
Linear Algebra and its Agqlications 2S9 (1999) 225-242 



226 S. R 3ammaJamadaka, D. Sengupta J Linear Algebra Appl. 289 (1999) 2B-242 

Consider the linear model (y, d V> where the parameters 
unknown and the design matrix x fixed. The statistical quantit 
include the best linear unbiased estimators (BLUES) of the es 
metric functions, variance-covariance matrices of such estimator 
sum of squares and the likelihood ratio tests fos test&k linear hypdmes, In 
this article we are primarily concemed with the changes in these quantities 
when some observaticms are appended or deleted, as well as when some re- 
gressors are added or dropped. 

Earlier work in this area include algebraic formulae in various special cases, 
given by Hackett (1950), Mitra and Bhimasankaram (I 971), M~~i~~~~st and 
Sandlmd (1979), Haslett 4 1985), Chib et al. (1987), and Bhimasankararn et al. 
(1995). Kouroukfis and Paige (198 1) gave a computational algorit 
cursive estimation which were later used in a number of statistical packages. 
Mitra and Bhimasankaram (1971) and Bhimasankaram and ~a~~~~a~a~a~~~~ 
(1994) considered the addition or deletion of a regressor as well, - a problem 
not considered by most of the other authors. The work of McGikhrist and 
Sandland (1979) and Haslett ( 1985) make use of recursive residuals - a theo- 
retical tool that has several other applications (see Kianifard and Swalllow, 
1996). We sh0w inn this article that all these results can be considerably gener- 
alized while at the same time providing much simpler and intuitive exphation 
of what is going on. Besides, these results ah hold in the case of singu%ar V. 

The case of singular V is important for a number of reasons. It may arise 
lxcause of certain exact linear constraints, noise-free measurments for a 
subset of the data, repetition of errors in a rardornized experiment (see for 
instance Kempthsme, 1952, pp. 137,190 and Scheffk, 1959, pp. 299-301) or 
redundancy in a derived Binear model (see Rcawley, 1977; Bich, 1990). Also, the 
singularity of V may be seen as a fimiting special case of a ~zearl~~ ~a~~-~e~c~e~t 
dispersion matrix. Often such singular linear models have been treated in the 
literature by special (and relatively complex) methodology that was not needed 
in the fuhamk case (cf. Christensen, 1987, pp. 179-200). Prominent ap 
proaches of this kind are the Inverse Partition Matrix method and the Unified 
Theory of Least Squares Esti tion (cf. Rao, 1973, pp. 298-302). There has 
even lxx% some controversy ding many related issues like how to gener- 
alize the definition of hear unbiased estimators to the singular case (see 
Harvik, 1981), whether the usual Beast squares theory would go thou& (see 
Rae, 1978) and whether a part of the model equation should lx treated as a 
deteministic constraint. Some researchers have advocated separation of the 
‘statistical’ part of t mdel fmm the ‘non-statistical part’ (see Feuerver 
and Fraser, 1980). wever, this approach makes it diBkuh to relate 
singular 6x8~ to the nhnosd singular case, which is one of the ol3jectives of 

dar mcdel iHt the first place. 
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