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SUMMARY

This paper characterizes priors under which the Bayesian and [cequentist Bartlett
corrections for the likelihood ratio and the conditional likelthood ratio (CLR) statisticy
differ by o(1}. It is scen that, except for sample points with negligible probability, the CLR
stallstic has a posterior distribution for which a posterior Bartlett correction exists, This
ohservation leads o an alterpative proof of the existenoe of 2 frequentm Bartlett cotrection
for the CLR statistic.
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1. INTRODUCTION

In a recent paper, Bickel and Ghosh (1990) observed that, except for sample points
with negligible probability of order O(n~*), the posterior distribution of the like-
lihood ratio {LR) statistic has a structure such that there is a posterior Bartlett correc-
tion which makes the posterior distribution approximable by a x*-distribution up to
O{n~?Y), They provided a justification for the frequentist Bartlett correction based on
this interesting observation. They also posed an open problem relating to the
characterization of priors under which the Bayesian and frequentist Bartlett correc-
tions for the LR statistic differ by o(1). For such priors, posterior probability regions,
based on a posterior Bartlett corrected LR statistic, are also frequentist regions with
error o{n ~"). In a sense, priors of this kind may be regarded as non-informative priors
which, as noted in Tibshirani {1989}, can be helpful for comparisons in a Bavesian
analysis.

The present work attempts to settle this problem. We also consider a similar
problem regarding another important new statistic, namely the conditional likelihood
ratio (CLR) statistic introduced by Cox and Reid (1987). The results on the CLR
statistic have been derived via those on the LR statistic. In the process, it is seen that,
except for sample points with probability of order O(#~?), the CLR statistic has a
posterior distribution such that a posterior Bartlett correction exists so that results
similar to those in Bickel and Ghosh (1990) hold also with the CLR statistic. With
reference to a problem posed in Cox and Reid (1987), it is also indicated that this leads
to an alicrnative and possibly simpler proof of the existence of a frequentist Bartlett
correction for the CLR statistic (see Mukerjee and Chandra {1991)).
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In this paper, primarily for notational simplicity, we consider the situation where
both #,, the parameter of interest, and #,, the nuisance parameter, are one
dimensional. The discussion can be extended to multidimenzional &, with additional
algebra. However, as noted in Cox and Reid (1987), the assumption that 8, is one
dimensional is non-trivial. Tn particular, if §, and 8, are both multidimensional then
we cannot in general employ global parametric orthogonality as noted in Cox and
Reid (1987). In this paper, we consider models with a nuisance parameter since one of
our main objectives is to include the CLR test in the discussion. It may also be of
interest to characterize, in the absence of any nuisance parameter, priors under which
the Bayesian and frequentist Bartlett corrections for the LR statistic differ by a(1).
This problem will be considered elsewhere.

2. RESULTS ON LIKELTHOOD RATIO STATISTIC

Lot {X;}, =1, be a sequence of independent and identicaily distributed random
variables with common density flx; §), wheore 8= (8, #;)° and, as stated above, #, is
the onc-dimensional parameter of interest and &, is the one-dimensional nuisance
parameter. For i, /, ', f/ =0, 1,2, .. ., let

K; = E, (3 /{logf(X,; 0)}/36} 084,
Ky = B3 {log f(X,; 6)}/861364]18" * {log £(X1; 8)} /961361 1).

K iy o €te, are defined similarly, Ky, Kj; ;. etc. are functions of 8. Let gy, = — Ky,
@y = — Ky Since ¢ and &, are one dimensional, we assume global parametric
orthogonality (Cox and Reid, 1987), i.e. Ky =0, identically in 8. Then under
standard regularity conditions the per observation information matrix is given by
diag(dy, @) which is assumed to be positive definite for each 8,

Let L(6) = L(6,, 6;) = B, log f{X; ), I{6) = n~' L), where n is the sample size.
Denoting the maximum likelihoed estimator (MLE)of #by # = (8,, 8.y, fori, j = 0,
1,2,. .., 1etd;(6) = 3 1(0)/800304, b, = ft,-{ﬁ}, ¢y = —byand

s (020 ¢ !l) ;
€y Cg
Recall that the LR statistic is given by
A= —2{L{8,, 8,00} ~ L@, 8], (2.1)

where #,(6,) is the MLE of #, given 8,,

We make the assumptions in Johnson {1970). Let # have a prior density « ) which,
as in Johnson (1970), is positive and thrice continuously differentiable for all #, When
«{ )is not proper, as assumed by Johnson (1970), we shall require that thereis an sy
(> () such that forall X, . . ., X, the posteriorof #given X'\, . . _, X, is proper, Then
Johnson®s (1970) proof holds. Let £ be the joint probability measure of § and X =
{X, ..., X.). Al formal expansions for the posterior, as used here, are valid for
sample points in a set § which may be defined along the lines of Bickel and Ghosh
{1990), section 2, with m = 3, with P,-probability 1 + O(n~2) uniformly on compact
sets of §. The matrix C is positive definite over 8. We also make Edgeworth
assumptions as in Bickel and Ghosh (1990), p. 1078,

With a prior density x( ) for #, we first explicitly calculate the Bayesian Bartlett
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correction for the posterior distribution of the LR statistic A. For this, note that the
posterior density of &A= (4, A;)' = n'"%6 —8) is given by

(A X)=m8 +n " RYexp{L B+ n V) — L)} /N, (2.2)
where

N(X)= jm:§+ n ) expl{L (@ +n " Vh) - L(D)) dA. 2.3)
Let& = m(f)and fori,j=0,1,2,. . ., m,(f) = 3 /x(0)/86884, &, = =,;(). Also, let

wm= G)m-ihga,._j (=3, 4.

i=n
Then using Taylor's expansion and observing that &, = A, =0 by the definition of 8,
we obtain

@ +n 2R exp{LE+n "R =L}
& o 1. N A 1. 1.
= [T+ﬂ m[g‘ﬂ'%(ﬁ}'l'fhﬂ'm*' hz“ﬂ'm] +n! [T_Ef ¥alh)* + 247 Yalh)
1. . . 1 . - n
+ E[hmﬁ hamgy) vl ) + E(h%‘ﬂ'm"' 2h By, +h§1'f{a'z]] ]

X EXp [— é [h?.D+ CoalPr: + r:],c.u;’.&])z] ] +oin™), (2.4)

where D= ¢y — ¢33 ¢}, which is positive over 5,

Since, by parametric orthogonality, ¢,; = ¢ (1), integrating A, out in equation (2.4},
it follows from equations (2.2)-(2.4) after considerable algebrg that the posterior
density of &, is given by

w{h | X) = ¢th; DY + »7 208y + n ' {QF () — H(X)
+ R]{Xr JFill.}}] +ﬂ{ﬂ_l}! {25}
where ¢{ ; L7 '}is the univariate normal density with mean 0 and variance D!,
1 1

Orhy} = %hfbm“‘kl (%f’mcui""ﬁ'm%_]) Ak [ﬁ} (2 e 3 by cy 402!

= %bugchcﬂ}‘) _h (ﬁ,]&- ‘et + Fhocuca? ) ] : @8
OFh) = ,;—2 {Hib3 + Bleg W6baygh; + 903 + Kl W(18byby, +276%)

+15¢z %03k + % {hiby+ 6Hicy by + e by,

—— i s IR o L. 1 _— 5
+ = l{h%ﬂ'zﬂ‘l“'ﬂ'ﬂjfﬂz'}""ﬂ' l[ghrw|nbw+ Eh?fm;{Tmblz'}‘Tﬂ'b“]

=]

+ “mf-'nizbnz.] ; (2.7)

b —

a0 =" 01wy 8t D an, @8
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and, analogously to the termn within squared brackets in equation (2.6), R{X, k) isa
polynomial in A, with cach coefficient a function of X of order o(l1). Note that
equation (2.5) agrees with the findings of Tierney and Kadane {1836). For analytical
studics like this, the use of equation (2.5) seems more convenient than that of the
formula in section 4 of Tiemey and Kadane {1986}, whereas for numerical approx-
imations it should be the other way round.

Next observe that, by the definition of §.(8,),

0=n""21y {8, gi{ﬁl}}- (2.9
Using a Taylor’s expansion for the right-hand side of equation (2.9}, it can be seen (see
McCullagh {1987)) that

T . 1 - g | 3 =
éz(&1]='ﬁz—ﬁ_"'“ﬁnfm Yoy +nth (Ef"’zjfm' —byencn’ + Ebuzfnfma) +oin™'),

{2.10)
whence by equation (2.1) we obtain
A=wi+o(nh, (2.112)
where
w=hD"" [1 4 -;'n_mhﬂ_ "(buschen:* — 3biachien + 3byeneg ' — by)
+nr! [R;_{X, - %Iﬁﬂ" (%bm+cn11b§. + %ﬂ"b@u) ] } . (2.11h)

and, like R,{X, k), R{X, A} is a polynomial in &, with each coefficient a function of
X of order of1). By cquation (2.118),

hy=wD™t2— én' 2wl D™ Hbyeliog® — Ibpel e i+ 3by e 6 " - b

+n! [;-w-‘ﬂ‘m (%b,m + %D‘ hi, + c.ﬁ’b%l) + 11X, w}] +o{n~Y), (2.12)

where 7,(X, w} is a polynomial in w with each coefficient a function of X of order
o{1). Hence by equations (2.5)-(2.8), it follows after some algebra that the posterior
density of w is given by

m{w| X)=a(w; D[1+n "G w+n HCHw - 1)+ TH(X, w)}l+a(n~"), {2.13)
where

G, = %DFS'rzl:bsn —3bycyca’ +3bpcticn’ — buciica”)

1 1
Ef’ucuit*‘ Ebm{-'ufniz) L (2.14)

D-? (-!'Jm"" %D_ 'hiy + e '3 + 20 'blzbau) +'§'{Dﬂ‘ﬁz}_1(2503521 +3biy)

‘—D_m(i'mi'_lcufﬂa' —Fiof 1~

1

sz's—

I 1, .. - - - g
+ E{D'Tuz}rlbm‘F E(Df}_l{:‘m*’ iz (Fobha + Fonba) + D b}, (2.15)



1992] BAYESIAN AND FREQUENTIST BARTLETT CORRECTIONS 271

and T3(X, w)is a polynomial in w with each coefficient a function of X of order o(1).
It can be seen that 730X, w) does not involve any odd power of w,
Comparing equation (2,13) with theorem 1 in Bickel and Ghosh (1990), we obtain

mw| X)y=alw; D{1+n" G w+n7'G{w - D} +o(n™ Y, {(2.16)
where
G,=G* +o(l). (2.17)

1t should be noted that Bickel and Ghosh (1990) showed that x(w|.X) is of the form
{2.16) without specifying &, and G, explicitly, Writing

B =2G.,
A= A+ By,

it is scen directly from equations (2.11) and (2.16) or by using the lemmas in the
appendix of Bickel and Ghosh (1990) that £(A| X)=1+n"'B+o(#"!), and that for
eachz (= 0)

(2.18)

P(A* € z|X)=viD+o(n™h, (2.19)

where v{ )is the cumulative distribution function of the y2-distribution with 1 degree
of freedom. In fact, following Bickel and Ghosh {1990}, the remainder in equation
{2.19) is of order ({n ~%); see Barndorff-Nielsen and Hall (1988} and Chandra and
Ghosh (1979) for the corresponding result in the frequentist approach. Thus 1+ 2~ '8
fs the Bartlett adjustment factor corresponding to the posterior distribution of A,
Relations (2.15}, (2.17) and (2.18) specify the Bartlett adjustment factor explicitly. A
consideration of the square root version, w, of A was useful in this explicit derivation
—a technique which is helpful in other contexts as well; sce DiCiccio ef &f. (1990),
Mukerjee and Chandra {1991} and the references therein,

Since &y= K+ o{1) for each i, j, using parametric orthogenality, it follows from
equations {2.15), {2.17) and (2.18) that

B=FEB+o{l), (2.20a)
where
o 5 3 _ i
1= Eﬂzﬂzxm"‘ —I“z—ﬂznm at+ E(ﬂgﬂaﬂz} K% + E[ﬂznﬂﬁz}_l(?-faaﬁza +3K3)
+ 70 g ' Ta0(8) + () ™ m (@)K 3 + wo (01K} + @25 2Ky mo(8)]

i 1
T3 (2200} 'Kn + 5 (@ipaeg} ™ 'K 3 Ko (2.20b)

However, as noted in Mukerjee and Chandra (1991)—see also Barndorff-Nielsen and
Blaesild (1986)—the Bartlett adjusted statistic corresponding to A in the frequentist
set-up is

A =N/(1+n"'F), (2.21)
where
F=F+ o{l), {2.22a)
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with

- 1
F =ay® (EKW+KM.ZD +Kjps0+ Kig o )

1 7

e o 1
+€203(2Kfu.m+ 5 KKyt g & + “ﬁ"gxlzo.m.m)

+ {@0ap) ](EKH.H""KDI.E["" 2K g+ Kzt EKH)
A 1
_[ﬂ'zﬂ-ffuz} EKR_FKZ[KHLW+EK2|KU3+K12K1IJ.&2

1

1 1 1
— (@)™ (Eji’zil + Eﬂwx izt EKuKm.zu + Ky Kyg — EKme.m_m) . (2.22b)

We now characterize priors for which
B - F=0(1) (2.23)

For such priors, by equations {2.18) and (2.21), A* — A**=o{n~ 1), under #, and it is
easy to sce that this implics PyA* > &) = P(A** > i) + oY) = o + o{n™)),
where {;is the upper a-point of a x*-distribution with 1 degree of freedom. Hence, for
priors satisfying equation (2.23), inversion of A* leads to a confidence set, namely 16,:
A* = A*X,8)) £ {}, with confidence coefficient 1 — &, which has both posterior and
frequentist validity up to of{n~") (see Tibshirani (1989}, Stein (1983) and Welch and
Peers (1963)).
Using regularity conditions like

K, Kesir _

ﬂ'_ﬁ"l = Kfj.m + K, i ﬂﬁll = Ka_.-'.:'_;".m +Ki. et K;_';'.;' £
K, BK,; r
F: =y +KU+11 ﬂ;; :Ka_'.«'.a"j'.m +K_‘,|'+1.:"j' + E:}.f-_;'n,

Kz + 3Kyo20 + Kipo1o =0,
IKlen‘*""-ﬁrZI =0, Kipw+ K + KII.I{,‘I.N + KZI.IJ[ + Kn =0,

some of which are consequences of parametric orthogonality, it follows afier some
simplification from equations (2.20b) and (2.22b) that

|8 (me® Kpne@ K r(ﬁ‘}] a [K ﬂ(ﬂ}”
e ) I B e [ - 12 G ] By
B~ F==() [33 [ oy a3 : a0z +3"9:a Gaptlys x 1224
Hence by equations (2.20a) and (2.22a), B— F = o(1)Yholds if and only if ={) satisfics
the differential equation
i[wrm(ﬁ"}_ Kigz0 7(f) 3 Kurr{ﬂ)] +i K xlth _
L o 3, ol My ey,

An llustrative example will be presented in the next section.

0. (2.25)

3. RESULTS ON CONDITIONAL LIKELIHOOD RATIO STATISTIC
Following Cox and Reid (1987, the CLR statistic is given by
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A, = 2{p(B¥) — p(6))}, (3.1)

where p(f)) = L{f, 8:(6,)} ~ 3log[—n ly{th, 6,(6)}], and p(8F) = sup, {p(f)}.
Proceeding along the lines of Mukerjee and Chandra (1991) and using parametric
orthogonglity, from equations (2.1), (2.11a), (2.12) and (3.1), we can show that

A, =w— a8 (Xw + n {3 BHX) + BAX)W?} + o(n) = wl + o(n7Y),

(3.2)

where _
we =W — 1~ V1B {X) + 3n~ 'wBX), (3.3)
BUX) = D V¥Heg by — cce b, (3.4)

3(X) = - %ﬁ'ﬁn]{"cﬁ s+ baybga) + o '} = %(E‘%ucoz}_lﬁmﬁlz"' o(1). (3.3)
By equation (3.3),
w= wi{l—3n7" B0} + a2 BX) + oln™"),
and hence by equation (2.16) the posterior density of w. is given by
a(w, | X) = d(wg D{1+a772G, w4+ n7'Golwl— 1)} + o(n™ ", (3.6}
where, with (&, and (5, as in equations (2.14) and (2.17),

Gh; = G] - %ﬁl{’ﬂ!
Gy = Gy + 382X + § BIX) = 3Gy B:(X).

Asin Section 2, by equations (3.2) and (3.6), the posierior distribution of A, is such
that a posterior Bartlett correction exists and the posterior Bartlett corrected statistic
corresponding to A, is A* = A/(1 + n~'B), where by equations (2.18) and (3.7)

B, = 2G,. = B + 3:(X) + ¢ Bi(X) — G, Bi(X). (3.8)

From this we can further deduce, exactly as in Bickel and Ghosh (1990) (see the proof
of their theorem 3) the existence of a [requentist Bartlett adjustment for A, and this
settles & problem posed in Cox and Reid (1937), Mukerjee and Chandra (1991)
provided another proof of the existence of a fregquentist Bartlett correction for A_.
Their proof appears to be more complicated but their results are more detailed and
include an explicit expression for the frequentist Bartlett correction (see equation
(3.10) below).

We now characterize priors for which the Bayesian and frequentist Bartlett correc-
tions for the CLR statistic differ by a(1). As in the context of Section 2, with such
priors, inversion of A¥ leads to a confidence set which has both posterior and frequen-
tist validity up to o(n~'}). Since &; =K+ o(1), using parametric orthogonality, it
follows from equations (2.14), (2.17), (2.20a), (3.4}, (3.5) and (3.8) that

B, = B — (apai) ™ (3K + 3KaKa} — 1@han) ' Kuk;
= (@2000) ™ {3K + wl6) ! T K2} + 0(1), (3.9)

where 8 is as in equation (2.20b). Also, with the results in Mukerjee and Chandra
{1991), the Bartlett adjusted statistic corresponding to A, in the frequentist set-up is
Ar® =3 /(1+n"'F), where

3.7
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F,=F+ [ﬂmﬂm;'_]ufm.u"‘%j:zﬂ + (ayady) (KoK 10,00 — 5K Ko + .%K%z:'
+ (a%sa0) 'K 25K 0+ 3K~ §K10.10.10) + 0(1), (3.10)

with F as in equation (2.22b). With the regularity conditions stated in Section 2, it
follows from equations (2.24), (3.9) and (3.10) that B. — F.=o{1) if and only if x{8)
satisfies the differential equation

i[muw}_:ﬁm.zuﬂm] + d [M] = .

a8\ ay a3, 39, | ayay,

(3.11}

3.1. Examples
Let fix; #) represent the univariate normal density with mean &, and variance 8,, the
parameter space being ©={#: 8, > 0, — o0 < f, < o}. It can be seen that under this
parameterization parametric orthogenality holds, Also, aw = 367 %, @ = 87, Ko
= —&;%, K; = 0and X; = 872, Henee, solving equation 2.25), B~ F=o(1) if and
only if x(f) is of the form

w(8) = d\ (628" + dy(B2)6; 7, (3.12)

where d(#,) and d,(8,} are non-negative functions of &, such that at least one of them is
positive. Similarly, solving eguation (3.11), B, — F.=o0(1) if and only if ={6) is of the
form

w(0) = di(0,)67" + di(8:)67 7, (3.13)

where () and 4,(#,} are non-negative functions of 8§, at least one of them being
positive. By equations (3.12} and (3.13), the relations B—F=eo(1} and B.— F,=0(l)
hold simultaneously if and only if w{@) = d(§,)8] !, for some function 4(f.) {> J) of &..

Recently, Tibshirani {198%) showed {sec also Peers {1965)) that priors of the form
To{8) = d(f>)a3,* ensure, up to o{n~ %), the frequentist validity of posterior gquantiles
of #,. It is interesting that in many situations of importance my(#), with suitably chosen
d(#.), satisfies both eguation (2.25) and equation (3.11). This happens, for example,
in the above example and also in the context of

(2) a univariate normal model where interest lies in the population mean, the
population variance being the nuisance parameter,

(b) the exponential regression model of Cox and Reid (1987} where the regression
coefficient is the parameter of interest and

{c) a model relating to two independent univariate normal populations with
unknown means and known variances, the ratio of means being the parameter
of interest (Cox and Reid, 1987).

However, there are also models where x,(#) satisfies neither equation (2.25) nor
equation (3.11). This happens, for example, in a bivariate normal model with correla-
tion coefficient #,, means each #; and variances each 1, where other solutions to
equations (2,.25) and (3.11) are not difficult to obtain,

As this discussion indicates, for the models usvally arising in practice, solutions to
equations (2.25) and (3.11) are readily available and often, though not always, m,(#) is
& solution. This has been checked with many other examples that are not reported
here. Equations (2.25) and (3.11) become identical if £, =0, something that arises in
situations (a)-(c) above. As a referee has pointed out, we could attempt to compare A
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and A, on the basis of gualitative comparisons between equations (2,25) and (3.11).
This is an interesting problem to which we-do not know the answer at this stage.
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