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ABSTRACT

: i ; ]
In the nwltiparameter cosc. this paper characlerizes poors so as to match, up to e(q 1), the
posterior joint cumulative distribution functon (c.df) of a poscetior standardized version of the
parametric vector with the corresponding frequentast c.d.f

RESUME

Cet ardicle caracedrise les distributions a prie telles que la fonction de réParLilinn CONjRInE A

posterion du vecteur paramétrigque centré cedudl & posterion soil égale, 3 on” 1) prés, i [a fonetion
dle répurlition fréquentisle comrespondante, dans le cas de plusicurs paramétres.

1. INTRODUCTION

In recent years, there has buen a revival nt; inlerest in the problem of characterizing
priors ensuring frequentist validity, vp to ¢(r 2, of posterior quantiles. Among the early
authors, Welch and Peers (1963) studied this problem in the one-parameter case. In
the multiparameter case, Peers {1963) denived conditions for the frequentist validiey of
the posterior quantiles of each parameter, and laler Stein (1985) and Tibshirani (1989
considered the peoblem with reference to a single linear parametric funcrion of interest. In
particular, Tibshirani {1958%) showed that if the parameter of inlerest be one-dimensional,
then elegant simplilications are possible making use of parametric orthozonality {Cox
and Reid 1987).

It appears that, in the multiparameter case, these authors treawed the parameters indi-
vidvally rather than jointly and based their results on such “marginal” analyses. This is
true also of Peers (1965), who first treated the parameters separately and then combined
the resulting condilions, On the other hand, if interest lies in all the parameters in a
multiparameter setup, then a joint treatment of the parameters seems o be intoitively
desirable. An obvious difficulty in such a joint teatment is that in the multiparameter
case posterior “joint quantiles” are not well delined. However, if instead of looking for
“jeint quantiles™ one considers the joint posterior comulative distribution function (c.d.f.)
of the parameters, then this difficulty oo Jonger remains. Based an this consideration,

this paper attempls 1o characterize priors so as to match, up to edn™ 2 ), the postedior joint
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cd f. of a posterior standardized version of the parametric vecetor with the commesponding
fregquentist ¢.d.1. In many models of importance, our approach vields the same result as
obtained by Pecrs (1965), showing that [or such models the conditions in Peers { 1965) ane
appropriate not only under individual but alse under a joint treatment of the parameters,
That this is not generally so has also been illustrated. Incidentally. our approach for the
frequentist computations is different from and possibly simpler than that in Peers (1963},

It may be noted thar, as in the derivation of reference priors (see, e.g., Berger and
Bemardo 1992), in the present approuch we need an ordering of the parameters in order
of importance. However, after that the reference priors are essentially determined by
successive minimization of an information functional, whereas we determine our priors
by matching the posterior and frequentist c.d.f.’s as detailed in the next section. As
noted in Tibshivani (19847, studies like the present one may be helplul in delining
noninformative priors which could be useful for comparative purpases in a Bayesian
analysis; see Lee (1989), Berger and Bemardo (1992), and Ghosh and Mukerjee (1991,
1992}, among others, for further references in this general area,

2. MAIN RESULT

Let {X;}.i = 1, be a sequence of i.i.d., PDbSib]}’ vector-vilued random variables with
common density fix; B), where @ — (8, _, EI,J £ R¥ or some open subset thereof,
We make the assumptions in Johason (19700, Let # have a prior density mi-) which is
positive and twice continvously differentiable. In case (-3 1s not proper as assumed by
Johnson {19700, we shall require that there cxist an A=) such that for all X, ..., X e
the posterior of @ given X5, ..., Xy, 1% proper, Let P be the joint probability measore
of @ and X = (X... .,X,,}T. where # is the sample size. All formal expansions for the
posterior, s uscd here, arc valid for sample points in a set 5, defined along the lines
ol Bickel and Ghosh {1990, Section 23, with Pp-probability | + @{n~") uniformly on
compact sets of 9.

Let L) =57 log fiX;. 8), fi0) — n~'L(0), and for 1 < i, j,a < p,

ay — {08}, .. cj = —d. ag = (DDA}, G

where /% is the oporator of partial differentiation with respect to 8, and 8 s the
mazimum-hikelihood estimator of B based on X;...., 5., The p = p matnia © = {{eg)) is
positive definite (pd.) over §. For | =7 < p — I, let ¢y denote the {p ) X 1 vector
(it - ,rr,-,,jT, Cyy denote the (p iy x{p — i} principal submatrix of C given by the
lust p— i rows and colunms of C, and &) = (84, - L6 AT denote the | g =] vector
Cu-r-},l:[ﬂ. Also, for | <7 <p -1, let o = o5 cFILU”H.. and define ¢, = Cpy. Let C
b an upper wianpular matrix with each diagonal element unity and (i, fith element —&;
(1 < i<j=p) Then it is casy to swee that © — C7TC, where

| | &
C* — ding{(c]))?, . ()T L 21

1 -
We also define € — ((£,)) =(C*) ! and write h — (h,.._ /i, )" =030 —8),
We propose to characterize priors 7(-) under which the posterior joint c.dl. of the
pivolal guantity ' y
W =W(0,X)=nZ((B —0) = C*h (2.7)

|
agrocs, up o ofr 7Y, with the frequentist joint c.dd. In order to give an interpretation
for W, we note thal {see, e.2., Ghosh and Mukerjee 1991) vp to the first order of
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approximation the posterior mean vector and dispersion matrix of h equal & and C :
respectively, Hence by (2.1, (2.2), up to the first order of approximation, the ficst element
of W is the standardized version of &y, und for 2 < { < p, the fth element of W is
the standardized regression restdual of & on k... ., &, io the posterior setop. If we
are interested o ocach of 6,...,8, bul the &'s are of decreasing (in {) importance.
then the present formulation appears to be nanaral (cf. Berger und Bemardo 1992). This
formulation depends on the ordering of the elements of B, but, as seen later, in many
siluations of imporance it can lead to prioes which work for each such ordering.

Let I = Ii8) = {{#,(8))} be the per-observation information matrix ar 8. which is
pd. al each 8. With reference o [ define Ly, L, i{m Lil=isp-1)1, L.
i-= f{?_;j]} cxactly as €, G B G {1 S S p—1), 03 C.*.C= {{T; 1) were defined
with reference to C. Also, for 1 < i/, 0 < p, let Ly, = Ep {DiDD, log f(X;. 81}, We

are Maw 1IN a position o present our main result.
Turowesm 1. Lef the asswnptions stated in the beginning of this section hold, and ler
PR-|X) denote the posterior probabiline measure of 8 piven X under the priov m-).

|
Then under &, the relation PYUW < X)) - PadW < 0 +adn 2 holds for cach B and
ecch t =4, ... .lﬂJT (e By if and only of

5
ZD,:{LI:{H =0 foral® {1=r=pm, {2.3)

Proaf. Consider any fixed £ = (1y,..., FP)T . By which is free from s and X, ....X,.
Then by (2.2}, the delinition of C, snd Eguatnon (2.2} in Ghosh and Mukerjec {1991
eiving an expansion for the posterior density of f, we have

| I
PHW < tX) ="B(t) + 1~ 2 Gu(X, t) +oln” 2), 2.4)
whernz
n
e f w0 dhwp -+ e, {2.5a)
' i=1

GalX, 1) = EZ:‘,,ﬂ:ﬁ (1)
JZZZZEZL“&"L””W v, (2.5h)

it = [ [wr]'[q:{n,) dwyodwy (1< r <p), {2.50)

Pan®)= [ [, uqu:cu ) divy - (0 <rsv<p) (250)

of-) denotes the standard univariate normal density, Tt = n(B), f; = w0 with m:(#) =
DB ) (1 < < p), each summation is over the tange 1 to p, and the integrals o (2.3a,
¢, d) are over the region {{wy. .oowp) tw S8 1 =i <ph
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From (2.5h), note that under @,

G X, 1) = 3 % L8 ){n(@)} "W, 1)

+ Fl, Z Z Z z Z z Fr'rj,'i:rm'L.l_.‘ulP}rn":t;' +a{l). (2.0)
1 ‘r u - 1 v

Lo consideration of (2.4), (2.6), proceeding as in Section 2 of Ghosh and Mukerjee {19913,
one gers the frequentist probability

Po(W < t) = W(t) + n 2 { =300 ik ()

* % Z Z Z E Z Z ‘iﬁf'_r,".t'_TM'L{r'u\[j.'irn'“}} + 0("_% B
[ W ros v

Hence by (2.4), (2.6}, the result follows, Q.EI.

Rismark 1. In particular, suppose global parametric orthogonality holds (see Cox and
Reid 1987, i, let £y = O, identically in 8, for cach § £ f. Then I eguals the p % p
| L

identily mautris and j= diug(f, |2 ks .’..JJ.,E]. Henee (2.3) redoces G

1
DAL ) =0 forall® (1< <ph (2.7)

By (273, under global parametric onthogonality, a solution to (2.3), iF existent, will work
for all possible orderings of the B;"s. When satisfied, (2.7) also leads to the frequentist
1

validity, up o o(r” 2), of the pusterior quantiles of each 8 — vidfe Tibshirani (1989),

Bemare 2. Maore generally, when global parametric orthogonalily may ool hold, T will
bhe a triangular matrix with elements dependent on the ordering of rthe 6;'s. Hence. in
such sitwations, (2.3) itself may depend on this onderng. Incidentally. nole that neither
{23y nor (2.7) involves L

Remark 3. For p — |, (2.3) lcuds to Jelfreys™s prior this is in agreement with Welch
and Peers (19633 In the muliparameter case as well, there are important situations {see
Examples 1, 2 below) where (2.3) leads to Jeffreys's prior, but this does not happen
dlways {see Lxample 3), In fact. in the multiparameter case, depending upon the modil,
the system of pattial differentisl cquations (2.3) may nol have any solation at all {see
Example 4). Following Scetion 4 of Peers (19635), we note in this connection that (2.3} can
be uniquely solved, as a system of linear equations, or FdB) — D log miB )y (1 < i <),
and that {2.3) will admil a solution if and only if £:H,00) = DH8) tor each £, § (1 £ 7).

3. SOME EXAMPLES

In Examples | and 3 below, which are of somewhat general nature, we assume, as
usual, the existence and p.d.-ness of (B for cach @

Exavere 1 I f{x; B) represents the location or the scale mode], ax detailed in Examples
3.1 and 3.2 respectively of Ghosh and Mukerjee (19491}, then caleulations similar fo theirs
reveal that the respective Jeffreys priors solve (2.3).
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Exawert 2. Convider a version of the exponential regression model with

T
Jox 8y = [[167'e = exp{—0r'e @< 4™, L4750,
i-l

with x = (', «™7, and 8 = (8,,62)7. =00 < B < 0g, B > 0, T (>2) being
a fixed positive integer, and z|,...,2; being known constants, not all zeros, salistying
z)++ 4z = Then, as noled in Cox and Reid (1987), global purametnic arthogonality
holds and 18} = diag(d ] l:,,-z, EIZE'I:J. Hence (2.3) reduces o (2.7) and is satisfied by
Jeffreys’s prior, namely my(€) o 65,
Examu_-n.i-: 3. Consider the location-scale family with f{x: #) of the form fix; 8) —
B g (8,1 — B}, where —0 < @) < 00, 8 > 0, and 8 — (9, 8)7. Then 103 = 6,7Q,
where Q is a 2 » 2 p.d. matrix with elements free from 8. IF one writes Q = ({g;;)) and
evaluales 1 eaplicilly, then (2.3) becomes
4 ! =l

D|{ng”_221'liﬂ ]'} - D:{Hzmzqﬂlﬁ‘]Fzmﬂ }} = DE{E'EQ':]" ?ILH'J} =1,
whert g112 — g1 — g26% - A solution to the above is given by (8 ) & 87 Also nole
that Jeffreys’s prior. given by my{ ) o E:Tz. is not a solution,

Tt is interesting to note that the selutions o {2.3) indicated in Examples 1-3 work
under all possible orderings of the parameters. We now illusirawe a sitwation where (2.3)
has no solution.

Exampir 4. Consider the mode] piven by
—3 . =3 . ¢
Flx; By =80, 28(0, *(x"! —0))) exp{—(8] +x"e ﬂ?]‘}.

where x = (2" '™, —so < x oo ¥ = 0,8 = (8,,8,)], —0 <0, < o0, 8, =0,
and. as before, §(+) is the standurd univariate normal densicy, Here plobal parametric
orthogonality helds and 108 ) = diag(67' +99]. 1 87°). Therefore. by Remark 1. (2.3) huy

a solution if and only if (2.7) has a solution, which happens only if (£, /F:)2 is of the
form {)(00)/dd2(0:1}, where o,(8)) 2208, may involve 8 [8:] but nol §; [#,]. Since
this is nutl the case here, the nonexistence of a solution to (2.3) follows.

Examrr 5. Consider the three-class nultinomial model given by
_ffx; ﬂ'_:l = B’ji'..”e'f_,l":[_l 5 E}l _ '}:}1__.‘|I'__TI2:’ x{lj, 1_1"!3 =or 1, xil,"_l_xl.:] 5 1.

where x = (x'1, x0T, 8 = (6,,83T, B, =0, 8 > 0, and 6, +8, < 1. Explicit calculations
|
show that the proper prior T58) = {8,8:(] — 81 — 8, — 823} 7 solves (2.3), while
L

Jeffreys™s prior given by met8) oo {0,801 — 6 — 8;)} 77 fails to do so. It may, however.
be remarked that the findings in this example may not huve a rigoraus implication, as
the model is nol represented by a density.,

4. CONNECTION WITH PEERS'S RESULTS AND REFERENCE PRIORS

As mdicated in Remark 3, onc can cxpress (2,3) as

H8) = —1") 'by8), {4.1)
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Considering two different choices ol the sequence ol subsels ol the parameter spuaoe
m their a]gamhm Berger and Berpardo {198%) obtained the reference prnors w08 ) —

'H' {1+83 ‘1"]? and (6 = B, e +63 J}” I one writes T and hence (2.3) explicitly from
the expression for I, then it can be scen that w8 ) satisfics (2.3) while 7,8 ) does not
Naote that the reference prior m,(B) was recommended by Berger and Bernardo (1984},
who matched posterior and [requentist coveruge probabilities numerically, and glso by
Tibshirani (1989). who checked the frequentist validity of the posterior quantiles of 8 via

an orthogonal parametrzation. This example shows that 708 ) works also when interest
|

lies in mutching, up to a{n” 1), the posterior and frequentist joint c.d.f.’s of a posterior
standardized version of 8,

Exoamrie 8, Consider the balanced-variance-components model treated in Berger and
Bernardo (1990} and given by Yo = S+ + e (1 =7 = k1 =7 < vh where &
and v are fixed posilive inlegers (=23, 8, is the general mean, the A;’s are each normal
with mean zero and variance B2, and the e;°s are cach nommal with mean zero and
variance Bs. the A;s and the e,’s being all independent. Considering asymplotics based
on independent replications of the above setup, it can be checked after lengthy algebra,
which we omit here to save space, that for cach of the ordenings {8, 85, 92), (65, 82,61
(83, 8,.8;) of the parameters, the reference prior reported in Berger and Bernardo {19491,
namely T8 ) o {8:(vE: +81)}", satisties (2.3}, and thar this is not the case under other
orderings of the parameiers.

In the above examples, we checked whether specific reference priors satisfy (2.3) or
not. One might well wish to investigate the reverse problem, namely, whether or ool
a solution o {2.3), i existenl, will always be 1 reference prior for some choice of the
sequence of subsets of the parameter space in the Berger-Bernardo algorithm (Berger
and Bermarde 989, 1992}, This appears to be an interesting but hard gucsiion o which
we do nol know an answer at this stage,
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