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Abstract. This paper deals with the minimum disparity estimation in linear
rogression models. The estimators are defined as statistical quantities which
minimize the blended weight Hellinger distance between a weighted kernel den-
sity estimator of errors and a smoothed model density of errors. It is shown
that the estimators of the regression parameters are asymptotic normally dis-
tributed and efficient at the model if the weights of the density estimators are
appropriately chosen.
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1. Introduction

Beran (1977) introduced a robust estimation method, called minimum
Hellinger distance estimation, which defines an estimator as a statistic minimizing
the Hellinger distance between a parametric model density and a non-parametric
density estimator. Later, Lindsay {1994) developed minimum disparity estimation,
a large subclass of density based minimum distance estimation, of which minimum
Hellinger distance catimation is a part. Basu and Lindsay (1994) show that the
minimum disparity estimator (MDE) has attractive efficiency and robustness prop-
erties among other robust estimators. Above all, Basu and Lindsay (1994) apply
the same smoothness to the model and the data, whilc the conventional methods
do not smooth the model (Beran (1977), Simpson (1987) and Tamura and Boos
(1986)). As a result, consistency and rate of convergence results for the nonpara-
metric density estimators are no longer required. Also, conbrary Lo vne’s intuition,
it may be possible to choose the kernel, called transparent kernel so that smooth-
ing the model and the data with a transparent kernel does not lead to loss of any
information as far as the estimation problem 15 concerned.

However, since Beran (1977) introduced the minimum Hellinger distance es-
timation method, no attempts to apply it to regression models were made. In
this paper the technique of mirimum disparity estimation is applied to the case of
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linear regression models. The estimators in this case inherit robustness of the min-
imum disparity estimators which Basu and Lindsay (1994) have investigated. The
estimators of regression coeflicients, derived by the minimum disparity estimation
method, are robust and asymptotically efficient, while some of well-known robust
methods produce robust but inefficient estimators (Rousseeuw and Leroy (1987)).
Asymptotic distribution and asymptotic efficiency of the minimum disparity esti-
mators of linear regression coefficients are studied. Robustness of estimators and a
small sample example were provided by Pak {1995). The minimum Hellinger dis-
tance estimation of the simple linear repression coefficients and the scale parameter
was studied by Pak (1996).

The rest of the paper is organized as follows: Section 2 gives a review of min-
imum disparity estimation and Section 3 provides the definition of the minimum
disparity estimators of linear regression coefficients. The theoretical framework of
the minimum disparity estimators is established in Sections 4 and 5.

2. Review of minimum disparity estimation

Minimum disparity estimation (Tindsay {1094), Basu and Lindsay (1994)) is
an efficient and robust estimation method in parametric models. In this section we
briefly review minimum disparity estimation when i.i.d. observations are available
from a continuous parametric model.

Let mg(x) represent the density of a parametric family of models, completely
known except for the parameter vector 3. Given a sample of n 1.i.d. observations,
construct a nonparamctric density cstimator from the data, say £*(x). It is usually
done using kernel density estimation methods, as

p) = [ K mar, ),
where F), is the empirical distribution function and % is a smooth family of kernel
functions like the normal densities with mean y and standard deviation A. The
parameter i controls the smoothness of the resulting density. Let Mg{z) be the

cumulative distribution function (c.d.f.) of the model. Next applying the same
smoothness to the model, we get

mp(z) = /k(m;y,h)dMg(y).

Now we can construct a density based distance between f*{z) and mj(z) like the

squared Hellinger distance
2
[ VF@E - Jms@)] a

which may be minimized to obtain the minimum Hellinger distance estimator. The
obvious analog of the maximum likelihood estimator in this case is the ‘MLE*’,
which is the value of # that minimizes the distance

[ @) togls* @y ey
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This approach has several advantages over the conventional methods which do not

smooth the model before the disparity is constructed, and they are discussed in

Basu and Lindsay (1994). In particular, they do not require consistency or rate

of convergence results for the nonparametric density estimators. Also, the MDEs

are consistent and asymptotically normally distributed for any fixed bandwidth h.

We do not have to let h go to zero at an appropriate rate as n tends to infinity.
Define the Pearson residual, a standardized version of the residual as

o fre) —my(a)

For an arbitrary real valued twice differentiable convex function G with G(0} =0
define a disparity measure pg between f*(z) and mg(z) as

o7 — [ G @mpa)de

If & is strictly convex then the MDE, the value of f which minimizes pg, is
a Fisher consistent estimator. G(6*) = (V6* +1 — 1)? generates the squared
Hellinger distance, whereas G(6*) = (6* t 1) log(6* | 1) generates the likelihood
disparity. Pearson's and Neyman’s chi-squares and the power weighted divergence
measures of Cressie and Read (1984) are other prominent members of the class of
disparities.

Let ¥V represent the derivatives with respect to 3. Under differentiability if
the model, minimization of the disparity measure p over 3 corresponds to solving
a set of estimating equations of the form:

—Vp = /A(5* (x))Vmg(a)de = 0,

for A(6*) = {1 + 6*(2))G'(6*(x)) — G{é"). The function A is called the residual
adjustment function (RAF) of the disparity. It plays an important role in the
derivation of the properties of the MDE and helps to describe the finite sample
efficiency and robustness properties of the estimator in terms of its treatment of
the Pearson residuals. In this respect it is almost exactly like the 1 function of
the M-estimation approach.

The curvature parameter A, = A”(0), associate with each RAF A(-} plays
a very important role in determining the trade-off between the robustness and
second-order cfficiency properties of the estimator. Ay = 0 implies second-order
cfficicney in the sense of Rao {1961), while departure from zero corresponds to a
loss in that. It has been shown in Lindsay (1994} and Basu and Lindsay (1994)
that a large negative value of Aa corresponds to certain robustness properties of
the estimator.
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3. Definition of minimum disparity estimators in linear regression

Consider a multiple linear regression model; the model is specified by a linear
equation of the observed value of a response variable and the observed values of

predictors. Given the [-th observations of the predictors, z;;, i = 0,...,p, the [-th
observed value of a response variable is

v =boxoy + iz oz + - by te,  mg=1 for I=1,....n,
where e; has a sufficiently smooth symmetric density of the exponential family

with Ele;] = 0, Var[e;] = o2 (known} and Cov(er, €r) = 0, I # m. We can express
the model in matrix form as follows;

Y = Xb7 +e, Ele]=0, Varle]=0"T

Y and e are n x 1 vectors of y;’s and ¢;’s, respectively. X and b are as follows;

1 a1 z21 -0 T - | ho

3.1) X - 1 22 a2 - Tp2 §T b
. = | . . . . . : =

1 T Zon - Tpn bp

We will denote the vector of the true values of the parameters (b,) and the
vector of the estimators of the parameters (b,) such as

bo - (bﬁo:blo;- .- ybp0)7 hn = (boﬂvblnu-'-vbpn)'
Define the standardized errors such that for I =1,...,m;
z = (y.! — by — b1z — batoy — - — bpﬂ?pg)/a,

which are symbolic quantities of unknown h;’s but. z are iid. with a common
density at the model (that is, given the true values of the parameters).

Step 11 Define the density estimator for the model density
For each 7, define a density estimator as a weighted average of kernels;

1 U
— rak(z; b h
Z?zlxit%; il (l) 3 )7

where k(z;t, h) is a smoothed kernel function of z; with window width h. 1f
we follow Silverman (1986), k(z;;t,h) = FK((t — 2)/h), where K (-} is a kernel
function and A is window width. Since the estimators of the regression coefficients
are location invariant, it would be all right without loss of generality, even if we
let x;;’s be positive.

fi*(ts b) =
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Step 2:  Define the smoothed model density
For each i, the smoothed model density is defined as

Qf(t) =Bz, {fi*(tv b)]

at the madel. In fact, g¥{#)’s are identical for all i, so let’s call them just g*(¢).
Also, it is a completely known function of t.

Step 31 Definc the Pearson residual
For each 1, the Pearson residual is defined as

5:(t,b) = ———-fi*(t’;’j(t) 5ilt),

If there exists at least one outlier among observations, then the discrepancy be-
tween a density estimator and a smoothed model density at a particular value of
t increases, so the Pearson residual does.

Now, let V;, V;; and V;;; represent the first partial derivative with respect
to b;, the second partial derivative with respect to b; and b; and the third partial
derivative with respect to b;, b; and bg. Just for convenience, we will drop b in
fr(t, b) and 87 (¢, b), and write f(t) and 6 (¢) for them, respectively.

Step 4:  Define the minimum disparity estimator
DerFINITION 3.1, Suppose
yg:m;bT+e;, 1<1<n,
where @, a 1 % (p + 1) vector, is the I-th row of the design matrix X, b is a
1 x (p+ 1) vector of the parameters and e; are i.i.d. random errors with mean 0

and variance o? (known). Then for some appropriate disparity p, the minimum
disparity estimalor by, is defined as the statistic minimizing

P P
i=0 i=0

ag a funetion of b, In partieular, for the hlended weight Hellinger distance (RWHD)
(Lindsay (1994); Basu and Lindsay (1994}), the minimum disparity estimator of
b will minimize

Z;BWHD(f Zf(a\/f_t);i\(/;_) dt.

a € (0,1],

where @ = 1 — a.
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Fig. 1. The residual adjustment functions.

Under differentiability of f* (¢, b} with respect to the parameter set of interest,
Lhe winimum disparity estimators are the solutions to the simultaneous equations

of

P
(32)  V,5(0) =Y Vini(b)

P
=ZfA(5f(t))iji*(t)dt_0 for j=0.1, . .p

where the function A(-) is called the residual adjustment function (RAF) (Lindsay
(1994), Basu and Lindsay {1994}). Through the differentiation of BWHD{f(t),
g*(t)) w.r.t. the regression coefficients for the BWHD family of disparities, the
residual adjustment functions have the form

DerintTiON 3.2, The Residual Adjustment Function (RAF), A{7 (1)), will
be called regular if it is twice differentiable, and A’(67(t)) and A" (67 (£)) (1 +6F(¢))
are bounded on [-1, 00).

Remark 3.1. InTig. 1 we have plotted RAFs for various alphas. Some useful
facts about A(é/(t)) should be mentioned. In practice, we redefine the function
A without changing its estimating properties so that 4(0) — 1, 4'(0) — 1 and
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A(6*) =01t A(6") < 0. The RAFs coincide at (0, 1), and the tangent line of the
RAFs at (0,1) is the RAF with o = 1.0. Also, we have |A4(5*)| < |6*|. Since
fE{t) — g*(¢) by SSLN as n — co, we have 8*(t) — 0. Therefore it follows that

%

A(63{t)) = 1, A'(8}(t)) = VL A8 (1)) — 1 as n — oo,
4. Preliminary results

In this section we will briefly present some preliminary results about f?(t)
and g*{t). These results will be very useful to prove consistency, asymptotic
normality and asymptotic efficiency of the minimum disparity estimators in a
linear regression model. In the following discussion it will be assumed that the
z1’s are defined at the true values of the parameters, so that they are iid. with
a common density, say g(z). For notational convenience when we discuss about
common facts for all z;’s, we will drop a subscript ‘I’

LemMA 4.1, Provided it exists, Var[f(t)] = (3", 23/0  za) DA (),
where A(t) is given by

Mt = Ec[(k(z5t, k) — g*(£))?].

Proor. Note that E,[k(z;2,h)] = g*(t). Since fr(t) = S.7_, zuk{z;t,h)/
p 1—1 Zi has the form of a weighted sample mean, the result follows.
We want that the kernel function k(z; £, h) is bounded. EFrom now on, let

k(zt,h) < M(R)

with M(h) < oo, where M () depends on i but uot ou z. Then
A® < [ st Pa(z)dy
< M(h)/k(z;t, h)g(z)dz
= M(h)g"(t).
LEMMA 4.2. nM4(£12() — g*V/2(t)) — 0 with probability 1 if Mt) < co.

Proo¥. Recall that Elk(z; ¢, h)] = ¢*(t) and Var[k(z;¢t, h)] = A(t). We can
represent f7(t) — g*(t) as f}{t) — ¢* (¢t} = >, var/n, where

X
s ket ) = g (0]

The v;;’s are independently distributed for all { with Ev;] = 0 and Var[v;] < cc.
Hence, we have by Theorem 2 (Marcinkiewicz-Zygmund) of Chow and Teicher
{(1988), p. 125) that

v =

(4.1) A =g (1) =Y ey -0
=1
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almost certainly. By a Taylor series expansion of a square root we get

VA2 (1) - g* 12 (1)
= ntY(fH(t) - ¥ (1))

1 1 * ®
s o - a0,

so that by using (4.1} we have

nA( ) ~ g7 (D) — 0

with probability 1.

Remark 4.1. We would like to assume that for k = 1,2, S0 2% /n and
i1 zhxk /n converge to finite quantities, denoted by #:* and 27,;%, in the limit.
In other word, for a large n, these are bounded by some finite positive quantities
independent of n. These assumptions ensure that the realized values of indepen-
dent variables should be within certain range. The regression analysis with infinite
values on the independent variables has no sense.

Lemma 4.3, Define v} (t) = (f;l/Q(t)—g*l/Q(t))/g*]/'z(t). For uny k € [0,2]
and fori=20,1,...,p, we have

(4.2) lim sup Z[|n/232()|*] < Liwsupn®*(E[j6: () [%])
A2 (1) k
< 1752 fim sup ( ) ,
‘ n g*(t)
where U; = limsup, (32, x3/n)/ (37, za/n)?.
Also,
/\1/2(t)
4.3 Ell6r ()] < —--
(43) 186 < =5

PROOF. In the following proof, the first inequality holds by the facts that
for a,b > 0, (a'/? — 61/2)2 < |a — b] and the second inequality holds by us-
ing Liapounov’s inequality. The forth equality holds due to the independency of
k{z;t, h)’s. That is,

. *1/2
Bl - 2 e B
< ph2E [ () _1 *
g*(t)

— n*2 D65 (8))F)
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< nfE(E(I8 (O]

k72 2\ M2

_ W Zi = ZJ,”(& s by ) — g™ ()

=1

n/? 1 . k/2
30k (@? o 2 Bl .h) g*(t)ﬂ)
—1 i Py
nt/? 1 n k/2
@ ((2;21 PEA ;W(m;t,mD

BlIss (0} = ( [

(
1
g ()

Also,

Z-Lii ‘:i:L1h‘} - !’))

LIII

)

55 21!223%5 [|k(zi5 8, 8) — g*(&)]2PHV2
=1+

Se
LEMMA 44. lim, o E[n'/2y2(t) %] = 0 for k € [0,2].

PROOF, We know that for any & € [0,2], limsup,, E[[n'/?v;2(¢)|¥] is bounded
by Lemma 4.3. By Lemma 4.2, we have

. . 2 . . 2
g e (S0 =g PO e (220 P\
t g*I/Z(t) 9*1/2(t)

in prohability as n — oo. Therefore, the result follows by uniform integrability.

5.  Asymptotic properties of the estimators

In order to prove the main asymptotic results, we will first concentrate on the
quantity in (3.2):

Vin0) = [AGOVL0d =0 p =0

Lemma 5.1, (Lindsay (1994)) Suppose that A(6}(t}) is a reqular RAF, then
there exists o constant B > O such that for all positive ¢ and d

{5.1) [A(e® = 1) + A(d® = 1) — (¢ = d*)A'(d* - 1)] < Be - d)*.
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PROOF. See Lindsay (1994).

LEMMA 5.2. Suppose that fg*(t)(Vilogg*(t))2dt, E.[[(Vik(z;t,h))%dt)
and [(V.g*(t))dt ezist. For a regular RAF we have

\/a[ [ @, wa- / 53‘(6)Ez[vjf§(t)]dﬂ]ﬂ0, ws n— o

with probability 1.

Proor. Consider the following inequality:

(52) Vvn fA(fS?(t))ijf(t)dtff??(f)Ez[ijf(t)]dt‘

[ 4@ v, [ AG 5,5 (mdtj

<vn

+ \/EJ/A(&;‘(:&))Ez[vjf;(t)]dt [éf(t)Ez[ij:(t)]dt.

where

1 e T4t
E. V) =E, 7 aatl vy S )
V367 (0 [ZH e 2 PG )}

Vil t,h
T e

- Zgz]_ LiTq1
UZZLl il

Investigate the first term on the right-hand side of (5.2)
Since A(5;(t)) — 1 as n — oo, if n is large A(8;(t)) is bounded by, say A,
with probability tending to 1. We have

Vg™ ().

N

[ 495w [ A(s:(t))a{vjf:(tndtl
< VA [ 19,520 - BV, 120

Consider the limsup of expectation of the term on the right-hand side, and recall
that k(z;;f, h)'s are independent at the model. That is,
] "

x l - . -+ *
hmnsupAf » w”/n H ﬁ ; Tur;{Vek(z; t, h) — Vig* (1))

B 1/2
< Aﬁ / (B.[(Vik(z;t, k) — Vg™ (1))2) /2 dt

T,
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gA(i*;%;i (/E (Vik(z:t,B) — Vig* ()2 dt )1/2
< A% (E U(wﬂ(z; : h))?dtJ _E, U(vtg*(t))mtj)w
< A(:‘L?;—;):/—g (E [[(Vtk(z;t,h))zdt] ) "

is bounded due to the assumptions. Hence by the dominated convergence thecrem
the first term on the right-hand side of (5.2) converges to ¢ in probability.
Investigate the second term on the righi-hand side of (5.2)

By replacing the ¢ by (£#(£)/g*(¢))"/? and d by 1 in (5.1), we have that

Vil A(8E () — A(0) - &; (A'(0)] < VnBYy2(t),

of which the expectation is bounded and it goes to zero as we have shown in Lemma
4.3. We have [ F_[V; fr(#)]dt = E,[V; [ f7(t)dt] = 0. Recall that we have A(t) <
M(h)g*(t) and that limsup,, > zyz;/ Y xy = limsap, 3 (xyx;/n) /(O zu/n) is
bounded, say by K, by Remark 4.1.

Hence we have

Vit || [ e @ eV @t - [ o089, 50|
gﬁqbwammamwmwxm&wmmnﬁ

-ﬁn, Y€,
< B [ By | et
Zizl L

<BKU”2;/ (S)' 0" (8)]de

121 Vg™ (t)]
< BKU! J/Mr(h) i

1Veg™(£)[dt

. 1/2
gB}(U}/QM(h)E( *(t)v‘gt }dt) ,

of which limsup is bounded by the assumption.
_ Therefore, the second term on the right-hand side of (5.2) goes to zero with
probability 1. Hence the result holds,

THEOREM 5.3, Suppose that V = Var[[ k(z;t,h)V,log ¢*(t)dt] exists. Also

suppose that for i,7 = 0,...,p, T = lmn.(1/n)Y 2y and Z;; =
limg, . (1/n) Z?:i xgxgy exist. Then for a regular RAF

Vi [ Az (0t — N, 0V /o),
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h o= (el
where a;; = (Tq;)* T/ (T5)*.

Proor. By Lemma 5.2 and Theorem 4.4.6 of Chung (1974}, the asymptotic
distribution of

Vit [ 4 )95 (0

is as same as that of

\/_/5 E.[Vig™(t)|dt
— % Zz 1311%1 *
=vn f 5 S Vtg (t)dt

E: | Ta/n 1 ' ' . )
o3 Tafn Y 1ng/n\le$”/(k(zi’t’h) g* 1))V log g* (t)dt.

By the Central Limit Theorem and by Slutzky’s theorem, we have the result.

Now, we will prove the main theorem about the existence and consistency of
estimators of the regression coefficients, b; for i = 0,. .., p», and we will derive the
asymptotic distribution of a vector of estimators:

f(b — b, ) \/’E{ bon b(}a)a (bln “ blo); pn - po)}

THRORFM K4 In addition to the conditions of Theorem 5.3, assume that
g (1) (Vilog g*(£))2dt exists and that there are functions MH(%)() such that
Vikfi (0] )] < Mg (t), where Mg (t) for all j, k, 1 and i, have finite
expectation w.r.t. f¥(t). Then there emv;sts a consistent sequence of roote b, to the
minimum disparity estimating equations:

VpS(b) =V, Zp:m(b) =0.

PRrROOF. See the Appendix.

Remark 5.1. We need to consider another important property of a kernel.
Suppose k(z;, h) is transparent (Basu and Lindsay {1994)), that is,

§*(2) = f k(2 8, W)V, log g* (£)dt = eV, g(z) = eS(2)

for some constant ¢, where S(z) is V, log g(z). Since E[S*(z)] = ¢E.[S(z)] =
then Var[§*(z)] = E[S*2(2)] = A2E|S%(2)] = 2LV, 8(z)] = cE[VzS*( -
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Now, we have
B9.5()] = [ o) ( JAZ 0N logg*(t)dt) iz
_ / V, log *(£) ( / g(z)Vzk(z;t,h)dz) t
_ / Y, log g (1) ( f o) =V ek(zit, h))dz) it
_ f Vilog g* (¢) (—vt f g(z)k(z;t,h)dz) dat
— [ Velogg' (0(-Veg (1)

— vtg*(t) . *
[ 2D v e

Vg (t) ) :
= — *t dt.
oo (%
Furthermore, if z is a properly standardized random variable of a symmetric den-

sity in the exponential family as we assumed in the heginning, then E[V, 5(z)] =

E[V2log g(z)] = — Var[z] = —1. Since E[V.8*(z)] = cE[V.5(z)] = —¢, it follows
that
o (T ®N?
o= [0 ()

v [/ k(z: 1, B)V, log g*(t)dt] - ( f 0 (8)(Vs log g*(t))gdt>2.

Therefore,

For example, suppose that k(z;t,h) is a density with mean z and variance h2, and
that z is a normal random variable with mean 0 and variance 1. We have the
following:

Var [/ k(28 h)V, log g*(t)dtjl = Var [—P}ﬁr}

1

1
IR

and

¢ 2
fg*(t)(vt log g"(t))*dt = fgk(t) (h2+1> @
1
B+ 1
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THEOREM 35.5. Under the conditions of Theorem 5.4 /n{b, — b,} has an
asymptotic normal distribution with mean zero and variance matriz X' 0%, where

Soo = limpoo(1/n) XTX.

ProoF. Expand V;S5(b) about b, and replace V;S(b) by V;S(b,) to obtain
(5.3) V;iS(bn) = V;8(b) + Y (Bkn — bro) V55 S(bo)
1 /
|52 2 (e bro)(br bio)VyuS(6),

where b’ is a point on the line segment connecting b and &,. The term on the
left-hand side is zero, so that the resulting equations can be written as

\/’HZ(bkn — bro) [ijﬁ'(b Z(bm bio)VriS(b')| = —v/nV;5(b,).

Now, let
Yin = \/T_I(bkn - bko)
1 '
Ajrn = VieS(hy) + 5 D (b — bio) Vi S(b")
T]n = —\/’I_IVJS(bD)

As we claim in Theorem 5.4 that the estimators are consistent and that the
V;xS{b') is bounded in probability, and by the (A.4) in the proof of Theorem

5.4, we have
p 2
1 xLJ zk:f vtg*(t)
* dt
Ajkn Z o O\ >m ) *

in probability.
The limiting distribution of the Yy,’s is therefore that of the solution Y, =
(Yon, ..., Ypn) of the equations

P /P —— 2
~ -1 I’f.jwik * Vtg*(t)
o t n = Ljn.
L (L o? IiI fg (t) ( g*(t) dt ) ¥ g

k=0 \i

Let’s denote [T},] be a p x 1 vector of Tj,, § = 1,...,p. Based on the facts
of Theorem 5.3, [Ij,] has the same asymptotic density as that of {1/0){ai;]pxp -
ilnxt - [cilpx1, where
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for i, = 0,1,...,p. Hence, T, = {Ton,...,Tpn) Is asymptotically multivariate
normal with mean zero and covariance matrix (AT B~1)A(B"1A)V /o>,

Too For - Top 2 0 ... 0

Tio T o Tip 0 5?2 -0

P N 0 0 - ox,?
pO pl PP P

Therefore, it follows that the distribution of ¥, is that of

{(AB-IAT);}; [s® (Vf;ffff))zdt

which is an asymptotically multivariate normal with mean zero and covariance
matrix o2 A~". In fact,

1
T,,

A=%X,= lim lXTX,

n—cC 1

where X is a design matrix of (3.1).
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Appendix

Prootr oF THEOREM 5.4.

1. To prove existence and consistency we will follow the argument of Lehmann
((1991}, 430-435). Consider the behavior of S{b) on a sphere @, which has radius
a and center at b,, the vector of true values of parameters. We will show that
for a sufficiently small a, the probability tends to 1 that S{(&) > S{b,) and with
probability tending to 1 there is a local minimum for the disparity in the interior
of Q,. At a local minimum the estimating equations must be satisfied. Therefore,
for any a > 0, the minimum disparity estimating equations have a solution b,
within ),, with probability tending to 1 as n — co.

2. Expand S(b) about b,, we get

S(bo) - S(b) Z[pz( o) - pi(b)]
P

= 1[  — bjo ng.ﬂz ) b= bo]

=0
1P
+§ZZ (b — bro) (b Jﬂ)ZvjkPI ) lo=b,
k=0 j=0
1 D » P
+EZZZ (b = bio) (bt — bro)(bj — bjo ngkzpm ) To=b
1=0 k=0 j=0
:51+SZ+S3.
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b’ is a point on the line segment connecting b and b,. We will investigate the
linear; quadratic and cubic terms in order and determine their proper limits.
3. Linear term Sy: Since |A{6})| is bounded for a large n and also

Yo Zikit Vgt (t)
2111 Tt o

similar to Lemma 5.3, we can show that

2o FuEi Vig* ()
s — [ A(67) dt
Jp b) |o=s, / Z.{ za o

- /A(o‘;)vjf;(t)dt/A(o,;)Zfi: rari Vig" (1) dt — 0,
Zz:l Ty o

EV,fi#)] =

in probability. Next, we will show that

fA ZI 1 FiZji Vtg ()dt-—)'o
Tj 1 Eil a

in probability. Assume that [ ¢*'/2(¢)|V,g*(t}/g*(t)|dt is bounded and show that
the expected value of the above integral goes to 0. Since [A(67(t))] < [67(t)], and
by {4.3), for any constant K, we have that

e
< hmsup/ %}% E[IA(5)] 'Vti*(t)[dt
< timsup | | KB g5y | D0
1/2 V.g*(t)
<k 3| T
< a2 n) [ o LD i< o,

BN i/2
< KM'Y2(n) (fg*(t)‘%%—%l‘ dt) < 00,

aud thus by the dominated convergence theorem the expectation of the Integral
(A.1} goes to 0. Once again by the Markov’s inequality the integral itself goes to
0 in probability. Therefore,

V;pi(b) |p=b,— 0

in probability. Applying the same procedure as the above to each of the other
first-arder terms for 1 =0, p, then we have

(A.2) Zvjpﬁ ) |pp,— O
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in probability as n — co. For any given a, it follows from (A.2) that

Zvjp? ) lb=b,

and Ulws, willl probability tending to 1, |51] < (p + 1)%e?, where p + 1 is the
number of regression coefficients and a is the radius of the sphere Q..
4. Quadratic term S5: Since

< (p+1)a®,

wmwmﬂf/NW) Vm&Wf(W+/M®WMWW

HO)
similar to the proof of Lemma 5.3, we can show that

[w ﬂ mvfmﬁ+/(*wﬂﬁwﬁ

/Af(ﬁ?“) L 3 Bk Yo Ty (VtQ*(t)>2dt
Vo) Tiamu Xl ta o

T i i
+ f Asy) LAoL R Vfg*(t)dt] 0

a? Yo, Tl
in probability. We will first show that

™ " 2
fAI(é*) 1 Z.[ 1 Tit il Z?:?g Ik (Vtg (t)) dt
gr(t) ioyma 2, Ta T
. 2
~ 50 [ (D20
g2 T;T; q* (t)
in probability. Consider the supremum of the absolute value of the integral in left-
hand side, which turns out to be bounded due to the boundedness of A’(6;) and
by the assumption that [ |g*(t)(Veg*(t)/og" (t})?|dt is bounded. For A’(8]) — L,

by the dominated convergence theorem we have the result.
Next, we will show that

] AS ng L LY g (1)ds — 0
P

in probability. Consider that the supremum of the absolute value of the above
integral is bounded due to the boundedness of A{6}(t}) and the integrability of
V2g*(t). Since A(6(t)) — 1, and | Vig*(t)dt = V} [ g*(t)dt = 0, by the domi-
nated convergence theorem the result follows.

Hence, we have that

P

" 2
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Let us denote J*(b,} as a matrix whose jk-th element, J (o), is the right hand
side of (A.3) for 7,k =10,...,p
Therefore,

= ZZ { [Vk Zvai:| — ;k(bcw)]} (bj — bjo) b — bro)

k=0 j=0 i=0
+ Z Z[ 7 bjo)(bk - bkzo)-
k=0 j=0

Similar to the argument of Lehmann {(1991), p. 432) we see that there exists
¢ >0, ap > 0 such that a < ag, So < —ea® with probability tending to 1.

5. Cubic term S3: Since most kernels are bounded and continuously differen-
tiable, we can claim that V,zp0:(b) [p—p is bounded by some uniformly bounded
function Mg (f) for all 5, k, . Hence )%, Viripi(b) |s—p will be also bounded.
Therefore, we have |S3] < ba® on @,, where

3 P P P P
b:(p%l)— ZZZE (M) ()]

=1 k=1 j=1 =1
Combining the three inequalities about 51, S» and S, then we see that
max{S; | Sy | &) < ca® | (b1 p} 1)ad

which is less than zero if a < ¢/(b+p+ 1).
Thus, for any sufficiently small a there cxists a sequence of roots b, to the
minimum disparity estimating equations such that for¢ =0,...,p

Pl||bn — bl < a) — 0,

where || - || represent the Ls norm. It remains to show that we can determine such
a scquence independently of ‘a’. Let b be the root which is the closest to b,. This
exists because the limit of a sequence of roots is again a root by the continuity
of the digparity as a function of the parameter. This completes the proof of the
consistency past.
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