samples this is true enough, in the following sensc: let T{x) be a statistic having
Fisher information §,7. Then in a neighborhood of any given value #, of # we
can construct, under suitable regularity conditions, a function T{7T), that is ap-
proximately .#7#, 1/i,"), as compared with .#74, 1/i;"} for the MLE, If
1,711,f = .8 for example, then any statistic #(7"} will have almost the same dis-
tribution as A4{f) with # based on a sample 802 as large.

This argument breaks down for information discrepancies as small as those
contemplated in (9.1), since the central limit theorem iz in general not capable
of sypporting such fine distinctions. To give substance to Fisher and Rao's
theorem we must demonstrate that in specific statistical problems the Fisher in-
formation determines relative performance at the level of accuracy suggested
by (9.1). Rao (1963} showed that this indeed was the case for the problem of
estimating # with squared error loss. We review his results from the point of
view of this paper in Section 10.

1). Estimation with squared error less. Suppese we wish to estimate the
parameter f in a curved exponential family on the basis of an i.i.d. sample x,
X3 v+ X, Using a squared error loss function to evaluate possible estimators.
We will only consider estimators that are smooth functions of the sufficient
statistic £ and are consistent and efficient in the usnal sense (see (10.5)—(10.7)
below). The following result will be discussed: let #(%) be such an estimator,
the form of # not depending on », and let ¢(#) = £,U, (%} where as before
U, (%) = I fi;_ + 6, is the best locally unbiased estimator of # ncar #,. Also let
by = Ey#(%) — @ be the bias of 8, a quantity which will turn out to be of order
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O(1'n) in the theory below. Then

(10.1) \rar%f?:.%.. Pl {ﬂ+4 '*u+ §1 ”“-I-ﬂ(-l.—)

iy, njiﬁ.u ’ 4 niy n
where ﬁfﬂ = 0 and for the MLE 4, :i‘.f.u = 0. The quantity I', is the ordinary
curvature at # = &, of the two-dimensional curve (7, (7)) as defined at {2.11.

Before verifying {10.1) several remarks are pertinent.

1) The term 1/ni; is the Cramér-Rao lower bound for the variance of an
unbiased estimator. The bracketed quantity in (10.1) expresses the coefficient
of the 1/n%, term as the sum of threc nonnegative quantities: ;} , the statistical
curvature, which is invariant under transformations of #; 40 /i, , the “naming
curvature”, which depends on how % is parametrized (however, notice that
41°3 iy, is invariant under finear reparametrizations # — a + 34); and ], which
can be made zero by using thc MLE. Taken literally (10.1) says that the MLE
is superior to other efficient estimations with the same bias struciure.

2} The estimators & will generally be biased by an amount of order 1jn. This
affects mean squate error to order 1/, A simple adjustment, noted below at
Remark 11, produces estimators biased only to order |/n*; {10.1}, with the bias
term Zbﬂufnf% removed, is valid for such estimators.  Among such bias corrected
estimators, (10.1) says that the MLE has asymptotically smallest variance,

3) The Fisher information is essentially invariant under reparametrizations
of .#, in the sense that if p« = p(#) is a differentiable monotonic function then
i,7 = i,"{dfdu)® lor every statistic T{x). The squarcd error estimation problem
is rot invariant under reparametrization and this accounts for the presence of
the 4i"§u term in (10.1}. For a given #, the “best” parametrization is in terms
of $(#), the expectation of the best locally unbiased estimator of #. (Notice that
o will be the same, except for scale and translation constants, no matter what
“" we begin with.} It will turn out that if the MLE # is unbiased for # then
¢ = # for all choices of #,, s0 we are automatically using the best parametrization.

4) {10.1)is oot a special case of the Bhattacharyya lower bounds. The second
Bhattacharyya bound, applying to estimators biased by amount £{1/s%) or less,
is of the form
(10.2) var, 0z 1 L {‘”?3'0} G {:r( ‘E),

P P P 2
and the higher Bhattacharyya bounds are identical until order O(1/n%), so these
bounds relate only to the naming part of the estimation problem. It is possible
for an estimator to achieve equality in (10.2), but then it cannot be efficient in
a neighborhood of 6, so (10.1) is not contradicted.

5y Even if .#7 is not a curved exponential family we can use (10.1)to get an
improved approximation o Var, ¢, compared with the Cramér—Rao lower I:mund
l/niy. The Canchy translation family discussed ai (7.4} has §, = 4, j3 =
The MLE # is unbiased in this case, so 13, = Oand (10.1} is of the fc:rm Varg é
Ling + 3,00 - O(1/#%). Numerical comparisons of this formula w1t|1 the
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Fr1z. 6. Wariance of MLE minus Cramér-Rao [ower bound, for estimating the Cauwchy
translation parameter. Theoretical value from (101} compared with Monte Carlo
results.

Monte Carlo studies of Barnett (1966) and also of Andrews et al. (1972} are
shown in Figure 6. The theoretical values are obviously too small for » £ 11,
but seem to be more accurate than the Monte Carlo results for # = 13, For
r = 40 Andrews et al. estimate Va.rﬁ.nii — lfni; = 0025 + 0017 while (10.1)
gives 0031,

6) For estimating a translation parameter Pitman’s estimator is known to
have smaller variance than the MLE. However, {10.1} suggests that this effect
must be of magnitude at most O(1/a%).

7) Nothing in (I1D.1), except the application to general curved exponential
families, is new. Rao (1963} states the result for curved multinomial families,
and notes that for the MLE it was previously derived by Haldane and Smith
(1936). The identification of the bracketed terms with curvatures is new, as
well as the line of proof which leads to a rigorous vetification.

8) The similarity of (9.1) and (10.1) can be viewed as a vindication of the
beliel that Fisher information is an accurate measure of the information con-
tained in a given statistic. This conclusion is premature; the squared error es-
timation problem is very closely related to the information calculation, a fact
which would be more obvious if we had presented a geometric argument below,
as in Section 9, instead of using analytic methods. It is more reasonable to say
that the curvature y, is the leading term defining the nunliﬁearit}r of a family
.5, and must play a central role in all calculations like (9.1) and (10.1}. On
the other hand in the absence of evidence to the contrary it seems difficult to
dispute Fisher and Rao's assertion that the MLE provides the most informative
one-dimensional summary statistic even when there is no one-dimensional suf-
ficient statistic.

Our derivation of (10.1} will be done with the curved exponential family .5
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in standard form, and assuming #, = 0. Neither of these assumptions affects the
generality of the result. (The transformation to standard form maps any esti-
mator into an estimator having the same variance, and leaves the quantities i, ,
Toye and I', unchanged } We assume that the estimator #{£) has continuous thlrd
partial derwanves with respect to the components of %, so that around 5 =01t
has the Taylor’s series expansion

{10.3) B(%) = a, + a'F 4 (TAR)2 = O(F,

where @, i3 a scalar, a is a r x 1 vector, and A an # x » matrix, r being the
dimension of the full exponential family containing &,
Here Q%% indicates a term that near the origin is bounded in absolute value
by some polynomial in the components of % containing only terms of order 3.
Differentiating (10.3) with respect to the components of ¥ gives the gradient
vector

(10.4) VA(%) = a + A% + O(F).

In order for # to be consistent and efficient, {10.3) must have the special form
shown in the lemma:

LEMMA. A consistent, efficient estimator §(%), having continnous third partial de-
rivatives near & = W, has the Taylor series expansion
2 : ; i
(10.5) firy =5 P Ey Toge |y Fadedn o g
i B2 i p
assuming 5% is in standard form at 8§ = 0. Here &, Indicates the ith component of

E, Ky = (% Ky -0 -, KD, and Ay Is the matrix A with fis first row and column
removed. For the MLE8{7), A, = 0. Asin (1.1}, g, = E, fofolfi.

The proof of the lemma is based on two simple facts: in order for a continuous
estimator #(¥) to be consistent it must have “Fisher consistency™,

(10.6) (2 =@,

sifice £ —, 4, under repeated independent sampling from f,. Moreover, letting
Vo = VH(®ies,

(10.7) TRV SRR . ! E.a"fr’.e)’

i, Var, 8 (B Ea el (Vi Ee V)
so # will be first order efficient at #, (lim___ i, Var, i = 1},.if and only if
{10.8) Vo = VAR s, = o

for some scalar ¢,. Taken Logether (10.6) and (10.8) say that the level surface
M, = {: §{x) = 8} of an efficient consistent estimator § must cross [2,, # £ 8]
at i, and at that peint must be parallel to the level surface (9.4) of the MLE,
as shown in Fipure 4. (10.7) merely says that the linear term in the expansion
of #(%} about 4,, § = 6 -+ V,/(§ — 1,) + O((% — 4,7, must be proportional to
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the score statistic I, = ng,'(% — 4,} in order to get first order efficiency. A proof
follows from a greatly simplified version of the argpument below, but the result
is well known and will not be derived here.

The proof of {10.5) is oblained by seeing what form of {10.3) is necessary in
order that (10.6) and (10.8) hold for i, near 0. We will need the Taylor serics

expansinns
r:]_ﬂ'}} Ta = iln!‘:ﬁ + | :—Tel + iI|1.'|"|1'::|:|'5'-" o 'U{'?} s
1]

4y = fied 4+ O{P)
and a more accurate expansion for the first component of 4,

#

(10.10) &%y = i8 4 £ ;. + o(th).
[}

4

{10.9) follows from the standard form relationships {4.1)—(4.2). To prove
{10.10) notice that e,’i, = E;x, = (1/i"E; fy(x) (see (3.18)). Formally

(O11) By = 5.2 () 1) + 9400 + T4 + 0] iy
= B, + #_’iﬁs + g{&a},

a result which is easy Lo verify rigorously in an exponential family.
(10.4), (10.%), and (10.8) combine to give (writing ¢, = ¢, = &7 + o{#))
(10.12) a - Af{ijte 8y -+ O

= ite, + |_.r"u e, + ﬂkli':m e+ ek rue,:| & i G(I?}

illl
implying
{10.13) a = clte
and
{10.14) itAe, = (c‘u:'; + 5“";;*':“]-) & + Gl yaly -

T

Notice that (10.14) shows that
{10.15) A=A, =..-=4,=10.
{102y, {10.10), (10.132), {10.6), and (10.3) combine to give

(10.16) O c,_‘:',_,!'[fﬂi{? + .!'"f’.“_] chAdn g
i 2 2
implying
(10.17) 2 =0,
¢, = 1fi, and ¢, pry, + &4y, = 0. Therelore
1
{1{].-18_} 8 = E_.}.e.l i __4“ i _?131 : -431 e .L: X
U I )
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the first of these following from (10.13), the last from (10.14}. Taken togethet,
{10.15), {10.17) and (10.18) are equivalent 1o (10.5). Finally, for the MLE,
B({0, £.,)) = 0, implying A,;, = 0. This completes the proof of {10.5).

Twa more simple tesults give (10.1) from (10.5). First of all, the Cramér-Rao
lower bound for the variance of a possibly biased estimator T(%) can be rewritten
as an equality in the following useful form:

(10.19) -1,k ( _E )" ra2h

mu fat n,

((10.19) follows from Cov, (T, L) = 1 4 b} Notice that L,/i, = &/i} by (6.3)
=01 this statistic is just the best locally unbiased estimator of #, U, mtroduced
at (5.5). Foran unbiased estimator, (10.19)says that Var, T exceeds the Cramér-
Rao lower bound by the expected squared error of T in predicting U,. In a
curved exponential family the regularity conditions neccssary for (10.19) are
satisfied if £,T? < oo for # in a neighborhood of 0. The second fact needed is
that if 7 is standard multivariate normal, z ~ .#7(0, I}, and A is an » x 7sym-
metric matrix, then Fi{z'Az)f2 — tr A/2 and

(10.20) Var .z";_z = 4tr A%,

Asn — oo, 2, = mE — (0, 1), and because f, is inside an exponential family
the moments of z, converge Lo the moments of 2 ~ #,(0, I). Ignoring the O(%")
term, an omission ju:r.tiﬁed funder an additional restriction on ¢) in Remark 12
below, (10.3) and {10.5) give

‘AR 1 tra 1 t tr A
10.21 Eidaip AT il IER _(_:1 ¢)
( ) "2 n 2 n 25,,=+ 2

Moreaver (10.5) combines with (10.19} and {10.20) to give

{1(}.22] .Eu,|§3= 1 e _I (r.uz_‘__-"[?l o ir A‘?ll _._-t_-[‘z',fi.) I 2-!)__'_ O(n)

mi, n° 2 2 4 i,
Therefore,
(10.23) Var,ﬁ=1__+i( + +t“‘ )+.2E+U(L),
iy nE A 28, BRIy nt

Finally, {10.11} gives () = & + (1,,/2i)0° + o(#"}, where ¢{ff) = E, 1,fi, =
Ey Lix)i;, and then (2.1) gives the curvature squared of {7, ¢(#)) equal to g 187
at it = . This completes the pronf of (10.1). We see that the term :}.ﬁo is

{10.24} A =yt ALLf2

and so equals O for the MLE.

Several more remarks can now be made about (10.1).

9) The bias of the MLE up to G(1fr) is, by (10.21}, equal to — g, /(2{n). If
# is unbiased to O(1/n), as it is for example in any translation parameter estima-
tion problem involving a symmetric density, then we must bave g, = 0. By
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(10.23) we then have ¥Yar, 6 = lini, + yi{rf, + o(1jn*). The naming curvature
term disappears from (10.1) in this case, so # must be equivalent to the best
name, ¢, at Every pcunl in 7,

10y The expression (10.24) for the excess variance of # over the MLE also
aceurs in the theory of Section 9,
(10.25) lim, .. in — i = f7 + A7,
see Ruo (1963).

11y Let A{#) be Lhe matrix A in the Taylor expansion (10.3) when we have
put & into standard form at # = #,, and define B, = tr A(#)/2. Then up to

G(1/n), BY n is the bias of § when § = #,. 1t is easy to show, by calculations
similar to those in Remark 12 below, that §, = § — B - /n has bias of order
©(1/n") and variance as given in (10.23) but with the LBI‘II[ 2%, o 1y removed.  See
Rao (1963} Forthe MLE#, B, = —(p,(#)/24,%). The estimator & — ﬂ"’_ FLIS
Bg;;ﬂu’n has variance as given in {(10.1) but with the term :}.“u removed. The pmnt
is that by modifying the MLE we can obtain an estimator with the same bias
structure and smaller variance than any other consistent, efficient estimator 8.

12) We have ignored the O{%%) term in (10.3) in the derivation of {10.23)
and (10.1y. To justify this requires the following result: let %7, be the cube
fzi)gl &t i=1,2, .-, r}, 0 < o < 4, and I {2) the indicator function of #7,.
Define z, = m¥% (30 2z, — . 770, 1)) and let p(z.) be a polynomial of degree !
in the coordinates of z,. Then

{10.26) E,piz )1 — Fiz,)] = O(n* exp{—{n*})
as discussed in the Appendix.

Now write (10.5)as # — %, fi = Q | R where Q is the quadratic term ¥ A¥,
A having the -ap::-ciaf fortm indicated in the lemma and & is the remainder term

iz, Also define S(Z) = QR (#2R), T{(%) = M —Ls,and V=7 -|- R
fso Q=25+ 7,8 - gfi} =5 - V). Notice that
(10.27) |V] = [Q{E")]| < Kn-2t-= for nt%e o,

for some positive constant X. (We use below the same symbol K to represent
any bounding constant.) To the assumptions of the lemma we now add ther
|§ — Efi,}| is aniformly bounded, giving

{10.28) V| < K, migw,.

(With only slightly greater effort below, the boundedness condition ¢an be re-
laxed to |f| = K{n*||%||)* for m'% g %", for some positive constants X, k) By
{10.26) and (10.27},

(10.29) E V| = O(n-¥ti-en
for any ! = 0, while
{10.30) E|T = G{"sme_-h o
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Formulas (10.21) and (10.23) were derived assuming f{EEE /it = 0. But

|E,Q — £,8| = E|T| = Ofnme—")
and
B — ®fi}) — E,S| < E|V| = O(a~vi-=y,
Since o «C } this shows that Ef=EQ+ o{ljm), so (10.21) is valid. Likewise

|E{f — %, fid) — B0 = |ES + VP — BfS + TV
= |E[25V + b — 17|
(since ST = 0), which is = 2E|S¥F| |- E|F|* + E|T|*. The last two terms are
“a(n?) by (10.29) and {10.30}. Notice that §¥ = O{#) and SV = 0 for iz g &,
40
(10.31) |SV| < Kn-4i-=,

Taking & < {#; makes £,|8¥] = o(r-%), completing the proof that (10.28)is valid.
We remark that a more careful proof, assuming # four times continuously dif-
ferentiable, allows one to replace o(l/#% bs O(1/n% in (10.1).

Acknowledgment. Much of this work was done while T was visiting Imperial
College, Londen, Department of Mathematics. I appreciate the assistance of
Margaret Ansell in carrying out the maore difficult numerical computations. The
Associate Editor provided extensive help, especially with the Appendix.

APPENDIX

Complete proofs of the stalements made in Sections 9 and 10 require large
deviation results of the type discussed in Chernoff (1952) and the references
therein. Suppose x,, ¥, - .-, %, - - are independent, identically distributed real
valued random variables such that £x, = 0, Var x, — 1, and ¢{s) = Fe* exists
for |s| < 5, 5, some positive constant. Then ¢(s) = 1 + 5%/2 4+ O(s*) for s near
0, s
(Al log dis) = #42 + O(s7) .
Define /, ..(z) = L or 0 for z = y or z < y, respectively. Because ™%+ =
I, (k) for all values of £, = F1., x/n we have, for |4 < 5,
{A2) PR, =y} = Ee™n v = [dne"]*.

LEMMA. For ¢, a sequence of numbers poing to infinity, ¢, = o(nY), and [ a non-
megative [nteger,
(A3) E{mE )y, (1%,)] = ¢pfemtadhoatth,
Proor. Let F (y} = P{X, =y} so F () = [¢she ] for |5 < 5, by (A2). We
have
E{(n*‘i‘ﬂ}ulﬂn.wﬁfniil}} = —niad 5::.-'“* 'xt an(x}
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and integration by parts gives

—fpm s di = (5] £ (%

w ) fie L xiolF
.I'H) o ;E“n-'.“*x lrﬂ-{.x} dlx

- 'I'.'"_ =N . {'“ —at i m -1 —rzn
< (SY[@(S)ent [+ 13m0 w-IgtoeT ds.

Taking s = ¢, /n? gives

(Ad)  BBr ), . (nE)] = ¢ (":) e—ﬂ-*[c,j T (rﬂ i E)H] .
n wt ] c: &
where G has density e~ for ¢ = 0, 0 otherwise. Finally
(AS} Eln:,ﬂ (%) oy enluh‘.lﬁrﬂ*.{uh - Frﬂg_.'9+tﬂ;¢ﬂl,-'n§;.
by (Al). Combining (A4} and (A35) gives {A3) with
(A6) o (1) = O([c/m]) + log {I + i ZE(1 + Gfc ¥},
where we now use ¢, = o{r'), ¢, — oo.
Now let x,, %,, ---, %, -- - be independent identically distributed random vec-

tors, dimension k, Ex, = @, Cov x, = T, such that ¢(r} = Ee''*: extists for ||¢|| < .
some positive constant. For any unit vector v define »” = 1"y, Then (A3} holds
with #_ replaced by £,*. The term o,(1) is defined as in (A6), with the big O
term being the one in the expression log ¢{r) = |¢|%/2 + O(t"). (Notice that
o,(1}) does not depend on .} (10.26) now follows easily.

Lewmma, S |Ee®™|* is integrable us a fanction of ¢ for some p = 1 then gz},
the density of 1 = wiR,, exins and satizfies

2 I .

ﬂ? .!;T“ r { P ] E.—-.I:: |.-i]|:|.|.]n|tﬂ. |= “'H'n.'l-' 9

1: } l:: } {zx}h!-
e, = o{m), e, - » oo,

Proor. Consider the univariate case, with # even. Define

{AR) Bz) = V= W, a2 — whdw
= 20 Ul W)z — WheW + 35 go (Wit alz — whdw .
Hete g, (2}, the density of (#/2% ., is known to exist and to converge uniformly
to {2x)~4 exp{  2%(2), see page 244 of Gnedenko and Kolmogorov (1954). Then
""fﬂ : 3“P= |§|'x{2'}| T {ZH} i + oa(‘l}! 50 fur ﬂ 5 z E 'ﬂﬂ -
AZ) = Moo §25 fhanlz — w)dw + 2. 0,.4w) W)
5 2‘”1,-1.5'- 12Almln e, 2f 41

where we have used the bound P[n*%, = 7} < exp[—z/2 min{e,. 2] - 0,(1)] ob-
tained by setting ¥ = zf»*and s = min{z {n*, ¢, [nt}in (A2). But g () = 24k(2%),
giving {A7). The same proof with trivial modifications works for # odd. For
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the multivariate case the integrals in (A%) are over the regions B = {w: 'w <
|z|I*f2) and R, = [w: Z'w > ||z]]32}. :

Remark 1 of Section 9 follows because (A7) makes step (v) of the heuristic
proof valid. All the other approximations involyved in the proof arc handied by
powet scrics cxpansions and the bounding arguments of Remark 12, Section 10.
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DISCUSSION ON PROVESSOR EFRON'S PAPER

Prefessor Efron’s papet was prescoted at the 1974 Annual Mesting of the In-
stitute of Mathematical Statistics at Edmonton, Alberta. Professors D. R. Cox,
A.P. Dawid, J. K. Ghosh, N. Keiding, L.M. Le Cam, D. V. Lindley, I. Pfanzagl,
D. A, Pierce, C. R. Rac and J. Reeds were invited discussants. The Editor
greatly appreciates the willing assistance of Professor Efron as well as the dis-
cussants in arranging this discussion paper. Professor Rao’s remarks arrived
afier the author’s reply to the discussion was received and are not referred (o
for that reason.
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C. R. Rao
Indian Statistical fnstitiate, New Delhi

T am delighted to see the paper by Bradley Efron and also the paper by J. K.
Ghosh and K. Subrahmaniam (Sankhyd 4, 1975 36 325-358) on the subject of
second order efficiency. Having worked for some time on second order efficiency
of estimators, I was aware of the importance of measures of how closely a given
model can be approximated by an exponential family { f;, = C(#) exp [K(#)T{X)]}-
Measures of this sort are of course closely related to what Professor Efron calls
the curvature of a statistical problem. Whal is quite new about Professor Efron’s
measure is its invariance under smooth 1 — | transformations and the elegant
geometric interprelation which makes the term so apt and illuminating and pro-
vides new tools and insights into the subject.

My endeavour in this area was motivated by two results in the fiteraturs on
estimation which seemed to contradict Fisher’s claims about MLE's. {maximum
likelibood estimators). One is the concept of super efficiency, according to which
MLE is not efficient in the sense defined by Fisher. Another is the concept of
BANE (best asymptotically normal estimator), according Lo which ML is only
one out of a very wide class of cstimation procedures.

The first task was to redefine the concept of efficiency of an estimator since
its asymplotic variance is a poor indicator of its performance in statistical in-
ference. To do this it is necessary to see how well an optimum inference pro-
cedure based on a given estimator T, alone compares with that based on all the
observations. Following Fisher's ideas, 1 thought it is relevant, at least in large
samples, to consider the score function /() (see Efron's paper for notations) as
basic to all inference problems. Then the problem reduces to examining how
closely ##) and T, are related. Under the additional condition that ¥, is con-
sistent for &, T, was defined to be firsi order efficient if

(1) plim,_. [a=t/{f) — o« — KT, — #)] = 0.
There are a large number of estimators which are first order efficient. To dis-

tinguish ameong them, it is natural to examine the rapidity of convergence in
{1}, which led to the consideration of the random variable {rv)

2) H8) — mla — n3(T, — )|

which is at times the rv in (1). The asymptotic variance of (2) was defined as
the second order efficiency. Instead of (2) we may as well consider the rv

(3) |(8) — mla — nf(T, — 8) — (T, — 87

and define its minimum asymplotic variance for a proper choice of 2 as the
second order efficiency. Fisher suggested the use of

(4 lim, . o/ — i)
to distinguish between alternaie estimators, but the compuation of (4) is ex-
tremely difficult.
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The definition arising out of (3} was criticised as not being directly related
to an inference problem, although it attempts to examine how close T, is to
i(#). This led to another definition of second order efficiency based on the ex-
pansion (under some conditions) of the variance of T, after correcting for bias

| (# 1
(5) Ty =—+ 8 o (2).
iH f T
The quantity ¢{#) was considered as a measure of second order efficiency. A
major compenent of ¢{f) was the measure based on (3).
With this background, the work of Efron is valuable in many ways.

(i) The results due to Fisher and me were confined to multinomial distribu-
tions. Efron, and alzo Ghosh and Subrahmaniam extend the resolts Lo a wider
class of distributions.

(i} Efrom relates second order efficiency to what he calls curvature of a
statistical problem, which appears to be natural and throws further light on
problems of inference (providing, for instance, an intimate connection between
curvature and properties of test criteria).

fiily Efron provides a decomposition of ¢{#) in (3), which iz extremely
interesting.

fiv) Efron suggests the use of a most powerful test at a suitably chossn al-
ternative in preference to a locally most powerful test, which seems to be an
attractive idea worth pursuing.

Mo doubt Efron’s work has led to considerable clarification of second order
efficiency and its relevance in problems of inference. However, there are many
problemns which require deeper investigation.,

(i) Efron shows by an example that measures of second order cfficiency
based on (3% and (4) can be different. In fact, as he observes, it may be shown
{from definition) that the measure based on (4) iz smaller than that on (3). But
the question remains: under what conditions are the two measures the same,
and is the MLE efficient under the measure (4)?

{ii) I bave considered Fisher’s score function f{#) as a basic in problems of
inference. Ierhaps, following Barnard and Sprott, coe should consider 1(#)
itself. How should efficiency of T be defined in such a case?

(ili) How can the result based on quadratic loss function as in (5) be extended
to more general loss functions?

Don A. PIERCE
Oregon State University

I think that I am not alene in having had great difficulty with the reasoning
of Fisher’s 1925 paper. TProfessor Efron’s elegant coniribution to clarifying
these ideas is very helpful.
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The part of Fisher's paper which has intrigued and puzzled me most is the
final section in which he suggests the use of 1i(x), in Efron’s notation, as an
ancillary statistic. T would like to indicate here how the peometry of this paper
helps clarify this, although there are many details yel unclear to me.

It is characteristic of “curvaturs” that —1x(x) = i;. In fact, one can always
parameterize so that Cov, (f. 1) :: 0, and then 7§ = Var; (i, )i, Fisher
seems to suggest using — Ix(x}, rather than ig, as a post-data measure of precision
of #. This is also suggested by standard asymptotic Bayesian arguments, but the
sampling theory justification has never been clear to me. Such use of I; would
be significant relative to the order of n~* of approximation to Var () considered
in this paper, for —I; = i 4+ O,(n!) and thus —1/i; = 1fi; + O {n-%).

The geometrical structure exposed in this paper is indeed very helpfol in un-
derstanding the role of 1; as an ancillary statistic. For a curved exponential
family of dimension & think of the projection from the sample point X ¢ £* to the
MLE i;, where i, = E(x)asan orthogonal projeclion (relative to 3,3") first to Ain
the local oscolating plane of the curve i, and then a projection from A to ;. The
argument below suggests that (—1x(x) — 1;)/1; is a useful measure of the signed
distance from 4 1o the curve 2, positive when 1 is on the outside of the curve.
This is useful ancillary information because the projection from 4 to i; is a
contraclion {resp. expansion) mapping when 4 is on the outside {resp. inside) of
the cutve 2,. The extent of this contraction is a function of the distance from
/ to the curve %4, 85 measured by the above statistic. Thus the conditional
precision of iz given I3(x) is either greater or less than the unconditional precision.
Furthermore, it appears plausible that the component of yl orthogonal to the
curye 4, at 4; is itself uninformative regarding the value of 2,

More precisely, consider the situation of Figure 4 with the additional assump-
tion that # is a choice of parameter such that Cov, (f, )} = 0. The point (x,, x,)
correspands to the 4 of the above discossion. 1t follows divectly from (6.3)and
the rclations given in the second paragraph afier (9.2) that

% = lymiiy . R= —[—l — niimi,
Mear the origin the curve 4; is approximately a segment of a circle with center

at e,y,. and the are distance of i3 from the ovigin is lo first order i Propor-
tionality of arc lengths to radii gives

J:n!"""‘ﬁfl.-"_:l = (L1 — %)

={1 — y. %},
50
f {-fl_-'ljn*:'{l — taX)
(1) = (RSRN[L + (=L, — ni)ini,|

= (&/i}) [ —1)] -
Equation (1) can be seen to agree with the rigorously established (10.5) of the
paper, where », = 0 since 1, = 0.
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Thus we have

2) var (f[1g) <= (1 fni{rii(— )T

= [rig(— LI —T,)]
Since —1, = ai, + O,(n*) this expression can be either greater or less than 1/ni,
by an amount & (.

I do not know the effect of conditioning on I; rather than 1, nor can Isee yet
whether 1/{—1;) as suggesied by Fisher is 2 pood approximation to Var (7] 1)
Note that the expression in {2) differs by O (n~%) from 1j{—1,). I also do not
know the effect of relaxing the assumption that one has parameterized so that
Cov, i}, l) = 0.

Tt appears, then, that the curvalure ¢, is essentially the standard devialion of
an approximately ancillary statistic. This interpretation might have a number
of advantages over that furnished by relations such as (1.1} and (10.1). Looscly
put, the degree of curvature relates to the amonal of information in the samyple
which is not captured by the MLE; information in a sense regarding not & bul
rather the precision of 4. Moreover, this information can be largely recovered
through appropriate vse of L.

I R. Cox
Imperial College, London

Dr. Efron’s impressive paper throws much light on a longstanding prublerﬁ.
I will confine my comments to one aspect that he has not treated. For an ap-
proach to statistical inference in which evidence in unique sets of data is inter-
preted via frequencies in hypolhetical repetitions, appropriate conditioning is
important, at least theoretically, in making Lhe hypothetical repetitions relevant
to the data under study. Thus for the translalion family, Example 4, Fisher
{1234) provided a simple definitive solution to inference about # by conditioning
on the ancillary statistic, the set of differences among order statistics. This leads
to the use of normalized likelihood as giving confidence limits. Curvature here
mcasures the variation among the different kinds of likelihood functions that
can arise. It would be useful to make this more specific and to draw any im-
plications about the comparison of conditional and unconditional inference,

More impartantly, what are the implications of conditional inference for some
of the other problems. for instance Example 17 Here, if x = (x, %), x, —
Frafx — 1) 15 approximately ancillary. in some sense, at least for small /.
Existence of gn approximate ancillary must be connecled with the approximate
constancy of j, as a function of # it would be good 10 have the connexions
explored,
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D. V. LiNpLEY
The University af Towa

My first comment is to repeat the point made in discussing C. R. Rao's (1962)
paper, namely that it is doubtful whether any general measure of second-order
efficicncy is possible. The reason for suggesting this is that an admissible estimate
is typically, 1o order n7%, equivalenl 1o the maximum likelihood estimate, for a
wide class of loss funclions: but to order #~° ils asymplotic form depends on
some features of the loss structure. Consequently the second-order “correction”
to the maximum likelihood estimate typically depends on the loss structure, as
does its efficiency. The point is discussed morte fully in Lindley {1961).

Efron’s thought-provoking paper does not introduce curvature solely for
second-order efficiency properties; nevertheless the definition of curvature he
proposes suffers from a defecl in some statistical problems. The defect arises
from the fact that it invelves an integration over sample space and theteby vio- |
lates the likelihood principle. Put it this way: suppose we have some data &
and its associaled likelihood funclion, {,(x), then, according to Efron, we have
to consider what other data we might have had, but did not, before any inference
can be made. These dala are needed before the integrations, symbolized by E,
in the paper, can be performed. That such dala are necded is puzeling and any
reasonable axiomatization of inference seems Lo deny their relevance. The author
tacitly assumes that the other data are samples of the same size, but many prac-
tical problems do not naturally fit inte this framework, Even Lhe nelation helps
to reinforce this view. Likelihood is a function of # for fited x and yet Efron
lowers the status of the variable to that of a subscript and the constant appears
in the place customarily reserved for the arpument. The notation I{# x)}is surely
10 be preferred.

An example of the misuse of the integration is provided by the discussion of
the t-translation family [Example 4 of Section 7: see also the remark afier (8. 3)].
If samples are taken from a ¢-disiribution with low degrees of freedom, then il
will be found that a subsiantial majority of them look very like samples from a
normal distribution—the comparison being made through the - and normal
likelihoods. Tt is only rarely (how rarely depends on f and &) that a sample
arises which is clearly nonnormal and its log-likelihood is markedly not quadratic.
But becguse of the integration, or averaging, over all samples, these “peculiar”
samples get put in with the “normal™ onés and nonstandard estimates proposed.
Looked at without prejudice, 1 think you will find this is a surprising thing to
do. The argument can be extended to query whether it is reasonable to look for
a poinL estimale in the “peculiar™ cases: for example, when the likelihood is
bimodal. I would go further and suggest that peint estimation is not a good
maodel for gny inference procedure, though it does occasionally cccur ina decision
context. Estimation is solved by describing the likelihood function or the pos-
terior distribution.
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These criticisms have less force before the data, x, are 1o hand. If it is &
guestion of experimental desipn, or choice of & survey sample, then naturally
one has to consider what data might be obtained, and integration becomes natural
and necessary. Hence curvature could have a place in these fields and it would
be interesting to see whether, in some sense, linear designs were better than
“curved” ones. However, the argument of my first paragraph would show Lhat
if a terminal (as distinet from design) decision problem is contemplated after the
experimentation, then the choice of dnsign wonld apain involve a loss function,
s0 that no general measure scems possible. Some experiments are oot associated
with terminal decisions and are penuinely inferenlial in character. In these one
is collecting information about parameters and Shannon’s measure is essentially
the only one to use. I have tried to see whether some second-order expansion
of it might lead 10 anything analogous-to Efron’s cufvature, but without success.

REFERENCES

LinpLey, I ¥, (1%61), The use of prior probability distributions in statistical Inference and
decisions. Prov, Fourth Berkefey Symip. Matk. Sratisi, Prop, 1 453-468,

Luciky LE CaM
University of California, Berkeley

Professor Bradley Efron is to be congratulated for a clear and informative
discussion of the differential properties of families of measures. The paper is
certainly a step in the right direction. However, as I shall try to explain below,
much remains to be done.

The paper tends to give the imptession that the curvature measures the loss
of information sustained by using g one dimensional summary of the data. This
is perhaps so if “information™ is measured by Fisher’s number. However, one
can define other measures of loss of information more direetly in terms of per-
formance in testing ot other decision problems. See for instance E. N. Torgersen
(1970}, These definitions are usable for arhitrar}r families, whether or not they
are smoothly differentiable.

It can probably be shown thal these other measures of loss of information are
relaled 1o Fisher’s numbers in certain spacial sitvations, but not in general. One
could roughly say that Torgersen's formula for testing deficiencics relies on finite
differences instead of relying on the first and second derivatives used to compute
curvatures. Efron’s curvgture has the merit of being casily computable, but one
should not take it for granied that compulations with differences, which may
be difficult, should not be attempied.

The part of the paper which relates 1o the presumed excellency of maximum
likelihood estimates should be taken with a great deal of caution. Ii is easy to
modify Bahadur’s example (1958) to construct one parameter families of densities
which are infinitely differentiable, satisfy all kinds of reasonable conditions
locally but are such that, when the number of observations tends to infinity,
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the maximum likelihood estimate always converges to infinity, no matter what
the true value of & is.

It is also easy to find exponential families where, for reasonable numbers of
observations, maximum likelihood estimales are difficult to compute and defi-
nitely worse (in the sense of expocted square devialions) than some readily
available alternatives. Anexample occurs in bioassay wsing the logit method (see
Berkson (1951)). Another example with an interesting discussion is given by
T. 8. Ferguson {1938},

Finally, it seems that the entire asymptotic argument relies essentially on a
replacement of the actual logarithm of likelihood tatio by a suitable approxima-
tion which is quadratic in f.

If this is indeed the case, the techaique of using a preliminary estimate, fitting
a quadratic around the estimated value and then maximizing the quadratic should
give the same asymptotic results. Preliminary considerations suggest that this
technique may well work better than straight maximum likelihood estimation
in the finite sample situation.
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J. K. G3HosH
Indian Sraiistical astirure, Crlcutia

Thanks to my work on second order efficiency, I was aware of the signilicance
of the quantity which Professor Efron calls the curvature of a statistical problem.
Whal enhances the importance of it is Lthe clug&nt geometric interpretation of it,
which affords new techniques and deeper insight into the problem.

It is natural to expect that this quantity also plays an important rele in as-
ymptotic problems of testing hypotheses. By considering a number of examples
of curved exponential families, Professor Efron has shown that this is indeed
the case and unless curvature is small such commeonly used methods as maximis-
ing the local power perform rather poorly for moderate sample sizes. Pfanzagl
(1574} has arvived at the same conelusion. (Planzagl's D = (curvature}*/4.)

Probably even more interesting than this is the suggestion by both Pfanzagl
and Efron to use a suitable most powerful test instead of a locally most power-
ful test when the curvalure is appreciable. Following Davies, Professor Efron
sugpests the use of a most powerful 1esL against an allernative #, such that its
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power at ff; is about .8 and recommends the thumb rule of taking &, = #, + 2, L
These suggestions must be tried out in lots of problems inveolving nonexponential
families Lo sec if one docs pet reasonable tests this way even for moderate sam-
ples. (Planzagl (1974) provides some criteria for comparing two tests.) T report
below some calculations for a curved nonexponential family, namely, the Cauchy
with unknown location parameter. To make matters worse, [ lake sample size
N=1.

Suppose then thal I have a random variable X with density fi(x) = 1jx.
IN1 + {x — &) and want to lest Hjid = 0} vs. H{# = 0). Let ¢, be the most
powerful test of Davies and ¢, the test: reject Hiff X' = €. The second test has
its greatest power against & = 2C and seems to me a reasonable one. For o =
03, ¢, is most powerful against # = 5 (approximately) and ¢, is most powerful
against # = 13 (approximately). The lcllowing table compares &, and &,

=25 F=13
thy .8 6
iy .2 .95

If ¢ = .2, ¢ and ¢, are nearly the same and are most powerlul against # = 2(2)i
which is the alternutive obtained by Efron’s thumb rule. I refrain [rom drawing
any conclusion,

It is not difficult 1o come up with analogues of curvature when one has more
parameters Lhan one. Extension of the results due to Rao and Fisher o multi-
parameter families is provided in Ghosh and Subramanyam (1974), But it is
now necessary to study testing problems of composite hypotheses along the lines
of investigation carried out by Efron and Pfanzagl for simple hypotheses.

How relevant is curvature for a Bayesian? Ghosh and Subramanyam (1974}
have shown how one can construct a Bayesian proof of the second order efficiency
of the MLE. What is lacking und would be useful 1o have is a study of relevance
of curvature in Bayesian analysis. The difficulty here is that one cannot think
of uny simple and convincing reason why a Bayesian would prefer the linear
expomential families to nonexponential ones. All is grist thut comes to the mill
of the lucky man who not only has a prior but knows what it is.

It is a little disappointing, though not really surprising in retrospect, that
curvature has nothing to do with Lhe geometrical curvature of the likelihood
curves. Curvalure is, however, useful in the problems that Sprm't{lg?.'!]discussas.
For it is easy to show that his two approaches of minimizing F () or £{¢) {in
his notations) coincide iff one has a linear exponential family. (This statement
15 true provided the MLE satisfies (he likelihood equation with probability one
for all #.} For example (2.3} of Sprott (1973), the curvature is fairly large for
x near .§ and so Sprott's transformation which minimizes F ()} may not be
ethicient in normalising the likelihood for x near .5. Incidentally, [ suspect that
for small curvature one can reparameirize in such a way that the approach of
4 posterior to normality, guaranteed by the Bernsiein-von Mises theorem, would
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be faster with the new parameter than with the original. {This may be an answer
to the question of relevance of curvature for a Bayesian.)

[t may be worth pointing oul here thut the results of Pfanzagl (1973} and those
of Fisher und Rao (i.e. results like (10.1) of Efron) are not really comparable.
In fact for all the efficient estimators considered by Efron or Ghosh and
Subramanyam (1974), inequality (5.4) of Pfanzagl (1973, page 1005) reduces to
an equality. This result, which is not very hard to show, will appear in Ghosh
and Srinivasan (1975).

Finally, a question suggested by the beautiful counter example of Prolessor
Efron. Is there any example such that among the Fisher consistent efficient
estimators the MLE does not minimize the [oss in Fisher’s information for all
values of 41 It seems reasanable to expect that such examples do exist.
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J. PEANZAGL
University of Cologne

In bypothesis testing, one-parameter exponential families arc distinguished by
the fact thal for one-sided allernatives uniformly most powerful tests exist for
arbitrary sample sizes. For other families, the test has to be chosen with par-
ticular alternatives in mind. It is intuitively clear that the dependence of the
test on these particular alternatives will be weak if the family is close to an ex-
ponential one. Is it possible to measure “nonexponentiality’ (for this and other
purposes) by a single quantity? Mr. Efron’s suggestion (o use the “curvature”
7 for this purpose is based on a peometric analogy. Thetelore, its usefulness
for statistical theory is not obvious in advance. It is the purpose of this note
to draw atention 1o some tesults of asymptotic theory where the function 3,
has been in use already for some lime. Whether curvature admits an easy statis-
tical interpretation in nonasymptolic theory seems doubtful.

“Nonexponentiality” implies in particular that a LMP ({locally most powerful)
test will not be MP {most poweriul) against the statistically reasonable alterna-
tives. The author uses a particular example to support his claim (see end of
Section 8) that ;} is a good predictor for the relative performance of the IMP
test compared to the test which is MP against a specific alternative. Tn this
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connection he sigwests that the difference in power can be neglected il =%
For Lhe case of a sample of #i.i.d. variables this entails that the difference in
power can be neglected il the sample size exceeds 8y} (see 8.3).

Since (his rule is rather arbilrary, Lthe rcader should be aware of other results
which make the role of Ts, More clear. These resulls concern the case of r i.i.d.
variables, the distribution of which is nonatomic and sufﬁcientl}- regular (as a
function of #). To define for a given level a-test “‘deficiency at rejection level
§7 we determine first the alternative closest to the hypothesis which can be
tejected with probability 8 by some level a-test. (The test for which this is
achieved is called S-optimal.) In order to reach rejection probability 2 lor this
alternative with the piven test, the sample size has to be increased. Theadditional
number of observations needed lor this purpose is the “deficiency at rejection
leyel 3.7

For the LMP w-test the deficiency at tejeclion level §is asymptotically equal to
(1) 2Ny — NJF + o),
where A, is the d-guantile of the standard normal distribution. (See Chibisov
(1973, Corollary 2) and Planzagl (1973, Section 8, formula 24) or Pfanzagl (1975,
Proposition 1, formula 6.2).)

This result enables one 1o check whelher the rule suggested by (8.3} is rea-
sonable. For o = .0l and 8 = .99 the deficiency is 5.473 + e(#"}. Mr. Efron
suggests in (8.3) not o worry about curvature if 1 = 873, To follow this sug-
gestion and to use a LMP lest instead of a S-optimal test could mean to wasle
more than half of the sample.

The following is another asymptotic result (for ponatomic families) illustrating
the siatistical relevance of curvature. If a sequence of tests is 3-optimal, then
its deficiency at rejection level 9 is at least
(2) TN — M) + ol
{see Pfanzagl 1975, Corollary 2, formula 6.5). Hence a sequence of tests having
asymptotic deficiency zero for more than one alternative cannot exist unless the
curvature Is Fero,

In another attempt to demonstrate the statistical relevance of “curvature.”
Mr. Efron refers to a resnlt of Fisher (see (2.1}). Mr. Efron is careful enoogh
not to follow Fisher's abuse of languape using a suggestive word for a mathe-
matical construct (such as “information™ or “likelihood™) without paying any
attention to the question whether the interpretation thus suggested is meaningful
from the operational peint of view.

A statement like “Since a single observation contains an amount §; of informa-
tion this [namely the use of a MLE instead of the whole sample] is equivalent
to a reduction in effective sample size from » to s — y* - .- (sée beginning of
Section 9) is misleading, at least, since lor nonatomic families the level a-lesl
based on the MLE has asymptotic deficiency zero at the rejection level (1 — o).
and nol asymptolic deficiency y,*, as the statement quoted above might suggest.
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(See Chibisov 1973, Corollary 3 or Planzagl 1973, formula23 forr = —2N, L},
or Pfanzagl 1975, end of Seclion 6.) Probably the statement quoted above is
meant as the interprelation Fisher himself would give to (2.1). Since this
interpretation is unjustified, how can (9.1} convinee the reader that “curvalure™

is statistically significant?
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MicLs Keiomvg
University of Copenhagen

1. An important feature of Efron’s paper is the study of the loss of infor-
mation resulting [rom summarizing the data in » replications X, ..., X, ofa
multivariate random variable into a one-dimensional stalistic T(X) = T(X,, - - -,
X.). In mosi of the paper it is assumed that the X.'s are obsetvable and that
their distribution belongs Lo an exponential family of which the statistical model
forms a “curved subset™, in the scnse of the mean value parametrization. The
basic result in this connection is formula (9.3), stating that the information loss
from n replications is

iy — 1,7 = E, Varg [1,(X)| T},

where for 7 :: 4, the right hand side is #,7,%, independent of #. (Notice that it
is an implicil consequence of this that 7 cannot itself have the form Eix,)).

A somewhat related problem is that of incomplete observation ol an cxponential
Family, where the statistician is “forced” to work with nonsufficient reduction
of data. It is here assumed that the statistical problem is specified in terms of
an exponential family where only a function ¥ = ¥(X) of cach component may
be observed. If ¥ is a linear function of the canonical statistic X, there seems
to be a canonical way of decomposing the parameter vector inlo an efficiently
estimable part and a nonidentifiable part, using the concepls of “mixed para-
metrization™ and “cut” introduced and further studied by Barndorff-Mielsen
{1973, 1974) and Barnderf- Nielsen and Blaesild (1975}, and in the case of con-
tinuously distributed random variables this seems to hold as soon as the level
curves of ¥ are hyperplanes. Asymplotic results for arbitrary “curved” func-
tions ¥ were given by Sundberg (1974) who points out that the same formula as
above applics for the information loss, which here in general will be of order n.

1t is clear that the two situations might be combined: a “curved” model with
incomplete observation. An example of this was discussed by Fisher (1958,
Section 37.1).
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2. The relation (10.1) for the asymptotic variance of any consistent and
efficient estimator # contains the term .-i‘.fj:u, being always nonnegative and zeto
for the MLE. This quantity was computed by Rao (1963 [or several estimation
methods in the multinomial distribution, as noted by Efren. Tt would be inter-
esting il some peometrical interpretation, or at least a bit more transparent ex-
pression than (10.24) could be given for this quantity, which must be related
to the intuitive discussion by Fisher {1958, Section 57) of “the contribution to
+* of errors of estimation™.

3. Curved exponential families cccur frequently in population process and
life testing models leading to occurrencejexposure estimates of birth or death
intensities. One familiar example is that of estimating the mean g~ of an ex-
ponential distribution from a sample of n, censored at a fixed point /. If 2 is
the number of variables less than ¢, and § the sum of these 4 {n — D), then
the likelihood function is p"e-=¥, yielding 4 — D/S.

We shall here comment a little vpon (he similar example of estimating the
birth intensity 4 in 4 pure {linear) birth process (X, } from continuous observation
of the process in [0, 7]. See Keiding (1974) for details of the problem.

Assuming &) = x,, degenerale, Lhe likelihood is

AT Sgp— iy

with §, = [LX, du. Selling B, = X, — x,, the maximum likelihood estimator
is 4 = B,jS,. It is readily seen that the Fisher information
i!;= — xﬂ{‘eli — 1:]::'_'13
and the statistical curvature ;, is given by
- 1 |: 1 (e “
i ag L1l — g et 1,
In the spirit of the paper, we quote some values of y)* (x, = 1) in Table 1.
Two asymptotic schemes are inviting: large initial population size (x;, — co)
for fixed ¢ and larpe observation period {r — o) for fixed x,. Being a branching
process, a birth process with X, = 5, may be interpreted as a sum of x, birth
processes with X, = 1 and the same i. Therefore the first scheme is still within
the realm of independent identical replications, and may be treated with the
methods of Efron’s paper.  This was done by Beyer, Keiding and Sitonsen (1975)
for this case as well as for the life-testing situation outlined abowe.

The sceond scheme, however, is a “real” stochastic process situation, and we
encounter here Lhe trouble that the minimal sufficient statistic is not consistent,

TABLE 1
Sratistical eurvalure far the birth process with o, — |

At 0 0.1 0.5 I 2 5 >

it 0 4.00% 0.052 0135 0,319 0,835 I
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Fra. 1. The canonical sample space of the birth process estimation problem. The
curve is the slatistical model corresponding te (0 < 2 < vo (mean value parametrisza-
tion). The full<drawn line i5 the sat of points (or which 8, — 4% where & is the
“irue" value, and the broken linc is the sct where B, — i8,.

in fact, as + — oo
e A, ) i1, ﬁ"}w

almost surely, where the random variable W is gamma distributed with form
parameter x, and expectation x;. Nevertheless i— ias.,asillustrated in Figure
1. Here 177 is the slope of the [ull-drawn line, i1 s the slope of the broken
line {connecting the observed (8,. 5,) and the origin.) Normalising with ¢+,
the minimal sufficient statistic will converge towards some (1, - ) (shown by
arrows), but the empirical line will always converge towards the correct line.

In the standard situation the asymptotic normality of § is based upon the as-
ymptotic normality of the minimal sufficient statistic combined with pure dif-
ferential geometry, as noted by Efron in Section 9, Tt is thercfore no surprise
that asymmptotic normality breaks down here. Notice also that y; — 1 {not 0) as
t — co. However, for given “nuisance statistic” W, the minimal sufficient sta-
listic ir asymptotically normal with asymptotic variance propotrtional o B,
and hence also 7 is asymptotically normal. (Marginally, the distribution of
¢'t}(4 — i) converges towards a Student distribution with 2x, d.f., which may
be interpreted as the mixture of the normal distributions over the gamma dis-
tributed inverse variances.)

It is thus tempting to investigate the problem obtained by conditioning on
W = w, replacing the “nuisance statistic” W by a nuisance parameter w, see
Keiding (1974). The resulting “conditional” maximum likelihoed estimator A*
has the same first-order efficiency properties as . A comparison of second-order
efficiencies is not yet completed.
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4. A more general aspect of the last example is: can curved exponential
families be ““avoided”? In the birth process situation a stopping rule like “sample
until X; = »” will make the minimal sufficient statistic one-dimensional, in fact
equal to 5, r = inf{r| X, = n}. Also it should be mentioned that conditioning
on statistics which are in some sense ancillary (see Barndortf-Nielsen {1973} for
a survey of ancillarity) may completely chanpe the curvature properties of the
problem.
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With his introduction of the concept of statistical curvature, Professor Efron
has provided, not merely a valuable theoretical tool, but a new way of looking
at statistical Pru_blems which at once unifies what has gone bzafore and opens up
new territory.

The general study of curvature belongs to Differential Geomeltry, a subject
which has proved an invaluable tool in Physics, both Newtonian and Einsteinian.
It may have much to offer Statistics. A good introduction is Laupwitz {1965)
while Hicks ({1965) emphasises o coordinate-free approach more suilable for
Statislics.

In general differentiable spaces, we cannot talk about curvature until we have
chosen, somewhat arbitrarily, a finear connexion: this defines what we mean by
“djsplaceu‘lent of a vector parallel {0 frseifﬂlong a curve.” For example, consider
an observer who lives and measures on a plane inverted in its unit circle. To
kim, a circle thruugh' the origin looks like a straight line, and he would consider
its tangents as parallel; to us they are not. The need for the parallelism concept
may be seen from Efron’s Figure 1 g, i5 the angle between (i) %, and (ii} T,
displaced parallel to itself along =7 to 5,. This depends on our connexion.

Let us try Lo lrame Statistics within Differential Geometry as follows (ignoting
obvious lechnical difficulties): Let % be the family ol all disiributions over 27
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cguivalent to a catrier measure . A curye <7 in 4 is a 1-parameter family in
2 say o’ = [£,] with densities { f,], having suilable regularity properties.

If % is the vector space of signed measures m on 7, with m ¢ ¢ and
mE7) = 0, we may define the rangent to &7 al P = Py as my© ¢ Lo, with m)”" =
“lim, " (Ps_s — Pgdid. {Equivalently, dnt,*/dp = £, Conversely me . is
tangent to some cutve at &,

Let %7, bie the vector space of random variables Tix) having EJ¥{X}| = 0.
For given £, there is a natural isomorphism between _#and %7, dim = T{x) 4P
Then m,* maps into §,{x), which may again be identified with the rangenr to &
at £,

Now let £, , £, 7. with tangent spaces #,, ¥, and let T, ¥, T, e,
To be able to talk about the angle between T, and 1) we must put them into
the same space. We may do this by a parallel displacement of T, along v o #,,
whete il becornes T, = # .

The parallel displacement used implicitly by Efron—what | proposc 1o call
the “Efron connexion” —has

n Ty =Ty~ (T

This happens to be independent of the curve «=, which is not always so. Noting
(didNE[T] == F,[TT,] for fixed T, we can penerate (1) by the infinitesimal dis-
placement rule (having &, - &, + df):

(2} T = Ty — Eg{Tuly) - d8 .

For curvature, we look at the angle between [, —{, —i, - dffandf, =4, — I:.n df.
We may measure this b:.-' any convenient inner product, but in our statistical
set-up thers appears to be only one natural inner product in 7., namely
{F, I = EJTCY. (For any parametric family |F,], this vields the information
inner product, with matrix (E,[{7/ad Waliea,)]).) Hence we may call this the
information meiric). Thisleads to Efron’s measurement of angle and of curvature.
The “‘straight lines” have a characterisation independent of the metric: Eu
must displace to become a scalar multiple of [, . By reparametrisation, the
multiple may be taken as unity. This leads to the differcntial equation

(3) Li+i--0
characterising exponential families.

The Efron connexion is not, however, the only available oone (although it
probably is the only one that fits in neatly with repeated sampling, as in Efron's
Section 6). An alternative obvious definition of parallel displacement considers

.+# as the tangent space and uses the identity transformation (again, independent
of path). This is equivalent to transforming 7 inte # with

di?
4 Pl P 0
@ e (dﬂj)
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yielding the infinitesimal {iispIaunment
{5) Ty = Ty — Toly, - |

To measure curvature with this connexion, using the information metric, M,
in Efron’s {2.3) must be replaced by the covariance matrix of £, and (I, + 4.
The “straight lines” now have {, 4+ 1 — 0, which yicelds mixture familics: Py =
(1 — &P, + #F,. Thus the above connexion may be terwed the “mixture
connexion™.

Now the information metric makes .&# into a Riemannian space, and from this
point of view there is a scrious deficicney in both connexions above: they are
not comparible with the metric. That is, the length of T, at £, (viz | £, (7)) is
not the same as that of its parallel translate )" at £, . It may be checked that
the infinitesimal displacement

(6} Ty Ty — [T, + £ (Todp)] - dtf

yields a connexion --the “information connexion”—that iy compatible with the
information metric. Curvature [or this connexion {which is the geadesic curvatire
associated with the information metric) uses the covariance matrix of i, and
y 5 i

We can calculate the rorsion and curvature tensors {Hicks, page 59) for the
above connexiens. We find that all have zere torsion (equivalently: are sym-
metric, or affine). There is a unique affine connexion compatible with a given
metric, hence {€) supplies it for the information metric,

We find zero curvature for the Efron and mixture connexions, while the cur-
vature tensor R associated with the information connexion has

{7} R(T, U)W = [T E(UV) - U E1F).

The Riemann-Christoffel curvature tensor K of type 0, 4 {Hicks, page 72) is
then given by:

(8 K, U, V, Wy={ETHRLUW), — E(THHELTY).

From this we find that the space £, with the information metrig, has constant,
positive, Riemannian curvature 4.

The geodesics (shortest paths) for the information metric are the “siraight
lines™ of the information connexion, satisfying

{9) B by =10

Sclutions of (%) are clesed curves, parametrized by an angle 2, having an angle-
valued sufficient statistic ¢, with density of the form
(1 fie|y =1+ cos(y — 1)

with respect to a probability measure » over the unit circle for which
i e dhui{r) = 0. Such curves have /, = 1, and total length 2z, Thus & looks
rather like Lhe surface of a sphere of radius 2, opposite points being identified,
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"The nonvanishing of (7) means that the information parallel displacement
depends on path, which makes it less immediately intelligible (han the Efron
and mixture displacements. Can we give any interesting siatistical interpretation
to the information connexion, and its associated families {107
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Jim REEDs
Harvard University

1. Ideas of geometrical curvature are not completely new Lo siatistics. Efron’s
paper is the logical successor to papers applying the differential geometric point
of view to statistical estimation. Rao (1945) and Bhattacharyya (1943) viewed
the multiparameter Fisher information as defining a local {Riemanniany metric
{Eisenthart {1926 and 1960}, Spivak (1970)) on the parametet space; the inte-
grated arc length of a geodesic connecting two parameter values then defines a
global metric or distance function on parameter space. Holland (1973), Huzur-
bazar (1950 and 1956) and Mitchell (1962) exploited transformation properties
of the Fisher information viewed as a Riemannian metric. Holland, for instance,
sought covariance stabilizing transformations (like the square root transforma-
tien of univariate Poissons). Such a transformation makes the Fisher information
matrix, expressed in transformed coordinates, a constant matrix. “When can
it be found?” is the question “When is a given Riemannian manifold locally
isometric 1o a Euclidean space?” Ricmann pave the answer: ““When the Rieman-
nian curvature {or, in two dimensions, the Gaussian curvature) vanishes iden-
tically.” This always happens only in dimension one. In all higher dimensions
non-Euclidean manifolds—and noncovariance stabilizable parameter spaces—
ooour,

Recent unpublished work of Tadashi Yoshizawa (1971) makes explicit use of
the inherent Riemannian structure in parameter estimation problems. He shows
how one can isometrically embed the paramecter space into a Euclidean space
of sufficiently high dimension, and then read off the {first order) asympiotic
properties of the estimation problem by inspecting the parameter space as a
curved submanifold of a Euclidean space.

Thus guryvature of one sort is not new to sfatistics. But Efron’s curvature is
of a different sort-—not the Riemannian or “intrinsic” curvature but instead the
curvature of embedding, associated with the particular way a parameler space
is placed inside a higher-dimensional “*natural parameter” space. Riemann cur-
vature—measured by the curvature tensor—is determined solely by the “first
fundamental form”™ or mectric Lensor, the physicists’ metric ground form, the
statisticians™ Fisher information matrix. Efron’s curvature, curvature of cmbed-
ding, is measured by the “zacond fuml_amuntaf form™ and depends on more than
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Fisher information. The distinction is illustrated by a cylinder embedded in
Euclidean 3-space. This surface has curvature of cmbeadding but no Riemann
curvature, for any picce of it can be unrolled without distorting lengths. A
sphere in 3-space has both sorts of curvature; a parabola in the plane has only
curvature of embedding. No submanifolds of Euclidean space have Riemann
curvature without curvature of embedding,

Efron takes the rereral parameter space as Euclidean, with constarr metric
given by the Fisher information evaluated at the true value of the parameter,
#,- The actual parameter space is 4 submanifold of natural parameter space; its
curvature of embedding iz calculated with respect to this constant Euclidean
structure on the natural parameter space. Efron's discussion in the second para-
graph of Section 2 is unclear; one might falsely assume that the natural parameter
space was endowed with the (nonconsiant) metric provided by the Fisher in-
formation as a function of 4.

The point of Efron's paper is that ihe curvature of embedding, calculated in
this way, has an effect on statistical procedures, an effect amenable to quanti-
tative study.

2. The main result of Section 10 may be generalized to a muliivariate curved
exponential family. Baoth this result and Efron’s suffer from a defect which
might be overcome in future work. The defect is that both make statements
about the cocflicients of the asymplotic expansions of the variance, nor ebour
the variance irseff. Thus, the conclusions are of the [orm

*War {T’} = .[E{_. X ._bn_. + g{n_g} {ﬂf G{n—l}} ;
fl n

and aza, andil e=wa, Bz=g.”

where @ and § are certain theoretical lower bounds. This should be contrasted
with a stronger type of conclusion:
Var(Tyz & 4 £
R w

where o and 7 have the same meaning as above. (If T, is such that Var(T,)
has an asymptotic expansion at all, the second conclusion implies the first.) Both
the Cramér—Rao and the Bhattacharyya inequalities provide conclusions of the
second type. In a sense, we can trace the difference to the different methods
used to prove the various inequalities. The classical proof of the Cramér-Rao
bound proceeds by constructing a certain variance-covariance matrix, and using
its positive semidefiniteness to get the desired results. This is to be contrasted
with the method used in the present theorems: Taylor expansions of the func-
ticnal form of the estimate, coupled with systematic discarding of negligible
terms.

It is conceivable that a proof of the theorem of Section 10 could be constructed
by the classical method, by considering the joint covariance of the estimate, the
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first derivative of the log likelihood, the square of the first derivative of the log
likelihood, and the product of the first and second derivatives of the log likeli-
hood. This is conjectured on the grounds of the simple form the covariance
matrix takes, when only terms of order up through 1/s* are considered.

We may define a curved g-parameter exponential family by means of a smooth
map %: €& — H, where 8 is some open subset of B*, and / is the natural pa-
rameter space of a k-variate exponential family. To simplily the discussion that
follows, we will assume that 7 is an embedding in the sense of differential ge-
ometry: » is 4 C= injection, with differential of full rank at each point, and that
“smooth"”-—whenever it appears in this discussion—means €. Note that accord-
ing to this set-up. € is not a submanifold of #; but »{B) is. An estimate is a
function ' #"— O, mapping the space of the sufficient statistic to the parameter
space.

If we resirict ourselves to estimates T that depend only on the sufficient sta-
tistic x, = » Yx, + .-- 4+ x_ ) (and not on ), and which satisfy certain regularity
conditions, we may prove.

THEOREM. Let T depend anly on %, the sufficient statistic for o curved g-param-
eter exponential family. Suppose T iy swrooth in some nelghborhoed of E(Z), and
sikppose T prows (as a function of &} no fuseer than expenentially.

If T isa consistent and first order efficient estimate of 8, the variance of T possesses
i asymiplotic expansion
g

var (T(£,)) = CRLB .- 4. + & . € 1 o).
) m nt nt

{Here CRLD denotes the Cramér-Rao Lower Bound,

A denotes the “naming” or “Bhattacharyya™ curvature, which can be made
zero by an appropriate reparameterization of parameter space. It is in-
dependent of T.

B is the “Elron excess”, or statistical curvature term and is independent of
T.

¢ depends only oo the funciion ¥, and vanishes for the particular choice
7 = the maximum likelihcod estimate.

All these quantities are g by g positive semidefinite symmetric matrices.)

The proof of this multivariate theorem parallels Efron’s univariate arguments.
It shares the use of affine transformations to bring the problem into “standard
form,” calculations with Taylor expansions to exhibit the consequences of con-
sistency and (irst order efficiency, and finally, replacement of T by a Taylor
approximation, and the calculation of expectations and variances of the Taylor
approximant.

The key quantity of inlerest in the conclusion of this theorem is the term &,
the “Efron™ or “statistical curvature” excess. It is the multivariate generaliza-
tion of 47, and (like y*/i) may be defined in several ways.
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{1y Let {(#), in the vicinity of #,, have an expansion
F0) =& + L 00 — OF) + § ¥ cfulff — 68 — 85 + -

where & has coordinates (4, 8%, ..., 0. Let (%) denote the inverse of the
Fisher information maitrix for #, and let {G ) denote the Fisher information
matrix for the natural parameter 5. Let

L) = R bT6ELb
!IT'H- ey L:‘Iﬁ rflci‘w'u
'chi'..mﬂ = l::rr C:EGFIC:‘IQ H
Let the inverse of D = (D) be D' = (D). Let

I:I _F;l.kﬂm' Ziﬁ {_f.'lFEﬂuD

ik, ma

and

Then
T N e e o UR
If, at &, the Fishet matrices of both 4 and 5 are equal to identity matrices, this
simplifies to
Bij = Eﬁ:f c::‘.kc;j L]
where the summation extends gver r = g - 1.
(2) Let { be the log likelihood function. If

dJ

e
a8,

fs

and
=2 1
a6, o

we may form the linear regtession of [ on { as follows:

b _ a o
f;-.e — Es.‘*jtf.' :
and we may calculate the regression-residual variance:

Cov (I — Tiss fun — Ina) = gy -
Then
Bi= Flaw e 0700, 1 0
{3y LetLl,.; be the components of the second fundatmental form of the im-
bedding 5: & — H (sce Eisenhart (1926 and 1960)) where H has the Euclidean
structure induced by the Fisher information evaluated at »{#,). Then

ﬂ{j = Eﬁm Z.‘il Er H‘mgrmngwﬂr.!; g“’- .
Similar formulas hold for the naming curvature term 4. In the special case

where both the Fisher information matrices are equal to identity matrices {at 4,)
and where

bl art | g
m_']:r iy ;
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the #th term of the naming curvaturc is given by

A4 T {cta 1 50| Y{ety + et
il ey Ay

3
where the summation extends over | = &, & = ¢.

INotice that in the univariate case the pnaming curvature term A can always
be made to vanish identically by a suitable reparameterization, but in the mul-
tivariate case this cannot in general be done. It can always be made to vanish
at isolated points, but there need not in general exist reparameterizations which
make the naming curvature vanish globally. This is related to the general
nonexistence of multivariate covariance stabilizing transformations. In the
univariate case, the naming curvature vanishes identically exactly when we
parameterize the curve by arc length: that is. it vanishes when the variance is
stabilized. Inthe multivariate setting, however, we cannot in general covariance
stabilize, and we cannot in general make the naming curvature identically zero.
Perhaps the easiest example is provided by the trivariate normal distribution,
with unit covariance matrix, with the mean vector constrained to have unit
length {and, to avoid global topological problems. with first coordinate positive).
Thus, in the mullivariate case the naming curvature term takes on added sig-
nificance, and must be viewed as serious an object of study as the statistical
curvature term itself,
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REPLY TO IMSCUSSIONMNM
The discussants are (almost) uniformly constructive and informative in their
comments. They point out many important facts, and even whole areas, that
the paper misses, Only two of them consider me basically deranged in my
thuught processes. In what follows T have tried to answer a few specific points,
without exploring much further the bigger questions raised.
Professors Cox and Pierce sugpest that the distance from (%, &), 10 4; is a
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useful approximate ancillary statistic. (See Figure 4. It is simplest to assume
that the family .5 is in standard form at # = 0, and that we are considering #
values near zero.) I particularly like Pierce’s suggestion that the ancillary in-
formation has to do with the precision of # and not its location. To make things
really easy, consider repeated sampling in Example I, and suppose that we happen
to get § = 0, that is &, = 0. (See Figure 2.) The likelihood function for # is
proportional to exp[—{#/2)[] — 7,& — ;,*P/4]"} which for # in the interval
8 «+ efnt behaves like exp{—(nf2)[1 — y,%]¢"}. That is, the likelihood function
for # is approximately O (0 p &) {(nizn). The distance from (x,, £) 1o 8, %,
in this case, modifies the unconditional variance (#iy)~' by the factor [1 — y, %].
It is probably possible {0 extend this likelihood apalysis t¢ a genvine conditional
variance statement, as Iierce suggests,

Bayesians and other nonfrequentist statisticians do not like averages taken
over the sample space .7 with ¢ fixed. Professor Lindley raises this objection
to the curvature y,% as it has been raised to the Fisher information i, itself,
Those who believe it direet interpretation of likelihood functions prefer —f3(x),
the actual curvature of the log likelihood function at its maximum, to the average
value #,. (Incidentally, [ use # as a subscript rather than an argument to save
writing parentheses!y [ find some force in these kinds of considerations but,
perhaps because of my training, can never be convinced without the support
of some relevant averaging property, be it {requentist, conditional frequentist,
Bayesian, or otherwise. (See my discussion following Blyth (19704}

If a Cauchy translation sample of size 10 yields a very normal looking likeli-
hood function, say .#7(0, .3), should we behave as if the MLE has variance .37
Professor Lindley answers “yes” on Bayesian grounds, in the absence of prior
‘information. Professor Pierce's remarks indicate that the curvature may have
something helpful to say to frequentists about such problems,

Beturning to less slippery ground, here is & calculation of asymptotic Bayes
risk that makes use of the curvature. In a curved exponential with an i.i.d.
sample of size #, let # have prior distribution #7{#, ¢ fm), where ¢, is going
sufficiently slowly to infinity. Then the Bayes risk is asymptotically

)

. 1.— -+ ._.j.__. {rgu + 41.-"5'}]_ 4 g <_15_)
Mg, wihy, iy, n

which equals io order 1/n®* the squared error risk of the biased corrected MLE

at & = #,. (This result follows, with some effort, from (10.19).)

Professor Le Cam’s warning about aver-reliance on local methods is well
taken. As a matter of fact, my paper is most concerned with curvature as a
check on the appropriateness of first order local properties such as Fisher’s in-
formation and the Cramét—Rao lower bound. In the situation of Figure 6, cur-
vature can be used quantilatively to improve the first order approximation. I
hope, but of course am not certain, that other situations will be similarly obliging.

Le Cam’s criticism of the MLE as a point estimator should not be confused
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with Fisher’s preference for it is an information gatherer. A function of the
MLE may be better than the MLFE itself for any specific estimation problem.
Thisis the case in the Berkson example quoted. Berkson finds a “better” estimator
than the MLE, which eventually is improved by Rao-Blackwellizing it on the
sufficient statistics. This gives a (unction of the MLE! (It bas to because the
situation involves a genuine uncurved exponential family.) Figure 4 becomes
more convincing the more you study it. Locally the straight level line 7.; seemns
intuitively preferable to any curved competitor M;. (See Dr. Keiding's remarks
and my reply.)

Quadratic approximations to the log likelihood function have been used suc-
cessfully by many authors, notably Professor Le Cam himself. They are the
basis of Raa's work in second order efficiency. They can be used to produce
estimators other than the MLE which are second order efficient. Whether there
is a corresponding theory of third order efficiency, and whether the MLE is still
the champion, is an interesting open question.

After a long fallow period there seems to be a revival of interest in second
order efficiency and related topics. Tam eager to see Prolessor Ghosh's work
with Subrahmaniam and Srinivasan. {Also, I must apologize for not haying been
aware ol Planzagl and Chibisov’s papers, which demonstrate rigorously the rele-
vance of what I have called curvature to hypothesis testing problems, sven owt-
side an exponential family framework.) As Ghosh suggests and as I mentioned
in discussing Pierce’s comments, thete is some connection between r,” and the
geometrical curvature of the likelihoed function, but not one 1 understand clearly
yet. Professor Ghosh’s last question can be partially answered in the affirmative:
in the counter-example of Figure 5, change ¢ to (—2f 4). Then the MLE of
any & vector with &, = & is =ero, but if % = § each % corresponds (o a unique
4. For n any multiple of 3, # will lose information because of the grouping of
those % vectors with £, = %, It is easy to curve the level lines of another con-
sistent efficicnt estimator 4, A la Figure 4, so that the vectors with %, = 4 are
separaled, and ﬁ{i‘} is different for all different £ vectors, so no information is
lost. This works for any fixed » divisible by 3, but T am less certain about find-
ing a # that works for all values of ».

There is less difference befween Professor Planzapl and me than the tone of
his comments indicates. His results (1) and (2) follow [rom (8.4). Ishould have
said earlier that a rescaled version of this equation holds as an approximation
when testing # = 0 versus ¢ 2> 0 under i.i.d. sampling in any curved exponential
famnily, ;

1 — 85,8y = W1 + 7,714 cos (45 — 4A5) — 2.).

where # = (a8, 7, = yoint, and A; = tan *(7,#/2). In order for this approxi-
malion to be sufficiently accurate 1o yield Pfanzagl's asymplotic resulis, Lhe
family must be ponatomic. However, the type of power comparisons presented
in Table 3 are less sensitive as well as more familiar. For & = .0], power = .99,
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rifn = §, the case Pfanzagl discusses, the locally most powerful test has ap-
proximate power .24 compared with the envelope value .29, I consider this
borderline acceptable, and will stick to my suggestion of ;%/n = L as a rough
indicator of nonnegligible curvaturc effects.

Fisher defined 7, as the loss of information in using # instead of the whole
sample. Rao's rosults on cstimation with squared error loss partially vindicate
this definition, Pfanzagl's own wotk shows that " plays a key role in the loss
of effective sample size in hypothesia testing problems. Then why does he seern
to say that y,” has no statistical significance? The fact that the level a test based
ont the MLE is asymptotically equivalent to the 3 optimal test with power 1 — a
has nothing to do with the existence of curvature effects. There still is no vai-
formly most powerful test. The global deviations of any attainable power curve
from the power envelope are still ruled by the magnitude of ;%

I was happy to sce that Dr. Keiding had found a definite use for ciurved ex-
ponential families in his work on birth processes. Time series problems offer
many other examples, of which my Example 3 is ¢lose to the simplest. (With
Dir. Reeds’ multiparameter thoory available we are now in a pesilion to analyze
the second order asymplotics of higher autoregressive schemes.) The geomeltric
interpretation of the pemalty A% for not using the MLE is simple in the casc
r = 2. Comparing (10.24) with {10.5) shows that it equals one-half of the squared
curvature of the level curve M, = |%: #(x) = 4,}. See Figure 4,

Dr. Dawid raises a deep question: why have I chosen to represent families of
probability distributions by their log densities rather than, say, the density func-
Lions themselves? This latter representation would make mixture families rather
than exponential families straight lines, as he points out. What I have called
the matrix M, then has elements p,; as at (1.2) rather than u,; as at {3.21).
Dawid makes the interesting observation that still another definition is needed
to make straight lines mto geodesics in the information metric. (Rao 19454 and
1945 b, has proposed using this type of geodesic distance 1o measure the separa-
tion of probability distributions. Atkinson and Mitchell bave calculated Rao
distances for many familiar distribution families.} I can’t answer Dr. Dawid’s
decp question cxcept to say that my definition was motivated by what seemed
to be Lhe most pressing siatistical considerations. He makes a good case for
other definitions also yielding useful results for the statistician.

My paper considers only one parameter families. Dr. Reeds gives a convincing
extension to the multiparameter case. IHaving been frustrated myself by the
intricacies of the higher order differential geometry, ITam impre'::-.&ad[ Hopefully,
his *8", the analogue of 7, will also play the correct corresponding role vis-
d-vis Fisher information and hypothesis testing.

Two tochnical comments: (i) a version of the usual super-efficiency examples
prevents Reeds’ formula (2) from holding generally. In my Example 1, Figure 2,
let (%) = & except in a band of width +x? on either side of %", Within this
band modily # so that it is consistent and first order efficient, Then {10.19) can
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be used to show that # satisfies {10.1} with the lfwiy { ] term set equal to zero
at #, = 0. (i) It is not true in general, even in the onc parameter case, that
the “arc-lenpgth parameter” has naming curvature equal to zero. Lot o(ff) be
this parameter measured from £ = &, = 0, where we assume lor convenience
that i, = 1. By definition oty = {§ i,4d?" so that de(f)/di = i}, d(f)/dé" =
{diy/df)j2(is)t. 1t is easy to show by an expansion similar to {10 10} that in terms
of the quantities g, delined at {1.2),

dfﬂlldﬂ = 2!“" — fw

This gives the Taylor expansion aboul zero

() = 8 + (.tm - .f;_) 5 o),
fy and g, being evaluated at # = 0.
The parameter $(ff) which figures in the definition of l"','.;.‘:| in (10.1) has Taylor
expansion

¥l
B =0 + ma T+ o)

as given in {10.11). Therefore the naming curvature I will not be zero for the
arc-length parameter unless gy, = 0. (That is, Fisher's score function bas third
moment z2oro.)

It is not clear to me whether or not one can always choose a reparameteriza-
tion for & which has naming curvature identically zero, even in the one-
parameter case, We probably wouldn't want Lo estimate such a parameter any-
way unless it had something more to recommend it than I';* = 0. I didn't mean

“to imply that naming curvature is less important than statistical curvature, onyl
that it depends on the name.

Finally, | would like to thank the Editor for arranging this discussion which
involved a large amount of extra work on his part. [ hope the Annals of Sta-
tistics will continue the entertaining and enlightening policy of providing occa-
sional discussion papers,
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