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Abstract—A complete Optical Character Recognition (OCR) system for printed Bangla, the fourth most
popular script in the world, is presented. This is the first OCR system among all script forms used in the
Indian sub-continent. The problem is difficult because (i) there are about 300 basic, modified and compound
character shapes in the script, (ii) the characters in a word are topologically connected and (iii) Bangla is an
inflectional language. In our system the document image captured by Flat-bed scanner is subject to skew
correction, text graphics separation, line segmentation, zone detection, word and character segmentation
using some conventional and some newly developed techniques. From zonal information and shape
characteristics, the basic, modified and compound characters are separated for the convenience of classifica-
tion. The basic and modified characters which are about 75 in number and which occupy about 96% of the
text corpus, are recognized by a structural-feature-based tree classifier. The compound characters are
recognized by a tree classifier followed by template-matching approach. The feature detection is simple and
robust where preprocessing like thinning and pruning are avoided. The character unigram statistics is used
to make the tree classifier efficient. Several heuristics are also used to speed up the template matching
approach. A dictionary-based error-correction scheme has been used where separate dictionaries are
compiled for root word and suffixes that contain morpho-syntactic informations as well. For single font
clear documents 95.50% word level (which is equivalent to 99.10% character level) recognition accuracy
has been obtained. Extension of the work to Devnagari, the third most popular script in the world, is also

discussed. © 1998 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

The object of optical character recognition (OCR) is
automatic reading of optically sensed document text
materials to translate human-readable characters to
machine-readable codes. Research in OCR is popular
for its various application potentials in banks, post-
offices and defense organizations. Other applications
involve reading aid for the blind, library automation,
language processing and multi-media design.

The origin of character recognition can be found in
1870 when Carey invented the retina scanner, an
image-transmission system using a mosaic of photo-
cells.™ Later in 1890 Nipkow invented the sequential
scanner which was a major breakthrough both for
modern television and reading machines. Character
recognition as an aid to the visually handicapped was
at first attempted by the Russian scientist Tyurin in
1900.

The OCR technology took a major turn in the
middle of 1950s with the development of digital com-
puter and improved scanning devices. For the first
time OCR was realized as a data processing approach,
with particular applications to the business world.
From that perspective, David Shepard, founder of the
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Intelligent Machine Research Co. can be considered
as a pioneer of the development of commercial OCR
equipment. Currently, PC-based systems are commer-
cially available to read printed documents of single
font with very high accuracy and documents of mul-
tiple fonts with reasonable accuracy. The book edited
by Wang'® contains a list of eight prominent vendors
of commercial systems.

However, most of the available systems work on
European scripts which are based on Roman alpha-
bet.®~7 Research reports on oriental language scripts
are few, except for Korean, Chinese and Japanese
scripts.®

We are concerned here with the recognition of
Bangla, the second most popular script and language
in the Indian sub-continent. About 200 million people
of Eastern India and Bangladesh use this language,
making it the fourth most popular in the world. A few
reports are available on the recognition of isolate
Indian script character® " but none deal with
a complete OCR for printed documents. From that
standpoint this paper is a pioneering work among all
Indian scripts. Moreover, as described in Section 9,
most of the methods developed here can be directly
applied for the recognition of Devnagari script (in
which Hindi, the third most popular language in the
world, is written). This paper will be useful for the
computer recognition of several other Indian script
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forms since these scripts, having the same ancient
origin (see Section 2.1), show some structural similar-
ities.

In Bangla, the number of characters is large and
two or more characters combine to form new charac-
ter shapes called compound or clustered characters. As
a result, the total number of characters to be recog-
nized is about 300. Also, for the inflectional nature of
this language, it is difficult to design a simple OCR
error-correction module. Thus, Bangla OCR develop-
ment is more difficult than that of any European
language script.

Feature matching and template matching are two
basic approaches to character recognition. Our method
is predominantly a feature-based one, although
a sophisticated template matching approach is used at
some stage to detect some compound characters.

The organization of this paper is as follows. In
Section 2 properties of Bangla script and language as
well as some statistical analysis of Bangla text corpus
are presented. Text digitization and skew-correction
techniques are described in Section 3. Section 4 deals
with line, word and character segmentation. Initial
classification of characters in three groups and feature
selection and detection are elaborated in Sections
5 and 6, respectively. Section 7 describes the character
recognition procedure. The error detection and cor-
rection method is presented in Section 8. Lastly, the
conclusion and scope of further work are described in
Section 9.

2. PROPERTIES OF BANGLA SCRIPT
AND WORD MORPHOLOGY

Since Bangla is an oriental script form, we describe
some of its important properties for the benefit of
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wider readership. In this perspective some statistical
analyses are also presented here.

2.1. Properties of Bangla script

e The Bangla script is derived from the ancient
Brahmi script through various transformations.
Other Indian scripts also have the same origin,
making many of them similar in shape.

e There are 11 vowel and 39 consonant characters in
modern Bangla alphabet. They are called basic
characters. The basic characters and ASCII codes
used to represent them are shown in Fig. 1. The
concept of upper/lower case is absent in Bangla.

e From Fig. 1 it is noted that for many characters
there exit a horizontal line at the upper part. We
shall call it as head line. The head line is an impor-
tant feature to locate the script line, to segment the
characters in a word and to classify the characters
using our tree classifier. Some characters have
a signature extended above the head line (e.g.
% % %), which is also useful for character classifi-
cation.

e The vowel A(®) following a consonant character is
never printed in a word. Thus, A(®) can occur only
at the beginning of the word.

e A vowel (other than A(W™)) following a consonant
takes a modified shape, depending on the position
of the vowel: to the left, right (or both) or bottom of
the consonant. These are called modified characters
or allographs. See Fig. 2a for modified vowel shapes
and their attachment with a consonant character
K(<F). The modified shape of vowel O(\8) and (AU)
(®) have two parts. One sits to the left and other to
the right of a consonant (or compound) character
(e.g. see the last two columns of Fig. 2a). Thus, the

w W || % | T T | |a| Q| e
A| A |1 L|lulu |R|E |@) O
@ | | Q4| 94| g59|¢e | vl |w |
(AU)| K |KH| G |GH | N, | c |CH | J |JH
@®| % |9 | o|v |94 |®|q |w|¥
N+ | T, |TH| D [pH|N | T |TH |D |DH
S| |F | 3| |q |7 |7 |7 | A
N P PH B BH M J, R L S.
¥ | 9| % S| v |9 |« |e |38 |°
S, S H. R, R* Y T. , H, N.

Fig. 1. Bangla alphabet basic shape with codes used to describe them. (The first 11 characters are vowels
while others are consonants.)
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Fig. 2. Examples of vowel and consonant modifiers: (a) vowel modifiers, (b) exceptional cases of vowel
modifiers and (c) consonant modifiers.

Bangla script is not strictly a left to right alphabeti-
cal sequence. If the first character of the word is
a vowel then it retains its basic shape. For two
consecutive vowels in a word, the second one also
retains its basic shape. The vowels U(8), U,(®) and
R.(Q) may take different modified shapes when
attached to some consonant characters. They also
change the shape of some consonant characters to
which they are attached. For illustration see Fig. 2b.
In some situations as shown in Fig. 2c a consonant
following (preceding) a consonant is represented by
a modifier called consonant modifier.

A word may be partitioned into three zones. The
upper zone denotes the portion above the head line,
the middle zone covers the portion of basic (and
compound) characters below head line and the
lower zone is the portion where some of the modi-
fiers can reside. The imaginary line separating
middle and lower zone is called the base line. A typi-
cal zoning is shown in Fig. 3.

e More formally speaking, modifiers are those sym-

bols which do not disturb the shape of the basic
characters (in middle zone) to which they are at-
tached. If the shape is disturbed in the middle zone,
we call the resultant shape as compound character
shape. Compounding of two constants is most
abundant although three consonants can also be
compounded. There are about 250 compound char-
acters of which a sub-set of 100 characters are
shown in Fig. 4.

e The total number of basic, modified and compound

characters is about 300. Although the writing style
is from left to right, a word may not be partitioned
vertically into a left-right character sequence (e.g.
for the modifier of vowel O('8) one part sits to the
left and one to the right of the consonant). Thus,
a delayed decision is necessary during recognition
of some characters.

e As compared to Roman, the font and style vari-

ations in Bangla script are few. Popular font for



534

B. B. CHAUDHURI and U. PAL

Head line —>
Base line —

Upper zone

Middle zone
Lower zone

Fig. 3. Different zones of a Bangla text line.
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Fig. 4. A subset of 100 compound characters. Compound characters of last row are formed by combining
of three consonants.

mass printing media is Linotype. Recently, some
fonts are proposed for desk top publication (DTP)
using PC, but none of them popular. The size of
characters in most Bangla documents range be-
tween 8 and 16 points of which 12 points is most
popular. Among style variations, occasionally bold,
expanded and rarely italicized style are used.

2.2. Brief Bangla word morphology

Bangla is an inflectional language. In the text,
a Bangla word may consist of an optional prefix,
a simple or compounded stem of root words, zero or
more internal affixes and an optional termination
declension. The set of words that can be used in
Bangla text may be called surface words. The words
having no suffix may be called root words. The major
affix classes in Bangla are verbal and nominal declen-
sions called Bibhaktis, verbal and other internal af-
fixes called Pratyayas, nominal suffixes and prefixes
called anusargas and upasargas.

Because of inflectional nature, a huge number of
surface words can be formed out of a moderate num-
ber of root words. For example, in a dictionary of
50,000 root words there are about 800 single worded
verbs. There are about 125 verb suffixes (neglecting
dialectical variations) of which a particular verb can
accept about 100 suffixes to form valid surface words.

Thus, about 80,000 surface verb words can be formed.
The number of non-verb suffixes is also of similar
order. Naturally, the storage and search time could be
reduced if we could have separate root word dictionary
and suffix dictionary files. However, surface word
formation from root and suffixes, as well as surface
word parsing into root words and suffixes are both
difficult because a large number of rules and their
exceptions should be considered. For our OCR error
detection and correction, which is based on dictionary
search, we simplified the procedure to a large extent
by making the dictionary such that

(1) Ifaroot word can accept a prefix then the prefixed
root word is considered as another root word.
Conjoining of root words by Sandhi and Samasa
are also considered as new root words;

(2) If morphological deformation is caused in a root
word in order to accept a set of particular suffixes,
then the deformed root word is considered as
another root word.

Thus, we have our root words and suffixes such that
any surface word is a simple concatenation of a single
root word string followed by (optional) single suffix
string. In doing so, we can avoid a large number of
rule verification during OCR error detection and cor-
rection without appreciable increase in the size of root
word dictionary.
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2.3. Some statistical analysis of Bangla script

Statistical analysis from a corpus of Bangla text is
useful and important in designing the OCR apart
from other applications in Natural Language Pro-
cessing and Cryptography. Since no such analysis is
available in the literature, we collected two sets of
data, the first set containing 100,000 words from
popular Bangla books, newspapers and juvenile liter-
atures and the second set containing 60,000 words
from a Bangla dictionary."? Each datum is a word
converted into ASCII codes of Fig. 1. A typical
example is A/NT//RGH/A,TMU,LK. Here, /NT/ de-
notes that N and T together make a compound char-
acter. The words in the data sets were stored in
alphabetical order. For the first set of data each dis-
tinct word is stored with its frequency of occurrence.

At first, global statistics of characters were com-
puted. Table 1 shows some interesting comparisons.
In commonly used language (as in current newspaper,
literature) the vowel occurrence is larger and the com-
pound character occurrence is smaller than that in the
dictionary. In other words, we have a tendency of
using words which are easy to spell and mellowed to
listen. Also, in the present day Bangla text the com-
pound character occurrence is in the range of 4-6%
only, the rest being basic characters and modifiers.
Hence, compared to basic characters we can assign

secondary importance to compound character
recognition in our OCR design. The average word-
length as well as the entropy of characters were also
computed.

Next, global occurrence of (vowel, consonant and
compound) characters were computed. When repre-
sented as a fraction of the total number of characters
in the data set, it gives an estimate of a priori probabil-
ity of the character. In Table 2 these estimates are
ranked and shown in percentage of occurrence. It
gives an idea about which characters should be recog-
nized more accurately to obtain higher recognition
rate. Also, this statistics guides us to design a tree
classifier for character recognition, as discussed in
Section 7.

To see how dictionary look-up approach can be
effective for error correction in Bangla OCR, we
grouped the character pair that are graphemically
identical. The OCR errors lie mostly within these
pairs. Now, if a character of a word is misrecognized
as another identical character and if such a character
makes a valid word, then dictionary look-up cannot
detect the error. By a computer simulation we noted
that the total number of such cases is about 1.01%
only and hence the dictionary look-up error detection
technique can be quite effective for Bangla OCR.

Some phonetic statistics of Bangla words and
a comparative study with graphemic statistics were

Table 1. Global character statistics of 1st and 2nd set of data

Global character statistics

1st set of data 2nd set of data

1 Vowel characters 38.70% 37.10%
2 Consonant characters 61.30% 62.90%
3 Compound characters 4.10% 7.20%
4 Entropy of the alphabet 4.07(bits/char) 3.54(bits/char)
5 Average word length 5.73 (char) 4.99(char)
6 Words with suffix 69.80% 0.00%
Table 2. First 50 frequently occurring characters with their rank (from 1st data set)
Rank % of Char. Rank % of Char, Rank % of Char.
occur. code occur. code occur. code
1 12.888 A, 18 1.501 1, 35 0.406 /KS,/
2 9.068 E 19 1.284 J 36 0.405 U,
3 7.542 I 20 1.260 S. 37 0.403 M,
4 7.257 R 21 1.236 G 38 0.375 R.
5 4215 N 22 1.019 C 39 0.321 TH
6 4.037 K 23 1.007 H. 40 0.319 S,
7 3.454 B 24 0.948 BH 41 0.279 D,
8 3.340 L 25 0.850 CH 42 0.277 J/TR/
9 3.025 T 26 0.814 A 43 0.254 GH
10 3.006 U 27 0.774 KH 44 0.224 (AI)
11 2.766 S 28 0.730 R, 45 0.224 T,H
12 2.663 M 29 0.659 /PR/ 46 0.187 /BY/
13 2.549 O 30 0.559 N* 47 0.174 /RB/
14 2.327 P 31 0.559 DH 48 0.173 /KT/
15 1.996 D 32 0.542 N. 49 0.165 /NT/
16 1.875 Y 33 0.441 J, 50 0.154 /STH/
17 1.581 T, 34 0.414 PH
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made.!? This study is useful in text to speech synthesis
and talking OCR design which is also a part of our
project goals. For brevity, the results are not present-
ed here.

3. TEXT DIGITIZATION AND SKEW CORRECTION

To use an OCR system, at first the document is
scanned and a digital image is formed. Next, noise is
cleaned and the image skew, if any, is corrected. Also,
for a complex document the text regions are separated
from the non-text regions. The procedures used in our
system for these tasks are given below.

3.1. Text digitization and noise cleaning

Text digitization can be done either by a Flat-bed
scanner or a hand-held scanner. The resolution of an
optical reader varies from 100 to 900 dots per inch
(dpi). Hand-held scanner typically has a low resolu-
tion range. We preferred a Flat-bed scanner (manu-
factured by Truvel, Model number TZ-3BWC) for
digitization because the output of hand-held scanner
is affected by hand movement creating local fluctu-
ations. Also, most of the commercial OCRs use at
least a Flat-bed scanning device.

The digitized images are in gray tone and we have
used a histogram-based thresholding approach to
convert them into two-tone images. For a clear docu-
ment the histogram shows two prominent peaks cor-
responding to white and black regions. The threshold
value is chosen as the midpoint of the two histogram
peaks. The two-tone image is converted into 0-1
labels where 1 and O represent object and background,
respectively.

We have tried other thresholding techniques like
those described by Kapur, Sahoo and Wong.!'¥
Otsu,*¥ etc. and note that our simple approach gives
a result similar to or better than these methods. See
Fig. 5, for comparison.

The digitized image shows protrusions and dents in
the characters as well as isolated black pixels over the
background, which are cleaned by a logical smooth-
ing approach.

3.2. Skew detection and correction

Casual use of the scanner may lead to skew in the
document image. Skew angle is the angle that the text
lines of the document image makes with the horizon-
tal direction. Skew correction can be achieved in two
steps, namely, (a) estimation of skew angle 0, and (b)
rotation of the image by 6, in the opposite direction.
Skew correction is necessary for the success of any
OCR system.

There exist a wide variety of skew detection algo-
rithms based on projection profile,*%!” Hough
transform,*® Docstrum,*® line correlation,?? etc.
We propose a new approach based on the observation

of head line of Bangla script. If a digitized document is
skewed then the head line also satisfies the properties
of a skewed digital straight line (DSL) which, if detec-
ted, gives estimate of the skew angle. Compared to
others, this approach is accurate, robust and com-
putationally efficient. An advantage of this approach
is that the head line information can be subsequently
used for detection of word upper zone, segmentation
of characters, etc.

Our technique starts with connected component
labeling. For each labeled component its boundary
box (minimum upright rectangle containing the com-
ponent) is defined. We select only those components
whose bounding box widths are greater than the aver-
age of bounding box width of all components in the
document. Hence, small and irrelevant components
like dots, punctuation markers and characters with-
out head line, etc. are mostly filtered out. See Fig. 6b
for illustration. Let the set of such selected compo-
nents be S;.

Next, we find the upper envelope of the components
of §;. Consider a component with label G. From each
pixel of the uppermost row of its bounding box, we
perform a vertical scan and as soon as the pixel
labeled G is encountered, we convert its label to U.
The set of pixels labeled U denotes the upper envelope
of the component. See Fig. 6¢ where the upper envel-
opes of the components of Fig. 6b are shown. The
upper envelope image contains head line information,
as well as some non-linear parts due to some modified
and basic characters. To delete the non-linear parts,
we find and select a super-set of digital straight line
(SDSL) segments from the upper envelopes using the
following three properties:?") (1) In a DSL there exist
runs of pixels in at most two directions which differ by
45°, (2) for runs of two directions, the run lengths in
one of the directions is always one, (3) the run length
in the other direction can have at most two values
differing by unity (e.g. n and n + 1).

For each component only the longest SDSL is
chosen. Figure 6d shows the SDSL of the compo-
nents. Let the set of such SDSLs in the document be
R;. We can take Hough transform on R; to find an
estimate of the skew angle 0,. However, a quicker
approach is as follows. Find the longest element L of
R,. From L find the normal distance to a reference
(say, leftmost) pixel of the members of R;. The SDSLs
of a particular text line will have nearly equal normal
distances, and hence they can be clustered in terms of
their normal distances. Find the leftmost pixel A and
rightmost pixel B in each cluster and find the angle
of AB with respect to the horizontal direction. The
average of these angles over all clusters gives an
estimate of skew angle 0,. We call it as QUICK-
SKEW algorithm.

The image is then rotated by 0, in the opposite
direction so that the script lines become horizontal.
This is done by simple rotation transforms and trunc-
ation to the nearest integer value to get the new
coordinate.
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Fig. 5. Comparison of different thresholding methods: (a) original image, (b) method due to Kapur et al.,

(c) method due to Otsu and (d) our method.
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Font and size variation do not affect the proposed
skew detection and correction method since the pres-
ence of head line is independent of character shape
and size. Also, the approach is not limited to any
range of skew angle. The algorithm was tested on
several skew angles of each of the documents. The
mean and standard deviation of the estimated skew
angles obtained using Hough transform as well as
using QUICK-SKEW are presented in Table 3. Here
the statistics has been taken over 30 images for each
skew angle.

3.3. Script block detection

If a document contains multiple columns of text
lines as well as graphics and halftone pictures, it is
necessary to separate the text blocks before feeding it
to the OCR system. There exist various techniques of
text block segmentation. One approach is based on
the use of Gabor filterbanks where the response of the
filterbank in text regions is different from that in
graphics regions.?? Another approach is based on
the “docstrum” analysis of the document.”"® Fletcher
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Fig. 6. Skew correction approach: (a) an example of skewed image, (b) selected components of Fig. 6a,
(c) upper envelopes of components of Fig. 6b and (d) SDSL components of Fig. 6c.

Table 3. Mean and standard deviation (SD) of estimated
skew angles. (For each true skew angle 30 images have been

tested.)

Estimated skew angle

True skew Hough method QUICK-SKEW method
angle (in deg)
Mean SD Mean SD
30 29.13 0.264 29.86 0.415
20 19.89 0.432 20.12 0.596
10 10.13 0.368 10.21 0.386
5 5.04 0.365 5.02 0.516
3 3.07 0.163 2.96 0.396

and Kasturi?® applied Hough transform for text sep-
aration from mixed text/graphics images. Pavlidis and
Zhou'® used a correlation-based technique to seg-
ment the text regions as well as to detect the logical
text blocks. We have adopted this method with some
modifications and found that reasonably good results
are obtained on various documents.

4. LINE, WORD AND CHARACTER SEGMENTATION

For convenience of recognition, the OCR system
should automatically detect individual text lines as
well as segment the words and then the characters
accurately. Since Bangla text lines can be partitioned
into three zones (see Fig. 3), it is convenient to distin-
guish these zones. Character recognition becomes
easier if the zones are distinguished because the lower
zone contains only modifiers and halant marker, while
the upper zone contains modifiers and portions of
some basic characters.

4.1. Text line detection and zone separation

The lines of a text block are segmented by finding
the valleys of the projection profile computed by
a rowwise sum of gray values. The position between
two consecutive head lines where the projection pro-
file height is least denotes one boundary line. Note
that the head line is already detected during skew
correction. A text line can be found between two
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Base line-#

Fig. 8. Lower boundary detection approach.

consecutive boundary lines. For example, see Fig. 7.
Here it is assumed that the text block contains a single
column of text lines only.

From Fig. 3 it is clear that the upper zone can be
separated from the middle zone of a text line by the
head line, which is already detected. To separate the
middle and lower zone consider an imaginary straight

line P7Q that horizontally partitions the text line re-
gion into equal halves. Consider only the connected

components below PQ and connected to PQ. For
each of these components, the lowermost pixel is
labeled by x. The horizontal line which passes
through maximum number of x labeled pixels is the
separator line (base line) between the middle and
lower zones. See Fig. 8 for an illustration.

Note that separation of middle and lower zones is
relatively less accurate. Moreover, the tails of some
characters fall in the lower zone. Care is needed to
distinguish them from the vowel modifiers, halant

sign, etc. staying in this zone. This problem is
addressed in Section 7. We include the head line,
whose thickness is 6% of the height of the text line,
within the middle zone. The relative heights of upper,
middle and lower zone in Bangla script are nearly
27%, 52% and 21%, respectively, for the popular
fonts like Monotype or Linotype.

The upper zone may contain parts of basic and
compound characters, parts of vowel modifiers, nasal-
ization sign, apostrophe sign and consonant modifier
like ref(«). The lower zone may contain vowel modi-
fiers, consonant modifiers, halant sign, etc.

4.2. Word and character segmentation

After a text line is segmented, it is scanned verti-
cally. If in one vertical scan two or less black pixels are
encountered then the scan is denoted by 0, else the
scan is denoted by the number of black pixels. In this
way a vertical projection profile is constructed as
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shown in Fig. 9. Now, if in the profile there exist a run
of at least k; consecutive 0’s then the midpoint of that
run is considered as the boundary of a word. The
value of k; is taken as half of the text line height. The
algorithm is robust and accurate since characters of
a word are mostly connected through the head line.

To segment individual characters of a word we
consider only the middle zone. The basic approach
here is to rub off the head line so that the characters
get topologically disconnected, as shown in Fig. 10b.
To find the demarcation line of the characters a linear
scanning in the vertical direction from the head line is
initiated. If during a scan, one can reach the base line
without touching any black pixel then this scan marks
a boundary between two characters. For some kerned
characters®® a piecewise linear scanning method has
been invoked (see Fig. 10b). Using this approach near-
ly 98.6% characters have been properly segmented.
The error was due to touching characters arising out
of gray-tone to two-tone conversion. For the segmen-
tation of these touching characters we have used the
method due to Kahan et al.”
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Occasionally, characters like G(%) and N*(¢l) can be
split into two sub-segments by the deletion of head
line. See Fig. 11b where the character G(%f) has two
sub-segments, the left one being enclosed by a box. To
join the sub-segments we note that any character in
the middle zone touches the base line. Since here the
left sub-segment does not touch the base line, the
algorithm combines it with the right sub-segment.

In actual practice the head line is not rubbed off to
segment the characters. The lowermost row of the
head line is noted. A linear or piecewise linear scan
starting from this noted row downwards in the middle
zone segments the characters, as in Fig. 10b.

Once the segmentation is done, simple features such
as bounding box, zonal information, etc. are com-
puted on each of them. The bounding box is com-
puted for the character portion in the middle zone
only. In the upper or lower zone about the bounding
box, a character may have a portion of its own or
portions of vowel modifiers (and occasionally conson-
ant modifiers). They are used for both initial grouping
and final recognition of the characters.

S A4 I, 9f @

free

Fig. 9. Word segmentation approach. (Dotted lines are the separators of words.)

\B

(a)

Piecewise Linear Scanning

GRS

(b)

Fig. 10. Character segmentation approach: (a) a Bangla word, (b) scanning for character segmentation after
deletion of head line from middle zone.
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Fig. 11. Detection of two parts of a wrongly segmented character: (a) a Bangla word and (b) wrongly
segmented parts of the word are shown in a square box (see text).

5. PRIMARY GROUPING OF CHARACTERS

Before going for actual classification, the basic,
modified and compound characters are distinguished.
One motivation of this step is that although there are
a large number of compound characters, they occupy
only 4-6% of the text corpus. If we can isolate them,
then the small sub-set of basic characters can be
recognized by a fast, accurate and robust technique
while we could use a slower technique to recognize the
compound characters. We have used a feature-based
approach for basic and modifier character recogni-
tion, and a combination of feature-based and tem-
plate-matching approach for the compound character
recognition. The primary grouping of characters are
done with the following observations.

The middle zone of a script line may contain the
vowel modifiers that have very small width. The width
of the basic characters vary from character to charac-
ter, being the least for character D(W) and the most for
character N + (¢B) in almost all fonts. On the other
hand, some compound characters like /DG/(w),
/R,G/(%=1) have very large width.

Another important point to note is that the com-
pound characters are, in general, more complex-
shaped than the modifier and basic characters. In
general, a compound character will have large border
length and high curvature along the border than
a basic character. Thus, using the following three
features a character may be identified as belonging to
one of the three groups representing modifier, basic
and compound characters.

e Feature f;. Bounding box width.

e Feature f,. Number of border pixels per unit width,
which is computed by dividing the total number of
character boarder pixels by the width of the charac-
ter.

e Feature f3. Accumulated curvature per unit width.
To compute f; the boarder of the character is

traversed. The absolute angular change made by
traversing from one pixel to the next is added over
all pixels of the boarder. This accumulated value is
divided by f; to get f3.

Two discriminant planes of the form

afi+axf; +asfs =a, and

bifi+bafa+bsfs=bg

are used for the classification. The parameters of dis-
criminant planes are found from a large number of
training data. For 12 point text digitized at 300 dpi
the typical values of ao, ai, a,, as, bo, by, b,, b3 are
225.77, 0.30, 0.21, 1.99, 80.83, 0.22, 0.49, 0.67, respec-
tively. On the test data set, an overall classification
accuracy of 97.2% was obtained by this classifier.
More about the misclassification behaviour is de-
scribed in Section 7.

6. FEATURE SELECTION AND DETECTION

We considered a few stroke features for initial clas-
sification of basic characters. The stroke features are
used to design a tree classifier where the decision at
each node of the tree is taken on the basis of pres-
ence/absence of a particular feature.

In Fig. 12 the principal set of chosen stroke features
are shown in the context of the characters. Apart from
the principal features, some other features are also
used at some nodes of the tree classifier. They are
described during tree classifier design. The features
are chosen with the following considerations; (a) ro-
bustness, accuracy and simplicity of detection, (b)
speed of computation, (c) independence of fonts and
(d) tree classifier design need.

It may be noted that the stroke features of Fig. 12
are simple (mostly linear) in structure and hence quick
and easy to detect. Their distortion due to noise can
be easily taken care of. They are quite stable with
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respect to font variation. At a non-terminal node of
a tree classifier, we use one feature which is able to
sub-divide the characters in that node into two groups
so that the sum of occurrence probabilities of one
group is as near as possible to that of the other group.
The stroke features of Fig. 12 serve such a purpose
reasonable well.

Note that these features should be searched in the
text line middle zone only. For the upper and lower
zones, we use shape characteristic of the modifiers,
described in Section 7.

The methods of detecting the stroke features of Fig.
12 are described below. Here the stroke lengths are
standardized with respect to the character middle
zone height because this height is constant for charac-
ters of single font and size.

The stroke 1, shown in Fig. 12 is essentially the
same as the head line of a character. To detect it, we
assumed that the length of the stroke [, is at least 75%
of the width of the particular character bounding box.
Now, the upper quarter part of the character middle
zone is scanned horizontally. If a scan contains con-

Fig. 12. Stroke features used for character recognition.
(Shaded portions in the character represent the features. For
easy identification, the features are numbered.)

X1 P X2

tinuous black pixels whose number is more than or
equal to [, then the stroke is assumed to be present in
that character.

The method of detection of stroke 2 is similar to
that of stroke 1, but here the length of the stroke [, is
75% of the height of the character middle zone and
the scanning mode is vertical.

To detect stroke 3, we assumed that the length of
this stroke [, is 40% of the height of the middle zone of
the character. A diagonal scan is made (so that the
scanning direction makes + 45° with the horizontal)
in the upper half of the middle zone of the character. If
a scan contains continuous black pixels which is
greater than or equal to [, then stroke 3 is present in
the character. Stroke 4 can be detected in a similar
way. However, here the scanning is made in the lower
half part of the middle zone of the character along 45°
direction.

We do not need any extra computation, to detect
stroke 5. If the strokes 3 and 4 are both present in the
character, we assume that stroke 5 is present in that
character.

To detect stroke 6, the length of the arms of the
stroke is assumed to be 30% of the width of the
middle zone of the character and the angle between
them is 315°. A two-way scan is performed where the
starting point of the scan is at the left-hand side of the
middle of the vertical line of the character. If, in a scan,
each arm contains continuous black pixels of length
greater than or equal to the length of the stroke then
stroke 6 is deemed present in that character.

Stroke 7 is a cup-shaped feature where the bottom
of the cup touches the base line. To detect it horizon-
tal scans are performed while leftmost and rightmost
black pixels are noted. For each horizontal scan, the
x co-ordinates of these two extreme points are of
nearly equal distance from P, the midpoint of black
run where the cup touches the base line. This distance
increases monotonically as we go scanning upwards
till the middle of the middle zone. See Fig. 13 where
PX, ~ PX,, and both PX, and PX, increase mono-
tonically with scans.

To detect stroke 8 at first we check whether stroke
1 is present. If this stroke is present then a stroke like

Mid-line of the middle zone

Base line

Fig. 13. Detection approach of stroke feature number 7 of Fig. 12.
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Table 4. Success rates on the detection of different strokes

Stroke number Recognition rate

99.98%
99.70%
99.65%
99.30%
99.45%
98.32%
98.21%
99.55%
96.67%

O 001N WA W~

stroke 2, whose length is 40% of the height of the
middle zone, is tested at the middle portion of stroke
1. If such a stroke is also present then it is assumed
that stroke 8 is present in that character.

For the detection of stroke 9 it is tested in the lower
part of the middle zone, whether more than 95%
pixels within a circle having diameter equal to 12% of
the middle zone height (that means the thickness of
head line) are black. If yes, and if it is not a part of
another stroke then such a stroke is deemed present in
that character. To detect the circle quickly, at first we
scan horizontally. If a run of R black pixels is present
then from its midpoint O we scan vertically. If a run of
R black pixels is present with O as midpoint then we
scan diagonally from O. If again successes are ob-
tained for both diagonal directions then we assume
that a circle of diameter R is present.

We have noted that in most of the cases the strokes
1,2,3,4,5 and 8 are correctly detected. The success
rate on the detection of different strokes are shown in
Table 4.

7. RECOGNITION OF CHARACTERS

7.1. Basic character and modifier recognition

Our recognition scheme of modifiers and basic
characters is based on shape identification only. A fea-
ture based tree classifier separates the characters. For
the compound characters, feature-based tree classifier
is initially used to separate them into small groups.
Next, an efficient template matching approach is em-
ployed to recognize individual characters of each
group.

The misclassification in primary grouping of
characters (described in Section 5) arise because
sometimes basic characters like A(W), J(®€) and
N + (&) fall into compound character category and
compound characters like /NN/(¥), /T,B/(¥) and
/TT/(8), etc. fall under basic character category. Sim-
ilarly, basic characters C(®) and M,(R) occasionally
fall into a modifier group while the basic character
H,(3) almost always falls into the modifier group. On
the other hand, one modified shape of E(¥) sometimes
falls into the basic character group. For correct recog-
nition, we have considered these characters in both
the groups they may be classified.

7.1.1. Design of the tree classifier. The design of
a tree classifier has three components: (1) a tree skel-
eton or hierarchical ordering of the class labels, (2) the
choice of features at each non-terminal node, and (3)
the decision rule at each non-terminal node.

Ours is a binary tree where the number of descend-
ants from a non-terminal node is two. Only one fea-
ture is tested at each non-terminal node for traversing
the tree. The decision rules are mostly binary e.g.
presence/absence of the feature. To choose the fea-
tures at a non-terminal node we have considered
the Bangla character occurrence statistics given in
Table 2.

If the pattern group of any non-terminal node can
be sub-divided into two sub-groups by examining
a feature so that the sum of occurrence probabilities of
one group is as near as possible to that of the other
group then the resulting binary tree is optimum in
time complexity, assuming that the time required to
test a feature is constant. The resulting tree is identical
with the Huffman code®® tree generated using the
character occurrence probabilities.

However, we may not get a set of features to design
such an optimal tree. A semi-optimal tree is generated
if out of the available features, we select the one for
a given non-terminal node that separates the group of
patterns best in the above sense. In this way, we used
features 1 and 2 near the root nodes. For example, the
‘vertical line’ i.e. feature 2 in the right side of the
character boundary, separates the characters into two
groups with sum of probabilities 0.59 and 0.41. Fea-
tures 1 and 2 partition the basic characters into four
nearly equi-probable sub-groups. Fortunately, they
are the simplest features to detect too.

Note that our features are positional strokes. De-
tection of some of them (e.g. feature 4 of Fig. 12)
should follow detection of others (e.g. feature 2). In
other words, if the feature 2 exists in a character then
we will check only for feature 4 in that character.
Moreover, as we go down the tree, the number of
features to choose from gets reduced. These problems
put further constraint in designing the optimal tree
classifier.

For an operational tree classifier, the average num-
ber of nodes visited is Y!_ , n;p.,, where n; is the number
of nodes needed to visit for the recognition of charac-
ter ¢; having probability of occurrence p.. This num-
ber is the smallest if Huffman tree could be used for
classification. As a comparative study, the average
number of nodes to be visited in the Huffman (i.e.
optimum) tree according to the probability estimates
of the basic characters is 4.714 while that obtained in
our tree is 5.331. Given the constraints of selecting
and using the features described above, our tree is
quite close to the optimum one.

The tree classifier for basic characters is partially
shown in Fig. 14. Most basic characters can be recog-
nized by the principal features alone. However, as
stated earlier, in addition to the principal features
some other simple features are also used at some
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Fig. 14. A flow chart representation of a portion of tree
classifier for basic character recognition.

nodes. Consider for example, K(¥) and PH(®) which
belongs to the same non-terminal node of the tree. To
separate them, we test if the vertical line touches the
head line or not (in case of PH(®) the vertical line
does not touch the head line). Similarly, to separate
L(¥7) and N(®) which belong to the same node we
draw an imaginary line from the central position of
the disc (feature 9) upwards till the head line is reach-
ed. For N(¥) this line will cross the character bound-
ary pixels thrice while for L(®) the number of
crossings will be four. This crossing count is used as
a heuristic at some other nodes also.

Detection of two full vertical lines as in JH(®) is
used to distinguish some characters. To distinguish
P(?1) and G(%!) as well as KH(¥) and TH(¥) some
other heuristics are used in the tree.

To detect basic characters as well as some modi-
fiers, the upper zone is inspected. Any signature in the
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upper zone which touches a vertical line in the middle
zone denotes the modifier for I(%), L(%) or (AU) (8).
Other signatures in the upper zone are characteristics
of the basic(or compound) characters of the corre-
sponding middle zone. Note that the modifiers for
E(9) and O('®) are detected by inspecting the middle
zone.

To detect other modifiers, the lower zone is inspec-
ted. If there is any signature in the lower zone that is
not a part of the basic or compound characters in the
middle zone then it is assumed to be a modifier follow-
ing the character. Three such modifiers and halant
sign may be encountered in this region. They are
separated by some structural primitives.

To check if a signature in lower zone is actually the
tail of basic characters, a curvature smoothing test is
made. If the signature curvature is continuous and
smooth, then it is accepted as the tail of a basic
character.

7.2. Compound character recognition

The compound character recognition is done in
two stages. In the first stage the characters are
grouped into small sub-sets by a feature-based tree
classifier. At the second stage characters in each group
are recognized by a sophisticated run-based template
matching approach. We adopted this hybrid ap-
proach instead of only tree classifier approach be-
cause it is nearly impossible to find a set of stroke
features which are simple to compute, robust and
reliable to detect and are sufficient to classify a large
number of complex-shaped compound characters.

The features used in the tree classifier are head line,
vertical line, left slant (i.e. features 1, 2, 3 of the
Fig. 12), boundary box width, presence of signature in
upper zone etc. A terminal node of this tree corres-
ponds to a sub-set of about 20 characters. These
character templates are ranked in terms of their
bounding box width and stored during the training
phase of the classifier at an address corresponding to
this terminal node.

A candidate compound character which has reach-
ed a terminal node of the tree is then matched against
the stored templates corresponding to this node.
Matching is started with the template whose bound-
ing box width is nearest to that of the candidate and
continued till the template width is comparable to
that of the candidate. Matching decision is speeded up
by this process.

To superimpose the candidate on the template for
computing the matching score, the reference position
is chosen by characteristic features of the candidate.
For example, if a vertical line (feature 2 of Fig. 12) is
present in the candidate (which is known from the first
stage of the classifier) the templates also have vertical
lines and the matching score is computed at first by
aligning the vertical line of the candidate and tem-
plate. Scores for small shift about this vertical line are
also computed to find the best match. This process
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also speeds up the matching process and increase the
accuracy to a large extent.

Further speed-up is done by using the concept of
black and white runs as illustrated in Fig. 15. Let us
consider a black run of the candidate character to be
matched with a row of the template character. At
position p, the black to black matching score is 4. At
position p + 1, the matching score is also 4. This
result can be inferred by noting that pixels A and B in
the template have the same colour. In general, we can
compute the change in matching score for any run by
noting the color of only two pixels in the template.
Thus, the order of computation is of the order of
number of runs, rather than the number of pixels.

A wide variety of correlation measures are available
for template matching applications®*® of which the
measure Je =ny/(ny; + nio + noy) due to Jaccard
and Needham, is found satisfactory for our purpose.
Here n;; = number of pixels with input image pixel
value i and template pixel valuej in the corresponding
positions; i, j = 0, 1. The J- measure gives the ratio of
total matched object pixels to the sum of the object
pixels in template and candidate.

The best matching score for the candidate should
exceed a threshold for acceptance as a recognized
character. Else, the candidate is rejected as unrecog-
nized.

We noted that a reasonable amount of character
size variation can be accommodated by rescaling. If
templates for 12 point characters size are stored then
it was found that characters of size ranging from 8 to
16 points can be matched by rescaling the candidate
without appreciable error. The candidate middle-
zone boundary box height is used for rescaling the
candidate.

As mentioned before, some basic characters are
found to be classified as compound characters during
initial grouping. Their templates are also stored and
they are matched with the candidate in the same way
as above.

The recognition performance over a set of docu-
ments (without error correction module) is presented
in the next section. The recognition speed, for 12
points text digitized at 300 DPI, is 85-90 characters

per minute by SUN 3/60 machine (with microproces-
sor MC68020 and SUN O.S. version 3.0).

The error correction module described below im-
proves the performance to a reasonable extent.

8. ERROR DETECTION AND CORRECTION

Of the two classes of approaches of error detection
and correction®”-?® based on n-gram and dictionary
search, we use the latter approach. Our input is
a string of OCR recognized characters between two
word boundary markers, called as test string. Accord-
ing to the structural shape of Bangla characters as well
as the OCR technique used, the error can be classified
into five categories: substitution, rejection, deletion,
run on characters error and split character error.
Transposition and insertion error are unlikely for
Bangla text.

In the error calculation, it is assumed that the
original document contains no error i.e. all words are
valid surface words. Based on an experiment with
10,000 words it was noted that our OCR system
makes an average of 3.17% character recognition
error which is equivalent to 15.54% word recognition
error. Out of these 15.12% are non-word and 0.42%
are real word errors (which cannot be corrected). The
relative contribution of different error types is given in
Table 5. We have noticed that 29% of single character
error words are due to characters of compound class
and the rest for modifier and basic characters. Also,
most of the rejected characters are compound charac-
ters.

8.1. Error detection approach

The OCR system output can be a partially recog-
nized string which is inherently erroneous or a fully
recognized string which should be subject to error
detection. However, both types of string should be
subject to error correction.

As mentioned before, for an inflectional language it
is useful to maintain a root word dictionary and
a suffix dictionary. Then for error detection, it is
necessary to check if the test string is a valid root
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Fig. 15. Run-based template matching method.
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word followed by a suffix that grammatically agrees
with the root word. The notion of grammatical agree-
ment is explained later on in this section.

Let W be a string of n characters x;x, ... x,,. If W is
a string x;X,...x, and if W, is another string
ri75 ... 1, then we define the concatenation of the two
strings i.e. W, @ W, = X1X;5 ... X, 72 ... 1, Let |W|
denote the number of characters in string W. Also, if
a sub-string W, of W contains x; (i.e. first character of
the string) then W is called front sub-string. Similarly,
Wy is a back sub-string if Wy contains x, (i,e last
character of the string). Also, we can ‘dissociate’ a sub-
string W, of W from W given by Wo W, If
WoeW,=W,then W=W,@®W, if Wis a front
sub-string, while W = W, ® W, if W is a back sub-
string.

If W is a valid surface word then either (i) W is
a root word or (ii) A sub-string R; = x;x, ... x, of
W is a root word and another sub-string S; =
Xp+1Xp+2 ... X, of W is a suffix which grammatically
agrees with Ry.

The segmentation of W into root word and suffix
(including null) satisfying these conditions may be
called valid parsing. Normally, a valid surface word
can be parsed into one root word and omne suffix
(including null) although multiple parses are some-
times possible.

To parse a string W, we can start from left and find
the sub-strings R;, R,, ..., R, which are valid root
words by looking at root word lexicon. Similarly, we
can start from right of W and find the sub-strings Sy,
S5, ..., S, which are valid suffixes. However, a root
suffix pair {R;, S;} is a candidate for parsing only if
R;nS; = ¢ and R; ® S; = W. The situation for a typi-
cal string is shown in Fig. 16. Here, the pairs {Ry, S,.},
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and if W is a valid surface word then at least one of
these candidate pairs has a valid parse. The distribu-
tion of candidate root-suffix pairs computed over
60,000 surface words is shown in Table 6. Note that
most of the suffixed surface words have only one
candidate root—suffix pair.

A root word cannot concatenate with arbitrary
suffix to form a valid surface word. The valid concat-
enation is primarily governed by the parts of speech of
the root word. For example, if the root word R; is
a “verb”, then it can concatenate with suffix S; if it is
an appropriate “verb suffix”. In other words, R; and
S; grammatically agree with each other.

Thus, our algorithm for error detection is as fol-
lows:

Step 1. Consider a new string W. Start from left
and find all root word sub-strings Ry, R,, ..., R, in
w.

Step 2: If R, = W, go to step 5. Else, start from
right and find a valid suffix sub-string S.

Step 3: If W © S = R,, for any i, then call the gram-
matical agreement test. If the test is passed then go to
step 5.

Step 4: Find the next valid suffix sub-string. If no
such sub-string exists then go to step 6. Else, go to
step 3.

Step 5: Report success (the string is a valid surface
word). Go to step 1.

Table 6. Prababilities of valid root-suffix pair substrings

Word length Number of valid root-suffix pair

{R3, S5} and {Ry, S,} only are candidates for parsing 1 2 3
2 1.0000 0.0000 0.0000
ST " 3 0.9820 0.0180 0.0000
Table 5. Distribution of word recognition error 4 0.8892 0.1108 0.0000
Word error due to single misrecognized character 9.31% 2 ggzgg g(l)?/gg 8882;
Word error due to single rejected character 3.05% 7 0'9335 0.0666 0.0000
Word error of other types (Double character error, 3.18% 8 0.9800 0‘0200 0‘0000
Run on error, Splitting error, Deletion error, etc.) 9 09825 00175 0.0000
Total word recognition error 15.54% 10 1.0000 0.0000 0.0000
Direction of root word search
Root word match position Ry Ry IIS ik
Input Steing | xg| xo| X3l |~ [~ 1= [~ 1= [~ 1" [~ 1" 7|7 [ *

!

oo

8 8 8; Suffix match position

—— Direction of suffix search

Fig. 16. An example of character string parsing.



A complete printed Bangla OCR system

Step 6: Report failure. Call error correction algo-
rithm and go to step 1.

8.2. Lexicon structure

The root-word lexicon contains all root words as
well as the morphologically deformed variants of the
root words (mostly verbs) so that simple concatena-
tion with suffix make valid surface words. To organize
the lexicon, valid root words of length upto 3 charac-
ters as well as the first 3 characters of root words
of length greater than 3 are represented in a trie
structure. At each leaf node of the trie an address is
maintained. Words are kept in the main lexicon in
alphabetical order along with the parts of speech and
other grammatical informations. Address of a leaf
node L, of the trie points is the first word of the main
lexicon of which the first three characters are the same
as those we encounter by traversing the trie upto that
leaf node L,. So, if a string is of length four or more
(characters) then we can obtain the address from trie
using the first three characters and then sequentially
searching the main lexicon to see if the string is a valid
word. The lexical structure is shown in Fig. 17. The
sequential search on an average requires five words to
be checked for each input string where the lexicon size
is 50,000 words.

The suffix lexicon is maintained in a trie structure
where a node representing a valid suffix is associated
with a suffix marker and parts of speech marker. If
one traverses from the root of the trie to a node
having valid suffix marker then the encountered char-
acter sequence represents a valid suffix string in re-
verse order (i.e. last character first). This is so because
during suffix search we start from the last character of
a string and move leftwards.

8.3. Error correction approach

For simplicity, our effort is limited to correcting
single character (basic or compound) in a word. At
first, let us consider a fully recognized string.

ROOT WORD LEXICON SUFFIX LEXICON

Trie structure

Trie structure

MAIN LEXICON

Fig. 17. Error correction lexicon structure. (See examples in
main lexicon where parts of speech markers are given in
parenthesis.)
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The information about all valid root sub-strings
R, R,, ...,R, and all valid suffix sub-strings
S1, S, ..., S, is recalled from the error detection pro-
gram module. In general, four cases may arise depend-
ing on whether k or m is zero or not. Depending on the
situation, error correction is made either on the suffix
part or root-word part or on the full string. The
root-word or suffix dictionary is opened accordingly.

For partially recognized string at first we detect all
root words and suffix sub-strings. Here too, depend-
ing on the value of k or m four situations may occur.
In each case, it is guaranteed that the sub-string to be
corrected contains the unrecognized character. Now,
the correction is done as follows.

Let C be a character in the alphabet. During the
training phase a test is conducted on a large set of
data for the performance evaluation of the OCR and
let D(C) denote the subset of characters which may be
wrongly recognized as C. Members of D(C) may be
called confusing characters for C. Now, if a recognized
string W contains a character C and if it is a misrecog-
nized character then the correct word for W is a string
among the strings obtained when C is replaced by
elements of D(C). Such strings can be called candidate
strings. We can attach a probability to each candidate
string depending on the a priori knowledge of fre-
quency of a confusing character. Other candidates are
generated by taking care of run on, split and deletion
error also. The candidates are checked in the respect-
ive lexicon and the matched one with the highest
probability is accepted as the corrected sub-string.
Unmatched string is rejected.

According to the performance of our OCR, the
number of alternatives per character rarely exceeds 4.
Thus, with an average wordlength of 5 characters, the
number of candidate strings per word can be 20 for
single position error. For a partially recognized string
with a single unrecognized character, note that our
OCR knows if it is a basic or compound character.
For a basic character the number of candidates is
4 while for a compound character it is about 10 on an
average.

We have noted that our error correction module
can correct 74.22% of single character error generated
by the OCR system. As a result, the overall accuracy
of the OCR system is about 95.50% in word level
which is equivalent to about 99.10% in character
level (assuming a word to consist of an average of 5
characters).

9. DISCUSSIONS

An OCR system to read printed Bangla script is
proposed for the first time. It is assumed that the
document contains Linotype font text, which is valid
for most Bangla documents. We obtained high recog-
nition score for text printed on clear paper. Perfor-
mance of the system on documents with a varied
degree of noise is being studied.
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Table 7. Word recognition rate on different point size images

Point size 8 10

12 14 16

Recognition rate 94.60% 95.65%

96.70% 95.49% 95.11%

Some discussions on the performance of the system
on size and style variations of the font are in order.
Size and most style variations do not affect the modi-
fier and basic character recognition scheme. Com-
pound character recognition is somewhat affected by
the size variation, but the rescaling of templates dis-
cussed in Section 7 is effective if the range of size is
between 8 and 16 points. The effect of different sizes of
single font characters on the recognition system is
given in Table 7. For bold style, a set of bold tem-
plates yield better results. We have not made elabor-
ate study on italics style since it is rare in Bangla
documents.

Many popular Indian scripts including Bangla and
Devnagari are derived from Sanskrit script and have
a lot of common graphemic features including the
presence of head line and vertical strokes. Devnagari
script is used to write Hindi, the third most popular
language in the world. Devnagari and Bangla have
a similar set of compound characters. Moreover,
Hindji, like Bangla is an inflectional language.

We made a preliminary study of applying our
method for the OCR of Devnagari script. We noted
that skew correction and zone separation as well as
line, word and character segmentation modules of our
Bangla OCR can be directly used for Devnagari. The
basic and compound character separation can also be
done in a somewhat similar way. Also, the decision
tree classifier scheme suits well for Devnagari, al-
though some of the features are not identical with
those used for Bangla. Encouraged by these studies,
we are building a complete Devnagari script recogni-
tion system based on our Bangla OCR system, which
will be reported later on. Our system can act as
a model for the OCR development of a few other
Indian scripts also.

One of our goals is to attach a speech synthesis
module to OCR system so that it can be used for the
blind. We have used the diphone concatenation ap-
proach where only 750 diphones are sufficient to
synthesize any Bangla word. Prior probabilities of the
diphones are used to make the synthesis efficient in
time. Some utterance rules are used for grapheme to
phoneme conversion in the OCR recognized word.
A word having rejected character(s) is uttered charac-
ter by character. The speech output is quite intelligible
but somewhat flat. We are adding the stress and
intonation rules to make the speech more lively.
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