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Abstract

Analysis of the general linear model with possibly rank-deficient design and disper-
sion matrices has sometimes generated some confusion and controversy, prompting
some researchers to discuss it as quite distinct from the case of full-rank matrices. We
show that linear zero functions, i.e., linear functions in observations which have zero
expectations for all parameter values, provide an intuitive way of developing all the
important results in connection with the general linear model, thus bridging this
imaginary gap. We show that the effect of addition or deletion of a set of observations in
this model can be clearly understood in statistical terms if viewed through such linear
zero functions. The effect of adding or dropping a group of parameters is also explained
well in this manner. Several sets of update equations were derived by a host of previous
researchers in various special cases of the above set-up. The results derived here bring
out the common underlying principles of these formulae and indeed help simplify most
of them. These results also provide further insights into recursive residuals, design of
experiments, deletion diagnostics and selection of subset models. © 1999 Published by
Elsevier Science Inc. All rights reserved.
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1. Introduction

Consider the linear model (y, X8, 6*V) where the parameters § and ¢ are
unknown and the design matrix X is fixed. The statistical quantities oi interest
include the best linear unbiased estimators (BLUEs) of the estimable para-
metric functions, variance-covariance matrices of such estimators, the residual
sum of squares and the likelihood ratio tests for testable linear hyputheses. In
this article we are primarily conceined with the changes in these quantities
when some observations are appended or deleted, as well as when some re-
gressors are added or dropped.

Earlier work in this area include algebraic formulae in various special cases,
given by Plackett (1950), Mitra and Bhimasankaram (1971), McGilchrist and
Sandland (1979), Haslett (1985), Chib et al. (1987), and Bhimasankaram et al.
(1995). Kourouklis and Paige (1981) gave a computational algorithm for re-
cursive estimation which were later used in a number of statistical packages.
Mitra and Bhimasankaram (1971) and Bhimasankaram and Ja::malamadaka
(1994) considered the addition or deletion of a regressor as well, — a problem
not considered by most of the other authors. The work of McGilchrist and
Sandland (1979) and Haslett (1985) make use of recursive residuals — a theo-
retical tool that has several other applications (see Kianifard and Swallow,
1996). We show in this article that all these results can be considerably gener-
alized while at the same time providing much simpler and intuitive explanation
of what is going on. Besides, these results also hold in the case of singular V.

The case of singular ¥ is important for a number of reasons. It may arise
because of certain exact linear constraints, noise-free measurcments for a
subset of the data, repetition of errors in a randomized experiment (see for
instance Kempthorne, 1952, pp. 137,190 and Scheffé, 1959, pp. 299-301) or
redundancy in a derived linear model (see Rowley, 1977; Bich, 1990). Also, the
singularity of ¥ may be seen as a limiting special case of a nearly rank-deficient
dispersion matrix. Often such singular linear models have been treated in the
literature by special (and relatively complex) methodology that was not needed
in the full-rank case (cf. Christensen, 1987, pp. 179-200). Prominent ap-
proaches of this kind are the Inverse Partition Matrix method and the Unified
Theory of Least Squares Estimation (cf. Rao, 1973, pp. 298-302). There has
even been some controversy regarding many related issues like how to gener-
alize the definition of linear unbiased estimators to the singular case (see
Harville, 1981), whether the usual least squares theory would go through (see
Rao, 1978) and whether a part of the model equation should be treated as a
deterministic constraint. Some researchers have advocated separation of the
‘statistical’ part of the mode! from the ‘non-statistical part’ (see Feuerverger
and Fraser, 1980). However, this approach makes 1t difficuit to relate the
singular case to the a/most singular case, which is one of the objectives of
studying the singular model in the first place.
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We argue that the singular model does not need a special treatment. It is
possible to derive virtually every result for linear models using linear zero
functions and simple vector space arguments that hold for non-singular as well
as singular V. In this article, we make use of this approach to derive the update
equations in the general linear model. These results are not meant as compu-
tational formulae. Rather, we emphasize statistical interpretation, making the
common underlying principles transparent and avoiding competing or con-
tradictory intuitions. As it turns out, this clearer understanding of what is
happening also leads, at the same time, to simplification of some of the messy
algebra of the earlier formulae.

We now introduce a set of notations that will be used throughout the article.
The mean and dispersion of a random vector v are denoted by E(v) and D(v),
respectively, while Cov(v,u) represents its covariance with another random
vector u. The variance of a scalar random variable z is denoted by Var(z). Fora
matrix A, the notations p(4), A", 4™, €(A) and P, represent its rank, trans-
pose, a generalized inverse (g-inverse), its column space and the orthogonal
projector onto its column space, respectively. The space orthogonal to €(4) is
denoted by 4(4)". Unless mentioned ctlierwise, subscripts refer to the sample
size of a model and subscripts within parantheses correspond to the number of
parameters in a model.

Definition 1.1. The linear function Iy in the linear model (y, X, 6* V) is calied a
linear zero function (LZF) if E(I'y) = 0 for ali values of 8.

Algebraically, I'y is a LZF if and only if I € ¢(X)". Thus, every LZF is a
linear function of (I — Py)y. The importance of the LZFs stems from the
following well-known result.

Theorem 1.2 (Rao, 1968}. Iit the linear model (y, XB, 6° V) with possibly singular
V, a linear function l'y is the BLUE of its expectation if and only if it is
uncorrelated with ever; ' ZF.

This result is analogous in spirit 1o Basu’s Theorem (Basu, 1959). In the
special case of multivariate normal errors, 1t is clear that tixe LZFs are ancillary
statistics. Therefore it is not surprising that the maximum likelihood estimator
of un estimable linear function of B. which coincides with its BLUE in this set-
up. should be independent of (uncorrelated with) the LZFs.

Residuals and recursive residuals in the linear model are among the well—
known examples of LZFs. Indeed, every LZF can be written as a linear
combination of the residuals.

Theorem 1.2 can be used te derive 21 sxpression for the BLUE of X8, by
making use of the lemma stated below.
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Lemma 1.3. Let z = (& : v') be a random vector having first and second moments
such that E(v) € €(D(v)). Then the linear compound u + By is uncorrelated with
v if and only if By = —Cov(u,v)[D(v)] v

Proof. It is easy to see that the above choice makes # + Bv uncorrelated with v.
In order to prove the necessity of the condition, one only needs to set the
covariance equal to zero, postmultiply the resulting equation by [D(v)] v and
simplify. [

In the above, Bv does not depend on the choice of the g-inverse of D(v).
Choosing u = y and v = (I — Pyx)y, the BLUE of X§ is obtained as

Fp=[I-V(I-P){(I-P)V{I - Py)} (I-Py)ly. (1)

The expression on the right-hand side simplifies to the usual ones when V is the
identity matrix or when it is positive definite. Bhimasankaram and Sengupta
(1996) show that the same Eq. (1) also leads to the other expressions obtained
from the_two methods described by Rao (1973), pp. 298-302). We define
p=X X} B. 1t follows that § satisfies the ‘normal equations’ and that p’ﬁ is
the BLUE of p'8 whenever the latter is estimable. In particular, X = X} B.
Searle (1994) considered the special choice § = X *X| B. where X* is the Moore-
Penrose pseudo-inverse (see Rao, 1973, p. 26).

From Eq. (1), the dispersion of X turns out to be
D(XP) = [V = V(I - Py){(I - PY)V(I - Py)} (I - Py)V). ()

In view of Lemma 1.3, (2) can be viewed as the residual variability in y, which is
of course an unbiased estimator of X§, after removing the variability duc to the
LZFs. Again in the case of normal errors, it is equal to the conditional variance
D( (I — Px)y) Whenever AP is esnmable D(AB) = AX D(X pX A All

The LZFs provide an important interpretation of the R}, the residual sum of
squares, whether or not ¥ is singular. Consider a ‘basis’ set of uncorrelated
LZFs each with variance o2, where the basis set is such that it leaves out no
nontrivial LZF that is uncorrelated with the LZFs in the chosen set. Then it
can be shown that R} is the sum of squares of the LZFs of any such set. The
error degrees of freedom associated with R3 is the number of LZFs in the basis
set, which happens to be p(X: V) — p(X). A linear restriction of the form Af =
& (with AB estimable) introduces additional LZFs in the form of 4 ﬂ &, where
AB is the unrestricted BLUE of 4. Therefore the residual sum of squares
under the linear restriction is given by

Ry = R+ (AB — &) [D(AB)]" (4B - &). (3)

__Using the above facts, we derive in Section 2 a set of updat= formulae for
X} B. D(X B), R, R? and the associated degrees of freedom, when a set of
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observations is either added or deleted. The corresponding results for the ad-
dition or deletion of a set of regressors are given in Section 3. In Section 4 we
demonstrate the usefulness of the results of Section 2 in designing a new ob-
servation in an existing model. We briefly mention other applications of the
results of this paper, in Section 3.

2. Addition and deletion of observations

Let us derote the linear model with # observations by (y,, X..8,6°¥,). Note
that for m < n, each LZF in the sub-model (y,,, X,,. 6>V ,,) is also a LZF in the
larger model (y,, X,B.6*V,). The number of uncorrelated LZFs exclusive to
the larger imodel, which are all uncorrelated with the common LZFs, is
[p(Xu: Vo) — p(Xo)] = [p(Xn: Vi) — p(Xs)]. The clue to the update relation-
ships lies in the identification of these LZFs.

Let p,, X, and ¥, be paritioned as follows:

=) =) =G W)

i X Vie Vi

where [ =n—m. If p(X,) — p(X,,) = 1, there are effectively / additional re-
gressors in the larger model. (These do not affect the fit of y,, but help fit y,
exactly.) The parameters corresponding to these regressors have no relevance
in the smaller model. It is easy to see that there is no new LZF exclusive to the
augmented model. Consequently there need be no revision in the BLUE of any
function that is estimable under the initial model. The dispersion of such a
BLUE, as well as R; and R;,, would also remain unchanged, assuming that the
linear function Af in the constraint is estimable under the initial model.

If the number of regressors exclusive to the larger model
(I, = p(X,) — p(X,)) is strictly between 0 and /, we can identify /; rows of X
which together with those of X,, would have the rank p(X,). As before, these
rows have no role to play in the updating of the BLUE of any function esti-
mable under both the models. The remaining rows of X, are in the row space of
X,. Therefore we have only to consider the updating problem in the case
6(X;) C6(X),).

At this point we can also dispose off the pathological case
p(X,: V) = p(Xn: Va), which occurs when the error part in the new obser-
vations (y, — X,f) is a linear function of its counterpart from the old obser-
vations, (y,, — X8). for all § with probability 1. This case is not interesting,
since there is no change in any statistic whatsoever.

Assuming that €(X}) C (X)) and L. = p(X,,: V,,) — p(X,.: Vi) > 0, there
is a set « “rew LZFs in the augmented model which is identified through the
following lemma.
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Leruna 2.1. A vector of LZFs of the model (y,, X,B,6°V,) that is uncorrelated
with all the existing LZFs of (y,,, Xnf, 0>V ) is given by

Wi =3, = XiBn— Vi Vo — Xub)- (4)

Further, all LZFs of the larger model are linear combinations of w; and the LZFs
of the smaller model.

Proof. It is easy to see that y, — X ,ii,,, is indeed a LZF in the augmented model.
The expression for w; is obtained by making it uncorrelated with (7, — Py )y,
as per Lemma 1.3, and simplifying it.

Let /(I — Py )y, be a LZF in the larger model that is uncorrelated with w,
and the LZFs of the smaller model. Consequently it is uncorrelated with (y; —
X:P,,) and (I — Py, )y,,- Therefore

(I — Px )(Vi: Vi) = Py, )u =0,
Vim: VoI = Py yr — XX, (Vin: Viu)(I — Py, )u = 0.

The first condition is equivalent to (¥,: V,;)(I — Px )u € €(X,). It follows
that

Vm Vm!

(5 )avmi vara=piyu= (7

X, )(1 — Py, )u,

that is, V(I — Py, )u € 4(X,). This implies that & (I — Py,)y, is a trivial LZF
with zero variance. [J

Remark 2.2. Since all the LZFs of the larger model that are uncorrelated with
those of the smaller model, are linear functions of w;, the rank of D(w,) must be /..

Remark 2.3. There is no unique choice of the LZF with the properties stated in
Lemma 2.1. Any linear function of w, that has the same rank of the dispersion
matrix would suffice. However, the expression in Eq. (4) is invariant under the
choice of the g-inverse of ¥V, (see Eq. (1)).

Remark 2.4. Suppose FF' is a rank-factorization of D(w;), and F" is a left-
inverse of F. Then the LZF, F"w, can be defined as a recursive group residual
for the observation vector y,. Several special cases of this can be found in the
literature. Brown et al. (1975) and McGilchrist and Sandland {1979) considered
homoscedastic ¥ and positive definite ¥, respectively, with / = 1. Haslett (1985)
assumed ¥ to be positive definite and / > 1. In the general case, the recursive
group residual is not uniquely defined whenever D(w;) is a singular matrix.
However, w, is uniquely defined given the order of inclusion of the observations.
The components of w, also have one-to-one correspondence with those of y,.
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Remark 2.5, Let 4,(f) =y, — Xif — ViuV,, (¥, — X0B), the part of the model
error of y, that is uncorrelated with the model error of y,,. The LZF w, can be
seen as d,(B,,), the prediction of d,(B) based on the first m observations. The
implications of this identification will be clear later in this section.

We now provide the update equations for data augmentation through the
following theorem.

Theorem 2.6. Under the set-up mentioned above, let 4(X}) C 4(X,) and let
i.=p(X,: V,)— p(Xn: V) > 0. Suppose further that A is estimable with D x
(4B,) not identically zero. Then
(1) Xmﬁ Xmﬁm COV(Xmﬂm7 W,)[D(W,)] wi.
(ii) D(XB,) = D(XnB,) — CoV(X By w1)[D(w1)]” Cov(X B, w1)"
(i) R} =R} + a*w'[ (w))] " wi. ) A
(iv) R~ . R;, + &*w), [D(w.)]” Wi, where w;. = w; — Cov(w,, AB,,)[D(4B,.)]”
(Aﬁm - g)
(v) The degrees of frecdom of R} and R?, increase by 1. and p(D(w,.)), respec-
tively.

Proof. Note that X,.f, is an unbiased estimator of X,f that is already
uncorrelated with the LZFs of the model of sample size m. Part (1) is proved by
making it uncorrelated with the new LZFs w,; through Lemma 1.3.

Part (ii) can be derived by noting that X, §, must be uncorrelated with the
increment term in part (i).

Part (iii) follows from the characterization of R3 through a basis set of linear
zero functions (see Section 1).

Substitution of these three update formulae into (3) leads to (iv) after some
algebraic manipulation. This result can also be proved directly by showing that
w;. is the recursive group residual of y, modified for the restricted model.

Part (v) is a consequence of the fact that the additional error degrees of
freedom coincide with the number of nontrivial LZF's of the augmented model
that are uncorrelated with the old ones as well as among themselves. []

Remark 2.7. McGilchrist and Sandland (1979) and Haslett {1985) had used the
recursive residual for their update formula for R in the case of positive definite
V.. The present derivation has a more intuitive appeal and it leads to simple
expressions for the other updates as well.

Remark 2.8. Parts (i)—(iii) with / = 1, generalize the results of Bhimasankaram
and Jammalamadaka (1994) to the case of multiple observations and possibly
singular dispersion matrix. The expression in part (iv) is simpler to understand
than theirs.
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Remark 2.9. The variance and covariances used in the above expressions can
be evaluated in a number of ways. Bhimasankaram et al. (1995) used the
Inverse Partition Matrix method of Rao (1973), p. 298 for the updates in the
singular dispersion case for / = 1. Theorem 2.6 helps interpret their algebraic
formulae.

Remark 2.10. We reiterate that the results of Theorem 2.6 are useful mainly for
the purposes of statistical interpretation and understanding, and should not be
treated as a set of computational formulae. There is a vast literature on
numerically stable methods of recursive estimation in the linear model, see for
instance Gragg et al. (1979), Kourouklis and Paige (1981) and Farebrother
(1988).

The vector of additional LZFs () serves as the key to the updates for data
augmentation. However, it is not very useful to obtain the update formulae for
data deletion, since it is not readily computable from the current model
(3, XuB,. 57 V,). The following lemma provides a transformation of w; that is
useful in the present context. In the following, 4,(-) is as defined in Remark 2.5.

Lemma 2.11. T%e conditions of Lemma 2.1 are satisfied by v, = d,(B,).

Proof. It is clear that

1= wi-+di(B,) — di(B,) = wi+ (Vi V,: D(X.B, ~ X.B,)
=w + (= ViV, HCoV(X,B,,, w))[D(w)] w,.
by making use of part (1) of Theorem 2.6. Being a linear function of w;, r, must
be a vector of LZFs of the larger model that is uncorrelated with those of the
smaller model. It remains to be shown that there is no other LZF of the larger
model having this property. Let us suppose, for contradiction, that e is such a

LZF. By virtue of Lemuna 2.1, e must be of the form g'w, for some vector g. It
follows from the above decomposition of #; that

COV(I’;, e) = COV(Whe}‘ + (— Vim V,; : I)COV(X,,};'},,,, ?'.x’;g)
= Cov(d/(B).&'d/(B.))
/ ' .
= Did/(B))g - Tov (4(B). & (di(B) - di(B,)))
= D(d,(B))g.
The last simplification is possible because &;(f) is uncorrelated with p,. If e is

uncorrelated with »;, g'd,(f) must be identically zero. Therefore e = g'd,(§)
must be a trivial LZF which is zero with probability 1. [J
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The advantage of r; over w, is that the former is expressed in terms of the
estimator in the current model. In the light of Remark 2.3, Lemma 2.11 implies
that

XmBm = XmBn + COV(X",BM,I';')[D("[)]_I'[. (5)

The covariance on the right hand side remains to be expressed in terms of the
known quantities in the current model. Indeed, from Eq. (5) it follows that

COV(XnBys di(B)) = Cov(X B, di(B))COV(X B, 1) [D(r)]”Cov(r,.dy B)).

Since d,(B) is uncorrelated with y, while X,,8,, is a linear function of it, the left
hand side is zero. On the other hand, Cov(r;,d,($)) — D(r;} is the covariance of
r; with a BLUE which must be zero. Therefore the second term in the right
hand side reduces to Cov(X,B,.r;), which can be replaced by
—Cov(X,.B,.4/(B)) in Eq. (5). This leads to the update relationships given
below.

Theorem 2.12. Let €(X,) C6(X ). L. = p(X,: ¥,) — (X2 V,,) > 0 and AB
be estimable in either model with D(AB,) not identically zero. Then the updated
statistics for the smaller model are as follows:
() X = Xub, — COV(Xb,.di(B)D(r)] . ,
(ii) D(XnB,) = D(XnB,) + Cov(X,B,.d:(B))[D(r))] Cov(X,.B,.d:/())"
(iti) R =R} — o*¥)[D(r)] 1. ) A
(iv) RY, = R:, — 6%, [D(r,.)] ty.. where r, = v, + Cov(di(B), A,)[D(AB,)]
(Aﬁn - ‘:)
(v) The degrees of freedom of Ry and R;, decrease by 1, and p(D(r).)). respec-
tively.

Proof. Parts (i)-(iii) and (v) follow immediately from the above discussion and
Theorem 2.6. Part (iv) is proved by substituting the update formulae of parts (i)
and (ii) into Eq. (3) and simplifying. [

3. Addition and deletion of regressors

With the number of observations fixed, one is often confronted with the task
of comparing two models where the regressors in one is a subset of the re-
gressors in the other. In this section we deal with the connection between the
models (v, X By, 0’ V) and (v, Xy, 02V )k > h), where the subscript
within parentheses represents the number of regressors in the model, and

ﬁ.
Xy = (Xo: Xi), 3«;)’—-‘(;: :
J
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For the consistency of the smaller model with the data, (I — P,-)y must belong
to €((I — Py)X ). We assume that this condition holds. It follows that the
data is consistent with the larger mcdel as well.

Notice that every LZF in the larger model is-¢ LZF in the smaller model.
The number of LZFs exclusive to the smaller model is j. = p(Xy: ¥V)-
p(X(;,}: V) - p(X(k)) + ,O(X(},)). It is clear that OSJ* < p(X(J))

Suppose x is a regressor exclusive to the larger model which is not in
C(Xu: V). Thcn I = (I - Py, .y)xy must be a nontrivial vector. Consis-
tency of the smaller model dictates that I'y = 0 with probability 1, while that of
the larger model requires /'y = (I'x)f, where f is the coefficient of x in the larger
model. These two conditions can not hold simultaneously unless f is identically
zero, that is, x is useless as a regressor. We now assume that there is no such
regressor in the larger model, that is, p(Xy): V) = p(X(): V). Consequently
J. = p(Xw) — p(Xim)- If j. = 0, the regressors exclusive to the larger model are
redundant in the presence of the other regressors, so that the statistics under the
two models are identical. The case of real interest is when 0 < j, < p(X|;)).

Consider first the problem of estimability. Notice that the only functions of
B, that are estimable under the larger model are linear combinations of
(I — Py )X B- On the other hand, the estimable functions in the smaller
model are linear combinations of X, 8,,,. Therefore the estimable functions of
B, in the larger model are estimable under the smaller model, but the converse
is not true in general. The rank of (7 — Px )X is j.. Therefore a necessary
and sufficient condition for all the estimable functions in the smaller model to
be estimable under the larger model is that j. = p(X;). In such a case X, 3,
and X B, are estimable under the larger model.

Even if 0 < j, < p(X;)), there are some functions of f,, that are estimable
under both the models. We now proceed to obtain the update of the BLUE of
such a function when the last j regressors are dropped from the larger model.
In order to distinguish between the least squares estimators under the two
models, we use a ‘tilde’ for the estimators under the smaller model and the
usual ‘hat’ for those under the larger model.

The condition j. = p(X;) — p(X ) implies that there are j, uncorrelated
LZFs (subject to an ambiguity in scale) in the smaller mode! that are uncor-
related with all the LZFs in the larger model. A LZF with this property must
have been a BLUE in the larger model. The following lemma provides an
adequate set of such Laear functions.

Lemma 3.1. The linear function v = (I — Py, )X ; 3(;‘)' is a vector of BLUEs in
the model (, X 1)1, 0° V) and a vector of LZFs in the model (y, X B, a*V).
Further, p(D(v)) = j..

Proof. The parametric function (I — Py, )X B, is estimable in the larger
model. The BLUE of this function is v. It is easy to see that E(v) = 0 under the
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smaller model. Since the column space of D(X (k)ﬁm) is €(Xu)NEV) (see
Bhimasankaram and Sengupta, 1996), that of D(v) must be 6((f — Py, ) X)) N

¢(( — Py, )V) or simply €((I — Py, )X ). Consequently p(D(v)) = p((I -
Py, )X )=j. O . o

Once a vector of LZFs with the desired property is identified, the theorem
given below follows along the lines of Theorem 2.6.

Theorem 3.2. Let AP, be estimable under the larger model. Then
(i) 4B = Aﬁh) COV(Aﬁh)v V)[D(v)]"v. where v = (I - Pk’u,;)Xu)ﬁ{,

(i) D(Aﬁ(m)— D(4 ﬁ ) — COV(Aﬁ(k) v)[D(v)]” Cov( Aﬁh}’ )-
(iii) R~ —Rﬂk +0 v[D( )| v

(iv) Rf,m = R;,m + 6. [D(v.)] V., where v, =v —Cov(v,Ap ,,))[D(Aﬁ )l
(ABy) —

(v) The increase in the degrees of freedom of R3 and R;, with the deletion of the
regressors are given by j. and p(D(v.)), res'pectwel}

Remark 3.3. The vector v, is the BLUE of (I — Py, )X; B, in the larger model
under the restriction Af,, = &.

Remark 3.4. Depending on the special case at hand, one may use a different
form of v that would have the requisite properties. For instance, if j, = p(X;)),
it can be chosen as X;B;. I j. = j, v can be chosen as .

Remark 3.5. If f§;, is entirely estimable under the original model, we have
B(k) = B(h) - COV(ﬁ(msBU))[D(ﬂ(j)]_ﬁU)’
D(ﬁ(h)) = D(ﬁ(ix)) - COV(If(;,,,ﬂm)[D(ﬁm]_COV(ﬁm;,ﬁ(,-))'
These updates only involve Bm and its dispersion.
In the case of adding a few regressors, the role of v has to be assumed by a

vector computable in terms of the statistics of the smaliler model. Such a vector
is presented in the following lemma.

Lemma 3.6. A vector of LZFs in the smaller model that is also a BLUE in the
larger model is

t = X, (I - Py, {(I — Py, )V(I - Py, )} (I - Py, )y. (6)
Further, p(D(8)) = j..
Proof. It is clear that ¢ is 2 LZF in the smaller model. Let /'v be a LZF in the

augmented model. Then X[,/ = 0 and X,/ = 0. Writing / as ({ — Py, )s, we
have by virtue of Eq. (1)
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Cov(t.l'y) = ¢* X, (I - Py, }{(I — Py, )V(I - Py, )}
. (I - PX(;,)) V(I - P){W)S
= G'ZX:.’.)(I - PX””)S = GZXE,-)I =0

In the above we have used the fact that (I — Py, )X ;) is a subset of 4((I —-
Py, V) (identical to ¢((I — Py, )V (I — Py, ))), which follows from the as-
sumption X;, € 4(Xy: V). Being uncorrelated with ali LZFs in the larger
model, # must be BLUE there. The rank condition follows from the fact that
“(D(y — X)) =6(V(I — Py, )) (see Bhimasankaram and Sengupta,

1996). which implies %(D(#)) = 6(X|,(I - Py,)). [

Remark 3.7. From the statements of Lemmas 3.1 and 3.6 it is evident that the
random vectors v and ¢ must be related. In fact they are functions of one
another:

v = (J':(I - R\]_,,, )XU‘)[D(t)]‘t.
t= Xfﬂ(l - Py, (I - Py YW(I - Py )} v

Remark 3.8. Recall that (X ;) is assumed to be a subset of €(X: V).
If X, =X B+ VC. then ¢ is the same as C'y,,, where y is the residual
of y from the smailer model. (Specifically, y. =Ry where R=
Vil - Py ){(I—Py, VI - Py,)} (I -Py,) as seen from Eq. (1).) It can
also be interpreted as X[, ¥y, where X; = RX;, the ‘residual’ of X
when regressed (one column at a time) on X;,,. Similarly, D(¢) is the same as
GEX:_i)rc\ V- X(_,')m.

Remark 3.9. The expectations of v and ¢ are linear functions of f ;. These linear
parametric functions are estimable in the linear model (y.. X, , o’ W), where
W = RV. Moreover, v and ¢ are BLUEs of the corresponding parametric
functions in this “residual’ modei, whicii is obtaincd from the original {larger)
model by premultiplying both the systematic and error parts by R. The
algebraic calculations are simplitied by the fact that the regressors here reside in
the column space of the dispersion matrix.

Remark 3.10. When j =1 and V is positive definite, the BLUE of the new
parameter in the augmented model is proportional to the ‘lost” LZF. In this
special case the interpretation of the BLUE as the simple regression coefficient
in a ‘residual’ model is quite well-known. The model dispersion maiiix W in
the residu.al model is sometimes replaced by ¢°¥. which makes no algebraic
difference.

We now have the update relations for the larger model as follows.
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Theorem 3.11. If AB,,, is estimable under the larger model, then
(i) Aﬁ(,, -—Aﬁ,ﬂ + Cov(AX ¥, )[D(8)]"t. where t is as in Eq. (6).
(i) D(AB n) = (Aﬂ i) +Cov(AX w [D(8)] Cov(AX ,y, t).
(i) B}, = B3, — ¢ [D(1)] . A A
(iv) R = Rf‘h - o't [D(¢.)]"t., where t.=1t—-Cov(t,Ap,,)D(AB,;)]
(AB 4y — 5.
(v) The increase in the degrees of freedom of R and R}, with the deletion of the
regressors are given by j. and p(D(t.)), respectively.

Proof. Since ¢ contains j, uncorrelated LZFs of the current model that turn
into BLUEs in the larger model,

ABM) = ABM) - COV(AB(II)! H[D()] " ¢.
Write AB(,,, as
Aﬁ(,,, = AX(_M[XU-:)BU:)] =AXy +AX - X(k)B<k)]-

The second term is a LZF in the larger model and hence is uncorrelated with ¢.
Therefore Cov(AB{M,t) = Cov(4X y.¢). Parts (i), (ii) and (iii) follow imme-
diately. Part (iv) is proved by substituting the results of these three parts into
Eq. (3). Part (v) is easy to prove. []

Remark 3.12. The vector AX, y depends on the choice of the generalized
inverse of X4, but its covariance with ¢ does not.

Remark 3.13. The vector ¢, used in parts (iv) and {v) may be expressed in terms
of the statistics of the original model by using parts (i) and (ii). The expression
simplifies to

= D(t) | D(t) + Cov(t. AX ;) [D(Ay,)] Cov(t. AXG,y |
- [t + Covlr. AX ) (D(AB,, )] (4B — 9)].

Remark 3.14. There is a striking symmetry between the updates equations of
Theorems 3.2 and 3.11. Although it makes intuitive sense, this symmetry was
absent from the results obtained by other researchers.

4. Application: Design of a new observation

Suppose a set of m observations has already been given, and one is interested
in a particular estimable function p'$. Consider the problem of minimizing the
variance of the BLUE of p'$ by choosing an additional design point optimally.
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in the absence of any constraint, the variance can be reduced to zero. A rea-
sonable constraint may be to set an upper bound on the variance of the pre-
dicted value of the additional observation, calculated on the basis of the first m
observations. The simple case of homoscedastic model errors admits an intu-
itively meaningful solution to this problem: the new row of the design matrix
should be proportional to p. We now derive a solution in the general case of
heteroscedastic and possibly singular error dispersion matrix, by making use of
the results of Section 2.

Note that in the present context / = 1. In order to simplify the notations, we
denote X, X1, ¥, ¥1» Viro Vit Vi, wrand d (- ) by X,x,p,y, ¥V,v,v,wand d(-),
respectively. The task is to minimize the variance of p'B,,,, with respect to x,
subject to the constraint Var(x’f, ) < o? where « is a known positive number.

It is clear that the new design point x carries no information about p/g if it is
not in €(X’). Therefore x has to be of the form X'u. In such a case, choosing x
is equivalent to choosing &. It was shown in Section 2 that whenever x € €(X’),
there must be an additional LZF with nonzero variance, unless the new ob-
servation error is perfectly correlated with the first m errors of the model. The
latter case is not interesting, since the Var(x'B,,,) happens to be the same as
Var(x¥'B,). In the following discussion we assume that x=X'w and
Var(w) > 0.

In view of Part (ii) of Theorem 2.6, minimizing Var(p'B,, +1) is equivalent to
maximizing {Cov(p',,, w)]*/Var(w). Writing w as d(B) + [4(B,,) — d(B)], a sum
of uncorrelated parts (see Remark 2.5), it follows that

Cov(p'B,, ) = Cov(p'B,.,d(B,) - d(B),
Var(w) = Var(d(8)) + Var(d(B,) — d(B)).
Let 6 = Var(d(f)) and the vectors a and b satisfy p = X'a and v = Vb, re-
spectively. Then d(8,) ~ d(B) = (b — u) X(f, — B). Denoting D(X,.8,) by SS,
we have
Cov(p'B,.,w) = —a'S8'(u - b),
Var(w) = 0 + (u — b)'SS'(u — b),
Var(x'f,) = W'SS'«.

Thus the optimization problem reduces to

[@S'S(u - b)) Q!
m§x0+(u 5SS u—5) st. WSSu<a (7

A further simplification occurs if we let #, = Py, S'u, b, = Ps,8'b, u» = S'u —
#, and b, = 8’6 — b,. The solution to Eq. (7) can be obtained from the solution
to the following problem.
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() — By) (s — b))
e 0+ (= B) (0~ ;) (8)

st.  u € 6(S'a), wy € (I - Ps,)S"), Wym + sty < .

Notice that the objective function of (8) is equivalent to, but not identical with

that ofs (7).
Sengupta (1995) arrived at a similar formulation of the problem using the
Inverse Partition Matrix method.

Theorem 4.1 (Sengupta, 1995). The solution to the optimization problem (8) is as
Sfollows.
@ If b=5b=0, the maximum is attained if and only if
¥ = i(a/a’SS’a)” ’S'a and u> = 0.
@) If by #0 and b, =0, the maximum is attained if and only if
#, = —(o/b,58'8;)"*b, and u, = 0.
(iii) If by = 0 and b, # 0, the maximum is attained if and only if u, = ¢\ b,,
where

Biby + a4+ 0 ( daBb, ) v
a=—"Fgr—|1-|1-— = ,
szbz (bzbz + o+ 9)
and uy = £[(oa — c2byb,)/ad SS'a)'*S'a.
(iv) If b, and b, are both non-zero, then the maximum is attained if and only %f
1y = ¢;by where ¢, maximizes [(o — c3b35,)'"* + (8,8,)' 1210 + Byba(cs — 1)7]
over the range 0< c2 € (cx/b'zbz)m, and u; = +[(o0 ~ c%b’zbz)/b',b;}l/zbz.

Proof. The proofs of Parts (i) and (ii) are straightforward. The other two parts
are proved by holding », fixed, maximizing the numerator of Eq. (8) subject to
the constraint #ju; < o — #,u,, and maximizing the resulting expression with
respect to u,. For details, we refer the reader to Sengupta (1995). O

Remark 4.2. The solution of Part (ii) coincides with one of the two solutions of
Part (1).

Remark 4.3. Suppose ry is the correlation between y and p'B., and r, is the
multiple correlation of y with X§,,. Then b}8; = vr? and §56; = v(+3 — #*). Thus
the special cases of Theorem 4.1 have direct statistical interpretation.

Theorem 4.1. leads to a choice of S'u in each of the four special cases. The
Jollowing lemma allows one to translate this into a choice of x.

Lemma 4.4. The condition 8'u = S't is equivalent to Xu = Xt + X(I — Py)t, for
some vector t.
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Proof. It is clear that S'u = S't if and only if # is of the form u = ¢ + ¢, where
S's = 0. It follows that #, is orthogonal to ¥(D(X$,,)) which is the same as
G(X)NE(V). Thus ¢, must be of the fonn (I - Px)t:+ (I — Py)ty. The
conclusion follows. [

We are now ready for an explicit solution to the design problem.

Theorem 4.5. The optimum choice of x that minimizes Var(p'B,.,) subject to
Var(x'g,) < « is given as follows.

i(oc/v,,)”"pﬂ— X ifrp=0,

—(oz/vt‘z)l"zX’ Vv+xo ifri=r>0,
t

wlo

=9 (2 - C%W‘g)/l’p]”z +aX'Vv+xy ifn>0=n,

2.0 2y 12 |
~o5t(rs-ry) 2
_[CZ_;_{L..S;'._";__L} ](v/vp)” "p

| XV rdx if ri > >0,

where v, = Var(p'B, )/ 0>, xo is an arbitrary vector in €(X(I - Py)), r, and r» are
as in Remark 4.3, and

o= (120 |1 (-t
A2 20 (2+ 0+ vrd)’

[ o3 = Y2 + o]
¢ = arg max

('E[O.{z/r(r% ~r})}";3§ 0+ U(l’% - P‘]‘?')(C - 1)2

]

Proof. The results follow from Theorem 4.1 and Lemma 4.4 after sore
algebra.

Remark 4.6. The ambiguity in the choice of ¥~ can be removed by replacing
"V~v by X'P, V" v. The difference between the two terms is absorbed by the
arbitrary vector x,.

Remark 4.7. The intuitive solution of choosing x in the direction of p is optimal
not only in the homoscedastic case, but whenever s = —ry > 0. If rn =r > 0,
the opposite direction is optimal. Both of these cases correspond to the
situation when the multiple correlation of y with X ﬂ,,, is the saine (in
magnitude) as its correlation with p/ B, alone. Both the solutions are optimal
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when »; = 0. The assumption of uncorrelated error variances is a special case
when r ) = 0.

5. Other applications

Since the results obtained in Sections 2 and 3 are applicable to the case of a
non-diagonal and singular dispersion matrix of the model errors, these should
be useful for interpreting certain limiting cases. For instance, one can observe
the effects of a transition from near-singularity to perfect singularity of ¥ and
from weak correlation to lack of correlation of the observations.

The group recursive residuals defined in Remark 2.4 have properties anal-
ogous to those of the recursive residuals that have been traditionally used in the
homoscedastic set-up. An extension of the weak convergence results of Sen
(1982) to the general case appears to be achievable and will be considered
elsewhere.

The updates for a set of dropped observations may be used to interpret
deletion diagnostics for linear regression, and to generalize them to the case of
a general disperson matrix. _

The updates for a set of dropped parameters help quantify the rewards and
penalties of having fewer parameters, which is important for achieving parsi-
mony. The updates for additional parameters play a similar role, and work in
the reverse direction.
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