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SUMMARY.

The modified version of Bayesian Information Criterion (mBIC) is a relatively simple model

selection procedure that can be used when locating multiple interacting quantitative trait loci (QTL). Our
earlier work demonstrated the statistical properties of mBIC for situations where the average genetic map
interval is at least 5 oM. In this work mBIC is adapted to genome searches based on a dense map and,
more importantly, to the situation where consecutive QTL and interactions are located by multiple interval
mapping. Easy to use formmlas for the extended mBIC are given. A simulation study, as well as the analysis
of real data, confirm the good propertics of the extended mBIC.

Key worDs: Model selection criterion: Multiple QTL; QTL interaction.

1. Introduction

Many guantitative traits in plants, animals, and humans are,
to a cortain extent, determined genetically. Regions of the
genome that influence such traits are called guantitative trait
loci (QTL), and typically molecular markers are employed to
detect and locate QTL using statistical models. These molec-
ular markers are polymorphic (exhibiting variation) at iden-
tifinble locations on chromeosomes, and their genotypes can
be identified experimentally. From a statistical point of view,
marker genotypes are qualitative explanatory variables and
the task of locating QTL relies on the associations between
marker genotypes and the trait values. Most of traditional
technigques for QTL mapping (for a review see e.g., Doerge,
2002) identify parts of the genome with additive effects on the
trait and are unable to detect epistatic effects (e interac-
tions). Epistasis is however a common phenomenon (see e.g.,
Doerge, 2002; Carlborg and Haley, 2004, and references given
there) and neglecting epistatic effects may lead to oversim-
plified models for inheritance of complex traits and, as noted
by Carlborg and Haley (2004), often results in a relatively
low economic gain if such models are used for marker-assisted
selection. Although simple, an approach that acknowledges
epistasis is multiple regression or ANOVA models with inter-
actions (see e.g.. Kao, Zeng, and Teasdale, 1999). The most
difficult part in fitting such models lies in the identification
of the nonzero coefficients that could, in principle, be ad-
dressed by emploving the popular Bayesian information cri-
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terion (BIC; Schwarz, 1978). In comparison with other model
selection criteria BIC has a relatively large penalty for model
dimension and is often considered to be conservative. How-
ever, in an exploration of BIC as applied to QTL mapping,
Broman and Speed (2002) reported that it overestimates the
number of QTL. This phenomenon was explained in Bog-
dan, Ghosh, and Doerge (2004), where a suitable modifi-
cation of BIC was proposed. The modified version of BIC
(mBIC) allows the incorporation of prior knowledge about
QTL number. When prior knowledge is lacking Bogdan et
al. (2004) proposed a standard version of mBIC which ad-
justs for multiple testing and controls the tvpe [ ervor. In
Baierl et al. (2006), mBIC i further extended by a two-step
prooedure that adjusts the prior according to the results of
the initial step. Simulations reported in Bogdan et al. (2004)
and Baierl et al. (2006) demonstrate that both the standard
mBIC and the two-step version retain good power when dis-
tances between genetic markers are larger than 5 oM. How-
ever, when distances between markers are smaller than 5 oM
the penalty for mBIC becomes too large, and results in an
unnecessary decrease of statistical power. Motivated by the
fact that current QTL mapping populations are relatively
large, and dense genetic maps are common, the mBIC is ex-
tended to situations where map distances are smaller than
B cM. This extension also sets the stage for applying mBIC
to interval mapping and association mapping (discussed
elkewhere).
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2. Methods

The current work is mainly devoted to detecting QTL in back-
cross populations where there are only two possible genotypes
at any particular locus. Either an individual is homozygous
(has both alleles from the same parental line) or heterozy-
gous (has alleles from both parental lines). The QTL geno-
types at each location are denoted by € @y = —3 if the ith
individual i homozygous at the jth QTL, and ,; = 3 if it
is heterozygous. The relationship between quantitative trait
values and multiple QTL genotypes is assumed to be a normal
regression model,

Vi=p+ Z" iy T z Yirldi gl + &4, (1)
F=1 15 lgm

where me is the mmber of QTL and =; ~ A(0, 2% is envi-
ronmental noise. The second summation corresponds to pair-
wise epistatic interactions. The coefficients 3; and 4 can
both equal zero. The number of QTL with nonzero main ef-
fects is denoted as p, and the number of nonzero epistatic
ternes as g Becanse locating so many interacting QTLs by
multiple interval mapping poses a complex multidimensional
computational problem, as a first step QTL location is re-
stricted to marker positions. Specifically, detection and loca-
tion of QTL is based on choosing the best model of the form
Vi=p+ Zj!:]' BiXy + 3, e TueXiuXiw + &, where X &
the genotype of the ith individual at the jth marker, and T
and [7are sets of markers with significant main and epistatic
effects, respectively. Note that this model allows the interac-
tion terms to appear even when the corresponding markers
do not exhibit additive effects. This choice of modeling steat-
egy s motivated by the welldooumented findings of genes
that do not have main effects and influence the trait only by
interactions with other genes (see e.g., Fijneman et al., 10996).
One of the most popular tools for selecting influential re-
gressor variables is the BIC, which recommends choosing the
simplest model for which nlog 855 + blog nobtains a minimal
value. Here B55 is the residual sum of squares from regression,
k iz the mimber of regressor variables, and n is the sample
size. As mentioned earlier, BIC has a tendency to overesti-
mate the QTL number. To address this problem Bogdan et
al. (2004) proposed the mBIC by following the Bayesian ideas
of George and MeCulloch (1993) and supplementing the BIC
with additional terms that are based on a realistic binomial
price distribution for the number of QTL effects. Let Ndenote
the mimber of available markers and let Ne. = N(N — 1)/2
be the number of possible pairwise interactions. Moreover,
use £ and o to denote the expected values of the number of
main and epistatic effects, respectively. The mBIC is based on
minimizing the quantity mBIC = nlog BSS + (p + g)logn +
Iplogil — 1) + 2glog(u — 1), where pis the number of main
effects in the model, g i the number of epistatic terms, | =
Niey and u = N, feq. Forsituations where the prior knowledge
on the mumber of QTL is not available Bogdan et al. (2004)
proposed the use of o = 2.2 and = = 2.2 which leads to a
standard form of mBIC, mBIC = nlog BSS + (p + g)logn +
Zplog (N /2.2 — 1) + 2glog (N .22 — 1). As demonstrated by
theoretical calculations presented in Bogdan et al. (2004), the
standard version of mBIC controls the overall type I error at
the level below 8% if the sample size n 2 200 and the number
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of markers N = ). The criterion retains the consistency of
BIC, so both type I and type 11 errors converge to () when the
sample size nconverges to infinity.

2.1 Calibmating mBIC for Dense Markers

Committing a family-wise type I error ocours when at least
one QTL isdetected when there is none. In this context, mBIC
might either incorrectly detect a QTL with one of the simple
regression models, including only one marker or one interac-
tion term, or detect false QTL based on a multiple regression
model when all simple regression models do not detect QTL.
The extensive sinmlation studies reported in Bogdan et al.
(2004) and Baierl et al. (2006) demonstrate that the proba-
bility of the sccond event is extremely small. Thus, the type
I error of mBIC is mainly determined by the results of the
initial search over single markers and interaction terms.

Consider the simple regression model M ¥V, = p +
H Xy + & where X is the genotype of ith individual at
jth marker. It is straightforward to check (e.g., see the caleu-
lations in the Appendix of Bogdan et al., 2004) that mBIC
chooses M; over the null model M, with no QTL if the like-
lihood ratio statistic LRT; = 2log{ L(Y | M, )/L(Y | Mu)} &
larger than logn + 2 log (N/2.2 — 1), Similarly, mBIC se-
lects the model M, with just one interaction between ith
amd jth marker if the corresponding likelihood ratio statistic
LRT; = 2log{ LY | My )/L{Y | My)} is larger than logn +
Aog (N, /22 — 1) Thas, the choice of penalty coefficients
for mBIC is closely related to the choice of thresholds for
the likelihood ratio tests at individual markers. The addi-
tional penalty torms 2 log (N/2.2 — 1) and 2 log (N, /2.2 — 1),
which depend on the number of markers and potential in-
teraction terms, play the role of correction for multiple test-
ing. The increased penalty for interaction terms is related to
a larger number of tests that need to be performed for ev-
ery marker pair. Theoretical caleulations presented in Bogdan
et al. (2004), and in the Web Appendix C for this work, show
that the proposed standard penalty coefficients divide the er-
ror about equally between main effects and interactions, and
are similar to a Bonferroni correction.

Note that while the Bonferroni correction provides good
control of the family-wise ervor rate (FWER) when indi-
vidual tests are independent, it can be strongly conserva-
tive (ie., give smallee FWER., which results in decreasing of
power) when test statistics are correlated. Therefore, in the
situations where markers are very densely spaced (less than
b cM) the standard mBIC penalty coefficients can be relaxed.
To provide a theoretically coberent approach to this problem
we propose to adjust the penalty coefficients in such a way
that the overall type I error of the resulting procedure is con-
trolled at a level independent of the marker density. For this
aim, given a marker map, the threshold values for the masxi-
mim of likelihood ratio statistics for individual main effects
and interactions are estimated. Then, the effective numbers
of independent chi-square tests, o7 and N7 are calculated,
yviekling the same threshold values. As demonstrated by the-
oretical caleulations in Appendix C, and reported via a simn-
lation study, using N*Y and N7 instead of N and N, in mBIC
criterion results in overall type I orvor that only slightly de-
pends on the marker density, and for v = 200 and N0 = 20
does not exceed 8%, Instead the power of the search over very
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dense markers is substantially larger than for the standard
mBIC.

The issue of computing the genome-wise threshold value
for the single marker and interval QTL mapping has been in-
tensively studied. In particular, Lander and Botstein (1989),
Dupuis and Siegmund (1999), and Rebai, Goffinet, and Man-
gin (1994) addressed the problem by approdimating the dis-
tribution of the likelihood ratios at neighboring marker lo-
cations by the square of the Ganssian process. We use these
theoretical results to estimate the chromosome-wise thresh-
old values for main effects and compare them with values
resulting from computer simulations. Computer simulations
were also used to estimate the thresholds for the search over
two-way interactions, for which the theovetical results are not
available,

2.2 Searching Over Markers
Dupuis and Siegmund (1999 showed when a genome scan

based on one chromosome with N markers spaced every § oM
is performed, the overall type [ error can be approximated by

= Pﬂu (z-.:l}nxh] Eilye C) (2)

=1 —exp[-2 {1 - B(ve)} - 0.04LVea(ve)w (V0.04c8) ],

where L = (N — 1)4 is the length of the chromosome in
M, ¢ is the density and & is the distribution function of the
standard normal distribution, and e(f) is

w(t) =2t 2(!.5{{.-{—22?1 Hr:q—uml-*‘—’gzy}_ (3)

=1

Alternatively, the overall type I ervor resulting from perform-

ing N tests at unlinked markers is

LRT; = r:)

o A
o= Fg, (ss:.:: ..... wi

Men
,,‘.ur

=1- ﬁ{l = Pr(LRT: = o)}

= 1-[1-2{1 - B(ve)) . (4)

Comparing equations (2) and (4) the effective number of inde-
pendent tests corvesponding to N markers spaced every dchd
s computed as

N = log(1 — o)/ log {28(/2) — 1}, ()

where ¢ depends on o, § and N according to equation (2).
It turns out that the dependence of N*Y on o is comparably
small. Therefore values of N for o = 005, reported in the
present article, can serve as a very good approximation for all
a e (0,01

To model the diminished effects of densely spaced markers
we define a weight wiid(§, N), which will be assigned to ad-
ditive effects if the average distance between markers is equal
to fchd,

wiii(s, N) = N /N. (6)

This weight {equation (6)) cearly depends on 8, but also on
the mimber of markers on the chromosome. It is evident that
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for any fixed &, wif§, 1) = 1. Moreover, in the Web Ap-
pendix B it is shown that limpy w3 (8, N) = 1. This result
illustrates that the dependence between neighboring markers
is of o “short range” and has a negligible influence on the be-
havior of the maxinmum of the likelihood ratio statistic when
the length of the chromosome converges to infinity. However,
Figure la demomstrates that the rate of increase of wiidl i
very slow, and the weights remain relatively stable over a
wide range of N.

Eqguation (2) from Dupuis and Siegonund (1999) & based
on the assumption that the likelihood ratios at neighboring
locations can be asymptotically described by the square of
a Gaussian process. This fact was utilized when designing
a simulation study to cstimate the weights for the additive
effects. In the first step the correlation matrix 5 for geno-
types of markers uniformly spaced on a chromesome was cal-
culated, and 10,000 instances were generated from a multivari-
ate normal distribution with mean 0 and covariance matrix
5. For each of these 10000 random vectors the maximuom
over the squares of its coordinates was calculated and 0.05
quantile of the empirical distribution of these maxima was
used to estimate the chromosome-wise threshold value e for
the likelihood ratio statistic to detect main effects. Finally,
weights wfl! were computed by applyving equations (5) and
(6). As seen in Figure 1b, the simulated values tend to be
consistently slightly smaller than the theoretical counterparts,
but the difference is so small that the effect on mBIC is
negligible.

It is assumed that markers on different chromesomes are in-
herited independently. Therefore, when considering the whole
genome N is caleulated separately for each chromosome.
The effective numbers are then added and divided by the
overall number of markers to achieve the appropriate weights.
For chromosomes of equal length this procedure is the same
as choosing the weight for a single chromosome. As a general
rule, becanse the difference in weights is small in the range be-
tween 100 and 300 oM, we suggest using the weights computed
for 150 oM for a standard adjustment of mBIC for correlated
markers. When the distance between markers is larger than
30 oM then wfdl is larger than (.90 and the modification of
the penalty in mBIC! is not necessary, Otherwise, w! can be
very well approximated by a guantity not depending on N,
namely,

g8y =1 — 0.9exp{—106 /100 + 10{§ /100)*}.  (7)

The accuracy of this approximation is illustrated in Figure 2
in the Web Appendix E.

Because our simulation approach led to reasonably good
approximations of the weights for additive effects, we applicd
the same strategy to estimate the effective mumber of tests
N corresponding to interactions, Necessary formulas for the
covariances between different interaction terms can be found
in the Web Appendix A. The dependence of the simulated
weights for epistatic effects wg; = N/N ., on both the num-
ber of markers and the distance § is illustrated in Figure le.
Note that wi, (8, N) appears to have the same qualitative be-
havior as w2ii(§, N) in the sense that for N = 2, uil, (8, 2) =
1. and the simulation results suggest that limp . w8,
N) = 1. Figure 2 in Web Appendix E illustrates that the
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Figure 1. Dependence of the weights corresponding to o = 0,05 on the number of markers (N) and the genetic distance
between markers (8). For additive effects both theoretical and simulation results are reported. Circles and stars denote
chromosomes of length 150 and 300 oM, respectively.
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weights of chromosomes of length 150 oM and 300 M for
different § can be well approximated by

WP (E) = exp{(—10.76/100 + 8.7(6/100)*)}. (%)

For situations where the markers are not equally spaced the
average intermarker distance _5 can be used with weights
witl — M8y and wif] = wihi () according to equations (7)
and (8). Based on these results the standard version of
mBIC for dense and nnequally spaced markers recommends
choosing the model for which mBICsqy =nlog RSS + (p+
gilogn + 2ploglwdi N /2.2 — 1) + 2qlog(uwily N, /2.2 - 1), ob-
tains a minimal value.

2.3 Multiple Regression Interval Mapping, MEIM

Interval mapping (IM: Lander and Botstein, 1989), while orig-
inally based on a single QTL model, was extended to multiple
interval mapping (Kao et al., 1999) for the purpose of locating
multiple interacting QTL. In the present article, we apply a
simplified version of multiple interval mapping based on the
approach proposed by Haley and Knott (1992). The method
relics on replacing missing genotypes of putative QTL by their
expected values conditioned on the genotypes of neighboring
markers. The procedure is very simple and guick and is partic-
ularly advantageons when there are multiple interacting QTL
and many competing models need to be searched to estimate
QTL pumber and their location. A comparison between the
EM algorithm, applied in Kao et al. (1999), and Haley and
Knott regression did not provide significant differences in the
performance of mBIC in an interval mapping setting.

MRIM based on the Haley and Knott method reliecs on
fitting the multiple regression model ¥; = p+ Zj._,_r 3G +
Zu_m__ i Yaeld G + £, on a dense set of possible QTL loca-
tions. Here Gy is the expected value of the genotype of ith
individual at jth pesition on the genome (the formulas for Gy
are provided in Kao [2000]), and f and 7 are sets of loca-
tions corresponding to QTL with significant main effects and
epistatic effects, respectively. To estimate the number of QTL
and their locations the appropriate version of mBIC is used.

The main difference between MRIM and searching over in-
dividual markers s that a much larger set of possible QTL
locations is investigated with MRIM. To accommodate the
increased number of investigations the penalty of mBIC needs
to be increased. Because the predictor variables correspond-
ing to the given intermarker locations are completely spec-
ified by genotypes of neighboring markers the correlations
between likelihood ratio statistics at neighboring locations are
stronger than when searching over a dense map of markers.
To adapt mBIC for MRIM the effective mmber of tests Ni,
corresponding to the genome scarch based on one-dimensional
interval mapping is calculated. Here one option is to use the
theoretical results from Rebal et al. (1994), which state that
the significance level o of the genome search based on interval
mapping can be approximated by

Sl

= Pr (ns@-_ éZ:r IJug-
: ®
= 28 —0) + r:)rexp{—rf!} Zarctanl[ Vi (1 =),

ILTR: = r.‘) )
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where ¢ is the threshold, & is the number of intervals, & is
the length of the ith interval, and r; is the probability of
recombination for the ith interval. In this case markers can
b either equally or unequally spaced.

To find the related mmber of independent tests Nif, equa-
tion (5) is used, with dependence between o and ¢ provided
by equation (9). The corresponding additive effect weight is
ufdd = N /N, As might be expected, the behavior of g (4,
N) differs from that of wii(d, N}. Specifically, in the Web
Appendix B we prove that limy..wii (6, N) = 20, ar more
precisely for every fixed & wS(6, N) = O /log(N)) when
N — oo, Therefore, wff increases slowly with N, and in par-
ticular it does not need to be bounded by 1 (Figure 1d). This
result demonstrates that while the additional test statistics
between marker positions are strongly corvelated with statis-
tics at Aanking markers they still significantly increase the
maximum of the likelihood ratio statistics over the genome.
Note, however, that this asvmptotic result no longer holds
in the situation when the interval mapping is performed by
maximizing the likelihood function at a finite grid of loca-
tions spaced every 1 or 2 M. In this case the effective num-
ber of tests i always bounded by the number of positions
at which tests are performed. To deal with this more real-
istic situation, simulations are used to estimate the corre-
sponding weights, Imputations that are equally spaced within
each interval at distances equal to 2 oM are considered. When
caleulating covariance matrices for genotyvpes of imputed po-
sitions the Haley and Knott imputations are approximated
by linear combinations of the fanking marker genotypes,
{i_ri = {ﬁ,X-_:i + ﬁj.Y]i}lfr{'ﬁ] + vﬁz}l,i =1....,n, where vﬁ] and 452
are the genetic distances between the putative QTL and the
Aanking markers, and Xy and X are the corresponding geno-
types of Aanking markers. This approximation, neglecting the
possibility of a double crossover within a given interval, is
quite accurate when the distance between neighboring mark-
ers does not exceed 30 oM. A subsequent simulation study for
MRIM based on exact Haley and Knott regression demon-
strates that the weights computed according to the presented
simulation strategy perform very well. In Figures 1d and le
simulation results are compared to theoretical values of Rebai
et al. (1994). As expected, the simulated weights are system-
atically smaller, which is due to the fact that they are com-
puted assuming the more realistic scenario of a discrete set of
imputations.

Simulations were also used to estimate the weights corre-
sponding to interaction terms (Figure 1f). For the purpose of
reducing the size of the covariance matrix required to simu late
weights for interactions corresponding to a chromosome of the
length of 300 cM, a “loose” grid of imputations, separated by
approximately 4 cM was used. For a 150 oM chromosome both
“medinm” (approximately 2 ¢M) and “loose grid of imputa-
tions” were implemented. The difference in weights resulting
from the “medinm” and “locse™ grid turned out to be negli-
gible, while the difference between 150 and 300 M chromo-
somes = substantial only when the distance between markers
excecds 20 oM (see the Web Appendix E). It is also worth
mentioning that the observed differences between weights for
150 and 300 M when § > 20 ¢M have a very small influence
on mBIC, which depends on the weight through its logarithm.
For the purpose of aiding the reader in applying the mBIC
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to real data the following empirical approximations for the
additive weights can be nsed

W (8) = —0.15 + 3.1,/8,/100 — 1.38 /100. (10)

The corresponding interval mapping weights for interactions
(for chromosome length of approximately 150 cM) can be well
approximated by

SR (6) = —0.53 + 5.44/8,100 — 2.78 /100 (11)
The accuracy of these approximations is demonstrated in the
Web Appendix E. In situations where markers are not equally
spaced the average distance between markers § can be com-
puted to vield weights wily = Wil (8) and wih, = @5 (5)
fequations (10) and (11), respectively). The adjusted version
of mBIC for MRIM recommends choosing the model for which
mBICy = nlog RSS + (p + gllogn + 2plog (wiliN /2.2 —
1) + 2glog (uyjy N./2.2 — 1), obtains & minimal valie.

3. Simulations

In the Web Appendix D we apply our method to the analysis
of Drosophila data of Zeng et al. (2000). Results of this anal-
vsis, based on the interval version of mBIC, agree well with
findings of Zeng et al. (2000) and demonstrate good proper-
ties of our method in the situation when the trait is influenced
by many QTL. In this section we present the results of the
extensive simulation study investigating the properties of the
extended version of mBIC under different search scenarios.

We simulate marker and QTL genotypes for a backeross
with three unique 100 M chromosomes, under two sample
sizes: n = 200 and n = 500. All simulations are based on
1000 replicates. Due to the computational complexity of large-
scale simmlations a simple forward selection with the standard
version of mBIC i used. At each step of the forward selection,
all the additive and epistatic terms not vet in the model are
searched and the one leading to the largest improvement of
mBIC is included. When the “best” of remaining terms does
not improve mBIC the procedure is terminated.

3.1 Type I Evvor

For the purpose of examining whether the proposed modifica-
tions to mBIC allow the control of type | error at the desived
level quantitative trait data were simulated under a null hy-
pothesis represented by a normal distribution with ¢ = 0 and
a = 1. Both a dense marker and multiple interval mapping
setting were investigated. Specifically, densely spaced marker
genotypes were simulated every 2, 5, 10, and 20 oM. Further-
more, MREIM based on a 2 M grid of locations and markers

o o
4,7 72 m 7 5 3
ForTe R SO 12 g5, 1 : AL
| Iiter 1 Inbar 2
E T 25 a B w L]
C2 AL ' —— ; ;i
Infer3 | @
5 5 i1 g 1 i4 a
Ca - & b
@ @
Figure 2. Marker and QTL locations on three chromo-

somes. Thirty unequally spaced markers are denoted by black
vertical lines. Six QTL locations are represented as circles.
The distance between markers is specified, and the average
interval distance s 11.1 M.
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Table 1

Probabilities of false detections (in %), e, and e, denote the

percentage of simulations for which main and epistatic effects
were falsely detected. e, = e, + £, is the percentage of

simulations for which at least one false signal was detected
(ie., weak sense FWER). SM denotes the search over markers
ard MRIM denotes the multiple regression interval mapping.

The approvimate theoretical significance levels are 7.3% for

n = 200 and 4.4% for n = 500

1t method ] B £, &
200 S0 2 oM 4.4 24 6.4
S0 o oM 4.8 29 7.8
SM 10 M 3.7 3.6 7.3
S0 20 oM 4.5 34 .1
S0 Figure 3 4.8 3.0 7.8
200 MEIM H oM 4.4 2.9 7.8
MEIM 10 cM 4.1 4.1 .1
MRIM 20 cM 4.5 42 0.0
MEIM 25 cM 349 4.3 B2
MRIM Figure 3 4.5 3.1 7.9
s SM 2 oM 1.7 1.5 3.2
S5M 5 oM 249 24 .3
SM 10 M 2.8 2 4.8
S0 20 cM 34 24 K.
S0 Figure 3 3.3 24 0T
H MEREIM B oM 3 26 TR
MEIM 10 eM 24 26 o
MEIM 20 M 26 24 TR\
MEIM 25 M 3.1 2.2 .3
MEIM Figure 3 32 2.1 .3

spaced every 5, 10, 20, and 25 M was considered. To adjust
mBIC, weights based on equations (7) and (8) for densely
spaced markers and equations (10) and (11) for MRIM were
implemented. Finally, 30 unequally spaced markers (Figure
2) were simmlated such that the average width of the inter-
marker distance was 11.1 ¢M and the corresponding weights
were equal to witl = weh = 0.66 for single marker analysis
and wii = 0.74, wil; = 097 for MRIM. Table 1 gives the es-
timated probabilitics of incorvectly detecting both the main
amd the epistatic effects. as well as the total type 1 orror.
These results demonstrate that the type [ ervors for both sin-
gle marker analysis and MRIM are comparable, and that both
only slightly exceed the approximate theoretical levels of 7.3%
for n = 200 and 4.4% for n = 500 (sce the Web Appendix C').
Becanse mBIC is a consistent model selection procedure type
I ervor will further diminish as the sample size increases.

3.2 Power and Accuracy of QTL Localization

The statistical power and accuracy of QTL localization based
on the adjusted mBIC are considered under three differ-
ent search strategies: single marker analysis over a relatively
sparsely spaced set of markers (scenario 1), MRIM with a
2 oM spacing (scenario 2), and single marker analysis over
markers spaced every 2 ¢M (scenario 3).

QTL locations, as well as locations of markers used in soe-
nario 1 are presented in Figure 20 Sic QTL (Q1-Q6) are sim-
ulated, two on each of three chromosomes. Three of these
QTL: Q1, Q4, and Q6 have main effects. The corresponding
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Table 2
Estimates of power and the precision for QTL location (in
eM) for the search over markers in a sparse map (scenario 1),
meadtiple interval mapping (scenario 2), and the search over
markers spaced every 2 oM (seenario 3). s denotes the
seentario, pow is the power in %, sl is the standard error of
QTL location in cM and afp denotes the average number of

false positives.
Int1 Tnt2 Int3
1 04 Qi pow g poi
pow pow pow sLQT 0 sl Q2 sl QF
it a0 sl sl sl slQu &l Q4 s Q5 afp
LT i A5 24 47 i .14
Hiago 10 102 6.9 148 109 02 0.1
14.5 T 166
it Th i 28 47 10 018
M 2 .8 81 132 7 &0 i
12.1 B0 114
il i} ot 40 4 1% 017
A3 T8 i HLR] B3 7. 7.1
8.2 .y B2
i & B i 14 40 0.32
o1 & a0 129 8.2 ] 0.2
13.0 LY 150
o7 99.7 83 &0 oy A5 0.33
o 2 RN 7.0 i) 6.2 4.5 a.T
i1 L) 6.4
Hi 985 93 i {ri B4 0.22
oy 3 3.0 .3 4.3 3.8 3.2 3.8
4.4 LI 4.4

effect sizes, according to the model (1), are: 35, =06, 35, =
0.7, and g = 0.5, Additionally. three interaction effects are
simulated: interaction 1 involving Q1 and Q6. interaction 2
between Q2 and 04, and interaction 3 between Q3 and Q5.
The corresponding effect sizes are yoigs = 1.2, ygzen = 1.4,
and vgags = 1. The standard deviation of the error term e
i 1. Define a single effect heritability as h* = a'f_ﬂ /a3, where
a2, is the variance of the trait due to a particular effect, and
a"f is the total trait variance. The heritabilities correspond-
ing to the simulated effects are equal to h.f:,, = hf:,, ge = D058,
h.f:_L = h.fﬁm = (.08, h.f:ﬁ = 'r"%.*-“sf:'-'a = (.04, The overall broad
sense trait heritability H? = 0.355.

Table 2 illustrates both the power of detection for each of
the simulated effects, and the standard ervor of the estimate
of QTL location. When n = 200, the standard ervors of the
estimates of location reach the level of 15 oM: therefore, an
effect identified by mBIC i qualified as a true positive if it
= within 30 M of the true QTL. Epistatic effects are clas-
sified as true positives if both detected positions are within
0 M of the true epistatic QTL. For the sample size n =
500 this detection window was decreased to within £15 oM
of the true QTL. If more than one effect was found in a de-
tection window only one was classified as o true positive. All
other effects were classified as false positives. Table 2 reports
the average number of false positives in one simulation run.
Table 2 demonstrates that, as expected, the power of mBIC
increases with an increase of the sample size. For n = 500
the power of detecting the weakest main effect with h* = 0.04
reaches 93% and the corresponding, weakest epistatic effect
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is detected with a power of 84%. Note that lower power for
epistatic effects results from using a larger penalty than for
main effects.

In all simulations the average mimbers of false positives sig-
nificantly exceed (.08, which is the assumed value for FWER.
This effect is related to the lack of precision of estimating QTL
location (see the estimated standard deviations in Table 2 and
the discussion in Bogdan and Doerge, 2005). In the result of
this phenomenon some of accurately detected QTL fall out
of the assumed detection window and they are classified as
false positives. Note, however, that in all simulation runs the
average false discovery rate (the ratio of the momber of false
positives to the total number of detected effects) s below 79,

Results demonstrated in Table 2 confirm that dense ge-
netic maps greatly increase the power of detecting QTL. For
i = 200 the power of detecting the weakest main effect, Q6,
which was 11 M from the closest marker in the sparse map,
increased from 35% for the sparse map to 53% for a dense
map. The advantage of using a dense map s, however, not so
obvious when the QTL effects are large and located close to
markers from a sparse map. In fact, in this situation the search
over a dense map may even vield slightly lower power due to
the necessity of adjusting the detection thresholds to the in-
creased multiple testing problem. However, even in the situa-
tion where the dense map does not vield the highest power it
usually allows for a more precise QTL localization. The only
exception for these simulations is 4, which is located outside
the last marker on chromesome 2 (Figure 2). The dense map
was constructed only within the markers on this chromosome
and did not allow for & more precise localization of Q4.

The use of MRIM had a small influence on the power of
QTL detection when compared to the sparse map case. How-
ever, as anticipated it substantially increased the precision of
QTL localization. This difference is clearly visible for n = 500
where the standard deviation of QTL localization estimates
obtained by interval mapping was smaller than the distance
from the closest Hanking marker. Again, (4 & an exception to
this, where interval mapping actually increases the standard
deviation.

Ohar simulations demonstrate that the precision of QTL lo-
cation increases significantly with the sample size. However,
in case when the search i performed over markers, then the
standard ervor of QTL location is always larger than the dis-
tance between the QTL and the closest marker. Therefore, in
the sparse map case, the improvement of the precision with
increasing sample size s limited.

4, Discussion

The mBIC of Bogdan et al. (2004) is adapted to two unigue
and applicable situations, namely the search over markers
from a depse marker maps and multiple interval mapping.
Simulation results demonstrate that the proposed method of
relaxing the penalty in the standard version of mBIC allows
for the control of the type T error and the proportion of false
positives at the assumed level. The need to relax the penalty
in the standard version of mBIC is apparent when markers are
spaced closer than 5 cM. In fact, using mBIC with such dense
marker maps may help to increase the power and precision
of QTL location. For multiple interval mapping the imple-
mented penalty keeps the type I error at the assumed level
and only slightly depends on the number of tests performed
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within intermarker intervals. Based on our results multiple
interval mapping only slightly increases the power of QTL
detection when compared to the search over relatively distant
markers, but can substantially increase the precision of QTL
localization.

The particular weights to calibrate the penalty as pre-
sented in Figure 1 are specific for the backeross design. A
general method for computing the “efficient” mumber of mark-
ers (equation (5)) can be used for other experimental designs.
In situations where the strocture of correlations between the
regressor variables is known, the critical value ¢ can be simu-
lnted using the approach presented in this article. When the
structure of correlations is not known the critical value ¢ can
be approximated using the permutation approach described
in Churchill and Docrge (1994).

Following majority of papers on QTL mapping the simula-
tions presented in this article were performed under the ideal
model with anormal error distribution. However, an extensive
simulation study reported in Zak et al. (2007) demonstrates
that due to the central limit theorem mBIC often prescrves
its properties even when the distribution of the error term is
different from normal. In situations where the distribution of
the error term substantially differs from normality, we cannot
rely on the central limit theorem. Therefore, the version of
mBIC based on ranks, instead of original trait values, can be
used (see Zak et al, 2007). The results reported in Krnglyak
and Lander {1995) and Zak et al. (2007) demonstrate that
for reasonable sample sizes n 2 200, and independent of the
distribution of the error term, the threshold values for the
rank version of the interval mapping and the distribution of
the rank version of mBIC do not differ substantially from the
corresponding propertics of classical methods under normal-
ity. Thus, the weights proposed in this article can be divectly
used to relax the penalty coefficients for the rank version of
mBIC.

The R code with implementation of the methods discussed
in this article & available at http://wwv. stat . purdue . edu/
~doerpge /sof tware /mBIC. html.

5. Supplementary Materials
Web Appendices, referenced in Sections 2 and 3, are available

under the Paper Information link at the Biometrics website
http: //www. biometrics. tibs . org.
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