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Let X have a atar wiimedal dislibution Py, on B, We deserile a
peneral melthod fir constructing a star-zhaped sct 5 wilh the properly
PyX e &)zl —w, where 0 < <1 ia fixed, Thiz is done by using the
Cump—Meidell inequality on the Minkewski lunelions]l of an arhitrary
star-shaped set 5 and then minimizing Tehesgue measure in ocder to
nhtain pizge-efficiont serz. Condilions are oblained under which this method
reproduees 4 level (high density) get, The general theory 1s Lhen applied Lo
T specific cralnples: set salimution of & mnltivariate normal mean using
o multivariate ¢ prior and claszzical invariont eslimetion of o locution
wvector B for a mixture model. In the Bayesian example, a number of shape
properties of the posterior distribution are colablished in the process.
These resulle are o independent. interest as well, & computer code s
available frimm the sauthors for automarcd application. The methods pre-
senred here permit crmatruction of explicit confidence sets under vory
limited assumptions when the uaderlying distributiona are calenlationally
toe eomplex tn nbtain level aeta,

1. Introduction.

11. Freciews. Set estimation of unknown parameters iz a problem of
major statistical importance and mathematical interesl. The common ap-
proach iz to minimize & reasonable measure of size of the set subject to a
lower bound on the sct's probability content. This is generally accepled as a
good formulation of the problem and in esmmen situations rosults in many
standard and time-lested estimation procedurcs, The z-interval for an un-
known normal mean and the Hotelling confidence ellipacid for an unknown
multivariate normal mean vector are two prime exarnples.

The success of the method dependa erucially on the ability to identify the
high probability sete of a relevant disiribution, This is usually not difficult in
many etandard problems, because the underlying distribution often has a
structure, such as a spherical or an elliptical structure. However, the identi-
fication of the high probability sets becomes vory difficult if such structure is

Baceived Decomber 1991; reviged June 194403

* Iepearch aupported by NSEF Grant DHMS.20.2307 L.

# "'his work was part of the Ph.D. dissertation at Pardue Univergity,

AME 1997 suffect classifivedions, Primary 62F25; secondary BOELS, 2010,

fey wordy ool pheoeer. Confidence aet, star unimodal, atar-shaped seta, Minkowski fune-
tinnal, invariant sets, level sets, prior, pesterior, HPD sels,

1405
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not present, Indeed, it may even be arpued that realistic meodels will not
regult in sueh nice structures in the underlying distributions. A simple
example iz the case

(1.1} X-8+Z,

where 0 iz an unknown parameler vector in E* and the error Z has a
distribution with density

e 1yt ( 1
fiz) = (1= 1) —exp| - 522

1.2) ”
(1.2) A ! | L
Err-a———— =34 ] R ;—Z"-s-. z
{‘2#)!".-' zlzll_.z \ 2
where X ia a known pogitive definite matriz, and 0 << X < 1 iz also taken to be
known. Even in such a simple mixture problem, delermination of, for exam-
ple, the best invariant confidence zet ia rather difficult. The problem stems

from the foct that sets of the form
{z: f(2) =cf

are no longer multiples of one another; the shapes vary with ¢, and the
correct threshold ¢ for a apecified confidence level 1 — & can only be found by
repeated trial-and-error integration. The same problem arises in practically
any Bayesian problem whenever the prior distribution for the unknown
parameter is such that the high probability sets of the posterior have no fixed
ghapes or are difficull to determine. A gimple example i the case when X is
N I and # has a H{m, pn, I) prior, that is, a t-prior with m degrees of
treedom, location p and scale matrix {. Kven for such a reasonable prior and
a slandard problem, the Bayesian high posterior density (HPD) sets are
difficult to nearly impossible to determine. Numerical metheds, such as
gimulation from the posterior, do not work in general becauae it is not even
known that the HPD gets are convex. An atlempl Lo ideniily the high
posleripr dengily poinils by simulation from the posterior followed by a
numerical construction of its convex hull cannet be mathematieally justified
and in any case is a formidable project in high dimensions,

In this article, we provide a new method for constructing confidence sels in
any (finite) dimension. The method is exphicit: it requires only an appropriate
integration invelving the underlying diatribution. The seta are conatructed to
have a apecilled 1 — o probabilily contenl, where 0 < 2 < 1 is fixed bul
arbitrary. The eonstraction is specifieally directed toward finding the smallest
get poasible using this technique. We give ample evidence that sensible gets
wilh ressomable Lo excellenl size properties come out of thizs method, The sets
are in general not high probability sets. However, rather surprisingly, the
contours of the seta produced by our method are in fact high probability
contours under a particular asgumplion. At a mathematieal level, the results
we present here bring out a novel connection hetween unimodality and high
probability sets and demeonstrate that the claasical Cuunp-Meidell inequali-
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1410 A DASGUPTA, I B GHOSH AND M. M. ZEN

ties are much more usefil than they are generally thought to be. A& Fortran
program for use in practical cases is available from the authors,

1.2 The key idea: an illustrative exemple.  Suppose X ~ U8 — 1,8+ 1],
where —= < # < = ig an unknown location parometer. Trivially, the interval
X = (1 — ) is the best {location) invariant 1001 — )% confidence interval
for A. Since the “optimal” interval is known and iz so simple, there would be
ne reason to construct frequentist confidence intervals by other methods.
However, other methods can be used, if one wants, Indeed, by Chehyshev's
inequality, for any K, r =

EX— g 1

I St T

Kguation (1.3) immediately implies that the interval X + \/ 1/ a{r + 1}) is
also a 101 — w)%% confidence interval. Since Chebyshev's inequality is
wgually nol very sharp, use ol thia interval results in loga of efficiency in the
aenge of sive. For example, if ¢ = 0.1 and one takes r = 2, then the length of
the Chebyshev interval is bwice more Lhan that of the beal invariand inlerval
X108

However, the following observation ia interesting. Bince X — 0 ~ L7 —1,1]
and the I7[ -1, 1] distribulion is unmimodal aboul zero, by the Camp-heidell
ineguality [see Camp {1522), Meidell (1922), Dharmadhikari and Joag-Dev
(19881], lor every K, » = 0,

(14} P[|X—|9|_‘:-K]£( r ]’_E|X—H|r=( r )r- 1 ,
Wi 0 5% r+1/ AK'{r+1)
Equation (1.4) gives the shorter interval X — K with
——
(1.8 H=H(rj=r I 1-1"ll e(r + 1}

az g 10001 — )% interval, for any » = 0. Rather surprisingly, on minimizing
(1.5} aver » > 0 by uging elementary caleulus, one returns exactly to the
interval X — (1 — o), eorresponding to - = (1 — a)}/e«. This simple example
indicates that optimal use of the Camp-Meidell inegquality may be useful in
set estimation problems where the underlying distribution is unimaodal,

In this article, we demonstrate that the above example ia not an aecidental
coincidence, and we show wavs in which thiz technigue can be uszed with
reward in gny number of dimensiens, sulyect to an appropriate kind of
multivariate unimedality. The theory is then illustrated with tweo concrete
examples.

13 Owtline and overviews. In Seeliom 2, we present the general Lheory,
ecxtending the technigque of the previous example to many dimensions. As
indicated in that example, some form of unimedality ia required for arriving
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at useful =ets by using this method. The appropriale form of unimodality
precisely auited for our analysis iz the so-called star unimedality. In this
delinilion, the high probahbility sets of the underlying distribution are as-
sumed to be star-shaped about a mode v, The very appealing feature is that,
unlike some olher nolions of muldvariate unimodality, there are usable and
veriliable characterizations of star unimodality. It i also one of the weaker
notions of multivariate unimodality, making it moere likely that the underly-
ing diatribution ig alar unimoedal. This in turn makes the methods presented
in Lhis article more widely applicable,

It is proved in Section 2 that it a random veetor X ig glar unimodal ahbout
gome v, then, for uny sel 8 with 0 in its intorior and also star-shaped about 0
(wern), and for any given 0 < o < 1,

{1.6) PIX vokS)z=1-a,

for suilable &, depending on a generic constant # = 0, the value of o« and the
set 5. This cesentially says that a prespecified probabilily content of 1 a
can be achieved by starting with any sel 8 star-shaped about 0, inflating it
sufficiently and then recentering it at the mode ».

Nexi, we address the problem of minimizing the volume {(Lebesgue mea-
sure) of the set AS. Since each set 28 in (1.6} puarantcos a probability
content of 1 — @, thiz minimization is simply for deriving the smallest set
chiainable by using our method. For any given » > 0, we give an explicit
analytic description of the star-shaped aet §* — §*(r} that solves this mini-
mization problem over all possible atar-shaped setz 8. Tt is proved that the
optimal family of sets S*(r} have the following invariance property: for any
given o) and wm;, 0 < o), ay < 1, the corresponding optimal atar-shaped sets
S*(r, @) and 8*r, w,) are multiples of each other, that is, the solutions we
present are mutually homaothetic. This property is attractive from a communi-
ealion and interpretation peint of view and ia not necessarily shaved by the
family of high probability sets. We then give an indircet stochastic majoriza-
tion arpument to show that il the high prohability scts do have thiz property,
then [or any » > () the contour of our set 5*(r}is exactly a high probability
{density} eomtour, Examples are given where this is indeed the sitwation.

For hest results to be obtained, it is clearly necessary to optimize not only
over all posgible atar-shaped sets 5, but also over » > 0, This is evident from
the illustrative example presented in Section 1.2, This two-stage optimization
i then carricd out in two concrete examples. The theory wo present is
completely general, subject to star unimodality. It therefore appliea in gen-
eral, subject to star unimodality. The two examples Lo which the theory iz
applied are the ones mentioned in Seetion 1.1, namely, cstimation of a
multivariate normal mean with multivariate f-priore, and invariant claczaieal
set egtimation for the mixture model (1.2). Notice use of f-priora in the firat
problem iz very repsonable and, caleulational complexities aside, is pre-
ferred by many over conjugate normal priovs because of the thicker tails of
f-distributions.
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As stated before, the theory presented here applies only when the underly-
ing digtribution is star unimodal [although a direct extension of our theory
will also cover the eases of a-unimodal distributions, as in Olshen and
Savage (1970); this will be useful for the cases when star unimodality is
lacking]. In the Bayesian example, therelore, it s necessary that one has the
posterior of ¢ given the ohserved data X to be star unimodal. In Section 3, we
describe explicit resultz in this direction. These results are of independent
intereat, regardleas of the present context in which theyv are needed. We prove
that if X ~ N (8, a?l) and & ~ t{m, m,7°7), where m, p, o7 and <2
are given, thon the posterior 1s star unimodal for all Xif and only if 22 /0% =
(e + p)/(8s). Under thia condition, therefore, our set estimation methods
can be applied regardless of which X is observed. If 72 /02 < (m + p)/(8m),
we give a complete analytic deseription of the set of all X for which the
posterior is atar unimodal. Indeed, we prove that the posterior iz star
unimadal 10 and only if X liea cuteide a apherieal band

(1.7) [(X: 2 <X - nl < b},

with explicil formulas for @ and b. This will enable direct immediate verifi-
cation of whether or not the sot estimation methods we prosent are applica-
ble. We also atate without proof a necessary and sufficient condition for the
posterior to be star unimodal for all Xin the more general case X ~ N (#, 3.}
and & ~ f(m, p, X.); again m, p, 2, and %, are assumed given. Under this
condition, our methods can again be used without worryving about which X
was observed.

To get a falr picture of the situation, it s necessary to find out how efficient
our aeta are in the sense of size. In the Bayesian example, having obtoined a
apecifie vonfidence sel after the two-atage optimization on » > 0 and star-
shaped sets 8, we evaluate their efficiency by the following method: we
arueese lhe obtained set until the desired probahbility of 1 — « ia exactly
attained and then measure officiency hy taking the pth root of the ratio of the
volumes of the two aets. Taking the pth root is reascnable becauze in high
dimensions a negligible inerease in (zay) the diameter of a set can reault in a
vory significant increcase in the volume. For cxample, if S, iz the unit sphers
in K*" and 8, is the spherc with radius 1.02, the valume of 8, is 48.6% more
than that of §,. These efficiencies are evaluated for various p, m, 2, v% and
date X and arc reported and discusscd 1n Section 4. Seclion 4 also deals with
the case when the underlying distribution is exactly a normal. This is not a
case where our methods need or should be used in practice, bul applying our
methoda to the normal case is useful as a benchmark.

Hection 5 treats the invariant eatimation example stated befbre,

The pringipal rosults of thiz article are then the bllowing:

. demonstrating that Camp-Meidell inequalities can be very useful,

. presenling a peneral method of set estimalion in arbitrary dimenaiona
sulject to star unimodality, when determination of, say, high denaity sels
can be at leaat formidahble;

[ =t
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4. egtablishing a new conmeclion belween unimodality and high density sets,

4. description of the shape behavior of pesteriers under f-priors for normal
meana. These results are neaded for our resulte to be applicable in the firat
place; bul we hope they are interesting on their own as well,

Notice that the potential applieation of our methods to prediction problems
ie particularly exciting; construction of prediction regions is very valuable for
planning.

14, Hrstory., There 16 a truly vasl hlerature on confidence sets. As such,
it iz impossible to give a complete account of the work in this orea. For results
on invariant and decision-theoretic set eatimation, see Brown {1966}, Cohen
and Strawderman (1973), DuasGupla (1991), Heoper (1982), Hwang and
Cagella (1982), Joshi (1867) and Naiman (1884}, for general exposition and
discussion on Bayesian confidence sets, aee Box and Tiao (1973), Ferguson
(1972 and Lehmann (1983); for various notions and implicationa of mulii-
variate unimodality, see Anderson (1955}, Dharmadhikari and Joag-Dev
{1988}, DazCupta (1980), Eaton (1882), Eaton and Perlman (1977), Kaniner
{1977), Marshall and Olkin (1979), Mudholkar (1966), Olshen and Savage
(1970), Tong {1980} and Wella (1878); for a recent use of the Camp—Meidell
inequality in a different context, see Bickel and Krieger (1959).

2. The general theory.

2.1. Basie definitions. For a lucid treatment of unimedality in high di-
mensions, see Dharmadhikar and Joag-Deyv (19881, We will merely cite some
definitions and theorems which will be emploved throughout this scetion,

DeFmermion 2.1, A real random variable X with distribution function F is
called wnimodal aboat a mode ¢ if F 18 convex on { — o, ¢} and coneave on

(v, ).

DrrmiITioN 2.2, Aaet 8§ ©MH? s said to be ster-shoped aboat £ 8 if, lor
every X ¢ 5, Lthe line segmentl joining £ and x 15 complelely conlained in 8.

Evidently the star-shaped properly 18 weaker Lthan convexily, excepl in one
dimension, :

Dermimion 2.3, Let X ~ F be an absolutely continwous random variable
on A7 with density f{x} We aay that X {or equivalently [} is siar unimodal
ghout 0 i and only il fizxh = Asx) for all 0 <¢ <8< e and all x o
sguivalently, 1F and only if, for every 5 = ), the level set

(2.1} C,.={xeR”: f(x) = s}

ia star-shaped about 0.
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Bemary 1. Notice that ift f is differentiable. then atar unimedality is
equivalent to df(¢x)/df = 0 for all £ > 0 and all x.

DEFmITION 2.4, X is aaid to be staer wnirmodal aboat v if X - p 1s star
unimodal aboul 4

We will call v the mode of X Notice a particular X may be star unimodal
about several v.

EXAMPLE, Let X ~ N(8,X), where % iz a given nonnegative definite
p # p matrix. Then X ia gtar unimodal ahout 8.

BEMARE 2. Andersen (18565} defined unimodality by the properly that the
level sel ) in (2.1) is convex for every s. Clearly, thus, star umimodality is a
weaker notion than the one suggested hy Anderson. While the definition
proposed by Anderson is really guite natural, unfortunately there seema to be
no verifiable or usable characterizations of random vectors satisfving it. In
that senae, the following theorem is very useful. So is Remark 1,

THEORERM 2.1. The p-dirmensional random ceclor X [ star unimodol! about
0 if and only if X is distributed as UYPZE where U and & are independent
and 7 is uniformly distributed on (0, 1),

Proor,  Bee Dharmadhikar and Joag-Dev [{ 1988}, page 40]. C

BEMARE 3. Theorem 2.1 immediately gives that, for p = 1, star unimodal-
ity s equivalent to usual unimodality.

From Theorem 2.1, one also gets the assertion of the following sxample
immedialely.

ExampPiE 1. Let X be slar unimodal about ¢ Then
0

7 #
(2.2} IXN¢ = ( 3 Xf]
i1
is real-valued unimodal about 0.
2.2, A basie result. Example 1 above leads to the following simple result.

Provosrios 2.2, Let X be stor prumodoel cbout v, Then, for every 0 <
o < 1 and every r = 0, the Ly-ball

(2.3) Sy{v) = {X:||1X - vllz = &},
wrhere
r lip
{2.4) k= (—._....i”__,J (EIX v”2pr}1,rpr
{rt+1}- Ve
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hos a probabiitty content of af least 1 — w, that is,
(2.5) PXe 8zl a

RemMARK 4, Proposition 2.2 is formally valid even if £IX — vllf" = =, but

obviously is not useful in that case.

RemarK 5. From Propoaition 2.2, one sees that if the distribution of X is
star unimodal about seome v, then one can construct appropriate L,-balls as
confidence sets with a guaranteed probability content 1 — o

Proor oF Proroarrion 2.2, By Example 1, since X is star unimodal about
v, |X — v|§ is real-valued unimodal about 0. The proposition now Bbllows on
uaing the Camp-Meidell inequality for real-valued unimodal (about 0} ran-
dom variables Z, namely,

e T ElZI
(2.6) P{IZI}a}ﬂ[r+]]- s

for any r,a = 0.

Bentark 6. Proposition 2.2 generalizes to L,-balls for any % > 0; that is,
one can construct appropriate L;-balls as confidence sets with a guaranteed
probabilily content. Thig is because the only property of the Lymnorm [X|s
that is needed for the unimedality of ||X — v||{ in one dimension is that
Ly-norm is homogeneous, that i, for ¢ = O, [[¢X||y = ¢ -| X| .. However, this is
true of the L,-norm for any & = 0 and thus Proposition 2.2 generalizes in an
obwious way Lo L,-balle. Indeed, since the above homogeneity property is
valid for functions much more general than Lgp-nmorma, it is posaible to
generalize Proposition 2.2 strongly. The following definition is needed for this
purpose,

DEFINITION 2.5. Let 5 i # be any star-shaped set, star-shaped ahout O
The Minkowski functional wo of the set 5 iz defined as
(2.1 7g(X) = infla » :x € a8}, =x=R"

EXsMPLE 2.

(a) Let § = {X € R*: [|X]l; = 1}. Then 74X} = |IX]||z.

(B Let S ={X = R#: IX|ly = 1}, & > 0. Then mg(X) = ||X]|;.

(c) Let S={XeR": X2 'X = 1), ¥ positive defimite. Then (X}
VX'TOIX
In each of the above examples, w4 (x) has the homogeneity property
{2.8) me(eX) = cmy (X} Yer=0,¥Vxe R

This iz true in general.
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ProrosrioN 2.3. Let 8 c BT be star-shaped about 0. Then wolx), the
Minkowski functional of the set S, Is homogeneous of degree 1, that is, w5(x)
satiafies (2.8,

ProoF.  Obvious. O
We are now ready to prove the following generalization of Proposition 2.2,

ProTosITION 2.4, Let X be star primndal about v aond absolutely condinu-
ouy, and el 8§ CRP be stor-shaped about O, with 0 in it intertor, Then, for
every < o < 1 and every r > 0,

PX-vek8)z1-na,
whera

9 g B = ;r :p_ o X — or L-’Frl
(29) {U__l}ﬁ_ (E[ms(X - »)]*)

REMARK 7. Proposition 2.4 shows how an arbitrary 8 star-shaped about @
can be sufficiently blown up and then recentered in order to guarantce a
probability content of 1 — a.

Proor oF Prorosrrios 24, Tt followe from (2.8) and Theorem 2.1 that
(wa(X — v is rcal-valued unimedal about 0. Equation (2.9) now follows
exactly in the lines of Proposition 2.2 on using the Camp—Meidell inequality
(2.6} O

2.3. Construcfion of optimal star-sheped sets and their efficiency proper-
ties. From Proposition 2.4, it followa that, for any star-shaped set S, kS
(recentered) iz a confidence set of guaranteed probability of 1 - &, where & 1s
as in (2.8). Conalruclion of an “optimal” star-shaped set S" 1s the main goal
of this section. Let. A8} denole the Lehesgue measure of 8 for a fixed » > 0,
we find a atar-shaped set S* which minimizes {29}, subject to the restriction
that A(S) = 1. Notice that the reatriction A(S) =1 results in no loss of
generality, since AES) = EFA(8), and there iz a scale-invariance in the
particular problem we now have.

The following definition and notation will be subscguently used.

DEFINITION 2.6, For given r =0, let S*r) (if it exisls) minimiee
E[mg{X — v)]*" among all star-shaped {about 0) sets 8 such that M8) =1
Then we will ¢all S*(r) the optimal star-shaped set of order £

We now present a general and explicit result describing the contour of
S*(r) for any r > 0. We will give the detaila for the case p = 2 for eage of
underatanding. The technique is just the same for any p = 2. The general
result will be stated precisely,
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Let then § < B? be siar-shaped about 0. Recall that X — v is assumed to
have a alar unimodal distribution. We can and will assume here that v = 0.
We thus want to minimize E| wg(X)]™ subject to ALS) = 1, where m = pr = 2r
and 7 X) = inflc = 0: X = oS5}

Transforming to polar coordinales,

X, peosd ond X, = pain o,

where p = 0 and 0 < ¢ = 27, and denoling {$} as the radius of S along
angle ¢, that is, G(d) =sup{p: (peos &, psin ) = 8}, one hag # (X) -
g/ (o). The realriclion A(S) = 1 is equivalent to

B i g
fao 1 = [T[Mapae=1
o I Ik
(2.10) ,
et b}
Jr - d = 1.
0t @

(bzerve thal lhe star property of § 15 being used to deduee (2.10). Lel now
F( p, d) dencte the density of X written as a funection of p and . The problem
15 then to minimize

s

(2.11} | u:( b}

| op( o ¢y dpas

subject to [P [d*(d) /2] ddb = 1. Wote that ¢ = 0 iz arbitrary measurable.
Writing

Wi d)
2

(2.12) mm}_J p“+1P{p drdp and de(p) - dib,

expresgion (2.11) reduces to [§7[ £ (d) /™ )] d b,
Now the problem is equivalent io minimixing

2z Pi‘."i{ E-ﬁ'}
J; B ) e

2r Pold) WD)
(2.13) =2f: T L

2 Ijnr({'b} v 2w
=2f“ mu’r{q‘:) SLLbJecLLnL de(d) — 1.
By Hilder's incguality,

, 14a

£} J du{qﬁr}' ifs = 1.

1:3 14) AJ n[‘.} dv[dl}r?z{f:rlm

[y 2( ﬁ]l
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Choosing e =2/m + 2= 1/r + 1) = 1 and »(-} as in (2.12), direcl compu-
lation gives Lthal

n(fﬁ']

(2.15} rh.s. of (2.14) _z(f dm)

Henee, (2.14) reduces to

{2.16) fn T deh = UU Pi( ) Lw] 1=,
If we now choose () such that

, P () B ()
{2.17) ey ol P} = ( . ) -

where ¢ ig o constant, then the restriction (2.10) forcea

TR T . -. 1/a " B W
w

(2.18) e-= [%f Rﬁf[m“)frﬁ}ddrj [ 5 [Jﬁ”ﬂ;(:ﬁ} d
On simplifieation, (2.13) now reduces to
2. B (tf?} T B.{d)
Pl g

dop

=e"*f "Pi(d)dé
1l
(2.19)

4 1«
= gla { f“ “Pi( ) d¢] [by (2.18)]

o . ril
= 2—r|:jl;ld Ij,i.'”r_l](d‘} ﬂ[(‘t':| :

which attaina the r.h.e. of {2.16),
Binee s = 1/(r — 1), combining (218} and (2.19), one has thal

EP.:;‘IE'F 1]{ qb) 172
,ﬂjlz“ Pm]_;'i.l-l 1](¢r} {,Eqb

produces the contour of the required set S*(#). Thus we have the following
result, '

(2.20) dol )

THEOREM 2.5. Forp = 2 and any fixed r > 0, the contour of 8™ ) is given
by (2.20) and the minimum value of B« X0P" is given by {2,19),

For p = 3, similar arguments are omployed again, Wo omit the unneces-
sary details but give the corresponding result. Tranaforming to polar coordi-
hates,

X {Xlsxﬂ:--"!xp}—}(p’{pi""’{pﬁ' l}='
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where p > 0, 0 < apy, ...,y 3= mand 0 < ¢, | = 2, and
X| = psind; 8in P, ~rsind, o 8ind,_
X, = pein ¢ gin ¢y ~-sind, o008 &y,
X, 1= psm ¢, cos dy,
X, = peos ¢,
one has
P=X+ X+ +X] and |J=p" lsin® * b, oming, 4,

where |Jf| denotes the Jacobian of the transformation. Let P(g, ¢y, ..., ¢, 0
denote the density of X in terma of p, ¢y, ..., 1.
Wilth m = pr, define

(2.21) Pm{thl,___,('ﬁp_l} ;.zj; prie ip[\Ps[.f"I:'“qu'p—l}dp

and

?,!I'.;.[tfll,..., p—l}

{222} P1-"|:r I][d’h-- : F_]} 1/p
T R PETT N (e by SN S ) o sin b,y ddy o diby_y

Therefore we have an extension of Thegrem 2.5.

THEOREM 2.6. For general p and for any fived v > 0, the contour of 8%(r)
is given by (2.22), and the minimum vafue of Elwo(X)17" equals

_ Qg pofF ™ .
Xsin®~* by ain dy,_, deby dﬁbp_ll

The following example gives an illusiration of these reaalts.

EXaMPLE 3. Let X ~ N(0, ¢}, £ > 0. Then, by definition,

» 1 [ P’
{2"23} I{p!ﬂﬁ'l!-”! F_]_}EWEXD‘—E),

Therefore, on straightforward inlegration,

2m;’2—1t(nz:—1]_:':: ; . +p)
)

T
aPsE 2

(2.24) Pt 1) =
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a conslant (actually, as long as it is a constant, the exacl value is not
important).

MNow using the fact that

T T ar 5 EiTp"Jz
2.25 co | sinFTE g oo sin o o cedd = ==,
@28 fis ek Y MR L R T

one gets from (2.22) that

({1 + p)/2) "
{2.26] q':u{frﬁl,,..,rp 1}= [---{{ # 4

The very interesting fact iz that (2.26) iz a constant independent of
thys .oy by, implying that, for any » > 0, the set 5*(r} is a sphere. Thus the
contours of the sets we propose are high density contours in this example,

2 ’
'T:"F"

The phencmenon of the above example actually generalizes to a much
broader gituation. An atiractive result shows that whenever the disteibution
of the underly¥ing variahle is such that ita high density scts arc mutually
hormothetic, the method of Theorem 26 reproduces a high density contour,
We musl caution Lhe reader, however, that even though our methods will
produce a high density sel. it 1= nol neceasarily the 100(1 — « )% high densily
sel exaclly. Separate efficiency calculations will therelore be neceasary.

TuEOREM 2.7. Let X be distributed vs P, where P is absolutely continuons
ster whimodal, Suppose the high density sets of P are mulually homothetic,
thal Is, if [ denofes the denaity of P, then the sefs

[x: f{x) = ¢}

e mutinal multiples of each other for different ¢, Then, for any fixed r > 0,
the contour of the sfar-shaped set 8™ r) is o high densily contour.

ProoF, Let S, denote the high density aet and let § be any other

atar-shaped set with AS,) = M8} = 1. Tt 2uffices to prove that
E[ms(X)]" < E[m(X)]" ¥m>0.
Since &, is a high density =et and A(S,) = A(S}, we have
P(X8,) = P(Xe8).

Hence, ;
(2.27) P(X €cS,) = P(X ¢ ¢8);
this 1s because the high density sets of P are mutvally homotheiic, that is,

&3, is another high density set. By definition of «(-}, since £ is absolately
eontinuoas,

(2.28) P(wg(X) =¢) = P(X =¢8)
and
(2.29) Plmg(X) = e} — P(X & a8y}
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Combining (2.27), (2.28) and (2.29), we have
Play (X} =) = P{my(X) = ¢).
Sinee ¢ = 0 is arbitrary, this means
s (X) < my(X),

where ® < " means “afochastically lese than.” Therefore, as is well known,

i

E[rs (X)) = E[7s(X)]" ¥m>0,
which completes the proof. 1

ReEmauk 8. The common examples where high denaily sets are mutually
homothetie are general spherically or elliptically symmelrie distributions or
uniform distributions on hyperrectangles and so on. There are other situa-
tions in which thia will be the case as well. For example, if an observable X
and a parameter i have a joint elliptical distribution, the conditional (pos-
terior} distribution of 8 given X iz elliptical tos and the mutual homothetic
nature of Baves confidence sets is apparent. A case of particular interest is
when (X, ) is jointly disiributed as a 2 p-dimensional elliptical {; in this ease,
given #, X 1s a p-dimensional elliptical ¢ with 8 as 5 location parameter.
Thus the interpretation of 0 is maintained; the conditienal covariance matrix
of X given B ia a function of A, however, See Muirhead (1982) for more details,

BEMARK 9. After the optimal contour of Theorem 2.6 iz derived the actual
optimal confidence set ia ohtained by using

() k- 84(r),
where £ is ag in (2.9) wilh 5 = 93(r).

Finally, in this section, we point out the following rather nice property of
the family of sets C#(r).

Prowourron 28 For given n, on, 0 < ayq, o, < 1, and any given r > (),
fet CF(r) and C¥Hr) denole the optimeal confidence sefs for o = ay, oy,
respectively, in the sense of Remark 9. Then, for o swileble constent b > 0,

Cylrd = 60T ()

Remark 10, The mulual homothelicity property of the above proposilion
i= attractive from an interpretation and communication viewpoint. The user
can immediately visualize the effect of increasing or decreasing the confi-
dence level.

PrOOF OF PROMOSITION 2.8, The proof is transparent on noting that 5*(r)
does not depend on o and on daing the definition of & in (2.9} 1
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2. An application to Bayesian decision theory,

3.1. Introductory remarks. The theory of the preceding aection makes no
refarence to any specific problem. Consequently, in principle, il applies in
general, aubject to having a star unimedal distribution.

In thiz seclion, we pive an exarople on Bayesian set estimation of a
multivariate normal mean when it has a multivanate -prior. Formally, then,
congider the model

~ N 2
{3r1} x‘ P{H,G" }:l

8 ~t{m,p, ),
where # iz the nly unknewn quantity and all others have the zame meaning
a5 in Section 1.1, Extensive previous research exisis on Bavesian inference

about a normsal mean with respect to f-priors. For discussions on the general
appeal of {-priors and other related references, see Berger (1985),

4.2, Star unimodality of posteriors.  The goal in this subseclion is 1o apply
the theory of Bection 2 for comstructing Bayesian confidence sels for 8 under
model (3.1). In order that the theory he applicable, we need star unimodalily
of the posterior. The next few results give a eomplete picture for this problem.
The posterior iz alar unimodal if il has Lthe sironger properly of log-coneavily.
The converse 1s known to be not neccssarily truc, The first theorem below
gives the rather surprising result that for {-priors as in (3.1}, the posterior is
log-comeave for all X il il 1s slar undmodal for all X In facl, we prove it for
more general priors, This result is useful because checking whether the
poaterior is log-concave for all X is easier than directly checking if it is star
unimodal for all X Also note that the theory of Section 2 can be applied
withoul regard of which pariicular X was obladned i il 18 known thatl ihe
posterior is star unimodal for all X

TreEOokEM 3.1, Lot X ~ N;ﬂ(ﬂ? aly and let B~ o8 pl*/72) Assume
B, ¢ and r* are known. Suppose w(-) is twice differentiable and decreasing.
Then the posterior distribution of 0 iz log-roncave for afl X if and only i it is
star unimodal for all X

Proor., Clearly we only need prove the if part. Wo will, without loss of
generality, assume p = 0 and further let «* = 7% = 1. The case of general
a? and r? is exactly similar. Let (8 | X) denote the posterior densily of 8.
Clearly, —log #(b | X) is proportional to &, 0] + 2l& — XI*, where &, =
= log . Suppose now w0 | X) is slar unimodal for all X with mode at
r = (X} Therefore, £ = & — v iz star unimeodal for all X with mode at 0, Tt
then follows that ¥ ¢ = 0, ¥ &, VX,

o 1
E{ml[llxz [ 1=||2} - E||zz b Xllz} =0

o 2@ tZ + v [*)}LZ]F + v'E)
(221" 1 Z (v X))20 ¥ex0,YVEVX

(32)
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Letting ¢ — 0 in (3.2}, we have
2 (IvlP) vZ+Z{v —X) =0 (VZ VX)
= (2¢(lv|")-v v -X)Z=z0 (VZ VX),

(3.3)

from which it immediaiely followa thal
(2e5(llell®) + 1) -» =X,

that is, ¢ = ¢X for suitable ¢. Notice that “¢” may {and will, usually) depend
on X. Given X = 0, “o” can be found [rom Lthe equalion

(3.4) a{24%{e?|X|%) + 1) — 1= 0;

it ia easy to cheek that 0 < o < 1 and thal & = o||X|} ig eontinuous in | X].
Furthermare, infy «/|X[ = O and supyg a||X|| = 1. Substituting «X for » and
Z =X in (3.2), onp then has

(3.5) 2¢5((t + )’ XX)(t+a}+¢t+a—120 ¥i,¥X

Multiplyving both sides of (3.5} by |IX||, writing w for {f + a)}|X|, w, for o|X]|
and letting fla) =2¢{w)w + w, one then oblaing thal, given [X[ > 0,
thore exists wy = 0 such Lthat

Flw) = fleg) =1X] if wz=w,,
and
Ao)=fla) =Xl iz
For this one uses (2.1) for both Z =X and Z = —X Since f must then be

nondecreasing, it follows thatl «{8 | X} 15 log-concave for all X, Thiz iz becauze
direct computations give that the following holds:

the Hessian malirix of log (8 | X} is  equal io
{1+ 2010020 T + 4420 0)2 106,

which iz nonnegative definite if
1+ 285100°) + 4] 8l%(I18l*) = 0.

This last inequality, however, follows if fTw) is a nondecreasing function. U

COROTLARY 3.2, et X ~ N (8, o) and 8 ~ t{ m, \, 720}, Then the poste-
rior of O given X is siar wtimodal for ell X if end ondy if m7%/c® =
(m + pl/8

ProoF. We give the proof here for the case 7% = 7% = 1 (the proof for the
general case is essentially the zame). Clearly, we can assume p — 0. From
Theorem 3.1, the posterior is star unimedal for all X if and only if it is
log-concave for all X. The condition for log-conecavity is 1 + 24(/6%) —
4)0)%p5|0lI*) = 0 for all @ which reduces to m > p/7 on computation, as
reguired, M
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Corollary 3.2 implies that if @ ~ t(m, w, 7% and if mv*/0® < (m + p)/8B,
then there exist appropriate X such that the poaterior of 6 given X 1s nol. slar
urimodal. We have a complete description of this set for any given m, n, ¢f
and 77, The full proof ia rather lengthy and can be obtained from the authors;
however, al leasl an Indicalion is necessary [or comnpleleness,

We assume p =0 if w = 0, all azsertions are valid with X replaced by
X — p. We will uae the following notation:

] X o
_=Z’ _=K|:|- 2=f}', m-l—p:lﬂ_
o r T
1 1
Y==, ¥y=-—373.
& X, 1*

THEOREM 3.3. For given m, o and t°, the set of X for which the pos-
deriar of 0 given X is nof star unimodal is given by

8, = {X: ay < IXIl < by},

82 —8y? ~ 208y - VBB - By)°
= 5y
el
- L _ B8y 208y + VBB 8y)"
a |:|._ B‘}II L

whenever the quantities o and b are nof well defined (e, if B < 84, the sef
&, egquals the empty sef.

Discussion.  WNolice the very intereating aspect of Theorem 3.3 that, for
large values of ||X|| (i.2., when the prior and the data are totally incompalible),
the prior is atar unimodal, This is essentially because of the difference in
tails of normal and ¢-distribulions, if prior and data are compatible, then the
posterior iz star unimodal as intuition would suggest. IF they are wvery
incompatible, then only the dominant tail matters and the posterior is again
atar unimodal. The general asaertion of Theorem 3.3 is false if the likelihood
and the prior were each a f-distribulion; in thal case, the posterior is star
unimedal if and only if' |X — pl is sufficiently small.

IKDICATION OF PROCF OF THEOREM 3.3, A detailed prool iz available in Zen
(1991}, The main stepa are the following:

Step 1. Showing that if the posterior is slar unimodal for a particular X,
then it i necessarily star undmeadal about

v =nX,,
where a solves the cubie equalion
(3.7} Rla) =a—a® = (p+ ylay — yy = 0.
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Siep 2. If the posterior 18 star unimodal, then there iz 2 unique root in
{1}, 1) of {3.7) and the X for which A(«) has this unique root property form the
set

(3.8) 8, ={X:d(p+y)y* - (B2 —8y" +208y)y + 4y = O}.

Sfep 4. By definition, star unimodality also implies that the posterior
density is nonincreasing as one moves away from the mode along any ray.
More formally, auppose h{a) has a unique root, say, «*. Then 8 iz star
unimodal if and only if ¥ = # — X is star unimodal about 0, which implies

tY | X
(3.9) TS oo g 0¥V,
aE
where IV | X) denotes the posterior density of V. Then, on lengthy algehra,
{3.9) is equivalent to
(3. L) et (1 + af) +a*(2 —ag8)+ 1 >0

Step 4. Consequently, the posterior of @ is star unimeodal if and only if X 12
in the set

(3.11) 8 . = [X €8, . (3.10} also holds}.
Step 5. The set 8, |, ia a set of the form
(3.12) S =X X = b, or |X| =4}

Thig ia trivial on using the definition of v
Step 6. The sel 8, s a1 sew of the form

(3.13) Sy = (X €S8, X = by or X = a,).

T,m:

[

B om
Thiz is not entirgly trivial, but requires proving that if X, i — 1,2, are such
that, for each X,, (3.7) has a unique root a*(| X,/[}, then a*(|IX,]) = a*{|IX,I}
whenever || X|| = [|X,|. Aller thai, Slep § iz immediate.

Step 7. Explicit formulas for @, and &, ¢ =: 1,2, can be found, which on
paticnt calculations give &, = o, = a; and b, = b, = b,, where a; and by
are az in {3.6). O

CorovLary 3.4, For any given p, 02 and 12, the set 8, in (3.8) ix vither
empty for afl lorge m or converges to the empty set gg m — =,

Proow. IT872/0% > 1, then the first assertion holds. I 87 fror? < 1, then
the second assertion holds as can be seen on noting that the gquantily o
defined in (3.6} goea to = as m — =,

Rewank 11, This result is in a gense Intaitive becaase Lhe t-prior for very
large m cssentially looks like a normal prior,

Finally, in thiz section, we state the following generalization of Theorem
3.1 ;
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Tukowem 3.5, Let X ~ N (6, 2} and let 8 ~ ({8 — p)'s, L — i) As-
sume T is twice differentiahle and nonincrensing, ond assume W, Xy and ¥,
are known. Then the posterior of 8 given X is log-concauve for afl X if and only
if if ig stor wnimodad for all X

Proor. See Zen {1891), 0
The following corollary is of particular intereat.

CororLaky 3.6, Let X ~ N (0, X)) and let 8 ~ t{m, p, 5, ) Then the poste-
rior of B given X is sfar ummoa’ai ,fm all X if and only if Amin(Z7'2,) =
{m + p)/(Bm), where Amin() dencles the minimum eigenvalie,

Proor, Use of Theorem 3.5 and direct werification of the necgative
definiteness of the Hessian matrix for the log posterior results in the cor-
ollary. 1

4. Efficiency caleulations,

4.1, Deseription of calewlations. In thia seelion, we first briefly describe
Lthe application of lhe method gutlined in Section £ to the Bayesian set
eetimation problem for the model given in (3.1) and then report and discusa
the efficiencies of the obtained eonfidence aels; Lhe preecize delinilion of
efficiency la given below, Withoul loss of generality, we can assume p O
furihermore, since only the ratio 72/ ? iz important, we can also set 2 L
Thus, in the following, we will use p =0 and «* = 1,

We firat describe very briefly the procedure used to obtain the eonfidence
sela. For ease of understanding, let us consider the spectfic case p — 2, Since
the posterior depends on X only through X[, we can take all but one
coordinate of X to be 0 and the remaining one as ||[X|l For p =1, in the
nolatiom of Seetion 2, this resulls in

exp( —p” + plXlsin )
[1 I pﬂ,f"(m’ﬂ}}nﬂﬂ

Consequently, the fanction P {4} [see (2.12)] i= proportional to

e

(4.1) P(p,d)a

m—1

: P
42 P ——p° + p|lX|zin ¢ | d
(4.2} 'I':?'{1+p,r"(n" 2)) 7+ F"‘ P P ] 22

For given r = 0, the optimal contour u#r,( &) [see (2.20)] ia then proportional to
the [1/02(r + 10ith power of expression (4.2). Expression (4.2) was evaluated
by a alraighiforward one-dimensional numerical integration; we are not
aware of any zpecial functions to which (4.2) clearly relates. The numerical
integration was easy. This was done for a grid of r values, and {2.19) waa
evaluated by anolher numerical inlegration {on ¢). Finally, on substituting
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(2.19) into (2.8), the penultimate minimization over r > 0 was done by a
numerical search. We would like specifically to point out here that simulation
from the poaterior was not necessary or done in order to obtain the confidence
getz.

However, simulation was necessary to evaluate the efficienciesz of the seta.
As stated In Section 1.3, in order to caleulate efficiencies, we shrunk the
initial confidence set until it had a posterior probability of {(exactly) 1 — o and
thon took the pth root of the ratio of the volumes. The shrinking was done by
pradually reducing the constant & in (2.9 from its initial value, The stage at
which the degired 1 — « posterior probahility was reached was decided on the
basis of a simulated sample from the posterior. As a matter of faet, this
method of shrinking the initial confidence set until the desired content was
attained may be a good idea whenever such sequential shrinkage and simula-
tion are not diffieult.

The caleulations were done over a wide range of p, m, % and varipus o
and ||X|[. Table 1 provides efficiencies in some selected cases. In the tables,
XX corresponds to the three quartiles of the marginal distribution of X'X for
the particular given combination of g, m and 7. The HPD set was obtained
in a (mathematically} ad hec way by simulating from the posterior and
forming a set of sufficiently many high density points, starting from the one
with the highest posterior density, and then by constructing the convex hull

TamE 1
Teedrle of efficiency

P5% r'x
B m 2 25% 5% 5%
2 i T4hH) (HERAD (L8140 (HHES
1040 1.0440 1.000 {.953
3 LMD .41 LIRTA 14914
1.0 (hoad 1.000 1.008
a LGHp 0.8902 0.5910 39140
1.AH) [iR: e {LO4A 106K
30 10,04 (.84 0887 891
RLL (144 {405 (hoid
70 1000 (B72 {360 (855
1.0H} 835 L3t (hHAG
X 1 T400HY {1720 {1720 {LTad
1.0H} 710 0.740 .715
i T4LAHY (L7230 {1720 1734
104} 0720 (.601 1. TO0
b5 THhAHD ARl (L7134 (ET 5%
104 0710 0,710 .70
a0 THkHE { At {1754 (1744
1.04 0.720 0724 0710
i BRIRL I LLAE ] L7541 LAY

1.4H} {1749 A 734
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of these poinls in a visual manner. Thus, even this ad hoe method of finding a
HI'D zet will not work for p = 2. Al simulalion waz done by wsing an
aceeplance—rejection scheme.

4.2, Discussion of efficiencies. We did not see any clear trend or paltern
in ihe efficiencies, but generally speaking the efficiencies seemed to he hottor
for smaller p, Nolice thal, lor g = 2 in particular, near 100% efficiency was
reported for many combinations of m, 7%, | X| and .

Even when the efficlency is not very good, the information about the
contour is useful knowledge. As a matter of practice, it is probably a good idea
to work with a somewhat smaller value of 1 a than the one actually
desired. The conservatism of the method will hopefully automatically take us
near the desired level, while also automatically preducing smaller sets. We
helieve this i3 a uscful general recommendation in practice. It may also be a
good idea to compute such a region and report its estimated eontent on the
basie of gimmulation.

4.3. The normal caze. It followa from Theorem 2.7 that if our method iz
apphlied to a multivariate normal distribution with (known) covariance matrix
%, then we will alwavz obtain an ellipsoid, oriented as high denszily ellipaoids
are. Az a general benchmark, it is interesting to evaluate the efficiencies of
these ellipseids, where efficiency is defined the same way gz in Section 4.1, In
thiz case there ia a more or less closed-form formula for the efficiency. For
arbitrary positive delinile %, the elliciency can be easily proved to be equal to

X #)

e n}

where Xfl[p} denotes the LMH] — alth percenlile of the central chi-square
disiribulion with p degrees of freedom and

g=elw,p)=

1

lip
r

i i l-r.-r'u

sy eyt s ”p[,”,lw}] 'r

V2 "-"":'ltlir+ 1) v 't p/2) |

Equation (4.3) applies to classical or Bayesian problems alike, but ohviously

the sets have different interpretation. An attractive featare of formula (4.3) 15

its nondependence on B Table 2 gives some values of ¢ for various « and p.

Comparison with Table 1 shows that, for all X considered, the elliciencies

there are close Lo Lthe corresponding normal distribution efficiencies when the
degree of freedom m is large, This 15 reassunmg.

3. An application to classical invariant estimation.

5.1, Derivation of the confidence sef. In thig section, we consider the
example of constructing a classical invariant econfidence get for 0 when
Z = X — 4 has the density given in (1.2). Motivation was discussed at length
in Section 1.1, 8o we will only describe the work invelved in the conzstruction
of the confidence set. Sinee the work, in zpirit, i the same as that in the
Bayesian example of Section 4, we will keep detaila to a minimum; only the
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Tavre 2
Efficiency in the normal onee

o

) on 010 025 0050 0100 0200
2 (83403 081585 491020 050172 (59095 087636
3 083777 0923594 081082 0. 208} HET 1B 352
4 0SS (L2563 a1 hns (LALESG {LA0ERS DLRBAGS
s} (842375 095044 082321 091615 (80680 .883HT

1 D abEa 0187315t LrAh el (LEATHY (LH1ES 11EHIBES

13 186414 094509 (83972 0.95447 082750 0.8L752

0 LER- ] | (1.944502 0.94404 [VR=h-L (HEHEEE [AREETT

cage p = 2 will be illustrated and we will assume {actually with no loss of
generality} Lthal

Tk diﬁg{fff,:’f%}.

Easy alpebra and inlegration gives that, for any r > 0, the optimal contour
corresponding to (2.200 15 proportional to
. 1A e
(1 - Ndd, o
(5.1) ‘*"4",—:—,—" L T
(o} cos® ¢ + disin &b} |

It iz easily seen that optimizing over r corresponds to minimizing

(T{1 1 Fy)t2

|r 1 LE (,E W LT 10 rbs20
= - .rl 1 ’
” fzu"l.-' . { Jub oy 1+.| i
(5.2) 0 ll {dfcos®  + disin® ) |

L 148

over r = (L

For any given A, o, d, and «, this can be done by a numerical inlegration
followed by a search. Usually, the minimum is at some r, = 0 {as opposed to
r, = 0). Henceforth, when we refer to r, il will be underatood that we mean
¢ = r,. Onee the optimal set corresponding to (2.4} iz found, X is added 1o it,
thereby giving invarianl {family of} seta.

6.2, Properties of the set.

1. Formula (£.1) in a senge says that the eventual confidence set has a
apherical compeonent and also an elliptical compeonent. This is nice from a
visual as well a3 communication point of view. The actual high denaity seta
do not have an obvious interpretation such as this,
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a,

Suppose, without loss of generality, di = dj (il di — df, the problem is
somewhal uninteresting). This means Yar X, > Var X,. One may. Lhere-
fore, like to see a confidence zel zlrelched more in the direction of 4, than
f,. Examination of (5.1} shows that this {s indeed the case, on forcing
¢ = () and &, respeclively.

. Examination of {3.1) also gives thal il is periedic with a period of #. This

implies that the ronfidence set is symmetric in cach direclion. Again, this
is probably a desirable property.

. In fact, examination of (5.1} gives the lobllowing stronger property: the sot

ia most stretched along the direction A, and the amount of stretch
decreases monotunically as one approaches the 8, dircetion; and in this
direction, the set i= the least siretched. This is because (5.1} is monetone

i g

5.3, A specific ease. Tigures 1-4 give plota of the actual 85% optimal

confidence set in the above example, corresponding to o, = 2.5, d, = 7.5 and

Japdm = 0, cll = 3 _JFd3IHD

Fic, L

lepdm = C_ 35, £l = X_ElRg3d

-1

Iz, 2.



CONFIDERCE SETS 1431

landn = 0,6, Th = 1,95558%

L (A

Tandn = 1, ED = 1, 395472

Froi 4.

A =10, 0.25, 0.5, and 1, respectively. Note the very interesting transition of
the confidence set from a circle to an ellipse. In each picture, the value of
v = ¢, Tor which (5.2) is minimized is given.
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